FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Majewski, J AF Majewski, Jaroslaw TI Neutron reflectometry and off-specular scattering investigations of lipid membranes on thermo-responsive polymer cushion SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012 NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 140-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701627 ER PT J AU Manocchi, AK Lee, B Yi, HM AF Manocchi, Amy K. Lee, Byeongdu Yi, Hyunmin TI Small-angle X-ray scattering study of readily controllable palladium nanoparticle formation on viral nanotemplates SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA. Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 418-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701880 ER PT J AU Marshall, CL Mader, EA Miller, JT AF Marshall, Christopher L. Mader, Elizabeth A. Miller, Jeffrey T. TI Selective alkane oxidation using supported Pt(II) and Pt(IV) halides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Marshall, Christopher L.; Mader, Elizabeth A.; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 26-PETR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705586 ER PT J AU Martin, LR Zalupski, PR Tillotson, RD AF Martin, Leigh R. Zalupski, Peter R. Tillotson, Richard D. TI Understanding the role of kinetics in f element solvent extraction systems SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Martin, Leigh R.; Zalupski, Peter R.; Tillotson, Richard D.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RI Martin, Leigh/P-3167-2016 OI Martin, Leigh/0000-0001-7241-7110 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 53-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703198 ER PT J AU Mausner, LF AF Mausner, Leonard F. TI Isotope production at high energy: Lessons for FRIB SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Mausner, Leonard F.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 4-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704527 ER PT J AU McCormick, J Jurisson, S Beals, D Fugate, G Brandt, H AF McCormick, Joshua Jurisson, Silvia Beals, Donna Fugate, Glenn Brandt, Heather TI Determination of Tc-99 concentration in water, soil, and vegetation samples at Savannah River National Lab SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Missouri, Columbia, MO USA. Savannah River Natl Lab, Aiken, SC USA. RI Fugate, Glenn/A-1622-2013; Fugate, Glenn/O-9752-2016 OI Fugate, Glenn/0000-0001-7100-690X NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 17-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704507 ER PT J AU McGregor, D Burton-Pye, BP Mbomekalle, IM Lukens, WW Francesconi, LC AF McGregor, Donna Burton-Pye, Benjamin P. Mbomekalle, Israel M. Lukens, Wayne W., Jr. Francesconi, Lynn C. TI New approaches for reduction of Tc-99 pertechnetate: Potential applications in environmental remediation and extension to reduction of Re-188 perrhenate for radiopharmaceutical applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 CUNY Hunter Coll, New York, NY 10021 USA. Univ Versailles St Quentin, UMR8180, Inst Lavoisier, Dept Chem, Versailles, France. EO Lawrence Berkeley Natl Lab, Glenn T Seaborg Ctr, Div Chem Sci, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 71-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704556 ER PT J AU McIntosh, M AF McIntosh, Mike TI Fundamentals of human performance improvement: Part I SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [McIntosh, Mike] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 9-CHAS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701133 ER PT J AU McIntosh, M AF McIntosh, Mike TI Fundamentals of human performance improvement: Part 2 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [McIntosh, Mike] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 10-CHAS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701101 ER PT J AU McIntyre, SK Alam, TM Moore, HD Saito, T Hickner, MA AF McIntyre, Sarah K. Alam, Todd M. Moore, Hunter D. Saito, Tomonori Hickner, Michael A. TI Characterization of water dynamics and membrane interactions in midblock-sulfonated triblock copolymers using H-2 NMR spectroscopy SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87185 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. RI Saito, Tomonori/M-1735-2016 OI Saito, Tomonori/0000-0002-4536-7530 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 152-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706651 ER PT J AU Meek, ST Feng, PL Perry, JJ Doty, P Allendorf, MD AF Meek, Scott T. Feng, Patrick L. Perry, John J. Doty, Patrick Allendorf, Mark D. TI Effects of crystal structure and linker on MOF luminescent properties SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Meek, Scott T.; Feng, Patrick L.; Perry, John J.; Doty, Patrick; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 704-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703775 ER PT J AU Metting, FB Huesemann, M Roesjadi, G Benemann, J AF Metting, F. Blaine Huesemann, Michael Roesjadi, Guri Benemann, John TI Biofuels and products from microalgae and seaweeds SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA USA. Benemann Associates, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 246-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703029 ER PT J AU Michalak, WD Widom, M Miller, JB Alfonso, D Morreale, B Gellman, AJ AF Michalak, William D. Widom, Michael Miller, James B. Alfonso, Dominic Morreale, Bryan Gellman, Andrew J. TI Surface - subsurface interactions in hydrogen desorption from Pd SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 87-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701058 ER PT J AU Miller, JT Lei, Y Jelic, J Liang, H Linic, S Meyer, R AF Miller, Jeffrey T. Lei, Yu Jelic, Jelena Liang, Hong Linic, Suljo Meyer, Randall TI Influence of size and adsorbates on the L-3, L-2 and L-1 xanes of Pt catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. Univ Illinois, Dept Chem Engn, Chicago, IL 60680 USA. Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. NR 0 TC 0 Z9 0 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 230-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703013 ER PT J AU Mirzadeh, S Garland, M Boll, R Knapp, R AF Mirzadeh, Saed Garland, Marc Boll, Rose Knapp, Russ TI Burn-up cross-sections of reactor produced medical and industrial radioisotopes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Mirzadeh, Saed; Garland, Marc; Boll, Rose; Knapp, Russ] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN USA. RI Boll, Rose/C-4138-2016 OI Boll, Rose/0000-0003-2507-4834 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 119-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704482 ER PT J AU Moore, NW Luo, JH Huang, JY Mao, SX Houston, JE AF Moore, Nathan W. Luo, Junhang Huang, Jian Yu Mao, Scott X. Houston, Jack E. TI Exploiting adhesion forces to form superplastic nanowires of common salt SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. Univ Pittsburgh, Pittsburgh, PA USA. RI Huang, Jianyu/C-5183-2008 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 348-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701823 ER PT J AU Mrozek, RA Cole, PJ Lenhart, JL Berg, MC Shull, KR Otim, KJ AF Mrozek, Randy A. Cole, Phillip J. Lenhart, Joseph L. Berg, Michael C. Shull, Kenneth R. Otim, Kathryn J. TI Impact of sol molecular weight on the mechanical properties and fracture behavior of elastomeric polysiloxanes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 USA, Army Res Lab, Aberdeen, MD USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Northwestern Univ, Evanston, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 352-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706532 ER PT J AU Muckerman, JT Shen, X Small, YA Allen, PB Fernandez-Serra, MV Hybertsen, MS Fujita, E AF Muckerman, James T. Shen, Xiao Small, Yolanda A. Allen, Philip B. Fernandez-Serra, Maria V. Hybertsen, Mark S. Fujita, Etsuko TI Theoretical studies of catalysis for artificial photosynthesis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Fernandez-Serra, Maria Victoria/H-5446-2015 OI Fernandez-Serra, Maria Victoria/0000-0001-6823-8339 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 651-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706259 ER PT J AU Murph, SEH Fox, EB Serkiz, S Colon-Mercado, H Sexton, L Torres, RD Siegfried, M AF Murph, Simona E. Hunyadi Fox, Elise B. Serkiz, Steven Colon-Mercado, Hector Sexton, Lindsay Torres, Ricardo D. Siegfried, Matthew TI Nanocomposite materials: A simple route toward effective supported nanocatalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Murph, Simona E. Hunyadi; Fox, Elise B.; Serkiz, Steven; Colon-Mercado, Hector; Sexton, Lindsay; Torres, Ricardo D.; Siegfried, Matthew] Savannah River Natl Lab, Aiken, SC USA. RI Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 126-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703240 ER PT J AU Mwakisege, J Schweitzer, G Boll, R Mirzadeh, S AF Mwakisege, Jofa Schweitzer, George Boll, Rose Mirzadeh, Saed TI Synthesis and chemical stability of actinium-fullerenes SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN USA. RI Boll, Rose/C-4138-2016 OI Boll, Rose/0000-0003-2507-4834 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 69-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704553 ER PT J AU Myers, AC Bannochie, CJ Crawford, JC AF Myers, Adam C. Bannochie, Christopher J. Crawford, John C. TI Subdivisions: Creating diversity within the Division of Professional Relations SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 BASi, Dept Pharmaceut Anal, W Lafayette, IN USA. Savannah River Natl Lab, Environm Management Directorate, Aiken, SC USA. Dow Chem Co USA, Philadelphia, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 18-PROF PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164707171 ER PT J AU Myers, CR Luebke, DR Champagne, KJ Sorescu, D Tang, C Shi, W AF Myers, Christina R. Luebke, David R. Champagne, Kenneth J. Sorescu, Dan Tang, Chau Shi, Wei TI Ionic liquid membranes for CO2 separation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 US DOE, Natl Enegry Technol Lab, Pittsburgh, PA USA. URS, Pittsburgh, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 177-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702571 ER PT J AU Nandi, CK Hayden, C Yang, H AF Nandi, Chayan Kanti Hayden, Carl Yang, Haw TI Cation selective conformational preferences in thrombin binding aptamer: Steady state Forster resonance energy transfer approach SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Sandia Natl Labs, Dept Combust Chem, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 152-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705694 ER PT J AU Narula, CK Chen, XQ Stocks, MG DeBusk, M Allard, LF AF Narula, Chaitanya K. Chen, Xingqui Stocks, Malcolm G. DeBusk, Melanie Allard, Lawrence F. TI First-Principles and experimental studies of the sub-nanomenter platinum atoms supported on q-alumina SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Narula, Chaitanya K.; Chen, Xingqui; Stocks, Malcolm G.; DeBusk, Melanie; Allard, Lawrence F.] Oak Ridge Natl Lab, MSTD, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 84-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701055 ER PT J AU Nazarewicz, W AF Nazarewicz, Witold TI Computing atomic nuclei SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Nazarewicz, Witold] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, Witold] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 2-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704508 ER PT J AU Newton, MA Di Michiel, M Fernandez-Garcia, M Chupas, PJ Chapman, KW AF Newton, Mark A. Di Michiel, Marco Fernandez-Garcia, Marcos Chupas, Peter J. Chapman, Karena W. TI In situ hard X-ray/infrared studies of the dynamic behviour of heterogeneous catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 ESRF, Grenoble, France. Argonne Natl Lab, APS, Argonne, IL 60439 USA. CSIC, Inst Catalisis & Petroleoquim, Madrid, Spain. RI Fernandez-Garcia, Marcos/A-8122-2014 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 7-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701045 ER PT J AU Nimlos, MR Pepiot, P Robichaud, DJ Jarvis, MW Gaston, KR AF Nimlos, Mark R. Pepiot, Perrine Robichaud, David J. Jarvis, Mark W. Gaston, Katherine R. TI Chemical kinetics and modeling of biomass gasification SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Nimlos, Mark R.; Pepiot, Perrine; Robichaud, David J.; Jarvis, Mark W.; Gaston, Katherine R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 49-PETR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705608 ER PT J AU Nizkorodov, SA Bones, DL Bateman, AP Nguyen, TB Cabral, Z Nguyen, LQ Laskin, J Laskin, A AF Nizkorodov, Sergey A. Bones, David L. Bateman, Adam P. Nguyen, Tran B. Cabral, Zoe Nguyen, Lucas Q. Laskin, Julia Laskin, Alexander TI Aging of secondary organic aerosols by carbonyl-amine chemistry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 NR 0 TC 0 Z9 0 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 662-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706270 ER PT J AU Nortier, FM Weidner, JW Bach, HT John, KD Couture, A Ullmann, JL Fassbender, ME Goff, GS Taylor, W Valdez, F Wolfsberg, LE Cisneros, M Dry, D Gallegos, M Gritzo, R Bitteker, LJ Wender, S Baty, RS AF Nortier, F. M. Weidner, J. W. Bach, H. T. John, K. D. Couture, A. Ullmann, J. L. Fassbender, M. E. Goff, G. S. Taylor, W. Valdez, F. Wolfsberg, L. E. Cisneros, M. Dry, D. Gallegos, M. Gritzo, R. Bitteker, L. J. Wender, S. Baty, R. S. TI Accelerator-based production of the therapy isotope Ac-225 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Nortier, F. M.; Weidner, J. W.; Bach, H. T.; John, K. D.; Couture, A.; Ullmann, J. L.; Fassbender, M. E.; Goff, G. S.; Taylor, W.; Valdez, F.; Wolfsberg, L. E.; Cisneros, M.; Dry, D.; Gallegos, M.; Gritzo, R.; Bitteker, L. J.; Wender, S.; Baty, R. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 91-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704573 ER PT J AU Nozik, AJ Hanna, MC Beard, MC Luther, JE Gao, J AF Nozik, A. J. Hanna, Mark C. Beard, Matthew C. Luther, Joseph E. Gao, J. TI Third generation solar photon conversion to electricity and fuel: Multiple exciton generation in colloidal quantum dots, quantum dot arrays, and solar sells SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Renewable Energy Lab, Golden, CO USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. Univ Toledo, Toledo, OH 43606 USA. RI GAO, JIANBO/A-3923-2011; GAO, JIANBO/A-1633-2014 NR 0 TC 0 Z9 0 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 469-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702039 ER PT J AU O'Hagan, MJ Yang, JY Shaw, WJ Bullock, RM DuBois, DL AF O'Hagan, Molly J. Yang, Jenny Y. Shaw, Wendy J. Bullock, R. Morris DuBois, Daniel L. TI Structural and dynamics studies of catalytic intermediates of hydrogen oxidation catalysts containing proton relays SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [O'Hagan, Molly J.; Yang, Jenny Y.; Shaw, Wendy J.; Bullock, R. Morris; DuBois, Daniel L.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 227-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703336 ER PT J AU O'Neil, JP Buddinger, TF AF O'Neil, James P. Buddinger, Thomas F. TI Xe-122/I-122 Generator development: Short-lived PET isotope availability SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [O'Neil, James P.; Buddinger, Thomas F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 123-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704485 ER PT J AU Odom, SA Zhang, ZC Weng, W Kang, S Sottos, NR Amine, K Moore, JS AF Odom, Susan A. Zhang, Zhengcheng Weng, Wei Kang, Sen Sottos, Nancy R. Amine, Khalil Moore, Jeffrey S. TI Electronic restoration of damaged lithium ion batteries SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Illinois, Beckman Inst, Urbana, IL 61801 USA. Univ Illinois, Dept Chem, Urbana, IL 61801 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RI Amine, Khalil/K-9344-2013 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 914-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705488 ER PT J AU Olive, D Reed, D Terry, J AF Olive, Daniel Reed, Donald Terry, Jeff TI Investigation of actinide solubility in brines using XAFS SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 79-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704563 ER PT J AU Orlov, A Zhao, S Ramakrishnan, G Shen, PC Han, WQ AF Orlov, Alexander Zhao, Shen Ramakrishnan, Girish Shen, Peichuan Han, Weiqiang TI Environmental photocatalysis: Exploring nanonometer and sub-nanometer particles to enhance the activity SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 144-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702539 ER PT J AU Otten, DE Onorato, RM Drisdell, WS Cohen, RC Saykally, RJ AF Otten, Dale E. Onorato, Robert M. Drisdell, Walter S. Cohen, Ronald C. Saykally, Richard J. TI Adsorption of ions to aqueous interfaces and their effects on evaporation rates SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 86-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706292 ER PT J AU Padmaperuma, AB Koech, PK AF Padmaperuma, Asanga B. Koech, Phillip K. TI Computational design of multifunctional emitters SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Padmaperuma, Asanga B.; Koech, Phillip K.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 703-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705294 ER PT J AU Padmaperuma, AB Koech, PK Cosimbescu, L Polikarpov, E Von Ruden, A Rainbolt, JE Swensen, JS Wang, L Darsell, JT Gaspar, DJ AF Padmaperuma, Asanga B. Koech, Phillip K. Cosimbescu, Lelia Polikarpov, Evgueni Von Ruden, Amber Rainbolt, James E. Swensen, James S. Wang, Liang Darsell, Jens T. Gaspar, Daniel J. TI Optimization of OLED power efficiency by chemical structure modification SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Von Ruden, Amber; Rainbolt, James E.; Swensen, James S.; Wang, Liang; Darsell, Jens T.; Gaspar, Daniel J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Gaspar, Dan/H-6166-2011 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 568-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705177 ER PT J AU Pai, RK Cotlet, M AF Pai, Ranjith Krishna Cotlet, Mircea TI Fluorescent scaffold based on vaterite and water-soluble semiconductor quantum dots with potential for biosensing applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Pai, Ranjith Krishna; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 195-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701675 ER PT J AU Parthasarathi, R Cho, DW Pimentel, AS Dunaway-Mariano, D Mariano, PS Langan, P Gnanakaran, S AF Parthasarathi, R. Cho, D. W. Pimentel, A. S. Dunaway-Mariano, D. Mariano, P. S. Langan, P. Gnanakaran, S. TI Theoreticalexploration of C-C bond fragmentation in model lignin cation radicals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. RI Parthasarathi, Ramakrishnan/C-2093-2008; Langan, Paul/N-5237-2015 OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Langan, Paul/0000-0002-0247-3122 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 288-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705821 ER PT J AU Parthasarathi, R Gnanakaran, S AF Parthasarathi, R. Gnanakaran, S. TI Computational studies on the interactions of mannose with DOPC and POPC phospholipids SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Parthasarathi, R.; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RI Parthasarathi, Ramakrishnan/C-2093-2008 OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 72-CARB PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700852 ER PT J AU Patton, BD AF Patton, Bradley D. TI Nuclear forensics at Oak Ridge National Laboratory SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Patton, Bradley D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 28-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704516 ER PT J AU Payen, F Boursiquot, S Lall-Ramnarine, S Thomas, M Wishart, JF AF Payen, Firmause Boursiquot, Samanta Lall-Ramnarine, Sharon Thomas, Marie Wishart, James F. TI Synthesis of imidazolium and pyrrolidinium ionic liquids for cellulose dissolution SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 CUNY, Dept Chem, Queensborough Community Coll, Bayside, NY USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 225-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701243 ER PT J AU Peng, C Head-Gordon, T AF Peng, Cheng Head-Gordon, Teresa TI Dynamical investigation of autoinhibitory mechanism of AMP-activated protein kinase SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 178-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702194 ER PT J AU Peng, Q Tseng, YC Darling, SB Elam, JW AF Peng, Qing Tseng, Yu-Chih Darling, Seth B. Elam, Jeffrey W. TI Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 615-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703693 ER PT J AU Pickel, JM AF Pickel, Joseph M. TI Training strategies for high throughput user facilities SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Pickel, Joseph M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 15-CHAS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701106 ER PT J AU Qafoku, NP Um, W Smith, SC Serne, RJ Westsik, JM AF Qafoku, Nikolla P. Um, Wooyong Smith, Steven C. Serne, R. Jeffrey Westsik, Joseph M. TI Chemical and geochemical similarities and differences between Re and Tc: The specific case of reduction and incorporation into goethite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Qafoku, Nikolla P.; Um, Wooyong; Smith, Steven C.; Serne, R. Jeffrey; Westsik, Joseph M.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 11-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703122 ER PT J AU Qafoku, NP Szecsody, JE Truex, MJ Zhong, LR AF Qafoku, Nikolla P. Szecsody, James E. Truex, Michael J. Zhong, Lirong TI Uranium attenuation in subsurface systems under NH3 gas induced alkaline conditions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Qafoku, Nikolla P.; Szecsody, James E.; Truex, Michael J.; Zhong, Lirong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 34-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702714 ER PT J AU Radivojevic, I Drain, CM Sfeir, M Black, CT Burton-Pye, BP AF Radivojevic, Ivana Drain, Charles Michael Sfeir, Matthew Black, Charles T. Burton-Pye, Benjamin P. TI Hafnium (IV) and zirconium (IV) porphyrinato and phthalocyaninato diacetate complexes as new dyes for solar cell devices SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 CUNY Hunter Coll, Dept Chem & Biochem, Nyc, NY USA. CUNY, Grad Ctr, Nyc, NY USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 116-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703232 ER PT J AU Rakowski-DuBois, M DuBois, D Bullock, RM AF Rakowski-DuBois, Mary DuBois, Daniel Bullock, R. Morris TI Nickel catalysts for hydrogen oxidation and production containing diphosphine ligands with pendant amine bases SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rakowski-DuBois, Mary; DuBois, Daniel; Bullock, R. Morris] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 318-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703419 ER PT J AU Ramanathan, A Langmead, CJ Chennubhotla, CS Agarwal, PK AF Ramanathan, Arvind Langmead, Christopher J. Chennubhotla, Chakra S. Agarwal, Pratul K. TI Discovering conformational sub-states essential to protein function: A multi-scale approach SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA. Carnegie Mellon Univ, Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Computat Biol, Pittsburgh, PA USA. Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 358-COMP PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702358 ER PT J AU Ramati, S Kerr, K Lall-Ramnarine, S Wishart, JF AF Ramati, Sharon Kerr, Kijana Lall-Ramnarine, Sharon Wishart, James F. TI Effect of branched alkyl chains on the dynamical properties of ionic liquids SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 CUNY Queensborough Community Coll, Dept Chem, Bayside, NY USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 227-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701245 ER PT J AU Rao, LF Tian, GX Di Bernardo, P Zanonato, P AF Rao, Linfeng Tian, Guoxin Di Bernardo, Plinio Zanonato, PierLuigi TI Hydrolysis of Pu(VI) at elevated temperatures SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Padua, I-35100 Padua, Italy. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 104-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704467 ER PT J AU Ray, NA Van Duyne, RP Stair, PC AF Ray, Natalie A. Van Duyne, Richard P. Stair, Peter C. TI Catalytic nanobowls synthesized using atomic layer deposition SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Northwestern Univ, Dept Chem, Evanston, IL USA. Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 52-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701027 ER PT J AU Reed, DT Borkowski, M Richmann, MK Lucchini, JF Swanson, J Ams, D Khaing, H AF Reed, Donald T. Borkowski, Marian Richmann, Michael K. Lucchini, Jean-Francois Swanson, Juliet Ams, David Khaing, Hnin TI High ionic-strength subsurface chemistry of actinides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Reed, Donald T.; Borkowski, Marian; Richmann, Michael K.; Lucchini, Jean-Francois; Swanson, Juliet; Ams, David; Khaing, Hnin] Los Alamos Natl Lab, Carlsbad, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 103-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704466 ER PT J AU Rees, WS AF Rees, William S., Jr. TI LANL contributions to chemical research, public policy, and national defense SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rees, William S., Jr.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 102-CHED PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701137 ER PT J AU Ressler, JJ AF Ressler, Jennifer Jo TI FRIB isotope production for rare targets SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Ressler, Jennifer Jo] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 51-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704537 ER PT J AU Rocha, JDR Zhou, HC Heben, MJ Simpson, LJ Blackburn, JL AF Rocha, John-David R. Zhou, Hong-Cai Heben, Michael J. Simpson, Lin J. Blackburn, Jeffrey L. TI Optical spectroscopy investigations of carbon-based nanomaterials for fundamental energy sciences research SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO USA. Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. RI Blackburn, Jeffrey/D-7344-2012; Rocha, John-David/A-3186-2013 OI Rocha, John-David/0000-0001-6394-4349 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 55-AEI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700044 ER PT J AU Rochford, J Polyansky, D AF Rochford, Jonathan Polyansky, Dimitry TI Synthesis and characterization of donor-porphyrin-acceptor triads SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Massachusetts, Dept Chem, Boston, MA 02125 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 406-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706045 ER PT J AU Rodriguez, JA Hanson, JC Liu, P Hrbek, J AF Rodriguez, Jose A. Hanson, Jonathan C. Liu, Ping Hrbek, Jan TI In-situ studies of active sites and mechanism for the water-gas shift reaction on meta/oxide catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Rodriguez, Jose A.; Hanson, Jonathan C.; Liu, Ping; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 69-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703090 ER PT J AU Ross, M AF Ross, Monty TI Using human performance fundamentals while investigating events in a fundamental chemistry research organization SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Ross, Monty] Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 11-CHAS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701102 ER PT J AU Runde, W AF Runde, Wolfgang TI Current and future needs for isotopes critical to research and industry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Runde, Wolfgang] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 3-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704518 ER PT J AU Rutkowski, PX Michelini, MD Bray, TH Marcalo, J Gibson, JK AF Rutkowski, Philip X. Michelini, Maria del Carmen Bray, Travis H. Marcalo, Joaquim Gibson, John K. TI Hydration of gas phase ytterbium ion complexes studied by experiment and theory SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calabria, Dipartimento Chim, Arcavacata Di Rende, Italy. Inst Tecnol & Nucl, Unidad Ciencias Quim & Radiofarmaceut, Sacavem, Portugal. RI PTMS, RNEM/C-1589-2014 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 107-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704470 ER PT J AU Santulli, AC Feygenson, M Aronson, MC Wong, SS AF Santulli, Alexander C. Feygenson, Mikhail Aronson, Meigan C. Wong, Stanislaus S. TI Synthesis and characterization of chromium oxide nanowires SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Feygenson, Mikhail /H-9972-2014 OI Feygenson, Mikhail /0000-0002-0316-3265 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 500-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703589 ER PT J AU Santulli, AC Zhou, HJ Berweger, S Raschke, MB Sutter, E Wong, SS AF Santulli, Alexander C. Zhou, Hongjun Berweger, Samuel Raschke, Markus B. Sutter, Eli Wong, Stanislaus S. TI Synthesis of single-crystalline 1D LiNbO3 nanorods SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Raschke, Markus/F-8023-2013 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 295-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703395 ER PT J AU Schwantes, J AF Schwantes, Jon TI Nuclear forensics at Pacific Northwest National Laboratory SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Schwantes, Jon] Pacific NW Natl Lab, Richland, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 29-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704517 ER PT J AU Segalman, RA Ho, V Boudouris, BW AF Segalman, Rachel A. Ho, Victor Boudouris, Bryan W. TI Self-assembly of rod-coil block copolymers for organic photovoltaic applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 53-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706564 ER PT J AU Sholl, D van Heest, T Haldoupis, E Watanabe, T Nair, S Allendorf, M Meek, S Perry, J Greathouse, J AF Sholl, David van Heest, Timothy Haldoupis, Emmanuel Watanabe, Taku Nair, Sankar Allendorf, Mark Meek, Scott Perry, John Greathouse, Jeff TI Combining modeling and experiments to develop metal-organic framework materials for efficient adsorption- and membrane-based chemical separations SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Georgia Inst Technol, Atlanta, GA 30332 USA. Sandia Natl Labs, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 74-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702097 ER PT J AU Shukla, N Miller, JB Coletta, E Ondeck, A Lee, JC Gellman, AJ AF Shukla, Nisha Miller, James B. Coletta, Elyse Ondeck, Abigail Lee, Johanna Chung Gellman, Andrew J. TI Synthesis of Ni and FeNi core-shell nanorods SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Carnegie Mellon Univ, Inst Complexed Engineered Syst, Pittsburgh, PA 15213 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 300-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703402 ER PT J AU Smith, LM Smith, RD Wright, AT Nicora, CD AF Smith, Lacie M. Smith, Richard D. Wright, Aaron T. Nicora, Carrie D. TI Activity-based chemical profiling of Mycobacterium tuberculosis H37Rv, CDC1551, and HN878 SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Smith, Lacie M.; Smith, Richard D.; Wright, Aaron T.; Nicora, Carrie D.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 642-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705238 ER PT J AU Somorjai, GA AF Somorjai, Gabor A. TI Selective nanocatalysis of organic transformation by metals SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 93-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702115 ER PT J AU Soto-Cantu, E Deodhar, C Uhrig, D Hinestrosa, JP Lokitz, BS Ankner, JF Kilbey, SM AF Soto-Cantu, Erick Deodhar, Chaitra Uhrig, David Hinestrosa, Juan Pablo Lokitz, Bradley S. Ankner, John F. Kilbey, S. Michael TI Study of the nanophase structure of poly(methacrylic acid) brushes synthesized via ATRP SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Tennessee, Knoxville, TN USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC USA. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. RI Lokitz, Bradley/Q-2430-2015; Uhrig, David/A-7458-2016 OI Lokitz, Bradley/0000-0002-1229-6078; Uhrig, David/0000-0001-8447-6708 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 275-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706468 ER PT J AU Steckel, JA Shi, W AF Steckel, Janice A. Shi, Wei TI Ab initio description of CO2 interactions with anions in ionic liquids SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Energy Technol Lab, Pittsburgh, PA USA. URS Corp, Pittsburgh, PA USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 2-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702873 ER PT J AU Stoliker, DL Kent, DB Yin, J Haggerty, R Hay, MB Davis, JA Zachara, JM AF Stoliker, Deborah L. Kent, Douglas B. Yin, Jun Haggerty, Roy Hay, Michael B. Davis, James A. Zachara, John M. TI Geochemical controls and grain-scale modeling of U(VI) mass-transfer in the Hanford 300-Area Aquifer SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 US Geol Survey, Menlo Pk, CA 94025 USA. Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 6-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703140 ER PT J AU Stoner-Ma, D Skinner, JM Heroux, A Schneider, DK Sweet, RM Orville, AM AF Stoner-Ma, Deborah Skinner, John M. Heroux, Annie Schneider, Dieter K. Sweet, Robert M. Orville, Allen M. TI Correlated crystallographic and spectroscopic studies of metallo- and flavoproteins SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Stoner-Ma, Deborah; Skinner, John M.; Heroux, Annie; Schneider, Dieter K.; Sweet, Robert M.; Orville, Allen M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 205-BIOL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700604 ER PT J AU Strunk, J Vining, WC Bell, AT AF Strunk, Jennifer Vining, William C. Bell, Alexis T. TI Synthesis of different CeO2 structures on mesoporous silica and characterization of the reduction properties and the catalytic behavior SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 445-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703543 ER PT J AU Sun, JM Zhu, K Zhang, L Liu, J Wang, Y AF Sun, Junming Zhu, Kake Zhang, Liang Liu, Jun Wang, Yong TI One step conversion of bio-ethanol to isobutene on ZnxZryOz mixed oxides with balanced acid-base pairs SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sun, Junming; Zhu, Kake; Zhang, Liang; Liu, Jun; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Sun, Junming/B-3019-2011; Wang, Yong/C-2344-2013 OI Sun, Junming/0000-0002-0071-9635; NR 5 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 220-FUEL PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703003 ER PT J AU Sverdrup, GM Steward, DM AF Sverdrup, George M. Steward, Darlene M. TI Enabling renewable integration and electrification of the transportation sector using wind generated hydrogen SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Sverdrup, George M.; Steward, Darlene M.] Natl Renewable Energy Lab, Golden, CO USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 1-COMSCI PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702488 ER PT J AU Tiede, DM Mulfort, KL Scott, AM Bender, SL Poluektov, OG Utschig, LM Chen, LX Mardis, KL AF Tiede, David M. Mulfort, Karen L. Scott, Amy M. Bender, Shana L. Poluektov, Oleg G. Utschig, Lisa M. Chen, Lin X. Mardis, Kristy L. TI Structure-function analyses of supramolecular and biomimetic designs for solar fuels catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. Chicago State Univ, Dept Chem & Phys, Chicago, IL USA. NR 0 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 642-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706251 ER PT J AU Tkac, P Vandegrift, GF Lumetta, G Gelis, A AF Tkac, Peter Vandegrift, George F. Lumetta, Gregg Gelis, Artem TI Interaction between CMPO and HDEHP in combined TRUEX-TALSPEAK extraction process SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. Pacific NW Natl Lab, Radiochem Sci & Engn Grp, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 635-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703714 ER PT J AU Travesset, A AF Travesset, Alex TI Multiscaling and coarse grained models using molecular dynamics on GPUs: The perfect marriage SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Travesset, Alex] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Travesset, Alex] Ames Lab, Ames, IA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 69-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706278 ER PT J AU Tulley, CL Gonzales, ER Armenta, CE Hererra, JA Peterson, DS AF Tulley, Crystal L. Gonzales, Edward R. Armenta, Claudine E. Hererra, Jaclyn A. Peterson, Dominic S. TI Using polymer ligand films for rapid radiochemical sample preparation for alpha spectrometry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ New Mexico, Dept Water Resources, Albuquerque, NM 87131 USA. Los Alamos Natl Lab, Dept Analyt Actinide Chem, Los Alamos, NM USA. Los Alamos Natl Lab, Dept Chem & Diagnost Engn, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 80-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704565 ER PT J AU Um, W Serne, RJ Qafoku, NP Westsik, JH AF Um, Wooyong Serne, R. Jeffrey Qafoku, Nikolla P. Westsik, Joseph H. TI Sequestration of Tc-99 by goethite SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Um, Wooyong; Serne, R. Jeffrey; Qafoku, Nikolla P.; Westsik, Joseph H.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 38-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702724 ER PT J AU Valentine, SJ Glaskin, RS Merenbloom, SI Lee, S Nachtigall, FM Kurulugama, RT Clemmer, DE AF Valentine, Stephen J. Glaskin, Rebecca S. Merenbloom, Samuel I. Lee, Sunyoung Nachtigall, Fabiane M. Kurulugama, Ruwan T. Clemmer, David E. TI High-resolution ion mobility measurements SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Indiana Univ, Dept Chem, Bloomington, IN USA. Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 5 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 273-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705806 ER PT J AU Van Orden, A Shepherd, DP Whitcomb, KJ Goodwin, PM Gelfand, MP AF Van Orden, Alan Shepherd, Douglas P. Whitcomb, Kevin J. Goodwin, Peter M. Gelfand, Martin P. TI Single molecule studies of electronic energy transfer in semiconductor quantum dot clusters: Applications in solar energy and biological imaging SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 31-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700448 ER PT J AU Vandehey, NT Taylor, SE O'Neil, JP AF Vandehey, Nicholas T. Taylor, Scott E. O'Neil, James P. TI Applications of PET imaging toward bioremediation and geochemical studies SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Vandehey, Nicholas T.; Taylor, Scott E.; O'Neil, James P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 61-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704547 ER PT J AU Vasiliou, AK Nimlos, MR Ellison, GB Daily, JW AF Vasiliou, AnGayle K. Nimlos, Mark R. Ellison, G. Barney Daily, John W. TI Mechanism of the thermal decomposition of furfural: Chemistry of biomass to biofuels SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 47-PETR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705606 ER PT J AU Vattipalli, MK Granger, MC Millen, RL Porter, MD AF Vattipalli, Mohan K. Granger, Michael C. Millen, Rachel L. Porter, Marc D. TI Simultaneous detection of multiplexed IgG proteins using giant magnetoresistive sensors SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. Univ Utah, Nano Inst Utah, Salt Lake City, UT USA. Iowa State Univ, Dept Chem, Ames Lab, USDOE, Ames, IA USA. Iowa State Univ, Inst Combinatorial Discovery, Ames, IA USA. RI Granger, Michael/G-3299-2012 OI Granger, Michael/0000-0002-2385-6413 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 230-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700382 ER PT J AU Vial, S Nykypanchuk, D Gang, O AF Vial, Stephanie Nykypanchuk, Dmytro Gang, Oleg TI Assemblies of gold nanorods via DNA hybridization SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Int Iberian Nanotechnol Lab, Braga, Portugal. NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 281-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706474 ER PT J AU Visser, AE Bridges, NJ AF Visser, Ann E. Bridges, Nicholas J. TI Understanding the electrochemical behavior of actinides to aid in their separation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Visser, Ann E.; Bridges, Nicholas J.] Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 51-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703196 ER PT J AU Wang, C Stamenkovic, VR Markovic, NM AF Wang, Chao Stamenkovic, Vojislav R. Markovic, Nenad M. TI Tailoring Pt-bimetallic alloy nanoparticles for electrocatalytic reduction of oxygen SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Chao; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 388-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703485 ER PT J AU Wang, C AF Wang, Chao TI Architecture of nanoparticle structures at nanoscale for energy conversion applications SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Chao] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 137-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702817 ER PT J AU Wang, CJ Thompson, R Baltrus, J Matranga, C AF Wang, Congjun Thompson, Robert Baltrus, John Matranga, Christopher TI Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Energy Technol Lab, Pittsburgh, PA USA. URS Washington Div, Washington, DC USA. RI Matranga, Christopher/E-4741-2015 OI Matranga, Christopher/0000-0001-7082-5938 NR 0 TC 0 Z9 0 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 141-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702538 ER PT J AU Wang, DL Hu, YJ Schwaiger, LK Nitsche, H AF Wang, Deborah L. Hu, Yung-Jin Schwaiger, Luna Kestrel Nitsche, Heino TI Determination of plutonium interactions with aluminum-substituted goethite using X-ray absorption spectroscopy SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 86-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704569 ER PT J AU Wang, XP Hoffmann, CM Frost, MJ AF Wang, Xiaoping Hoffmann, Christina M. Frost, Matthew J. TI Neutron single-crystal diffraction instrument for structure studies in chemical and materials science SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wang, Xiaoping; Hoffmann, Christina M.; Frost, Matthew J.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN USA. RI hoffmann, christina/D-2292-2016 OI hoffmann, christina/0000-0002-7222-5845 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 238-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700390 ER PT J AU Wesolowski, DJ AF Wesolowski, David J. TI Solubility, surface charge, ion adsorption and dissolution/precipitation kinetics of oxides in hydrothermal solutions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 128-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704489 ER PT J AU Willey, TM Lee, JRI Brehmer, DE Enders, D Nagao, T Linford, MR Ariga, K AF Willey, Trevor M. Lee, Jonathan R. I. Brehmer, Daniel E. Enders, Dominik Nagao, Tadaaki Linford, Matthew R. Ariga, Katsuhiko TI Deciphering the mechanism for covalent alkyl monolayers on silicon SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Natl Inst Mat Sci, Int Ctr Young Scientists World Premier Int WPI, Res Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki, Japan. Lawrence Livermore Natl Lab, Livermore, CA USA. Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA. Natl Inst Mat Sci, World Premier Int WPI Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki, Japan. Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. RI ARIGA, Katsuhiko/H-2695-2011; NAGAO, Tadaaki/H-2582-2011 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 409-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701873 ER PT J AU Williams, D Shekhar, M Kispersky, V Lee, WS Kim, SM Ribeiro, F Miller, J Stach, E Delgass, N AF Williams, Damion Shekhar, Mayank Kispersky, Vincent Lee, Wen-Sheng Kim, Seung Min Ribeiro, Fabio Miller, Jeffrey Stach, Eric Delgass, Nicholas TI Water gas shift reaction over supported gold nanoparticles SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA. RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 21-PETR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705581 ER PT J AU Wilmot, CM Jensen, LMR Sanishvili, R Davidson, VL AF Wilmot, Carrie M. Jensen, Lyndal M. R. Sanishvili, Ruslan Davidson, Victor L. TI In crystallo biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase by the enzyme MauG SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA. Argonne Natl Lab, Gen Med & Canc Inst Collaborat Access Team GM C, Argonne, IL 60439 USA. Univ Mississippi, Mecial Ctr, Dept Biochem, Jackson, MS USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 135-BIOL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700540 ER PT J AU Wilson, DC Potter, R Smurthwaite, TD Camaioni, DM Linehan, JC Autrey, T Schubert, DM AF Wilson, Duane C. Potter, Robert Smurthwaite, Tricia D. Camaioni, Donald M. Linehan, John C. Autrey, Tom Schubert, David M. TI Correlation of Lewis acidity with halogen substitution of triphenyl borate: Acceptor number determinations from P-31 NMR data of Et3PO-B(OAr)(3) adducts SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 US Borax, Greenwood Village, CO USA. Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 156-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703266 ER PT J AU Wilson, KR Smith, JD Kroll, JH Kessler, S Worsnop, DR Bluhm, H Mysak, ER AF Wilson, Kevin R. Smith, Jared D. Kroll, Jesse H. Kessler, Sean Worsnop, Douglas R. Bluhm, Hendrik Mysak, Erin R. TI Heterogeneous oxidation trajectories: Understanding the competition between functionalization and volatilization reactions in chemically reduced and oxidized organic aerosols SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. Aerodyne Res Inc, Aerosol & Cloud Chem, Billerica, MA 01821 USA. NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 220-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705759 ER PT J AU Wong, BM Cordaro, JG AF Wong, Bryan M. Cordaro, Joseph G. TI Excited-state properties of dye-sensitized solar cells and light-harvesting molecules SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Wong, Bryan M.; Cordaro, Joseph G.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 429-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702424 ER PT J AU Wong, BM Leonard, F AF Wong, Bryan M. Leonard, Francois TI Nanoscale effects on heterojunction electron gases in core/shell nanowires SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Sandia Natl Labs, Dept Chem Mat, Livermore, CA USA. Sandia Natl Labs, Dept Mat Phys, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 417-COMP PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702411 ER PT J AU Wong, SS AF Wong, Stanislaus S. TI Chemical strategies in nanoscience SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SUNY Stony Brook, Stony Brook, NY USA. Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 416-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703513 ER PT J AU Woodward, JD Kennel, SJ Stuckey, A Osborne, D Wall, J Rondinone, AJ Standaert, RF Mirzadeh, S AF Woodward, Jonathan D. Kennel, Stephen J. Stuckey, Alan Osborne, Dustin Wall, Jonathan Rondinone, Adam J. Standaert, Robert F. Mirzadeh, Saed TI LaPO4 nanoparticles doped with Actinium-225 that partially sequester daughter radionuclides SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. Univ Tennessee, Grad Sch Med, Knoxville, TN USA. RI Standaert, Robert/D-9467-2013; Rondinone, Adam/F-6489-2013 OI Standaert, Robert/0000-0002-5684-1322; Rondinone, Adam/0000-0003-0020-4612 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 92-NUCL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164704574 ER PT J AU Woodward, JD Baker, GA Dai, S Baker, SN Rondinone, AJ Fulvio, P Zhao, H AF Woodward, Jonathan D. Baker, Gary A. Dai, Sheng Baker, Shelia N. Rondinone, Adam J. Fulvio, Pasquale Zhao, Hua TI On the expanding role for ionic liquids in nanomaterials synthesis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. Savannah State Univ, Chem Program, Savannah, GA USA. RI Fulvio, Pasquale/B-2968-2014; Rondinone, Adam/F-6489-2013 OI Fulvio, Pasquale/0000-0001-7580-727X; Rondinone, Adam/0000-0003-0020-4612 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 167-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703277 ER PT J AU Wu, Q Ayers, P Zhang, YK AF Wu, Qin Ayers, Paul Zhang, Yingkai TI Density-based energy decomposition analysis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY USA. McMaster Univ, Dept Chem, Hamilton, ON, Canada. NYU, Dept Chem, New York, NY 10003 USA. RI Ayers, Paul/A-1154-2008 OI Ayers, Paul/0000-0003-2605-3883 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 131-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705673 ER PT J AU Wu, ZL Li, MJ Overbury, SH AF Wu, Zili Li, Meijun Overbury, Steven H. TI Surface dependence of defect sites on ceria nanocrystals probed by in situ vibrational spectroscopy SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RI Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 13-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700882 ER PT J AU Xantheas, SS AF Xantheas, Sotiris S. TI Spectroscopic signatures of acid dissociation in water clusters SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RI Xantheas, Sotiris/L-1239-2015 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 29-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705823 ER PT J AU Xu, KH Zhang, Y Tang, B Laskin, J Roach, PJ Chen, H AF Xu, Kehua Zhang, Yun Tang, Bo Laskin, Julia Roach, Patrick J. Chen, Hao TI Study of highly selective thiol derivatization using selenium reagents by mass spectrometry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Ohio Univ, Dept Chem & Biochem, Athens, OH 45701 USA. Shandong Normal Univ, Jinan, Shandong, Peoples R China. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 NR 0 TC 0 Z9 0 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 58-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700473 ER PT J AU Xu, T AF Xu, Ting TI Functional hybrid nanomaterials via directed self-assemblies SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 156-COLL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701640 ER PT J AU Xue, M Zhang, ZJ Xiang, SC Liang, CD Jin, Z Zhu, GS Qiu, SL Chen, BL AF Xue, Ming Zhang, Zhangjing Xiang, Shengchang Liang, Chengdu Jin, Zhao Zhu, Guangshan Qiu, Shilun Chen, Banglin TI Selective gas adsorption within a five-connected porous metal-organic framework SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130023, Jilin, Peoples R China. Univ Texas San Antonio, Dept Chem, San Antonio, TX USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RI Zhang, Zhangjing/A-1038-2011; Xiang, Shengchang/F-9210-2010; Zhu, Guangshan/E-2024-2013; Liang, Chengdu/G-5685-2013; Zhang, Zhangjing/P-2680-2014 OI Xiang, Shengchang/0000-0001-6016-2587; Zhang, Zhangjing/0000-0003-1264-7648 NR 0 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 190-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703298 ER PT J AU Yang, F Choi, YM Liu, P Hrbek, J Rodriguez, JA AF Yang, Fan Choi, YongMan Liu, Ping Hrbek, Jan Rodriguez, Jose A. TI Autocatalytic reduction of a Cu2O/Cu(111) surface by CO: STM, XPS and DFT studies SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yang, Fan; Choi, YongMan; Liu, Ping; Hrbek, Jan; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 75-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701049 ER PT J AU Yang, J Bonnesen, PV Kilbey, MS Hong, KL AF Yang, Jun Bonnesen, Peter V. Kilbey, Michael S. Hong, Kunlun TI Approach for the synthesis of selectively deuterated methyl acrylate SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yang, Jun; Bonnesen, Peter V.; Kilbey, Michael S.; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 713-ORGN PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164705301 ER PT J AU Yang, XF Narula, CK AF Yang, Xiaofan Narula, Chaitanya K. TI High performance NH3-SCR zeolite zatalysts for treatment of NOx in emissions from diesel engine SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Yang, Xiaofan; Narula, Chaitanya K.] Oak Ridge Natl Lab, MSTD, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 62-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164701037 ER PT J AU Yeo, BS Klaus, SL Ross, PN Mathies, RA Bell, AT AF Yeo, Boon Siang Klaus, Shannon L. Ross, Philip N. Mathies, Richard A. Bell, Alexis T. TI Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 16-CATL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700884 ER PT J AU Yeung, ES Ma, CB AF Yeung, Edward S. Ma, Changbei TI Single molecule imaging of biomolecules in nanopores SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Iowa State Univ, Ames Lab, Ames, IA USA. Iowa State Univ, Dept Chem, Ames, IA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 12-ANYL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164700274 ER PT J AU Yin, W Hegde, R Henry, N Xiao, K Browning, J Dadmun, M AF Yin, Wen Hegde, Raghu Henry, Nathan Xiao, Kai Browning, Jim Dadmun, Mark TI Using neutron scattering to determine conjugated polymer: Fullerene miscibility and interfacial structure SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Tennessee, Knoxville, TN USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 365-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706849 ER PT J AU Yin, W Dadmun, M AF Yin, Wen Dadmun, Mark TI Morphology study of PCBM/P3HT organic photovoltaic with small angle neutron scattering SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Dept Chem Sci, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 260-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706452 ER PT J AU Yoon, DY Jeong, C Hur, K Reigh, SY Winkler, RG Lacevic, N Gee, RH AF Yoon, Do Y. Jeong, Cheol Hur, Kahyun Reigh, Shang Y. Winkler, Roland G. Lacevic, Naida Gee, Richard H. TI Conformations and dynamics of ring and linear polymer melts from molecular dynamics simulations SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Seoul Natl Univ, Dept Chem, Seoul, South Korea. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA USA. RI Winkler, Roland/G-4059-2013 OI Winkler, Roland/0000-0002-7513-0796 NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 65-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164707091 ER PT J AU Yu, X Li, YG O'Niell, HM Kilbey, M Mays, JW Britt, PF Hong, KL AF Yu, Xiang Li, Yugang O'Niell, Hugh M. Kilbey, Michael, II Mays, Jimmy W. Britt, Phillip F. Hong, Kunlun TI Synthesis and characterization of block copolymers with polythiophene segments by the combination of atom transfer radical polymerization and Kumada polycondensation SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. Univ Tennessee, Dept Chemisry, Knoxville, TN USA. RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 55-PMSE PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706566 ER PT J AU Zalupski, P Martin, L AF Zalupski, Peter Martin, Leigh TI Contributing to the recent discussions of the fundamentals of TALSPEAK chemistry SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Zalupski, Peter; Martin, Leigh] Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 57-IEC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703200 ER PT J AU Zhao, S Ramakrishnan, G Shen, PC Han, WQ Orlov, A AF Zhao, Shen Ramakrishnan, Girish Shen, Peichuan Han, Weiqiang Orlov, Alexander TI Novel applications of sub-nanometer noble metal particles for photocatalysis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 274-ENVR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164702657 ER PT J AU Chialvo, AA Horita, J AF Chialvo, Ariel A. Horita, Juske TI Polarization behavior of water in extreme aqueous environments: A molecular dynamics study based on the Gaussian charge polarizable water model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; molecular force constants; vibrational states; water ID EQUATION-OF-STATE; LIQUID WATER; DIPOLE-MOMENT; PERTURBATION-THEORY; FORCE-FIELDS; ELECTRONIC-PROPERTIES; VIRIAL-COEFFICIENTS; SUPERCRITICAL WATER; CRYSTAL NUCLEATION; WIDE RANGES AB We study the polarization behavior of water under geologically relevant extreme aqueous environments along four equidistant supercritical isotherms, 773 <= T(K)<= 1373, and over a wide pressure range, 0 < P(GPa)<= 30, by isobaric-isothermal molecular dynamics simulations of the Gaussian charge polarizable water model, to unravel and discuss the underlying link between two precisely defined orientational order parameters and the magnitude of the average induced dipole moment of water. The predicted behavior indicates an isothermal linear dependence (a) between the magnitude of the average induced dipole moment mu(ind) and the average system density rho, (b) between the magnitude of the average induced dipole mu(ind) and that of the total dipole mu(tot), resulting from (c), a compensating (inverse) dependence between the permanent-to-induced dipolar angle theta and the magnitude of the average induced dipole moment mu(ind). Moreover, we interpret this behavior in terms of the evolution of the state dependent tetrahedral order parameter q(T) and the corresponding bond-order parameter Q(6), supplemented by the microstructural analysis based on the three site-site radial distribution functions of water and the distance-ranked nearest-neighbor distributions. Finally, we show that while water exhibits a dramatic microstructural transformation from an open four-coordinated hydrogen-bonded network at normal conditions to a quasi-close-packed coordination, it still preserves a significant degree of hydrogen bonding. (C) 2010 American Institute of Physics. [doi:10.1063/1.3469769] C1 [Chialvo, Ariel A.] Oak Ridge Natl Lab, Chem Sci Div Geochem, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Interfacial Sci Grp, Oak Ridge, TN 37831 USA. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Chem Sci Div Geochem, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences [DE-AC05-00OR22725] FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 72 TC 14 Z9 15 U1 1 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2010 VL 133 IS 7 AR 074504 DI 10.1063/1.3469769 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641UC UT WOS:000281154200024 PM 20726649 ER PT J AU Duan, YH Sorescu, DC AF Duan, Yuhua Sorescu, Dan C. TI CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; WARM GAS TEMPERATURES; CRYSTAL-STRUCTURE; AB-INITIO; VIBRATIONAL PROPERTIES; FLUIDIZED-BED; PRESSURE; COMBUSTION; SORBENTS; CAO AB By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M = Be, Mg, Ca, Sr, Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO2 capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO2 sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H2O, MgCO3 can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO2 pressure but also on the H2O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO2 sorbents. (C) 2010 American Institute of Physics. [doi:10.1063/1.3473043] C1 [Duan, Yuhua; Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Duan, Yuhua] URS Corp, Pittsburgh, PA 15219 USA. RP Duan, YH (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM yuhua.duan@netl.doe.gov RI Duan, Yuhua/D-6072-2011 OI Duan, Yuhua/0000-0001-7447-0142 FU National Energy Technology Laboratory's Office of Research and Development [DE-FE-0004000] FX This work was performed in support of the National Energy Technology Laboratory's Office of Research and Development under Contract No. DE-FE-0004000 with activity number 4000.2.660.241.001. One of us (Y.D.) thanks Dr. S. Chen, Dr. J. K. Johnson, Dr. Y. Soong, Dr. H. W. Pennline, and Dr. R. Siriwardane for fruitful discussions. NR 64 TC 42 Z9 43 U1 4 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2010 VL 133 IS 7 AR 074508 DI 10.1063/1.3473043 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641UC UT WOS:000281154200028 PM 20726653 ER PT J AU Negru, B Goncher, SJ Brunsvold, AL Just, GMP Park, D Neumark, DM AF Negru, Bogdan Goncher, Scott J. Brunsvold, Amy L. Just, Gabriel M. P. Park, Dayoung Neumark, Daniel M. TI Photodissociation dynamics of the phenyl radical via photofragment translational spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE nonlinear optical susceptibility; particle interferometry; vibration control ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTRUM; AB-INITIO; UNIMOLECULAR DECOMPOSITION; AROMATIC-HYDROCARBONS; CROSS-SECTIONS; MOLECULAR-BEAM; SOOT FORMATION; RATE-CONSTANT; GAS-PHASE AB Photofragment translational spectroscopy was used to study the photodissociation dynamics of the phenyl radical C(6)H(5) at 248 and 193 nm. At 248 nm, the only dissociation products observed were from H atom loss, attributed primarily to H+o-C(6)H(4) (ortho-benzyne). The observed translational energy distribution was consistent with statistical decay on the ground state surface. At 193 nm, dissociation to H+C(6)H(4) and C(4)H(3)+C(2)H(2) was observed. The C(6)H(4) fragment can be either o-C(6)H(4) or l-C(6)H(4) resulting from decyclization of the phenyl ring. The C(4)H(3)+C(2)H(2) products dominate over the two H loss channels. Attempts to reproduce the observed branching ratio by assuming ground state dynamics were unsuccessful. However, these calculations assumed that the C(4)H(3) fragment was n-C(4)H(3), and better agreement would be expected if the lower energy i-C(4)H(3)+C(2)H(2) channel were included. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3473743] C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Brunsvold, Amy/H-4315-2016; Neumark, Daniel/B-9551-2009 OI Brunsvold, Amy/0000-0001-9257-2978; Neumark, Daniel/0000-0002-3762-9473 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0-205CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC0-205CH11231. The authors also thank Ralf Kaiser and Stephen Klippenstein for helpful discussions. NR 43 TC 13 Z9 13 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2010 VL 133 IS 7 AR 074302 DI 10.1063/1.3473743 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641UC UT WOS:000281154200012 PM 20726637 ER PT J AU Chang, SJ van der Lee, S Flanagan, MP Bedle, H Marone, F Matzel, EM Pasyanos, ME Rodgers, AJ Romanowicz, B Schmid, C AF Chang, Sung-Joon van der Lee, Suzan Flanagan, Megan P. Bedle, Heather Marone, Federica Matzel, Eric M. Pasyanos, Michael E. Rodgers, Arthur J. Romanowicz, Barbara Schmid, Christian TI Joint inversion for three-dimensional S velocity mantle structure along the Tethyan margin SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SURFACE-WAVE TOMOGRAPHY; TRAVEL-TIME TOMOGRAPHY; TELESEISMIC RECEIVER FUNCTIONS; HELLENIC SUBDUCTION ZONE; SPARSE LINEAR-EQUATIONS; PLATE BOUNDARY REGION; MEDITERRANEAN REGION; CRUSTAL STRUCTURE; LEAST-SQUARES; MIDDLE-EAST AB We construct a new three-dimensional S velocity model and Moho map by jointly inverting regional S and Rayleigh waveform fits, teleseismic S and SKS arrival times, fundamental mode Rayleigh wave group velocities, and independent Moho depth estimates for the region that extends from the mid-Atlantic ridge through northern Africa, southern Europe, and western Asia. The joint inversion benefits from both better resolution and wider data coverage than when using only individual data sets. Resolution tests confirm that the joint inversion yields good resolution ranging from the Moho to a depth of 1400 km. The complementary and overlapping nature of the different data sets' resolving power has reduced disparities in resolving power that exist for individual data sets, for example between resolving power for crustal and lower-mantle structure. This increases the utility of the new tomographic model for explaining and predicting a variety of observations and dynamics. The new model derived from the joint inversion assembles a large number of mantle structures known from a wide variety of previous studies into one model and in some cases reconciles different local studies that previously seemed contradictory. Finally, the model shows that shallow low-velocity anomalies beneath the Pannonian basin and the Iranian plateau are connected to similar anomalies in the transition zone, the latter possibly related to a deep dehydration process in the subducted lithosphere of the Neo-Tethys Ocean. The model shows the Hellenic slab penetrating the lower mantle, the Calabrian slab extending flatly in the transition zone, and discontinuous slabs beneath the Apennines and the Zagros belt. C1 [Chang, Sung-Joon; van der Lee, Suzan; Bedle, Heather] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. [Flanagan, Megan P.; Matzel, Eric M.; Pasyanos, Michael E.; Rodgers, Arthur J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Marone, Federica; Romanowicz, Barbara] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Schmid, Christian] Swiss Fed Inst Technol, Zurich, Switzerland. RP Chang, SJ (reprint author), Northwestern Univ, Dept Earth & Planetary Sci, 1850 Campus Dr, Evanston, IL 60208 USA. EM suzan@earth.northwestern.edu RI Pasyanos, Michael/C-3125-2013; van der Lee, Suzan/K-1144-2013; Matzel, Eric/K-2571-2014; Rodgers, Arthur/E-2443-2011; Marone, Federica/J-4420-2013; Chang, Sung-Joon/A-2114-2009 OI van der Lee, Suzan/0000-0003-1884-1185; romanowicz, Barbara/0000-0002-6208-6044; FU Korean Government (MOEHRD) [KRF-2006-214-C00092]; U.S. DOE [DE-FC52-04NA25541, DE-AC52-07NA27344] FX We thank Walter Mooney and Anne Paul for sharing their Moho data set and Margaret Benoit, Andrew Nyblade, and Yongcheol Park for sharing their relative arrival time data sets from Arabia and Ethiopia. We also thank E. Robert Engdahl for providing the reprocessed ISC database. Raiden Hasegawa, Ryan Lange, and Xiaoting Lou helped us to get relative arrival time data at central Asia and Turkey. An anonymous reviewer reminded us to correct group velocities for the ocean water layer, thank you. All figures were created using Generic Mapping Tools (GMT) [Wessel and Smith, 1998]. This work was supported by the Korea Research Foundation grant KRF-2006-214-C00092 funded by the Korean Government (MOEHRD) and the U. S. DOE under contract DE-FC52-04NA25541. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-422305. NR 118 TC 29 Z9 29 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD AUG 21 PY 2010 VL 115 AR B08309 DI 10.1029/2009JB007204 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 641QZ UT WOS:000281146100004 ER PT J AU Perley, DA Bloom, JS Klein, CR Covino, S Minezaki, T Wozniak, P Vestrand, WT Williams, GG Milne, P Butler, NR Updike, AC Kruhler, T Afonso, P Antonelli, A Cowie, L Ferrero, P Greiner, J Hartmann, DH Kakazu, Y Yoldas, AK Morgan, AN Price, PA Prochaska, JX Yoshii, Y AF Perley, Daniel A. Bloom, J. S. Klein, C. R. Covino, S. Minezaki, T. Wozniak, P. Vestrand, W. T. Williams, G. G. Milne, P. Butler, N. R. Updike, A. C. Kruehler, T. Afonso, P. Antonelli, A. Cowie, L. Ferrero, P. Greiner, J. Hartmann, D. H. Kakazu, Y. Yoldas, A. Kuepcue Morgan, A. N. Price, P. A. Prochaska, J. X. Yoshii, Y. TI Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at z similar to 5 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE dust; extinction; gamma-ray burst: general; gamma-ray burst: individual: 071025 ID GAMMA-RAY BURST; TIME-DEPENDENT PHOTOIONIZATION; NEAR-INFRARED COUNTERPARTS; HOST GALAXIES; LIGHT CURVES; OPTICAL AFTERGLOWS; FERMI OBSERVATIONS; LOTIS TELESCOPE; EARLY UNIVERSE; LORENTZ FACTOR AB We present observations and analysis of the broad-band afterglow of Swift GRB 071025. Using optical and infrared (RIYJHK) photometry, we derive a photometric redshift of 4.4 < z < 5.2; at this redshift our simultaneous multicolour observations begin at similar to 30 s after the gamma-ray burst trigger in the host frame, during the initial rising phase of the afterglow. We associate the light-curve peak at similar to 580 s in the observer frame with the formation of the forward shock, giving an estimate of the initial Lorentz factor Gamma(0) similar to 200. The red spectral energy distribution (even in regions not affected by the Lyman alpha break) provides secure evidence of a large dust column. However, the inferred extinction curve shows a prominent flat component between 2000 and 3000 A in the rest frame, inconsistent with any locally observed template but well fitted by models of dust formed by supernovae. Time-dependent fits to the extinction profile reveal no evidence of dust destruction and limit the decrease in the extinction column to delta A(3000) < 0.54 mag after t = 50 s in the rest frame. Together with studies of high-z quasars, our observations suggest a transition in dust properties in the early Universe, possibly associated with a transition between supernova-dominated and asymptotic giant branch-dominated modes of dust production. C1 [Perley, Daniel A.; Bloom, J. S.; Klein, C. R.; Butler, N. R.; Morgan, A. N.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Covino, S.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Minezaki, T.; Yoshii, Y.] Univ Tokyo, Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Wozniak, P.; Vestrand, W. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Williams, G. G.; Milne, P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Updike, A. C.; Hartmann, D. H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Kruehler, T.; Afonso, P.; Greiner, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kruehler, T.] Tech Univ Munich, D-85748 Garching, Germany. [Antonelli, A.] INAF Rome Astron Observ, I-00044 Monte Porzio Catone, Roma, Italy. [Cowie, L.; Price, P. A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Ferrero, P.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Kakazu, Y.] Inst Astrophys, F-75014 Paris, France. [Yoldas, A. Kuepcue] European So Observ, D-85748 Garching, Germany. [Prochaska, J. X.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. RP Perley, DA (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM dperley@astro.berkeley.edu FU Harvard University; University of Virginia; NASA [NNG06GH50G, NNX08AN84G, NNX08AN90G, NNX09AO99G]; LANL; DFG cluster of excellence; DFG [HA 1850/28-1] FX PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and was made possible by a grant from the Harvard University Milton Fund, a camera loan from the University of Virginia, and continued support of the SAO and UC Berkeley. The PAIRITEL project is further supported by NASA/Swift Guest Investigator grants NNG06GH50G and NNX08AN84G. RAPTOR/Thinking Telescopes project is supported by the Laboratory Directed Research and Development (LDRD) programme at the LANL. JXP is supported by NASA/Swift Guest Investigator grants NNX08AN90G and NNX09AO99G. TK acknowledges support by the DFG cluster of excellence 'Origin and Structure of the Universe'. Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize (DFG grant HA 1850/28-1) to Professor G. Hasinger (MPE).; We thank C. Melis at UCLA for acquiring the Lick IR photometry. We also thank D. A. Kann and the anonymous referee for useful comments and corrections on the manuscript. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We also acknowledge the hard work and efforts of the creators of other essential websites, in particular astrometry.net NR 116 TC 46 Z9 46 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 21 PY 2010 VL 406 IS 4 BP 2473 EP 2487 DI 10.1111/j.1365-2966.2010.16772.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635RA UT WOS:000280672600025 ER PT J AU Metzger, BD Martinez-Pinedo, G Darbha, S Quataert, E Arcones, A Kasen, D Thomas, R Nugent, P Panov, IV Zinner, NT AF Metzger, B. D. Martinez-Pinedo, G. Darbha, S. Quataert, E. Arcones, A. Kasen, D. Thomas, R. Nugent, P. Panov, I. V. Zinner, N. T. TI Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; nuclear reactions; nucleosynthesis; abundances; binaries: close; gamma-ray burst: general; stars: neutron; supernovae: general AB The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electromagnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one-dimensional Monte Carlo radiation transfer calculation. For an ejecta mass similar to 10-2 M(circle dot) (10-3 M(circle dot)) the resulting light-curve peaks on a time-scale similar to 1 d at a V-band luminosity nu L(nu) similar to 3 x 1041 (1041) erg s-1 [M(V) = -15(-14)]; this corresponds to an effective 'f' parameter similar to 3 x 10-6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Since NS merger transients peak at a luminosity that is a factor of similar to 103 higher than a typical nova, we propose naming these events 'kilo-novae'. Because of the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration gamma-ray burst or 'blindly' with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe. C1 [Metzger, B. D.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Martinez-Pinedo, G.; Arcones, A.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Darbha, S.; Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Darbha, S.; Quataert, E.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Arcones, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Kasen, D.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Thomas, R.; Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Panov, I. V.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Panov, I. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Panov, I. V.] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. [Zinner, N. T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Metzger, BD (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM bmetzger@astro.princeton.edu RI Martinez-Pinedo, Gabriel/A-1915-2013; Panov, Igor/F-1454-2013 OI Martinez-Pinedo, Gabriel/0000-0002-3825-0131; FU NASA [PF9-00065, NAS8-03060, HST-HF-01208.01, NAS 5-26555]; Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz Alliance Cosmic Matter; Miller Institute for Basic Research in Science; University of California Berkeley; David and Lucile Packard Foundation; DOE [DE-FC02-06ER41438]; US Department of Energy [DE-AC02-05CH11231]; SCOPES [IZ73Z0-128180/1]; Swiss National Science Foundation; Russia Ministry of Education and Science [02.740.11.0250] FX We thank G. Wahlgren, P. Shawhan, C. Sneden, F.-K. Thielemann and C. Blake for helpful conversations and useful information. We thank V. Petrosian for suggesting the term 'kilonovae' to describe NS merger transients. Support for BDM was provided by NASA through an Einstein Postdoctoral Fellowship grant number PF9-00065 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. AA and GM-P are partly supported by the Deutsche Forschungsgemeinschaft through contract SFB 634 and the Helmholtz Alliance Cosmic Matter in the Laboratory. EQ was supported in part by the Miller Institute for Basic Research in Science, University of California Berkeley, and by the David and Lucile Packard Foundation. Support for DK was provided by NASA through Hubble fellowship grant #HST-HF-01208.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. This research has been supported in part by the DOE SciDAC Program (DE-FC02-06ER41438). Support for RT and PN was provided by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. IVP was supported in part by SCOPES project No. IZ73Z0-128180/1 awarded by the Swiss National Science Foundation, and by Russia Ministry of Education and Science, contract number 02.740.11.0250. NR 0 TC 216 Z9 218 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 21 PY 2010 VL 406 IS 4 BP 2650 EP 2662 DI 10.1111/j.1365-2966.2010.16864.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635RA UT WOS:000280672600041 ER PT J AU Schlesinger, KJ Johnson, JA Lee, YS Masseron, T Yanny, B Rockosi, CM Gaudi, BS Beers, TC AF Schlesinger, Katharine J. Johnson, Jennifer A. Lee, Young Sun Masseron, Thomas Yanny, Brian Rockosi, Constance M. Gaudi, B. Scott Beers, Timothy C. TI BINARY CONTAMINATION IN THE SEGUE SAMPLE: EFFECTS ON SSPP DETERMINATIONS OF STELLAR ATMOSPHERIC PARAMETERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astronomical databases: miscellaneous; binaries: general; stars: abundances; stars: luminosity function, mass function; surveys ID DIGITAL SKY SURVEY; INITIAL MASS FUNCTION; SOLAR-TYPE STARS; MILKY-WAY TOMOGRAPHY; G-DWARF; HIERARCHICAL-MODELS; LUMINOSITY FUNCTION; CHEMICAL EVOLUTION; OPEN CLUSTERS; DATA RELEASE AB We examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for targets from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) using numerical modeling, a grid of synthetic spectra, and the SEGUE Stellar Parameter Pipeline (SSPP). The SEGUE survey, a component of the Sloan Digital Sky Survey-II (SDSS-II) project focusing on Galactic structure, provides medium resolution spectroscopy for over 200,000 stars of various spectral types over a large area on the sky. To model undetected binaries that may be in this sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, defined by SDSS color cuts as having 0.48 <= (g - r)(0) <= 0.75, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, specifically effective temperature, surface gravity, metallicity, and [alpha/Fe], we synthesize a grid of model spectra from 3275 to 7850 K and [Fe/H] = -0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. These temperature and metallicity ranges roughly correspond to a stellar mass range of 0.1-1.0M(circle dot). We assume that both stars in the pair have the same metallicity. We analyze both "infinite" signal-to-noise ratio (S/N) models and degraded versions of the spectra, at median S/N of 50, 25, and 10. By running individual and combined spectra (representing the binaries) through the SSPP, we determine that similar to 10% of the blended G-K dwarf pairs with S/N >= 25 will have their atmospheric parameter determinations, in particular temperature and metallicity, noticeably affected by the presence of an undetected secondary; namely, they will be shifted beyond the expected SSPP uncertainties. Shifts in [Fe/H] largely result from the shifts in temperature caused by a secondary. The additional uncertainty from binarity in targets with S/N >= 25 is similar to 80 K in temperature and similar to 0.1 dex in [Fe/H]. The effect on surface gravity and [alpha/Fe] is even smaller. As the S/N of targets decreases, the uncertainties from undetected secondaries increase. For S/N = 10, 40% of the G-K dwarf sample is shifted beyond expected uncertainties for this S/N in effective temperature and/or metallicity. To account for the additional uncertainty from binary contamination at an S/N similar to 10, the most extreme scenario, uncertainties of similar to 140 K and similar to 0.17 dex in [Fe/H] must be added in quadrature to the published uncertainties of the SSPP. C1 [Schlesinger, Katharine J.; Johnson, Jennifer A.; Masseron, Thomas; Gaudi, B. Scott] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. RP Schlesinger, KJ (reprint author), Ohio State Univ, Dept Astron, 140 W 18Th Ave, Columbus, OH 43210 USA. RI Gaudi, Bernard/I-7732-2012 FU NSF [AST-0807997]; U.S. National Science Foundation [PHY 08-22648]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group, the Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX K.S. and J.A.J. acknowledge support from NSF grant AST-0807997. Y.S.L. and T.C.B. acknowledge partial support from grant PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 54 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 996 EP 1020 DI 10.1088/0004-637X/719/2/996 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000002 ER PT J AU Lueker, M Reichardt, CL Schaffer, KK Zahn, O Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA George, EM Hall, NR Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Vanderlinde, K Vieira, JD Williamson, R AF Lueker, M. Reichardt, C. L. Schaffer, K. K. Zahn, O. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. George, E. M. Hall, N. R. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Vieira, J. D. Williamson, R. TI MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmological parameters; cosmology: observations; galaxies: clusters: intracluster medium; large-scale structure of universe ID ANGULAR POWER SPECTRUM; STAR-FORMING GALAXIES; EXTRAGALACTIC SOURCES; DUST EMISSION; CLUSTERS; PROBE; CMB; SUBMILLIMETER; CAMERA; TEMPERATURE AB We report cosmic microwave background (CMB) power-spectrum measurements from the first 100 deg(2) field observed by the South Pole Telescope (SPT) at 150 and 220 GHz. On angular scales where the primary CMB anisotropy is dominant, l less than or similar to 3000, the SPT power spectrum is consistent with the standard Lambda CDM cosmology. On smaller scales, we see strong evidence for a point-source contribution, consistent with a population of dusty, star-forming galaxies. After we mask bright point sources, anisotropy power on angular scales of 3000 < l < 9500 is detected with a signal-to-noise ratio greater than or similar to 50 at both frequencies. We combine the 150 and 220 GHz data to remove the majority of the point-source power and use the point-source-subtracted spectrum to detect Sunyaev-Zel'dovich (SZ) power at 2.6 sigma. At l = 3000, the SZ power in the subtracted bandpowers is 4.2 +/- 1.5 mu K-2, which is significantly lower than the power predicted by a fiducial model using WMAP5 cosmological parameters. This discrepancy may suggest that contemporary galaxy cluster models overestimate the thermal pressure of intracluster gas. Alternatively, this result can be interpreted as evidence for lower values of sigma(8). When combined with an estimate of the kinetic SZ contribution, the measured SZ amplitude shifts sigma(8) from the primary CMB anisotropy derived constraint of 0.794 +/- 0.028 down to 0.773 +/- 0.025. The uncertainty in the constraint on sigma(8) from this analysis is dominated by uncertainties in the theoretical modeling required to predict the amplitude of the SZ power spectrum for a given set of cosmological parameters. C1 [Lueker, M.; Reichardt, C. L.; Benson, B. A.; Cho, H. -M.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Mehl, J.; Plagge, T.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Schaffer, K. K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Schaffer, K. K.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Lueker, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM lueker@socrates.berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation (NSF) Office of Polar Programs; United States Antarctic Program; Raytheon Polar Services Company; National Science Foundation [ANT-0638937, ANT-0130612]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; KICP; Berkeley Center for Cosmological Physics; Fermi; GAAN; Miller Institute for Basic Research in Science, University of California Berkeley; Alfred P. Sloan; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Science FX The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program, and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank T. M. Lanting, J. Leong, A. Loehr, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project, J. Joseph and C. Vu for their contributions to the electronics, and P. Ralph for his useful discussions and insights.; The SPT is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: K.K.S. and B.A.B. from a KICP Fellowship, O.Z. from a Berkeley Center for Cosmological Physics Fellowship, J.J.M. from a Fermi Fellowship, Z.S. from a GAAN Fellowship, and A.T.L. from the Miller Institute for Basic Research in Science, University of California Berkeley. N.W.H. acknowledges support from an Alfred P. Sloan Research Fellowship.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract no. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 60 TC 117 Z9 117 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1045 EP 1066 DI 10.1088/0004-637X/719/2/1045 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000005 ER PT J AU Kaiser, RI Sun, BJ Lin, HM Chang, AHH Mebel, AM Kostko, O Ahmed, M AF Kaiser, Ralf I. Sun, Bian Jian Lin, Hong Mao Chang, Agnes H. H. Mebel, Alexander M. Kostko, Oleg Ahmed, Musahid TI AN EXPERIMENTAL AND THEORETICAL STUDY ON THE IONIZATION ENERGIES OF POLYYNES (H-(C C)(n)-H; n=1-9) SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: molecules; planetary nebulae: general; planets and satellites: individual (Titan) ID METAL-ION CHEMISTRY; PLANETARY-ATMOSPHERES; CHEMICAL-DYNAMICS; ULTRAVIOLET; BENZENE; CRL-618; PHOTOIONIZATION; HYDROCARBONS; ACETYLENE; FLAMES AB We present a combined experimental and theoretical work on the ionization energies of polyacetylene-organic molecules considered as important building blocks to form polycyclic aromatic hydrocarbons in protoplanetary nebulae such as CRL 618. This set of astrophysical data can be utilized with significant confidence in future astrochemical models of photon-dominated regions and also of the protoplanetary nebulae CRL 618. We recommend ionization energies of polyacetylenes from diacetylene up to heptaacetylene with an experimental accuracy of +/- 0.05 eV: 10.03 eV (diacetylene), 9.45 eV (triacetylene), 9.08 eV (tetraacetylene), 8.75 eV (pentaacetylene), 8.65 eV (hexaacetylene), and 8.50 eV (heptaacetylene). Further, ionization energies with an accuracy of +/- 0.1 eV: 8.32 eV (octaacetylene) and 8.24 eV (nonaacetylene), were computed. Implications of these energies to the redox chemistry involved in the multiply charged metal-ion mediated chemistry of hydrocarbon-rich atmospheres of planets and their moons such as Titan are also discussed. C1 [Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Sun, Bian Jian; Lin, Hong Mao; Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Hualien 974, Taiwan. [Mebel, Alexander M.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Mebel, Alexander/A-5234-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU U.S. National Science Foundation [NSF-CRC CHE-0627854]; Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC02- 05CH11231] FX R.I.K. and A.M.M. thank the Chemistry Division of the U.S. National Science Foundation for support within the framework of the Collaborative Research in Chemistry (CRC) Program (NSF-CRC CHE-0627854). M.A. and O.K. gratefully acknowledge support from the Director of the Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy under contract No. DE-AC02- 05CH11231. B.J.S., H.M.L., and A.H.H.C. thank the National Center for High-performance Computer of Taiwan for the computer resources utilized in the calculations. NR 24 TC 15 Z9 15 U1 0 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1884 EP 1889 DI 10.1088/0004-637X/719/2/1884 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000067 ER PT J AU Bundy, K Scarlata, C Carollo, CM Ellis, RS Drory, N Hopkins, P Salvato, M Leauthaud, A Koekemoer, AM Murray, N Ilbert, O Oesch, P Ma, CP Capak, P Pozzetti, L Scoville, N AF Bundy, Kevin Scarlata, Claudia Carollo, C. M. Ellis, Richard S. Drory, Niv Hopkins, Philip Salvato, Mara Leauthaud, Alexie Koekemoer, Anton M. Murray, Norman Ilbert, Olivier Oesch, Pascal Ma, Chung-Pei Capak, Peter Pozzetti, Lucia Scoville, Nick TI THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: formation ID ACTIVE GALACTIC NUCLEI; STAR-FORMATION HISTORY; SIMILAR-TO 1; STELLAR POPULATION SYNTHESIS; COLOR-MAGNITUDE RELATION; FRANCE-HAWAII-TELESCOPE; MASS ASSEMBLY HISTORY; WIDE-FIELD SURVEY; DENSITY RELATION; HIGH-REDSHIFT AB The increasing abundance of passive "red-sequence" galaxies since z similar to 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (less than or similar to 10(10) M(circle dot)) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M(*) less than or similar to 10(11) M(circle dot) increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z similar to 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages. C1 [Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94705 USA. [Scarlata, Claudia; Capak, Peter] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Carollo, C. M.; Oesch, Pascal] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Ellis, Richard S.; Salvato, Mara; Capak, Peter; Scoville, Nick] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Drory, Niv] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Leauthaud, Alexie] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ilbert, Olivier] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Murray, Norman] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Salvato, Mara] Max Planck Inst Fuer Plasma Phys, D-85748 Garching, Germany. [Pozzetti, Lucia] Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Bundy, K (reprint author), Univ Calif Berkeley, Dept Astron, Berkeley, CA 94705 USA. OI Pozzetti, Lucia/0000-0001-7085-0412; Oesch, Pascal/0000-0001-5851-6649; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [HF-01215, NAS 5-26555] FX We thank Eliot Quataert, Arjen van der Wel, Avishai Dekel, Frederic Bournaud, Bob Nichol, Karen Masters, and Tommaso Treu for very useful discussions and feedback. K. B. acknowledges support for this work provided by NASA through Hubble Fellowship grant HF-01215, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. We acknowledge the entire COSMOS collaboration which has made this work possible. More information on the COSMOS survey is available at http://www.astro.caltech.edu/cosmos. NR 129 TC 103 Z9 103 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1969 EP 1983 DI 10.1088/0004-637X/719/2/1969 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000077 ER PT J AU Frisch, PC Heerikhuisen, J Pogorelov, NV DeMajistre, B Crew, GB Funsten, HO Janzen, P McComas, DJ Moebius, E Mueller, HR Reisenfeld, DB Schwadron, NA Slavin, JD Zank, GP AF Frisch, Priscilla C. Heerikhuisen, Jacob Pogorelov, Nikolai V. DeMajistre, Bob Crew, Geoffrey B. Funsten, Herbert O. Janzen, Paul McComas, David J. Moebius, Eberhard Mueller, Hans-Reinhard Reisenfeld, Daniel Brett Schwadron, Nathan A. Slavin, Jonathan D. Zank, Gary Paul TI CAN IBEX IDENTIFY VARIATIONS IN THE GALACTIC ENVIRONMENT OF THE SUN USING ENERGETIC NEUTRAL ATOMS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: kinematics and dynamics; ISM: magnetic fields; ISM: structure; plasmas; Sun: heliosphere ID INTERSTELLAR BOUNDARY EXPLORER; OUTER HELIOSPHERE; MAGNETIC-FIELD; SOLAR-CYCLE; PHYSICAL-PROPERTIES; TERMINATION SHOCK; LOCAL CLOUD; GAS; HYDROGEN; RIBBON AB The Interstellar Boundary Explorer (IBEX) spacecraft is providing the first all-sky maps of the energetic neutral atoms (ENAs) produced by charge exchange between interstellar neutral H degrees atoms and heliospheric solar wind and pickup ions in the heliosphere boundary regions. The "edge" of the interstellar cloud presently surrounding the heliosphere extends less than 0.1 pc in the upwind direction, terminating at an unknown distance, indicating that the outer boundary conditions of the heliosphere could change during the lifetime of the IBEX satellite. Using reasonable values for future outer heliosphere boundary conditions, ENA fluxes are predicted for one possible source of ENAs coming from outside of the heliopause. The ENA-production simulations use three-dimensional MHD plasma models of the heliosphere that include a kinetic description of neutrals and a Lorentzian distribution for ions. Based on this ENA-production model, it is then shown that the sensitivities of the IBEX 1.1 keV skymaps are sufficient to detect the variations in ENA fluxes that are expected to accompany the solar transition into the next upwind cloud. Approximately 20% of the IBEX 1.1 keV pixels appear capable of detecting the predicted model differences at the 3 sigma level, with these pixels concentrated in the Ribbon region. Regardless of the detailed ENA production model, the success of the modeled B . R similar to 0 directions in reproducing the Ribbon locus, together with our results, indicates that the Ribbon phenomenon traces the variations in the heliosphere distortion caused by the relative pressures of the interstellar magnetic and gaseous components. C1 [Frisch, Priscilla C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Heerikhuisen, Jacob; Pogorelov, Nikolai V.; Zank, Gary Paul] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [DeMajistre, Bob] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Crew, Geoffrey B.] MIT, Cambridge, MA 02142 USA. [Funsten, Herbert O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Janzen, Paul; Reisenfeld, Daniel Brett] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [McComas, David J.] SW Res Inst, San Antonio, TX 78227 USA. [Moebius, Eberhard] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Mueller, Hans-Reinhard] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Schwadron, Nathan A.] Boston Univ, Boston, MA 02215 USA. [Slavin, Jonathan D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Frisch, PC (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM frisch@oddjob.uchicago.edu; jacobh@ucr.edu; nikolaip@ucr.edu; Bob.DeMajistre@jhuapl.edu; gbc@haystack.mit.edu; hfunsten@lanl.gov; paul.janzen@umontana.edu; DMcComas@swri.edu; eberhard.moebius@unh.edu; Hans-Reinhard.Mueller@Dartmouth.edu; dan.reisenfeld@umontana.edu; nathanas@bu.edu; jslavin@cfa.harvard.edu; zank@email.cspar.uah.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; OI Funsten, Herbert/0000-0002-6817-1039; Mueller, Hans-Reinhard/0000-0001-7364-5377; Slavin, Jonathan/0000-0002-7597-6935; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633 FU IBEX mission; NASA [NNX09AG63G] FX We thank the IBEX team members. This work was funded through the IBEX mission, as a part of NASA's Explorer Program. J.H. acknowledges support from the NASA IBEX program through the grant NNX09AG63G. We thank Ed Roelof for his help with the CG corrections. NR 46 TC 14 Z9 14 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1984 EP 1992 DI 10.1088/0004-637X/719/2/1984 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000078 ER PT J AU Liu, HB Pereira, JH Adams, PD Sapra, R Simmons, BA Sale, KL AF Liu, Hanbin Pereira, Jose Henrique Adams, Paul D. Sapra, Rajat Simmons, Blake A. Sale, Kenneth L. TI Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A (vol 548, pg 3432, 2010) SO FEBS LETTERS LA English DT Correction C1 [Liu, Hanbin; Sapra, Rajat; Simmons, Blake A.; Sale, Kenneth L.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Liu, Hanbin; Sapra, Rajat; Simmons, Blake A.; Sale, Kenneth L.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Pereira, Jose Henrique; Adams, Paul D.] Joint BioEnergy Inst, Div Technol, Emeryville, CA USA. [Pereira, Jose Henrique; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sale, KL (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. EM Klsale@lbl.gov NR 1 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD AUG 20 PY 2010 VL 584 IS 16 BP 3672 EP 3672 DI 10.1016/j.febslet.2010.07.049 PG 1 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 638KW UT WOS:000280894800028 ER PT J AU Levshin, AL Yang, XN Barmin, MP Ritzwoller, MH AF Levshin, Anatoli L. Yang, Xiaoning Barmin, Mikhail P. Ritzwoller, Michael H. TI Midperiod Rayleigh wave attenuation model for Asia SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE attenuation; Rayleigh waves; Asia ID MAGNITUDE MEASUREMENT PROCEDURE; UPPER-MANTLE; TELESEISMIC DISTANCES; SURROUNDING REGIONS; SURFACE-WAVES; TIME-DOMAIN; CRUST; TOMOGRAPHY; VELOCITY; CHINA AB We present an attenuation model for midperiod Rayleigh waves in Central Asia and surrounding regions. This model is defined by maps of attenuation coefficient across the region of study in the period band 14-24 s. The model is constructed to characterize the regional variations in attenuation of seismic waves in the crust, which are related to the tectonic history of the studied territory, to calibrate the regional surface-wave magnitude scale, and to extend the teleseismic 'surface-wave magnitude - body wave magnitude' (Ms-mb) discriminant to regional distances. The construction of the model proceeds in three stages. The first stage in model construction is the measurement of Rayleigh wave spectral amplitudes. We collected and processed waveform data for 200 earthquakes occurring from 2003 to 2006 inside and around Eurasia, and used records of about 135 broadband permanent and temporary stations. This data set provided a sufficient number of spectral amplitude measurements between 14 and 24 s periods for the construction of two-dimensional tomographic maps of attenuation coefficients. At the second stage of the work, the integral of attenuation coefficients along given paths is estimated using both inter-station measurements and single-station measurements corrected for source and receiver terms. The third stage includes the refining of source parameters, recalculation of attenuation coefficient integrals after this refinement, grooming of resulting coefficients, and multistage tomographic inversion of the data. Tomographic maps for the set of periods from 14 to 24 s, which exhibit clear correlation with geology and tectonics of the territory under study, were obtained. Validation of these maps using the inter-station measurements confirms their accuracy in predicting the observations. C1 [Levshin, Anatoli L.; Barmin, Mikhail P.; Ritzwoller, Michael H.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Yang, Xiaoning] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Levshin, AL (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM levshin@colorado.edu RI GEOFON, GlobalSeismicNetwork/E-4273-2012 FU U.S. Department of Energy's National Nuclear Security Administration [DE-FC52-05NA26608, DE-AC52-06NA25396] FX The authors greatly appreciate the opportunity to receive digital records from IRIS DMC, GEOSCOPE, and GEOFON. Figures 4, 7, 9, and 10 were plotted using the Generic Mapping Tool (GMT) [Wessel and Smith, 1995]. This work was supported by the U.S. Department of Energy's National Nuclear Security Administration, contracts DE-FC52-05NA266081 and DE-AC52-06NA253962. We are also deeply grateful to the Associated Editor S. Lebedev and B. Mitchell for their very useful comments. NR 29 TC 7 Z9 7 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD AUG 20 PY 2010 VL 11 AR Q08017 DI 10.1029/2010GC003164 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 641OJ UT WOS:000281137400002 ER PT J AU Jones, RE Templeton, JA Wagner, GJ Olmsted, D Modine, NA AF Jones, Reese E. Templeton, Jeremy A. Wagner, Gregory J. Olmsted, David Modine, Nomand A. TI Electron transport enhanced molecular dynamics for metals and semi-metals SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE electron-phonon coupling; heat transport; molecular dynamics; finite elements ID FEMTOSECOND LASER-ABLATION; HEAT-TRANSFER; SYSTEMS; TEMPERATURE; PULSES; RELAXATION; MECHANISMS; SIMULATION; ALGORITHM; TARGETS AB In this work we extend classical molecular dynamics by coupling it with an electron transport model known as the two temperature model. This energy balance between free electrons and phonons was first proposed in 1956 by Kaganov et al. but has recently been utilized as a framework for coupling molecular dynamics to a continuum description of electron transport. Using finite element domain decomposition techniques from our previous work as a basis, we develop a coupling scheme that preserves energy and has local control of temperature and energy flux via a Gaussian isokinetic thermostat. Unlike the previous work on this subject, we employ an efficient, implicit time integrator for the fast electron transport which enables larger stable time steps than the explicit schemes commonly used. A number of example simulations are given that validate the method, including Joule heating of a copper nanowire and laser excitation of a suspended carbon nanotube with its ends embedded in a conducting substrate. Published in 2010 by John Wiley & Sons, Ltd. C1 [Jones, Reese E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94551 USA. [Templeton, Jeremy A.; Wagner, Gregory J.] Sandia Natl Labs, Thermal Fluid Sci & Engn Dept, Livermore, CA 94551 USA. [Olmsted, David] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. [Modine, Nomand A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Jones, RE (reprint author), Sandia Natl Labs, Mech Mat Dept, POB 969, Livermore, CA 94551 USA. EM rjones@sandia.gov RI Wagner, Gregory/I-4377-2015 FU Sandia National Laboratories [DE-ACO4-94AL85000] FX Contract/grant sponsor: Laboratory Directed Research and Development Program at Sandia National Laboratories; contract/grant number: DE-ACO4-94AL85000; This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories and its support is gratefully acknowledged. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Enemy under contract DE-ACO4-94AL85000. NR 64 TC 9 Z9 9 U1 5 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD AUG 20 PY 2010 VL 83 IS 8-9 SI SI BP 940 EP 967 DI 10.1002/nme.2857 PG 28 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 648PT UT WOS:000281707100002 ER PT J AU Samios, NP AF Samios, Nicholas P. TI MURRAY AND THE OMEGA MINUS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Strangeness; eightfold way; SU(3); quarks; Omega(-) ID MESONS AB The exciting findings and activities in particle physics in the 50' s and 60' s will be discussed from an experimentalist's viewpoint. Particular emphasis will be placed on the description of several crucial discoveries (including the omega minus) and on the remarkable insight, guidance, and major contributions of Murray Gell- Mann to the understanding of the symmetry of hadrons which led to the development of the standard model of the strong interactions. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Samios, NP (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 15 TC 0 Z9 0 U1 1 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD AUG 20 PY 2010 VL 25 IS 21 BP 4005 EP 4013 DI 10.1142/S0217751X10050536 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 643AM UT WOS:000281264400002 ER PT J AU Jia, J Harrison, R Fann, G AF Jia, Jun Harrison, Robert Fann, George TI Fast transform from an adaptive multi-wavelet representation to a partial Fourier representation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Multi-wavelet; Multi-resolution analysis; Fourier transform; FFT ID MULTIWAVELET BASES; ALGORITHMS AB We present a fast algorithm to compute the partial transformation of a function represented in an adaptive pseudo-spectral multi-wavelet representation to a partial Fourier representation. Such fast transformations are useful in many contexts in physics and engineering, where changes of representation from a piece wise polynomial basis to a Fourier basis The algorithm is demonstrated for a Gaussian in one and in three dimensions. For 2D, we apply this approach to a Gaussian in a periodic domain. The accuracy and the performance of this method is compared with direct summation (C) 2010 Elsevier Inc. All rights reserved. C1 [Jia, Jun; Harrison, Robert; Fann, George] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jia, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy, the division of Basic Energy Science, Office of Science [DE-AC05-00OR22725]; SciDAC; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the U.S. Department of Energy, the division of Basic Energy Science, Office of Science, under contract number DE-AC05-00OR22725 with Oak Ridge National Laboratory. G.Fann and J Jia were partially supported by the Office of Advanced Scientific Computing, Applied Mathematics Program of SciDAC.; Notice: This manuscript has been authored by UT-Battelle. LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 11 TC 1 Z9 1 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 20 PY 2010 VL 229 IS 17 BP 5870 EP 5878 DI 10.1016/j.jcp.2010.04.006 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 621II UT WOS:000279569200003 ER PT J AU Taylor, MA Fournier, A AF Taylor, Mark A. Fournier, Aime TI A compatible and conservative spectral element method on unstructured grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Spectral element; Finite element; Mimetic; Compatible; Support operators; Atmospheric modeling; Shallow-water equations; Sphere; Conservation; Local conservation; Unstructured grids; Cubed sphere ID SHALLOW-WATER EQUATIONS; DYNAMICAL CORE; POTENTIAL-ENSTROPHY; FLUID-DYNAMICS; TEST SET; MODEL; ENERGY; APPROXIMATIONS; SIMULATIONS; ALGORITHMS AB We derive a formulation of the spectral element method which is compatible on very general unstructured three-dimensional grids Here compatible means that the method retains discrete analogs of several key properties of the divergence, gradient and curl operators: the divergence and gradient are anti-adjoints (the negative transpose) of each other, the cull is self-adjoint and annihilates the gradient operator, and the divergence annihilates the curl The adjoint relations hold globally, and at the element level with the inclusion of a natural discrete element boundary flux term We then discretize the shallow-water equations on the sphere using the cubed-sphere grid and show that compatibility allows us to locally conserve mass, energy and potential vorticity Conservation is obtained without requiring the equations to be in conservation form. The conservation is exact assuming exact time integration (C) 2010 Elsevier Inc All rights reserved C1 [Taylor, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fournier, Aime] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80307 USA. RP Taylor, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Fournier, Aime/J-6366-2015 OI Fournier, Aime/0000-0002-5872-8307 FU DOE/BER [06-13194] FX MT thanks P. Bochev and M. Shashkov for helpful discussions about mimetic methods and J. Drake for suggesting we look at local conservation. AF thanks the U Reading Department of Meteorology and NCAR Turbulence Numerics Team for supporting contributions to this work This work supported in part by DOE/BER Grant 06-13194. NR 45 TC 67 Z9 68 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 20 PY 2010 VL 229 IS 17 BP 5879 EP 5895 DI 10.1016/j.jcp.2010.04.008 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 621II UT WOS:000279569200004 ER PT J AU Zahran, M Daidone, I Smith, JC Imhof, P AF Zahran, Mai Daidone, Isabella Smith, Jeremy C. Imhof, Petra TI Mechanism of DNA Recognition by the Restriction Enzyme EcoRV SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE protein-DNA interaction; EcoRV; direct/indirect readout; sequence recognition ID MOLECULAR-DYNAMICS SIMULATIONS; SEQUENCE-DEPENDENT DEFORMABILITY; SITE-DIRECTED MUTAGENESIS; IRREGULAR NUCLEIC-ACIDS; CRYSTAL-STRUCTURE; INDIRECT READOUT; TRP REPRESSOR; B-DNA; CRYSTALLOGRAPHIC ANALYSIS; PROTEIN COMPLEXES AB EcoRV, a restriction enzyme in Escherichia coli, destroys invading foreign DNA by cleaving it at the center step of a GATATC sequence. In the EcoRV-cognate DNA crystallographic complex, a sharp kink of 50 has been found at the center base-pair step (TA). Here, we examine the interplay between the intrinsic propensity of the cognate sequence to kink and the induction by the enzyme by performing all-atom molecular dynamics simulations of EcoRV unbound and interacting with three DNA sequences: the cognate sequence, GATATC (TA); the non-cognate sequence, GAATTC (AT); and with the cognate sequence methylated on the first adenine GA(CH3) TATC (TA-CH(3)). In the unbound EcoRV, the cleft between the two C-terminal subdomains is found to be open. Binding to AT narrows the cleft and forms a partially bound state. However, the intrinsic bending propensity of AT is insufficient to allow tight binding. In contrast, the cognate TA sequence is easier to bend, allowing specific, high-occupancy hydrogen bonds to form in the complex. The absence of cleavage for this methylated sequence is found to arise from the loss of specific hydrogen bonds between the first adenine of the recognition sequence and Asn185. On the basis of the results, we suggest a three-step recognition mechanism. In the first step, EcoRV, in an open conformation, binds to the DNA at a random sequence and slides along it. In the second step, when the two outer base pairs, GAxxTC, are recognized, the R loops of the protein become more ordered, forming strong hydrogen-bonding interactions, resulting in a partially bound EcoRV-DNA complex. In the third step, the flexibility of the center base pair is probed, and in the case of the full cognate sequence the DNA bends, the complex strengthens and the protein and DNA interact more closely, allowing cleavage. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zahran, Mai; Imhof, Petra] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. [Daidone, Isabella] Univ Aquila, Dept Chem, I-67010 Laquila, Italy. [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Imhof, P (reprint author), Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. EM petra.imhof@iwr.uni-heidelberg.de RI smith, jeremy/B-7287-2012; Imhof, Petra/G-5656-2013 OI smith, jeremy/0000-0002-2978-3227; FU Heidelberg BIOMS (Center for Modelling and Simulation in the Biosciences); U.S. Department of Energy; National Science Foundation through TeraGrid resources provided by National Institute for Computational Sciences FX M.Z. thanks the Computational Molecular Biophysics group, as well as, Karine Voltz, Nicolas Calimet, Loukas Petridis, Peter J. Winn and Thomas Splettstoesser, for useful discussions. P.I. is grateful for funding from the Heidelberg BIOMS (Center for Modelling and Simulation in the Biosciences) initiative. J.C.S. was funded by a laboratory-directed research and development grant from the U.S. Department of Energy. This research was supported in part by the National Science Foundation through TeraGrid resources provided by National Institute for Computational Sciences. NR 79 TC 12 Z9 12 U1 2 U2 16 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD AUG 20 PY 2010 VL 401 IS 3 BP 415 EP 432 DI 10.1016/j.jmb.2010.06.026 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 641ZB UT WOS:000281171000008 PM 20600128 ER PT J AU Bakalbassis, EG Malamidou-Xenikaki, E Spyroudis, S Xantheas, SS AF Bakalbassis, Evangelos G. Malamidou-Xenikaki, Elizabeth Spyroudis, Spyros Xantheas, Sotiris S. TI Dimerization of Indanedioneketene to Spiro-oxetanone: A Theoretical Study SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID TRIPTYCENE QUINONES; ARYLIODONIUM YLIDES; CHEMICAL-REACTIVITY; ALPHA-OXOKETENES; DERIVATIVES; DIPIVALOYLKETENE; CHEMISTRY; 2-HYDROXY-1,4-NAPHTHOQUINONE; CYCLOPENTENEDIONE; MIGRATION AB Indanedioneketene, a compound resulting from the thermal degradation of the phenyliodonium ylide of lawsone, dimerizes quantitatively to a spiro-oxetanone derivative, a key compound for further transformations. A theoretical electronic structure study of this unusual for alpha-oxoketenes [2 + 2] cyclization reaction both in the gas phase (DFT, MP2) and in dichloromethane solution (D FT), provides support for (a) a single-step, transition-state (involving a four-membered cyclic ring) charge-controlled, concerted mechanism and (b) a [4 + 2] cyclization reaction, not observed but studied theoretically in this study. A parallel study of an open-chain alpha,alpha'-dioxoketene dimerization explains the difference in the stability and reactivity observed experimentally between the cyclic and open-chain products. C1 [Bakalbassis, Evangelos G.] Aristotle Univ Thessaloniki, Dept Chem, Lab Appl Quantum Chem, Thessaloniki 54124, Greece. [Malamidou-Xenikaki, Elizabeth; Spyroudis, Spyros] Aristotle Univ Thessaloniki, Dept Chem, Organ Chem Lab, Thessaloniki 54124, Greece. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Bakalbassis, EG (reprint author), Aristotle Univ Thessaloniki, Dept Chem, Lab Appl Quantum Chem, POB 135, Thessaloniki 54124, Greece. EM bakalbas@chem.auth.gr RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Sciences, U.S. Department of Energy FX Part of this work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Sciences, U.S. Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. Computer resources were provided by the Office of Basic Energy Sciences, US Department of Energy at the National Energy Research Scientific Computing Center, a U.S. Department of Energy's Office of Science user facility at Lawrence Berkeley National Laboratory. NR 39 TC 5 Z9 5 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD AUG 20 PY 2010 VL 75 IS 16 BP 5499 EP 5504 DI 10.1021/jo100500u PG 6 WC Chemistry, Organic SC Chemistry GA 637EN UT WOS:000280798900008 PM 20666506 ER PT J AU Gorelov, E Kolorenc, J Wehling, T Hafermann, H Shick, AB Rubtsov, AN Landa, A McMahan, AK Anisimov, VI Katsnelson, MI Lichtenstein, AI AF Gorelov, E. Kolorenc, J. Wehling, T. Hafermann, H. Shick, A. B. Rubtsov, A. N. Landa, A. McMahan, A. K. Anisimov, V. I. Katsnelson, M. I. Lichtenstein, A. I. TI Importance of full Coulomb interactions for understanding the electronic structure of delta-Pu SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; CORRELATED SYSTEMS; PLUTONIUM; VALENCE; FIELD; SPECTRA AB Understanding the electronic structure of materials containing elements from the end of the periodic table represents a challenge due to a complex interplay of a number of physical phenomena occurring in these systems. In the plutonium metal, a fraction of the valence electrons is at the turning point between joining the conduction cloud, which occupies the whole crystal, and staying bound to a particular atom. This delicate boundary can be probed by photoemission experiments. Here we employ a very accurate computational method-the quantum Monte Carlo simulations-to describe the electronic states in the material achieving previously inaccessible resolution. We show that in order to successfully analyze the experimental photoemission spectra, it is essential to include the complete form of the electron-electron interaction into the Schrodinger equation, otherwise the spectral features near the Fermi level are not correctly reproduced. C1 [Gorelov, E.; Kolorenc, J.; Wehling, T.; Hafermann, H.; Lichtenstein, A. I.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Kolorenc, J.; Shick, A. B.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Rubtsov, A. N.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia. [Landa, A.; McMahan, A. K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Anisimov, V. I.] Inst Met Phys, Ekaterinburg, Russia. [Katsnelson, M. I.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. RP Gorelov, E (reprint author), Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. EM alichten@physnet.uni-hamburg.de RI Rubtsov, Alexey/B-5449-2012; Katsnelson, Mikhail/D-4359-2012; Shick, Alexander/C-1420-2013; Anisimov, Vladimir/K-1235-2013; Gorelov, Evgeny/L-6465-2013; Kolorenc, Jindrich/G-5405-2014; Wehling, Tim/O-4642-2014; Lichtenstein, Alexander/K-8730-2012 OI Rubtsov, Alexey/0000-0001-5090-3599; Shick, Alexander/0000-0003-2700-5517; Anisimov, Vladimir/0000-0002-1087-1956; Kolorenc, Jindrich/0000-0003-2627-8302; Wehling, Tim/0000-0002-5579-2231; Lichtenstein, Alexander/0000-0003-0152-7122 FU U.S. Department of Energy [DE-AC52-07NA27344]; DFG [SFB668-A3]; German-Czech collaboration program [436TSE113/53/0-1, GACR 202/07/J047]; Alexander von Humboldt foundation FX We would like to thank L. Havela for providing us with the experimental photoemission spectra for direct comparison with our calculations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Computer time was awarded for the Atlas Grand Challenge Proposal "Predictive Properties of Plutonium with Dynamical Mean Field Theory" at LLNL. A. I. L. would like to acknowledge the DFG under Grant No. SFB668-A3. Additional support was provided by German-Czech collaboration program (Grant Nos. 436TSE113/53/0-1 and GACR 202/07/J047). J.K. gratefully acknowledges financial support by Alexander von Humboldt foundation. NR 34 TC 11 Z9 11 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2010 VL 82 IS 8 AR 085117 DI 10.1103/PhysRevB.82.085117 PG 5 WC Physics, Condensed Matter SC Physics GA 640PY UT WOS:000281065100003 ER PT J AU Khan, M Mudryk, Y Paudyal, D Gschneidner, KA Pecharsky, VK AF Khan, Mahmud Mudryk, Ya Paudyal, D. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Experimental and theoretical study of the magnetic and structural properties of Er0.75Tb0.25Al2 SO PHYSICAL REVIEW B LA English DT Article ID LAVES PHASE-COMPOUNDS; ELECTRONIC-STRUCTURE; ALUMINUM; ANISOTROPY; SYSTEMS; FIELD; SPIN AB The Er0.75Tb0.25Al2 alloy has been investigated by x-ray powder diffraction, magnetization, and ac magnetic-susceptibility measurements. The low-field magnetization measured as a function of temperature indicates a ferromagnetic transition at similar to 36 K and another transition with thermal hysteresis at similar to 18 K. The ac magnetic-susceptibility measurements show frequency dependence below the ferromagnetic transition temperature, T-C. Low-temperature x-ray powder-diffraction measurements suggest that although no structural transformation occurs around 18 K, a steplike anomaly in the lattice parameters does exist in the vicinity of the transition. First-principles electronic-structure calculations show anomalous density of states at the Fermi level. The results are comparable with the previously reported Er0.75Dy0.25Al2 alloy, thus supporting an earlier assumption that mixing two rare-earth ions with opposite signs of second-order Steven's factor in RAl2 alloys creates a competition between the magnetoelastic and quadrupolar interactions, giving rise to multiple magnetic ordering phenomena. C1 [Khan, Mahmud; Mudryk, Ya; Paudyal, D.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Khan, M (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the U.S. DOE FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University of Science and Technology under Contract No. DE-AC02-07CH11358. This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the U.S. DOE. NR 28 TC 11 Z9 11 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2010 VL 82 IS 6 AR 064421 DI 10.1103/PhysRevB.82.064421 PG 8 WC Physics, Condensed Matter SC Physics GA 640PQ UT WOS:000281064300006 ER PT J AU Maier, S Cabrera-Sanfelix, P Stass, I Sanchez-Portal, D Arnau, A Salmeron, M AF Maier, Sabine Cabrera-Sanfelix, Pepa Stass, Ingeborg Sanchez-Portal, Daniel Arnau, Andres Salmeron, Miquel TI Water-induced surface reconstruction of oxygen (2x1) covered Ru(0001) SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; LEED-IV; ADSORPTION; DISSOCIATION; COADSORPTION; ENERGY; ATOMS; NO; CO AB Low-temperature scanning tunneling microscopy and density-functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the similar to 200 meV water-water H bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen-honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260 K. C1 [Maier, Sabine; Stass, Ingeborg; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cabrera-Sanfelix, Pepa; Sanchez-Portal, Daniel; Arnau, Andres] Donostia Int Phys Ctr, San Sebastian 20018, Spain. [Stass, Ingeborg] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany. [Sanchez-Portal, Daniel; Arnau, Andres] CSIC Univ Basque Country, Ctr Phys Mat, San Sebastian 20018, Spain. [Arnau, Andres] Univ Basque Country, Fac Quim, Dept Fis Mat, San Sebastian 20080, Spain. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Sanchez-Portal, Daniel /E-5858-2010; CSIC-UPV/EHU, CFM/F-4867-2012; arnau, andres/H-7901-2012; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Maier, Sabine/B-5917-2008 OI arnau, andres/0000-0001-5281-3212; Maier, Sabine/0000-0001-9589-6855 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC02-05CH11231]; Basque Department of Education; UPV/EHU [IT-366-07]; Spanish Ministerio de Ciencia e Innovacion [FIS2007-66711-C02-00]; Basque Departamento de Industria; Diputacion Foral de Guipuzcoa FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No. DE-AC02-05CH11231. The theoretical work was supported by the Basque Department of Education, UPV/EHU (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2007-66711-C02-00), and the ETORTEK program funded by the Basque Departamento de Industria and the Diputacion Foral de Guipuzcoa. NR 38 TC 7 Z9 7 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2010 VL 82 IS 7 AR 075421 DI 10.1103/PhysRevB.82.075421 PG 10 WC Physics, Condensed Matter SC Physics GA 640PT UT WOS:000281064600004 ER PT J AU Muniz, RA Dahal, HP Balatsky, AV Haas, S AF Muniz, Rodrigo A. Dahal, Hari P. Balatsky, A. V. Haas, Stephan TI Impurity-assisted nanoscale localization of plasmonic excitations in graphene SO PHYSICAL REVIEW B LA English DT Article AB A nonlocal quantum-mechanical model is employed to compute plasmonic excitations of graphene in the presence of an impurity potential. A full diagonalization of the polarization operator is performed, allowing the extraction of all its poles. It is demonstrated that impurities induce the formation of nanoscale localized plasmonic modes. It is also shown that the chemical potential and impurity strength can be tuned to control target features of the localized modes, making graphene an intrinsic plasmonic material. These predictions can be tested by scanning tunneling microscopy experiments. C1 [Muniz, Rodrigo A.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Dahal, Hari P.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dahal, Hari P.; Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Muniz, RA (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM rmuniz@usc.edu; avb@lanl.gov FU U.S. DOE [DE-FG02-05ER46240, DE-FG02-06ER46319]; LDRD FX We thank Ming-Chak Ho, Noah Bray-Ali, Yung-Ching Liang, and James Gubernatis for useful conversations. We also acknowledge financial support by the U.S. DOE through Grant No. DE-FG02-05ER46240 and through the BES, UCOP-027 and LDRD funds under Grant No. DE-FG02-06ER46319. The numerical computations were carried out on the USC-HPC cluster. NR 32 TC 10 Z9 10 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2010 VL 82 IS 8 AR 081411 DI 10.1103/PhysRevB.82.081411 PG 4 WC Physics, Condensed Matter SC Physics GA 640PY UT WOS:000281065100002 ER PT J AU Siewert, M Gruner, ME Dannenberg, A Hucht, A Shapiro, SM Xu, G Schlagel, DL Lograsso, TA Entel, P AF Siewert, M. Gruner, M. E. Dannenberg, A. Hucht, A. Shapiro, S. M. Xu, G. Schlagel, D. L. Lograsso, T. A. Entel, P. TI Electronic structure and lattice dynamics of the magnetic shape-memory alloy Co2NiGa SO PHYSICAL REVIEW B LA English DT Article ID CO-NI-GA; MARTENSITIC PHASE-TRANSITION; AUGMENTED-WAVE METHOD; HEUSLER ALLOYS; AB-INITIO; CRYSTAL-STRUCTURES; PHONON-DISPERSION; SINGLE-CRYSTALS; SITE PREFERENCE; INVAR-ALLOYS AB In addition to the prototypical Ni-Mn-based Heusler alloys, the Co-Ni-Ga systems have recently been suggested as another prospective materials class for magnetic shape-memory applications. We provide a characterization of the dynamical properties of this material and their relation to the electronic structure within a combined experimental and theoretical approach. This relies on inelastic neutron scattering to obtain the phonon dispersion while first-principles calculations provide the link between dynamical properties and electronic structure. In contrast to Ni2MnGa, where the softening of the TA(2) phonon branch is related to Fermi-surface nesting, our results reveal that the respective anomalies are absent in Co-Ni-Ga, in the phonon dispersions as well as in the electronic structure. C1 [Siewert, M.; Gruner, M. E.; Dannenberg, A.; Hucht, A.; Entel, P.] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. [Siewert, M.; Gruner, M. E.; Dannenberg, A.; Hucht, A.; Entel, P.] Univ Duisburg Essen, Ctr Nanointegrat, CeNIDE, D-47048 Duisburg, Germany. [Shapiro, S. M.; Xu, G.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab & Mat Sci & Engn, Ames, IA 50011 USA. RP Siewert, M (reprint author), Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. RI Gruner, Markus/D-9726-2011; Xu, Guangyong/A-8707-2010; Hucht, Alfred/H-3181-2011 OI Gruner, Markus/0000-0002-2306-1258; Xu, Guangyong/0000-0003-1441-8275; Hucht, Alfred/0000-0002-9276-0159 FU U.S. Department of Energy [DE-AC02-7CH11358, DE-AC02-76CH00016]; Deutsche Forschungsgemeinschaft [SPP 1239] FX Work at Ames and Brookhaven is supported by the U.S. Department of Energy under Contracts No. DE-AC02-7CH11358 and No. DE-AC02-76CH00016, respectively. Work in Duisburg is supported by Deutsche Forschungsgemeinschaft within the priority program SPP 1239. The calculations have been carried out on the parallel computing installations of the University Duisburg-Essen, Technical University Dortmund and Julich Supercomputing Center. NR 57 TC 21 Z9 23 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2010 VL 82 IS 6 AR 064420 DI 10.1103/PhysRevB.82.064420 PG 11 WC Physics, Condensed Matter SC Physics GA 640PQ UT WOS:000281064300005 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Johnston, D Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Macicl, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martin, B Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Prewitt, M Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Johnston, D. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Macicl, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA Collaboration, D TI Measurement of the t(t)over-bar cross section using high-multiplicity jet events SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR; PHYSICS AB We present a measurement of the t (t) over bar cross section using high-multiplicity jet events produced in p (p) over bar collisions at root s = 1.96 TeV. These data were recorded at the Fermilab Tevatron Collider with the D0 detector. Events with at least six jets, two of them identified as b jets, were selected from a 1 fb(-1) data set. The measured cross section, assuming a top quark mass of 175 GeV/c(2), is 6.9 +/- 2.0 pb, in agreement with theoretical expectations. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Macicl, A. K. A.; Pol, M. -E.] Centro Brasileiro Pesquisas Fisicas, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; Negret, J. P.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytechn Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Ito, A. S.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Nilsen, H.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Phys Inst 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Parihar, V.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gerbaudo, D.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Mundim, Luiz/A-1291-2012; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Belanger-Champagne, Camille/0000-0003-2368-2617; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE; NSF (U.S.); CEA; FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); [CNRS/IN2P3] FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 32 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 20 PY 2010 VL 82 IS 3 AR 032002 DI 10.1103/PhysRevD.82.032002 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 640RU UT WOS:000281070700001 ER PT J AU Cryan, JP Glownia, JM Andreasson, J Belkacem, A Berrah, N Blaga, CI Bostedt, C Bozek, J Buth, C DiMauro, LF Fang, L Gessner, O Guehr, M Hajdu, J Hertlein, MP Hoener, M Kornilov, O Marangos, JP March, AM McFarland, BK Merdji, H Petrovic, VS Raman, C Ray, D Reis, D Tarantelli, F Trigo, M White, JL White, W Young, L Bucksbaum, PH Coffee, RN AF Cryan, James P. Glownia, J. M. Andreasson, J. Belkacem, A. Berrah, N. Blaga, C. I. Bostedt, C. Bozek, J. Buth, C. DiMauro, L. F. Fang, L. Gessner, O. Guehr, M. Hajdu, J. Hertlein, M. P. Hoener, M. Kornilov, O. Marangos, J. P. March, A. M. McFarland, B. K. Merdji, H. Petrovic, V. S. Raman, C. Ray, D. Reis, D. Tarantelli, F. Trigo, M. White, J. L. White, W. Young, L. Bucksbaum, P. H. Coffee, R. N. TI Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAYS; N-2; SHELLS; TRANSITIONS; ATOMS AB The Linac Coherent Light Source free electron laser is a source of high brightness x rays, 2 x 10(11) photons in a similar to 5 fs pulse, that can be focused to produce double core vacancies through rapid sequential ionization. This enables double core vacancy Auger electron spectroscopy, an entirely new way to study femtosecond chemical dynamics with Auger electrons that probe the local valence structure of molecules near a specific atomic core. Using 1.1 keV photons for sequential x-ray ionization of impulsively aligned molecular nitrogen, we observed a rich single-site double core vacancy Auger electron spectrum near 413 eV, in good agreement with ab initio calculations, and we measured the corresponding Auger electron angle dependence in the molecular frame. C1 [Cryan, James P.; Glownia, J. M.; Buth, C.; Guehr, M.; McFarland, B. K.; Merdji, H.; Reis, D.; Trigo, M.; Bucksbaum, P. H.; Coffee, R. N.] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA 94025 USA. [Cryan, James P.; Petrovic, V. S.; Bucksbaum, P. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Glownia, J. M.; McFarland, B. K.; Reis, D.; White, J. L.; Bucksbaum, P. H.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Andreasson, J.; Hajdu, J.] Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, SE-75124 Uppsala, Sweden. [Belkacem, A.; Gessner, O.; Kornilov, O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Berrah, N.; Fang, L.; Hoener, M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Blaga, C. I.; DiMauro, L. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bostedt, C.; Bozek, J.; White, W.; Coffee, R. N.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Buth, C.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Hertlein, M. P.; Hoener, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Marangos, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [March, A. M.; Ray, D.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Merdji, H.] CEA Saclay, IRAMIS, Serv Photons Atomes & Mol, F-91191 Gif Sur Yvette, France. [Raman, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Ray, D.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Tarantelli, F.] Univ Perugia, Dipartimento Chim, I-06123 Perugia, Italy. [Tarantelli, F.] CNR, ISTM, I-06123 Perugia, Italy. RP Cryan, JP (reprint author), SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jcryan@stanford.edu RI Bozek, John/E-9260-2010; Tarantelli, Francesco/H-5798-2013; Guehr, Markus/B-7446-2015; Buth, Christian/A-2834-2017 OI Bozek, John/0000-0001-7486-7238; Tarantelli, Francesco/0000-0002-1285-0606; Guehr, Markus/0000-0002-9111-8981; Buth, Christian/0000-0002-5866-3443 FU U.S. Department of Energy [DE-FG02-04ER15614]; NSF [PHY-0701372, PHY-0449235, PHY-0649578]; DOE-BES [DE-FG02-92ER14299, DE-AC02-05CH11231]; Alexandr von Humboldt Foundation; The Swedish Research Council; U.S. Department of Energy, Office of Basic Energy Sciences; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) FX The authors would like to thank Robin Santra and Lorenz Cederbaum for very insightful dialogues, Rick Iverson, Paul Emma, Zhirong Huang, and Yuantao Ding for their unwavering pursuit of sub-10 fs xFEL pulses, and Bertold Krassig for his work modeling the eToF spectrometers. This research is supported through both the LCLS and the PULSE Institute at the SLAC National Accelerator Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences. LFD and CIB were supported under Contract No. DE-FG02-04ER15614 by the U.S. Department of Energy. C. B. was funded by the NSF under Grants No. PHY-0701372 and No. PHY-0449235. V. P. was funded by the NSF under Grant No. PHY-0649578. M. H., L. F., and N. B. are funded by DOE-BES under Contract No. DE-FG02-92ER14299. M. H. thanks the Alexandr von Humboldt Foundation for financial support. O. G., O. K., and A. B. are funded by DOE-BES under Contract No. DE-AC02-05CH11231. J. A. and J. H. were supported by The Swedish Research Council and The Swedish Foundation for International Cooperation in Research and Higher Education (STINT). NR 30 TC 113 Z9 114 U1 3 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2010 VL 105 IS 8 AR 083004 DI 10.1103/PhysRevLett.105.083004 PG 5 WC Physics, Multidisciplinary SC Physics GA 640SH UT WOS:000281072100003 PM 20868096 ER PT J AU Fang, L Hoener, M Gessner, O Tarantelli, F Pratt, ST Kornilov, O Buth, C Guhr, M Kanter, EP Bostedt, C Bozek, JD Bucksbaum, PH Chen, M Coffee, R Cryan, J Glownia, M Kukk, E Leone, SR Berrah, N AF Fang, L. Hoener, M. Gessner, O. Tarantelli, F. Pratt, S. T. Kornilov, O. Buth, C. Guehr, M. Kanter, E. P. Bostedt, C. Bozek, J. D. Bucksbaum, P. H. Chen, M. Coffee, R. Cryan, J. Glownia, M. Kukk, E. Leone, S. R. Berrah, N. TI Double Core-Hole Production in N-2: Beating the Auger Clock SO PHYSICAL REVIEW LETTERS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; SPECTRA; PHOTOIONIZATION; PROPAGATOR; STATES; ATOMS; BORON; NEON AB We investigate the creation of double K-shell holes in N-2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type. C1 [Fang, L.; Hoener, M.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Hoener, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gessner, O.; Kornilov, O.; Leone, S. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Tarantelli, F.] Univ Perugia, Dipartimento Chim, I-06123 Perugia, Italy. [Tarantelli, F.] CNR, ISTM, I-06123 Perugia, Italy. [Pratt, S. T.; Kanter, E. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Buth, C.; Guehr, M.; Bucksbaum, P. H.; Cryan, J.; Glownia, M.] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA 94025 USA. [Buth, C.] Louisiana State Univ, Dept Phys, Baton Rouge, LA 70803 USA. [Bostedt, C.; Bozek, J. D.; Coffee, R.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Chen, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kukk, E.] Univ Turku, Dept Phys & Astron, Turku 20014, Finland. [Leone, S. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94710 USA. [Leone, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94710 USA. RP Fang, L (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM lifang@slac.stanford.edu; nora.berrah@wmich.edu RI Bozek, John/E-9260-2010; Tarantelli, Francesco/H-5798-2013; Guehr, Markus/B-7446-2015; Buth, Christian/A-2834-2017 OI Bozek, John/0000-0001-7486-7238; Tarantelli, Francesco/0000-0002-1285-0606; Guehr, Markus/0000-0002-9111-8981; Buth, Christian/0000-0002-5866-3443 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; NSF; Alexander von Humboldt foundation; DOE-BES; Italian FIRB; PRIN FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We thank the LCLS staff for their assistance, and A. Kivimaki, T. Jahnke, and R. Dorner for providing us with unpublished data. We thank Robin Santra for fruitful discussion. F. T. thanks Italian FIRB and PRIN grants. C. Bu. was supported by NSF grants. M. H. thanks the Alexander von Humboldt foundation for financial support. The LCLS is funded by DOE-BES. We thank B. Krassig and S. Southworth for sharing their eTOF models and information on eTOF efficiencies. NR 30 TC 103 Z9 104 U1 1 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2010 VL 105 IS 8 AR 083005 DI 10.1103/PhysRevLett.105.083005 PG 5 WC Physics, Multidisciplinary SC Physics GA 640SH UT WOS:000281072100004 PM 20868097 ER PT J AU Friedrich, A Winkler, B Bayarjargal, L Morgenroth, W Juarez-Arellano, EA Milman, V Refson, K Kunz, M Chen, K AF Friedrich, Alexandra Winkler, Bjoern Bayarjargal, Lkhamsuren Morgenroth, Wolfgang Juarez-Arellano, Erick A. Milman, Victor Refson, Keith Kunz, Martin Chen, Kai TI Novel Rhenium Nitrides SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SYNTHESIS; PULSED-LASER DEPOSITION; HIGH-PRESSURE; CARBON; PLATINUM; CARBIDE; DIAMOND; FILMS AB We report the synthesis, structure, and properties of novel bulk rhenium nitrides, hexagonal Re(2)N, and Re(3)N. Both phases have very high bulk moduli of >400 GPa, similar to the most incompressible binary transition-metal (TM) carbides and nitrides found to date. However, in contrast to other incompressible TM carbides and nitrides, Re(3)N is better placed for potential technological applications, as it can be formed at relatively moderate pressures (13-16 GPa) and temperatures (1600-2400 K). C1 [Friedrich, Alexandra; Winkler, Bjoern; Bayarjargal, Lkhamsuren; Morgenroth, Wolfgang] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Juarez-Arellano, Erick A.] Univ Papaloapan, Tuxtepec 68301, Mexico. [Milman, Victor] Accelrys, Cambridge CB4 0WN, England. [Refson, Keith] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Kunz, Martin; Chen, Kai] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Friedrich, A (reprint author), Goethe Univ Frankfurt, Altenhoferallee 1, D-60438 Frankfurt, Germany. EM friedrich@kristall.uni-frankfurt.de RI Kunz, Martin/K-4491-2012; Refson, Keith/G-1407-2013; Chen, Kai/O-5662-2014; Milman, Victor/M-6117-2015; OI Morgenroth, Wolfgang/0000-0001-8921-0052; Refson, Keith/0000-0002-8715-5835; Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445; Milman, Victor/0000-0003-2258-1347; Juarez-Arellano, Erick/0000-0003-4844-8317 FU DFG, Germany [SPP1236, FR-2491, WI-1232]; BMBF, Germany [05KS7RF1]; Vereinigung der Freunde und Forderer der Goethe-Universitat; Goethe University; Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES under NSF [EAR 06-49658] FX Financial support from the DFG, Germany, within SPP1236 (Projects FR-2491, WI-1232), the BMBF, Germany (Project 05KS7RF1), the Vereinigung der Freunde und Forderer der Goethe-Universitat, and the FOKUS program of the Goethe University is gratefully acknowledged. CASTEP calculations were performed on STFC E-Science facility. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES under NSF Cooperative Agreement No. EAR 06-49658. We also thank S. M. Clark and J. Yan (ALS) for technical support at beam line 12.2.2. NR 30 TC 79 Z9 80 U1 3 U2 52 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2010 VL 105 IS 8 AR 085504 DI 10.1103/PhysRevLett.105.085504 PG 4 WC Physics, Multidisciplinary SC Physics GA 640SH UT WOS:000281072100011 PM 20868112 ER PT J AU Littlewood, PB Mihaila, B Schulze, RK Safarik, DJ Gubernatis, JE Bostwick, A Rotenberg, E Opeil, CP Durakiewicz, T Smith, JL Lashley, JC AF Littlewood, P. B. Mihaila, B. Schulze, R. K. Safarik, D. J. Gubernatis, J. E. Bostwick, A. Rotenberg, E. Opeil, C. P. Durakiewicz, T. Smith, J. L. Lashley, J. C. TI Band Structure of SnTe Studied by Photoemission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID IV-VI COMPOUNDS; CRYSTAL-STRUCTURE; APPROXIMATION; TELLURIDE AB We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5 eV below the gap, corresponding to a carrier density of p = 1.14 X 10(21) cm(-3) or 7.2 X 10(-2) holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions. C1 [Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Mihaila, B.; Schulze, R. K.; Safarik, D. J.; Smith, J. L.; Lashley, J. C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Opeil, C. P.] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA. RP Littlewood, PB (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. RI Rotenberg, Eli/B-3700-2009; Littlewood, Peter/B-7746-2008; Bostwick, Aaron/E-8549-2010; Mihaila, Bogdan/D-8795-2013; OI Rotenberg, Eli/0000-0002-3979-8844; Mihaila, Bogdan/0000-0002-1489-8814; Durakiewicz, Tomasz/0000-0002-1980-1874; Safarik, Douglas/0000-0001-8648-9377; Schulze, Roland/0000-0002-6601-817X FU Engineering and Physical Sciences Research Council, UK FX This work was performed in part under the auspices of the U.S. Department of Energy. P. B. L. thanks Los Alamos National Laboratory for hospitality in the course of this research, also supported by the Engineering and Physical Sciences Research Council, UK. NR 15 TC 40 Z9 40 U1 5 U2 68 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2010 VL 105 IS 8 AR 086404 DI 10.1103/PhysRevLett.105.086404 PG 4 WC Physics, Multidisciplinary SC Physics GA 640SH UT WOS:000281072100013 PM 20868120 ER PT J AU Fischer, W Ganusov, VV Giorgi, EE Hraber, PT Keele, BF Leitner, T Han, CS Gleasner, CD Green, L Lo, CC Nag, A Wallstrom, TC Wang, SY McMichael, AJ Haynes, BF Hahn, BH Perelson, AS Borrow, P Shaw, GM Bhattacharya, T Korber, BT AF Fischer, Will Ganusov, Vitaly V. Giorgi, Elena E. Hraber, Peter T. Keele, Brandon F. Leitner, Thomas Han, Cliff S. Gleasner, Cheryl D. Green, Lance Lo, Chien-Chi Nag, Ambarish Wallstrom, Timothy C. Wang, Shuyi McMichael, Andrew J. Haynes, Barton F. Hahn, Beatrice H. Perelson, Alan S. Borrow, Persephone Shaw, George M. Bhattacharya, Tanmoy Korber, Bette T. TI Transmission of Single HIV-1 Genomes and Dynamics of Early Immune Escape Revealed by Ultra-Deep Sequencing SO PLOS ONE LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; IN-VIVO; RHESUS-MONKEYS; INFECTION; EVOLUTION; RESPONSES; VARIANTS; VACCINES; MUTATIONS; PHENOTYPE AB We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses - using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape. C1 [Fischer, Will; Ganusov, Vitaly V.; Giorgi, Elena E.; Hraber, Peter T.; Leitner, Thomas; Han, Cliff S.; Gleasner, Cheryl D.; Green, Lance; Lo, Chien-Chi; Nag, Ambarish; Wallstrom, Timothy C.; Perelson, Alan S.; Bhattacharya, Tanmoy; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ganusov, Vitaly V.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Giorgi, Elena E.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Keele, Brandon F.] NCI, SAIC Frederick, Frederick, MD 21701 USA. [Wang, Shuyi; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [McMichael, Andrew J.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Haynes, Barton F.] Duke Univ, Med Ctr, Durham, NC USA. [Borrow, Persephone] Univ Oxford, Jenner Inst, Compton, England. [Bhattacharya, Tanmoy; Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Fischer, W (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM btk@lanl.gov RI Fischer, Will/B-1323-2013; Bhattacharya, Tanmoy/J-8956-2013; OI Fischer, Will/0000-0003-4579-4062; Bhattacharya, Tanmoy/0000-0002-1060-652X; Ganusov, Vitaly/0000-0001-6572-1691; Wallstrom, Timothy/0000-0002-9295-2441; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Los Alamos National Laboratory; National Institutes of Health (NIH) [AI-0678501]; Bill and Melinda Gates Foundation [37874] FX Funding for this work was supplied by a Los Alamos National Laboratory Directed Research grant, National Institutes of Health (NIH) grant AI-0678501 (CHAVI), and the Bill and Melinda Gates Foundation (#37874). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 145 Z9 146 U1 1 U2 28 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 20 PY 2010 VL 5 IS 8 AR e12303 DI 10.1371/journal.pone.0012303 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640TW UT WOS:000281077000010 PM 20808830 ER PT J AU Wolford, JL Chishti, Y Jin, QL Ward, J Chen, LH Vogt, S Finney, L AF Wolford, Janet L. Chishti, Yasmin Jin, Qiaoling Ward, Jesse Chen, Liaohai Vogt, Stefan Finney, Lydia TI Loss of Pluripotency in Human Embryonic Stem Cells Directly Correlates with an Increase in Nuclear Zinc SO PLOS ONE LA English DT Article ID RAY-FLUORESCENCE MICROSCOPY; TRANSCRIPTION FACTOR; DIFFERENTIATION; METALLOTHIONEIN; CHROMATIN; BIOLOGY; ACTIVATION; MEDICINE; SENSORS; METALS AB The pluripotency of human embryonic stem cells (hESCs) is important to investigations of early development and to cell replacement therapy, but the mechanism behind pluripotency is incompletely understood. Zinc has been shown to play a key role in differentiation of non-pluripotent cell types, but here its role in hESCs is directly examined. By mapping the distribution of metals in hESCs at high resolution by x-ray fluorescence microprobe (XFM) and by analyzing subcellular metal content, we have found evidence that loss of pluripotency is directly correlated with an increase in nuclear zinc. Zinc elevation not only redefines our understanding of the mechanisms that support pluripotency, but also may act as a biomarker and an intervention point for stem cell differentiation. C1 [Wolford, Janet L.; Chishti, Yasmin; Jin, Qiaoling; Chen, Liaohai; Finney, Lydia] Argonne Natl Lab, Adv Photon Source, Biosci Div, Argonne, IL 60439 USA. [Ward, Jesse; Vogt, Stefan; Finney, Lydia] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Wolford, JL (reprint author), Argonne Natl Lab, Adv Photon Source, Biosci Div, Argonne, IL 60439 USA. EM lfinney@anl.gov RI Jin, Qiaoling/D-2303-2016; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU Department of Energy Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work, including use of the Advanced Photon Source at Argonne National Laboratory, was supported by the Department of Energy Office of Science under contract DE-AC02-06CH11357. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; The authors thank Siva S. K. Dasa for support in the maintenance of our cell cultures. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 45 TC 8 Z9 8 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 20 PY 2010 VL 5 IS 8 AR e12308 DI 10.1371/journal.pone.0012308 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640TW UT WOS:000281077000013 PM 20808840 ER PT J AU Engelke, R Blais, NC Sheffield, SA AF Engelke, Ray Blais, Normand C. Sheffield, Stephen A. TI Mass-Spectroscopic Observations of Glycine Subjected to Strong Shock Loading SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSIENT HIGH-PRESSURE; CHEMISTRY; MOMENTS AB We have made time-of-flight mass-spectroscopic observations of 85/15 wt % water/glycine solutions and of crystalline alpha-glycine subjected to strong shock loading. The shockwaves were produced by placing the materials in contact with detonating solid explosives. In the solution observations, we have done experiments with glycine molecules composed of ordinary isotopes and with molecules labeled with (13)C, (15)N, and D atoms. The primary reason for conducting this research was to examine whether glycine molecules can survive exposure to strong shock loading, e.g., as might occur in the entry of a meteor into the earth's atmosphere. Our results show that glycine molecules can withstand the rigors of shock environments that generate pressure and temperature up to 180 kbar and 3200 K. Glycine in a 85 H(2)O/15 glycine wt % solution (i.e., one molecule of glycine to ca. 24 H(2)O molecules) exists primarily in its zwitterionic form. In both the solution and crystal experiments, we observed zwitterionic dimers, trimers, and, possibly, tetramers, after the materials were shocked. This implies that the solvating water molecules in the solution experiments must reside on the exterior of groups of solvated glycine molecules. We report quantum-chemical calculations, using density functional theory, that predict that two glycine zwitterions are bound together by ca. 15.72 kcal when immersed in an Onsager model of water. Our observations allow us to place lower-bound estimates on the lifetime of glycine zwitterions under our conditions. We have examined our data to determine whether dipeptide formation has occurred and found no evidence that it has. Compressible fluid-mechanical calculations were performed to estimate the pressures, temperatures, and the time scales present in the experiments. C1 [Engelke, Ray; Blais, Normand C.; Sheffield, Stephen A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Engelke, R (reprint author), Los Alamos Natl Lab, MS P952,POB 1663, Los Alamos, NM 87545 USA. NR 20 TC 6 Z9 6 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 19 PY 2010 VL 114 IS 32 BP 8234 EP 8239 DI 10.1021/jp102506k PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 636JB UT WOS:000280727200006 PM 20701333 ER PT J AU Tranter, RS Klippenstein, SJ Harding, LB Giri, BR Yang, XL Kiefer, JH AF Tranter, Robert S. Klippenstein, Stephen J. Harding, Lawrence B. Giri, Binod R. Yang, Xueliang Kiefer, John H. TI Experimental and Theoretical Investigation of the Self-Reaction of Phenyl Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; TRANSITION-STATE THEORY; SHOCK-TUBE; AB-INITIO; THERMAL-DECOMPOSITION; PREDICTIVE THEORY; GASEOUS BENZYNE; LASER-SCHLIEREN; PYROLYSIS; DISSOCIATION AB A combination of experiment and theory is applied to the self-reaction kinetics of phenyl radicals. The dissociation of phenyl iodide is observed with both time-of-flight mass spectrometry, TOF-MS, and laser schlieren, LS, diagnostics coupled to a diaphragmless shock tube for temperatures ranging from 1276 to 1853 K. The LS experiments were performed at pressures of 22 +/- 2, 54 +/- 7, and 122 +/- 6 Torr, and the TOF-MS experiments were performed at pressures in the range 500-700 Torr. These observations are sensitive to both the dissociation of phenyl iodide and to the subsequent self-reaction of the phenyl radicals. The experimental observations indicate that both these reactions are more complicated than previously assumed. The phenyl iodide dissociation yields similar to 6% C6H4 + HI in addition to the major and commonly assumed C6H5 + I channel. The self-reaction of phenyl radicals does not proceed solely by recombination, but also through disproportionation to benzene + o-/m-/p-benzynes, with comparable rate coefficients for both. The various channels in the self-reaction of phenyl radicals are studied with ab initio transition state theory based master equation calculations. These calculations elucidate the complex nature of the C6H5 self-reaction and are consistent with the experimental observations. The theoretical predictions are used as a guide in the development of a model for the phenyl iodide pyrolysis that accurately reproduces the observed laser schlieren profiles over the full range of the observations. C1 [Tranter, Robert S.; Klippenstein, Stephen J.; Harding, Lawrence B.; Giri, Binod R.; Yang, Xueliang] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Kiefer, John H.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tranter@anl.gov; sjk@anl.gov RI Yang, Xueliang/D-8983-2011; OI Klippenstein, Stephen/0000-0001-6297-9187 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy [W-31-109-ENG-38] FX This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. This article has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 67 TC 23 Z9 23 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 19 PY 2010 VL 114 IS 32 BP 8240 EP 8261 DI 10.1021/jp1031064 PG 22 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 636JB UT WOS:000280727200007 PM 20701334 ER PT J AU Chang, CH Lopez, G Sears, TJ Johnson, PM AF Chang, Chih-Hsuan Lopez, Gary Sears, Trevor J. Johnson, Philip M. TI Vibronic Analysis of the S-1-S-0 Transition of Phenylacetylene Using Photoelectron Imaging and Spectral Intensities Derived from Electronic Structure Calculations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID FRANCK-CONDON; AB-INITIO; ETHYNYLBENZENE; NAPHTHALENE AB The vibrational structure of the S-1-S-0 electronic band of phenylacetylene has been recorded by 1 + 1 resonance-enhanced multiphoton ionization, accompanied by slow electron velocity map imaging photoelectron spectroscopy at each resonant vibrational band. Assignments of the S-1 vibrations (up to 2000 cm(-1) above the band origin) are based upon the relative intensities of the vibronic bands calculated by complete second-order vibronic coupling, vibration-rotation (Coriolis and Birss) coupling calculations, and the vibrational structure of the S-1 resonant photoelectron spectra. Although this is an allowed electronic transition, the relative intensities of the a(1) bands are often largely determined by vibronic coupling rather than simple Franck-Condon factors, and second-order coupling is substantial. Nonsymmetric vibrations have intensities obtained through either vibronic or Coriolis coupling, and the calculations have been instrumental in discriminating between alternate possibilities in the assignments. Strong vibronic effects are expected to be present in the spectra of most monosubstituted benzenes, and the calculations presented here show that theoretical treatments based upon electronic structure calculations will generally be useful in the analysis of their spectra. C1 [Chang, Chih-Hsuan; Lopez, Gary; Sears, Trevor J.; Johnson, Philip M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Chang, Chih-Hsuan; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Johnson, PM (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences FX Work at Brookhaven National Laboratory was performed under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences and Biosciences. NR 22 TC 7 Z9 7 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 19 PY 2010 VL 114 IS 32 BP 8262 EP 8270 DI 10.1021/jp103449r PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 636JB UT WOS:000280727200008 PM 20701335 ER PT J AU Skodje, RT Tomlin, AS Klippenstein, SJ Harding, LB Davis, MJ AF Skodje, Rex T. Tomlin, Alison S. Klippenstein, Stephen J. Harding, Lawrence B. Davis, Michael J. TI Theoretical Validation of Chemical Kinetic Mechanisms: Combustion of Methanol SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MULTIREFERENCE PERTURBATION-THEORY; TRANSITION-STATE THEORY; SENSITIVITY-ANALYSIS; GLOBAL SENSITIVITY; MODEL REPRESENTATIONS; PREDICTIVE THEORY; RATE COEFFICIENTS; REACTION SYSTEMS; RATE CONSTANTS; WAVE-FUNCTIONS AB A new technique is proposed that uses theoretical methods to systematically improve the performance of chemical kinetic mechanisms. Using a screening method, the chemical reaction steps that most strongly influence a given kinetic observable are identified. The associated rate coefficients are then improved by high-level quantum chemistry and transition-state-theory calculations, which leads to new values for the coefficients and smaller uncertainty ranges. This updating process is continued as new reactions emerge as the most important steps in the target observable. The screening process employed is a global sensitivity analysis that involves Monte Carlo sampling of the full N-dimensional uncertainty space of rate coefficients, where N is the number of reaction steps. The method is applied to the methanol combustion mechanism of Li et al. (Int. J. Chem. Kinet. 2007, 39, 109.). It was found that the CH(3)OH + HO(2) and CH(3)OH + O(2) reactions were the most important steps in setting the ignition delay time, and the rate coefficients for these reactions were updated. The ignition time is significantly changed for a broad range of high-concentration methanol/oxygen mixtures in the updated mechanism. C1 [Skodje, Rex T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Tomlin, Alison S.] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England. [Skodje, Rex T.; Klippenstein, Stephen J.; Harding, Lawrence B.; Davis, Michael J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Skodje, RT (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM Rex.Skodje@colorado.edu OI Klippenstein, Stephen/0000-0001-6297-9187 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-06CH11357. We are grateful to Dingyu Zhou for assistance on the manuscript. NR 66 TC 41 Z9 41 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 19 PY 2010 VL 114 IS 32 BP 8286 EP 8301 DI 10.1021/jp1047002 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 636JB UT WOS:000280727200011 PM 20701336 ER PT J AU Vasu, SS Zador, J Davidson, DF Hanson, RK Golden, DM Miller, JA AF Vasu, Subith S. Zador, Judit Davidson, David F. Hanson, Ronald K. Golden, David M. Miller, James A. TI High-Temperature Measurements and a Theoretical Study of the Reaction of OH with 1,3-Butadiene SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RADICAL-MOLECULE REACTIONS; TRANSITION-STATE MODEL; REACTION-PATH DYNAMICS; RATE CONSTANTS; INITIATED OXIDATION; GAS-PHASE; MECHANISMS; PYROLYSIS; ALKENES; ALLENE AB The reaction of hydroxyl (OH) radicals with 1,3-butadiene (C(4)H(6)) was studied behind reflected shock waves over the temperature range 1011-1406 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH(3))(3)-CO-OH, and were monitored by narrow line width ring dye laser absorption of the well-characterized R(1)(5) line of the OH A-X (0,0) band near 306.7 nm. OH time histories were modeled using a comprehensive 1,3-butadiene oxidation mechanism, and rate constants for the reaction of OH with 1,3-butadiene were extracted by matching modeled and measured OH concentration time histories. Detailed error analyses yielded an uncertainty estimate of +/- 13% at 1200 K for the rate coefficient of the target reaction. The current data extends the temperature range of the only previous high-temperature study for this reaction. The rate coefficient and the branching fractions for the H-abstraction channels of the target reaction were also calculated over the temperature range 250-2500 K using variational transition-state theory based on QCISD(T)/cc-pV infinity Z//B3LYP/6-311++G(d,p) quantum chemistry. The calculations are in good agreement with the experimental results above 1200 K. C1 [Vasu, Subith S.; Davidson, David F.; Hanson, Ronald K.; Golden, David M.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Zador, Judit; Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Vasu, SS (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM subith@stanford.edu RI Zador, Judit/A-7613-2008; OI Zador, Judit/0000-0002-9123-8238; Vasu, Subith/0000-0002-4164-3163 FU DOE Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; United States Department of Energy [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences with Dr. Wade Sisk as contract monitor, and the experimental work was supported as part of the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 46 TC 9 Z9 10 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 19 PY 2010 VL 114 IS 32 BP 8312 EP 8318 DI 10.1021/jp104880u PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 636JB UT WOS:000280727200013 PM 20701338 ER PT J AU Ding, ZF Sanchez, T Labouriau, A Iyer, S Larson, T Currier, R Zhao, YS Yang, DL AF Ding, Zhongfen Sanchez, Timothy Labouriau, Andrea Iyer, Srinivas Larson, Toti Currier, Robert Zhao, Yusheng Yang, Dali TI Characterization of Reaction Intermediate Aggregates in Aniline Oxidative Polymerization at Low Proton Concentration SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYANILINE NANOTUBES; CONDUCTING POLYMERS; MAUVEINE; SPECTRA; NANOSTRUCTURES; SPECTROSCOPY; MORPHOLOGY; MECHANISM; OLIGOMERS; TETRAMER AB Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0) <= 1.0). Detailed characterization is carried out on those aggregates. The intermediate aggregates show a UV-Vis absorption peak at around 410 nm when dispersed in aqueous solution, whereas the peak is centered on 370 nm when dissolved in an organic solvent such as N-methylpyrrolidone. The electronic band gap decreases when the intermediates aggregate to form a solid, and thus, the absorption peak is red-shifted. Gel permeation chromatography (GPC) shows the aggregates contain a major low molecular weight peak with a long tail. The oligoanilines with low molecular weights consistently show a UV-Vis absorption peak at around 370 nm. Mass spectrometry confirms that the intermediate aggregates contain mainly a component with mass number 363 (M + H(+)), likely a tetramer. UV-Vis, GPC, mass spectrometry, NMR, FTIR, and XRD characterization results are presented and chemical structures for the tetramer are proposed. The major components of the intermediate aggregates are likely highly symmetric phenazine- and dihydrophenazine-containing structures. These particular organic compounds have not been identified before as intermediates. The aggregation and precipitation of the tetramers apparently stabilizes these intermediates. The aggregates are highly crystalline, as evidenced by powder X-ray diffraction. A new reaction mechanism for the formation of these intermediates is proposed. C1 [Ding, Zhongfen] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Sanchez, Timothy] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Labouriau, Andrea; Yang, Dali] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Larson, Toti] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Currier, Robert] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Ding, ZF (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA 11,MS D429, Los Alamos, NM 87545 USA. EM zding@lanl.gov; dyang@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Larson, Toti/0000-0002-2291-5979; Labouriau, Andrea/0000-0001-8033-9132; Sanchez, Timothy/0000-0001-8952-4414 FU Los Alamos National Laboratory; DOE FX We thank Dr. Ross E. Muenchausen (LANL, MST-8) for UV-Vis access and Dr. Debra Wrobleski (LANL, MST-7) for GPC access. We thank Dr. Weizhong Chen (LANL, C-IIAC) for advice on column chromatography and thin layer chromatography. We also thank Prof. Richard B. Kaner (UCLA) for thoughtful discussions. This work was mainly supported by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory, and some supported by DOE EERE-ITP Program. NR 56 TC 32 Z9 32 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 19 PY 2010 VL 114 IS 32 BP 10337 EP 10346 DI 10.1021/jp102623z PG 10 WC Chemistry, Physical SC Chemistry GA 636JG UT WOS:000280727700011 PM 20701368 ER PT J AU de Meyer, FJM Benjamini, A Rodgers, JM Misteli, Y Smit, B AF de Meyer, Frederick J-M Benjamini, Ayelet Rodgers, Jocelyn M. Misteli, Yannick Smit, Berend TI Molecular Simulation of the DMPC-Cholesterol Phase Diagram SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DISSIPATIVE PARTICLE DYNAMICS; DIFFERENTIAL SCANNING CALORIMETRY; ANGLE NEUTRON-SCATTERING; X-RAY-DIFFRACTION; LIPID-BILAYERS; PHOSPHATIDYLCHOLINE-CHOLESTEROL; BIOLOGICAL-MEMBRANES; LATERAL DIFFUSION; BINARY-MIXTURES; DIMYRISTOYLPHOSPHATIDYLCHOLINE BILAYERS AB In this paper, we present a coarse-grained model of a hydrated saturated phospholipid bilayer (dimyristoylphosphatidylcholine, DMPC) containing cholesterol that we study using a hybrid dissipative particle dynamics-Monte Carlo method. This approach allows us to reach the time and length scales necessary to study structural and mechanical properties of the bilayer at various temperatures and cholesterol concentrations. The properties studied are the area per lipid, condensation, bilayer thickness, tail order parameters, bending modulus, and area compressibility. Our model quantitatively reproduces most of the experimental effects of cholesterol on these properties and reproduces the main features of the experimental phase and structure diagrams. We also present all-atom simulation results of the system and use these results to further validate the structure of our coarse-grained bilayer. On the basis of the changes in structural properties, we propose a temperature-composition structure diagram, which we compare with the experimental phase and structure diagrams. Attention is paid to the reliability and interpretation of the model and simulation method and of the different experimental techniques. The lateral organization of cholesterol in the bilayer is discussed. C1 [de Meyer, Frederick J-M; Misteli, Yannick; Smit, Berend] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Benjamini, Ayelet; Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [de Meyer, Frederick J-M; Benjamini, Ayelet; Rodgers, Jocelyn M.; Smit, Berend] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Misteli, Yannick] ETH, Dept Comp Sci, Zurich, Switzerland. RP de Meyer, FJM (reprint author), Univ Calif Berkeley, Dept Chem Engn, 101B Gilman Hall, Berkeley, CA 94720 USA. EM frederick-demeyer@berkeley.edu RI Smit, Berend/B-7580-2009 OI Smit, Berend/0000-0003-4653-8562 FU Lawrence Berkeley National Laboratory under the Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP [SISGRKN] FX F. de Meyer and A. Benjamini are supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. J. Rodgers is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP number SISGRKN. NR 80 TC 52 Z9 52 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 19 PY 2010 VL 114 IS 32 BP 10451 EP 10461 DI 10.1021/jp103903s PG 11 WC Chemistry, Physical SC Chemistry GA 636JG UT WOS:000280727700024 PM 20662483 ER PT J AU Zhu, K Neale, NR Halverson, AF Kim, JY Frank, AJ AF Zhu, Kai Neale, Nathan R. Halverson, Adam F. Kim, Jin Young Frank, Arthur J. TI Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BAND-EDGE MOVEMENT; NANOCRYSTALLINE TIO2; ELECTRON-TRANSPORT; THIN-FILMS; PHASE-STABILITY; PARTICLE-SIZE; ARRAYS; RECOMBINATION; OXIDE; TRANSFORMATION AB We report on the influence of annealing temperature (T-a) on the microstructure and dynamics of electron transport and recombination in dye-sensitized solar cells (DSSCs) incorporating oriented titanium oxide nanotube (NT) arrays. The morphology of the NT arrays was characterized by scanning and transmission electron microscopies and Raman and X-ray diffraction spectroscopies. Over the temperature range from 200 to 600 degrees C, the crystallinity, crystal phase, and structural integrity of the NT walls underwent pronounced changes whereas the overall film architecture remained intact. Increasing T-a from 200 to 400 degrees C transformed the as-deposited NT film from the amorphous phase to partially crystalline (300 degrees C) to fully crystalline anatase (400 degrees C). When the as-deposited NTs were detached from the underlying Ti substrate and then annealed, the anatase crystallites comprising the NT walls were stable to at least 600 degrees C in air. When the NTs remained attached to the substrate, thermal oxidation of the Ti metal initiated the growth and propagation of rutile crystallites in the NT walls at relatively low temperatures (ca. 500 degrees C). Once present in the NT walls, the rutile crystallites further catalyzed the anatase-to-rutile transformation, leading to partial degradation of the walls. The percent of ruffle present in the TiO2 NT walls increased from 3% to 32% for samples annealed between 500 and 600 degrees C. Charge transport and recombination properties of dye-sensitized NT films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Altering the microstructure of the NTs led to significant changes in the electron transport and recombination kinetics in DSSCs. At a fixed photoelectron density, the electron diffusion coefficient and recombination current density are found to change orders of magnitude in the opposite direction over the temperature range. DSSCs containing NT films annealed at 400 degrees C exhibited the fastest transport and slowest recombination kinetics. The various structural changes were also found to affect the light-harvesting, charge-injection, and charge-collection properties of DSSCs, which, in turn, altered the photocurrent density, photovoltage, and solar energy conversion efficiency. C1 [Zhu, Kai; Neale, Nathan R.; Halverson, Adam F.; Kim, Jin Young; Frank, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhu, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Kai.Zhu@nrel.gov; Arthur.Frank@nrel.gov RI Kim, Jin Young/B-7077-2012 OI Kim, Jin Young/0000-0001-7728-3182 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; Division of Photovoltaics, Office of Utility Technologies, U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (A.F.H. and A.J.F.) and the Division of Photovoltaics, Office of Utility Technologies, (K.Z., N.R.N., J.Y.K), U.S. Department of Energy, under contract No. DE-AC36-08GO28308. NR 72 TC 70 Z9 72 U1 2 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13433 EP 13441 DI 10.1021/jp102137x PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500005 ER PT J AU Zhou, J Yang, YX Liu, P Camillone, N White, MG AF Zhou, J. Yang, Y. X. Liu, P. Camillone, N., III White, M. G. TI Electronic Structure of the Thiophene/Au(111) Interface Probed by Two-Photon Photoemission SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; SCANNING-TUNNELING-MICROSCOPY; MOLECULE-METAL INTERFACES; AU(111); DYNAMICS; SPECTROSCOPY; ADSORPTION; SURFACE; CU(111); STATES AB The electronic structure of thiophene adsorbed on Au(111) has been investigated by two-photon photoemission (2PPE) spectroscopy and density functional theory (DFT) calculations. The dominant interfacial feature observed in the 2PPE spectra is a nondispersive unoccupied state whose width and energy (referenced to the Fermi level) decrease with increasing coverage. We assign this feature to a thiophene LUMO-derived state of mixed sulfur and carbon p-pi character. DFT calculations indicate that the experimentally observed decrease in width of this state with increasing coverage is a result of weakening of the thiophene Au(11 I) interaction. Increasing the molecular density forces the thiophene plane to tilt away from the surface, rotating the molecular orbitals away from an orientation more favorable for S-Au and pi-Au hybridization. We attribute the similar to 0.2 eV shift of the LUMO toward the Fermi level to stabilization of the transient anion due to the increasing effect of charge-induced polarization of the neighboring thiophene molecules with increasing coverage. C1 [Zhou, J.; Yang, Y. X.; White, M. G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Liu, P.; Camillone, N., III; White, M. G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10086] FX This research was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10086 with the U.S. Department of Energy (Division of Chemical Sciences). NR 65 TC 22 Z9 22 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13670 EP 13677 DI 10.1021/jp1025009 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500038 ER PT J AU Shen, XA Small, YA Wang, J Allen, PB Fernandez-Serra, MV Hybertsen, MS Muckerman, JT AF Shen, Xiao Small, Yolanda A. Wang, Jue Allen, Philip B. Fernandez-Serra, Maria V. Hybertsen, Mark S. Muckerman, James T. TI Photocatalytic Water Oxidation at the GaN (10(1)over-bar0)-Water Interface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-ORBITAL METHODS; DENSITY-FUNCTIONAL THEORY; GAUSSIAN-BASIS SETS; 3RD-ROW ATOMS; ORGANIC-MOLECULES; FREE-ENERGY; ROW ATOMS; POTENTIALS; SOLVATION; EXTENSION AB Domen has observed that the GaN/ZnO semiconductor alloy serves, in the presence of a sacrificial electron scavenger, as a photocatalyst for solar water oxidation, producing H+ and O-2 at the aqueous/semiconductor interface. With a suitable cocatalyst, the same solar photoexcitation process also generates H-2 from H+. The active sites, mechanisms, and reaction intermediates are not known. This paper describes atomistic modeling and proposes a sequence of intermediate steps for the water oxidation process at a pure GaN/water interface. Pure GaN is known to be photocatalytically active but only in the UV region, because the semiconductor band gap is 3.4 eV, outside the visible region of the spectrum. However, it serves as an appropriate model system in the absence of more detailed information. A fiat (10 (1) over bar0) nonpolar surface is chosen to model an active site. Ab initio molecular dynamics simulations examine the fully solvated aqueous interface at ambient temperature. An appropriate cluster model, that includes a polarizable continuum in addition to explicit solvent water molecules, is cut out from snapshots of these AIMD simulations for additional DFT-based calculations of the water oxidation mechanism. The reaction intermediates follow a sequence of four proton-coupled electron transfers. Four UV photons are consumed to generate the four photoholes which drive the oxidation, producing 4H(+) + O-2 from 2H(2)O. Calculated standard free energies show that the photogenerated holes in GaN have sufficient energy to drive the overall water oxidation reaction. Implications for the operation of GaN/ZnO alloy photocatalysts, which absorb in the visible wavelength range, are presented. The calculated potentials show a remarkable parallelism to the known potentials for the sequential one-electron oxidation of water in homogeneous aqueous solution, suggesting that the proposed sequence may apply more generally than for the specific GaN (10 (1) over bar0) surface catalyst. C1 [Small, Yolanda A.; Hybertsen, Mark S.; Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Shen, Xiao; Wang, Jue; Allen, Philip B.; Fernandez-Serra, Maria V.; Muckerman, James T.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Muckerman, JT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM muckerma@bnl.gov RI Muckerman, James/D-8752-2013; Wang, Jue/C-2496-2014; Fernandez-Serra, Maria Victoria/H-5446-2015 OI Fernandez-Serra, Maria Victoria/0000-0001-6823-8339 FU US DOE [DE-FG02-08ER46550, DE-FG02-09ER16052, DE-AC02-98CH10886]; AERTC; State of New York; BNL Center for Functional Nanomaterials (CFN) FX The work at SBU is supported by US DOE Grants DE-FG02-08ER46550 and DE-FG02-09ER16052 and by AERTC. The work at BNL is supported by the US DOE under Contract DE-AC02-98CH10886 (by its Division of Chemical Sciences and its Scientific User Facilities Division). This research utilized resources at the New York Center for Computational Sciences (NYCCS) at Stony Brook University/Brookhaven National Laboratory which is supported by the US DOE under Contract No. DE-AC02-98CH10886 and by the State of New York, and at the BNL Center for Functional Nanomaterials (CFN). We thank N. Sutin, M. D. Newton, Li Li, and M.-K. Tsai for helpful discussions. NR 57 TC 54 Z9 54 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13695 EP 13704 DI 10.1021/jp102958s PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500041 ER PT J AU Tang, YJ Baker, GA Zeng, XQ AF Tang, Yijun Baker, Gary A. Zeng, Xiangqun TI Ionic Liquid Conditioning of Poly(vinylferrocene) for the Doping/Undoping of Glycylglycylglycine Tripeptide SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYPYRROLE; ELECTRODES; CATION; ANION; FILMS AB Potentiodynamic electrochemical measurements of the redox-driven entry and exit of ionized glycylglycyl-glycine peptide (GGG(-)) during polymer oxidation and reduction, respectively, are presented and interpreted for electroactive poly(vinylferrocene) (PVF)-modified electrodes. Frequently, electrochemically controlled redox cycling results in the dramatic alteration in polymer film properties, typically accompanied by loss of redox activity, exemplified in this case by negligible currents associated with repeated exposure to GGG. Notably, we have discovered that preconditioning of PVF films with suitable ionic liquids (ILs) such as the N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imides allows the electroactive film to relax to a state compatible with reversible GGG(-) doping/undoping. Our studies substantiate that both the cation and the anion of the IL must be considered as both play important roles in appropriately conditioning the PVF polymer films. Indeed, ILs with structures and properties highly divergent from the target GGG(-) failed to properly condition PVF to a compatible state. C1 [Tang, Yijun; Zeng, Xiangqun] Oakland Univ, Dept Chem, Rochester, MI 48309 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Zeng, XQ (reprint author), Oakland Univ, Dept Chem, Rochester, MI 48309 USA. RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 FU Oakland University Research Excellence Fund; National Institute for Occupational Safety and Health; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-0096OR22725] FX This research was supported in part by the Oakland University Research Excellence Fund and by the National Institute for Occupational Safety and Health. Dr. Yijun Tang is currently an assistant professor in the department of chemistry at the University of Wisconsin Oshkosh. G.A.B. was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-0096OR22725. NR 24 TC 8 Z9 8 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13709 EP 13715 DI 10.1021/jp1030202 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500043 ER PT J AU Onorato, RM Otten, DE Saykally, RJ AF Onorato, Robert M. Otten, Dale E. Saykally, Richard J. TI Measurement of Bromide Ion Affinities for the Air/Water and Dodecanol/Water Interfaces at Molar Concentrations by UV Second Harmonic Generation Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LIQUID WATER-SURFACE; MARINE BOUNDARY-LAYER; SUM-FREQUENCY SPECTROSCOPY; HOFMEISTER SERIES; OZONE DESTRUCTION; POLAR SUNRISE; VIBRATIONAL SPECTROSCOPY; ORIENTED THIOCYANATE; VAPOR INTERFACE; BULK WATER AB Recent experimental and theoretical work has demonstrated that certain anions can exhibit enhanced concentrations at aqueous interfaces and that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. UV second harmonic generation resonant with the bromide charge-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated lower limit of -4 kJ/mol. C1 [Onorato, Robert M.; Otten, Dale E.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu FU Experimental Physical Chemistry Division of the National Science Foundation [CHE-0650950] FX The initial stages of this work were partially supported by the Experimental Physical Chemistry Division of the National Science Foundation (Grant # CHE-0650950). NR 54 TC 20 Z9 20 U1 0 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13746 EP 13751 DI 10.1021/jp103454r PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500049 ER PT J AU Noh, JH Han, HS Lee, S Kim, DH Park, JH Park, S Kim, JY Jung, HS Hong, KS AF Noh, Jun Hong Han, Hyun Soo Lee, Sangwook Kim, Dong Hoe Park, Jong Hun Park, Sangbaek Kim, Jin Young Jung, Hyun Suk Hong, Kug Sun TI A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multi layer for Electrochemical Photoenergy Conversion Devices SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SENSITIZED SOLAR-CELLS; ELECTRON INJECTION EFFICIENCY; TIO2 FILMS; THIN-FILMS; EXCITED N3; DYE; PERFORMANCE; IMPEDANCE; SIZE AB We present dye-sensitized solar cells (DSSCs) employing a thermally and chemically stable Nb-doped TiO2 (NTO)/Al-doped ZnO (AZO) multilayer transparent conducting oxide (TCO) thin film. The NTO overlayer was found to block oxygen diffusion into AZO during the air-annealing process for the fabrication process of the DSSCs, thereby exhibiting good thermal stability in electrical conductivity of the multilayer TCO. Moreover, the NTO overlayer suppressed the formation of Zn2+-dye aggregates at the surface of the AZO. The DSSC employing this multilayer TCO showed a photon to electron conversion efficiency of 3.8% compared to 1.9% for the cell employing the AZO single layer. The optical transmittance and charge transport properties that were measured using electrochemical impedance spectroscopy demonstrate that NTO/AZO is a promising TCO for large scale DSSCs. C1 [Jung, Hyun Suk] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Noh, Jun Hong; Han, Hyun Soo; Kim, Dong Hoe; Park, Jong Hun; Park, Sangbaek; Hong, Kug Sun] Seoul Natl Univ, Dept Mat Sci & Engn, WCU Hybrid Mat Program, Seoul 151742, South Korea. [Lee, Sangwook; Hong, Kug Sun] Seoul Natl Univ, Res Inst Adv Mat, Seoul 151742, South Korea. [Kim, Jin Young] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Jung, HS (reprint author), Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. EM hjung@kookmin.ac.kr; kshongss@plaza.snu.ac.kr RI Jung, Hyun Suk/D-4745-2011; Kim, Jin Young/B-7077-2012; Park, Sangbaek/M-6015-2013; Lee, Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015 OI Kim, Jin Young/0000-0001-7728-3182; Park, Sangbaek/0000-0002-4900-2010; Lee, Sangwook/0000-0002-3535-0241; FU Korea government (MEST) [2009-0092779]; Korea Science and Engineering Foundation (KOSEF) of the Korean Government (MEST) [R11-2005-048-00000-0, R01-2008-20581-0] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2009-0092779). This work was also supported by a grant from the Korea Science and Engineering Foundation (KOSEF) of the Korean Government (MEST) (R11-2005-048-00000-0, ERC CMPS, and R01-2008-20581-0). NR 27 TC 20 Z9 20 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13867 EP 13871 DI 10.1021/jp104247t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500064 ER PT J AU McNicholas, TP Wang, AM O'Neill, K Anderson, RJ Stadie, NP Kleinhammes, A Parilla, P Simpson, L Ahn, CC Wang, YQ Wu, Y Liu, J AF McNicholas, Thomas P. Wang, Anmiao O'Neill, Kevin Anderson, Robert J. Stadie, Nicholas P. Kleinhammes, Alfred Parilla, Philip Simpson, Lin Ahn, Channing C. Wang, Yanqin Wu, Yue Liu, Jie TI H-2 Storage in Microporous Carbons from PEEK Precursors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE; POROUS CARBONS; FRAMEWORKS AB Large surface area (524-3275 m(2)/g) microporous carbons (MPCs) derived from poly(etheretherketone), or PEEK, have been synthesized and categorized for their roles as H-2 storage materials. It was found that, because of their very large surface areas (>= 3000 m(2)/g), large cumulative pore volumes (similar to 1.7 cm(3)/g), and small pore sizes (predominantly <= 3 nm), these materials displayed impressive H-2 sorption properties, including excess gravimetric and volumetric H-2 storage capacities of approximately 5 wt % and 35 g/L, respectively, at 77 K and 20 bar. C1 [McNicholas, Thomas P.; Liu, Jie] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Anderson, Robert J.; Kleinhammes, Alfred; Wu, Yue] Univ Chapel Hill, Dept Phys, Chapel Hill, NC 27514 USA. [Wang, Anmiao; Wang, Yanqin] E China Univ Sci & Technol, Adv Mat Lab, Res Inst Ind Catalysis, Shanghai 200237, Peoples R China. [O'Neill, Kevin; Parilla, Philip; Simpson, Lin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Stadie, Nicholas P.; Ahn, Channing C.] CALTECH, Pasadena, CA 91125 USA. RP Liu, J (reprint author), Duke Univ, Dept Chem, Durham, NC 27708 USA. EM jliu@Duke.edu RI Stadie, Nicholas/F-3535-2012; Stadie, Nick/F-8831-2013; Liu, Jie/B-4440-2010; OI Liu, Jie/0000-0003-0451-6111; Anderson, Robert/0000-0002-3021-9797; Stadie, Nicholas/0000-0002-1139-7846 FU United States Department of Energy [DE-FC36-05GO15103] FX This work was financially supported by the United States Department of Energy (DE-FC36-05GO15103). Additionally, we would like to thank our partners in the DOE Hydrogen Sorption Center of Excellence. NR 15 TC 14 Z9 15 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13902 EP 13908 DI 10.1021/jp102178z PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500070 ER PT J AU Neiner, D Luedtke, A Karkamkar, A Shaw, W Wang, JL Browning, ND Autrey, T Kauzlarich, SM AF Neiner, Doinita Luedtke, Avery Karkamkar, Abhijeet Shaw, Wendy Wang, Jialing Browning, Nigel D. Autrey, Tom Kauzlarich, Susan M. TI Decomposition Pathway of Ammonia Borane on the Surface of Nano-BN SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL HYDROGEN STORAGE; METAL-ORGANIC FRAMEWORKS; HEXAGONAL BORON-NITRIDE; THERMAL-DECOMPOSITION; CATALYZED DEHYDROGENATION; CARBON NANOSTRUCTURES; GENERATION SYSTEM; ROOM-TEMPERATURE; ADSORPTION; RELEASE AB Ammonia borane (AB) is under significant investigation as a possible hydrogen storage material. While chemical additives have been shown to lower the temperature for hydrogen release from ammonia borane, many provide additional complications in the regeneration cycle. Mechanically alloyed hexagonal boron nitride (nano-BN) has been shown to facilitate the release of hydrogen from AB at lower temperature, with minimal induction time and less exothermicity, and inert nano-BN may be easily removed during any regeneration of the spent AB. The samples were prepared by mechanically alloying AB with nano-BN. Raman spectroscopy indicates that the AB/nano-BN samples are physical mixtures of AB and h-BN. The release of hydrogen from AB/nano-BN mixtures as well as the decomposition products was characterized by (11)B magic angle spinning (MAS) solid state NMR spectroscopy, TGA/DSC/MS with (15)N-labeled AB, and solution (11)B NMR spectroscopy. The (11)B MAS solid state NMR spectrum shows that diammoniate of diborane (DADB) is present in the mechanically alloyed mixture, which drastically shortens the induction period for hydrogen release from AB. Analysis of the TGA/DSC/MS spectra with (15)N-labeled AB shows that all the borazine (BZ) produced in the reaction comes from AB and that increasing nano-BN surface area results in increased amounts of BZ. However, under high temperature, 150 degrees C, isothermal conditions, the amount of BZ released significantly decreases. High resolution transmission electron microscopy (HRTEM), selected area diffraction (SAD), and electron energy loss spectroscopy (EELS) of the initial and final nano-BN additive provide evidence for crystallinity loss but not significant chemical changes. The higher concentration of BZ observed for low-temperature dehydrogenation of AB/nano-BN mixtures versus neat AB is attributed to a surface interaction that favors the formation of precursors which ultimately result in BZ. This pathway can be avoided through isothermal heating at temperatures lower than 150 degrees C. C1 [Neiner, Doinita; Wang, Jialing; Browning, Nigel D.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Neiner, Doinita; Luedtke, Avery; Karkamkar, Abhijeet; Shaw, Wendy; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Neiner, D (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-25, Richland, WA 99354 USA. EM Doinita.neiner@pnl.gov; tom.autrey@pnl.gov; smkauzlarich@ucdavis.edu OI Browning, Nigel/0000-0003-0491-251X FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; DOE [DE-FG02-03ER46057]; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL) FX This research was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as part of the Chemical Hydrogen Storage CoE. The microscopy research was supported by DOE DE-FG02-03ER46057. MAS NMR studies were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL., is operated for the U.S. DOE by Battelle. NR 69 TC 26 Z9 27 U1 1 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 19 PY 2010 VL 114 IS 32 BP 13935 EP 13941 DI 10.1021/jp1042602 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 636JE UT WOS:000280727500074 ER PT J AU Semonin, OE Johnson, JC Luther, JM Midgett, AG Nozik, AJ Beard, MC AF Semonin, Octavi E. Johnson, Justin C. Luther, Joseph M. Midgett, Aaron G. Nozik, Arthur J. Beard, Matthew C. TI Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article DE Nanoparticles and Nanostructures ID ABSORPTION CROSS-SECTION; COLLOIDAL NANOCRYSTALS; ELECTRONIC-STRUCTURE; EMISSION; LIFETIME; SELENIDE AB In this study, we have directly measured the photoluminescence quantum yield (Phi(PL)) of 1R-26 at a range of concentrations and the Phi(PL), of PbS and PbSe QDs for a range of sizes. We find that the Phi(PL) of IR-26 has a weak concentration dependence due to reabsorption, with a Phi(PL) of 0 048 +/- 0.002% for low concentrations, lower than previous reports by a full order of magnitude. We also find that there is a dramatic size dependence for both PbS and PbSe QDs. with the smallest dots exhibiting a Phi(PL) in excess of 60%, while larger dots fall below 3% A model, including nonradiative transition between electronic states and energy transfer to ligand vibrations, appears to explain this size dependence These 20 findings provide both a better characterization of photoluminescence for near- C1 [Semonin, Octavi E.; Johnson, Justin C.; Luther, Joseph M.; Midgett, Aaron G.; Nozik, Arthur J.; Beard, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Nozik, AJ (reprint author), Univ Colorado, Dept Chem, Boulder, CO 80309 USA. RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI Semonin, Octavi Escala/0000-0002-4262-6955; BEARD, MATTHEW/0000-0002-2711-1355 NR 29 TC 101 Z9 101 U1 2 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 19 PY 2010 VL 1 IS 16 BP 2445 EP 2450 DI 10.1021/jz100830r PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 640UU UT WOS:000281079900004 ER PT J AU Lee, JH Fang, L Vlahos, E Ke, XL Jung, YW Kourkoutis, LF Kim, JW Ryan, PJ Heeg, T Roeckerath, M Goian, V Bernhagen, M Uecker, R Hammel, PC Rabe, KM Kamba, S Schubert, J Freeland, JW Muller, DA Fennie, CJ Schiffer, P Gopalan, V Johnston-Halperin, E Schlom, DG AF Lee, June Hyuk Fang, Lei Vlahos, Eftihia Ke, Xianglin Jung, Young Woo Kourkoutis, Lena Fitting Kim, Jong-Woo Ryan, Philip J. Heeg, Tassilo Roeckerath, Martin Goian, Veronica Bernhagen, Margitta Uecker, Reinhard Hammel, P. Chris Rabe, Karin M. Kamba, Stanislav Schubert, Juergen Freeland, John W. Muller, David A. Fennie, Craig J. Schiffer, Peter Gopalan, Venkatraman Johnston-Halperin, Ezekiel Schlom, Darrell G. TI A strong ferroelectric ferromagnet created by means of spin-lattice coupling SO NATURE LA English DT Article ID THIN-FILMS; MAGNETIC-PROPERTIES; ROOM-TEMPERATURE; ELECTRIC-FIELD; OXIDE; POLARIZATION; SYSTEMS; SRTIO3 AB Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials that could give rise to new technologies in which the low power and high speed of field-effect electronics are combined with the permanence and routability of voltage-controlled ferromagnetism(1,2). Furthermore, the properties of the few compounds that simultaneously exhibit these phenomena(1-5) are insignificant in comparison with those of useful ferroelectrics or ferromagnets: their spontaneous polarizations or magnetizations are smaller by a factor of 1,000 or more. The same holds for magnetic-or electric-field-induced multiferroics(6-8). Owing to the weak properties of single-phase multiferroics, composite and multilayer approaches involving strain-coupled piezoelectric and magnetostrictive components are the closest to application today(1,2). Recently, however, a new route to ferroelectric ferromagnets was proposed(9) by which magnetically ordered insulators that are neither ferroelectric nor ferromagnetic are transformed into ferroelectric ferromagnets using a single control parameter, strain. The system targeted, EuTiO(3), was predicted to exhibit strong ferromagnetism (spontaneous magnetization, similar to 7 Bohr magnetons per Eu) and strong ferroelectricity (spontaneous polarization, similar to 10 mu C cm(-2)) simultaneously under large biaxial compressive strain(9). These values are orders of magnitude higher than those of any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression we turned to tensile strain. Here we show both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower strains are required, thereby allowing thicker high-quality crystalline films. This realization of a strong ferromagnetic ferroelectric points the way to high-temperature manifestations of this spin-lattice coupling mechanism(10). Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition(11) for creating multiferroics. C1 [Lee, June Hyuk; Heeg, Tassilo; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Lee, June Hyuk; Vlahos, Eftihia; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Fang, Lei; Jung, Young Woo; Hammel, P. Chris; Johnston-Halperin, Ezekiel] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Ke, Xianglin; Schiffer, Peter] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Ke, Xianglin; Schiffer, Peter] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Kourkoutis, Lena Fitting; Muller, David A.; Fennie, Craig J.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Kim, Jong-Woo; Ryan, Philip J.; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Roeckerath, Martin] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, Inst Bio & Nanosyst, D-52425 Julich, Germany. [Goian, Veronica; Kamba, Stanislav] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Bernhagen, Margitta; Uecker, Reinhard] Leibniz Inst Crystal Growth, D-12489 Berlin, Germany. [Rabe, Karin M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Muller, David A.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Schlom, DG (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu RI Schiffer, Peter/F-3227-2011; Schlom, Darrell/J-2412-2013; Johnston-Halperin, Ezekiel/B-5902-2012; Schubert, Jurgen/K-9543-2013; Kamba, Stanislav/G-5332-2014; Hammel, P Chris/O-4845-2014; Goian, Veronica/G-6154-2014; Muller, David/A-7745-2010; OI Kourkoutis, Lena/0000-0002-1303-1362; Schlom, Darrell/0000-0003-2493-6113; Schubert, Jurgen/0000-0003-0185-6794; Kamba, Stanislav/0000-0003-4699-869X; Hammel, P Chris/0000-0002-4138-4798; Goian, Veronica/0000-0002-7971-2224; Muller, David/0000-0003-4129-0473; Schiffer, Peter/0000-0002-6430-6549 FU National Science Foundation [DMR-0507146]; National Science Foundation through MRSEC [DMR-0520404, DMR-0820404, DMR-0820414]; Czech Science Foundation [202/09/0682]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge discussions and interactions with M. D. Biegalski, D. H. A. Blank, C. B. Eom, M. B. Holcomb, M. Lezaic, J. Mannhart, L. W. Martin, D. V. Pelekhov, R. Ramesh, K. Z. Rushchanskii, N. Samarth, A. Schmehl, D. A. Tenne, J.-M. Triscone, D. Viehland and L. Yan. In addition, the financial support of the National Science Foundation through grant DMR-0507146 and the MRSEC program (DMR-0520404, DMR-0820404 and DMR-0820414), and of the Czech Science Foundation (project no. 202/09/0682), is gratefully acknowledged. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 47 TC 340 Z9 342 U1 35 U2 399 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 19 PY 2010 VL 466 IS 7309 BP 954 EP U72 DI 10.1038/nature09331 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640ED UT WOS:000281030300030 PM 20725036 ER PT J AU Langner, MC Kantner, CLS Chu, YH Martin, LM Yu, P Ramesh, R Orenstein, J AF Langner, M. C. Kantner, C. L. S. Chu, Y. H. Martin, L. M. Yu, P. Ramesh, R. Orenstein, J. TI Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; DYNAMICS; INTERFACES; ANISOTROPY; ELECTRON; TIME AB We use the time-resolved magneto-optical Kerr effect to measure the local temperature and heat-flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the heat flow out of the film is limited by the film/substrate interface. We show that this behavior is consistent with an effective boundary resistance resulting from disequilibrium between the spin and phonon temperatures in the film. C1 [Langner, M. C.; Kantner, C. L. S.; Yu, P.; Ramesh, R.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Langner, M. C.; Kantner, C. L. S.; Martin, L. M.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chu, Y. H.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Langner, MC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Yu, Pu/F-1594-2014; Orenstein, Joseph/I-3451-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; FU U.S. Department of Energy, Office of Science [DE-AC02-05CH1123] FX This research is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-05CH1123. NR 16 TC 4 Z9 4 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 19 PY 2010 VL 82 IS 5 AR 054425 DI 10.1103/PhysRevB.82.054425 PG 5 WC Physics, Condensed Matter SC Physics GA 640PK UT WOS:000281063700003 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Production of Scalar Bottom Quarks in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON COLLIDERS; PHYSICS; MODEL AB We report on a search for direct scalar bottom quark (sbottom) pair production in p (p) over bar collisions at root s = 1.96 TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a b quark. The study uses a collider detector at Fermilab Run II data sample corresponding to 2.65 fb(-1) of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits on the sbottom pair production cross section of 0.1 pb are obtained. For neutralino masses below 70 GeV/c(2), sbottom masses up to 230 GeV/c(2) are excluded at 95% confidence level. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Moon, Chang-Seong/0000-0001-8229-7829; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak R and D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R and D Agency; and the Academy of Finland. NR 25 TC 17 Z9 17 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2010 VL 105 IS 8 AR 081802 DI 10.1103/PhysRevLett.105.081802 PG 7 WC Physics, Multidisciplinary SC Physics GA 640SE UT WOS:000281071800002 ER PT J AU Al-Hassanieh, KA Yang, YF Martin, I Batista, CD AF Al-Hassanieh, K. A. Yang, Yi-feng Martin, Ivar Batista, C. D. TI Effective Low-Energy Model for f-Electron Delocalization SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; DENSITY-MATRIX RENORMALIZATION; ANTIFERROMAGNETISM; MATTER; CEIN3 AB We consider a periodic Anderson model (PAM) with a momentum-dependent interband hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, H(eff), by expanding in the small parameter V(0)/t ( V(0) is the maximum interband hybridization amplitude and t is the hopping integral of the broadband). The resulting model consists of a t - J f-band coupled via the Kondo exchange to the electrons in the broadband. H(eff) allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group calculations. C1 [Al-Hassanieh, K. A.; Yang, Yi-feng; Martin, Ivar; Batista, C. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Al-Hassanieh, KA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 FU NNSA of the U.S. Department of Energy at LANL [DE-AC52-06NA25396]; LANL/LDRD FX We thank T. Durakiewicz and J. D. Thompson for useful discussions. This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396 and supported by the LANL/LDRD Program. NR 19 TC 0 Z9 0 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2010 VL 105 IS 8 AR 086402 DI 10.1103/PhysRevLett.105.086402 PG 4 WC Physics, Multidisciplinary SC Physics GA 640SE UT WOS:000281071800011 PM 20868118 ER PT J AU Borisevich, AY Chang, HJ Huijben, M Oxley, MP Okamoto, S Niranjan, MK Burton, JD Tsymbal, EY Chu, YH Yu, P Ramesh, R Kalinin, SV Pennycook, SJ AF Borisevich, A. Y. Chang, H. J. Huijben, M. Oxley, M. P. Okamoto, S. Niranjan, M. K. Burton, J. D. Tsymbal, E. Y. Chu, Y. H. Yu, P. Ramesh, R. Kalinin, S. V. Pennycook, S. J. TI Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRIC-FILMS; SCALE AB Epitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO(3)-La(0.7)Sr(0.3)MnO(3) interface to elucidate how the change of crystal symmetry is accommodated. Combined with low-loss electron energy loss spectroscopy imaging, we demonstrate a mesoscopic antiferrodistortive phase transition near the interface in BiFeO(3) and elucidate associated changes in electronic properties in a thin layer directly adjacent to the interface. C1 [Borisevich, A. Y.; Chang, H. J.; Oxley, M. P.; Okamoto, S.; Kalinin, S. V.; Pennycook, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Huijben, M.; Yu, P.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Huijben, M.; Yu, P.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Huijben, M.] Univ Twente, MESA Inst Nanotechnol, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Niranjan, M. K.; Burton, J. D.; Tsymbal, E. Y.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Phys & Astron, Lincoln, NE 68588 USA. [Chu, Y. H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. RP Borisevich, AY (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM albinab@ornl.gov RI Ying-Hao, Chu/A-4204-2008; Okamoto, Satoshi/G-5390-2011; Borisevich, Albina/B-1624-2009; Yu, Pu/F-1594-2014; Burton, John/B-5875-2008; Kalinin, Sergei/I-9096-2012; Tsymbal, Evgeny/G-3493-2013 OI Ying-Hao, Chu/0000-0002-3435-9084; Okamoto, Satoshi/0000-0002-0493-7568; Borisevich, Albina/0000-0002-3953-8460; Burton, John/0000-0001-5535-2407; Kalinin, Sergei/0000-0001-5354-6152; FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Semiconductor Research Corporation; U.S. DOE [DE-AC02-05CH1123]; MRSEC [DMR-0820521]; Nanoelectronics Research Initiative of the Semiconductor Research Corporation; Nebraska Research Initiative FX The research is sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (A. Y. B., S. V. K., and S. O.), and by appointment (H. J. C.) to the ORNL Postdoctoral Research Program administered jointly by ORNL and ORISE. The work at Berkeley is partially supported by the Semiconductor Research Corporation as well as by the U.S. DOE under Contract No. DE-AC02-05CH1123. The work at Nebraska is supported by the NSF-funded MRSEC (Grant No. DMR-0820521), the Nanoelectronics Research Initiative of the Semiconductor Research Corporation and the Nebraska Research Initiative. Computations were performed utilizing the Research Computing Facility at UNL and the Center for Nanophase Materials Sciences at ORNL. NR 25 TC 157 Z9 159 U1 12 U2 140 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2010 VL 105 IS 8 AR 087204 DI 10.1103/PhysRevLett.105.087204 PG 4 WC Physics, Multidisciplinary SC Physics GA 640SE UT WOS:000281071800015 PM 20868130 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Aitchison, IJR Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Aitchison, I. J. R. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of D-0-(D)over-bar(0) Mixing Parameters Using D-0 -> K-S(0)pi(+) pi(-) and D-0 -> (KSK+K-)-K-0 Decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report a direct measurement of D-0-(D) over bar (0) mixing parameters through a time-dependent amplitude analysis of the Dalitz plots of D-0 -> K-S(0)pi(+)pi(-) and, for the first time, D-0 -> (KSK+K-)-K-0 decays. The low-momentum pion pi(+)(s) in the decay D*(+) -> D-0 pi(+)(s) identifies the flavor of the neutral D meson at its production. Using 468.5 fb(-1) of e(+)e(-) colliding-beam data recorded near root s = 10.6 by the BABAR detector at the PEP-II asymmetric-energy collider at SLAC, we measure the mixing parameters x = [1.6 + 2.3(stat) +/- 1.2(syst) +/- 0.8(model)] X 10(-3), and y = [5.7 +/- 2.0(stat) +/- 1.3(syst) +/- 0.7(model)] X 10(-3). These results provide the best measurement to date of x and y. The knowledge of the value of x, in particular, is crucial for understanding the origin of mixing. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, Lab Annecy le Vieux Phys Particules LAPP, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Watson, A. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.; Barlow, R. J.] Univ London, Royal Holloway & Bedford New Coll, Surrey TW20 0EX, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.] INFN, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aitchison, I. J. R.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Aitchison, I. J. R.] Univ Oxford, Dept Theoret Phys, Oxford OX1 3NP, England. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Sordini, V.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. RP Sanchez, PD (reprint author), Univ Savoie, CNRS, Lab Annecy le Vieux Phys Particules LAPP, IN2P3, F-74941 Annecy Le Vieux, France. RI Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Calabrese, Roberto/G-4405-2015; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Calabrese, Roberto/0000-0002-1354-5400; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU DOE (U.S.); NSF (U.S.); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (U.K.); European Union; A.P. Sloan Foundation (U.S.); Binational Science Foundation (U.S.-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (U.K.). Individuals have received support from the Marie Curie EIF (European Union), the A.P. Sloan Foundation (U.S.) and the Binational Science Foundation (U.S.-Israel). NR 21 TC 57 Z9 57 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2010 VL 105 IS 8 AR 081803 DI 10.1103/PhysRevLett.105.081803 PG 7 WC Physics, Multidisciplinary SC Physics GA 640SE UT WOS:000281071800003 ER PT J AU Bell, F Casanova, D Head-Gordon, M AF Bell, Franziska Casanova, David Head-Gordon, Martin TI Theoretical Study of Substituted PBPB Dimers: Structural Analysis, Tetraradical Character, and Excited States SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-ORBITAL METHODS; MAIN-GROUP ELEMENTS; NON-KEKULE; SINGLET DIRADICALS; INTERMOLECULAR REACTIVITY; ENERGY CALCULATIONS; TRANSITION-STATE; VALENCE ISOMERS; BASIS-SETS; 1,3-DIPHOSPHACYCLOBUTANE-2,4-DIYL AB The radicaloid nature of para and meta 1,3-diborata-2,4-diphosphoniocyclobutane-1,3-diy1 doubly substituted benzene is assessed from several electronic structure perspectives. Orbital occupation numbers computed by perfect pairing (PP), complete active space SCF (CASSCF), and restricted active space double spin-flip (RAS-2SF) reveal the presence of less than one unpaired electron in the planar molecules. Thus, the surprising stability of the " para tetraradical" can be rationalized by its moderate extent of radical character. Estimation of the delocalization energy, low-lying excited states, and short and long-range magnetic coupling constants all indicate a rather weak interaction to occur between two singlet PBPB units. Communication between two triplet units was found to be negligible. Comparison between para and meta isomers confirms a distinctly larger communication via the Jr framework for the former. However, this communication, which was recently proposed to be the main factor for the different behavior of meta and para isomers regarding their preferred geometries, was found to account for only one-third of their energy difference. The study shows the important contribution of steric and/or electronic effects of the bulky 'Pr and 1I3u substituents on P and B. C1 [Casanova, David] Univ Barcelona, IQTCUB, E-08028 Barcelona, Spain. [Bell, Franziska; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bell, Franziska; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Casanova, D (reprint author), Univ Barcelona, IQTCUB, Marti & Franques 1-11, E-08028 Barcelona, Spain. RI Casanova, David/F-9752-2011 OI Casanova, David/0000-0002-8893-7089 NR 74 TC 22 Z9 22 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 18 PY 2010 VL 132 IS 32 BP 11314 EP 11322 DI 10.1021/ja104772w PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 638AI UT WOS:000280861300063 PM 20698698 ER PT J AU Lipscombe, OJ Harriger, LW Freeman, PG Enderle, M Zhang, CL Wang, MY Egami, T Hu, JP Xiang, T Norman, MR Dai, PC AF Lipscombe, O. J. Harriger, Leland W. Freeman, P. G. Enderle, M. Zhang, Chenglin Wang, Miaoying Egami, Takeshi Hu, Jiangping Xiang, Tao Norman, M. R. Dai, Pengcheng TI Anisotropic neutron spin resonance in superconducting BaFe1.9Ni0.1As2 SO PHYSICAL REVIEW B LA English DT Article ID SCATTERING; EXCITATIONS; YBA2CU3O7; SPECTRA AB We use polarized inelastic neutron scattering to show that the neutron spin resonance below T-c in superconducting BaFe1.9Ni0.1As2 (T-c= 20 K) is purely magnetic in origin. Our analysis further reveals that the resonance peak near 7 meV only occurs for the planar response. This challenges the common perception that the spin resonance in the pnictides is an isotropic triplet excited state of the singlet Cooper pairs, as our results imply that only the S-001= +/- 1 components of the triplet are involved. C1 [Lipscombe, O. J.; Harriger, Leland W.; Zhang, Chenglin; Wang, Miaoying; Egami, Takeshi; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Freeman, P. G.; Enderle, M.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi; Dai, Pengcheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Hu, Jiangping; Xiang, Tao; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Xiang, Tao] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lipscombe, OJ (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM lipscombe@utk.edu; daip@ornl.gov RI Dai, Pengcheng /C-9171-2012; Norman, Michael/C-3644-2013; Enderle, Mechthild/E-8832-2014; Freeman, Paul/F-5372-2014; hu, jiangping /C-3320-2014; Wang, Miaoyin/C-9224-2012 OI Dai, Pengcheng /0000-0002-6088-3170; Enderle, Mechthild/0000-0001-7304-2162; Freeman, Paul/0000-0002-5376-8940; FU U.S. DOE BES [DE-FG02-05ER46202]; U.S. DOE, Division of Scientific User Facilities; CAS; U.S. DOE [DE-AC02-06CH11357]; DOE BES EPSCoR [DE-FG02-08ER46528] FX The work at UT/ORNL is supported by the U.S. DOE BES No. DE-FG02-05ER46202, and by the U.S. DOE, Division of Scientific User Facilities. Work at IOP is supported by the CAS. Work at ANL is supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. O.J.L. and T.E. were supported by the DOE BES EPSCoR Grant No. DE-FG02-08ER46528. NR 35 TC 38 Z9 38 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 18 PY 2010 VL 82 IS 6 AR 064515 DI 10.1103/PhysRevB.82.064515 PG 6 WC Physics, Condensed Matter SC Physics GA 639ZR UT WOS:000281016800005 ER PT J AU Liu, WT Wu, SW Schuck, PJ Salmeron, M Shen, YR Wang, F AF Liu, Wei-Tao Wu, S. W. Schuck, P. J. Salmeron, M. Shen, Y. R. Wang, F. TI Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation SO PHYSICAL REVIEW B LA English DT Article ID LUMINESCENCE; SPECTROSCOPY; TRANSITIONS; PLASMONS; STRENGTH; PHASE AB Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene. C1 [Liu, Wei-Tao; Shen, Y. R.; Wang, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wu, S. W.; Schuck, P. J.; Salmeron, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Liu, WT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Wu, Shiwei/F-4542-2010; wang, Feng/I-5727-2015; Liu, Wei-Tao/I-9627-2014 OI Wu, Shiwei/0000-0001-9838-9066; Liu, Wei-Tao/0000-0003-0566-671X FU MURI-ONR; DOE [DE-AC02-05CH11231] FX We thank Richard Chim for sample preparation, and Peter Yu and Dung-Hai Lee for helpful discussions. W.L. and F.W. acknowledge support from MURI-ONR. The experiment was performed at the Molecular Foundry of the Lawrence Berkeley National Laboratory supported by the DOE under Contract No. DE-AC02-05CH11231. NR 39 TC 49 Z9 49 U1 5 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 18 PY 2010 VL 82 IS 8 AR 081408 DI 10.1103/PhysRevB.82.081408 PG 4 WC Physics, Condensed Matter SC Physics GA 639ZU UT WOS:000281017200002 ER PT J AU Matan, K Ibuka, S Morinaga, R Chi, SX Lynn, JW Christianson, AD Lumsden, MD Sato, TJ AF Matan, K. Ibuka, S. Morinaga, R. Chi, Songxue Lynn, J. W. Christianson, A. D. Lumsden, M. D. Sato, T. J. TI Doping dependence of spin dynamics in electron-doped Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID LOW-TEMPERATURES; SUPERCONDUCTIVITY AB The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)(2)As-2 has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x= 0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x= 0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gaplike behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition) while the imaginary part of the spin susceptibility chi '' prominently resembles that of the overdoped cuprates. For the heavily overdoped, nonsuperconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission. C1 [Matan, K.] Mahidol Univ, Dept Phys, Fac Sci, Bangkok 10400, Thailand. [Matan, K.; Ibuka, S.; Morinaga, R.; Sato, T. J.] Univ Tokyo, Neutron Sci Lab, Inst Solid State Phys, Ibaraki 3191106, Japan. [Matan, K.; Ibuka, S.; Morinaga, R.; Sato, T. J.] JST, TRIP, Chiyoda Ku, Tokyo 1020075, Japan. [Chi, Songxue; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chi, Songxue] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Christianson, A. D.; Lumsden, M. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Matan, K (reprint author), Univ Tokyo, Neutron Sci Lab, Inst Solid State Phys, 106-1 Shirakata, Ibaraki 3191106, Japan. EM kmatan@issp.u-tokyo.ac.jp; taku@issp.u-tokyo.ac.jp RI Sato, Taku/I-7664-2015; christianson, andrew/A-3277-2016; Chi, Songxue/A-6713-2013; Lumsden, Mark/F-5366-2012; OI Sato, Taku/0000-0003-2511-4998; christianson, andrew/0000-0003-3369-5884; Chi, Songxue/0000-0002-3851-9153; Lumsden, Mark/0000-0002-5472-9660; Ibuka, Soshi/0000-0001-9295-5442 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE; U.S.-Japan cooperative program on neutron-scattering research FX We thank H. Yoshizawa, T. Mizokawa, H. Ikeda, K. Ohgushi, and K. Ishida for valuable discussions. This work is partly supported by the U.S.-Japan cooperative program on neutron-scattering research. Part of this work was supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE. NR 35 TC 34 Z9 34 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 18 PY 2010 VL 82 IS 5 AR 054515 DI 10.1103/PhysRevB.82.054515 PG 5 WC Physics, Condensed Matter SC Physics GA 639ZN UT WOS:000281016400003 ER PT J AU Mun, ED Bud'ko, SL Kreyssig, A Canfield, PC AF Mun, E. D. Bud'ko, S. L. Kreyssig, A. Canfield, P. C. TI Tuning low-temperature physical properties of CeNiGe3 by magnetic field SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTALS; GADOLINIUM COMPOUNDS; PHASE-TRANSITIONS; HEAT; TRANSPORT; GROWTH; POINT AB We have studied the thermal, magnetic, and electrical properties of the ternary intermetallic system CeNiGe3 by means of specific heat, magnetization, and resistivity measurements. The specific heat data, together with the anisotropic magnetic susceptibility, was analyzed on the basis of the point charge model of crystalline electric field. The J=5/2 multiplet of the Ce3+ is split by the crystalline electric field into three Kramers doublets, where the second and third doublets are separated from the first (ground state) doublet by Delta(1) similar to 100 K and Delta(2) similar to 170 K, respectively. In zero field CeNiGe3 exhibits an antiferromangeic order below T-N = 5.0 K. For H parallel to a two metamagnetic transitions are clearly evidenced between 2-4 K from the magnetization isotherm and extended down to 0.4 K from the magnetoresistance measurements. For H parallel to a, T-N shifts to lower temperature as magnetic field increases, and ultimately disappears at H-c similar to 32.5 kOe. For H > H-c, the electrical resistivity shows the quadratic temperature dependence (Delta p=AT(2)). For H >> H-c, an unconventional T-n dependence of Delta p with n > 2 emerges, the exponent n becomes larger as magnetic field increases. Although the antiferromagnetic phase transition temperature in CeNiGe3 can be continuously suppressed to zero, it provides an example of field tuning that does not match current simple models of quantum criticality. C1 [Mun, E. D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mun, ED (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU Basic Energy Sciences, U.S. Department of Energy [DE-AC02-07CH11358] FX We would like to thank Hyunjin Ko for single crystal x-ray measurements. Work at Ames Laboratory was supported by the Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 31 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 18 PY 2010 VL 82 IS 5 AR 054424 DI 10.1103/PhysRevB.82.054424 PG 9 WC Physics, Condensed Matter SC Physics GA 639ZN UT WOS:000281016400002 ER PT J AU Brodsky, SJ Roberts, CD Shrock, R Tandy, PC AF Brodsky, Stanley J. Roberts, Craig D. Shrock, Robert Tandy, Peter C. TI New perspectives on the quark condensate SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL-SYMMETRY-BREAKING; HADRON DECAY PROCESSES; QUANTUM CHROMODYNAMICS; CONFINING THEORIES; QCD; CONSTANT; PHYSICS; MODEL; MASS AB We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave functions. C1 [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Brodsky, Stanley J.] Univ So Denmark, Ctr Particle Phys Phenomenol CP3 Origins, DK-5230 Odense M, Denmark. [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Roberts, Craig D.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Shrock, Robert] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Tandy, Peter C.] Kent State Univ, Dept Phys, Ctr Nucl Res, Kent, OH 44242 USA. RP Brodsky, SJ (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. OI Roberts, Craig/0000-0002-2937-1361 FU Argonne/University of Chicago Joint Theory Institute; US Department of Energy [DE-AC02-76SF00515]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; US National Science Foundation [NSF-PHY-06-53342, NSF-PHY-0903991] FX This study was conceived at a workshop sponsored by the Argonne/University of Chicago Joint Theory Institute. We acknowledge valuable discussions with P. O. Bowman during this event and subsequent conversations with Guy de Teramond. This work was supported in part by US Department of Energy Contract No. DE-AC02-76SF00515; US Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357; and the US National Science Foundation, under Grant Nos. NSF-PHY-06-53342 and NSF-PHY-0903991. S.J.B. also thanks the Hans Christian Andersen Academy and Professor Franceso Saninno for hosting his visit at CP3. NR 50 TC 80 Z9 80 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 18 PY 2010 VL 82 IS 2 AR 022201 DI 10.1103/PhysRevC.82.022201 PG 5 WC Physics, Nuclear SC Physics GA 639ZV UT WOS:000281017300002 ER PT J AU Hosmer, P Schatz, H Aprahamian, A Arndt, O Clement, RRC Estrade, A Farouqi, K Kratz, KL Liddick, SN Lisetskiy, AF Mantica, PF Moller, P Mueller, WF Montes, F Morton, AC Ouellette, M Pellegrini, E Pereira, J Pfeiffer, B Reeder, P Santi, P Steiner, M Stolz, A Tomlin, BE Walters, WB Wohr, A AF Hosmer, P. Schatz, H. Aprahamian, A. Arndt, O. Clement, R. R. C. Estrade, A. Farouqi, K. Kratz, K-L Liddick, S. N. Lisetskiy, A. F. Mantica, P. F. Moeller, P. Mueller, W. F. Montes, F. Morton, A. C. Ouellette, M. Pellegrini, E. Pereira, J. Pfeiffer, B. Reeder, P. Santi, P. Steiner, M. Stolz, A. Tomlin, B. E. Walters, W. B. Woehr, A. TI Half-lives and branchings for beta-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process SO PHYSICAL REVIEW C LA English DT Article ID ATOMIC MASS EVALUATION; BURST ACCRETION DISKS; SUPERNOVA EXPLOSIONS; NUCLEAR-STRUCTURE; PROCESS NUCLEOSYNTHESIS; STRENGTH FUNCTIONS; PROCESS ABUNDANCES; DECAY PROPERTIES; CROSS-SECTIONS; EXOTIC NUCLEI AB The beta decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL beta-counting station in conjunction with the neutron detector NERO. We measured the branchings for beta-delayed neutron emission (P(n) values) for (74)Co (18 +/- 15%) and (75-77)Ni (10 +/- 2.8%, 14 +/- 3.6%, and 30 +/- 24%, respectively) for the first time, and remeasured the P(n) values of (77-79)Cu, (79,81)Zn, and (82)Ga. For (77-79)Cu and for (81)Zn we obtain significantly larger P(n) values compared to previous work. While the new half-lives for the Ni isotopes from this experiment had been reported before, we present here in addition the first half-life measurements of (75)Co (30 +/- 11 ms) and (80)Cu (170(-50)(+110) ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A = 78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae. C1 [Hosmer, P.; Schatz, H.; Clement, R. R. C.; Estrade, A.; Liddick, S. N.; Mantica, P. F.; Mueller, W. F.; Montes, F.; Morton, A. C.; Ouellette, M.; Pellegrini, E.; Pereira, J.; Santi, P.; Steiner, M.; Stolz, A.; Tomlin, B. E.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Hosmer, P.; Schatz, H.; Estrade, A.; Montes, F.; Ouellette, M.; Pellegrini, E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Schatz, H.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Aprahamian, A.; Woehr, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Aprahamian, A.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Arndt, O.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Farouqi, K.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Farouqi, K.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Kratz, K-L] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. [Liddick, S. N.; Mantica, P. F.; Tomlin, B. E.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Lisetskiy, A. F.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Moeller, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Reeder, P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Hosmer, P (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Morton, Colin/K-1561-2015; OI Morton, Colin/0000-0003-0214-7551; Moller, Peter/0000-0002-5848-3565 FU NSF (Joint Institute for Nuclear Astrophysics) [PHY 08-22648]; NSF (NSCL) [PHY 06-06007]; NSF [PHY 02-16783]; Deutsche Forschungsgemeinschaft (DFG) [KR 806/13]; Helmholtz Gemeinschaft [VH-VI-061] FX This work was supported by NSF Grants PHY 08-22648 (Joint Institute for Nuclear Astrophysics), PHY 06-06007 (NSCL), and PHY 02-16783, by the Deutsche Forschungsgemeinschaft (DFG) under Contract KR 806/13, and by the Helmholtz Gemeinschaft under Grant VH-VI-061 (VISTARS). NR 82 TC 47 Z9 47 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 18 PY 2010 VL 82 IS 2 AR 025806 DI 10.1103/PhysRevC.82.025806 PG 13 WC Physics, Nuclear SC Physics GA 639ZV UT WOS:000281017300005 ER PT J AU Beale, TAW Wilkins, SB Johnson, RD Bland, SR Joly, Y Forrest, TR McMorrow, DF Yakhou, F Prabhakaran, D Boothroyd, AT Hatton, PD AF Beale, T. A. W. Wilkins, S. B. Johnson, R. D. Bland, S. R. Joly, Y. Forrest, T. R. McMorrow, D. F. Yakhou, F. Prabhakaran, D. Boothroyd, A. T. Hatton, P. D. TI Antiferromagnetically Spin Polarized Oxygen Observed in Magnetoelectric TbMn2O5 SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-DIFFRACTION; SCATTERING AB We report the direct measurement of antiferromagnetic spin polarization at the oxygen sites in the multiferroic TbMn2O5, through resonant soft x-ray magnetic scattering. This supports recent theoretical models suggesting that the oxygen spin polarization is key to the magnetoelectric coupling mechanism. The spin polarization is observed through a resonantly enhanced diffraction signal at the oxygen K edge at the commensurate antiferromagnetic wave vector. Using the FDMNES code we have accurately reproduced the experimental data. We have established that the resonance arises through the spin polarization on the oxygen sites hybridized with the square based pyramid Mn3+ ions. Furthermore we have discovered that the position of the Mn3+ ion directly influences the oxygen spin polarization. C1 [Beale, T. A. W.; Johnson, R. D.; Bland, S. R.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Wilkins, S. B.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Joly, Y.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Joly, Y.] Univ Grenoble 1, F-38042 Grenoble 9, France. [Forrest, T. R.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Beale, TAW (reprint author), Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England. RI McMorrow, Desmond/C-2655-2008; Hatton, Peter/J-8445-2014 OI McMorrow, Desmond/0000-0002-4947-7788; FU EPSRC; STFC; Office of Science, U. S. Department of Energy [DE-AC02-98CH10886] FX The authors would like to thank John Hill for stimulating discussions. The image shown in Fig. 1 was depicted using VESTA [25]. T. A. W. B, S. R. B, R. D. J, and T. R. F would like to acknowledge support from EPSRC and STFC. The work at Brookhaven National Laboratory is supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-98CH10886. NR 25 TC 22 Z9 22 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 18 PY 2010 VL 105 IS 8 AR 087203 DI 10.1103/PhysRevLett.105.087203 PG 4 WC Physics, Multidisciplinary SC Physics GA 640AD UT WOS:000281018200008 PM 20868129 ER PT J AU Whitelam, S AF Whitelam, Stephen TI Control of Pathways and Yields of Protein Crystallization through the Interplay of Nonspecific and Specific Attractions SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL NUCLEATION AB We use computer simulation to study crystal-forming model proteins equipped with interactions that are both orientationally specific and nonspecific. Distinct dynamical pathways of crystal formation can be selected by tuning the strengths of these interactions. When the nonspecific interaction is strong, liquidlike clustering can precede crystallization; when it is weak, growth can proceed via ordered nuclei. Crystal yields are in certain parameter regimes enhanced by the nonspecific interaction, even though it promotes association without local crystalline order. Our results suggest that equipping nanoscale components with weak nonspecific interactions (such as depletion attractions) can alter both their dynamical pathway of assembly and optimize the yield of the resulting material. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Sungwook Chung, Seong-Ho Shin, Jim DeYoreo, Carolyn Bertozzi, and Caroline Ajo-Franklin for discussions. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 39 Z9 39 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 18 PY 2010 VL 105 IS 8 AR 088102 DI 10.1103/PhysRevLett.105.088102 PG 4 WC Physics, Multidisciplinary SC Physics GA 640AD UT WOS:000281018200009 PM 20868132 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI Magnetic field at geosynchronous orbit during high-speed stream-driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COROTATING INTERACTION REGIONS; HELIOSPHERIC CURRENT SHEET; PITCH-ANGLE DISTRIBUTIONS; CORONAL MASS EJECTIONS; VAN-ALLEN RADIATION; GEOMAGNETIC STORMS; RING CURRENT; POLAR-CAP; RELATIVISTIC ELECTRONS; DYNAMIC PRESSURE AB Superposed-epoch analysis is performed on magnetic field measurements from five GOES spacecraft in geosynchronous orbit during 63 high-speed stream-driven storms in 1995-2005. The field strength and the field stretching angle are examined as functions of time and local time, and these quantities are compared with the properties of the solar wind, the plasma sheet, and the outer electron radiation belt. Compression of the dayside magnetosphere coincides with an increased solar wind ram pressure commencing before the arrival of the corotating interaction region (CIR). Stretching of the nightside magnetosphere occurs in two phases: a strong-stretching phase early in the storm followed by a modest-stretching phase lasting for days. The strong-stretching phase coincides with the occurrence of the superdense plasma sheet, implying that ion pressure causes the strong stretching. This nightside strong-stretching perturbation corresponds to a similar to 25% contribution to Dst*. The relativistic electron flux at geosynchronous orbit has a dropout recovery temporal profile that matches the strong-stretching temporal profile; however, the number density dropout and recovery of the electron radiation belt has a profile that leads the stretching profile. A comparison of geosynchronous field strengths and magnetopause field strengths indicates that magnetopause shadowing plays a role in the radiation belt dropout. Temporal fluctuations of the geosynchronous magnetic field are examined via 1 min changes of the GOES magnetic field vectors. Fluctuation amplitudes increase at all local times at storm onset and then slowly decay during the storms. The amplitude is linearly related to the Kp, PCI, and MBI indices, except during the strong-stretching phase of the storms. C1 [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Denton, Michael H.] Univ Lancaster, Lancaster LA1 4WA, Lancs, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 FU NASA; Los Alamos National Laboratory; STFC [ST/G002401/1] FX The authors wish to thank Howard Singer for help with the GOES data, Tom Cayton for relativistic Maxwellian fits to the SOPA data, and Joachim Birn, Steve Morley, and Howard Singer for useful conversations. J.E.B.wishes to thank the Department of Communication Systems at Lancaster University for their hospitality.Research at Los Alamos was supported by the NASA Targeted Research and Technology Program and by the Los Alamos National Laboratory LDRD Program. Research at Lancaster was supported by the STFC-grant ST/G002401/1. NR 175 TC 41 Z9 41 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 17 PY 2010 VL 115 AR A08217 DI 10.1029/2009JA015116 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641RA UT WOS:000281146200003 ER PT J AU Millstone, JE Kavulak, DFJ Woo, CH Holcombe, TW Westling, EJ Briseno, AL Toney, MF Frechet, JMJ AF Millstone, Jill E. Kavulak, David F. J. Woo, Claire H. Holcombe, Thomas W. Westling, Erik J. Briseno, Alejandro L. Toney, Michael F. Frechet, Jean M. J. TI Synthesis, Properties, and Electronic Applications of Size-Controlled Poly(3-hexylthiophene) Nanoparticles SO LANGMUIR LA English DT Article ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; POLYMER SOLAR-CELLS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); POLYTHIOPHENE NANOPARTICLES; OXIDATIVE POLYMERIZATION; ORGANIC PHOTOVOLTAICS; CONJUGATED POLYMERS; CHARGE-TRANSPORT; MOLECULAR-WEIGHT AB Semiconducting polymer nanoparticles have attracted increasing interest for the facile fabrication of organic electronic devices. These nanoparticles could provide the ability to control thin film morphology independently of optical and electronic properties. Using poly(3-hexylthiophene), we demonstrate surfactant-free synthesis and characterization of size-controlled, semicrystalline polymer nanoparticles. Our method produces discrete nanoparticles that can be deposited from solution into thin films. By controlling the molecular weight, polydispersity, and regioregularity of the polymer as well as varying its initial solution concentration, we tune both the size and crystallinity of the resulting nanoparticles. Organic field effect transistors (OFETs) using,nanoparticles made from this method produce good semiconducting devices with hole mobilities on the order of 10(-3) cm(2)/(V s). This approach to forming polymer nanoparticles is attractive for the introduction of solution-processablc, well-characterized nanoscale crystalline domains of a variety of conjugated polymers and should be useful for the fabrication and optimization of organic electronic devices. C1 [Millstone, Jill E.; Kavulak, David F. J.; Woo, Claire H.; Holcombe, Thomas W.; Westling, Erik J.; Briseno, Alejandro L.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Millstone, Jill E.; Kavulak, David F. J.; Woo, Claire H.; Holcombe, Thomas W.; Westling, Erik J.; Briseno, Alejandro L.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94205 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Millstone, Jill/0000-0002-9499-5744; Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S.. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX We thank Prof. A. P. Alivisatos and his co-workers for the use of their instrumentation and in particular Jesse Engel and Trevor Ewers for their generous assistance. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S.. Department of Energy under contract no. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. C.H.W and T.W.H. thank the National Science Foundation for graduate research fellowships. NR 47 TC 28 Z9 28 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 17 PY 2010 VL 26 IS 16 BP 13056 EP 13061 DI 10.1021/la1022938 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 635PI UT WOS:000280667900008 PM 20695542 ER PT J AU Karki, AB Xiong, YM Vekhter, I Browne, D Adams, PW Young, DP Thomas, KR Chan, JY Kim, H Prozorov, R AF Karki, A. B. Xiong, Y. M. Vekhter, I. Browne, D. Adams, P. W. Young, D. P. Thomas, K. R. Chan, Julia Y. Kim, H. Prozorov, R. TI Structure and physical properties of the noncentrosymmetric superconductor Mo3Al2C SO PHYSICAL REVIEW B LA English DT Article ID INVERSION SYMMETRY; SPIN; Y2C3 AB We have synthesized polycrystalline samples of the noncentrosymmetric superconductor Mo3Al2C by arc and RF melting, measured its transport, magnetic and thermodynamic properties, and computed its band structure. Experimental results indicate a bulk superconducting transition at T-c similar to 9.2 K while the density of states at the Fermi surface is found to be dominated by Mo d orbitals. Using the measured values for the lower critical field H-c1, upper critical field H-c2, and the specific heat C, we estimated the thermodynamic critical field H-c(0), coherence length xi(0), penetration depth lambda(0), and the Ginzburg-Landau parameter kappa(0). The specific-heat jump at T-c, Delta C/gamma T-c=2.14, suggests that Mo3Al2C is moderately to strongly coupled, consistent with the fast opening of the gap, as evidenced by the rapid release of entropy below T-c from our electronic specific-heat measurements. Above 2 K the electronic specific heat exhibits the power-law behavior, suggesting that synthesis of single crystals and measurements at lower temperature are needed to establish whether the gap is anisotropic. The estimated value of the upper critical field H-c2(0) is close to the calculated Pauli limit, therefore further studies are needed to determine whether the absence of an inversion center results in a significant admixture of the triplet component of the order parameter. C1 [Karki, A. B.; Xiong, Y. M.; Vekhter, I.; Browne, D.; Adams, P. W.; Young, D. P.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Thomas, K. R.; Chan, Julia Y.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Kim, H.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kim, H.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Karki, AB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RI Xiong, Yimin/C-7829-2011; Prozorov, Ruslan/A-2487-2008; Vekhter, Ilya/M-1780-2013; Chan, Julia/C-5392-2008 OI Prozorov, Ruslan/0000-0002-8088-6096; Chan, Julia/0000-0003-4434-2160 FU DOE [DE-FG02-07ER46420, DE-FG02-08ER46492]; NSF [DMR-0449022, DMR-0756281]; division of Materials Science and Engineering, Basic Energy Sciences, Department of Energy (USDOE) [DEAC02-07CH11358]; Alfred P. Sloan Foundation FX P.W.A. acknowledges the support of DOE under Grant No. DE-FG02-07ER46420, D.P.Y. and J.Y.C acknowledge the support of the NSF under Grants No. DMR-0449022 and No. DMR-0756281, respectively, and I.V. acknowledges the support of the DOE under Grant No. DE-FG02-08ER46492. Work at the Ames Laboratory was supported by the division of Materials Science and Engineering, Basic Energy Sciences, Department of Energy (USDOE), under Contract No. DEAC02-07CH11358. R.P. acknowledges support from the Alfred P. Sloan Foundation. NR 34 TC 46 Z9 46 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 17 PY 2010 VL 82 IS 6 AR 064512 DI 10.1103/PhysRevB.82.064512 PG 7 WC Physics, Condensed Matter SC Physics GA 639GR UT WOS:000280961700005 ER PT J AU Miyamoto, S Moutanabbir, O Ishikawa, T Eto, M Haller, EE Sawano, K Shiraki, Y Itoh, KM AF Miyamoto, Satoru Moutanabbir, Oussama Ishikawa, Toyofumi Eto, Mikio Haller, Eugene E. Sawano, Kentarou Shiraki, Yasuhiro Itoh, Kohei M. TI Excitonic Aharonov-Bohm effect in isotopically pure (70)wGe/Si self-assembled type-II quantum dots SO PHYSICAL REVIEW B LA English DT Article ID RADIATIVE RECOMBINATION; BAND-GAP; PHOTOLUMINESCENCE; LUMINESCENCE; MAGNETOEXCITONS; OSCILLATIONS; CONFINEMENT; SILICON; SINGLE; RINGS AB We report on a magnetophotoluminescence study of isotopically pure Ge-70/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ringlike trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of localized electron wave functions in group-IV Ge/Si self-assembled quantum structures. C1 [Miyamoto, Satoru; Moutanabbir, Oussama; Ishikawa, Toyofumi; Eto, Mikio; Itoh, Kohei M.] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Moutanabbir, Oussama] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. [Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sawano, Kentarou; Shiraki, Yasuhiro] Tokyo City Univ, Adv Res Labs, Res Ctr Silicon Nanosci, Setagaya Ku, Tokyo 1580082, Japan. RP Miyamoto, S (reprint author), Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM satoru@appi.keio.ac.jp; moutanab@mpi-halle.mpg.de; kitoh@appi.keio.ac.jp RI Moutanabbir, Oussama/A-4001-2009; Ishikawa, Toyofumi/C-3789-2013; Itoh, Kohei/C-5738-2014; Eto, Mikio/D-6021-2014 OI Ishikawa, Toyofumi/0000-0001-9089-0024; FU JSPS; MEXT [18001002] FX S.M. acknowledges T. Saiki, R. Yoshii, and R. Okuyama for valuable discussions and A. Sagara, H. Oshikawa, and K. Yoshizawa for their technical supports. O.M. is grateful to JSPS for financial support. This work was supported in part by Grant-in-Aid for Scientific Research by MEXT (Specially Promoted Research No. 18001002), in part by Special Coordination Funds for Promoting Science and Technology for INQIE, and in part by Grant-in-Aid for the Global Center of Excellence for High-Level Global Cooperation for Leading-Edge Platform on Access Spaces from MEXT. NR 29 TC 13 Z9 13 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 17 PY 2010 VL 82 IS 7 AR 073306 DI 10.1103/PhysRevB.82.073306 PG 4 WC Physics, Condensed Matter SC Physics GA 639GZ UT WOS:000280963100001 ER PT J AU Nielsen, E Young, RW Muller, RP Carroll, MS AF Nielsen, Erik Young, Ralph W. Muller, Richard P. Carroll, M. S. TI Implications of simultaneous requirements for low-noise exchange gates in double quantum dots SO PHYSICAL REVIEW B LA English DT Article ID SPINS AB Achieving low-error, exchange-interaction operations in quantum dots for quantum computing imposes simultaneous requirements on the exchange energy's dependence on applied voltages. A double quantum dot qubit, approximated with a quadratic potential, is solved using a full configuration interaction method. This method is more accurate than Heitler-London and Hund-Mulliken approaches and captures new and significant qualitative behavior. We show that multiple regimes can be found in which the exchange energy's dependence on the bias voltage between the dots is compatible with current quantum error correction codes and state-of-the-art electronics. Identifying such regimes may prove valuable for the construction and operation of quantum gates that are robust to charge fluctuations, particularly in the case of dynamically corrected gates. C1 [Nielsen, Erik; Young, Ralph W.; Muller, Richard P.; Carroll, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nielsen, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000] FX We would like to thank Sankar Das Sarma, Mike Stopa, and Wayne Witzel for many helpful discussions during the preparation of this manuscript. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 23 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 17 PY 2010 VL 82 IS 7 AR 075319 DI 10.1103/PhysRevB.82.075319 PG 15 WC Physics, Condensed Matter SC Physics GA 639GZ UT WOS:000280963100004 ER PT J AU Shapiro, C Dodelson, S Hoyle, B Samushia, L Flaugher, B AF Shapiro, Charles Dodelson, Scott Hoyle, Ben Samushia, Lado Flaugher, Brenna TI Will multiple probes of dark energy find modified gravity? SO PHYSICAL REVIEW D LA English DT Article ID POWER-SPECTRUM; COSMOLOGICAL PARAMETERS; ACOUSTIC-OSCILLATIONS; REDSHIFT SURVEYS; WEAK; MATTER; MODEL; TOMOGRAPHY; COLLAPSE; BARYONS AB One of the most pressing issues in cosmology is whether general relativity (GR) plus a dark sector is the underlying physical theory or whether a modified gravity model is needed. Upcoming dark energy experiments designed to probe dark energy with multiple methods can address this question by comparing the results of the different methods in constraining dark energy parameters. Disagreement would signal the breakdown of the assumed model (GR plus dark energy). We study the power of this consistency test by projecting constraints in the w(0)-w(a) plane from the four different techniques of the Dark Energy Survey in the event that the underlying true model is modified gravity. We find that the standard technique of looking for overlap has some shortcomings, and we propose an alternative, more powerful Multidimensional Consistency Test. We introduce the methodology for projecting whether a given experiment will be able to use this test to distinguish a modified gravity model from GR. C1 [Shapiro, Charles; Samushia, Lado] Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Dodelson, Scott; Flaugher, Brenna] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hoyle, Ben] Inst Ciencies Cosmos, Barcelona, Spain. [Samushia, Lado] Ilia State Univ, Natl Abastumani Astrophys Observ, GE-0160 Tbilisi, Rep of Georgia. RP Shapiro, C (reprint author), Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. OI hoyle, ben/0000-0002-2571-1357 FU U.S. Department of Energy [DE-FG02-95ER40896]; Science and Technology Facilities Council; European Research Council, GNSF [ST08/4-442]; SNSF [128040] FX We are grateful to Rachel Bean, Rob Crittenden, Josh Frieman, Wayne Hu, Dragan Huterer, Kazuya Koyama, Levon Pogosian, Alessandra Silvestri, Jochen Weller, and Gong-Bo Zhao for useful discussions. Calculations were done in part by modifying the publicly available iCosmo package [52]. This work has been supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896. C. S. is supported by a rolling grant from the Science and Technology Facilities Council. L. S. acknowledges support from European Research Council, GNSF Grant No. ST08/4-442 and SNSF SCOPES Grant No. 128040. NR 52 TC 20 Z9 20 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 17 PY 2010 VL 82 IS 4 AR 043520 DI 10.1103/PhysRevD.82.043520 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 639HI UT WOS:000280964300003 ER PT J AU Root, S Magyar, RJ Carpenter, JH Hanson, DL Mattsson, TR AF Root, Seth Magyar, Rudolph J. Carpenter, John H. Hanson, David L. Mattsson, Thomas R. TI Shock Compression of a Fifth Period Element: Liquid Xenon to 840 GPa SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; DENSITY; TRANSITION; SURFACE; GAS AB Current equation of state (EOS) models for xenon show substantial differences in the Hugoniot above 100 GPa, prompting the need for an improved understanding of xenon's behavior at extreme conditions. We performed shock compression experiments on liquid xenon to determine the Hugoniot up to 840 GPa, using these results to validate density functional theory (DFT) simulations. Despite the nearly fivefold compression, we find that the limiting Thomas-Fermi theory, exact in the high density limit, does not accurately describe the system. Combining the experimental data and DFT calculations, we developed a free-energy-based, multiphase EOS capable of describing xenon over a wide range of pressures and temperatures. C1 [Root, Seth; Magyar, Rudolph J.; Carpenter, John H.; Hanson, David L.; Mattsson, Thomas R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Root, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sroot@sandia.gov RI Mattsson, Thomas/B-6057-2009 FU U.S. Department of Energy's National Nuclear Securities Administration [DE-AC04-94AL85000] FX The authors thank the Z-team for contributing to the design, fabrication, and fielding of the experiments. The authors especially appreciate the dedicated efforts of the cryo-team: A. Lopez, J. Lynch, K. Shelton, and R. Smelser. We thank G. Kresse for developing a new xenon projector augmented-wave core potential. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000. NR 43 TC 40 Z9 40 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 17 PY 2010 VL 105 IS 8 AR 085501 DI 10.1103/PhysRevLett.105.085501 PG 4 WC Physics, Multidisciplinary SC Physics GA 639HP UT WOS:000280965700004 PM 20868109 ER PT J AU Peng, S McMahon, JM Schatz, GC Gray, SK Sun, YG AF Peng, Sheng McMahon, Jeffrey M. Schatz, George C. Gray, Stephen K. Sun, Yugang TI Reversing the size-dependence of surface plasmon resonances SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mie theory; nanoparticle; extinction; chemical interaction; sensing ID OPTICAL-PROPERTIES; SILVER NANOPARTICLES; GOLD NANOPARTICLES; METAL NANOPARTICLES; ABSORPTION; SHAPE; PARTICLES; NANOSTRUCTURES; NANOCLUSTERS; NANOCRYSTALS AB The size-dependence of surface plasmon resonances (SPRs) is poorly understood in the small particle limit due to complex physical/chemical effects and uncertainties in experimental samples. In this article, we report an approach for synthesizing an ideal class of colloidal Ag nanoparticles with highly uniform morphologies and narrow size distributions. Optical measurements and theoretical analyses for particle diameters in the d approximate to 2-20 nm range are presented. The SPR absorption band exhibits an exceptional behavior: As size decreases from d approximate to 20 nm it blue-shifts but then turns over near d approximate to 12 nm and strongly red-shifts. A multilayer Mie theory model agrees well with the observations, indicating that lowered electron conductivity in the outermost atomic layer, due to chemical interactions, is the cause of the red-shift. We corroborate this picture by experimentally demonstrating precise chemical control of the SPR peak positions via ligand exchange. C1 [Peng, Sheng; McMahon, Jeffrey M.; Gray, Stephen K.; Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [McMahon, Jeffrey M.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM schatz@chem.northwestern.edu; gray@anl.gov; ygsun@anl.gov RI Peng, Sheng/E-7988-2010; Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U. S. Department of Energy [DEFG02-91-ER45439]; Materials Research Center of Northwestern University [NSF DMR-0520513] FX We thank Drs. C.-H. Lei and J.-G. Wen for help in the HRTEM studies; Dr. X.-M. Lin for help in the FTIR studies; Drs. M. Pelton, G. P. Wiederrecht, J.P. Greeley and Prof. P. Guyot-Sionnest for helpful discussions. Use of the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. TEM characterization was also partly carried out by using the Center for Microanalysis of Materials Facilities in Frederick Seitz Materials Research Laboratory, University of Illinois, which is partially supported by the U. S. Department of Energy under Grant DEFG02-91-ER45439. J.M.M. and G. C. S. were supported by the Materials Research Center of Northwestern University (NSF DMR-0520513). NR 42 TC 151 Z9 153 U1 14 U2 143 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 17 PY 2010 VL 107 IS 33 BP 14530 EP 14534 DI 10.1073/pnas.1007524107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 643IA UT WOS:000281287600005 PM 20671201 ER PT J AU Cuvelier, ML Allen, AE Monier, A McCrow, JP Messie, M Tringe, SG Woyke, T Welsh, RM Ishoey, T Lee, JH Binder, BJ DuPont, CL Latasa, M Guigand, C Buck, KR Hilton, J Thiagarajan, M Caler, E Read, B Lasken, RS Chavez, FP Worden, AZ AF Cuvelier, Marie L. Allen, Andrew E. Monier, Adam McCrow, John P. Messie, Monique Tringe, Susannah G. Woyke, Tanja Welsh, Rory M. Ishoey, Thomas Lee, Jae-Hyeok Binder, Brian J. DuPont, Chris L. Latasa, Mikel Guigand, Cedric Buck, Kurt R. Hilton, Jason Thiagarajan, Mathangi Caler, Elisabet Read, Betsy Lasken, Roger S. Chavez, Francisco P. Worden, Alexandra Z. TI Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE comparative genomics; primary production; prymnesiophytes; marine photosynthesis; haptophytes ID EQUATORIAL PACIFIC; COMMUNITY STRUCTURE; PLASTID GENOMES; SARGASSO SEA; OCEAN; PICOPHYTOPLANKTON; DIVERSITY; PIGMENT; EVOLUTION; PROCHLOROCOCCUS AB Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton. C1 [Cuvelier, Marie L.; Monier, Adam; Messie, Monique; Welsh, Rory M.; Buck, Kurt R.; Chavez, Francisco P.; Worden, Alexandra Z.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Cuvelier, Marie L.; Guigand, Cedric; Hilton, Jason; Worden, Alexandra Z.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Allen, Andrew E.; McCrow, John P.; Ishoey, Thomas; DuPont, Chris L.; Thiagarajan, Mathangi; Caler, Elisabet; Lasken, Roger S.] J Craig Venter Inst, San Diego, CA 92121 USA. [Tringe, Susannah G.; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lee, Jae-Hyeok] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Binder, Brian J.] Univ Georgia, Dept Marine Sci, Athens, GA USA. [Latasa, Mikel] CSIC, Inst Ciencies Mar, E-08003 Barcelona, Spain. [Read, Betsy] Calif State Univ, Dept Biol Sci, San Marcos, CA 92096 USA. RP Worden, AZ (reprint author), Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. EM azworden@mbari.org RI Latasa, Mikel/D-2202-2011; Messie, Monique/K-2022-2012; OI Latasa, Mikel/0000-0002-8202-0923; Messie, Monique/0000-0002-4985-3413; Hilton, Jason/0000-0002-1196-4871; Monier, Adam/0000-0002-6018-5153 FU Department of Energy Community [DE-AC02-05CH11231, DE-FC02-02ER63453]; NSF [OCE-0722374, NSF-MCB-0732448, NSF-OCE-0241740, NSF-OCE-0836721]; National Human Genomic Research Institute, National Institutes of Health; National Oceanic and Atmospheric Administration; David and Lucile Packard Foundation (DLPF); Moore Foundation; Moore [1668] FX We thank the captains and crews of research vessels Discoverer, Endeavor, Ka'imimoana, Malcolm Baldridge, Oceanus, Walton Smith, and Western Flyer; cruise participants, especially F. Not; J. Heidelberg, R. Gausling, and G. Weinstock for 18S rDNA sequencing; M. Kogut, S. Giovannoni, and R. Gausling for edits; and J. Eisen. Sequencing was under DE-AC02-05CH11231, by a Department of Energy Community Sequencing Program award to A.Z.W. and J. Eisen. Support was in part by DE-FC02-02ER63453, NSF OCE-0722374, and NSF-MCB-0732448 (to A. E. A.); a National Human Genomic Research Institute, National Institutes of Health grant (to R. S. L.); National Oceanic and Atmospheric Administration and David and Lucile Packard Foundation (DLPF) grants (F. P. C.); NSF-OCE-0241740 (to B. J. B.); and major funding by NSF-OCE-0836721, the DLPF, and a Moore Foundation Young Investigator Award as well as Moore 1668 (to A.Z.W.). Author contribution details are given in SI Materials and Methods, Section 12. NR 40 TC 140 Z9 142 U1 11 U2 77 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 17 PY 2010 VL 107 IS 33 BP 14679 EP 14684 DI 10.1073/pnas.1001665107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 643IA UT WOS:000281287600031 PM 20668244 ER PT J AU Pope, PB Denman, SE Jones, M Tringe, SG Barry, K Malfatti, SA McHardy, AC Cheng, JF Hugenholtz, P McSweeney, CS Morrison, M AF Pope, P. B. Denman, S. E. Jones, M. Tringe, S. G. Barry, K. Malfatti, S. A. McHardy, A. C. Cheng, J. -F. Hugenholtz, P. McSweeney, C. S. Morrison, M. TI Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cellulases; marsupials; metagenomics; plant biomass conversion; polysaccharide utilization loci ID HUMAN GUT SYMBIONT; BACTEROIDES-THETAIOTAOMICRON; SOFTWARE ENVIRONMENT; GREY-KANGAROO; COMMUNITY; FORESTOMACH; CATABOLISM; MICROBIOTA; EVOLUTION; SEQUENCE AB Metagenomic and bioinformatic approaches were used to characterize plant biomass conversion within the foregut microbiome of Australia's "model" marsupial, the Tammar wallaby (Macropus eugenii). Like the termite hindgut and bovine rumen, key enzymes and modular structures characteristic of the "free enzyme" and "cellulosome" paradigms of cellulose solubilization remain either poorly represented or elusive to capture by shotgun sequencing methods. Instead, multigene polysaccharide utilization loci-like systems coupled with genes encoding beta-1,4-endoglucanases and beta-1,4-endoxylanases-which have not been previously encountered in metagenomic datasets-were identified, as were a diverse set of glycoside hydrolases targeting noncellulosic polysaccharides. Furthermore, both rrs gene and other phylogenetic analyses confirmed that unique clades of the Lachnospiraceae, Bacteroidales, and Gammaproteobacteria are predominant in the Tammar foregut microbiome. Nucleotide composition-based sequence binning facilitated the assemblage of more than two megabase pairs of genomic sequence for one of the novel Lachnospiraceae clades (WG-2). These analyses show that WG-2 possesses numerous glycoside hydrolases targeting noncellulosic polysaccharides. These collective data demonstrate that Australian macropods not only harbor unique bacterial lineages underpinning plant biomass conversion, but their repertoire of glycoside hydrolases is distinct from those of the microbiomes of higher termites and the bovine rumen. C1 [Pope, P. B.; Denman, S. E.; Jones, M.; McSweeney, C. S.; Morrison, M.] Commonwealth Sci & Ind Res Org, Div Livestock Ind, Queensland Biosci Precinct, St Lucia, Qld 4069, Australia. [Tringe, S. G.; Barry, K.; Malfatti, S. A.; Cheng, J. -F.; Hugenholtz, P.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [McHardy, A. C.] Max Planck Inst Comp Sci, Computat Genom & Epidemiol Grp, D-66123 Saarbrucken, Germany. [Morrison, M.] Ohio State Univ, MAPLE Res Initiat, Dept Anim Sci, Columbus, OH 43210 USA. RP Morrison, M (reprint author), Commonwealth Sci & Ind Res Org, Div Livestock Ind, Queensland Biosci Precinct, St Lucia, Qld 4069, Australia. EM mark.morrison@csiro.au RI Hugenholtz, Philip/G-9608-2011; Denman, Stuart/A-5823-2011; McSweeney, Chris/C-3688-2012; CSIRO, SAF/H-3134-2013; Morrison, Mark/C-9707-2013; OI Denman, Stuart/0000-0002-9910-3709; Morrison, Mark/0000-0001-9257-9133; Pope, Phillip/0000-0002-2067-4059 FU Commonwealth Scientific and Industrial Research Organization's Office; Commonwealth Scientific and Industrial Research Organization Office; US Department of Energy-Joint Genome Institute Community Sequencing; US Department of Energy's Office of Science, Biological; Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX We are especially grateful to the support from Lyn Hinds (Commonwealth Scientific and Industrial Research Organization Australia) who assisted in sample collection. The Tammar wallaby project is partially supported by the Commonwealth Scientific and Industrial Research Organization's Office of the Chief Executive Science Leader program (M. M.), a Commonwealth Scientific and Industrial Research Organization Office of the Chief Executive Postdoctoral Fellowship (to P. B. P.), and the US Department of Energy-Joint Genome Institute Community Sequencing Program. This work was performed in part under the auspices of the US Department of Energy's Office of Science, Biological, and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and Los Alamos National Laboratory under contract DE-AC02-06NA25396. NR 41 TC 90 Z9 96 U1 6 U2 46 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 17 PY 2010 VL 107 IS 33 BP 14793 EP 14798 DI 10.1073/pnas.1005297107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 643IA UT WOS:000281287600050 PM 20668243 ER PT J AU Bar, M Wimmer, M Wilks, RG Roczen, M Gerlach, D Ruske, F Lips, K Rech, B Weinhardt, L Blum, M Pookpanratana, S Krause, S Zhang, Y Heske, C Yang, W Denlinger, JD AF Baer, M. Wimmer, M. Wilks, R. G. Roczen, M. Gerlach, D. Ruske, F. Lips, K. Rech, B. Weinhardt, L. Blum, M. Pookpanratana, S. Krause, S. Zhang, Y. Heske, C. Yang, W. Denlinger, J. D. TI Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium; amorphous semiconductors; bonds (chemical); buried layers; crystallisation; elemental semiconductors; II-VI semiconductors; interface structure; phosphorus; semiconductor thin films; silicon; solar cells; solid-state phase transformations; wide band gap semiconductors; X-ray emission spectra; zinc compounds ID X-RAY-EMISSION; SI; STATES AB The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600 degrees C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO(2) interlayer, an effective thickness of (5 +/- 2) nm after SPC could be estimated. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462316] C1 [Baer, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Weinhardt, L.; Blum, M.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bar, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, Lise Meitner Campus,Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM marcus.baer@helmholtz-berlin.de RI Krause, Stefan/A-1281-2011; Weinhardt, Lothar/G-1689-2013; Ruske, Florian/D-5400-2014; Yang, Wanli/D-7183-2011; Rech, Bernd/J-4720-2013 OI Ruske, Florian/0000-0002-6363-4591; Yang, Wanli/0000-0003-0666-8063; Rech, Bernd/0000-0002-9718-8665 FU Federal Ministry for the Environment, Nature Conservation and Nuclear Safety [0327693H]; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX The authors thank Forschungszentrum Julich and CSG Solar for providing the ZnO:Al/Si3N4/ glass substrates. This work (the ALS) was supported by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under Contract No. 0327693H (the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231). NR 15 TC 8 Z9 8 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 072105 DI 10.1063/1.3462316 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600036 ER PT J AU Gu, JQ Singh, R Tian, Z Cao, W Xing, QR He, MX Zhang, JW Han, JG Chen, HT Zhang, WL AF Gu, Jianqiang Singh, Ranjan Tian, Zhen Cao, Wei Xing, Qirong He, Mingxia Zhang, Jingwen W. Han, Jiaguang Chen, Hou-Tong Zhang, Weili TI Terahertz superconductor metamaterial SO APPLIED PHYSICS LETTERS LA English DT Article ID SPLIT-RING-RESONATORS; TRANSMISSION; RESONANCES AB We characterize the behavior of split ring resonators made up of high transition temperature yttrium barium copper oxide superconductor using terahertz time-domain spectroscopy measurements and numerical simulations. The superconductor metamaterial is found to show a remarkable change in the transmission spectra at the fundamental inductive-capacitive resonance as the temperature dips below the critical transition temperature. This resonance switching effect is normally absent in traditional metamaterials made up of regular metals. The temperature-dependent resonance behavior of the superconducting metamaterial would lead to development of low loss terahertz switches at cryogenic temperatures. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3479909] C1 [Gu, Jianqiang; Singh, Ranjan; Tian, Zhen; Cao, Wei; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Gu, Jianqiang; Tian, Zhen; Xing, Qirong; He, Mingxia; Han, Jiaguang] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China. [Gu, Jianqiang; Tian, Zhen; Xing, Qirong; He, Mingxia; Han, Jiaguang] Tianjin Univ, Minist Educ, Key Lab Optoelect Informat & Tech Sci, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China. [Singh, Ranjan; Chen, Hou-Tong] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Zhang, Jingwen W.] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. [Han, Jiaguang] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. RP Gu, JQ (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM weili.zhang@okstate.edu RI Singh, Ranjan/B-4091-2010; Chen, Hou-Tong/C-6860-2009; Zhang, Weili/C-5416-2011; Tian, Zhen/D-8707-2015 OI Singh, Ranjan/0000-0001-8068-7428; Chen, Hou-Tong/0000-0003-2014-7571; Zhang, Weili/0000-0002-8591-0200; Tian, Zhen/0000-0002-2861-4325 FU U.S. National Science Foundation [ECCS-0725764]; National Science Foundation of China [60977064]; National Key Basic Research Special Foundation of China [2007CB310403, 2007CB310408]; Tianjin Sci-Tech Support Programs [08ZCKFZC28000, 09ZCK-FGX01500, 10JCYBJC01400]; MOE of Singapore; Lee Kuan Yew Fund FX The authors thank J. Wu for help in YBCO films and K. Dani and A. Azad for stimulating discussions. This work was supported by the U.S. National Science Foundation (Grant No. ECCS-0725764), The National Science Foundation of China (Grant No. 60977064), The National Key Basic Research Special Foundation of China (Grant Nos. 2007CB310403 and 2007CB310408), The Tianjin Sci-Tech Support Programs (Grant Nos. 08ZCKFZC28000, 09ZCK-FGX01500, and 10JCYBJC01400), The MOE Academic Research Fund of Singapore, and the Lee Kuan Yew Fund. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. NR 28 TC 59 Z9 63 U1 3 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 071102 DI 10.1063/1.3479909 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600002 ER PT J AU Koleske, DD Lee, SR Thaler, G Crawford, MH Coltrin, ME Cross, KC AF Koleske, D. D. Lee, S. R. Thaler, G. Crawford, M. H. Coltrin, M. E. Cross, K. C. TI Indium induced step transformation during InGaN growth on GaN SO APPLIED PHYSICS LETTERS LA English DT Article DE gallium compounds; III-V semiconductors; indium compounds; MOCVD; semiconductor growth; semiconductor quantum wells ID LIGHT-EMITTING-DIODES; EFFICIENCY AB The surface-step evolution of InGaN quantum-wells (QWs) was studied on GaN (0001). While the GaN template is dominated by single-monolayer steps the frequency of multiple-layer steps increases significantly when InGaN/GaN single- or multiple-QWs are grown. It is proposed that the InGaN multiple-layer step structure arises to partially accommodate the in-plane film strain which is insufficient to trigger bulk InGaN relaxation. This intrinsic multiple-layer step restructuring, when coupled with the strong piezoelectric fields present in the wurtzite group III-nitrides, could explain the enhanced carrier localization in InGaN QWs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479414] C1 [Koleske, D. D.; Lee, S. R.; Thaler, G.; Crawford, M. H.; Coltrin, M. E.; Cross, K. C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Koleske, DD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ddkoles@sandia.gov FU Division of Material Science, Office of Basic Energy Science; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank J. J. Figiel and M. J. Russell for technical assistance in this work. This work is supported by the Division of Material Science, Office of Basic Energy Science. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 17 TC 8 Z9 8 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 071901 DI 10.1063/1.3479414 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600022 ER PT J AU Pookpanratana, S Repins, I Bar, M Weinhardt, L Zhang, Y Felix, R Blum, M Yang, W Heske, C AF Pookpanratana, S. Repins, I. Baer, M. Weinhardt, L. Zhang, Y. Felix, R. Blum, M. Yang, W. Heske, C. TI CdS/Cu(In,Ga)Se-2 interface formation in high-efficiency thin film solar cells SO APPLIED PHYSICS LETTERS LA English DT Article DE cadmium compounds; copper compounds; II-VI semiconductors; solar cells; thin film devices; X-ray emission spectra ID SPECTRA; XPS; CDS AB The evolution of the CdS/Cu(In,Ga)Se-2 interface in high-efficiency thin film solar cells was monitored by chemically sensitive x-ray emission spectroscopy as a function of CdS chemical bath deposition time. We find direct experimental evidence that, in the initial deposition steps, the sulfur atoms on the Cu(In,Ga)Se-2 surface exist in at least two distinct chemical environments, namely CdS and a compound involving Ga and In. The findings indicate the complexity of the CdS/Cu(In,Ga)Se-2 interface structure at the atomic scale. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3481405] C1 [Pookpanratana, S.; Zhang, Y.; Blum, M.; Heske, C.] UNLV, Dept Chem, Las Vegas, NV 89154 USA. [Repins, I.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Baer, M.; Felix, R.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Weinhardt, L.] Univ Wurzburg, D-97074 Wurzburg, Germany. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), UNLV, Dept Chem, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; heske@unlv.nevada.edu RI Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU National Renewable Energy Laboratory [XXL-5-44205-12]; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX We acknowledge funding by the National Renewable Energy Laboratory under Subcontract No. XXL-5-44205-12. The ALS is supported by the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231. NR 14 TC 6 Z9 6 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 074101 DI 10.1063/1.3481405 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600099 ER PT J AU Xing, Q Lograsso, TA Ruffoni, MP Azimonte, C Pascarelli, S Miller, DJ AF Xing, Q. Lograsso, T. A. Ruffoni, M. P. Azimonte, C. Pascarelli, S. Miller, D. J. TI Experimental exploration of the origin of magnetostriction in single crystalline iron SO APPLIED PHYSICS LETTERS LA English DT Article DE crystal field interactions; iron; magnetostriction; spin-orbit interactions; X-ray absorption spectra ID FE-GA ALLOYS; STRUCTURALLY HETEROGENEOUS MODEL; SIMILAR MAGNETIC-ALLOYS; EXTRINSIC MAGNETOSTRICTION; ABSORPTION-SPECTROSCOPY AB The magnetostrictive atomic strain in a pure Fe single crystal was measured by differential x-ray absorption spectroscopy. The obtained tetragonal magnetostriction constant, (3/2)lambda(100), was determined to be 45 ppm, consistent with the previously reported theoretical value calculated from a spin-orbit coupling theory. These results provide a foundation for understanding the origin of magnetostriction in pure Fe as well as Fe-based binary alloys. (C) 2010 American Institute of Physics. [doi:10.1063/1.3481083] C1 [Xing, Q.; Lograsso, T. A.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Ruffoni, M. P.; Azimonte, C.; Pascarelli, S.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Miller, D. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xing, Q (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM qfxingtem@gmail.com FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences; Iowa State University [AC02-07CH11358]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences. Part of the work was performed at the Ames Laboratory which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. S. Pasternak, F. Perrin and M. Christine Dominguez were acknowledged for their excellent assistance on ID24, ESRF. FIB work was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. The authors thank K. W. Dennis and R. W. McCallum from Ames Laboratory for magnetization measurements. Q.X. is indebt to S. Figueroa from ESRF for comments on EXAFS analysis. NR 27 TC 7 Z9 7 U1 8 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 072508 DI 10.1063/1.3481083 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600054 ER PT J AU Xu, GY Bai, JW Torres, CM Song, EB Tang, JS Zhou, Y Duan, XF Zhang, YG Wang, KL AF Xu, Guangyu Bai, Jingwei Torres, Carlos M., Jr. Song, Emil B. Tang, Jianshi Zhou, Yi Duan, Xiangfeng Zhang, Yuegang Wang, Kang L. TI Low-noise submicron channel graphene nanoribbons SO APPLIED PHYSICS LETTERS LA English DT Article DE graphene; masks; nanowires; probes ID 1/F NOISE; DEVICES AB We present a graphene nanoribbon fabrication method based on a nanowire mask. Using a four-probe setup, single-layer nanoribbon (SLR) and bilayer nanoribbon (BLR) show low-frequency noise levels lower than (comparable to) the SLRs (BLRs) achieved by hydrogen-silsesquioxane based methods. Submicron channel SLR and BLR both show conductance quantization at 77 K, which suggests that quasi-one-dimensional quantum transport can be achieved. The conductance plateaus in BLR are less pronounced than those in SLR. (C) 2010 American Institute of Physics. [doi:10.1063/1.3481351] C1 [Xu, Guangyu; Torres, Carlos M., Jr.; Song, Emil B.; Tang, Jianshi; Zhou, Yi; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Bai, Jingwei] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Duan, Xiangfeng] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xu, GY (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM guangyu@ee.ucla.edu RI Bai, Jingwei/G-4245-2012; Zhang, Y/E-6600-2011; Tang, Jianshi/I-5543-2014 OI Zhang, Y/0000-0003-0344-8399; Tang, Jianshi/0000-0001-8369-0067 FU MARCO Focus Center on Functional Engineered Nano Architectonics (FENA); U.S. Department of Energy [DE-AC02-05CH11231] FX This work was in part supported by MARCO Focus Center on Functional Engineered Nano Architectonics (FENA). The work at the Molecular Foundry was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 13 Z9 13 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 16 PY 2010 VL 97 IS 7 AR 073107 DI 10.1063/1.3481351 PG 3 WC Physics, Applied SC Physics GA 641TW UT WOS:000281153600071 ER PT J AU Studer, B Kolliker, R Muylle, H Asp, T Frei, U Roldan-Ruiz, I Barre, P Tomaszewski, C Meally, H Barth, S Skot, L Armstead, IP Dolstra, O Lubberstedt, T AF Studer, Bruno Kolliker, Roland Muylle, Hilde Asp, Torben Frei, Ursula Roldan-Ruiz, Isabel Barre, Philippe Tomaszewski, Celine Meally, Helena Barth, Susanne Skot, Leif Armstead, Ian P. Dolstra, Oene Luebberstedt, Thomas TI EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.) SO BMC PLANT BIOLOGY LA English DT Article ID CROWN RUST RESISTANCE; F-SP LOLII; SEQUENCE REPEAT MARKERS; QUANTITATIVE TRAIT LOCI; PERENNIAL RYEGRASS; MULTIFLORUM LAM.; QTL ANALYSIS; MICROSATELLITE MARKERS; MAPPING POPULATIONS; AFLP MARKERS AB Background: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. Results: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. Conclusions: The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species. C1 [Studer, Bruno; Asp, Torben] Aarhus Univ, Dept Genet & Biotechnol, Fac Agr Sci, Res Ctr Flakkebjerg, DK-4200 Slagelse, Denmark. [Kolliker, Roland] Res Stn ART, CH-8046 Zurich, Switzerland. [Muylle, Hilde; Roldan-Ruiz, Isabel] Inst Agr & Fisheries Res ILVO, Plant Sci Unit Growth & Dev, B-9090 Melle, Belgium. [Barre, Philippe] INRA, Unite Rech Pluridisciplinaire Prairies & Plantes, F-86600 Lusignan, France. [Tomaszewski, Celine; Meally, Helena; Barth, Susanne] TEAGASC, Crops Res Ctr Oak Pk, Carlow, Ireland. [Skot, Leif; Armstead, Ian P.] Aberystwyth Univ, IBERS, Aberystwyth SY23 3EB, Ceredigion, Wales. [Dolstra, Oene] Wageningen Univ & Res Ctr PRI, Wageningen UR Plant Breeding, NL-6700 AA Wageningen, Netherlands. [Luebberstedt, Thomas] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. RP Studer, B (reprint author), Aarhus Univ, Dept Genet & Biotechnol, Fac Agr Sci, Res Ctr Flakkebjerg, Forsogsvej 1, DK-4200 Slagelse, Denmark. EM bruno.studer@agrsci.dk RI Barth, Susanne/P-3366-2014 OI Barth, Susanne/0000-0002-4104-5964 NR 58 TC 26 Z9 27 U1 1 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD AUG 16 PY 2010 VL 10 AR 177 DI 10.1186/1471-2229-10-177 PG 10 WC Plant Sciences SC Plant Sciences GA 650HY UT WOS:000281841100002 PM 20712870 ER PT J AU Li, GB Fang, HC Cai, YP Zhou, ZY Thallapally, PK Tian, JA AF Li, Guo-Bi Fang, Hua-Cai Cai, Yue-Peng Zhou, Zheng-Yuan Thallapally, Praveen K. Tian, Jian TI Construction of a Novel Zn-Ni Trinuclear Schiff Base and a Ni2+ Chemosensor SO INORGANIC CHEMISTRY LA English DT Article ID ON FLUORESCENT SENSOR; CRYSTAL-STRUCTURE; SELECTIVE FLUORESCENT; BUILDING-BLOCKS; LIVING CELLS; COMPLEXES; COPPER(II); RECOGNITION; CADMIUM(II); SYSTEM AB A novel Zn-Ni heterotrinuclear Schiff base compound bearing acacen(2-) moieties was constructed through the selective assembly of a chemosensor Schiff base zinc compound with a Ni2+ ion. Its crystal structure not only clearly explains the binding mode between the chemosensor molecule and the detected metal ion but also represents the first trinuclear complex based on a symmetric acacen(2-) base Schiff base. C1 [Li, Guo-Bi; Fang, Hua-Cai; Cai, Yue-Peng; Zhou, Zheng-Yuan] S China Normal Univ, Sch Chem & Environm,Minist Educ,Guangdong Univ, Key Lab Technol Electrochem Energy Storage & Powe, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Guangzhou 510006, Guangdong, Peoples R China. [Thallapally, Praveen K.; Tian, Jian] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, YP (reprint author), S China Normal Univ, Sch Chem & Environm,Minist Educ,Guangdong Univ, Key Lab Technol Electrochem Energy Storage & Powe, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Guangzhou 510006, Guangdong, Peoples R China. EM ypcai8@yahoo.com; praveen.thallapally@pnl.gov RI Tian, Jian/I-8637-2012; thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU National Natural Science Foundation of China [20772037]; Science and Technology Planning Project of Guangdong Province [2006A10 902002]; Natural Science Foundation of Guangdong Province [9251063101000006, 06025033] FX This work was supported by the National Natural Science Foundation of China (Grant 20772037), Science and Technology Planning Project of Guangdong Province (Grant 2006A10 902002), and the Natural Science Foundation of Guangdong Province (Grants 9251063101000006 and 06025033). NR 35 TC 35 Z9 36 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 16 PY 2010 VL 49 IS 16 BP 7241 EP 7243 DI 10.1021/ic101036m PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 634LM UT WOS:000280582900009 PM 20690735 ER PT J AU Glownia, JM Cryan, J Andreasson, J Belkacem, A Berrah, N Blaga, CI Bostedt, C Bozek, J DiMauro, LF Fang, L Frisch, J Gessner, O Guhr, M Hajdu, J Hertlein, MP Hoener, M Huang, G Kornilov, O Marangos, JP March, AM McFarland, BK Merdji, H Petrovic, VS Raman, C Ray, D Reis, DA Trigo, M White, JL White, W Wilcox, R Young, L Coffee, RN Bucksbaum, PH AF Glownia, James M. Cryan, J. Andreasson, J. Belkacem, A. Berrah, N. Blaga, C. I. Bostedt, C. Bozek, J. DiMauro, L. F. Fang, L. Frisch, J. Gessner, O. Guehr, M. Hajdu, J. Hertlein, M. P. Hoener, M. Huang, G. Kornilov, O. Marangos, J. P. March, A. M. McFarland, B. K. Merdji, H. Petrovic, V. S. Raman, C. Ray, D. Reis, D. A. Trigo, M. White, J. L. White, W. Wilcox, R. Young, L. Coffee, R. N. Bucksbaum, P. H. TI Time-resolved pump-probe experiments at the LCLS SO OPTICS EXPRESS LA English DT Article ID TIMING-JITTER; SPECTROMETER; RESOLUTION; DYNAMICS; LASER AB The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs. (C) 2010 Optical Society of America C1 [Glownia, James M.; Cryan, J.; Guehr, M.; McFarland, B. K.; Merdji, H.; Reis, D. A.; Trigo, M.; Coffee, R. N.; Bucksbaum, P. H.] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA 94025 USA. [Glownia, James M.; McFarland, B. K.; Reis, D. A.; White, J. L.; Bucksbaum, P. H.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Cryan, J.; Petrovic, V. S.; Bucksbaum, P. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Andreasson, J.; Hajdu, J.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Belkacem, A.; Gessner, O.; Kornilov, O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Berrah, N.; Fang, L.; Hoener, M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Blaga, C. I.; DiMauro, L. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bostedt, C.; Bozek, J.; Frisch, J.; White, W.; Coffee, R. N.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. Louisiana State Univ, Baton Rouge, LA 70803 USA. [Marangos, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [March, A. M.; Ray, D.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Merdji, H.] CEA Saclay, IRAMIS, Serv Photons Atomes & Mol, F-91191 Gif Sur Yvette, France. [Raman, C.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Ray, D.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. RP Glownia, JM (reprint author), SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jglownia@slac.stanford.edu RI Bozek, John/E-9260-2010; Huang, Gang/I-7772-2013; Guehr, Markus/B-7446-2015 OI Bozek, John/0000-0001-7486-7238; Guehr, Markus/0000-0002-9111-8981 FU U.S. Department of Energy, Office of Basic Energy Sciences; U.S. DOE [DE-AC02-05CH11231]; U.S. Department of Energy [DE-FG02-04ER15614]; NSF [PHY-0649578]; DOE-BES [DE-FG02-92ER14299]; Alexander von Humboldt Foundation; Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-AC02-06CH11357]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) FX The authors would like to thank Rick Iverson, Paul Emma, Zhirong Huang, and Yuantao Ding for their work in achieving sub-10fs xFEL pulses. This research is supported through the PULSE Institute at the SLAC National Accelerator Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences. RC receives primary support through the LCLS at SLAC by the U.S. Department of Energy. OK, OG and AB were supported by the Director of Science, BES, Chemical Sciences Division of the U.S. DOE under contract No. DE-AC02-05CH11231. LFD and CIB were supported under contract DE-FG02-04ER15614 by the U.S. Department of Energy. VP was funded by the NSF under grant PHY-0649578. MH, LF and NB are funded by DOE-BES under contract DE-FG02-92ER14299. MH thanks the Alexander von Humboldt Foundation for his Feodor Lynen fellowship. AMM and LY were supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357. JA thanks The Swedish Foundation for International Cooperation in Research and Higher Education (STINT). NR 26 TC 82 Z9 82 U1 2 U2 38 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 16 PY 2010 VL 18 IS 17 BP 17620 EP 17630 DI 10.1364/OE.18.017620 PG 11 WC Optics SC Optics GA 640LZ UT WOS:000281054400005 PM 20721148 ER PT J AU Guizar-Sicairos, M Evans-Lutterodt, K Isakovic, AF Stein, A Warren, JB Sandy, AR Narayanan, S Fienup, JR AF Guizar-Sicairos, Manuel Evans-Lutterodt, Kenneth Isakovic, Abdel F. Stein, Aaron Warren, John B. Sandy, Alec R. Narayanan, Suresh Fienup, James R. TI One-dimensional hard x-ray field retrieval using a moveable structure SO OPTICS EXPRESS LA English DT Article ID TRANSVERSE TRANSLATION DIVERSITY; PHASE-RETRIEVAL; MICROSCOPY AB We present a technique that allows measuring the field of an x-ray line focus using far-field intensity measurements only. One-dimensional phase retrieval with transverse translation diversity is used to recover a hard x-ray beam focused by a compound kinoform lens. The reconstruction is found to be in good agreement with independent knife-edge scan measurements taken at separated planes. The approach avoids the need for measuring the beam profile at focus and allows narrower beams to be measured than the traditional knife-edge scan. (C) 2010 Optical Society of America C1 [Guizar-Sicairos, Manuel; Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Evans-Lutterodt, Kenneth; Isakovic, Abdel F.; Stein, Aaron; Warren, John B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sandy, Alec R.; Narayanan, Suresh] Argonne Natl Lab, Argonne, IL 60439 USA. [Isakovic, Abdel F.] KUSTAR, Abu Dhabi, U Arab Emirates. RP Guizar-Sicairos, M (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM anuel.guizar-sicairos@psi.ch RI Isakovic, Abdel/A-7430-2009; Guizar-Sicairos, Manuel/I-4899-2013; Fienup, James/B-2715-2016; OI Isakovic, Abdel/0000-0003-1779-4209; Fienup, James/0000-0001-5147-9435; Stein, Aaron/0000-0003-4424-5416 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357] FX Use of the National Synchrotron Light Source (NSLS), the Center for Functional Nanomaterials and the NSLS-II project at Brookhaven National Laboratory was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The use of ANL-APS was supported through the DOE contract DE-AC02-06CH11357. We thank C. C. Kao for financial support. NR 21 TC 17 Z9 17 U1 1 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 16 PY 2010 VL 18 IS 17 BP 18374 EP 18382 DI 10.1364/OE.18.018374 PG 9 WC Optics SC Optics GA 640LZ UT WOS:000281054400088 PM 20721231 ER PT J AU Meyer, A Flege, JI Rettew, RE Senanayake, SD Schmidt, T Alamgir, FM Falta, J AF Meyer, Axel Flege, J. Ingo Rettew, Robert E. Senanayake, Sanjaya D. Schmidt, Thomas Alamgir, Faisal M. Falta, Jens TI Ultrathin silver films on Ni(111) SO PHYSICAL REVIEW B LA English DT Article ID DIFFUSION-LIMITED AGGREGATION; ENERGY-ELECTRON DIFFRACTION; AG ORGANIZATION; FRACTAL GROWTH; SURFACE; AU; CU; MICROSCOPY; TEMPERATURE; RELAXATION AB The growth and atomic structure of ultrathin silver films on Ni(111) was investigated by low-energy electron microscopy and diffraction (LEEM/LEED) as well as intensity-voltage [I(V)]-LEEM in the growth temperature range between 470 and 850 K. We find that silver grows in a Stranski-Krastanov mode with a two monolayer thin wetting layer which takes on a p(7X7) reconstruction at temperatures lower than 700 K and a (root 52 X root 52)R13.9 degrees reconstruction at higher temperatures. The occurrence of the two distinct reconstructions is shown to have profound implications for the growth characteristics of films exhibiting thicknesses of one and two monolayers. The nanoscale I(V) characteristics of the films were analyzed by means of multiple-scattering calculations based on dynamical LEED theory. Furthermore, the vertical interatomic spacing at the interface between the Ag film and the Ni substrate was determined to (2.8 perpendicular to 0.1) angstrom for all film thicknesses (<13 ML) while the uppermost silver layer relaxes by about (4 +/- 1)% toward the crystal. C1 [Meyer, Axel; Flege, J. Ingo; Schmidt, Thomas; Falta, Jens] Univ Bremen, Inst Solid State Phys, D-28359 Bremen, Germany. [Rettew, Robert E.; Alamgir, Faisal M.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Senanayake, Sanjaya D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Meyer, A (reprint author), Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany. EM flege@ifp.uni-bremen.de RI Flege, Jan Ingo/J-6354-2012; Senanayake, Sanjaya/D-4769-2009; Falta, Jens/F-4821-2016; OI Flege, Jan Ingo/0000-0002-8346-6863; Senanayake, Sanjaya/0000-0003-3991-4232; Falta, Jens/0000-0002-4154-822X; Alamgir, Faisal/0000-0002-0894-8096 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Jurek Sadowski, Percy Zahl, Peter Sutter (Center for Functional Nanomaterials, BNL), and Gary Nintzel (NSLS, BNL) for technical support. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 43 TC 11 Z9 11 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 16 PY 2010 VL 82 IS 8 AR 085424 DI 10.1103/PhysRevB.82.085424 PG 9 WC Physics, Condensed Matter SC Physics GA 639HA UT WOS:000280963200004 ER PT J AU Bloxham, T Kay, BP Schiffer, JP Clark, JA Deibel, CM Freeman, SJ Freedman, SJ Howard, AM McAllister, SA Parker, PD Sharp, DK Thomas, JS AF Bloxham, T. Kay, B. P. Schiffer, J. P. Clark, J. A. Deibel, C. M. Freeman, S. J. Freedman, S. J. Howard, A. M. McAllister, S. A. Parker, P. D. Sharp, D. K. Thomas, J. S. TI Pair correlations in the neutrinoless double-beta decay candidate Te-130 SO PHYSICAL REVIEW C LA English DT Article ID MASS; ISOTOPES AB Pair correlations in the ground state of Te-130 have been investigated using pair-transfer experiments to explore the validity of approximations in calculating the matrix element for neutrinoless double-beta decay. This nucleus is a candidate for the observation of such decay, and a good understanding of its structure is crucial for eventual calculations of the neutrino mass, should such a decay indeed be observed. For proton-pair adding, strong transitions to excited 0(+) states had been observed in the Te isotopes by Alford et al. [Nucl. Phys. A 323, 339 (1979)], indicating a breaking of the BCS approximation for protons in the ground state. We measured the neutron-pair removing (p,t) reaction on Te-130 and found no indication of a corresponding splitting of the BCS nature of the ground state for neutrons. C1 [Bloxham, T.; Freedman, S. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kay, B. P.; Schiffer, J. P.; Clark, J. A.; Deibel, C. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48825 USA. [Freeman, S. J.; Howard, A. M.; McAllister, S. A.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Parker, P. D.] Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Bloxham, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM tbloxham@lbl.gov RI Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011 OI Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-FG02-91ER40609]; UK Science and Technology Facilities Council FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-05CH11231, DE-AC02-06CH11357, and DE-FG02-91ER40609, and by the UK Science and Technology Facilities Council. NR 25 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 16 PY 2010 VL 82 IS 2 AR 027308 DI 10.1103/PhysRevC.82.027308 PG 4 WC Physics, Nuclear SC Physics GA 639HD UT WOS:000280963600007 ER PT J AU Kurpeta, J Urban, W Plochocki, A Rissanen, J Elomaa, VV Eronen, T Hakala, J Jokinen, A Kankainen, A Karvonen, P Moore, ID Penttila, H Rahaman, S Saastamoinen, A Sonoda, T Szerypo, J Weber, C Aysto, A AF Kurpeta, J. Urban, W. Plochocki, A. Rissanen, J. Elomaa, V. -V. Eronen, T. Hakala, J. Jokinen, A. Kankainen, A. Karvonen, P. Moore, I. D. Penttila, H. Rahaman, S. Saastamoinen, A. Sonoda, T. Szerypo, J. Weber, C. Aysto, A. TI Excited states in Pd-115 populated in the beta(-) decay of Rh-115 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; SPIN STRUCTURE; PALLADIUM ISOTOPES; GROUND-STATES; BANDS; IDENTIFICATION; SPECTROSCOPY; RU-115; REGION AB Excited states in Pd-115, populated following the beta(-) decay of Rh-115 have been studied by means of gamma spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyvaskyla. The 1/2(+) spin and parity assignment of the ground state of Pd-115, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number. C1 [Kurpeta, J.; Urban, W.; Plochocki, A.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Rissanen, J.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Penttila, H.; Saastamoinen, A.; Weber, C.; Aysto, A.] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland. [Elomaa, V. -V.] Abo Akad Univ, Turku PET Ctr, Accelerator Lab, FIN-20500 Turku, Finland. [Rahaman, S.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Sonoda, T.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Szerypo, J.] Univ Munich, Fak Phys, D-85748 Garching, Germany. RP Kurpeta, J (reprint author), Univ Warsaw, Fac Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. RI Penttila, Heikki/A-4420-2013; Moore, Iain/D-7255-2014; Kankainen, Anu/K-3448-2014; Jokinen, Ari/C-2477-2017 OI Moore, Iain/0000-0003-0934-8727; Kankainen, Anu/0000-0003-1082-7602; Jokinen, Ari/0000-0002-0451-125X FU Polish MNiSW [N N202 007334]; Academy of Finland FX This work was supported by the Polish MNiSW (Grant No. N N202 007334) and the Academy of Finland under the Finnish Centre of Excellence Programme 2006-2011 (Nuclear and Accelerator Based Physics Programme at JYFL). NR 36 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 16 PY 2010 VL 82 IS 2 AR 027306 DI 10.1103/PhysRevC.82.027306 PG 4 WC Physics, Nuclear SC Physics GA 639HD UT WOS:000280963600005 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Evidence for an anomalous like-sign dimuon charge asymmetry SO PHYSICAL REVIEW D LA English DT Article ID MODEL CP-VIOLATION; BARYON ASYMMETRY; DETECTOR; PHYSICS AB We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb(-1) of p (p) over bar collisions recorded with the D0 detector at a center-of-mass energy root s = 1.96 TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: A(sl)(b) = -0.00957 +/- 0.00251 (stat) +/- 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction A(sl)(b)(SM) = (-2.3(0.6)(+0.5)) x 10(-4) and provides first evidence of anomalous CP violation in the mixing of neutral B mesons. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Juste, Aurelio/I-2531-2015; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; OI De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Carrera, Edgar/0000-0002-0857-8507; Juste, Aurelio/0000-0002-1558-3291; Sharyy, Viatcheslav/0000-0002-7161-2616; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Begel, Michael/0000-0002-1634-4399; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Gershtein, Yuri/0000-0002-4871-5449; Malik, Sudhir/0000-0002-6356-2655; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; Haas, Andrew/0000-0002-4832-0455; Christoudias, Theodoros/0000-0001-9050-3880; Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 35 TC 162 Z9 162 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 16 PY 2010 VL 82 IS 3 AR 032001 DI 10.1103/PhysRevD.82.032001 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 639HF UT WOS:000280963800001 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI Evidence for an Anomalous Like-Sign Dimuon Charge Asymmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID MODEL CP-VIOLATION; BARYON ASYMMETRY AB We measure the charge asymmetry A =(N(++) -N(--))/(N(++) + N(--)) of like-sign dimuon events in 6.1 fb(-1) of p (p) over bar collisions recorded with the D0 detector at a center-of-mass energy root s = 1: 96 TeV at the Fermilab Tevatron collider. From A we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: A(sl)(b) = -0.009 57 +/- 0.00251(stat) +/- 0.001 46(sys). It differs by 3.2 standard deviations from the standard model prediction A(sl)(b)(SM) = (-2.3(-0.6)(+0.5)) x 10(-4), and provides first evidence of anomalous CP violation in the mixing of neutral B mesons. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Irfu, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012 OI Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Carrera, Edgar/0000-0002-0857-8507; Begel, Michael/0000-0002-1634-4399; Evans, Harold/0000-0003-2183-3127; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; Novaes, Sergio/0000-0003-0471-8549 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (U.K.); MSMT; GACR (Czech Republic); CRC Program; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (U.K.); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 23 TC 89 Z9 89 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 16 PY 2010 VL 105 IS 8 AR 081801 DI 10.1103/PhysRevLett.105.081801 PG 7 WC Physics, Multidisciplinary SC Physics GA 639HO UT WOS:000280965600005 ER PT J AU Yao, H Qi, XL AF Yao, Hong Qi, Xiao-Liang TI Entanglement Entropy and Entanglement Spectrum of the Kitaev Model SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM COMPUTATION; ANYONS; SUPERCONDUCTIVITY AB In this Letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = S-G + S-F, with S-F the entanglement entropy of a free Majorana fermion system and SG that of a Z(2) gauge field. The Z(2) gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z(2) vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states-the capacity of entanglement, which can distinguish the states with and without topologically protected gapless entanglement spectrum. C1 [Yao, Hong] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yao, Hong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Qi, Xiao-Liang] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA. [Qi, Xiao-Liang] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Yao, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yao, Hong/D-3202-2011; Qi, Xiaoliang/F-9245-2010 OI Yao, Hong/0000-0003-2867-6144; Qi, Xiaoliang/0000-0003-0388-5003 FU DOE at Berkeley [DE-AC02-05CH11231]; DOE at Stanford [DF-FG02-06ER46287, DE-AC02-76SF00515] FX We sincerely thank S.-B. Chung, E. Fradkin, T. L. Hughes, Y. Ran, S. Ryu, Z. Wang, and X.-G. Wen for helpful discussions. This work is supported in part by DOE Grant No. DE-AC02-05CH11231 (H. Y.) at Berkeley and Grants No. DF-FG02-06ER46287 (H. Y.) and No. DE-AC02-76SF00515 (X. L. Q.) at Stanford. NR 39 TC 80 Z9 80 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 16 PY 2010 VL 105 IS 8 AR 080501 DI 10.1103/PhysRevLett.105.080501 PG 4 WC Physics, Multidisciplinary SC Physics GA 639HO UT WOS:000280965600002 PM 20868083 ER PT J AU Song, XH Fan, J Zhang, XG Zhang, DL AF Song, Xiaohui Fan, Jie Zhang, X. -G. Zhang, Dianlin TI Strong nonlinearity and hysteresis of Hall resistance versus magnetization in nickel thin films SO PHYSICS LETTERS A LA English DT Article DE Anomalous Hall effect; Nickel thin film; Hall resistivity; Hysteresis ID BERRY-PHASE; FERROMAGNETICS; MANGANITES AB The anomalous Hall effect (AHE) in ferromagnetic materials is perhaps one of the oldest unresolved mysteries in physics. First observed in 1881, its mechanism is still a controversial topic today. The question remains whether AHE is caused by intrinsic (Berry phase and band structure) or extrinsic (defect scattering) effects or a combination of both. Here we present experimental observation in nickel thin films that seems to add to the mystery, but may in fact provide crucial clues for ultimately resolving the controversy. The key observation is that the Hall resistivity of nickel films is a strongly nonlinear function of the magnetization and displays clear hysteresis with respect to M. Specifically, at low temperatures, the anomalous Hall coefficient switches between two saturated values under the magnetic field with a narrow transition region, but with a strong hysteresis, in contrast to the slow saturation of the magnetization. The nonlinearity and the hysteresis become more apparent with decreasing temperature or film thickness. Despite the simplicity of the lattice and magnetic structure of nickel films, these results are outside our current understanding of AHE, whether using intrinsic or extrinsic mechanisms of AHE. It presents a challenge for these models, and may be used as a test of validity for both types of theories. (C) 2010 Elsevier B.V. All rights reserved. C1 [Song, Xiaohui; Fan, Jie; Zhang, Dianlin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Zhang, DL (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100080, Peoples R China. EM zhangdl@aphy.iphy.ac.cn FU NSFC; Division of Scientific User Facilities, US DOE FX The work is supported by NSFC. Portion of this research was conducted at the CNMS sponsored at ORNL by the Division of Scientific User Facilities, US DOE. NR 30 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD AUG 16 PY 2010 VL 374 IS 37 BP 3881 EP 3886 DI 10.1016/j.physleta.2010.07.048 PG 6 WC Physics, Multidisciplinary SC Physics GA 644IG UT WOS:000281367900015 ER PT J AU Hather, GJ Haynes, W Higdon, R Kolker, N Stewart, EA Arzberger, P Chain, P Field, D Franza, BR Lin, BY Meyer, F Ozdemir, V Smith, CV van Belle, G Wooley, J Kolker, E AF Hather, Gregory J. Haynes, Winston Higdon, Roger Kolker, Natali Stewart, Elizabeth A. Arzberger, Peter Chain, Patrick Field, Dawn Franza, B. Robert Lin, Biaoyang Meyer, Folker Ozdemir, Vural Smith, Charles V. van Belle, Gerald Wooley, John Kolker, Eugene TI The United States of America and Scientific Research SO PLOS ONE LA English DT Article ID RESEARCH-AND-DEVELOPMENT; SCIENCE; TECHNOLOGY; NATIONS; CHINA; PRODUCTIVITY; INVESTMENT; LEADERSHIP; IMPACT; WORLD AB To gauge the current commitment to scientific research in the United States of America (US), we compared federal research funding (FRF) with the US gross domestic product (GDP) and industry research spending during the past six decades. In order to address the recent globalization of scientific research, we also focused on four key indicators of research activities: research and development (R&D) funding, total science and engineering doctoral degrees, patents, and scientific publications. We compared these indicators across three major population and economic regions: the US, the European Union (EU) and the People's Republic of China (China) over the past decade. We discovered a number of interesting trends with direct relevance for science policy. The level of US FRF has varied between 0.2% and 0.6% of the GDP during the last six decades. Since the 1960s, the US FRF contribution has fallen from twice that of industrial research funding to roughly equal. Also, in the last two decades, the portion of the US government R&D spending devoted to research has increased. Although well below the US and the EU in overall funding, the current growth rate for R&D funding in China greatly exceeds that of both. Finally, the EU currently produces more science and engineering doctoral graduates and scientific publications than the US in absolute terms, but not per capita. This study's aim is to facilitate a serious discussion of key questions by the research community and federal policy makers. In particular, our results raise two questions with respect to: a) the increasing globalization of science: "What role is the US playing now, and what role will it play in the future of international science?''; and b) the ability to produce beneficial innovations for society: "How will the US continue to foster its strengths?'' C1 [Hather, Gregory J.; Haynes, Winston; Higdon, Roger; Kolker, Natali; Arzberger, Peter; Kolker, Eugene] Seattle Childrens Res Inst, Bioinformat & High Throughput Anal Lab, Seattle, WA USA. [Haynes, Winston] Hendrix Coll, Conway, AR USA. [Higdon, Roger; Kolker, Natali; Kolker, Eugene] Seattle Childrens Hosp, Seattle, WA USA. [Arzberger, Peter; Wooley, John] Univ Calif San Diego, Ctr Res BioSyst, San Diego, CA 92103 USA. [Chain, Patrick] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Chain, Patrick] Joint Genome Inst, Metagenom Program, Walnut Creek, CA USA. [Chain, Patrick] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Field, Dawn] NERC, Ctr Ecol & Hydrol, Oxford, England. [Franza, B. Robert] MYOONET Inc, Seattle, WA USA. [Franza, B. Robert] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. [Lin, Biaoyang] Zhejiang Univ, Zhejiang California Int Nanosyst Inst, Hangzhou 310003, Zhejiang, Peoples R China. [Lin, Biaoyang] Swedish Med Ctr, Swedish Neurosci Inst, Seattle, WA USA. [Lin, Biaoyang] Univ Washington, Dept Urol, Seattle, WA 98195 USA. [Meyer, Folker] Argonne Natl Lab, Argonne, IL 60439 USA. [Meyer, Folker] Univ Chicago, Chicago, IL 60637 USA. [Ozdemir, Vural] McGill Univ, Fac Med, Dept Human Genet, Montreal, PQ, Canada. [Smith, Charles V.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA USA. [Smith, Charles V.] Univ Washington, Dept Pediat, Seattle, WA 98195 USA. [van Belle, Gerald] Univ Washington, Dept Biostat, Seattle, WA 98195 USA. [van Belle, Gerald] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA. [Kolker, Eugene] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. RP Hather, GJ (reprint author), Seattle Childrens Res Inst, Bioinformat & High Throughput Anal Lab, Seattle, WA USA. EM Eugene.Kolker@seattlechildrens.org RI Field, Dawn/C-1653-2010; Kolker, Eugene/C-6711-2008; chain, patrick/B-9777-2013; OI Meyer, Folker/0000-0003-1112-2284; Chain, Patrick/0000-0003-3949-3634 FU National Institutes of Health (NIH) [5R01 GM076680-02]; NIDDK [UO1 DK072473]; National Science Foundation (NSF) [DBI-0544757, NSF-07140]; SCRI Internal funds FX The support from National Institutes of Health (NIH) 5R01 GM076680-02 (NIGMS; http://www.nigms.nih.gov/) and UO1 DK072473 (NIDDK; http://www2.niddk.nih.gov/), National Science Foundation (NSF) DBI-0544757 and NSF-07140 (http://www.nsf.gov/), and SCRI Internal funds (http://www.seattlechildrens.org/) to E. K. is greatly appreciated. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 57 TC 12 Z9 14 U1 4 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 16 PY 2010 VL 5 IS 8 AR e12203 DI 10.1371/journal.pone.0012203 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 639IH UT WOS:000280968000026 PM 20808949 ER PT J AU Xu, KH Zhang, Y Tang, B Laskin, J Roach, PJ Chen, H AF Xu, Kehua Zhang, Yun Tang, Bo Laskin, Julia Roach, Patrick J. Chen, Hao TI Study of Highly Selective and Efficient Thiol Derivatization Using Selenium Reagents by Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID GLUTATHIONE-PEROXIDASE; BETA-LACTOGLOBULIN; ENDOGENOUS THIOLS; FLUORESCENT-PROBE; POLYPEPTIDE IONS; DISULFIDE BONDS; GAS-PHASE; EBSELEN; PROTEIN; ANTIOXIDANT AB This paper reports a systemic mass spectrometry (MS) investigation of a novel strategy for labeling biological thiols, involving the cleavage of the Se-N bond by thiol to form a new Se-S bond. Our data show that the reaction is highly selective, rapid, reversible, and efficient. Among 20 amino acids, only cysteine is reactive toward Se-N containing reagents and the reaction occurs in seconds. With the addition of dithiothreitol, peptides derivatized by selenium reagents can be recovered. The high reaction selectivity and reversibility provide potential in both selective identification and isolation of thiols from mixtures. Also, with dependence on the selenium reagent used, derivatized peptide ions exhibit tunable dissociation behaviors (either facile cleavage or preservation of the formed Se-S bond upon collision-induced dissociation), a feature that is useful in proteomics studies. Equally importantly, the thiol derivatization yield is striking, as reflected by 100% conversion of protein beta-lactoglobulin A using ebselen within 30 s. In addition, preliminary applications such as rapid screening of thiol peptides from mixtures and identification of the number of protein free and bound thiols have been demonstrated. The unique selenium chemistry uncovered in this study would be valuable in the MS analysis of thiols and disulfide bonds of proteins/peptides. C1 [Xu, Kehua; Tang, Bo] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Minist Educ, Key Lab Mol & Nano Probes, Jinan 250014, Peoples R China. [Xu, Kehua; Zhang, Yun; Chen, Hao] Ohio Univ, Ctr Intelligent Chem Instrumentat, Dept Chem & Biochem, Athens, OH 45701 USA. [Laskin, Julia; Roach, Patrick J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Tang, B (reprint author), Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Minist Educ, Key Lab Mol & Nano Probes, Jinan 250014, Peoples R China. EM tangb@sdnu.edu.cn; chenh2@ohio.edu RI Laskin, Julia/H-9974-2012; Zhang, Yun/C-4172-2015 OI Laskin, Julia/0000-0002-4533-9644; Zhang, Yun/0000-0002-6500-4841 FU U.S. NSF [CHE-0911160]; National Basic Research Program of China (973 Program) [2007CB936000]; National Natural Science Funds for Distinguished Young Scholar [20725518]; National Natural Science Foundation of China [20875057]; Natural Science Foundation of Shandong Province in China [Y2007B02]; U.S. Department of Energy's Office of Biological and E nvironmental Research, Pacific Northwest National Laboratory (PNNL) FX This work was supported by U.S. NSF (Grant CHE-0911160), National Basic Research Program of China (973 Program, Grant 2007CB936000), National Natural Science Funds for Distinguished Young Scholar (Grant No. 20725518), National Natural Science Foundation of China (Grant No. 20875057), and Natural Science Foundation of Shandong Province in China (Grant No. Y2007B02). Part of the research described in this manuscript was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. We also thank Mr. Xiaoyong Lu for his help. NR 46 TC 29 Z9 30 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2010 VL 82 IS 16 BP 6926 EP 6932 DI 10.1021/ac1011602 PG 7 WC Chemistry, Analytical SC Chemistry GA 636RV UT WOS:000280758400025 PM 20704382 ER PT J AU Read, DH Martin, JE AF Read, Douglas H. Martin, James E. TI Analyte Discrimination from Chemiresistor Response Kinetics SO ANALYTICAL CHEMISTRY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; POLYMER COMPOSITES; CHEMICAL SENSORS; RESISTIVITY; SOLUBILITY; SORPTION; ARRAYS AB Chemiresistors are polymer-based sensors that transduce the sorption of a volatile organic compound into a resistance change. Like other polymer-based gas sensors that function through sorption, chemiresistors can be selective for analytes on the basis of the affinity of the analyte for the polymer. However, a single sensor cannot, in and of itself, discriminate between analytes, since a small concentration of an analyte that has a high affinity for the polymer might give the same response as a high concentration of another analyte with a low affinity. In this paper we use a field-structured chemiresistor to demonstrate that its response kinetics can be used to discriminate between analytes, even between those that have identical chemical affinities for the polymer phase of the sensor. The response kinetics is shown to be independent of the analyte concentration, and thus the magnitude of the sensor response, but is found to vary inversely with the analyte's saturation vapor pressure. Saturation vapor pressures often vary greatly from analyte to analyte, so analysis of the response kinetics offers a powerful method for obtaining analyte discrimination from a single sensor. C1 [Read, Douglas H.; Martin, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Read, DH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhread@sandia.gov FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 4 Z9 4 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2010 VL 82 IS 16 BP 6969 EP 6975 DI 10.1021/ac101259w PG 7 WC Chemistry, Analytical SC Chemistry GA 636RV UT WOS:000280758400030 PM 20704386 ER PT J AU Li, ZH Wang, Y Wang, J Tang, ZW Pounds, JG Lin, YH AF Li, Zhaohui Wang, Ying Wang, Jun Tang, Zhiwen Pounds, Joel G. Lin, Yuehe TI Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip SO ANALYTICAL CHEMISTRY LA English DT Article ID PROSTATE-SPECIFIC ANTIGEN; IMMUNOCHROMATOGRAPHIC ASSAY; GOLD NANOPARTICLES; TYROSINE NITRATION; SIGNAL GENERATOR; PLASMA-PROTEINS; WHOLE-BLOOD; IMMUNOASSAY; IMMUNOSENSOR; ANTIBODIES AB A portable fluorescence biosensor with rapid and ultra-sensitive response for protein biomarker has been built up with quantum dots and a lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of a lateral flow test strip and result in high sensitivity and selectivity and speed for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer, and stress response to smoking, was used as model protein biomarker to demonstrate the good performances of this proposed quantum dot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescence intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin with the concentration as low as 1 ng/mL. Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection in a wide dynamic range with a detection limit of 8 ng/mL (S/N = 3). The results demonstrate that the quantum dot-based lateral flow test strip is capable of rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers. C1 [Li, Zhaohui; Wang, Ying; Wang, Jun; Tang, Zhiwen; Pounds, Joel G.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99362 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99362 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Zhou, Gina/D-2837-2009; OI Lin, Yuehe/0000-0003-3791-7587; Pounds, Joel/0000-0002-6616-1566 FU National Institute of Environmental Health Sciences (NIEHS), NIH [U54 ES16015]; DOE [DE-AC05-76RL01830] FX The work was done at Pacific Northwest National Laboratory (PNNL) supported by Grant U54 ES16015 from the National Institute of Environmental Health Sciences (NIEHS), NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 45 TC 138 Z9 144 U1 19 U2 187 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2010 VL 82 IS 16 BP 7008 EP 7014 DI 10.1021/ac101405a PG 7 WC Chemistry, Analytical SC Chemistry GA 636RV UT WOS:000280758400035 PM 20704391 ER PT J AU Khnouf, R Olivero, D Jin, SG Coleman, MA Fan, ZH AF Khnouf, Ruba Olivero, Daniel Jin, Shouguang Coleman, Matthew A. Fan, Z. Hugh TI Cell-Free Expression of Soluble and Membrane Proteins in an Array Device for Drug Screening SO ANALYTICAL CHEMISTRY LA English DT Article ID BETA-LACTAMASE; BACTERIORHODOPSIN; QUANTITIES; LUCIFERASE; RESISTANCE; MECHANISM; INSERTION; KINETICS; SYSTEMS; ASSAYS AB Enzymes and membrane protein receptors represent almost three-quarters of all current drug targets. As a result, it would be beneficial to have a platform to produce them in a high-throughput format for drug screening. We have developed a miniaturized fluid array device for cell-free protein synthesis, and the device was exploited to produce both soluble and membrane proteins. Two membrane-associated proteins, bacteriorhodopsin and ApoA lipoprotein, were coexpressed in an expression medium in the presence of lipids. Simultaneous expression of ApoA lipoprotein enhanced the solubility of bacteriorhodopsin and would facilitate functional studies. In addition, the device was employed to produce two enzymes, luciferase and beta-lactamase, both of which were demonstrated to be compatible with enzyme inhibition assays. beta-lactamase, a drug target associated with antibiotic resistance, was further used to show the capability of the device for drug screening. beta-Lactamase was synthesized in the 96 units of the device and then assayed by a range of concentrations of four mock drug compounds without harvesting and purification. The inhibitory effects of these compounds on beta-lactamase were measured in a parallel format, and the degree in their drug effectiveness agreed well with the data in the literature. This work demonstrated the feasibility of the use of the fluid array device and cell-free protein expression for drug screening, with advantages in less reagent consumption, shorter analysis time, and higher throughput. C1 [Jin, Shouguang] Univ Florida, Dept Mol Genet & Microbiol, Gainesville, FL 32610 USA. [Khnouf, Ruba; Fan, Z. Hugh] Univ Florida, Dept Biomed Engn, Gainesville, FL 32611 USA. [Olivero, Daniel; Fan, Z. Hugh] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jin, SG (reprint author), Univ Florida, Dept Mol Genet & Microbiol, POB 100266, Gainesville, FL 32610 USA. EM hfan@ufl.edu RI Fan, Z./A-5886-2008; OI Fan, Z./0000-0002-1812-8016; Coleman, Matthew/0000-0003-1389-4018 FU Defense Advanced Research Projects Agency (DARPA) via Micro/Nano Fluidics Fundamentals Focus Center at the University of California at Irvine; University of Florida; University of California FX This work was supported in part by Defense Advanced Research Projects Agency (DARPA) via Micro/Nano Fluidics Fundamentals Focus Center at the University of California at Irvine, the University of Florida via UF Opportunity Fund, and the University of California Discovery Grant Program. NR 37 TC 18 Z9 18 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2010 VL 82 IS 16 BP 7021 EP 7026 DI 10.1021/ac1015479 PG 6 WC Chemistry, Analytical SC Chemistry GA 636RV UT WOS:000280758400037 PM 20666430 ER PT J AU Zhou, FF Xu, Y AF Zhou, Fengfeng Xu, Ying TI cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data SO BIOINFORMATICS LA English DT Article ID CLASSIFICATION AB Huge amount of metagenomic sequence data have been produced as a result of the rapidly increasing efforts worldwide in studying microbial communities as a whole. Most, if not all, sequenced metagenomes are complex mixtures of chromosomal and plasmid sequence fragments from multiple organisms, possibly from different kingdoms. Computational methods for prediction of genomic elements such as genes are significantly different for chromosomes and plasmids, hence raising the need for separation of chromosomal from plasmid sequences in a metagenome. We present a program for classification of a metagenome set into chromosomal and plasmid sequences, based on their distinguishing pentamer frequencies. On a large training set consisting of all the sequenced prokaryotic chromosomes and plasmids, the program achieves similar to 92% in classification accuracy. On a large set of simulated metagenomes with sequence lengths ranging from 300 bp to 100 kbp, the program has classification accuracy from 64.45% to 88.75%. On a large independent test set, the program achieves 88.29% classification accuracy. C1 [Zhou, Fengfeng; Xu, Ying] Univ Georgia, Computat Syst Biol Lab, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Zhou, Fengfeng; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Zhou, Fengfeng; Xu, Ying] Univ Georgia, BioEnergy Sci Ctr BESC, Athens, GA 30602 USA. [Xu, Ying] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China. RP Xu, Y (reprint author), Univ Georgia, Computat Syst Biol Lab, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM xyn@bmb.uga.edu RI Zhou, Fengfeng/A-8932-2008 OI Zhou, Fengfeng/0000-0002-8108-6007 FU National Science Foundation [DBI-0354771, ITR-IIS-0407204, DBI-0542119, CCF0621700]; National Institutes of Health [1R01GM075331, 1R01GM081682]; Georgia Cancer Coalition; Office of Biological and Environmental Research in the DOE Office of Science FX National Science Foundation (DBI-0354771, ITR-IIS-0407204, DBI-0542119 and CCF0621700, in part); National Institutes of Health (1R01GM075331 and 1R01GM081682, in part); Distinguished Scholar grant from the Georgia Cancer Coalition (in part); grant for the BioEnergy Science Center, which is a U.S. Department of Energy BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science (in part). NR 11 TC 12 Z9 12 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD AUG 15 PY 2010 VL 26 IS 16 BP 2051 EP 2052 DI 10.1093/bioinformatics/btq299 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 636BS UT WOS:000280703500018 PM 20538725 ER PT J AU Renslow, RS Majors, PD McLean, JS Fredrickson, JK Ahmed, B Beyenal, H AF Renslow, Ryan S. Majors, Paul D. McLean, Jeffrey S. Fredrickson, Jim K. Ahmed, Bulbul Beyenal, Haluk TI In Situ Effective Diffusion Coefficient Profiles in Live Biofilms Using Pulsed-Field Gradient Nuclear Magnetic Resonance SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofilm; diffusion coefficient; diffusivity; in situ; mass transfer; magnetic resonance imaging; nuclear magnetic resonance; pulsed-field gradients; Shewanella oneidensis ID HETEROGENEOUS BIOFILMS; CONFOCAL MICROSCOPY; SUBSTRATE TRANSPORT; POROUS-MEDIA; BIOREACTOR; FLOW; RELAXATION; METABOLISM; GROWTH AB Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface-averaging methods are used, position-dependent measurements of the effective diffusion coefficient are currently: (1) invasive to the biofilm, (2) performed under unnatural conditions, (3) lethal to cells, and/or (4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time-dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: (1) measure the effective diffusion coefficient for water in live biofilms, (2) monitor how the effective diffusion coefficient changes over time under growth conditions, and (3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two-dimensional effective diffusion coefficient maps within Shewanella oneidensis MR-1 biofilms using pulsed-field gradient nuclear magnetic resonance methods, and used them to calculate surface-averaged relative effective diffusion coefficient (D(rs)) profiles. We found that (1) D(rs) decreased from the top of the biofilm to the bottom, (2) D(rs) profiles differed for biofilms of different ages, (3) D(rs) profiles changed over time and generally decreased with time, (4) all the biofilms showed very similar D(rs) profiles near the top of the biofilm, and (5) the D(rs) profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. Biotechnol. Bioeng. 2010;106: 928-937. (C) 2010 Wiley Periodicals, Inc. C1 [Renslow, Ryan S.; Ahmed, Bulbul; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, CESAR, Pullman, WA 99164 USA. [Majors, Paul D.; Fredrickson, Jim K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [McLean, Jeffrey S.] J Craig Venter Inst, San Diego, CA USA. RP Beyenal, H (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, CESAR, Pullman, WA 99164 USA. EM beyenal@wsu.edu RI Ahmed, Bulbul/F-8023-2011; Renslow, Ryan/E-5851-2010; McLean, Jeffrey/A-8014-2012 OI Renslow, Ryan/0000-0002-3969-5570; McLean, Jeffrey/0000-0001-9934-5137 FU Office of Science (BER), U.S. Department of Energy [DE-FG02-08ER64560]; NIH (NIDCR) [R21 DE017232]; DOE Biological and Environmental Research [T32-GM008336] FX This research was supported by the Office of Science (BER), U.S. Department of Energy (grant no. DE-FG02-08ER64560). The custom-built NMR microscopy and biofilm reactor hardware development was supported by NIH (NIDCR) R21 DE017232. The work was performed in the Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by DOE Biological and Environmental Research) located at the Pacific Northwest National Laboratory and operated for DOE by Battelle. Ryan Renslow acknowledges NIH Training Grant (T32-GM008336). NR 37 TC 34 Z9 34 U1 4 U2 50 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD AUG 15 PY 2010 VL 106 IS 6 BP 928 EP 937 DI 10.1002/bit.22755 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 631IY UT WOS:000280341200009 PM 20589671 ER PT J AU Chung, E Yiacoumi, S Lee, I Tsouris, C AF Chung, Eunhyea Yiacoumi, Sotira Lee, Ida Tsouris, Costas TI The Role of the Electrostatic Force in Spore Adhesion SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CHARGED-PARTICLES; CAPILLARY FORCE; SURFACE; ELECTROPHOTOGRAPHY; MICROSCOPE; DETACHMENT; RESOLUTION; HUMIDITY; PLANE AB Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0 03 mu C/cm(2) at 20% relative humidity and decreases with increasing humidity The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive The Coulombic force for spore mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive The magnitude of both forces decreases with increasing humidity The electrostatic forces are added to other force components, e g., van der Waals and capillary forces, to obtain the adhesion force for each system The adhesion forces measured by AFM are compared to the estimated values It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces. C1 [Chung, Eunhyea; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Atlanta, GA 30332 USA. [Lee, Ida] Univ Tennessee, Knoxville, TN 37996 USA. [Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsouris, C (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. RI Tsouris, Costas/C-2544-2016 OI Tsouris, Costas/0000-0002-0522-1027 FU Defense Threat Reduction Agency [HDTRA1-07-1-0035]; National Science Foundation [CBET-0651683] FX Support for this work was provided by the Defense Threat Reduction Agency, under Grant No. HDTRA1-07-1-0035, to Georgia Institute of Technology, and by the National Science Foundation, under Grant No CBET-0651683 We are thankful to Mr Daniel Velez for editing the manuscript NR 31 TC 11 Z9 11 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 15 PY 2010 VL 44 IS 16 BP 6209 EP 6214 DI 10.1021/es101730y PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 636JD UT WOS:000280727400035 PM 20666490 ER PT J AU Brinkman, GL Denholm, P Hannigan, MP Milford, JB AF Brinkman, Gregory L. Denholm, Paul Hannigan, Michael P. Milford, Jana B. TI Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered With 100% PHEV penetration, nitrogen oxide (NOx) emissions were reduced by 27 tons per day (tpd) from a fleet of 17 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days Ozone concentration increases were modeled for small areas near central Denver Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets. C1 [Brinkman, Gregory L.; Hannigan, Michael P.; Milford, Jana B.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Brinkman, Gregory L.; Denholm, Paul] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Brinkman, GL (reprint author), 1617 Cole Blvd,Mailstop 301, Golden, CO 80401 USA. OI Milford, Jana/0000-0002-8573-4737 FU University of Colorado Renewable and Sustainable Energy Institute FX This research was supported by the University of Colorado Renewable and Sustainable Energy Institute. We thank Keith Parks and Xcel Energy, Mike Barna, Ralph Morris, Ramteen Sioshansi, and Easan Drury for their contributions. NR 21 TC 8 Z9 8 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 15 PY 2010 VL 44 IS 16 BP 6256 EP 6262 DI 10.1021/es101076c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 636JD UT WOS:000280727400042 PM 20704224 ER PT J AU De Gusseme, B Du Laing, G Hennebel, T Renard, P Chidambaram, D Fitts, JP Bruneel, E Van Driessche, I Verbeken, K Boon, N Verstraete, W AF De Gusseme, Bart Du Laing, Gijs Hennebel, Tom Renard, Piet Chidambaram, Dev Fitts, Jeffrey P. Bruneel, Els Van Driessche, Isabel Verbeken, Kim Boon, Nice Verstraete, Willy TI Virus Removal by Biogenic Cerium SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; MANGANESE OXIDATION; WATER; NANOPARTICLES; TRICHLOROETHYLENE; DISINFECTION; PALLADIUM; SORPTION; REACTOR; NITRATE AB The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29 X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties A 44 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal C1 [De Gusseme, Bart; Hennebel, Tom; Renard, Piet; Boon, Nice; Verstraete, Willy] Univ Ghent, LabMET, B-9000 Ghent, Belgium. [Du Laing, Gijs] Univ Ghent, Lab Analyt Chem & Appl Ecochem Ecochem, B-9000 Ghent, Belgium. [Chidambaram, Dev] Univ Nevada Reno, Dept Chem & Met Engn, Reno, NV 89557 USA. [Fitts, Jeffrey P.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Bruneel, Els; Van Driessche, Isabel] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium. [Verbeken, Kim] Univ Ghent, Dept Met & Mat Sci, B-9052 Ghent, Belgium. RP Verstraete, W (reprint author), Univ Ghent, LabMET, Coupure Links 653, B-9000 Ghent, Belgium. RI De Gusseme, Bart/C-6854-2008; Hennebel, Tom/C-2176-2009; Boon, Nico/B-4083-2011; Fitts, Jeffrey/J-3633-2012; Bruneel, Els/M-5245-2013; OI Hennebel, Tom/0000-0002-8346-5983; Boon, Nico/0000-0002-7734-3103; Van Driessche, Isabel/0000-0001-5253-3325 FU Research Foundation of Flanders (FWO) [7741-02]; office of the vice president RA research at the University of Nevada Reno; U S Department of Energy, Office of Science [DE-AC02-98CH10886] FX This work was supported by a PhD grant (B D) and project grant no. 7741-02 (T H) from the Research Foundation of Flanders (FWO) K V is a postdoctoral fellow with the FWO. This project was also funded in part by the startup package provided to D C by the office of the vice president RA research at the University of Nevada Reno. The NSLS, J F, and D.C. (in part) are supported by the U S Department of Energy, Office of Science under contract DE-AC02-98CH10886. We thank Peter Mast and Siegfried Vlaeminck for their assistance in the SEM analyses, and Diederik Depla and Nico De Roo for the XRD analyses. We ale grateful for the technical assistance of Griet Vermeulen and Ellen Thibo in the disinfection assays We acknowledge Willem De Muynck and Liesje Sintubin for critically reviewing this manuscript and Anthony I-lay for the many helpful suggestions NR 44 TC 13 Z9 13 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 15 PY 2010 VL 44 IS 16 BP 6350 EP 6356 DI 10.1021/es100100p PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 636JD UT WOS:000280727400056 PM 20704235 ER PT J AU Chouyyok, W Shin, Y Davidson, J Samuels, WD Lafemina, NH Rutledge, RD Fryxell, GE Sangvanich, T Yantasee, W AF Chouyyok, Wilaiwan Shin, Yongsoon Davidson, Joseph Samuels, William D. Lafemina, Nikki H. Rutledge, Ryan D. Fryxell, Glen E. Sangvanich, Thanapon Yantasee, Wassana TI Selective Removal of Copper(II) from Natural Waters by Nanoporous Sorbents Functionalized with Chelating Diamines SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AQUEOUS-SOLUTIONS; ACTIVATED CARBON; HEAVY-METALS; ADSORPTION; DISEASE; AMINE AB Copper has been identified as a pollutant of concern by the U.S Environmental Protection Agency (EPA) because of its widespread occurrence and toxic impact in the environment. Three nanoporous sorbents containing chelating diamine functionalities were evaluated for Cu(2+) adsorption from natural waters ethylenediamine functionalized self-assembled monolayers on mesoporous supports (EDA-SAMMS), ethylenediamine functionalized activated carbon (AC-CH(2)-EDA), and 1,10-phenanthroline functionalized mesoporous carbon (Phen-FMC). The pH dependence of Cu(2+) sorption, Cu(2+) sorption capacities, rates, and selectivity of the sorbents were determined and compared with those of commercial sorbents (Chelex-100 ion-exchange resin and Darco KB-B activated carbon) All three chelating diamine sorbents showed excellent Cu(2+) removal (similar to 95-99%) from river water and seawater over the pH range 6.0-8.0 EDA-SAMMS and AC-CH(2)-EDA demonstrated rapid Cu(2+) sorption kinetics (minutes) and good sorption capacities (26 and 17 mg Cu/g sorbent, respectively) in seawater, whereas Phen-FMC had excellent selectivity for Cu(2+) over other metal ions le g., Ca(2+), Fe(2+), Ni(2+), and Zn(2+)) and was able to achieve Cu below the EPA recommended levels for river and sea waters. C1 [Chouyyok, Wilaiwan; Shin, Yongsoon; Davidson, Joseph; Samuels, William D.; Lafemina, Nikki H.; Rutledge, Ryan D.; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sangvanich, Thanapon; Yantasee, Wassana] Oregon Hlth & Sci Univ, Portland, OR 97239 USA. RP Fryxell, GE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. FU National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; PNNL's Laboratory Directed Research and Development; Department of Energy's Office of Biological and Environmental Research and located at PNNL; U.S. Department of Energy [DE-AC06-67RLO 1830] FX This work was supported by the National Institute of Environmental Health Sciences (NIEHS), grant R21 ES015620, and PNNL's Laboratory Directed Research and Development A portion of research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-67RLO 1830. NR 36 TC 46 Z9 49 U1 4 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 15 PY 2010 VL 44 IS 16 BP 6390 EP 6395 DI 10.1021/es101165c PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 636JD UT WOS:000280727400062 PM 20608701 ER PT J AU Xiong, YL Deng, HR Nemer, M Johnsen, S AF Xiong, Yongliang Deng, Haoran Nemer, Martin Johnsen, Shelly TI Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg3Cl(OH)(5)center dot 4H(2)O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID THERMODYNAMIC PROPERTIES; FORMATION MECHANISM; IONIC STRENGTHS; HEAT-CAPACITIES; SYSTEM; PREDICTION; ELECTROLYTES; 25-DEGREES-C; EQUILIBRIA; BRINES AB In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg3Cl(OH)(5)center dot 4H(2)O, termed as phase 5, is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant in logarithmic units at 25 degrees C for the following reaction, Mg3Cl(OH)(5) center dot 4H(2)O + 5H(+) = 3Mg(2+) + 9H(2)O(I) + Cl- is calculated as 43.21 +/- 0.33 (2 sigma) based on the specific interaction theory (SIT) model for extrapolation to infinite dilution. The Gibbs free energy and enthalpy of formation for phase 5 at 25 degrees C are derived as -3384 +/- 2 (2 sigma) kJ mol(-1) and -3896 +/- 6 (2 sigma) kJ mol(-1), respectively. MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)(2)-based engineered barrier (bulk, pure Mg(OH)(2) corresponding to brucite) is to be employed in the Asse repository in Germany. Phase 5, and its similar phase, phase 3 (Mg2Cl(OH)(3)center dot 4H(2)O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be m(Mg) = 1.70 and pmH = 8.94 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application Performance Assessment Baseline Calculations indicate that phase 5, instead of phase 3, is indeed a stable phase when the WIPP Generic Weep Brine (GWB), a Na-Mg-Cl-dominated brine associated with the Salado Formation, equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. Therefore, phase 5 is important to the WIPP, and potentially important to other repositories in salt formations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Xiong, Yongliang; Deng, Haoran; Nemer, Martin; Johnsen, Shelly] Sandia Natl Labs, Carlsbad Programs Grp, Carlsbad, NM 88220 USA. RP Xiong, YL (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the US Department of Energy. Our thanks are due to Tana Saul for her laboratory assistance. The authors express their thanks to two journal reviewers for their insightful and thorough reviews, and to Dr. Dimitri Sverjensky, the Associate Editor, for his editorial efforts. Their comments and efforts have significantly improved our presentation. NR 31 TC 14 Z9 15 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 15 PY 2010 VL 74 IS 16 BP 4605 EP 4611 DI 10.1016/j.gca.2010.05.029 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 627LO UT WOS:000280041200001 ER PT J AU Chen, L Shet, S Tang, HW Ahn, KS Wang, HL Yan, YF Turner, J Al-Jassim, M AF Chen, Le Shet, Sudhakar Tang, Houwen Ahn, Kwang-soon Wang, Heli Yan, Yanfa Turner, John Al-Jassim, Mowafak TI Amorphous copper tungsten oxide with tunable band gaps SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOELECTROCHEMICAL PROPERTIES; FILMS; CRYSTALS; CELLS; WATER AB We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps. (C) 2010 American Institute of Physics. [doi:10.1063/1.3475714] C1 [Chen, Le; Shet, Sudhakar; Tang, Houwen; Wang, Heli; Yan, Yanfa; Turner, John; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ahn, Kwang-soon] Yeungnam Univ, Sch Display & Chem Engn, Dae Dong 712749, Kyungsan, South Korea. RP Chen, L (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Le.Chen@nrel.gov; Yanfa.Yan@nrel.gov FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308] FX We thank Todd Deutsch for insightful discussions and suggestions. This work is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. NR 19 TC 6 Z9 6 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 043502 DI 10.1063/1.3475714 PG 5 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100033 ER PT J AU Hansen, BR Bahl, CRH Kuhn, LT Smith, A Gschneidner, KA Pecharsky, VK AF Hansen, B. R. Bahl, C. R. H. Kuhn, L. Theil Smith, A. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Consequences of the magnetocaloric effect on magnetometry measurements SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POWDER-METALLURGY; TEMPERATURE; GD5SI2GE2; LA(FE; CO AB Magnetization curves recorded at high sweep-rates on magnetic materials near a phase transition temperature can be affected by temperature changes in the material due to the magnetocaloric effect. This change in the sample temperature is a result of the quasiadiabatic conditions that can occur under such conditions and we demonstrate its effects on magnetization curves of two magnetocaloric materials, La(Fe(0.945)Co(0.055))(11.9)Si(1.1) and Gd(5)Si(2)Ge(2). We show how a quantity calculated from isothermal magnetization curves, the magnetic entropy change, Delta S(M), is affected by the erroneous data. As Delta S(M) is a measure of the magnetocaloric effect, the discrepancies demonstrated here are more severe close to a peak in Delta S(M), which is precisely the quantity that is of interest and reported on in the literature from possibly erroneous magnetization data. We also demonstrate how, through simple measurements and without a direct measurement of the sample temperature, one can determine an appropriate sweep-rate of the magnetic field. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3466977] C1 [Hansen, B. R.; Bahl, C. R. H.; Kuhn, L. Theil; Smith, A.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Fuel Cells & Solid State Chem Div, DK-4000 Roskilde, Denmark. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Hansen, BR (reprint author), Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Fuel Cells & Solid State Chem Div, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM broh@risoe.dtu.dk RI Smith, Anders/E-7527-2013; Hansen, Britt/G-5821-2014; OI Smith, Anders/0000-0003-2723-8812; Hansen, Britt/0000-0002-4845-1789; Kuhn, Luise Theil/0000-0002-8403-1319; Bahl, Christian/0000-0002-1153-7183 FU Programme Commission on Energy and Environment (EnMi), Danish Council for Strategic Research [2104-06-0032]; Office of Science, Materials Sciences Division of the U.S. Department of Energy with Iowa State University [DE-AC02-07CH11358] FX The authors from Risco DTU acknowledge the support of the Programme Commission on Energy and Environment (EnMi) (Contract No. 2104-06-0032), which is part of the Danish Council for Strategic Research. Work at the Ames Laboratory is supported by the Office of Science, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University. Research technician J. Geyti is thanked for his invaluable help. NR 18 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 043923 DI 10.1063/1.3466977 PG 5 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100096 ER PT J AU Kalinin, SV Setter, N Kholkin, AL AF Kalinin, Sergei V. Setter, Nava Kholkin, Andrei L. TI Preface to Special Topic: Invited Papers from the International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, Aveiro, Portugal, 2009 SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID THIN-FILM; DOMAIN-STRUCTURES; NANOMETER-SCALE; ION BATTERIES; SURFACE; CRYSTALS; ELECTROMECHANICS; FERROELECTRICS; MOLECULES; CATHODES C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Setter, Nava] Swiss Fed Inst Technol EPFL, Ceram Lab, CH-1015 Lausanne, Switzerland. [Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; kholkin@ua.pt RI Kholkin, Andrei/G-5834-2010; Kalinin, Sergei/I-9096-2012 OI Kholkin, Andrei/0000-0003-3432-7610; Kalinin, Sergei/0000-0001-5354-6152 NR 62 TC 3 Z9 3 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 041901 DI 10.1063/1.3474648 PG 2 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100001 ER PT J AU Medlin, DL Ramasse, QM Spataru, CD Yang, NYC AF Medlin, D. L. Ramasse, Q. M. Spataru, C. D. Yang, N. Y. C. TI Structure of the (0001) basal twin boundary in Bi2Te3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THERMOELECTRIC PROPERTIES; POLYCRYSTALLINE SILICON; ELECTRONIC-STRUCTURE; BISMUTH TELLURIDE; HOT EXTRUSION; PSEUDOPOTENTIALS; REFINEMENT; COMPOUND; ALLOYS; TE AB We investigate the structure of the (0001) basal twin boundary in Bi2Te3. Electron diffraction measurements show that this interface corresponds to a 180 degrees rotation of the crystal about the [0001] axis, an alignment that reverses the stacking of the basal planes. The basal planes in the perfect Bi2Te3 structure are arranged in a repeating sequence of five-layer wide Te-(1)-Bi-Te-(2)-Bi-Te-(1) packets. Thus, it is possible for the twin interface to be located at one of three distinct locations: at the Te-(2) layer, the Bi layer, or the Te-(1) layer. Using aberration-corrected high-angle annular dark field scanning transmission electron microscopy, we show that the twin boundary is terminated at the Te-(1) layer, where the stacking forms a double-layer of Te. Our observations are consistent with ab initio calculations, which predict this twin termination to have the lowest interfacial energy of the three configurations we considered. Our calculations and observations also find a small expansion in the interplanar spacing at the interface. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457902] C1 [Medlin, D. L.; Spataru, C. D.; Yang, N. Y. C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Ramasse, Q. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Medlin, DL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM dlmedli@sandia.gov FU U.S. DOE-NNSA [AC04-94AL85000]; Office of Basic Energy Sciences, Division of Materials Sciences, of the U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH1123] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. DOE-NNSA, under Contract No. DE-AC04-94AL85000. Support at Sandia was provided in part by the Office of Basic Energy Sciences, Division of Materials Sciences, of the U.S. Department of Energy. The authors acknowledge the user program of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. The authors are grateful to Dr. Zhihui Zhang and Professor Enrique Lavernia, University of California, Davis, for assistance with the spark plasma sintering, and to Mr. Mark Homer, for preparing the TEM specimens. NR 35 TC 34 Z9 34 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 043517 DI 10.1063/1.3457902 PG 6 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100048 ER PT J AU Morozovska, AN Eliseev, EA Svechnikov, GS Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Svechnikov, G. S. Kalinin, S. V. TI Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 4th International Workshop and Satellite Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials CY JUN 23-27, 2009 CL Aveiro, PORTUGAL ID CONVERSION AB The size effect on pyroelectric response of ferroelectric nanowires is analyzed. The pyroelectric coefficient strongly increases with the wire radius decrease and diverges at critical radius R corresponding to the size-driven transition into paraelectric phase. Size-driven enhancement of pyroelectric coupling leads to the giant pyroelectric current and voltage generation by the polarized ferroelectric nanoparticles in response to the temperature fluctuation. The maximum efficiency of the pyroelectric energy harvesting and bolometric detection is derived, and is shown to approach the Carnot limit for low temperatures. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474964] C1 [Morozovska, A. N.; Svechnikov, G. S.] Natl Acad Sci Ukraine, V Lashkarev Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Kalinin, S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, V Lashkarev Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 22 TC 35 Z9 35 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 042009 DI 10.1063/1.3474964 PG 6 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100010 ER PT J AU Panasenko, D Shu, AJ Gonsalves, A Nakamura, K Matlis, NH Toth, C Leemans, WP AF Panasenko, Dmitriy Shu, Anthony J. Gonsalves, Anthony Nakamura, Kei Matlis, Nicholas H. Toth, Csaba Leemans, Wim P. TI Demonstration of a plasma mirror based on a laminar flow water film SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PULSE DURATION; LASER-PLASMA; INTENSITY; SUPPRESSION; TARGET; JET AB A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot. (C) 2010 American Institute of Physics. [doi:10.1063/1.3460627] C1 [Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Panasenko, D (reprint author), Phys Sci Inc, 6652 Owens Dr, Pleasanton, CA 94588 USA. EM wpleemans@lbl.gov FU Office of Science, High Energy Physics, U.S. DOE [DE-AC02-05CH11231] FX The authors would like to acknowledge R. Mathies and C. Stewart of UC Berkeley for their advice during the initial design of the wire-guided jet, O. Albert of LOA, France for the development of the XPW system, and D. Syversrud and N. Ybarrolaza for technical support. This work is supported by the Director, Office of Science, High Energy Physics, U.S. DOE, under Contract No. DE-AC02-05CH11231. NR 16 TC 17 Z9 17 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 044913 DI 10.1063/1.3460627 PG 4 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100145 ER PT J AU Rodriguez, BJ Jesse, S Morozovska, AN Svechnikov, SV Kiselev, DA Kholkin, AL Bokov, AA Ye, ZG Kalinin, SV AF Rodriguez, B. J. Jesse, S. Morozovska, A. N. Svechnikov, S. V. Kiselev, D. A. Kholkin, A. L. Bokov, A. A. Ye, Z. -G. Kalinin, S. V. TI Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3-PbTiO3 solid solutions SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 4th International Workshop and Satellite Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials CY JUN 23-27, 2009 CL Aveiro, PORTUGAL ID SINGLE-CRYSTALS; FORCE MICROSCOPY; PB(MG1/3NB2/3)O-3-PBTIO3; DISORDER; DOMAINS; PHASE AB Polarization switching in ergodic relaxor and ferroelectric phases in the PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT) system is studied using piezoresponse force microscopy, single point electromechanical relaxation measurements, and voltage spectroscopy mapping. The dependence of relaxation behavior on voltage pulse amplitude and time is found to follow a universal logarithmic behavior with a nearly constant slope. This behavior is indicative of the progressive population of slow relaxation states, as opposed to a linear relaxation in the presence of a broad relaxation time distribution. The role of relaxation behavior, ferroelectric nonlinearity, and the spatial inhomogeneity of the tip field on hysteresis loop behavior is analyzed in detail. The hysteresis loops for ergodic PMN-10%PT are shown to be kinetically limited, while in PMN with larger PT content, true ferroelectric hysteresis loops with low nucleation biases are observed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474961] C1 [Rodriguez, B. J.] Univ Coll Dublin, Dublin 4, Ireland. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Morozovska, A. N.; Svechnikov, S. V.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Kiselev, D. A.; Kholkin, A. L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kiselev, D. A.; Kholkin, A. L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. [Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, 4D LABS, Burnaby, BC V5A 1S6, Canada. RP Rodriguez, BJ (reprint author), Univ Coll Dublin, Dublin 4, Ireland. EM sergei2@ornl.gov RI Kholkin, Andrei/G-5834-2010; Bokov, Alexei/C-6924-2008; Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Kiselev, Dmitry/A-4359-2014; Jesse, Stephen/D-3975-2016 OI Kholkin, Andrei/0000-0003-3432-7610; Bokov, Alexei/0000-0003-1126-3378; Kalinin, Sergei/0000-0001-5354-6152; Kiselev, Dmitry/0000-0003-1047-3007; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 NR 40 TC 26 Z9 26 U1 6 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 042006 DI 10.1063/1.3474961 PG 11 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100007 ER PT J AU Wang, ZG Li, JB Gao, F Weber, WJ AF Wang, Zhiguo Li, Jingbo Gao, Fei Weber, William J. TI Defects in gallium nitride nanowires: First principles calculations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; GAN NANOWIRES; NATIVE DEFECTS; COMPLEXES; EPITAXY; GROWTH; ARRAYS AB Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N(2) molecular will appear in the GaN nanowire, which agrees well with experimental findings. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3476280] C1 [Wang, Zhiguo] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-76RL01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (Grant No. 10704014), the Young Scientists Foundation of Sichuan (Grant No. 09ZQ026-029), and UESTC (Grant No. JX0731). J. Li gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences. F. Gao and W. J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 36 TC 17 Z9 17 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 044305 DI 10.1063/1.3476280 PG 6 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100109 ER PT J AU Wildeson, IH Colby, R Ewoldt, DA Liang, ZW Zakharov, DN Zaluzec, NJ Garcia, RE Stach, EA Sands, TD AF Wildeson, Isaac H. Colby, Robert Ewoldt, David A. Liang, Zhiwen Zakharov, Dmitri N. Zaluzec, Nestor J. Garcia, R. Edwin Stach, Eric A. Sands, Timothy D. TI III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAN NANOWIRES; DIFFRACTION CONTRAST; STACKING-FAULTS; NANOROD ARRAYS; EMISSION; SEMICONDUCTORS; LUMINESCENCE; EFFICIENCY; SHIFT; FILMS AB Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth e templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {1 (1) over bar 01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to similar to 20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 degrees C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466998] C1 [Wildeson, Isaac H.; Sands, Timothy D.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. [Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Garcia, R. Edwin; Stach, Eric A.; Sands, Timothy D.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA. [Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Garcia, R. Edwin; Stach, Eric A.; Sands, Timothy D.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA. [Zaluzec, Nestor J.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA. RP Wildeson, IH (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. EM tsands@purdue.edu RI Sands, Timothy/D-2133-2009; Stach, Eric/D-8545-2011; Zakharov, Dmitri/F-4493-2014 OI Sands, Timothy/0000-0001-9718-6515; Stach, Eric/0000-0002-3366-2153; FU Department of Energy [DE-FC26-06NT42862]; UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Defense; NSF-DMR [0606395] FX This material is based on work supported by the Department of Energy under Award No. DE-FC26-06NT42862. Portions of the electron microscopy were accomplished under proposal number 081113-02A at the Electron Microscopy Center, Argonne National Laboratory, a U.S. Department of Energy Office Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We also thank the U.S. Department of Defense for supporting one of the authors (I.H.W.) with the National Defense Science and Engineering Graduate (NDSEG) research fellowship. R.C. and E.A.S. would like to acknowledge additional funding under NSF-DMR Grant No. 0606395. NR 51 TC 21 Z9 21 U1 1 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 15 PY 2010 VL 108 IS 4 AR 044303 DI 10.1063/1.3466998 PG 8 WC Physics, Applied SC Physics GA 650NV UT WOS:000281857100107 ER PT J AU Cicotte, KN Hedberg-Dirk, EL Dirk, SM AF Cicotte, Kirsten N. Hedberg-Dirk, Elizabeth L. Dirk, Shawn M. TI Synthesis and Electrospun Fiber Mats of Low T-g Poly(propylene fumerate-co-propylene maleate) SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE biomaterials; copolymerization; crosslinking; fibers; polyesters ID IN-VITRO DEGRADATION; COMPOSITE SCAFFOLDS; CROSS-LINKING; FUMARATE); BONE; NETWORKS; FABRICATION AB Many publications have examined the biodegradable polymer poly(propylene fumate) (PPF) for use in tissue engineering applications. We have examined a similar crosslinkable polymer system, poly(propylene fumerate)-co-(propylene maleate) (PPFcPM), derived from maleic anhydride (MA) and 1,2-propylene diol (PD). This copolymer system uses a less expensive monomer as well as leads to varied ratios of fumerate to maleate groups, allowing tuning of the crosslinked polymer properties such as degradation rate. Two different reaction conditions were used to synthesize the copolymer from MA and PD. In the first case (Method A), toluene was used as a solvent to azeotropically (85 degrees C) remove water to drive the acid catalyzed esterification reaction. In the second case (Method B), the initial ring opening reaction was conducted, followed by addition of catalyst and removal of water to produce polymer of higher molecular weight. Both polymer systems had glass transition temperatures (T-g) below room temperature. The low T-g PPFcPM was dissolved in chloroform along with the photoinitiator phenylbis(2,4,6-trimethylbenzoy1)-phosphine oxide (BAPO) and electrospun. The polymer fibers were crosslinked soon after they formed to produce noncalendaring 3D porous scaffolds. Control experiments without the BAPO photoinitiator did not produce fiber mats. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 1984-4991, 2010 C1 [Cicotte, Kirsten N.; Hedberg-Dirk, Elizabeth L.] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. [Cicotte, Kirsten N.; Dirk, Shawn M.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. [Hedberg-Dirk, Elizabeth L.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Hedberg-Dirk, EL (reprint author), Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. EM edirk@unm.edu; smdirk@sandia.gov FU United States Department of Energy [DE-AC04-94AL8500] FX Contract grant sponsor: Sandia (multiprogram laboratory operated by Sandia Corporation), Lockheed Martin company, United States Department of Energy; contract grant number: DE-AC04-94AL8500. NR 24 TC 2 Z9 2 U1 2 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0021-8995 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD AUG 15 PY 2010 VL 117 IS 4 BP 1984 EP 1991 DI 10.1002/app.32014 PG 8 WC Polymer Science SC Polymer Science GA 612HH UT WOS:000278886900015 ER PT J AU Flasinski, M Broniatowski, M Majewski, J Dynarowicz-Latka, P AF Flasinski, Michal Broniatowski, Marcin Majewski, Jaroslaw Dynarowicz-Latka, Patrycja TI X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of beta-cyclodextrin with model lipid membranes SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Lipid monolayers; beta-cyclodextrin; Grazing incidence X-ray diffraction; Model lipid rafts ID AIR-WATER-INTERFACE; CELLULAR CHOLESTEROL EFFLUX; PHOSPHOLIPID MONOLAYERS; DPPC/CHOLESTEROL MONOLAYERS; CONDENSED COMPLEXES; STEROL STRUCTURE; SPHINGOMYELIN; RAFTS; ORGANIZATION; REFLECTION AB The interactions of beta-CD with one component monolayers of cholesterol (chol), 1-stearoyl-sn-glycero-3-phosphocholine (lyso-PC), 1,2-dipalmitpyl-sn-phosphocholine (DPPC), sphingomyelin (SM) and the SM/chol and DPPC/chol mixtures have been investigated by the Langmuir monolayer technique and the synchrotron grazing incidence X-ray diffraction (GIXD). The investigated lipid monolayers have been studied with and without the 10(-3) M solution of beta-CD in the aqueous subphase. The surface pressure-area (pi-A) isotherms and the relaxation of the monolayers (surface pressure-time curves) were monitored. Our experiments reveal that there is not impact of beta-CD on the packing properties of the DPPC monolayers, while the presence of beta-CD in subphase changes the in-plane organization of SM molecules. Monolayers composed of pure chol molecules have been rapidly affected by the presence of the beta-CD in the subphase. Our data show that beta-CD can complex and desorb one-chain phospholipid (lyso-PC) but this process is relatively slow and, as indicated by the GIXD data, beta-CD molecules are present at the air/water interface. Subtraction of cholesterol by the beta-CD from mixed binary systems containing SM/chol (70/30, 50/50 and 30/70 mol ratio) and DPPC/chol (70/30 and 50/50 mol ratio) has also been investigated. Our experiments proved that cholesterol can be removed from the mixed monolayers only when it is unbound. The beta-CD was not capable to distract the monolayers of the SM/chol, forming a stable complex of the 2:1 stoichiometry (as observed in the model lipid raft). Interestingly, at the surface pressure of 30 mN/m also at the molar proportion of 50/50 no cholesterol removal was observed. This was interpreted by relatively strong SM/chol interactions and the tight packing of the mixed monolayer. For model membranes, in which cholesterol was in large excess (SM/chol, 30/70) the beta-CD extraction of cholesterol was observed, and the membrane composition evolves towards the lipid proportion corresponding to the stable complex stoichiometry (SM/chol 2:1). (C) 2010 Elsevier Inc. All rights reserved. C1 [Flasinski, Michal; Broniatowski, Marcin; Dynarowicz-Latka, Patrycja] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland. [Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Broniatowski, M (reprint author), Jagiellonian Univ, Fac Chem, Ingardena 3, PL-30060 Krakow, Poland. EM broniato@chemia.uj.edu.pl RI Lujan Center, LANL/G-4896-2012; Dynarowicz-Latka, Patrycja/Q-1067-2015 OI Dynarowicz-Latka, Patrycja/0000-0002-9778-6091 FU DOE Office of Basic Energy Sciences [DE-AC52-06NA25396] FX We would like to express our gratitude to DESY-HASYLAB, Hamburg (Germany) for granting us beam time for the realization of our project. LANSCE is funded by the DOE Office of Basic Energy Sciences under DOE Contract DE-AC52-06NA25396. NR 58 TC 25 Z9 25 U1 7 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD AUG 15 PY 2010 VL 348 IS 2 BP 511 EP 521 DI 10.1016/j.jcis.2010.04.086 PG 11 WC Chemistry, Physical SC Chemistry GA 626LY UT WOS:000279968700030 PM 20493495 ER PT J AU van der Vliet, D Strmcnik, DS Wang, C Stamenkovic, VR Markovic, NM Koper, MTM AF van der Vliet, Dennis Strmcnik, Dusan S. Wang, Chao Stamenkovic, Vojislav R. Markovic, Nenad M. Koper, Marc T. M. TI On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Ohmic drop; Oxygen Reduction Reaction; Voltammetry; Rotating disk electrode ID SINGLE-CRYSTAL; FUEL-CELLS; ELECTRODE; SURFACES; CATALYSTS; ALLOY; DROP; DISK; ELECTROCATALYSTS; NANOPARTICLES AB When measuring the current due to the Oxygen Reduction Reaction (ORR) and hydrogen oxidation reaction (HOR) on Pt and Pt alloys in aqueous electrolyte, it is important to take care of two major sources of error that are relatively easy to correct for. First, when measuring ORR voltammetry, adsorption processes are superimposed on the current. Second, the system resistance causes an Ohmic drop that may have a profound effect on the measured curves, especially at the higher currents close to the diffusion limiting current. More importantly, we show that it also influences the kinetic part of the potential curve in such a way that the Tafel slope may be determined incorrectly when failing to correct for Ohmic drop. Finally, because electrolyte resistance lowers with increasing temperature, failure to compensate for Ohmic drop may lead to erroneous conclusions about the temperature-dependent activity of a catalyst as well as the corresponding activation energies. (C) 2010 Elsevier B.V. All rights reserved. C1 [van der Vliet, Dennis; Koper, Marc T. M.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [van der Vliet, Dennis; Strmcnik, Dusan S.; Wang, Chao; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP van der Vliet, D (reprint author), Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands. EM d.vdvliet@chem.leidenuniv.nl RI Koper, Marc/C-5026-2009; Wang, Chao/F-4558-2012; van der Vliet, Dennis/P-2983-2015 OI Wang, Chao/0000-0001-7398-2090; van der Vliet, Dennis/0000-0002-2524-527X FU University of Chicago; US Department of Energy. Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; European Commission [214936-2]; Argonne, LLC FX This work was supported by the contract between the University of Chicago and Argonne, LLC, and the US Department of Energy. Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357).; DV and MK would like to acknowledge financial support from the European Commission (through FP7 Initial Training Network "ELCAT", Grant Agreement No. 214936-2). NR 44 TC 78 Z9 78 U1 9 U2 71 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD AUG 15 PY 2010 VL 647 IS 1 BP 29 EP 34 DI 10.1016/j.jelechem.2010.05.016 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 638AZ UT WOS:000280863200004 ER PT J AU Hanson, DE Roland, CM AF Hanson, David E. Roland, C. M. TI Theoretical Implications of the Elastic Modulus Discontinuity in Rubber Networks SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE elastomers; strain; stress; theory ID LINKED NATURAL-RUBBER; SMALL-STRAIN BEHAVIOR; POLY(DIMETHYLSILOXANE); COMPRESSIONS; EXTENSION; STRESS; RANGE AB The existence of a discontinuity in the modulus of rubber as the strain transitions from compression to extension is strongly suggested by multiple experiments. Classical rubber elasticity theories, however, do not admit such behavior. Here, we investigate a modification of the assumptions of classical elasticity theory to reconcile this discrepancy. We present an analysis of the consequences of assuming that chain forces are nonzero only for chain extension relative to the unstrained state, in contrast to the classical elasticity theory, which assumes that the chain force is directly proportional to the chain end-to-end distance (an entropic spring). Assuming an affine transformation of the network node coordinates, we derive two modulus discontinuity factors between compression and extension: D(1), based on the differing number of network chains being extended and D(2), based on the average differential chain extension. The discontinuities arise due to geometric effects, inherent in the affine transformation between compressive and extensive strains. We find that D(1), the ratio of the numbers of participating chains (compressive/extensive = 1.37), suffices to account for the experimentally observed modulus discontinuity in natural rubber of 1.34. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1795-1798, 2010 C1 [Hanson, David E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roland, C. M.] USN, Div Chem, Res Lab, Washington, DC 20375 USA. RP Hanson, DE (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM deh@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Office of Naval Research FX This work was performed under the auspices of Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396, and at the Naval Research Laboratory with support from the Office of Naval Research. NR 13 TC 4 Z9 4 U1 1 U2 7 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD AUG 15 PY 2010 VL 48 IS 16 BP 1795 EP 1798 DI 10.1002/polb.22045 PG 4 WC Polymer Science SC Polymer Science GA 634GE UT WOS:000280567500003 ER PT J AU Martinez, A Gerdes, K Gemmen, R Poston, J AF Martinez, Andrew Gerdes, Kirk Gemmen, Randall Poston, James TI Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cells; Gasification; Contaminants; Anodes; Thermodynamic analysis; Trace elements ID OPERATIONAL TEMPERATURE; PERFORMANCE; GAS; SYSTEM; SEPARATION; PHOSPHINE; MEMBRANES; CERMET AB A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning. Published by Elsevier B.V. C1 [Gerdes, Kirk; Gemmen, Randall; Poston, James] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Martinez, Andrew] US DOE, Washington, DC USA. [Martinez, Andrew] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Gerdes, K (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM kirk.gerdes@netl.doe.gov NR 28 TC 19 Z9 19 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2010 VL 195 IS 16 SI SI BP 5206 EP 5212 DI 10.1016/j.jpowsour.2010.03.046 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 598VZ UT WOS:000277868600007 ER PT J AU Weber, AZ AF Weber, Adam Z. TI Improved modeling and understanding of diffusion-media wettability on polymer-electrolyte-fuel-cell performance SO JOURNAL OF POWER SOURCES LA English DT Article DE Modeling; Diffusion media; Microporous layer; Water transport; Polymer electrolyte fuel cell; Gas-diffusion layer ID LIQUID WATER TRANSPORT; VALIDATED LEVERETT APPROACH; CAPILLARY-PRESSURE; MULTIPHASE FLOW; THERMAL-CONDUCTIVITY; NONISOTHERMAL MODEL; MASS-TRANSPORT; 2-PHASE MODEL; LAYERS; PEFC AB cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure-saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure-saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer. (C) 2010 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Weber, AZ (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,MS 70-1086, Berkeley, CA 94720 USA. EM azweber@lbl.gov OI Weber, Adam/0000-0002-7749-1624 FU Office of Hydrogen, Fuel Cell, and Infrastructure Technologies, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author would like to acknowledge helpful discussions and data from Drs. Jeffrey Gostick, Rodney Borup, and Rangachary Mukundan, Mr. Perry Cheung, and Ms. Haluna Gunterman. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 98 TC 32 Z9 32 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2010 VL 195 IS 16 SI SI BP 5292 EP 5304 DI 10.1016/j.jpowsour.2010.03.011 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 598VZ UT WOS:000277868600016 ER PT J AU Chen, GY Richardson, TJ AF Chen, Guoying Richardson, Thomas J. TI Continuity and performance in composite electrodes SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium batteries; Composite electrodes; Conductive coating; Continuity; Rate performance ID LITHIUM-ION BATTERIES; CATHODE MATERIAL AB Iris shown that the rate performance of a lithium battery composite electrode may be compromised by poor internal connectivity due to defects and inhomogeneities introduced during electrode fabrication or subsequent handling. Application of a thin conductive coating to the top surface of the electrode or to the separator surface in contact with the electrode improves the performance by providing alternative current paths to partially isolated particles of electroactive material. Mechanistic implications are discussed and strategies for improvement in electrode design and fabrication are presented. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chen, Guoying; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Chen, GY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gchen@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy; Office of FreedomCAR; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank IREQ Canada for providing LiFePO4 cathode laminates. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 11 TC 12 Z9 12 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2010 VL 195 IS 16 SI SI BP 5387 EP 5390 DI 10.1016/j.jpowsour.2010.03.012 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 598VZ UT WOS:000277868600028 ER PT J AU Turitsyn, SK Rubenchik, AM Fedoruk, MP AF Turitsyn, Sergei K. Rubenchik, Alexander M. Fedoruk, Michail P. TI On the theory of the modulation instability in optical fiber amplifiers SO OPTICS LETTERS LA English DT Article ID LASER; TRAIN AB The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. (C) 2010 Optical Society of America C1 [Turitsyn, Sergei K.] Aston Univ, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. [Rubenchik, Alexander M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fedoruk, Michail P.] Inst Computat Technol, Novosibirsk 630090, Russia. RP Turitsyn, SK (reprint author), Aston Univ, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. EM s.k.turitsyn@aston.ac.uk RI Turitsyn, Sergei/J-5562-2013 OI Turitsyn, Sergei/0000-0003-0101-3834 NR 10 TC 7 Z9 7 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD AUG 15 PY 2010 VL 35 IS 16 BP 2684 EP 2686 PG 3 WC Optics SC Optics GA 640OZ UT WOS:000281062400006 PM 20717423 ER PT J AU Miller, PE Bude, JD Suratwala, TI Shen, N Laurence, TA Steele, WA Menapace, J Feit, MD Wong, LL AF Miller, P. E. Bude, J. D. Suratwala, T. I. Shen, N. Laurence, T. A. Steele, W. A. Menapace, J. Feit, M. D. Wong, L. L. TI Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces SO OPTICS LETTERS LA English DT Article ID 351 NM; LASER; BREAKDOWN AB The optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355 nm, 3 ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35 J/cm(2). Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics. (C) 2010 Optical Society of America C1 [Miller, P. E.; Bude, J. D.; Suratwala, T. I.; Shen, N.; Laurence, T. A.; Steele, W. A.; Menapace, J.; Feit, M. D.; Wong, L. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Miller, PE (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM miller36@llnl.gov RI Laurence, Ted/E-4791-2011; Feit, Michael/A-4480-2009; Suratwala, Tayyab/A-9952-2013 OI Laurence, Ted/0000-0003-1474-779X; Suratwala, Tayyab/0000-0001-9086-1039 FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 14 TC 78 Z9 79 U1 4 U2 36 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD AUG 15 PY 2010 VL 35 IS 16 BP 2702 EP 2704 PG 3 WC Optics SC Optics GA 640OZ UT WOS:000281062400012 PM 20717429 ER PT J AU Tyagi, M Singh, SG Sangeeta Prasad, R Auluck, S Singh, DJ AF Tyagi, Mohit Singh, S. G. Sangeeta Prasad, R. Auluck, S. Singh, D. J. TI A study of electronic and optical properties of NaBi(WO4)(2): A disordered double tungstate crystal SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Electronic structure; Scheelite; Double tungstate crystal; Optical properties ID GENERALIZED GRADIENT APPROXIMATION; PBWO4 CHERENKOV RADIATORS; HARDNESS; SCHEELITE; EXCHANGE; SOLIDS; CAMOO4; PBMOO4; CAWO4; LEAD AB Electronic band structure, total and partial density of states and optical properties of NaBi(WO4)(2) (NBW) crystal have been calculated using the first principles full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure thus obtained shows a strong hybridization of W d and 0 p orbitals giving rise to relatively broad bands which are similar to other scheelite tungstates. Structural parameters obtained from Rietveld refinement of X-ray powder diffraction pattern recorded for high quality NBW crystal were further optimized by WIEN2K. Calculations using the generalized gradient approximation (GGA) show that this material exhibits an indirect band gap of 3.2 +/- 0.1 eV. The value of band gap, refractive index and birefringence obtained from first principle calculations are found to be in reasonable agreement with our experimental data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Prasad, R.; Auluck, S.] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India. [Tyagi, Mohit; Singh, S. G.] Bhabha Atom Res Ctr, TPPED, Bombay 400085, Maharashtra, India. [Sangeeta] Bhabha Atom Res Ctr, P&CD, Bombay 400085, Maharashtra, India. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Auluck, S (reprint author), Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India. EM sauluck@iitk.ac.in RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Science and Engineering FX Work at ORNL was supported by the Department of Energy, Division of Materials Science and Engineering. NR 36 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD AUG 15 PY 2010 VL 405 IS 16 BP 3267 EP 3271 DI 10.1016/j.physb.2010.04.057 PG 5 WC Physics, Condensed Matter SC Physics GA 633YE UT WOS:000280542600012 ER PT J AU Haldar, A Singh, NK Suresh, KG Nigam, AK AF Haldar, Arabinda Singh, Niraj K. Suresh, K. G. Nigam, A. K. TI Metastable magnetization behavior of magnetocaloric R6Co1.67Si3 (R=Tb and Nd) compounds SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Magnetic relaxation; Magnetoresistance; Magnetocaloric effect ID X-RAY-DIFFRACTION; TERNARY AB Magnetic field and time induced steps have been observed in the recently discovered ternary suicide R6CO1.67Si3. Huge relaxation steps are observed across different loops in the low temperature magnetization isotherms. Giant relaxation present in this system indicates the existence of incubation time to get the saturated moment at a certain field. Measurement protocol sensitive magnetization behavior observed in this system may arise from the strong magnetostructural coupling and/or magnetic frustration. Electrical resistivity and magnetoresistance also reflect the magnetic state of the compound. Magnetocaloric effect is found to be large at temperatures close to the magnetic transition temperature. (C) 2010 Elsevier B.V. All rights reserved. C1 [Haldar, Arabinda; Suresh, K. G.] Indian Inst Technol, Dept Phys, Magnet Mat Lab, Bombay 400076, Maharashtra, India. [Singh, Niraj K.] US DOE, Ames Lab, Iowa State Univ, Ames, IA 50011 USA. [Nigam, A. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Magnet Mat Lab, Bombay 400076, Maharashtra, India. EM suresh@phy.iitb.ac.in FU BRNS FX KGS and AKN thank BRNS for the financial support for carrying out this work. The authors also thank Mr. Devendra D. Buddhikot for his help in the resistivity measurements. NR 22 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD AUG 15 PY 2010 VL 405 IS 16 BP 3446 EP 3451 DI 10.1016/j.physb.2010.05.021 PG 6 WC Physics, Condensed Matter SC Physics GA 633YE UT WOS:000280542600047 ER PT J AU Shi, B Kitchen, C Weiser, B Mayers, D Foley, B Kemal, K Anastos, K Suchard, M Parker, M Brunner, C Burger, H AF Shi, Binshan Kitchen, Christina Weiser, Barbara Mayers, Douglas Foley, Brian Kemal, Kimdar Anastos, Kathryn Suchard, Marc Parker, Monica Brunner, Cheryl Burger, Harold TI Evolution and recombination of genes encoding HIV-1 drug resistance and tropism during antiretroviral therapy SO VIROLOGY LA English DT Article DE HIV-1 drug resistance; HIV-1 recombination; HIV-1 tropism ID HUMAN-IMMUNODEFICIENCY-VIRUS; FEMALE GENITAL-TRACT; SYNCYTIUM-INDUCING PHENOTYPE; CORECEPTOR USAGE; IN-VIVO; TYPE-1 ENV; V3 LOOP; VIROLOGICAL FAILURE; VIRAL LOAD; INTRAPATIENT RECOMBINATION AB Characterization of residual plasma virus during antiretroviral therapy (ART) is a high priority to improve understanding of HIV-1 pathogenesis and therapy. To understand the evolution of HIV-1 pot and env genes in viremic patients under selective pressure of ART, we performed longitudinal analyses of plasma-derived pol and env sequences from single HIV-1 genomes. We tested the hypotheses that drug resistance in pol was unrelated to changes in coreceptor usage (tropism), and that recombination played a role in evolution of viral strains. Recombinants were identified by using Bayesian and other computational methods. High-level genotypic resistance was seen in similar to 70% of X4 and R5 strains during ART. There was no significant association between resistance and tropism. Each patient displayed at least one recombinant encompassing env and representing a change in predicted tropism. These data suggest that, in addition to mutation, recombination can play a significant role in shaping HIV-1 evolution. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shi, Binshan; Weiser, Barbara; Kemal, Kimdar; Parker, Monica; Brunner, Cheryl; Burger, Harold] New York State Dept Hlth, Wadsworth Ctr, Div Infect Dis, Albany, NY 12208 USA. [Kitchen, Christina; Suchard, Marc] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA. [Weiser, Barbara; Burger, Harold] Albany Med Coll, Dept Med, Albany, NY 12208 USA. [Mayers, Douglas] Idenix Pharmaceut Inc, Cambridge, MA 02139 USA. [Foley, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Anastos, Kathryn] Albert Einstein Coll Med, Div Gen Internal Med, Bronx, NY 10467 USA. RP Burger, H (reprint author), New York State Dept Hlth, Wadsworth Ctr, Div Infect Dis, 120 New Scotland Ave, Albany, NY 12208 USA. EM burger@wadsworth.org OI Shi, binshan/0000-0003-1169-6237; Foley, Brian/0000-0002-1086-0296 FU NIH [RO1-AI52015, UO1-AI35004] FX We thank the study subjects for their participation and the Wadsworth Center Applied Genomics Technologies Core for DNA sequencing. We thank the NIH AIDS Reference and Reagent Program for HIV-1 strains and cell lines. This study was supported by NIH grants RO1-AI52015 and UO1-AI35004. NR 89 TC 17 Z9 17 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD AUG 15 PY 2010 VL 404 IS 1 BP 5 EP 20 DI 10.1016/j.virol.2010.04.008 PG 16 WC Virology SC Virology GA 613DN UT WOS:000278958000002 PM 20451945 ER PT J AU Zhu, J Weiss, M Grubman, MJ de los Santos, T AF Zhu, James Weiss, Marcelo Grubman, Marvin J. de los Santos, Teresa TI Differential gene expression in bovine cells infected with wild type and leaderless foot-and-mouth disease virus SO VIROLOGY LA English DT Article DE Picornaviruses; FMDV; Microarray; NF-kappa B ID NF-KAPPA-B; AMINO-ACID-SEQUENCE; CAP-BINDING PROTEIN; MESSENGER-RNA; IFN-LAMBDA; ALPHA/BETA INTERFERON; REGULATORY FACTOR; IMMUNE-RESPONSE; III IFN; INDUCTION AB The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) plays a critical role in viral pathogenesis. Molecular studies have demonstrated that L(pro) inhibits translation of host capped mRNAs and transcription of some genes involved in the innate immune response. We have used microarray technology to study the gene expression profile of bovine cells infected with wild type (WT) or leaderless FMDV. Thirty nine out of approximately 22,000 bovine genes were selectively up-regulated by 2 fold or more in leaderless versus WT virus infected cells. Most of the up-regulated genes corresponded to IFN-inducible genes, chemokines or transcription factors. Comparison of promoter sequences suggested that host factors NF-kappa B, ISGF3G and IRF1 specifically contributed to the differential expression, being NF-kappa B primarily responsible for the observed changes. Our results suggest that L(pro) plays a central role in the FMDV evasion of the innate immune response by inhibiting NF-kappa B dependent gene expression. Published by Elsevier Inc. C1 [Zhu, James; Weiss, Marcelo; Grubman, Marvin J.; de los Santos, Teresa] ARS, Plum Isl Anim Dis Ctr, N Atlantic Area, USDA, Greenport, NY 11944 USA. [Weiss, Marcelo] PIADC Res Participat Program, Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP de los Santos, T (reprint author), ARS, Plum Isl Anim Dis Ctr, N Atlantic Area, USDA, POB 848, Greenport, NY 11944 USA. EM teresa.delossantos@ars.usda.gov RI Weiss, Marcelo/I-1274-2012 OI Weiss, Marcelo/0000-0001-7902-3210 FU U.S. Department of Energy and the U.S. Department of Agriculture; CRIS [1940-32000-052-00D]; ARS; USDA with the Department of Homeland Security [60-1940-7-47] FX This research was supported in part by the Plum Island Animal Disease Research Participation Program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Department of Agriculture (appointment of Marcelo Weiss), by CRIS project number 1940-32000-052-00D, ARS, USDA (J. Zhu, M. J. Grubman and T. de los Santos) and by reimbursable agreement #60-1940-7-47 with the Department of Homeland Security. We thank Dr. Fayna Diaz-San Segundo for critical reading of the manuscript. NR 79 TC 13 Z9 14 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD AUG 15 PY 2010 VL 404 IS 1 BP 32 EP 40 DI 10.1016/j.virol.2010.04.021 PG 9 WC Virology SC Virology GA 613DN UT WOS:000278958000004 PM 20494391 ER PT J AU Lynch, RM Rong, R Li, B Shen, TY Honnen, W Mulenga, J Allen, S Pinter, A Gnanakaran, S Derdeyn, CA AF Lynch, Rebecca M. Rong, Rong Li, Bing Shen, Tongye Honnen, William Mulenga, Joseph Allen, Susan Pinter, Abraham Gnanakaran, S. Derdeyn, Cynthia A. TI Subtype-specific conservation of isoleucine 309 in the envelope V3 domain is linked to immune evasion in subtype C HIV-1 infection SO VIROLOGY LA English DT Article DE HIV-1; Subtype C; V3; Envelope ID HUMAN-IMMUNODEFICIENCY-VIRUS; TYPE-1 R5 ENVELOPES; SOLUBLE CD4; NEUTRALIZING ANTIBODIES; DISEASE PROGRESSION; MACROPHAGE-TROPISM; CLADE-C; HETEROSEXUAL TRANSMISSION; MONOCLONAL-ANTIBODIES; BIOLOGICAL-PROPERTIES AB The V3 region of the HIV-1 envelope (Env) glycoprotein gp120 is a key functional domain yet it exhibits distinct mutational patterns across subtypes. Here an invariant residue (Ile 309) was replaced with Leu in 7 subtype C patient-derived Envs from recent infection and 4 related neutralizing antibody escape variants that emerged later. For these 11 Envs, 1309L did not alter replication in primary CD4 T cells; however, replication in monocyte-derived macrophages was enhanced. Infection of cell lines with low CD4 or CCR5 revealed that 1309L enhanced utilization of CD4 but did not affect the ability to use CCR5. This CD4-enhanced phenotype tracked with sensitivity to sCD4, indicating increased exposure of the CD4 binding site. The results suggest that Ile 309 preserves a V3-mediated masking function that occludes the CD4 binding site. The findings point to an immune evasion strategy in subtype C Env to protect this vulnerable immune target. (C) 2010 Elsevier Inc. All rights reserved. C1 [Derdeyn, Cynthia A.] Emory Univ, Emory Vaccine Ctr, Atlanta, GA 30329 USA. [Rong, Rong; Li, Bing; Derdeyn, Cynthia A.] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30329 USA. [Allen, Susan] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30329 USA. [Allen, Susan] Emory Univ, Dept Global Hlth, Atlanta, GA 30329 USA. [Rong, Rong; Derdeyn, Cynthia A.] Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30329 USA. [Lynch, Rebecca M.] Emory Univ, Immunol & Mol Pathogenesis Program, Atlanta, GA 30329 USA. [Honnen, William; Pinter, Abraham] Univ Med & Dent New Jersey, New Jersey Med Sch, Publ Hlth Res Inst, Newark, NJ 07103 USA. [Mulenga, Joseph] Zambia Blood Transfus, Lusaka, Zambia. [Shen, Tongye] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Gnanakaran, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Derdeyn, CA (reprint author), Emory Univ, Emory Vaccine Ctr, 954 Gatewood Rd,Suite 1024, Atlanta, GA 30329 USA. EM cynthia.derdeyn@emory.edu RI Shen, Tongye/A-9718-2008; OI Shen, Tongye/0000-0003-1495-3104; Gnanakaran, S/0000-0002-9368-3044 FU New York University [AI27742]; NIH [AI58706, AI78410]; LANL/DOE [X1V5] FX We would like to thank Drs. David Kabat and Emily Platt for providing the HeLa-CD4 cell lines; and the interns, staff, participants, and Project Management Group at ZEHRP. We gratefully acknowledge Dr. Susan Zolla-Pazner for providing us with the subtype C anti-V3 monoclonal antibodies, work that was supported by the New York University CFAR Immunology Core grant AI27742. The work in this paper was supported by NIH grants AI58706 and AI78410. SG was supported by LANL/DOE X1V5 grant. NR 81 TC 11 Z9 11 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD AUG 15 PY 2010 VL 404 IS 1 BP 59 EP 70 DI 10.1016/j.virol.2010.04.010 PG 12 WC Virology SC Virology GA 613DN UT WOS:000278958000007 PM 20494390 ER PT J AU Revil, A Johnson, TC Finizola, A AF Revil, A. Johnson, T. C. Finizola, A. TI Three-dimensional resistivity tomography of Vulcan's forge, Vulcano Island, southern Italy SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID AEOLIAN ISLANDS; FOSSA CONE; LIPARI AB 9,525 DC resistivity measurements were taken along 9 profiles crossing the volcanic edifice of La Fossa di Vulcano (the forge of God Vulcan in ancient Roman mythology), Vulcano Island (Italy) using a total of 958 electrode locations. This unique data set has been inverted in 3D by minimizing the L-2 norm of the data misfit using a Gauss-Newton approach. The true 3D inversion was performed using parallel processing on an unstructured tetrahedral mesh containing 75,549 finite-element nodes and 398,208 elements to accurately model the topography of the volcanic edifice. The 3D tomogram shows a very conductive body (>0.1 S/m) comprised inside the Pietre Cotte crater with conductive volumes that are consistent with the position of temperature and CO2 anomalies at the ground surface. This conductive body is interpreted as the main hydrothermal body. It is overlaid by a resistive and cold cap in the bottom of the crater. The position of the conductive body is consistent with the deformation source responsible for the observed 1990-1996 deflation of the volcano associated with a decrease of hydrothermal activity. Citation: Revil, A., T. C. Johnson, and A. Finizola (2010), Three-dimensional resistivity tomography of Vulcan's forge, Vulcano Island, southern Italy, Geophys. Res. Lett., 37, L15308, doi: 10.1029/2010GL043983. C1 [Revil, A.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Johnson, T. C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Finizola, A.] IPGP, UR, UMR 7154, Lab GeoSci Reunion, F-97715 St Denis 9, Reunion. [Revil, A.] Univ Savoie, INSU, CNRS, LGIT,UMR 5559, Le Bourget Du Lac, France. RP Revil, A (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. EM arevil@mines.edu RI Finizola, Anthony/C-5688-2011 FU DOE [GO18195]; INSU-CNRS; Laboratoire GeoSciences Reunion (France); CNR; INGV; Dipartimento per la Protezione Civile FX Financial support was provided by DOE (award GO18195), INSU-CNRS, the Laboratoire GeoSciences Reunion (France), CNR, INGV, and the Dipartimento per la Protezione Civile (Project V3.5 Vulcano, 2005-2007) in Italy. We thank S. Piscitelli, E. Rizzo, T. Ricci, A. Angeletti, A. Crespy, M. Balasco, S. Barde Cabusson, L. Bennati, S. Byrdina, N. Carzaniga, F. Di Gangi, J. Morin, A. Perrone, M. Rossi, E. Roulleau, B. Suski, Xavier Rassion, and Etienne Wheris for their participation to the three field surveys and Alicia Hotovec for the compilation of the data. A special thanks to M. Marsella for providing us with the high resolution digital elevation model of Vulcano Island, J. Vandemeulebrouck and M. Todesco for fruitful discussions. We thank Eric Calais and two anonymous referees for their useful comments. IPGP contribution 2656. NR 18 TC 14 Z9 14 U1 4 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 14 PY 2010 VL 37 AR L15308 DI 10.1029/2010GL043983 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 639EV UT WOS:000280954900003 ER PT J AU Cannon, M Wang, CH Dunning, FB Reinhold, CO AF Cannon, M. Wang, C. H. Dunning, F. B. Reinhold, C. O. TI Lifetimes of heavy-Rydberg ion-pair states formed through Rydberg electron transfer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atom-molecule collisions; binding energy; carbon compounds; charge exchange; charge transfer states; chlorine; Monte Carlo methods; negative ions; positive ions; potassium; rotational states; Rydberg states; sulphur compounds; translational states ID KINETIC-ENERGY; ATTACHMENT; FRAGMENTATION; CCL4 AB The lifetimes of K(+)center dot center dot Cl(-), K(+)center dot center dot CN(-), and K(+)center dot center dot SF(6)- heavy-Rydberg ion-pair states produced through Rydberg electron transfer reactions are measured directly as a function of binding energy using electric field induced detachment and the ion-pair decay channels discussed. The data are interpreted using a Monte Carlo collision code that models the detailed kinematics of electron transfer reactions. The lifetimes of K(+)center dot center dot Cl(-) ion-pair states are observed to be very long, >100 mu s, and independent of binding energy. The lifetimes of strongly bound (>30 meV) K(+)center dot center dot CN(-) ion pairs are found to be similarly long but begin to decrease markedly as the binding energy is reduced below this value. This behavior is attributed to conversion of rotational energy in the CN(-) ion into translational energy of the ion pair. No long-lived K(+)center dot center dot SF(6)- ion pairs are observed, their lifetimes decreasing with increasing binding energy. This behavior suggests that ion-pair loss is associated with mutual neutralization as a result of charge transfer. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466924] C1 [Cannon, M.; Wang, C. H.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Cannon, M (reprint author), Rice Univ, Dept Phys & Astron, MS61,6100 Main St, Houston, TX 77005 USA. EM mcannon@rice.edu OI Reinhold, Carlos/0000-0003-0100-4962 FU Robert A. Welch Foundation [C-0734]; OBES, U.S. DOE [AC05-00OR 22725] FX This research was supported by the Robert A. Welch Foundation under Grant No. C-0734 and the OBES, U.S. DOE to ORNL under Contract No. AC05-00OR 22725 managed by the UT Batelle LLC. NR 20 TC 13 Z9 13 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 14 PY 2010 VL 133 IS 6 AR 064301 DI 10.1063/1.3466924 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 638ZY UT WOS:000280941800013 PM 20707564 ER PT J AU Stolte, WC Guillemin, R Demchenko, IN Ohrwall, G Yu, SW Young, JA Taupin, M Hemmers, O Piancastelli, MN Lindle, DW AF Stolte, W. C. Guillemin, R. Demchenko, I. N. Ohrwall, G. Yu, S-W Young, J. A. Taupin, M. Hemmers, O. Piancastelli, M. N. Lindle, D. W. TI Inner-shell photofragmentation of Cl-2 SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CHLORINE K-EDGE; MULTIPHOTON IONIZATION; COINCIDENCE MEASUREMENTS; PHOTOABSORPTION SPECTRA; RYDBERG STATES; EXCITED-STATES; HCL; SPECTROSCOPY; MOLECULES; CL2 AB We report an extensive study on partial-ion-yield spectroscopy around the Cl 1s and 2p ionization thresholds for Cl-2. All positive ion channels, several with the same mass/charge ratio, which could be distinguished by taking the advantage of the Cl-37 isotope, have been measured at a photon resolution of nearly 6500. At the Cl 1s ionization threshold, no significant differences are reported between the absorption and the partial-ion yields. In contrast, near the 2p ionization thresholds, we detect large variations in the fragmentation patterns following excitations to the Rydberg series when comparing the atomic fragment ions to the molecular fragment ions. We attribute the different behaviours to the more-or-less diffuse nature of Rydberg states with different angular momenta. C1 [Stolte, W. C.; Demchenko, I. N.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guillemin, R.] CNRS, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75231 Paris 05, France. [Demchenko, I. N.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Ohrwall, G.] Lund Univ, Max Lab, SE-22100 Lund, Sweden. [Yu, S-W] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Young, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Taupin, M.] Natl Sch Engn Caen ENSICAEN, F-14050 Caen 4, France. [Hemmers, O.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Piancastelli, M. N.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM WCStolte@lbl.gov FU ALS; National Science Foundation [PHY-05-55699]; DOE [DE-AC03-76SF00098] FX The authors thank the staff of the ALS for their excellent support. Support from the National Science Foundation under NSF grant no PHY-05-55699 is gratefully acknowledged. The Advanced Light Source is supported by DOE (DE-AC03-76SF00098). NR 31 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 14 PY 2010 VL 43 IS 15 SI SI AR 155202 DI 10.1088/0953-4075/43/15/155202 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 628IZ UT WOS:000280114100011 ER PT J AU Staten, ML Shimada, K AF Staten, Matthew L. Shimada, Kenji TI A close look at valences in hexahedral element meshes SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE hexahedra; finite elements; optimization; node valence; edge valence; topology ID OPTIMIZATION; IMPROVEMENT; QUALITY AB This paper discusses using valences in objective functions for topological modification of 3D hexahedral meshes. For topological optimization of 2D quadrilateral meshes, node valence (i.e. number of element edges attached to each node) is used to maximize the number of regular nodes (i.e. nodes with four attached edges). Difficulties in developing 3D hexahedral local topology modifications have limited the success of hexahedral topology optimization, although published literature suggests using an object function based on node valence. However, in this paper, we show that node valence is not a consistent measure of good hexahedral element topology, and objective functions based on node valence can lead to element topology, which will only admit concave element shapes. Instead, we propose that objective functions based on edge valence (i.e. number of quadrilateral faces attached to each element edge) will provide a consistent measure of element topology. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Staten, Matthew L.; Shimada, Kenji] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Staten, Matthew L.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Staten, ML (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mlstate@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Contract/grant sponsor: United States Department of Energy; contract/grant number: DE-AC04-94AL85000 NR 25 TC 3 Z9 3 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD AUG 13 PY 2010 VL 83 IS 7 BP 899 EP 914 DI 10.1002/nme.2876 PG 16 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 638FU UT WOS:000280879700005 ER PT J AU Lensch-Falk, JL Sugar, JD Hekmaty, MA Medlin, DL AF Lensch-Falk, J. L. Sugar, J. D. Hekmaty, M. A. Medlin, D. L. TI Morphological evolution of Ag2Te precipitates in thermoelectric PbTe SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Thermoelectric materials; Precipitation; Microstructure; Transmission electron microscopy; Atom probe tomography ID ALLOYS; SYSTEM; FIGURE; MERIT; SHAPE; AG; TEMPERATURE; AGPBMSBTE2+M; POLYMORPHISM; DIFFRACTION AB The precipitation of Ag2Te in a PbTe matrix is investigated using electron microscopy and atom probe tomography. We observe the formation of oriented nanoscale Ag2Te precipitates in PbTe. These precipitates initially form as coherent spherical nanoparticles and evolve into flattened semi-coherent disks during coarsening. This change in morphology is consistent with equilibrium shape theory for coherently strained precipitates. Upon annealing at elevated temperatures these precipitates eventually revert to an equiaxed morphology. We suggest this shape change occurs once the precipitates grow beyond a critical size, making it favorable to relieve the elastic coherency strains by forming interfacial misfit dislocations. These investigations of the shape and coherency of Ag2Te precipitates in PbTe should prove useful in the design of nanostructured thermoelectric materials. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lensch-Falk, J. L.; Sugar, J. D.; Hekmaty, M. A.; Medlin, D. L.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. RP Lensch-Falk, JL (reprint author), Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. EM jllensc@sandia.gov; jdsugar@sandia.gov; mabanke@sandia.gov; dlmedli@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences FX The authors would like to thank Andy Gardea, Jeff Chames, and Ryan Nishimoto for metallurgical preparation and imaging of SEM specimens, Nick Teslich for his assistance in preparation of specimens for APT at Lawrence Livermore National Laboratories, and Drs. Norm Bartelt, Steve Goods, Rick Karnesky, and Nancy Yang for useful discussions and suggestions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy, National Nuclear Security Administration under Contract DE-AC04-94AL85000. Support was provided in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences. NR 56 TC 22 Z9 22 U1 1 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD AUG 13 PY 2010 VL 504 IS 1 BP 37 EP 44 DI 10.1016/j.jallcom.2010.05.054 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 638WJ UT WOS:000280928400013 ER PT J AU Perry, JJP Asaithamby, A Barnebey, A Kiamanesch, F Chen, DJ Han, S Tainer, JA Yannone, SM AF Perry, J. Jefferson P. Asaithamby, Aroumougame Barnebey, Adam Kiamanesch, Foad Chen, David J. Han, Seungil Tainer, John A. Yannone, Steven M. TI Identification of a Coiled Coil in Werner Syndrome Protein That Facilitates Multimerization and Promotes Exonuclease Processivity SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID 4-NITROQUINOLINE 1-OXIDE SENSITIVITY; RECQ HELICASE; DNA HELICASE; HRDC DOMAIN; SUBSTRATE SPECIFICITIES; EXCISION-REPAIR; CELL-LINES; KINASE; WRN; DAMAGE AB Werner syndrome (WS) is a rare progeroid disorder characterized by genomic instability, increased cancer incidence, and early onset of a variety of aging pathologies. WS is unique among early aging syndromes in that affected individuals are developmentally normal, and phenotypic onset is in early adulthood. The protein defective in WS (WRN) is a member of the large RecQ family of helicases but is unique among this family in having an exonuclease. RecQ helicases form multimers, but the mechanism and consequence of multimerization remain incompletely defined. Here, we identify a novel heptad repeat coiled coil region between the WRN nuclease and helicase domains that facilitates multimerization of WRN. We mapped a novel and unique DNA-dependent protein kinase phosphorylation site proximal to the WRN multimerization region. However, phosphorylation at this site affected neither exonuclease activity nor multimeric state. We found that WRN nuclease is stimulated by DNA-dependent protein kinase independently of kinase activity or WRN nuclease multimeric status. In addition, WRN nuclease multimerization significantly increased nuclease processivity. We found that the novel WRN coiled coil domain is necessary for multimerization of the nuclease domain and sufficient to multimerize with full-length WRN in human cells. Importantly, correct homomultimerization is required for WRN function in vivo as overexpression of this multimerization domain caused increased sensitivity to camptothecin and 4-nitroquinoline 1-oxide similar to that in cells lacking functional WRN protein. C1 [Barnebey, Adam; Tainer, John A.; Yannone, Steven M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Yannone, Steven M.] Buck Inst Age Res, Novato, CA 94945 USA. [Perry, J. Jefferson P.; Tainer, John A.] Scripps Res Inst, Div Mol Radiat Biol, La Jolla, CA 92037 USA. [Asaithamby, Aroumougame; Kiamanesch, Foad; Chen, David J.] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA. [Han, Seungil] Pfizer Global Res & Dev, Groton, CT 06340 USA. [Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India. RP Yannone, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Mail Stop 84-171,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM SMYannone@lbl.gov RI Yannone, Steven/G-1927-2011 FU National Institutes of Health [CA104660, CA92584, CA134991]; United States Department of Energy Office of Science [DE-AC02-05CH11231] FX This work was supported, in whole or in part, by National Institutes of Health Grants CA104660 (to J.J.P. P., J.A.T., and S.M.Y.), CA92584 (to J.A.T. and D.J.C.), and CA134991 (to D.J.C.). This work was also supported by United States Department of Energy Office of Science Contract DE-AC02-05CH11231. NR 65 TC 16 Z9 16 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 13 PY 2010 VL 285 IS 33 BP 25699 EP 25707 DI 10.1074/jbc.M110.124941 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 635UN UT WOS:000280682400063 PM 20516064 ER PT J AU Stevenson, PG Mayfield, KJ Soliven, A Dennis, GR Gritti, F Guiochon, G Shalliker, RA AF Stevenson, Paul G. Mayfield, Kirsty J. Soliven, Arianne Dennis, Gary R. Gritti, Fabrice Guiochon, Georges Shalliker, R. Andrew TI pi-Selective stationary phases: (I) Influence of the spacer chain length of phenyl type phases on the aromatic and methylene selectivity of aromatic compounds in reversed phase high performance liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Phenyl type stationary phase; Aromatic selectivity; Methylene selectivity; Linear PAHs; n-Alkylbenzenes ID RETENTION BEHAVIOR; EXCESS ADSORPTION; COLUMNS; HYDROCARBONS; CLASSIFICATION; SURFACES; SYSTEMS; C18 AB Phenyl type stationary phases of increasing spacer chain length (phenyl, methyl phenyl, ethyl phenyl, propyl phenyl and butyl phenyl, with 0-4 carbon atoms in the spacer chain, respectively) were synthesised and packed in house to determine the impact that the spacer chain length has on the retention process. Two trends in the aromatic selectivity, q(aromatic), were observed, depending on whether the number of carbon atoms in the spacer chain is even or odd. Linear log k' vs phi plots were obtained for each stationary phase and the S coefficient was determined from the gradient of these plots. For the phenyl type phases, the S vs n(c) plots of the retention factors of linear polycyclic aromatic hydrocarbons vs the number of rings exhibit a distinct discontinuity that between 3 and 4 rings, which increases with increasing spacer chain length for even phases but decreases for odd phases. Accordingly, we suggest that the retention factors depend differently on the number of carbon atoms in the spacer chain depending on whether this number is even or odd and that this effect is caused by different orientations of the aromatic ring relative to the silica surface. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mayfield, Kirsty J.; Soliven, Arianne; Dennis, Gary R.; Shalliker, R. Andrew] Univ Western Sydney, Nanoscale Org, Parramatta, NSW 1797, Australia. [Mayfield, Kirsty J.; Soliven, Arianne; Dennis, Gary R.; Shalliker, R. Andrew] Univ Western Sydney, Dynam Grp, Parramatta, NSW 1797, Australia. [Stevenson, Paul G.; Mayfield, Kirsty J.; Soliven, Arianne; Dennis, Gary R.; Shalliker, R. Andrew] Univ Western Sydney Node, Australian Ctr Res Separat Sci ACROSS, Sch Nat Sci, Parramatta, NSW, Australia. [Stevenson, Paul G.] Univ Western Sydney, Ctr Complementary Med Res, Campbelltown, NSW, Australia. [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Shalliker, RA (reprint author), Univ Western Sydney, Nanoscale Org, Locked Bag 1797, Parramatta, NSW 1797, Australia. EM r.shalliker@uws.edu.au RI Stevenson, Paul/F-7285-2010 OI Stevenson, Paul/0000-0001-6780-6859 FU UWS; Australian Research Award (APA) FX Two of the authors (PGS and AS) acknowledge receipt of UWS research awards. KJM acknowledges receipt of an Australian Research Award (APA). NR 25 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD AUG 13 PY 2010 VL 1217 IS 33 BP 5358 EP 5364 DI 10.1016/j.chroma.2010.06.002 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 639JG UT WOS:000280970500006 PM 20615511 ER PT J AU Stevenson, PG Gritti, F Guiochon, G Mayfield, KJ Dennis, GR Shalliker, RA AF Stevenson, Paul G. Gritti, Fabrice Guiochon, Georges Mayfield, Kirsty J. Dennis, Gary R. Shalliker, R. Andrew TI pi-Selective stationary phases: (II) Adsorption behaviour of substituted aromatic compounds on n-alkyl-phenyl stationary phases SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Adsorption isotherms; Frontal analysis; Phenyl type; Ring orientation; Stationary phase ID LIQUID-CHROMATOGRAPHY; RETENTION BEHAVIOR; CHAIN-LENGTH; NONLINEAR CHROMATOGRAPHY; ENERGY-DISTRIBUTION; CHIRAL SELECTOR; LIGAND DENSITY; ISOTHERM MODEL; BETA-BLOCKERS; HYDROCARBONS AB The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by pi-pi interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands. (C) 2010 Elsevier B.V. All rights reserved. C1 [Shalliker, R. Andrew] Univ Western Sydney, Nanoscale Org, S Penrith Distribut Ctr, Parramatta, NSW 1797, Australia. [Mayfield, Kirsty J.; Dennis, Gary R.; Shalliker, R. Andrew] Univ Western Sydney, Dynam Grp, Parramatta, NSW 1797, Australia. [Stevenson, Paul G.; Mayfield, Kirsty J.; Dennis, Gary R.; Shalliker, R. Andrew] Univ Western Sydney Node, Sch Nat Sci, Australian Ctr Res Separat Sci ACROSS, Parramatta, NSW, Australia. [Stevenson, Paul G.] Univ Western Sydney, Ctr Complementary Med Res, Campbelltown, NSW, Australia. [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Shalliker, RA (reprint author), Univ Western Sydney, Nanoscale Org, S Penrith Distribut Ctr, Locked Bag 1797, Parramatta, NSW 1797, Australia. EM R.Shalliker@uws.edu.au RI Stevenson, Paul/F-7285-2010 OI Stevenson, Paul/0000-0001-6780-6859 FU UWS; Australian postgraduate research award FX PGS would like to acknowledge the receipt of a UWS postgraduate research award and KJM the receipt of an Australian postgraduate research award. NR 25 TC 9 Z9 9 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD AUG 13 PY 2010 VL 1217 IS 33 BP 5365 EP 5376 DI 10.1016/j.chroma.2010.04.064 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 639JG UT WOS:000280970500007 PM 20537339 ER PT J AU Liu, KJ Gary, SP Winske, D AF Liu, Kaijun Gary, S. Peter Winske, Dan TI Spectral properties of the Alfven cyclotron instability: Applications to relativistic electron scattering SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIATION BELT ELECTRONS; RESONANT DIFFUSION; ANISOTROPY INSTABILITIES; EQUATORIAL MAGNETOSPHERE; EARTHS MAGNETOSPHERE; GEOMAGNETIC STORMS; EMIC WAVES; PLASMA; ACCELERATION; MAGNETOSHEATH AB One-dimensional hybrid simulations of the Alfven-cyclotron instability in magnetized, homogeneous, collisionless, electron-proton plasmas are carried out to investigate the spectral properties of the resulting electromagnetic ion cyclotron (EMIC) fluctuations. The protons are initialized with a bi-Maxwellian velocity distribution (T-p perpendicular to > T-p parallel to, where the subscripts refer to directions relative to the background magnetic field) to drive the instability. The spectra of the resulting EMIC fluctuations are characterized in terms of the wave number corresponding to the peak energy spectral density and the spectral width, both of which agree with the prediction of linear dispersion theory using instantaneous simulation values of plasma parameters. By requiring the electrons on the edge of the loss cone to be in cyclotron resonance with the wave at peak energy spectral density, the approximate condition for fast loss of relativistic electrons in the outer radiation belt due to pitch angle scattering by EMIC waves is derived. In addition, the enhanced EMIC fluctuations in the hybrid simulations are used as input waves in test particle computations to study the pitch angle scattering of relativistic electrons. The results show that fast loss of geophysically interesting relativistic electrons (<= 2 MeV) is favored in regions of relatively high plasma densities, relatively cool proton temperatures, and relatively low magnetic fields. However, the results also suggest that the loss enhancement of geophysically interesting relativistic electrons by reduced proton temperatures can be weakened and complicated by the reduction in energy densities of the enhanced EMIC fluctuations corresponding to cooler proton temperatures. C1 [Liu, Kaijun; Gary, S. Peter; Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liu, KJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM liukaijun@gmail.com; pgary@lanl.gov; winske@lanl.gov RI Dong, Li/F-4931-2010 FU Defense Threat Reduction Agency [IACRO 07-4323I]; National Aeronautics and Space Administration FX This work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported primarily by the Defense Threat Reduction Agency under the "Basic Research for Combating Weapons of Mass Destruction (WMD)" Program, project IACRO 07-4323I, with additional support from the Heliospheric Guest Investigators Program of the National Aeronautics and Space Administration. NR 42 TC 4 Z9 4 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 13 PY 2010 VL 115 AR A08212 DI 10.1029/2009JA015201 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 639FV UT WOS:000280958900002 ER PT J AU Perez-Bergquist, AG Li, K Zhang, YW Wang, LM AF Perez-Bergquist, Alejandro G. Li, Kundar Zhang, Yanwen Wang, Lumin TI Ion irradiation-induced bimodal surface morphology changes in InSb SO NANOTECHNOLOGY LA English DT Article ID CARBON-FILMS; PLASTIC-FLOW; INSTABILITY; BOMBARDMENT; ENERGY; GASB; EVOLUTION; KINETICS; GROWTH AB High-energy ion irradiation of InSb results in the formation of bimodal surface structures, namely microscale hillock-like structures fully composed of nanoscale fibers. Analysis of the surface structures by a wide range of electron microscopy techniques reveals correlations between the irradiation conditions, such as the ion energy and fluence, and changes in the surface morphology. Sputtering effects play a key role in the integrity of the surface layer with increasing ion fluence. Possible mechanisms responsible for the morphological transformation are discussed, including both irradiation-induced and mechanical effects. C1 [Perez-Bergquist, Alejandro G.; Li, Kundar; Wang, Lumin] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48104 USA. [Zhang, Yanwen] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Perez-Bergquist, AG (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48104 USA. EM lmwang@umich.edu FU US DOE [DE-FG02-02ER46005, DE-AC05-76RL01830]; Division of Materials Sciences and Engineering of the Office of Basic Energy Sciences, US DOE; NSF [DMR-0320740, DMR-9871177] FX This study was supported by the US DOE (DE-FG02-02ER46005 and DE-AC05-76RL01830). Y Zhang is supported by the PECASE fund from the Division of Materials Sciences and Engineering of the Office of Basic Energy Sciences, US DOE. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Analyses were completed at the University of Michigan's Electron Microbeam Analysis Laboratory using equipment supported in part by the NSF (DMR-0320740 and DMR-9871177). NR 27 TC 6 Z9 6 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 13 PY 2010 VL 21 IS 32 AR 325602 DI 10.1088/0957-4484/21/32/325602 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 631VL UT WOS:000280378200005 PM 20639585 ER PT J AU Sales, DL Varela, M Pennycook, SJ Galindo, PL Gonzalez, L Gonzalez, Y Fuster, D Molina, SI AF Sales, D. L. Varela, M. Pennycook, S. J. Galindo, P. L. Gonzalez, L. Gonzalez, Y. Fuster, D. Molina, S. I. TI Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy SO NANOTECHNOLOGY LA English DT Article ID NUCLEATION SITES; GROWTH; STRAIN; NANOSTRUCTURES; SHAPE AB Evolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of {114} or {118}, ending with the formation of mature quantum wires with {114} facets. Significant changes in wire dimensions are measured when varying slightly the amount of InAs deposited. These results are used as input parameters to build three-dimensional models that allow calculation of the strain energy during the quantum wire formation process. The observed morphological evolution is explained in terms of the calculated elastic energy changes at the growth front. Regions of the wetting layer close to the nanostructure perimeters have higher strain energy, causing migration of As atoms towards the quantum wire terraces, where the structure is partially relaxed; the thickness of the wetting layer is reduced in these zones and the island height increases until the (001) facet is removed. C1 [Sales, D. L.; Molina, S. I.] Univ Cadiz, Dept Ciencia Mat, E-11510 Cadiz, Spain. [Sales, D. L.; Molina, S. I.] Univ Cadiz, IM & QI, E-11510 Puerto Real, Spain. [Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Galindo, P. L.] Univ Cadiz, Dept Lenguajes & Sistemas Informat, E-11510 Cadiz, Spain. [Gonzalez, L.; Gonzalez, Y.] CSIC, Inst Microelect Madrid, CNM, E-28760 Madrid, Spain. [Fuster, D.] Univ Valencia, UMDO, Unidad Asociada, CSIC,IMM,Inst Ciencia Mat, Valencia 4607, Spain. RP Sales, DL (reprint author), Univ Cadiz, Dept Ciencia Mat, Campus Rio San Pedro, E-11510 Cadiz, Spain. EM david.sales@uca.es RI Varela, Maria/E-2472-2014; Gonzalez, Luisa/E-6990-2010; Sales, David/K-9453-2014; GALINDO, PEDRO/L-6183-2014; Molina, Sergio/A-8241-2008; Varela, Maria/H-2648-2012; Gonzalez, Yolanda/C-5234-2011; Microelectronica de Madrid, Instituto de/D-5173-2013; Fuster, David/A-7295-2014 OI Varela, Maria/0000-0002-6582-7004; Gonzalez, Luisa/0000-0002-8745-7673; Sales, David/0000-0001-6652-514X; GALINDO, PEDRO/0000-0003-0892-8113; Molina, Sergio/0000-0002-5221-2852; Gonzalez, Yolanda/0000-0002-7581-7328; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Fuster, David/0000-0002-8809-697X FU Spanish MCI [TEC2008-06756-C03-02, 03]; Consolider-Ingenio [CSD2009-00013, QOIT CSD2006-0019]; Junta de Andalucia (PAI) [TEP-120, TIC-145, P08-TEP-03516]; CAM [Q&CLight S2009ESP-1503]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US DOE FX This work was supported by the Spanish MCI (TEC2008-06756-C03-02 and 03, Consolider-Ingenio 2010 IMAGINE CSD2009-00013 and QOIT CSD2006-0019), the Junta de Andalucia (PAI research groups TEP-120 and TIC-145; project P08-TEP-03516), the CAM (Q&CLight S2009ESP-1503) and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US DOE (MV and SJP). NR 30 TC 2 Z9 2 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 13 PY 2010 VL 21 IS 32 AR 325706 DI 10.1088/0957-4484/21/32/325706 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 631VL UT WOS:000280378200014 PM 20647625 ER PT J AU Kurup, A AF Kurup, A. TI Muon to electron conversion: how to find an electron in a muon haystack SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Review DE particle physics; muon to electron conversion; accelerator physics; fixed-field alternating-gradient accelerator ID DETECTOR AB The standard model (SM) of particle physics describes how the Universe works at a fundamental level. Even though this theory has proven to be very successful over the past 50 years, we know it is incomplete. Many theories that go beyond the SM predict the occurrence of certain processes that are forbidden by the SM, such as muon to electron conversion. This paper will briefly review the history of muon to electron conversion and focus on the high-precision experiments currently being proposed, COMET (Coherent Muon to Electron Transition) and Mu2e, and a next-generation experiment, PRISM. The PRISM experiment intends to use a novel type of accelerator called a fixed field alternating-gradient (FFAG) accelerator. There has recently been renewed interest in FFAGs for the Neutrino Factory and the Muon Collider, and because they have applications in many areas outside of particle physics, such as energy production and cancer therapy. The synergies between these particle physics experiments and other applications will also be discussed. C1 [Kurup, A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2BW, England. [Kurup, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kurup, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, Prince Consort Rd, London SW7 2BW, England. EM a.kurup@imperial.ac.uk NR 14 TC 1 Z9 1 U1 0 U2 1 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD AUG 13 PY 2010 VL 368 IS 1924 BP 3645 EP 3655 DI 10.1098/rsta.2010.0058 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 619XL UT WOS:000279463500013 PM 20603374 ER PT J AU Glatz, A Beloborodov, IS Chtchelkatchev, NM Vinokur, VM AF Glatz, A. Beloborodov, I. S. Chtchelkatchev, N. M. Vinokur, V. M. TI Heating effects in a chain of quantum dots SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-PHONON INTERACTION; GRANULAR METALS; SUPERCONDUCTORS; CONDUCTIVITY AB We study heating effects in a chain of weakly coupled grains due to electron-hole pair creation. The main mechanism for the latter at low temperatures is due to inelastic electron cotunneling processes in the array. We develop a quantitative kinetic theory for these systems and calculate the array temperature profile as a function of grain parameters, bias voltage or current, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments. In the low- and high-voltage limits we solve the stationary heat-flux equation analytically. We demonstrate the overheating hysteresis in the large-current or voltage regimes. In addition we consider the influence of a substrate on the system which acts as a heat sink. We show that nanodot chains can be used as highly sensitive thermometers over a broad range of temperatures. C1 [Glatz, A.; Chtchelkatchev, N. M.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; Research Corporation for Science Advancement FX A. G., N.M.C., and V. M. V. were supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. I. S. B. was supported by an award from Research Corporation for Science Advancement. NR 33 TC 5 Z9 5 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 13 PY 2010 VL 82 IS 7 AR 075314 DI 10.1103/PhysRevB.82.075314 PG 8 WC Physics, Condensed Matter SC Physics GA 638BI UT WOS:000280864300004 ER PT J AU Ivashchenko, VI Turchi, PEA Olifan, EI AF Ivashchenko, V. I. Turchi, P. E. A. Olifan, E. I. TI Phase stability and mechanical properties of niobium nitrides SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL NITRIDES; NBNX THIN-FILMS; ELECTRONIC-STRUCTURE; PHONON ANOMALIES; 1ST PRINCIPLES; 1ST-PRINCIPLES; CARBIDES; SURFACES; SYSTEM AB First-principles pseudopotential calculations were performed to investigate the structural stability of various phases of niobium nitrides NbN(x). The stability of the NaCl-, NiAs-, AsNi-, and CW (anti-WC)-type NbN phases, the substoichiometric Nb(8)N(7), Nb(4)N(3), and Nb(32)N(31) compounds are analyzed on the basis of the results of electronic structure and phonon calculations. The behavior of these structures under uniaxial tensile strain was investigated. The electronic origin of the soft phonon modes and the mechanical properties of niobium nitrides are discussed. C1 [Ivashchenko, V. I.; Olifan, E. I.] NAS Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Turchi, P. E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ivashchenko, VI (reprint author), NAS Ukraine, Inst Problems Mat Sci, Krzhyzhanovsky St 3, UA-03142 Kiev, Ukraine. FU STCU [4682]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the STCU under Contract, No. 4682. The work of P. T. was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 31 TC 25 Z9 25 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 13 PY 2010 VL 82 IS 5 AR 054109 DI 10.1103/PhysRevB.82.054109 PG 9 WC Physics, Condensed Matter SC Physics GA 638AS UT WOS:000280862500002 ER PT J AU Johnson, LM Thurber, A Anghel, J Sabetian, M Engelhard, MH Tenne, DA Hanna, CB Punnoose, A AF Johnson, Lydia M. Thurber, Aaron Anghel, Joshua Sabetian, Maryam Engelhard, Mark H. Tenne, Dmitri A. Hanna, Charles B. Punnoose, Alex TI Transition metal dopants essential for producing ferromagnetism in metal oxide nanoparticles SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SEMICONDUCTORS AB Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants have been challenged in this work by investigating 62 high-quality well-characterized nanoparticle samples of both undoped and Fe-doped (0-10 % Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization without any dependence on the nanoparticle size. However, chemically synthesized Zn(1-x)Fe(x)O nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn(1-x)Fe(x)O nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn(1-x)Fe(x)O nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. C1 [Johnson, Lydia M.; Thurber, Aaron; Anghel, Joshua; Sabetian, Maryam; Tenne, Dmitri A.; Hanna, Charles B.; Punnoose, Alex] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Punnoose, A (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA. EM apunnoos@boisestate.edu RI Engelhard, Mark/F-1317-2010; Tenne, Dmitri/C-3294-2009; OI Tenne, Dmitri/0000-0003-2697-8958; Engelhard, Mark/0000-0002-5543-0812 FU NSF [DMR-0449639]; DoE-EPSCoR [DE-FG02-04ER46142]; ARO [W911NF-09-1-0051]; NSF-MRI [0722699, 0521315]; NSF-RUI [DMR-0840227]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This work was supported in part by the NSF-CAREER program (Grant No. DMR-0449639), DoE-EPSCoR program (Grant No. DE-FG02-04ER46142), ARO under Grant No. W911NF-09-1-0051, NSF-MRI under Awards No. 0722699 and No. 0521315, and NSF-RUI (Grant No. DMR-0840227). A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 21 TC 13 Z9 13 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 13 PY 2010 VL 82 IS 5 AR 054419 DI 10.1103/PhysRevB.82.054419 PG 5 WC Physics, Condensed Matter SC Physics GA 638AS UT WOS:000280862500004 ER PT J AU Zapf, VS Kenzelmann, M Wolff-Fabris, F Balakirev, F Chen, Y AF Zapf, V. S. Kenzelmann, M. Wolff-Fabris, F. Balakirev, F. Chen, Y. TI Magnetically induced electric polarization in an organometallic magnet SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRICITY; MULTIFERROICS AB The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition-metal oxides. The most direct coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks spatial inversion symmetry. However, it has been difficult to find nonoxide-based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S = 1/2 Cu spins, in which electric polarization arises from noncollinear magnetic order. We show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures. C1 [Zapf, V. S.; Wolff-Fabris, F.; Balakirev, F.] Los Alamos Natl Lab, Natl High Magnet Field Lab NHMFL, Los Alamos, NM 87545 USA. [Kenzelmann, M.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Chen, Y.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Chen, Y.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Zapf, VS (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab NHMFL, POB 1663, Los Alamos, NM 87545 USA. RI Zapf, Vivien/K-5645-2013; Kenzelmann, Michel/A-8438-2008 OI Zapf, Vivien/0000-0002-8375-4515; Kenzelmann, Michel/0000-0001-7913-4826 FU U.S. National Science Foundation [DMR901624]; State of Florida; U.S. Department of Energy; National Science Foundation [DMR-0306940] FX Work at the National High Magnetic Field Laboratory was supported by the U.S. National Science Foundation through Cooperative Grant No. DMR901624, the State of Florida, and the U.S. Department of Energy. Work at Johns Hopkins University was supported by the National Science Foundation through Grant No. DMR-0306940. NR 25 TC 15 Z9 15 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 13 PY 2010 VL 82 IS 6 AR 060402 DI 10.1103/PhysRevB.82.060402 PG 4 WC Physics, Condensed Matter SC Physics GA 638BH UT WOS:000280864200001 ER PT J AU Kortelainen, M Lesinski, T More, J Nazarewicz, W Sarich, J Schunck, N Stoitsov, MV Wild, S AF Kortelainen, M. Lesinski, T. More, J. Nazarewicz, W. Sarich, J. Schunck, N. Stoitsov, M. V. Wild, S. TI Nuclear energy density optimization SO PHYSICAL REVIEW C LA English DT Article ID HARMONIC-OSCILLATOR BASIS; GROUND-STATE PROPERTIES; ATOMIC MASS EVALUATION; HARTREE-FOCK EQUATIONS; EFFECTIVE FORCES; SKYRME INTERACTION; LEAST-SQUARES; DRIP-LINE; PARAMETRIZATION; MATTER AB We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDF0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis. C1 [Kortelainen, M.; Lesinski, T.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kortelainen, M.; Lesinski, T.; Nazarewicz, W.; Schunck, N.; Stoitsov, M. V.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [More, J.; Sarich, J.; Wild, S.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Stoitsov, M. V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. RP Kortelainen, M (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU Office of Nuclear Physics, US Department of Energy [DE-FC02-09ER41583, DE-FG02-96ER40963, DE-FG02-07ER41529, DE-FG0587ER40361, DE-AC0Z-06CA11357] FX We thank Peter Klupfel for his help with the experimental database used in this work. This work was supported by the Office of Nuclear Physics, US Department of Energy under Contracts No. DE-FC02-09ER41583 (UNEDF SciDAC Collaboration), No. DE-FG02-96ER40963 and No. DE-FG02-07ER41529 (University of Tennessee), No. DE-FG0587ER40361 (Joint Institute for Heavy Ion Research), and No. DE-AC0Z-06CA11357 (Argonne National Laboratory). Computational resources were provided through an INCITE award "Computational Nuclear Structure" by the National Center for Computational Sciences and National Institute for Computational Sciences at Oak Ridge National Laboratory and through an award by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 107 TC 189 Z9 190 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 13 PY 2010 VL 82 IS 2 AR 024313 DI 10.1103/PhysRevC.82.024313 PG 18 WC Physics, Nuclear SC Physics GA 638BK UT WOS:000280864500003 ER PT J AU Hamaus, N Seljak, U Desjacques, V Smith, RE Baldauf, T AF Hamaus, Nico Seljak, Uros Desjacques, Vincent Smith, Robert E. Baldauf, Tobias TI Minimizing the stochasticity of halos in large-scale structure surveys SO PHYSICAL REVIEW D LA English DT Article ID LUMINOUS RED GALAXIES; COSMOLOGICAL CONSTRAINTS; INITIAL CONDITIONS; DARK-MATTER; BIAS; MODEL; MASS; SIMULATIONS; TRANSIENTS; CLUSTERS AB In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as C-ij <(delta(i) -b(i)delta(m) )(delta(j) -b(j)delta(m))>, where delta(m) is the dark matter overdensity in Fourier space, delta(i) the halo overdensity of the i-th halo mass bin, and b(i) the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/(n) over bar, where (n) over bar is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the stochasticity between halos and the dark matter can be reduced further when going to halo masses lower than we can resolve in current simulations. C1 [Hamaus, Nico; Seljak, Uros; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Seoul 120750, South Korea. RP Hamaus, N (reprint author), Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. EM hamaus@physik.uzh.ch; seljak@physik.uzh.ch RI Desjacques, Vincent/A-1892-2014 FU Marie Curie Reintegration Grant; Swiss National Foundation; Packard Foundation; Swiss National Foundation [200021-116696/1]; WCU [R32-2009-000-10130-0] FX We thank Patrick McDonald and Martin White for useful discussions, V. Springel for making public his GADGET II code and for providing his B-FOF halo finder, and Roman Scoccimarro for making public his 2LPT initial conditions code. R. E. S. acknowledges support from a Marie Curie Reintegration Grant and the Swiss National Foundation. This work is supported by the Packard Foundation, the Swiss National Foundation under Contract No. 200021-116696/1, and WCU Grant No. R32-2009-000-10130-0. NR 46 TC 65 Z9 65 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 13 PY 2010 VL 82 IS 4 AR 043515 DI 10.1103/PhysRevD.82.043515 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 638BM UT WOS:000280864800003 ER PT J AU Soni, A Alok, AK Giri, A Mohanta, R Nandi, S AF Soni, Amarjit Alok, Ashutosh Kumar Giri, Anjan Mohanta, Rukmani Nandi, Soumitra TI Standard model with four generations: Selected implications for rare B and K decays SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; FORWARD-BACKWARD ASYMMETRY; MINIMAL FLAVOR VIOLATION; QUARK-LEPTON GENERATIONS; HEAVY TOP-QUARK; CP-VIOLATION; LEADING LOGARITHMS; QCD CORRECTIONS; 4TH GENERATION; PRECISION-MEASUREMENTS AB We extend our recent work and study implications of the standard model with four generations (SM4) for rare B and K decays. We again take seriously the several 2-3 sigma anomalies seen in B, B-s decays and interpret them in the context of this simple extension of the SM. SM4 is also of course of considerable interest for its potential relevance to dynamical electroweak symmetry breaking and to baryogenesis. Using experimental information from processes such as B -> X-s gamma, B-d and B-s mixings, indirect CP-violation from K-L -> pi pi etc. along with oblique corrections, we constrain the relevant parameter space of the SM4, and find m(t') of about 400-600 GeV with a mixing angle vertical bar V-t'b(*) V-t's vertical bar in the range of about 0:05-1:4 x 10(-2) and with an appreciable CP-odd associated phase, are favored by the current data. Given the unique role of the CP asymmetry in B-s -> psi phi due to its gold-plated nature, correlation of that with many other interesting observables, including the semileptonic asymmetry (A(SL)) are studied in SM4. We also identify several processes, such as B -> X-s nu(nu) over bar, K-L -> pi(0)nu(nu) over bar etc., that are significantly different in SM4 from the SM. Experimentally the very distinctive process Bs -> mu(+)mu(-) is also discussed; the branching ratio can be larger or smaller than in SM, (3.2 -> 4.2) x 10(-9), by a factor of O(3). C1 [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alok, Ashutosh Kumar] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Giri, Anjan] Indian Inst Technol Hyderabad, Dept Phys, Hyderabad 502205, Andhra Pradesh, India. [Mohanta, Rukmani] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. [Nandi, Soumitra] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy. [Nandi, Soumitra] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. RP Soni, A (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU NSERC of Canada; U.S. DOE [DE-AC02-98CH10886]; CSIR; DST, Govt. of India; MIUR [2008H8F9RA_002]; European Community [MRTN-CT-2006-035505] FX We want to thank Andrzej Buras, Martin Beneke, Thorsten Feldmann, Tillmann Heidsieck, Alexander Lenz, and Giovanni Punzi for many discussions. S. N. would also like to thank Carlo Giunti for discussion regarding numerical analysis and the theory division of Saha Institute of Nuclear Physics (SINP), in particular, to Gautam Bhattacharyya, for hospitality. The work of A. K. A. is financially supported by NSERC of Canada. The work of A. S. is supported in part by the U.S. DOE Grant No. DE-AC02-98CH10886(BNL). The work of A. G. is supported in part by CSIR and DST, Govt. of India and the work of RM is supported in part by DST, Govt. of India. S. N's work is supported in part by MIUR under Contract No. 2008H8F9RA_002 and by the European Community's Marie-Curie Research Training Network under Contract No. MRTN-CT-2006-035505 Tools and Precision Calculations for Physics Discoveries at Colliders. NR 177 TC 93 Z9 93 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 13 PY 2010 VL 82 IS 3 AR 033009 DI 10.1103/PhysRevD.82.033009 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 638BL UT WOS:000280864600001 ER PT J AU Anderson, JA Sknepnek, R Travesset, A AF Anderson, J. A. Sknepnek, R. Travesset, A. TI Design of polymer nanocomposites in solution by polymer functionalization SO PHYSICAL REVIEW E LA English DT Article ID COPOLYMER-NANOPARTICLE COMPOSITES; BLOCK-COPOLYMER; MOLECULAR-DYNAMICS; TRIBLOCK COPOLYMERS; STRONG SEGREGATION; CUBIC-CRYSTALS; AGGREGATION; SIMULATION; MIXTURES; DIBLOCK AB Polymer nanocomposites, materials combining polymers and inorganic components such as nanosized crystallites or nanoparticles have attracted significant attention in recent years. A successful strategy for designing polymer nanocomposites is polymer functionalization via attaching functional groups with specific affinity for the inorganic component. In this paper, a systematic investigation by molecular dynamics of polymer functionalization for design of composites combining nanosize crystallites with multiblock polymers in solution is presented. It is shown that functionalization is an example of active self-assembly, where the resulting polymer nanocomposite exhibits a different type of order than the original pure polymer system (without inorganic components). Optimal polymer architectures and concentrations are identified appropriate for different applications, alongside an in-depth analysis on the origin and stability of the resulting phases as well as its experimental implications. C1 [Anderson, J. A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Sknepnek, R.; Travesset, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sknepnek, R.; Travesset, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Sknepnek, R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Anderson, JA (reprint author), Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. RI Anderson, Joshua/H-4262-2011; OI Sknepnek, Rastko/0000-0002-0144-9921 FU DOE through the Ames laboratory [DE-AC02-07CH11358] FX We thank Lynn Walker for many discussions. Our colleagues at Ames laboratory M. Akinc, M. Lamm, S. Mallapragada, J. Schmalian, and K. Schmidt-Rohr are acknowledged for illuminating discussions. A. T. wants to acknowledge the Aspen Center for Physics and specially Kristen Grosse-Brauckmann and Rob Kusner for discussions. Many of the simulations presented in this work were executed on Tesla GPUs provided by NVIDIA through their professor partnership program. Sharon Glotzer provided time on the GPU computer cluster at the University of Michigan. This work is funded by DOE through the Ames laboratory under Contract No. DE-AC02-07CH11358. NR 55 TC 11 Z9 11 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG 13 PY 2010 VL 82 IS 2 AR 021803 DI 10.1103/PhysRevE.82.021803 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 638BN UT WOS:000280864900005 PM 20866830 ER PT J AU Ruff, JPC Islam, Z Clancy, JP Ross, KA Nojiri, H Matsuda, YH Dabkowska, HA Dabkowski, AD Gaulin, BD AF Ruff, J. P. C. Islam, Z. Clancy, J. P. Ross, K. A. Nojiri, H. Matsuda, Y. H. Dabkowska, H. A. Dabkowski, A. D. Gaulin, B. D. TI Magnetoelastics of a Spin Liquid: X-Ray Diffraction Studies of Tb2Ti2O7 in Pulsed Magnetic Fields SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRUSTRATED PYROCHLORE ANTIFERROMAGNET; ICE; STATE AB We report high resolution single crystal x-ray diffraction measurements of the frustrated pyrochlore magnet Tb2Ti2O7, collected using a novel low temperature pulsed magnet system. This instrument allows characterization of structural degrees of freedom to temperatures as low as 4.4 K, and in applied magnetic fields as large as 30 T. We show that Tb2Ti2O7 manifests intriguing structural effects under the application of magnetic fields, including strongly anisotropic giant magnetostriction, a restoration of perfect pyrochlore symmetry in low magnetic fields, and ultimately a structural phase transition in high magnetic fields. It is suggested that the magnetoelastic coupling thus revealed plays a significant role in the spin liquid physics of Tb2Ti2O7 at low temperatures. C1 [Ruff, J. P. C.; Clancy, J. P.; Ross, K. A.; Dabkowska, H. A.; Dabkowski, A. D.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Ruff, J. P. C.; Islam, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Nojiri, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Matsuda, Y. H.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Dabkowska, H. A.; Dabkowski, A. D.; Gaulin, B. D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gaulin, B. D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Ruff, JPC (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Nojiri, Hiroyuki/B-3688-2011; Piper, Walter/B-7908-2009 FU DOE, Office of Science [DE-AC02-06CH11357]; ICC at Tohoku University; NSERC of Canada FX Use of the APS is supported by the DOE, Office of Science, under Contract No. DE-AC02-06CH11357. This work was supported by the ICC at Tohoku University and by NSERC of Canada. NR 31 TC 33 Z9 33 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 13 PY 2010 VL 105 IS 7 AR 077203 DI 10.1103/PhysRevLett.105.077203 PG 4 WC Physics, Multidisciplinary SC Physics GA 638BP UT WOS:000280865100017 PM 20868073 ER PT J AU Storchak, VG Brewer, JH Stubbs, SL Parfenov, OE Lichti, RL Mengyan, PW He, J Bredeson, I Hitchcock, D Mandrus, D AF Storchak, Vyacheslav G. Brewer, Jess H. Stubbs, Scott L. Parfenov, Oleg E. Lichti, Roger L. Mengyan, Patrick W. He, Jian Bredeson, Isaac Hitchcock, Dale Mandrus, David TI Spin Polarons in the Correlated Metallic Pyrochlore Cd2Re2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTORS; OXIDE AB Muon spin rotation spectroscopy reveals localized electron states in the geometrically frustrated metallic pyrochlore Cd2Re2O7 at temperatures from 2 to 300 K in transverse magnetic fields up to 7 T. Two distinctive types of localized states, with characteristic radii of about 0.5 and 0.15 nm, are detected at high and low temperature, respectively. These states may be spin polarons, formed due to strong exchange interaction between itinerant electrons and the magnetic 5d electrons of Re ions, which may determine the peculiar electronic and magnetic properties of Cd2Re2O7 . C1 [Storchak, Vyacheslav G.; Parfenov, Oleg E.] Kurchatov Inst, Russian Res Ctr, Moscow 123182, Russia. [Brewer, Jess H.; Stubbs, Scott L.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Lichti, Roger L.; Mengyan, Patrick W.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [He, Jian; Bredeson, Isaac; Hitchcock, Dale] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Storchak, VG (reprint author), Kurchatov Inst, Russian Res Ctr, Kurchatov Sq 1, Moscow 123182, Russia. EM mussr@triumf.ca RI Mandrus, David/H-3090-2014 FU Natural Sciences and Engineering Research Council of Canada; U.S. Department of Energy [DE-SC0001769]; DOE/EPSCoR [DE-FG02-04ER46139] FX This work was supported by the Natural Sciences and Engineering Research Council of Canada and the U.S. Department of Energy (Grant No. DE-SC0001769). The work at Clemson University is supported by a DOE/EPSCoR Implementation Grant (No. DE-FG02-04ER46139). NR 34 TC 16 Z9 16 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 13 PY 2010 VL 105 IS 7 AR 076402 DI 10.1103/PhysRevLett.105.076402 PG 4 WC Physics, Multidisciplinary SC Physics GA 638BP UT WOS:000280865100011 PM 20868063 ER PT J AU Stewart, AJ AF Stewart, Arthur J. TI Science Education: Poetry SO SCIENCE LA English DT Letter C1 Oak Ridge Associated Univ, Sci Educ Programs, Oak Ridge, TN 37831 USA. RP Stewart, AJ (reprint author), Oak Ridge Associated Univ, Sci Educ Programs, Oak Ridge, TN 37831 USA. EM arthur.stewart@orau.org OI stewart, arthur/0000-0003-1968-5997 NR 6 TC 1 Z9 1 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 13 PY 2010 VL 329 IS 5993 BP 748 EP 749 DI 10.1126/science.329.5993.748-c PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 637ID UT WOS:000280809900012 PM 20705828 ER PT J AU Chu, JH Analytis, JG De Greve, K McMahon, PL Islam, Z Yamamoto, Y Fisher, IR AF Chu, Jiun-Haw Analytis, James G. De Greve, Kristiaan McMahon, Peter L. Islam, Zahirul Yamamoto, Yoshihisa Fisher, Ian R. TI In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor SO SCIENCE LA English DT Article ID STATE AB High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal's C(4) rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe(1-x)Co(x))(2)As(2) develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis rho(b) being greater than rho(a). The anisotropy reaches a maximum value of similar to 2 for compositions in the neighborhood of the beginning of the superconducting dome. For temperatures well above the structural transition, uniaxial stress induces a resistivity anisotropy, indicating a substantial nematic susceptibility. C1 [Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.] SLAC Natl Accelerator Lab, Stanford Inst Energy & Mat Sci, Menlo Pk, CA 94025 USA. [De Greve, Kristiaan; McMahon, Peter L.; Yamamoto, Yoshihisa] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Islam, Zahirul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yamamoto, Yoshihisa] Natl Inst Informat, Chiyoda Ku, Tokyo 1018403, Japan. RP Fisher, IR (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. EM irfisher@stanford.edu RI Yamamoto, Yoshihisa/A-2811-2012; De Greve, Kristiaan/N-1489-2013 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE, Office of Science [DE-AC02-06CH11357] FX The authors thank C. D. Batista, C.-C. Chen, T. P. Devereaux, S. A. Kivelson, A. P. Mackenzie, R. D. McDonald, S. C. Riggs, D. J. Scalapino, and Z.-X. Shen for helpful discussions. This work is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under contract DE-AC02-76SF00515. Use of the APS is supported by the DOE, Office of Science, under contract DE-AC02-06CH11357. NR 28 TC 378 Z9 378 U1 16 U2 108 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 13 PY 2010 VL 329 IS 5993 BP 824 EP 826 DI 10.1126/science.1190482 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 637ID UT WOS:000280809900046 PM 20705856 ER PT J AU Closser, KD Head-Gordon, M AF Closser, Kristina D. Head-Gordon, Martin TI Ab Initio Calculations on the Electronically Excited States of Small Helium Clusters SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIQUID-HELIUM; EXCITATION-ENERGIES; DROPLETS; DYNAMICS; PHOTOIONIZATION; NANODROPLETS; MOLECULES; SPECTROSCOPY; IONIZATION AB The vertical excitation energies of small helium clusters, He(7) and He(25), have been calculated using configuration interaction singles, and the character of the excited states was determined using attachment/detachment density analysis. It was found that in the n = 2 manifold the excitations could be interpreted as superpositions of atomic states, with excitations on the surface of the clusters being lower in energy than those in the bulk. For the n = 2 excited states with significant density on the interior of the cluster, mixing with the atomic n = 3 states resulted in lower excitation energies. For the n = 3 states the spatial extent of the excited-state density can be much larger than the size of the cluster, making analysis of the states more difficult and highly dependent on the intemuclear distance. Introducing disorder into the clusters results in some localization of the excited states, although highly delocalized states are always observed in these small clusters. In addition, experimental results for small clusters are interpreted in terms of these findings. C1 [Closser, Kristina D.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@berkeley.edu FU Department of Energy; National Science Foundation FX We thank Oliver Gessner, Oliver Buenermann, and Oleg Kornilov for the initial motivation and helpful discussions in relation to this project. Funding for this research has been provided by the Department of Energy through the USXL program at Lawrence Berkeley National Laboratory and by a National Science Foundation Graduate Research Fellowship. NR 34 TC 17 Z9 17 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 12 PY 2010 VL 114 IS 31 BP 8023 EP 8032 DI 10.1021/jp103532q PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633RW UT WOS:000280523500001 PM 20684573 ER PT J AU Feingold, G Koren, I Wang, HL Xue, HW Brewer, WA AF Feingold, Graham Koren, Ilan Wang, Hailong Xue, Huiwen Brewer, Wm. Alan TI Precipitation-generated oscillations in open cellular cloud fields SO NATURE LA English DT Article ID COMPLEX NETWORKS; OPEN CELLS; CONVECTION; MESOSCALE; STRATOCUMULUS; ORGANIZATION; DRIZZLE; MODEL; MICROPHYSICS; PATTERNS AB Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres(1-3). Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns(4,5). The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood(6), limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency. C1 [Feingold, Graham; Brewer, Wm. Alan] NOAA Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Koren, Ilan] Weizmann Inst Sci, Dept Environm Sci, IL-76100 Rehovot, Israel. [Wang, Hailong] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xue, Huiwen] Peking Univ, Sch Phys, Dept Atmospher Sci, Beijing 100871, Peoples R China. RP Feingold, G (reprint author), NOAA Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. EM graham.feingold@noaa.gov RI Wang, Hailong/B-8061-2010; Feingold, Graham/B-6152-2009; Brewer, Wm Alan/I-3920-2013; Koren, Ilan/K-1417-2012; Manager, CSD Publications/B-2789-2015 OI Wang, Hailong/0000-0002-1994-4402; Koren, Ilan/0000-0001-6759-6265; FU NOAA; CIRES; Pacific Northwest National Laboratory FX We thank NOAA's Climate Goal Program, a CIRES Visiting Fellowship (I. K.) and the Pacific Northwest National Laboratory (H. W.) for supporting this work. We acknowledge the www.LBMethod.org project for sharing the Lattice Boltzmann Method theory and code, and S. C. Tucker and S. E. Yuter for their support in acquiring the lidar and radar data during the VOCALS-REx field experiment. C. A. Ennis provided editorial assistance and D. Fisher helped with the figures. NR 30 TC 70 Z9 71 U1 0 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 12 PY 2010 VL 466 IS 7308 BP 849 EP 852 DI 10.1038/nature09314 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 636TT UT WOS:000280766100032 PM 20703303 ER PT J AU Chang, J Fedro, AJ van Veenendaal, M AF Chang, Jun Fedro, A. J. van Veenendaal, Michel TI Ultrafast cascading theory of intersystem crossings in transition-metal complexes SO PHYSICAL REVIEW B LA English DT Article ID SPIN-CROSSOVER SYSTEMS; DYNAMICS; LEVEL AB We investigate the cascade decay mechanism for ultrafast intersystem crossing mediated by the spin-orbit coupling in transition-metal complexes. A quantum-mechanical description of the cascading process that occurs after photoexcitation is presented. The conditions for ultrafast cascading are given, which relate the energy difference between the levels in the cascading process to the electron-phonon self energy. These limitations aid in the determination of the cascade path. For Fe(2+) spin-crossover complexes, this leads to the conclusion that the ultrafast decay primarily occurs in the manifold of antibonding metal-to-ligand charge-transfer states. We also give an interpretation why some intermediate states are bypassed. C1 [Chang, Jun; Fedro, A. J.; van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chang, Jun; Fedro, A. J.; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chang, J (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RI Chang, jun/A-1840-2010 OI Chang, jun/0000-0003-0041-4804 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; NIU's Institute for Nanoscience, Engineering, and Technology; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are thankful to Xiaoyi Zhang and Yang Ding for helpful discussions. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097, and NIU's Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 25 TC 21 Z9 21 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 12 PY 2010 VL 82 IS 7 AR 075124 DI 10.1103/PhysRevB.82.075124 PG 5 WC Physics, Condensed Matter SC Physics GA 637WO UT WOS:000280849600007 ER PT J AU Idrobo, JC Pantelides, ST AF Idrobo, J. C. Pantelides, S. T. TI Origin of bulklike optical response in noble-metal Ag and Au nanoparticles SO PHYSICAL REVIEW B LA English DT Article ID DIFFERENCE-PSEUDOPOTENTIAL METHOD AB The origin of bulklike optical response of noble (silver and gold) metal nanoparticles has been studied using classical (Mie) and time-dependent density-functional theories. We find that the bulklike optical response in the noble-metal nanoparticles is determined more strongly by the electronic d character of the valence electrons than the atomic coordination or size of the nanoparticles. The importance of Coulomb and exchange-correlation interactions to model optical responses is also discussed. C1 [Idrobo, J. C.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Idrobo, J. C.; Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Idrobo, JC (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 FU National Science Foundation [DMR-0513048]; Alcoa, Inc.; McMinn Endowment at Vanderbilt University; Division of Materials Sciences and Engineering, U. S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the National Science Foundation GOALI under Grant No. DMR-0513048, by Alcoa, Inc., by the McMinn Endowment at Vanderbilt University, and by the Division of Materials Sciences and Engineering, U. S. Department of Energy under contract with UT-Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 8 Z9 8 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 12 PY 2010 VL 82 IS 8 AR 085420 DI 10.1103/PhysRevB.82.085420 PG 7 WC Physics, Condensed Matter SC Physics GA 637WQ UT WOS:000280849800013 ER PT J AU Kang, W Hybertsen, MS AF Kang, Wei Hybertsen, Mark S. TI Quasiparticle and optical properties of rutile and anatase TiO2 SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; SELF-CONSISTENT GW; SPACE-TIME METHOD; WAVE BASIS-SET; TITANIUM-DIOXIDE; ELECTRON-GAS; WORK-FUNCTION; GREENS-FUNCTION; IONIC-CRYSTALS C1 [Kang, Wei; Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kang, W (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RI Kang, Wei/A-9784-2012; Yambo, MBPT Code/O-4564-2015; OI Kang, Wei/0000-0001-9989-0485; Hybertsen, Mark S/0000-0003-3596-9754 FU U.S. Department of Energy [DE-AC02-98CH10886]; State of New York FX We thank A. Marini for access to the private branch of the Yambo code. W.K. thanks D. Prezzi for insightful discussions on BSE. Work performed under the auspices of the U.S. Department of Energy under Contract No. DEAC02-98CH1-886. This research utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. NR 111 TC 103 Z9 103 U1 4 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 12 PY 2010 VL 82 IS 8 AR 085203 DI 10.1103/PhysRevB.82.085203 PG 11 WC Physics, Condensed Matter SC Physics GA 637WQ UT WOS:000280849800005 ER PT J AU Cheng, HY Chua, CK AF Cheng, Hai-Yang Chua, Chun-Khiang TI Charmless B -> Kh eta((')) decays with K-h = K, K*, K-0*(1430), K-2*(1430) SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; MESON DECAYS; CP VIOLATION; QUARK-MODEL; ETA AB We study the charmless decays B -> K-h eta and B -> K-h eta' within the framework of QCD factorization (QCDF) for K-h = K, K*, K-0*(1430) and naive factorization for K-h = K-2*(1430). There are three distinct types of penguin contributions: (i) b -> sq (q) over bar -> s eta(q), (ii) b -> ss (s) over bar -> s eta s, and (iii) b -> sq (q) over bar -> q (K) over bar (h), where eta(q) = (u (u) over bar + d (d) over bar)/root 2 and eta(s) = s (s) over bar. B -> K(*)eta(') decays are dominated by type-II and type-III penguin contributions. The interference, constructive for K eta' and K*eta and destructive for K eta and K*eta', between type-II and type-III diagrams explains the pattern of Gamma(B -> K eta') >> Gamma(B -> K eta) and Gamma(B -> K*eta') << Gamma(B -> K*eta). Within QCDF, the observed large rate of the K eta' mode can be naturally explained without invoking flavor-singlet contributions or something exotic. The decay pattern for B -> K-0*(1430)eta(') decays depends on whether the scalar meson K-0*(1430) is an excited state of kappa or a lowest-lying P-wave q (q) over bar state. Hence, the experimental measurements of B -> K-0*(1430)eta(') can be used to explore the quark structure of K-0*(1430). If K-0*(1430) is a low-lying q (q) over bar bound state, we find that K-0*eta has a rate slightly larger than K-0*eta' owing to the fact that the eta - eta' mixing angle in the eta(q), eta(s) flavor basis is less than 45 degrees, in agreement with experiment. The type-III penguin diagram does not contribute to B -> K-2*eta((')) under the factorization hypothesis and the type-II diagram dominates. The ratio Gamma(B -> K-2*eta')/Gamma(B -> K-2*eta) is expected to be of order 2.5 as a consequence of (i) vertical bar f(eta')(s)vertical bar > vertical bar f(eta)(s)vertical bar and (ii) a destructive (constructive) interference between type-I and type-II penguin diagrams for K-2*eta (K-2*eta'). However, the predicted rates of B -> K-2*eta((')) in naive factorization are too small by 1 order of magnitude and this issue remains to be resolved. There are two K-(*)eta((')) modes in which direct CP asymmetries have been measured with significance around 4 sigma: A(CP)(K-eta) = -0.37 +/- 0.09 and A(CP)((K) over bar*(0)eta) = 0.19 +/- 0.05. In QCDF, power corrections from penguin annihilation which are needed to resolve CP puzzles in K- pi(+) and pi(+) pi(-) modes will flip A(CP)(K-eta) into a wrong sign. We show that soft corrections to the color-suppressed tree amplitude a(2) in conjunction with the charm content of the eta will finally lead to A(CP)(K-eta) = 0.15(-0.28)(+0.19). Likewise, this power correction is needed to improve the prediction for A(CP)((K) over bar*(0)eta). C1 [Cheng, Hai-Yang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Cheng, Hai-Yang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chua, Chun-Khiang] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. FU National Science Council of Republic of China [NSC97-2112-M-001-004-MY3, NSC97-2112-M-033-002-MY3] FX One of us (H. Y. C.) wishes to thank the hospitality of the Physics Department, Brookhaven National Laboratory. This research was supported in part by the National Science Council of Republic of China, under Grant Nos. NSC97-2112-M-001-004-MY3 and NSC97-2112-M-033-002-MY3. NR 38 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 12 PY 2010 VL 82 IS 3 AR 034014 DI 10.1103/PhysRevD.82.034014 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 637WS UT WOS:000280850000005 ER PT J AU Dudek, JJ Edwards, RG Peardon, MJ Richards, DG Thomas, CE AF Dudek, Jozef J. Edwards, Robert G. Peardon, Michael J. Richards, David G. Thomas, Christopher E. CA Hadron Spectrum Collaboration TI Toward the excited meson spectrum of dynamical QCD SO PHYSICAL REVIEW D LA English DT Article ID HYBRID MESONS; LATTICE QCD; MATRIX; MODEL AB We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0(+-), 1(-+) and 2(+-)), and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to similar to 400 MeV, with statistical precision typically at or below 1% even for highly excited states. C1 [Dudek, Jozef J.; Edwards, Robert G.; Richards, David G.; Thomas, Christopher E.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Peardon, Michael J.] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland. RP Dudek, JJ (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org OI Peardon, Michael/0000-0002-4199-6284 FU USQCD Initiative; U.S. DOE [DE-AC05-06OR23177]; Science Foundation Ireland [07/RFP/PHYF168] FX We thank our colleagues within the Hadron Spectrum Collaboration. Particular thanks go to Balint Joo for his tireless efforts supplying us with gauge-field configurations, Jie Chen for his work on databases, and Steve Wallace for providing us with determinations of the Omega-baryon masses. We also thank Michael Clark and Ronald Babich for their CUDA GPU implementation of a mixed-precision iterative linear system solver for the Dirac equation [51] that was used for part of this work. The Chroma software suite [52] was used to perform this work on clusters at Jefferson Laboratory and Fermilab with support from the USQCD Initiative. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. M. P. acknowledges support from Science Foundation Ireland under research grant 07/RFP/PHYF168. NR 52 TC 109 Z9 109 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 12 PY 2010 VL 82 IS 3 AR 034508 DI 10.1103/PhysRevD.82.034508 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 637WS UT WOS:000280850000006 ER PT J AU Padmanabhan, V Frischknecht, AL Mackay, ME AF Padmanabhan, Venkat Frischknecht, Amalie L. Mackay, Michael E. TI Binary fluid with attractions near a planar wall SO PHYSICAL REVIEW E LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HARD-SPHERE MIXTURES; MONTE-CARLO-SIMULATION; VAPOR-LIQUID INTERFACE; WHITE BEAR VERSION; INHOMOGENEOUS FLUIDS; MOLECULAR-DYNAMICS; STATISTICAL-MECHANICS; COMPUTER-SIMULATION; PHASE-EQUILIBRIA AB It is well known that a mixture of big and small hard spheres next to a planar wall will exhibit segregation based on their size difference. The larger spheres will tend to locate next to the substrate because the overall system entropy loss per unit area is less. In the present study we determine the role of attraction between the small particles and the wall to displace the larger particles. Both fluids density-functional theory and discontinuous molecular dynamics simulations demonstrate that at a certain attractive potential, which is on the order of the thermal energy, the large particles can indeed be dislodged from the surface layer so the small particles are now the major surface component. Exploration of a range of parameters, including relative sphere size and concentration, as well as attractions between the small spheres in the bulk, shows that the phenomenon is quite robust. C1 [Padmanabhan, Venkat; Mackay, Michael E.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. [Frischknecht, Amalie L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Padmanabhan, V (reprint author), Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RI Padmanabhan, Venkat/G-2798-2013; Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 FU U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors would like to thank the U.S. Department of Energy for funding this research. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). NR 53 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 12 PY 2010 VL 82 IS 2 AR 021507 DI 10.1103/PhysRevE.82.021507 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 637WU UT WOS:000280850200007 PM 20866818 ER PT J AU Aamodt, K Abel, N Abeysekara, U Quintana, AA Abramyan, A Adamova, D Aggarwal, MM Rinella, GA Agocs, AG Salazar, SA Ahammed, Z Ahmad, A Ahmad, N Ahn, SU Akimoto, R Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Andrei, C Andronic, A Anelli, G Angelov, V Anson, C Anticic, T Antinori, F Antinori, S Antipin, K Antonczyk, D Antonioli, P Anzo, A Aphecetche, L Appelshauser, SA Arcelli, S Arceo, R Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Andronic, A Bablok, S Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisser, A Baldit, A Ban, J Barbera, R Barnafoldi, GG Barnby, LS Barret, V Bartke, J Barile, F Basile, M Basmanov, V Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Becker, B Belikov, I Bellwied, R Belmont-Moreno, E Belogianni, A Benhabib, L Beole, S Berceanu, I Bercuci, A Berdermann, E Berdnikov, Y Betev, L Bhasin, A Bhati, AK Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bimbot, L Biolcati, E Blanc, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Bohm, J Boldizsar, L Bombara, M Bombonati, C Bondila, M Borel, H Borisov, A Bortolin, C Bose, S Bosisio, L Bossu, F Botje, M Bottger, S Bourdaud, G Boyer, B Braun, M Braun-Munzinger, P Bravina, L Bregant, M Breitner, T Bruckner, G Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Calvo, E Camacho, E Camerini, P Campbell, M Roman, VC Capitani, GP Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castellanos, JC Hernandez, JFC Catanescu, V Cattaruzza, E Cavicchioli, C Cerello, P Chambert, V Chang, B Chapeland, S Charpy, A Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chuman, F Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Cobanoglu, O Coffin, JP Coli, S Colla, A Balbastre, GC del Valle, ZC Conner, ES Constantin, P Contin, G Contreras, JG Morales, YC Cormier, TM Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Cuautle, E Cunqueiro, L Cussonneau, J Dainese, A Dalsgaard, HH Danu, A Das, I Dash, A Dash, S de Barros, GOV de Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gaspari, M de Groot, J De Gruttola, D De Marco, N De Pasquale, S De Remigis, R de Rooij, R de Vaux, G Delagrange, H Delgado, Y Dellacasa, G Deloff, A Demanov, V Denes, E Deppman, A D'Erasmo, G Derkach, D Devaux, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dialinas, M Diaz, L Diaz, R Dietel, T Divia, R Djuvsland, O Dobretsov, V Dobrin, A Dobrowolski, T Donigus, B Dominguez, I Don, DMM Dordic, O Dubey, AK Dubuisson, J Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Enokizono, A Espagnon, B Estienne, M Esumi, S Evans, D Evrard, S Eyyubova, G Fabjan, CW Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fateev, O Fearick, R Fedunov, A Fehlker, D Fekete, V Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferreiro, EG Ferretti, A Ferretti, R Figueredo, MAS Filchagin, S Fini, R Fionda, FM Fiore, EM Floris, M Fodor, Z Foertsch, S Foka, P Fokin, S Formenti, F Fragiacomo, E Fragkiadakis, M Frankenfeld, U Frolov, A Fuchs, U Furano, F Furget, C Girard, MF Gaardhoje, JJ Gadrat, S Gagliardi, M Gago, A Gallio, M Ganoti, P Ganti, MS Garabatos, C Trapaga, CG Gebelein, J Gemme, R Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Giraudo, G Giubellino, P Gladysz-Dziadus, E Glasow, R Glassel, P Glenn, A Jimenez, RG Santos, HG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Gorbunov, Y Gotovac, S Gottschlag, H Grabski, V Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerra, C Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Gustafsson, HA Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamblen, J Han, BH Harris, JW Hartig, M Harutyunyan, A Hasch, D Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Heinz, M Helstrup, H Herghelegiu, A Hernandez, C Corral, GH Herrmann, N Hetland, KF Hicks, B Hiei, A Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Hu, S Huang, M Huber, S Humanic, TJ Hutter, D Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Innocenti, PG Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Iwasaki, T Jacholkowski, A Jacobs, P Jancurova, L Jangal, S Janik, R Jena, C Jena, S Jirden, L Jones, GT Jones, PG Jovanovic, P Jung, H Jung, W Jusko, A Kaidalov, AB Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kamal, A Kamermans, R Kanaki, K Kang, E Kang, JH Kapitan, J Kaplin, V Kapusta, S Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, MM Khan, SA Khanzadeev, A Kharlov, Y Kikola, D Kileng, B Kim, DJ Kim, DS Kim, DW Kim, HN Kim, J Kim, JH Kim, JS Kim, M Kim, M Kim, SH Kim, S Kim, Y Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Klovning, A Kluge, A Knichel, ML Kniege, S Koch, K Kolevatov, R Kolojvari, A Kondratiev, V Kondratyeva, N Konevskih, A Kornas, E Kour, R Kowalski, M Kox, S Kozlov, K Kral, J Kralik, I Kramer, F Kraus, I Kravcakova, A Krawutschke, T Krivda, M Krumbhorn, D Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kumar, L Kumar, N Kupczak, R Kurashvili, P Kurepin, A Kurepin, AN Kuryakin, A Kushpil, S Kushpil, V Kutouski, M Kvaerno, H Kweon, MJ Kwon, Y La Rocca, P Lackner, F de Guevara, PL Lafage, V Lal, C Lara, C Larsen, DT Laurenti, G Lazzeroni, C Le Bornec, Y Le Bris, N Lee, H Lee, KS Lee, SC Lefevre, F Lenhardt, M Leistam, L Lehnert, J Lenti, V Leon, H Monzon, IL Vargas, HL Levai, P Li, X Li, Y Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loginov, V Lohn, S Lopez, X Noriega, ML Lopez-Ramirez, R Torres, EL Lovhoiden, G Soares, ALF Lu, S Lunardon, M Luparello, G Luquin, L Lutz, JR Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Makhlyueva, I Mal'Kevich, D Malaev, M Malagalage, KJ Cervantes, IM Malek, M Malkiewicz, T Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Mares, J Margagliotti, GV Margotti, A Marin, A Martashvili, I Martinengo, P Hernandez, MIM Davalos, AM Garcia, GM Maruyama, Y Chiesa, AM Masciocchi, S Masera, M Masetti, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mazza, G Mazzoni, MA Meddi, F Menchaca-Rocha, A Lorenzo, PM Meoni, M Perez, JM Mereu, P Miake, Y Michalon, A Miftakhov, N Milano, L Milosevic, J Minafra, F Mischke, A Miskowiec, D Mitu, C Mizoguchi, K Mlynarz, J Mohanty, B Molnar, L Mondal, MM Zetina, LM Monteno, M Montes, E Morando, M Moretto, S Morsch, A Moukhanova, T Muccifora, V Mudnic, E Muhuri, S Mueller, H Munhoz, MG Munoz, J Musa, L Musso, A Nandi, BK Nania, R Nappi, E Navach, F Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nendaz, F Newby, J Nianine, A Nicassio, M Nielsen, BS Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyatha, A Nygaard, C Nyiri, A Nystrand, J Ochirov, A Odyniec, G Oeschler, H Oinonen, M Okada, K Okada, Y Oldenburg, M Oleniacz, J Oppedisano, C Orsini, F Velasquez, AO Ortona, G Oskarsson, A Osmic, F Osterman, L Ostrowski, P Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, SK Palaha, A Palmeri, A Panse, R Papikyan, V Pappalardo, GS Park, WJ Pastircak, B Pastore, C Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Pepato, A Pereira, H Peressounko, D Perez, C Perini, D Perrino, D Peryt, W Peschek, J Pesci, A Peskov, V Pestov, Y Peters, AJ Petracek, V Petridis, A Petris, M Petrov, P Petrovici, M Petta, C Peyre, J Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Platt, R Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Lerma, PLMP Poggio, F Poghosyan, MG Polak, K Polichtchouk, B Polozov, P Polyakov, V Pommeresch, B Pop, A Posa, F Pospisil, V Potukuchi, B Pouthas, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Pulvirenti, A Punin, A Punin, V Putis, M Putschke, J Quercigh, E Rachevski, A Rademakers, A Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Rammler, M Raniwala, R Raniwala, S Rasanen, SS Rashevskaya, I Rath, S Read, KF Real, JS Redlich, K Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, RA Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Roed, K Rohrich, D Lopez, SR Romita, R Ronchetti, F Rosinsky, P Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Rousseau, S Roy, C Roy, P Rubio-Montero, AJ Rui, R Rusanov, I Russo, G Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Saini, J Saiz, P Sakata, D Salgado, CA da Silva, RSD Salur, S Samanta, T Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Saturnini, P Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schindler, H Schmidt, C Schmidt, HR Schossmaier, K Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Segato, G Semenov, D Senyukov, S Seo, J Serci, S Serkin, L Serradilla, E Sevcenco, A Sgura, I Shabratova, G Shahoyan, R Sharkov, G Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddi, E Siemiarczuk, T Silenzi, A Silvermyr, D Simili, E Simonetti, G Singaraju, R Singh, R Singhal, V Sinha, BC Sinha, T Sitar, B Skaali, TB Sitta, M Skjerdal, K Smakal, R Smirnov, N Snellings, R Snow, H Sogaard, C Soloviev, A Soltveit, HK Soltz, R Sommer, W Son, CW Son, H Song, M Soos, C Soramel, F Soyk, D Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Staley, F Stan, E Stefanek, G Stefanini, G Steinbeck, T Stenlund, E Steyn, G Stocco, D Stock, R Stolpovsky, P Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sumbera, M Susa, T Swoboda, D Symons, J de Toledo, AS Szarka, I Szostak, A Szuba, M Tadel, M Tagridis, C Takahara, A Takahashi, J Tanabe, R Takaki, JDT Taureg, H Tauro, A Tavlet, M Munoz, GT Telesca, A Terrevoli, C Thader, J Tieulent, R Tlusty, D Toia, A Tolyhy, T de Matos, CT Torii, H Torralba, G Toscano, L Tosello, F Tournaire, A Traczyk, T Tribedy, P Troger, G Truesdale, D Trzaska, WH Tsiledakis, G Tsilis, E Tsuji, T Tumkin, A Turrisi, R Turvey, A Tveter, TS Tydesjo, H Tywoniuk, K Ulery, J Ullaland, K Uras, A Urban, J Urciuoli, GM Usai, GL Vacchi, A Vala, M Palomo, LV Vallero, S van der Kolk, N Vyvre, PV van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasiliev, A Vassiliev, I Vasileiou, M Vechernin, V Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vetlitskiy, I Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopianov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, V Wallet, L Wan, R Wang, D Wang, Y Wang, Y Watanabe, K Wen, Q Wessels, J Westerhoff, U Wiechula, J Wikne, J Wilk, A Wilk, G Williams, MCS Willis, N Windelband, B Xu, C Yang, C Yang, H Yasnopolskiy, S Yermia, F Yi, J Yin, Z Yokoyama, H Yoo, IK Yuan, X Yurevich, V Yushmanov, I Zabrodin, E Zagreev, B Zalite, A Zampolli, C Zanevsky, Y Zaporozhets, S Zarochentsev, A Zavada, P Zbroszczyk, H Zelnicek, P Zenin, A Zepeda, A Zgura, I Zhalov, M Zhang, X Zhou, D Zhou, S Zhu, J Zichichi, A Zinchenko, A Zinovjev, G Zoccarato, Y Zychacek, V Zynovyev, M AF Aamodt, K. Abel, N. Abeysekara, U. Quintana, A. Abrahantes Abramyan, A. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Salazar, S. Aguilar Ahammed, Z. Ahmad, A. Ahmad, N. Ahn, S. U. Akimoto, R. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Andrei, C. Andronic, A. Anelli, G. Angelov, V. Anson, C. Anticic, T. Antinori, F. Antinori, S. Antipin, K. Antonczyk, D. Antonioli, P. Anzo, A. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arceo, R. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Andronic, A. Bablok, S. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisser, A. Baldit, A. Ban, J. Barbera, R. Barnafoldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Barile, F. Basile, M. Basmanov, V. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Becker, B. Belikov, I. Bellwied, R. Belmont-Moreno, E. Belogianni, A. Benhabib, L. Beole, S. Berceanu, I. Bercuci, A. Berdermann, E. Berdnikov, Y. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bimbot, L. Biolcati, E. Blanc, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Bohm, J. Boldizsar, L. Bombara, M. Bombonati, C. Bondila, M. Borel, H. Borisov, A. Bortolin, C. Bose, S. Bosisio, L. Bossu, F. Botje, M. Boettger, S. Bourdaud, G. Boyer, B. Braun, M. Braun-Munzinger, P. Bravina, L. Bregant, M. Breitner, T. Bruckner, G. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo, E. Camacho, E. Camerini, P. Campbell, M. Roman, V. Canoa Capitani, G. P. Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Hernandez, J. F. Castillo Catanescu, V. Cattaruzza, E. Cavicchioli, C. Cerello, P. Chambert, V. Chang, B. Chapeland, S. Charpy, A. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chuman, F. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Cobanoglu, O. Coffin, J. -P. Coli, S. Colla, A. Balbastre, G. Conesa del Valle, Z. Conesa Conner, E. S. Constantin, P. Contin, G. Contreras, J. G. Morales, Y. Corrales Cormier, T. M. Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cuautle, E. Cunqueiro, L. Cussonneau, J. Dainese, A. Dalsgaard, H. H. Danu, A. Das, I. Dash, A. Dash, S. de Barros, G. O. V. de Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gaspari, M. de Groot, J. De Gruttola, D. De Marco, N. De Pasquale, S. De Remigis, R. de Rooij, R. de Vaux, G. Delagrange, H. Delgado, Y. Dellacasa, G. Deloff, A. Demanov, V. Denes, E. Deppman, A. D'Erasmo, G. Derkach, D. Devaux, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dialinas, M. Diaz, L. Diaz, R. Dietel, T. Divia, R. Djuvsland, O. Dobretsov, V. Dobrin, A. Dobrowolski, T. Doenigus, B. Dominguez, I. Don, D. M. M. Dordic, O. Dubey, A. K. Dubuisson, J. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Enokizono, A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evrard, S. Eyyubova, G. Fabjan, C. W. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fateev, O. Fearick, R. Fedunov, A. Fehlker, D. Fekete, V. Felea, D. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Ferretti, R. Figueredo, M. A. S. Filchagin, S. Fini, R. Fionda, F. M. Fiore, E. M. Floris, M. Fodor, Z. Foertsch, S. Foka, P. Fokin, S. Formenti, F. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Frolov, A. Fuchs, U. Furano, F. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gadrat, S. Gagliardi, M. Gago, A. Gallio, M. Ganoti, P. Ganti, M. S. Garabatos, C. Trapaga, C. Garcia Gebelein, J. Gemme, R. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Giraudo, G. Giubellino, P. Gladysz-Dziadus, E. Glasow, R. Glaessel, P. Glenn, A. Jimenez, R. Gomez Santos, H. Gonzalez Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Gorbunov, Y. Gotovac, S. Gottschlag, H. Grabski, V. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerra, C. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Gustafsson, H. -A. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamblen, J. Han, B. H. Harris, J. W. Hartig, M. Harutyunyan, A. Hasch, D. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Heinz, M. Helstrup, H. Herghelegiu, A. Hernandez, C. Corral, G. Herrera Herrmann, N. Hetland, K. F. Hicks, B. Hiei, A. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Hu, S. Huang, M. Huber, S. Humanic, T. J. Hutter, D. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Iwasaki, T. Jacholkowski, A. Jacobs, P. Jancurova, L. Jangal, S. Janik, R. Jena, C. Jena, S. Jirden, L. Jones, G. T. Jones, P. G. Jovanovic, P. Jung, H. Jung, W. Jusko, A. Kaidalov, A. B. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kamal, A. Kamermans, R. Kanaki, K. Kang, E. Kang, J. H. Kapitan, J. Kaplin, V. Kapusta, S. Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kikola, D. Kileng, B. Kim, D. J. Kim, D. S. Kim, D. W. Kim, H. N. Kim, J. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kim, S. H. Kim, S. Kim, Y. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Klovning, A. Kluge, A. Knichel, M. L. Kniege, S. Koch, K. Kolevatov, R. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskih, A. Kornas, E. Kour, R. Kowalski, M. Kox, S. Kozlov, K. Kral, J. Kralik, I. Kramer, F. Kraus, I. Kravcakova, A. Krawutschke, T. Krivda, M. Krumbhorn, D. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kumar, L. Kumar, N. Kupczak, R. Kurashvili, P. Kurepin, A. Kurepin, A. N. Kuryakin, A. Kushpil, S. Kushpil, V. Kutouski, M. Kvaerno, H. Kweon, M. J. Kwon, Y. La Rocca, P. Lackner, F. de Guevara, P. Ladron Lafage, V. Lal, C. Lara, C. Larsen, D. T. Laurenti, G. Lazzeroni, C. Le Bornec, Y. Le Bris, N. Lee, H. Lee, K. S. Lee, S. C. Lefevre, F. Lenhardt, M. Leistam, L. Lehnert, J. Lenti, V. Leon, H. Monzon, I. Leon Vargas, H. Leon Levai, P. Li, X. Li, Y. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loginov, V. Lohn, S. Lopez, X. Noriega, M. Lopez Lopez-Ramirez, R. Torres, E. Lopez Lovhoiden, G. Soares, A. Lozea Feijo Lu, S. Lunardon, M. Luparello, G. Luquin, L. Lutz, J. -R. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Makhlyueva, I. Mal'Kevich, D. Malaev, M. Malagalage, K. J. Cervantes, I. Maldonado Malek, M. Malkiewicz, T. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Martashvili, I. Martinengo, P. Hernandez, M. I. Martinez Davalos, A. Martinez Garcia, G. Martinez Maruyama, Y. Chiesa, A. Marzari Masciocchi, S. Masera, M. Masetti, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mazza, G. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Lorenzo, P. Mendez Meoni, M. Perez, J. Mercado Mereu, P. Miake, Y. Michalon, A. Miftakhov, N. Milano, L. Milosevic, J. Minafra, F. Mischke, A. Miskowiec, D. Mitu, C. Mizoguchi, K. Mlynarz, J. Mohanty, B. Molnar, L. Mondal, M. M. Zetina, L. Montano Monteno, M. Montes, E. Morando, M. Moretto, S. Morsch, A. Moukhanova, T. Muccifora, V. Mudnic, E. Muhuri, S. Mueller, H. Munhoz, M. G. Munoz, J. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Navach, F. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nendaz, F. Newby, J. Nianine, A. Nicassio, M. Nielsen, B. S. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyatha, A. Nygaard, C. Nyiri, A. Nystrand, J. Ochirov, A. Odyniec, G. Oeschler, H. Oinonen, M. Okada, K. Okada, Y. Oldenburg, M. Oleniacz, J. Oppedisano, C. Orsini, F. Velasquez, A. Ortiz Ortona, G. Oskarsson, A. Osmic, F. Oesterman, L. Ostrowski, P. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Panse, R. Papikyan, V. Pappalardo, G. S. Park, W. J. Pastircak, B. Pastore, C. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Pepato, A. Pereira, H. Peressounko, D. Perez, C. Perini, D. Perrino, D. Peryt, W. Peschek, J. Pesci, A. Peskov, V. Pestov, Y. Peters, A. J. Petracek, V. Petridis, A. Petris, M. Petrov, P. Petrovici, M. Petta, C. Peyre, J. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Platt, R. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Lerma, P. L. M. Podesta Poggio, F. Poghosyan, M. G. Polak, K. Polichtchouk, B. Polozov, P. Polyakov, V. Pommeresch, B. Pop, A. Posa, F. Pospisil, V. Potukuchi, B. Pouthas, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Pulvirenti, A. Punin, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Reyes, A. Ramirez Rammler, M. Raniwala, R. Raniwala, S. Rasanen, S. S. Rashevskaya, I. Rath, S. Read, K. F. Real, J. S. Redlich, K. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Cahuantzi, M. Rodriguez Roed, K. Roehrich, D. Roman Lopez, S. Romita, R. Ronchetti, F. Rosinsky, P. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Rousseau, S. Roy, C. Roy, P. Rubio-Montero, A. J. Rui, R. Rusanov, I. Russo, G. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Saini, J. Saiz, P. Sakata, D. Salgado, C. A. Domingues da Silva, R. Salgueiro Salur, S. Samanta, T. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Saturnini, P. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schindler, H. Schmidt, C. Schmidt, H. R. Schossmaier, K. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Segato, G. Semenov, D. Senyukov, S. Seo, J. Serci, S. Serkin, L. Serradilla, E. Sevcenco, A. Sgura, I. Shabratova, G. Shahoyan, R. Sharkov, G. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddi, E. Siemiarczuk, T. Silenzi, A. Silvermyr, D. Simili, E. Simonetti, G. Singaraju, R. Singh, R. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Skaali, T. B. Sitta, M. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Snow, H. Sogaard, C. Soloviev, A. Soltveit, H. K. Soltz, R. Sommer, W. Son, C. W. Son, H. Song, M. Soos, C. Soramel, F. Soyk, D. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Staley, F. Stan, E. Stefanek, G. Stefanini, G. Steinbeck, T. Stenlund, E. Steyn, G. Stocco, D. Stock, R. Stolpovsky, P. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sumbera, M. Susa, T. Swoboda, D. Symons, J. de Toledo, A. Szanto Szarka, I. Szostak, A. Szuba, M. Tadel, M. Tagridis, C. Takahara, A. Takahashi, J. Tanabe, R. Takaki, J. D. Tapia Taureg, H. Tauro, A. Tavlet, M. Munoz, G. Tejeda Telesca, A. Terrevoli, C. Thaeder, J. Tieulent, R. Tlusty, D. Toia, A. Tolyhy, T. de Matos, C. Torcato Torii, H. Torralba, G. Toscano, L. Tosello, F. Tournaire, A. Traczyk, T. Tribedy, P. Troeger, G. Truesdale, D. Trzaska, W. H. Tsiledakis, G. Tsilis, E. Tsuji, T. Tumkin, A. Turrisi, R. Turvey, A. Tveter, T. S. Tydesjoe, H. Tywoniuk, K. Ulery, J. Ullaland, K. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vacchi, A. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. Vyvre, P. Vande van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasiliev, A. Vassiliev, I. Vasileiou, M. Vechernin, V. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vetlitskiy, I. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopianov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, V. Wallet, L. Wan, R. Wang, D. Wang, Y. Wang, Y. Watanabe, K. Wen, Q. Wessels, J. Westerhoff, U. Wiechula, J. Wikne, J. Wilk, A. Wilk, G. Williams, M. C. S. Willis, N. Windelband, B. Xu, C. Yang, C. Yang, H. Yasnopolskiy, S. Yermia, F. Yi, J. Yin, Z. Yokoyama, H. Yoo, I-K. Yuan, X. Yurevich, V. Yushmanov, I. Zabrodin, E. Zagreev, B. Zalite, A. Zampolli, C. Zanevsky, Yu. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zbroszczyk, H. Zelnicek, P. Zenin, A. Zepeda, A. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zhou, S. Zhu, J. Zichichi, A. Zinchenko, A. Zinovjev, G. Zoccarato, Y. Zychacek, V. Zynovyev, M. CA ALICE Collaboration TI Midrapidity Antiproton-to-Proton Ratio in pp Collisons root s=0.9 and 7 TeV Measured by the ALICE Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL CROSS-SECTIONS; ANTINUCLEON-NUCLEON; STRING MODEL; SCATTERING; ENERGIES; COLLISIONS; PHYSICS AB The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions. C1 [Bravina, L.; Dordic, O.; Eyyubova, G.; Hille, P. T.; Kolevatov, R.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Nyiri, A.; Pocheptsov, T.; Sitta, M.; Tveter, T. S.; Tywoniuk, K.; Wikne, J.; Zabrodin, E.] Univ Oslo, Dept Phys, Oslo, Norway. [Alt, T.; Angelov, V.; Boettger, S.; Breitner, T.; de Cuveland, J.; Gebelein, J.; Gorbunov, S.; Hayrapetyan, A.; Kalcher, S.; Kebschull, U.; Kisel, I.; Lara, C.; Lindenstruth, V.; Painke, F.; Panse, R.; Peschek, J.; Rettig, F.; Steinbeck, T.; Thaeder, J.; Torralba, G.; Troeger, G.; Vassiliev, I.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Cherney, M.; Gorbunov, Y.; Malagalage, K. J.; Nilsen, B. S.; Turvey, A.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Torres, E. Lopez; Shtejer, K.] CEADEN, Havana, Cuba. [Grigoryan, A.; Gulkanyan, H.; Harutyunyan, A.; Papikyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Bielcikova, J.; Kapitan, J.; Kushpil, S.; Kushpil, V.; Sumbera, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Bhati, A. K.; Kumar, L.; Kumar, N.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Antinori, F.; Augustinus, A.; Carena, F.; Carminati, F.; Cavicchioli, C.; Cheshkov, C.; Colla, A.; Costa, F.; Di Mauro, A.; Fabjan, C. W.; Formenti, F.; Furano, F.; Gheata, A.; Grigoras, A.; Grigoras, C.; Jacholkowski, A.; Klein-Boesing, C.; Kluge, A.; Lackner, F.; Lippmann, C.; Morsch, A.; Osmic, F.; Perini, D.; Peters, A. J.; Quercigh, E.; Rademakers, A.; Roehrich, D.; Sicking, E.; Soos, C.; Swoboda, D.; Tauro, A.; Telesca, A.; Toia, A.; de Matos, C. Torcato; von Haller, B.; Zampolli, C.] European Org Nucl Res CERN, Geneva, Switzerland. [Barnafoldi, G. G.; Boldizsar, L.; Denes, E.; Fodor, Z.; Hamar, G.; Levai, P.; Mares, J.; Molnar, L.; Pochybova, S.; Tolyhy, T.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Ahammed, Z.; Chattopadhyay, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Khan, S. A.; Mohanty, B.; Mondal, M. M.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Prasad, S. K.; Saini, J.; Samanta, T.; Singhal, V.; Sinha, B. C.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, A.; Ahmad, N.; Azmi, M. D.; Irfan, M.; Kamal, A.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kang, E.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Seo, J.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Akimoto, R.; Gunji, T.; Hamagaki, H.; Hori, Y.; Okada, K.; Ozawa, K.; Sano, S.; Takahara, A.; Tsuji, T.] Univ Tokyo, Tokyo, Japan. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Polozov, P.; Sharkov, G.; Vetlitskiy, I.; Voloshin, K.; Zagreev, B.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Dobretsov, V.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kozlov, K.; Kucheriaev, Y.; Manko, V.; Moukhanova, T.; Nianine, A.; Nikolaev, S.; Nikulin, S.; Peressounko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Alessandro, B.; Arnaldi, R.; Asryan, A.; Bagnasco, S.; Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Cerello, P.; Chiavassa, E.; Cobanoglu, O.; Coli, S.; Morales, Y. Corrales; De Marco, N.; De Remigis, R.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Trapaga, C. Garcia; Giraudo, G.; Giubellino, P.; Luparello, G.; Chiesa, A. Marzari; Masera, M.; Mazza, G.; Mereu, P.; Milano, L.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poggio, F.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Siciliano, M.; Stocco, D.; Vasquez, M. A. Subieta; Toscano, L.; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Alici, A.; Antinori, S.; Arcelli, S.; Basile, M.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Masetti, M.; Preghenella, R.; Scioli, G.; Silenzi, A.; Zichichi, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alici, A.; Antinori, S.; Antonioli, P.; Arcelli, S.; Basile, M.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Laurenti, G.; Margotti, A.; Masetti, M.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Silenzi, A.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Alme, J.; Bablok, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Liu, L.; Nystrand, J.; Ovrebekk, G.; Pommeresch, B.; Richter, M.; Skjerdal, K.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Altini, V.; Barile, F.; Bruno, G. E.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Minafra, F.; Navach, F.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; de Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Mastroserio, A.; Minafra, F.; Nappi, E.; Navach, F.; Nicassio, M.; Pastore, C.; Paticchio, V.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Knichel, M. L.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Prino, F.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Darmstadt, Helmholtzzentrum Schwerionenforsch, EMMI, Darmstadt, Germany. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Knichel, M. L.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Darmstadt, Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andrei, C.; Berceanu, I.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Anson, C.; Bock, N.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antipin, K.; Antonczyk, D.; Appelshaeuser, H.; Arend, A.; Blume, C.; Buesching, H.; Hartig, M.; Kliemant, M.; Kniege, S.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Pitz, N.; Renfordt, R.; Schuchmann, S.; Sommer, W.; Stock, R.; Ulery, J.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Aphecetche, L.; Batigne, G.; Benhabib, L.; Bourdaud, G.; del Valle, Z. Conesa; Cussonneau, J.; Delagrange, H.; Dialinas, M.; Estienne, M.; Germain, M.; Ichou, R.; Le Bris, N.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Pillot, P.; Roy, C.; Schutz, Y.; Tournaire, A.; Yermia, F.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, Nantes, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Heinz, M.; Hicks, B.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Asryan, A.; Braun, M.; Derkach, D.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Semenov, D.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Awes, T. C.; Enokizono, A.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Alt, T.; Angelov, V.; Bach, M.; Braun-Munzinger, P.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kalcher, S.; Lindenstruth, V.; Peschek, J.; Rettig, F.; Rossi, A.; Steinbeck, T.; Thaeder, J.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Chiavassa, E.; Cobanoglu, O.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Trapaga, C. Garcia; Luparello, G.; Chiesa, A. Marzari; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poggio, F.; Poghosyan, M. G.; Siciliano, M.; Stocco, D.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Baldisser, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Orsini, F.; Pereira, H.; Rakotozafindrabe, A.; Staley, F.] IRFU, CEA, Saclay, France. [Ahn, S. U.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Crochet, P.; Devaux, A.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, Clermont Univ, LPC, CNRS,IN2PC, Clermont Ferrand, France. [Ban, J.; Kalinak, P.; Kralik, I.; Pastircak, B.; Sandor, L.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Barbera, R.; Blanco, F.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barbera, R.; Blanco, F.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Barnby, L. S.; Evans, D.; Jones, G. T.; Jones, P. G.; Jovanovic, P.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Platt, R.; Scott, P. A.; Snow, H.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Bartke, J.; Gladysz-Dziadus, E.; Kornas, E.; Kowalski, M.; Matyja, A.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Basmanov, V.; Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Nazarov, G.; Punin, A.; Punin, V.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Bathen, B.; Baumann, C.; Dietel, T.; Glasow, R.; Gottschlag, H.; Heide, M.; Kalisky, M.; Rammler, M.; Reygers, K.; Santo, R.; Sicking, E.; Wessels, J.; Westerhoff, U.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Batyunya, B.; Fateev, O.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Kutouski, M.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopianov, A.; Yurevich, V.; Zanevsky, Yu.; Zaporozhets, S.; Zinchenko, A.] Joint Inst Nucl Res, Dubna, Russia. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Fenton-Olsen, B.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Becker, B.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.; Siddi, E.; Szostak, A.; Uras, A.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Belikov, I.; Coffin, J. -P.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Lutz, J. -R.; Maire, A.; Michalon, A.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Bellwied, R.; Cormier, T. M.; Mlynarz, J.; Pavlinov, A.; Pruneau, C. A.; Voloshin, S.] Wayne State Univ, Detroit, MI 48201 USA. [Belogianni, A.; Fragkiadakis, M.; Ganoti, P.; Petridis, A.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Tsilis, E.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Miftakhov, N.; Nikulin, V.; Polyakov, V.; Samsonov, V.; Zalite, A.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bhasin, A.; Gupta, A.; Gupta, R.; Lal, C.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Bianchi, N.; Capitani, G. P.; Diaz, A. Casanova; Balbastre, G. Conesa; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.; Yuan, X.] Univ Padua, Dipartimento Fis, Padua, Italy. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Dainese, A.; Fabris, D.; Grosso, R.; Lunardon, M.; Morando, M.; Moretto, S.; Pepato, A.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.; Yuan, X.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Bielcik, J.; Kral, J.; Krus, M.; Pachr, M.; Petracek, V.; Pospisil, V.; Smakal, R.; Tlusty, D.; Wagner, V.; Zychacek, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Snellings, R.; van der Kolk, N.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Bimbot, L.; Boyer, B.; Chambert, V.; Charpy, A.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lafage, V.; Le Bornec, Y.; Noriega, M. Lopez; Malek, M.; Peyre, J.; Pouthas, J.; Rousseau, S.; Suire, C.; Takaki, J. D. Tapia; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; de Guevara, P. Ladron; Montes, E.; Rubio-Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Kharlov, Y.; Kim, J.; Polichtchouk, B.; Sadovsky, S.; Soloviev, A.; Stolpovsky, P.; Zenin, A.] Inst High Energy Phys, Protvino, Russia. [Bohm, J.; Chang, B.; Kang, J. H.; Kim, M.; Kim, Y.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Bombara, M.; Kravcakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Borisov, A.; Grinyov, B.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Bose, S.; Chattopadhyay, S.; Das, I.; Majumdar, A. K. Dutta; Pal, S.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Bosisio, L.; Bregant, M.; Camerini, P.; Cattaruzza, E.; Contin, G.; Margagliotti, G. V.; Rossi, A.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bosisio, L.; Bregant, M.; Camerini, P.; Cattaruzza, E.; Contin, G.; Fragiacomo, E.; Grion, N.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rashevskaya, I.; Rossi, A.; Rui, R.; Vacchi, A.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Braun-Munzinger, P.; Kalweit, A.; Kraus, I.; Mager, M.; Oeschler, H.; Ricaud, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Busch, O.; Constantin, P.; De Gaspari, M.; Emschermann, D.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krumbhorn, D.; Kweon, M. J.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Rusanov, I.; Schicker, R.; Schweda, K.; Soltveit, H. K.; Stachel, J.; Tsiledakis, G.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.; Yang, H.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Buthelezi, Z.; Cleymans, J.; de Vaux, G.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, IThemba Labs, ZA-7925 Cape Town, South Africa. [Cai, X.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Xu, C.; Yang, C.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.; Zhu, J.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Calvo, E.; Delgado, Y.; Gago, A.; Guerra, C.; Perez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Camacho, E.; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Reyes, A. Ramirez; Zepeda, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Camacho, E.; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Reyes, A. Ramirez; Zepeda, A.] CINVESTAV, Merida, Venezuela. [Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Chinellato, D. D.; Cosentino, M. R.; Takahashi, J.] Univ Estadual Campinas, Campinas, Brazil. [Choi, K.; Lee, H.; Son, C. W.; Yi, J.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Ivan, C.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Simili, E.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Nikhef, Utrecht, Netherlands. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Ivan, C.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Simili, E.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Christiansen, P.; Dobrin, A.; Gros, P.; Gustafsson, H. -A.; Oskarsson, A.; Oesterman, L.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Shimomura, M.; Tanabe, R.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Chuman, F.; Hiei, A.; Horaguchi, T.; Iwasaki, T.; Maruyama, Y.; Mizoguchi, K.; Okada, Y.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Conner, E. S.; Keidel, R.] Fachhochschule Worms, ZTT, Worms, Germany. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Skaali, T. B.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Skaali, T. B.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Maldonado, I. Cortes; Fernandez Tellez, A.; Santos, H. Gonzalez; Lopez-Ramirez, R.; Hernandez, M. I. Martinez; Munoz, J.; Cahuantzi, M. Rodriguez; Roman Lopez, S.; Munoz, G. Tejeda; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cuautle, E.; Diaz, L.; Dominguez, I.; Cervantes, I. Maldonado; Mayani, D.; Velasquez, A. Ortiz; Paic, G.; Peskov, V.; Serkin, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, E.; Zgura, I.] ISS, Bucharest, Romania. [Dash, A.; Dash, S.; Jena, C.; Mahapatra, D. P.; Rath, S.] Inst Phys, Bhubaneswar 751007, Orissa, India. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Soares, A. Lozea Feijo; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [de Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [de Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Sezione Ist Nazl Fis Nucl, Salerno, Italy. [De Falco, A.; Floris, M.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Blanco, F.; Don, D. M. M.; Madagodahettige-Don, D. M.; Pinsky, L.; Yuan, X.] Univ Houston, Houston, TX 77004 USA. [Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble,LPSC, Grenoble, France. [Fekete, V.; Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Frolov, A.; Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Fenton-Olsen, B.; Glenn, A.; Newby, J.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Jimenez, R. Gomez; Monzon, I. Leon; Lerma, P. L. M. Podesta] Univ Autonoma Sinaloa, Culiacan, Mexico. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskih, A.; Kurepin, A.; Kurepin, A. N.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Hamblen, J.; Martashvili, I.; Read, K. F.] Univ Tennessee, Knoxville, TN 37996 USA. [Han, B. H.; Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Helstrup, H.; Hetland, K. F.; Kileng, B.; Roed, K.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Hu, S.; Li, X.; Li, Y.; Lu, S.; Wen, Q.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Jacobs, P.; Odyniec, G.; Ploskon, M.; Salur, S.; Symons, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jena, S.; Nandi, B. K.; Nyatha, A.; Pujahari, P.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Kikola, D.; Kupczak, R.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szuba, M.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Raniwala, R.; Raniwala, S.; Singaraju, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Bortolin, C.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Ferretti, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [La Rocca, P.; Preghenella, R.; Zichichi, A.] Ctr Fermi Ctr & Ric Museo & Stor Fis Enrico Fermi, Rome, Italy. [Salazar, S. Aguilar; Alfaro Molina, R.; Almaraz Avina, E.; Anzo, A.; Arceo, R.; Belmont-Moreno, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Leon, H.; Davalos, A. Martinez; Menchaca-Rocha, A.; Sandoval, A.; Palomo, L. Valencia] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Redlich, K.] Univ Wroclaw, PL-50138 Wroclaw, Poland. RP Aamodt, K (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. RI Zagreev, Boris/R-6460-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Graciani Diaz, Ricardo/I-5152-2016; Fernandez Tellez, Arturo/E-9700-2017; Vickovic, Linda/F-3517-2017; HAMAGAKI, HIDEKI/G-4899-2014; BRAUN, MIKHAIL/I-6826-2013; Vechernin, Vladimir/J-5832-2013; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kutouski, Mikalai/I-1555-2016; Kurepin, Alexey/H-4852-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Deppman, Airton/J-5787-2014; Wagner, Vladimir/G-5650-2014; Bielcikova, Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Vacchi, Andrea/C-1291-2010; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Traczyk, Tomasz/C-1310-2013; Ramello, Luciano/F-9357-2013; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Becker, Bruce/I-5632-2013; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Cortese, Pietro/G-6754-2012; SCAPPARONE, EUGENIO/H-1805-2012; Masera, Massimo/J-4313-2012; Bagnasco, Stefano/J-4324-2012; Colla, Alberto/J-4694-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012; Christensen, Christian/D-6461-2012; Peitzmann, Thomas/K-2206-2012; feofilov, grigory/A-2549-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Petta, Catia/A-7023-2012; Takahashi, Jun/B-2946-2012; Felea, Daniel/C-1885-2012; Sevcenco, Adrian/C-1832-2012; Chinellato, David/D-3092-2012; Barbera, Roberto/G-5805-2012; Deppman, Airton/F-6332-2010; Pshenichnov, Igor/A-4063-2008; Christensen, Christian Holm/A-4901-2010; Haiduc, Maria /C-5003-2011; Mitu, Ciprian/E-6733-2011 OI Gago Medina, Alberto Martin/0000-0002-0019-9692; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Tosello, Flavio/0000-0003-4602-1985; Beole', Stefania/0000-0003-4673-8038; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Graciani Diaz, Ricardo/0000-0001-7166-5198; Fernandez Tellez, Arturo/0000-0003-0152-4220; Vickovic, Linda/0000-0002-9820-7960; Riggi, Francesco/0000-0002-0030-8377; BRAUN, MIKHAIL/0000-0001-7398-7801; Vechernin, Vladimir/0000-0003-1458-8055; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kutouski, Mikalai/0000-0002-2920-8775; Kurepin, Alexey/0000-0002-1851-4136; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Deppman, Airton/0000-0001-9179-6363; Cosentino, Mauro/0000-0002-7880-8611; Vacchi, Andrea/0000-0003-3855-5856; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Traczyk, Tomasz/0000-0002-6602-4094; Castillo Castellanos, Javier/0000-0002-5187-2779; Becker, Bruce/0000-0002-6607-7145; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Guber, Fedor/0000-0001-8790-3218; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Christensen, Christian/0000-0002-1850-0121; Peitzmann, Thomas/0000-0002-7116-899X; feofilov, grigory/0000-0003-3700-8623; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Felea, Daniel/0000-0002-3734-9439; Sevcenco, Adrian/0000-0002-4151-1056; Chinellato, David/0000-0002-9982-9577; Barbera, Roberto/0000-0001-5971-6415; Deppman, Airton/0000-0001-9179-6363; Pshenichnov, Igor/0000-0003-1752-4524; Christensen, Christian Holm/0000-0002-1850-0121; FU Calouste Gulbenkian Foundation from Lisbon; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; The European Research Council; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German BMBF; Helmholtz Association; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; Korea Foundation for International Cooperation of Science and Technology (KICOS); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), The Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autontatea Nationala pentru Cercetare Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Reseach Council; Knut & Alice Wallenberg Foundation; Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy; United States National Science Foundation, State of Texas; Swiss Fonds Kidagan, Armenia; United States National Science Foundation, the State of Ohio FX We would like to thank Paola Sala, John Apostolakis, Alfredo Ferrari, Dmitri Kharzeev, Carlos Merino, Torbjorn Sjostrand, and Peter Skands for numerous and fruitful discussions on different topics of this Letter. The ALICE Collaboration would like to thank all of its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire,'' "Region Alsace,'' "Region Auvergne,'' and CEA, France; German BMBF and the Helmholtz Association; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; Korea Foundation for International Cooperation of Science and Technology (KICOS); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), The Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autontatea Nationala pentru Cercetare Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 45 TC 54 Z9 56 U1 1 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 12 PY 2010 VL 105 IS 7 AR 072002 DI 10.1103/PhysRevLett.105.072002 PG 12 WC Physics, Multidisciplinary SC Physics GA 637WY UT WOS:000280850600005 PM 20868032 ER PT J AU Balabas, MV Karaulanov, T Ledbetter, MP Budker, D AF Balabas, M. V. Karaulanov, T. Ledbetter, M. P. Budker, D. TI Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-RESONANCE LINES; WALL-COATED CELL; EXCHANGE; MAGNETOMETRY; LIGHT AB We demonstrate lifetimes of Zeeman populations and coherences in excess of 60 sec in alkali-metal vapor cells with inner walls coated with an alkene material. This represents 2 orders of magnitude improvement over the best paraffin coatings. We explore the temperature dependence of cells coated with this material and investigate spin-exchange relaxation-free magnetometry in a room-temperature environment, a regime previously inaccessible with conventional coating materials. C1 [Balabas, M. V.] SI Vavilov State Opt Inst, St Petersburg 199034, Russia. [Karaulanov, T.; Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Balabas, MV (reprint author), SI Vavilov State Opt Inst, St Petersburg 199034, Russia. EM ledbetter@berkeley.edu RI Balabas, Mikhail/A-5273-2012; Budker, Dmitry/F-7580-2016 OI Balabas, Mikhail/0000-0002-5383-7897; Budker, Dmitry/0000-0002-7356-4814 FU ONR MURI; NGA NURI; NSF FX The authors appreciate useful discussions with S. Bernasek and V.M. Acosta. This work was supported by the ONR MURI and NGA NURI programs and by the NSF. NR 27 TC 82 Z9 86 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 12 PY 2010 VL 105 IS 7 AR 070801 DI 10.1103/PhysRevLett.105.070801 PG 4 WC Physics, Multidisciplinary SC Physics GA 637WY UT WOS:000280850600003 PM 20868027 ER PT J AU Koehler, PE Becvar, F Krticka, M Harvey, JA Guber, KH AF Koehler, P. E. Becvar, F. Krticka, M. Harvey, J. A. Guber, K. H. TI Anomalous Fluctuations of s-Wave Reduced Neutron Widths of Pt-192,Pt-194 Resonances SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHAOS AB We obtained an unprecedentedly large number of s-wave neutron widths through R-matrix analysis of neutron cross-section measurements on enriched Pt samples. Careful analysis of these data rejects the validity of the Porter-Thomas distribution with a statistical significance of at least 99.997%. C1 [Koehler, P. E.; Harvey, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Becvar, F.; Krticka, M.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague 8, Czech Republic. [Guber, K. H.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Koehler, PE (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Becvar, Frantisek/D-3824-2012; OI Koehler, Paul/0000-0002-6717-0771 FU U.S. Department of Energy [DEAC05-00OR22725]; UT-Battelle, LLC; Czech Research Plans [MSM-021620859, INGO-LA08015] FX This work was supported by the U.S. Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC, and by Czech Research Plans MSM-021620859 and INGO-LA08015. NR 10 TC 33 Z9 33 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 12 PY 2010 VL 105 IS 7 AR 072502 DI 10.1103/PhysRevLett.105.072502 PG 4 WC Physics, Multidisciplinary SC Physics GA 637WY UT WOS:000280850600006 PM 20868035 ER PT J AU Neumayer, P Fortmann, C Doppner, T Davis, P Falcone, RW Kritcher, AL Landen, OL Lee, HJ Lee, RW Niemann, C Le Pape, S Glenzer, SH AF Neumayer, P. Fortmann, C. Doeppner, T. Davis, P. Falcone, R. W. Kritcher, A. L. Landen, O. L. Lee, H. J. Lee, R. W. Niemann, C. Le Pape, S. Glenzer, S. H. TI Plasmons in Strongly Coupled Shock-Compressed Matter SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY THOMSON SCATTERING; LOCAL-FIELD FACTOR; DYNAMIC STRUCTURE; BROWN DWARFS; ELECTRON-GAS; LI METAL AB We present the first measurements of the plasmon dispersion and damping in laser shock-compressed solid matter. Petawatt laser produced K-alpha radiation scatters on boron targets compressed by a 10 ns-long 400 J laser pulse. In the vicinity of the Fermi momentum, the scattering spectra show dispersionless, collisionally damped plasmons, indicating a strongly coupled electron liquid. These observations agree with calculations that include the Born-Mermin approximation to account for electron-ion collisional damping and local field corrections reflecting electron-electron correlations. C1 [Neumayer, P.; Fortmann, C.; Doeppner, T.; Davis, P.; Kritcher, A. L.; Landen, O. L.; Lee, R. W.; Niemann, C.; Le Pape, S.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fortmann, C.; Niemann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Davis, P.; Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, H. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Neumayer, P (reprint author), GSI Darmstadt, D-64291 Darmstadt, Germany. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD [08-ERI-002]; Alexander von Humboldt Foundation FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by LDRD grant 08-ERI-002. C. F. acknowledges the Alexander von Humboldt Foundation. NR 33 TC 35 Z9 35 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 12 PY 2010 VL 105 IS 7 AR 075003 DI 10.1103/PhysRevLett.105.075003 PG 4 WC Physics, Multidisciplinary SC Physics GA 637WY UT WOS:000280850600010 PM 20868053 ER PT J AU Paolone, M Malace, SP Strauch, S Albayrak, I Arrington, J Berman, BL Brash, EJ Briscoe, B Camsonne, A Chen, JP Christy, ME Chudakov, E Cisbani, E Craver, B Cusanno, F Ent, R Garibaldi, F Gilman, R Glamazdin, O Glister, J Higinbotham, DW Hyde-Wright, CE Ilieva, Y de Jager, CW Jiang, X Jones, MK Keppel, CE Khrosinkova, E Kuchina, E Kumbartzki, G Lee, B Lindgren, R Margaziotis, DJ Meekins, D Michaels, R Park, K Pentchev, L Perdrisat, CF Piasetzky, E Punjabi, VA Puckett, AJR Qian, X Qiang, Y Ransome, RD Saha, A Sarty, AJ Schulte, E Solvignon, P Subedi, RR Tang, L Tedeschi, D Tvaskis, V Udias, JM Ulmer, PE Vignote, JR Wesselmann, FR Wojtsekhowski, B Zhan, X AF Paolone, M. Malace, S. P. Strauch, S. Albayrak, I. Arrington, J. Berman, B. L. Brash, E. J. Briscoe, B. Camsonne, A. Chen, J. -P. Christy, M. E. Chudakov, E. Cisbani, E. Craver, B. Cusanno, F. Ent, R. Garibaldi, F. Gilman, R. Glamazdin, O. Glister, J. Higinbotham, D. W. Hyde-Wright, C. E. Ilieva, Y. de Jager, C. W. Jiang, X. Jones, M. K. Keppel, C. E. Khrosinkova, E. Kuchina, E. Kumbartzki, G. Lee, B. Lindgren, R. Margaziotis, D. J. Meekins, D. Michaels, R. Park, K. Pentchev, L. Perdrisat, C. F. Piasetzky, E. Punjabi, V. A. Puckett, A. J. R. Qian, X. Qiang, Y. Ransome, R. D. Saha, A. Sarty, A. J. Schulte, E. Solvignon, P. Subedi, R. R. Tang, L. Tedeschi, D. Tvaskis, V. Udias, J. M. Ulmer, P. E. Vignote, J. R. Wesselmann, F. R. Wojtsekhowski, B. Zhan, X. CA E03-104 Collaboration TI Polarization Transfer in the He-4((e)over-right-arrow, e '(p)over-right-arrow)H-3 Reaction at Q(2)=0.8 and 1.3 (GeV/c)(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; IMPULSE APPROXIMATION; BOUND NUCLEONS; SCATTERING AB Proton recoil polarization was measured in the quasielastic He-4((e) over right arrow, e '(p) over right arrow)H-3 reaction at Q(2) = 0.8 and 1.3 (GeV/c)(2) with unprecedented precision. The polarization-transfer coefficients are found to differ from those of the H-1((e) over right arrow, e '(p) over right arrow) reaction, contradicting a relativistic distorted-wave approximation and favoring either the inclusion of medium-modified proton form factors predicted by the quark-meson coupling model or a spin-dependent charge-exchange final-state interaction. For the first time, the polarization-transfer ratio is studied as a function of the virtuality of the proton. C1 [Paolone, M.; Malace, S. P.; Strauch, S.; Tedeschi, D.] Univ S Carolina, Columbia, SC 29208 USA. [Albayrak, I.; Christy, M. E.; Keppel, C. E.; Tang, L.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA. [Arrington, J.; Solvignon, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Berman, B. L.; Briscoe, B.; Ilieva, Y.] George Washington Univ, Washington, DC 20052 USA. [Brash, E. J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Camsonne, A.; Chen, J. -P.; Chudakov, E.; Ent, R.; Gilman, R.; Higinbotham, D. W.; de Jager, C. W.; Jones, M. K.; Meekins, D.; Michaels, R.; Park, K.; Saha, A.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Super Sanita, Fis Lab, I-00161 Rome, Italy. [Craver, B.; Lindgren, R.] Univ Virginia, Charlottesville, VA 22904 USA. [Gilman, R.; Jiang, X.; Kuchina, E.; Kumbartzki, G.; Ransome, R. D.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-310108 Kharkov, Ukraine. [Glister, J.; Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Glister, J.] Dalhousie Univ, Halifax, NS, Canada. [Hyde-Wright, C. E.; Ulmer, P. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Khrosinkova, E.; Subedi, R. R.] Kent State Univ, Kent, OH 44242 USA. [Lee, B.] Seoul Natl Univ, Seoul, South Korea. [Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Pentchev, L.; Perdrisat, C. F.] Coll William & Mary, Williamsburg, VA 23187 USA. [Piasetzky, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Punjabi, V. A.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA 23504 USA. [Puckett, A. J. R.; Qiang, Y.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Qian, X.] Duke Univ, Durham, NC 27708 USA. [Udias, J. M.] Univ Complutense Madrid, E-28040 Madrid, Spain. [Vignote, J. R.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. RP Paolone, M (reprint author), Univ S Carolina, Columbia, SC 29208 USA. RI Udias, Jose/A-7523-2010; Cisbani, Evaristo/C-9249-2011; Arrington, John/D-1116-2012; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Udias, Jose/0000-0003-3714-764X; Cisbani, Evaristo/0000-0002-6774-8473; Arrington, John/0000-0002-0702-1328; Higinbotham, Douglas/0000-0003-2758-6526 FU U.S. Department of Energy; U.S. National Science Foundation; DOE [DE-AC05-06OR23177] FX The Collaboration acknowledges the Hall A technical staff and the Jefferson Lab Accelerator Division for their terrific support. This work was supported by the U.S. Department of Energy and the U.S. National Science Foundation. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE Contract No. DE-AC05-06OR23177. NR 29 TC 37 Z9 37 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 12 PY 2010 VL 105 IS 7 AR 072001 DI 10.1103/PhysRevLett.105.072001 PG 5 WC Physics, Multidisciplinary SC Physics GA 637WY UT WOS:000280850600004 PM 20868031 ER PT J AU McEvoy, AL Greenfield, D Bates, M Liphardt, J AF McEvoy, Ann L. Greenfield, Derek Bates, Mark Liphardt, Jan TI Q&A: Single-molecule localization microscopy for biological imaging SO BMC BIOLOGY LA English DT Editorial Material ID OPTICAL RECONSTRUCTION MICROSCOPY; SWITCHABLE FLUORESCENT-PROBES; SUPERRESOLUTION MICROSCOPY; LIVING CELL; RESOLUTION; NANOSCOPY; STORM C1 [McEvoy, Ann L.; Greenfield, Derek; Liphardt, Jan] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Greenfield, Derek; Liphardt, Jan] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bates, Mark] Max Planck Inst Biophys Chem, Dept NanoBiophoton, D-37077 Gottingen, Germany. [Liphardt, Jan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Liphardt, J (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM Liphardt@berkeley.edu RI Liphardt, Jan/A-5906-2012; OI Liphardt, Jan/0000-0003-2835-5025 NR 24 TC 13 Z9 13 U1 0 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD AUG 11 PY 2010 VL 8 AR 106 DI 10.1186/1741-7007-8-106 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 672ID UT WOS:000283575400001 PM 20707882 ER PT J AU Qiao, L Droubay, TC Shutthanandan, V Zhu, Z Sushko, PV Chambers, SA AF Qiao, L. Droubay, T. C. Shutthanandan, V. Zhu, Z. Sushko, P. V. Chambers, S. A. TI Thermodynamic instability at the stoichiometric LaAlO3/SrTiO3(001) interface SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID BAND OFFSETS; POTENTIALS; DENSITY; OXIDES AB Stoichiometric epitaxial LaAlO3 grown on TiO2-terminated SrTiO3(001) by off-axis pulsed laser deposition is shown to exhibit strong cation intermixing. This result is corroborated by classical and quantum mechanical calculations of the relative stabilities of abrupt and intermixed interface configurations. The valence band offset was measured to be 0.16 +/- 0.10 eV, and this value cannot be accounted for theoretically without including intermixing in the physical description of the interface. C1 [Qiao, L.; Droubay, T. C.; Shutthanandan, V.; Zhu, Z.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Sushko, P. V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, P. V.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sa.chambers@pnl.gov RI Qiao, Liang/A-8165-2012; Zhu, Zihua/K-7652-2012; Sushko, Peter/F-5171-2013; Droubay, Tim/D-5395-2016 OI Sushko, Peter/0000-0001-7338-4146; Droubay, Tim/0000-0002-8821-0322 FU US Department of Energy, Office of Science, Division of Materials Science and Engineering; Department of Energy's Office of Biological and Environmental Research; Royal Society FX This work was supported by the US Department of Energy, Office of Science, Division of Materials Science and Engineering, and was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PVS is supported in part by the Royal Society. Some of the computations were performed at the Hector computational facility; access to Hector is provided by the Materials Chemistry Consortium. NR 31 TC 55 Z9 55 U1 3 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 11 PY 2010 VL 22 IS 31 AR 312201 DI 10.1088/0953-8984/22/31/312201 PG 6 WC Physics, Condensed Matter SC Physics GA 626VV UT WOS:000279996400001 PM 21399356 ER PT J AU Yu, H Mazzanti, CL Whitfield, TW Koeppe, RE Andersen, OS Roux, B AF Yu, Haibo Mazzanti, Christopher L. Whitfield, Troy W. Koeppe, Roger E., II Andersen, Olaf S. Roux, Benoit TI A Combined Experimental and Theoretical Study of Ion Solvation in Liquid N-Methylacetamide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLARIZABLE FORCE-FIELD; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY CALCULATIONS; CLASSICAL DRUDE OSCILLATOR; HISTOGRAM ANALYSIS METHOD; CAR-PARRINELLO EQUATIONS; HYDRATION FREE-ENERGIES; SOLID-STATE NMR; FLUCTUATING CHARGE; AB-INITIO AB Most current biomolecular simulations are based on potential energy functions that treat the electrostatic energy as a sum of pairwise Coulombic interactions between effective fixed atomic charges. This approximation, in which many-body induced polarization effects are included in an average way, is expected to be satisfactory for a wide range of systems, but less accurate for processes involving the transfer and partition of ions among heterogeneous environments. The limitations of these potential energy functions are perhaps most obvious in studies of ion permeation through membrane channels. In many cases, the pore is so narrow that the permeating ion must shed most of its surrounding water molecules and the large energetic loss due to dehydration must be compensated by coordination with protein atoms. Interactions of cations with protein backbone carbonyl oxygens, in particular, play a critical role in several important biological channels. As a first step toward meeting the challenge of developing an accurate explicit accounting for induced polarization effects, the present work combines experiments and computation to characterize the interactions of alkali and halide ions with N-methylacetamide chosen to represent the peptide bond. From solubility measurements, we extract the solvation free energies of KCl and NaCl in liquid N-methylacetamide. Polarizable models based on the Drude oscillator are then developed and compared with available experimental and ab initio data. The good agreement for a range of structural and thermodynamic properties in the gas and condensed phases suggests that the polarizable models provide an accurate representation of ion amide interactions in biological systems. C1 [Yu, Haibo; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Mazzanti, Christopher L.; Koeppe, Roger E., II] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Whitfield, Troy W.; Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60649 USA. [Andersen, Olaf S.] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA. RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 929 E 57th St, Chicago, IL 60637 USA. EM roux@uchicago.edu RI Yu, Haibo/B-9750-2008 OI Yu, Haibo/0000-0002-1099-2803 FU NIH [GM-70971, GM-72558] FX Financial support from the collaborative NIH Grant (GM-70971) to U.S.A., BR., and R.K. is acknowledged. Additional support from the NIH Grant GM-72558 (BR. and H.Y.) is also acknowledged. H.Y. thanks Dr. Ed Harder and Dr. Chris Rowley for helpful discussions. NR 136 TC 21 Z9 23 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 11 PY 2010 VL 132 IS 31 BP 10847 EP 10856 DI 10.1021/ja103270w PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 635XW UT WOS:000280692200045 PM 20681718 ER PT J AU Todorovic, M Davies, RD Dickinson, C Davis, RJ Cleary, KA Genova-Santos, R Grainge, KJB Hafez, YA Hobson, MP Jones, ME Lancaster, K Rebolo, R Reich, W Rubino-Martin, JA Saunders, RDE Savage, RS Scott, PF Slosar, A Taylor, AC Watson, RA AF Todorovic, Magdolna Davies, Rodney D. Dickinson, Clive Davis, Richard J. Cleary, Kieran A. Genova-Santos, Ricardo Grainge, Keith J. B. Hafez, Yaser A. Hobson, Michael P. Jones, Michael E. Lancaster, Katy Rebolo, Rafael Reich, Wolfgang Alberto Rubino-Martin, Jose Saunders, Richard D. E. Savage, Richard S. Scott, Paul F. Slosar, Anze Taylor, Angela C. Watson, Robert A. TI A 33-GHz Very Small Array survey of the Galactic plane from l=27 degrees to 46 degrees SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; HII regions; Galaxy: general; radio continuum: ISM ID ANOMALOUS MICROWAVE EMISSION; RADIO-CONTINUUM SURVEY; BACKGROUND POWER SPECTRUM; ELECTRIC-DIPOLE EMISSION; ANISOTROPY-PROBE; SPINNING DUST; EXCESS EMISSION; HII-REGIONS; SKY MAPS; 31 GHZ AB The Very Small Array (VSA) has been used to survey the l similar to 27 degrees to similar to 46 degrees, vertical bar b vertical bar < 4 degrees region of the Galactic plane at a resolution of 13 arcmin. This l-range covers a section through the Local, Sagittarius and the Cetus spiral arms. The survey consists of 44 pointings of the VSA, each with an rms sensitivity of similar to 90 mJy beam(-1). These data are combined in a mosaic to produce a map of the area. The majority of the sources within the map are HII regions. The main aim of the programme was to investigate the anomalous radio emission from the warm dust in individual HII regions of the survey. This programme required making a spectrum extending from GHz frequencies to the far-infrared (FIR) IRAS frequencies for each of nine strong sources selected to lie in unconfused areas. It was necessary to process each of the frequency maps with the same u, v coverage as was used for the VSA 33 GHz observations. The additional radio data were at 1.4, 2.7, 4.85, 8.35, 10.55, 14.35 and 94 GHz in addition to the 100, 60, 25 and 12 mu m IRAS bands. From each spectrum the free-free, thermal dust and anomalous dust emission were determined for each HII region. The mean ratio of 33 GHz anomalous flux density to FIR 100 mu m flux density for the nine selected HII regions was Delta S(33 GHz)/S(100 mu m) = 1.10 +/- 0.21 x 10(-4). When combined with six HII regions previously observed with the VSA and the Cosmic Background Imager, the anomalous emission from warm dust in HII regions is detected with a 33 GHz emissivity of 4.65 +/- 0.40 mu K (MJy sr(-1))(-1) (11.5 sigma). This level of anomalous emission is 0.3 to 0.5 of that detected in cool dust clouds. A radio spectrum of the HII region anomalous emission covering GHz frequencies is constructed. It has the shape expected for spinning dust composed of very small grains. The anomalous radio emission in HII regions is on average 41 +/- 10 per cent of the radio continuum at 33 GHz. Another result is that the excess (i.e. non-free-free) emission from HII regions at 94 GHz correlates strongly with the 100 mu m emission; it is also inversely correlated with the dust temperature. Both these latter results are as expected for very large grain dust emission. The anomalous emission on the other hand is expected to originate in very small spinning grains and correlates more closely with the 25 mu m emission. C1 [Todorovic, Magdolna; Davies, Rodney D.; Dickinson, Clive; Davis, Richard J.; Watson, Robert A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Cleary, Kieran A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Genova-Santos, Ricardo; Rebolo, Rafael; Alberto Rubino-Martin, Jose] Inst Astrofis Canarias, Tenerife 38200, Canary Islands, Spain. [Genova-Santos, Ricardo; Rebolo, Rafael; Alberto Rubino-Martin, Jose] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Grainge, Keith J. B.; Hobson, Michael P.; Saunders, Richard D. E.; Savage, Richard S.; Scott, Paul F.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Grainge, Keith J. B.; Saunders, Richard D. E.] Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Hafez, Yaser A.] KACST, Natl Ctr Math & Phys, Riyadh 11442, Saudi Arabia. [Jones, Michael E.; Taylor, Angela C.] Univ Oxford, Oxford OX1 3RH, England. [Lancaster, Katy] Univ Bristol, Bristol BS8 1TL, Avon, England. [Reich, Wolfgang] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Slosar, Anze] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Todorovic, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. EM Magdolna.Todorovic@manchester.ac.uk FU PPARC (now STFC); Spanish Ministry of Science and Technology [AYA2001-1657]; STFC Advanced Fellowship; ERC [FP7]; King Abdulaziz City for Science and Technology FX We thank the anonymous referee for useful comments on the paper. We thank the staff of Jodrell Bank Observatory, Mullard Radio Astronomy Observatory and the Teide Observatory for assistance in the day-to-day operation of the VSA. We are very grateful to PPARC (now STFC) for the funding and support for the VSA project and the Instituto de Astrofisica de Canarias (IAC) for supporting and maintaining the VSA in Tenerife. Partial financial support was provided by the Spanish Ministry of Science and Technology project AYA2001-1657. CD acknowledges an STFC Advanced Fellowship and ERC grant under the FP7. YAH thanks the King Abdulaziz City for Science and Technology for support. YAH also thanks His Highness Prince Dr Turki Bin Saud BinMohammad Al Saud for his personal support. JAR-M is a Ramon y Cajal fellow of the Spanish Ministry of Science and Innovation (MICINN). NR 44 TC 17 Z9 17 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 1629 EP 1643 DI 10.1111/j.1365-2966.2010.16809.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200013 ER PT J AU Zhang, Y Remec, I Alton, GD Liu, Z AF Zhang, Y. Remec, I. Alton, G. D. Liu, Z. TI Simulation of rare isotope release from ISOL target SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Target-vapor transport system; Rare isotope; Diffusion release; Effusive-flow; Radioactive decay ID SYSTEMS AB Releases of short-lived species from ISOL targets are simulated with computer codes. Analytic solutions to the diffusion equation are compared with those obtained from a finite-difference code for radioactive isotope diffusion release from simple geometry targets. The Monte Carlo technique as a practical means for vapor transport system design is demonstrated by simulating the effusive-flow of neutral particles through complex target-vapor transport systems. Particle release curves involving decay losses in both diffusion and effusive-flow are computed; and a numerical procedure is proposed to measure the diffusion coefficients and the characteristic effusion times of rare isotopes in target-ion source systems. Published by Elsevier B.V. C1 [Zhang, Y.; Remec, I.; Alton, G. D.; Liu, Z.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,MS 6461, Oak Ridge, TN 37831 USA. EM zhangyn@ornl.gov FU United States Government with the United States Department of Energy [DE-AC05-000R22725] FX Notice: this submission was sponsored by a contractor of the United States Government under contract DE-AC05-000R22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes. NR 12 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 142 EP 146 DI 10.1016/j.nima.2010.04.015 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700007 ER PT J AU Stratakis, D Gallardo, JC Palmer, RB AF Stratakis, Diktys Gallardo, Juan C. Palmer, Robert B. TI Effects of external magnetic fields on the operation of high-gradient accelerating structures SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Accelerator physics; High-gradient accelerating structures; RF breakdown; Muon collider ID BREAKDOWN AB Field emission in an rf cavity in the presence of external magnetic fields is examined. We show that emitted electrons from a sharp protrusion are focused by the magnetic field into small spots at another location in the cavity where they heat its surface. Scaling laws are established for the beam's induced heat in terms of macroscopic quantities such as magnetic field, accelerating gradient and spot dimensions. We find that when the magnetic field is of the order of a Tesla, the induced thermal stresses by the pulsed electron flux exceed the elastic limit and the surface becomes prone to cycling fatigue. The implication of these findings on the observed surface damage and magnetic-field-depended breakdown of an 805 MHz cavity is addressed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM diktys@bnl.gov OI Gallardo, Juan C/0000-0002-5191-3067 FU US Department of Energy [DE-AC02-98CH10886] FX The authors are grateful to Jim Norem and Al Moretti for extensive discussions and for sharing of their experimental data. The authors also wish to thank R.C. Fernow and A. Woodhead for reading the paper and making useful suggestions. Finally, thanks to X. Chang for his assistance with the PARMELA code. This work was supported by the US Department of Energy, Contract no. DE-AC02-98CH10886. NR 32 TC 14 Z9 14 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 147 EP 154 DI 10.1016/j.nima.2010.03.167 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700008 ER PT J AU Boudjemline, K Cai, B Cleveland, BT Evans, HC Ewan, GT Farine, J Ford, RJ Guillian, E Hallin, AL Hallman, ED Howard, C Jagam, P Jelley, NA Keeter, KJ Klein, JR Kraus, C Krauss, CB Lange, R Lawson, IT Loach, JC McDonald, AB McGregor, G Noble, AJ O'Keeffe, HM Peeters, SJM Poon, AWP Reitzner, SD Rielage, K Robertson, RGH Rusu, VL Seibert, SR Skensved, P Thomson, MJ AF Boudjemline, K. Cai, B. Cleveland, B. T. Evans, H. C. Ewan, G. T. Farine, J. Ford, R. J. Guillian, E. Hallin, A. L. Hallman, E. D. Howard, C. Jagam, P. Jelley, N. A. Keeter, K. J. Klein, J. R. Kraus, C. Krauss, C. B. Lange, R. Lawson, I. T. Loach, J. C. McDonald, A. B. McGregor, G. Noble, A. J. O'Keeffe, H. M. Peeters, S. J. M. Poon, A. W. P. Reitzner, S. D. Rielage, K. Robertson, R. G. H. Rusu, V. L. Seibert, S. R. Skensved, P. Thomson, M. J. TI The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radioactive calibration sources; (24)Na; (222)Rn; Solar neutrino; SNO ID WATER AB The production and analysis of distributed sources of (24)Na and (222)Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the (3)He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hallin, A. L.; Howard, C.; Krauss, C. B.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Lange, R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jagam, P.; Lawson, I. T.; Reitzner, S. D.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Cleveland, B. T.; Farine, J.; Ford, R. J.; Hallman, E. D.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada. [Loach, J. C.; Poon, A. W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Loach, J. C.; Poon, A. W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Rielage, K.; Seibert, S. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jelley, N. A.; Loach, J. C.; McGregor, G.; O'Keeffe, H. M.; Peeters, S. J. M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Klein, J. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Boudjemline, K.; Cai, B.; Evans, H. C.; Ewan, G. T.; Guillian, E.; Hallin, A. L.; Howard, C.; Keeter, K. J.; Kraus, C.; Krauss, C. B.; McDonald, A. B.; Noble, A. J.; O'Keeffe, H. M.; Skensved, P.; Thomson, M. J.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Cleveland, B. T.; Ford, R. J.; Lawson, I. T.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Klein, J. R.; Rusu, V. L.; Seibert, S. R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Rielage, K.; Robertson, R. G. H.] Univ Washington, Dept Phys, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. RP Peeters, SJM (reprint author), Univ Sussex, 4A5 Pevensey 2, Brighton BN1 9QH, E Sussex, England. EM S.J.M.Peeters@sussex.ac.uk RI Hallin, Aksel/H-5881-2011; OI Rielage, Keith/0000-0002-7392-7152 FU Atomic Energy of Canada, Ltd. (AECL); Science and Technology Facilities Council, United Kingdom; Natural Sciences and Engineering Research Council, Canada; National Research Council, Industry Canada; Northern Ontario Heritage Fund Corporation; Province of Ontario; Department of Energy, USA; Vale INCO; Agra-Monenco; Canatom; Canadian Microelectronics Corporation; AT&T Microelectronics; Northern Telecom; British Nuclear Fuels, Ltd. FX The authors are very grateful to the SNO collaboration, the site operations crew and to Vale INCO and their staff at Creighton mine, without whose help this work could not have been conducted, and would like to thank Atomic Energy of Canada, Ltd. (AECL) for the generous loan of the heavy water in cooperation with Ontario Power Generation. They would also like to thank the Royal Military College, Kingston, Ontario, for their help with the production of 24Na.; This work was supported in the United Kingdom by the Science and Technology Facilities Council (formerly the Particle Physics and Astronomy Research Council): in Canada by the Natural Sciences and Engineering Research Council, the National Research Council, Industry Canada, the Northern Ontario Heritage Fund Corporation, and the Province of Ontario: and in the USA by the Department of Energy. Further support was provided by Vale INCO, AECL, Agra-Monenco, Canatom, the Canadian Microelectronics Corporation, AT&T Microelectronics, Northern Telecom, and British Nuclear Fuels, Ltd. NR 26 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 171 EP 181 DI 10.1016/j.nima.2010.03.100 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700012 ER PT J AU Abrahams, J Abreu, P Aglietta, M Aguirre, C Ahn, EJ Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Arganda, E Argiro, S Arisaka, K Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Aublin, J Ave, M Avila, G Bacher, A Backer, T Badagnani, D Barber, KB Barbosa, AF Barbosa, HJM Barenthien, N Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Bleve, C Blumer, H Bohacova, M Bollmann, E Bolz, H Bonifazi, C Bonino, R Borodai, N Bracci, F Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Camin, D Caramete, L Caruso, R Carvalho, W Castellina, A Castro, J Catalano, O Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Chye, J Clark, PDJ Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordero, A Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, JW Cuautle, J Curutiu, A Dagoret-Campagne, S Dallier, R Daudo, F Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fonte, R Fracchiolla, CE Fraenkel, ED Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Geenen, H Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Gibbs, K Giller, M Gitto, J Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Grashorn, E Grassi, V Grebe, S Grigat, M Grillo, AF Grygar, J Guardincerri, Y Guardone, N Guerard, C Guarino, F Gumbsheimer, R Guedes, GP Gutierrez, J Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Hartmann, S Harton, JL Haungs, A Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Hofman, G Horandel, JR Horneffer, A Horvat, M Hrabovsky, M Hucker, H Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Kemp, E Kern, H Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Kopmann, A Krieger, A Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Lautridou, P Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Lyberis, H Maccarone, MC Macolino, C Maldera, S Malek, M Mandat, D Mantsch, P Marchetto, F Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martineau, O Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M McNeil, RR Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meyhandan, R Micheletti, MI Miele, G Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Moura, CA Mucchi, M Mueller, S Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nerling, F Newman-Holmes, C Newton, D Nhung, PT Nicotra, D Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Ortolani, F Osswald, B Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Ponce, VH Pontz, M Pouryamout, J Prado, L Privitera, P Prouza, M Quel, EJ Raia, G Rautenberg, J Ravel, O Ravignani, D Redondo, A Reis, HC Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Robledo, C Roberts, MD Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schleif, G Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Sequieros, G Settimo, M Shellard, RC Sidelnik, I Siffert, BB Smiatkowski, A Smida, R Smith, AGK Smith, BE Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tamburro, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Thao, NT Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Trapani, P Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tuci, V Tueros, M Tusi, E Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Vazquez, JR Vazquez, RA Veberic, D Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vitali, G Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Westerhoff, S Whelan, BJ Wild, N Wiebusch, C Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Worner, G Wu, H Wundheiler, B Yamamoto, T Younk, P Yuan, G Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abrahams, J. Abreu, P. Aglietta, M. Aguirre, C. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Arganda, E. Argiro, S. Arisaka, K. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Bacher, A. Baecker, T. Badagnani, D. Barber, K. B. Barbosa, A. F. Barbosa, H. J. M. Barenthien, N. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Bleve, C. Bluemer, H. Bohacova, M. Bollmann, E. Bolz, H. Bonifazi, C. Bonino, R. Borodai, N. Bracci, F. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Camin, D. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Castro, J. Catalano, O. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Chye, J. Clark, P. D. J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordero, A. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. W. Cuautle, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Daudo, F. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. Facal San Luis, P. Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fonte, R. Fracchiolla, C. E. Fraenkel, E. D. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Gamez, D. Garcia Garcia-Pinto, D. Garrido, X. Geenen, H. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Gibbs, K. Giller, M. Gitto, J. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Goncalves do Amaral, M. Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Grashorn, E. Grassi, V. Grebe, S. Grigat, M. Grillo, A. F. Grygar, J. Guardincerri, Y. Guardone, N. Guerard, C. Guarino, F. Gumbsheimer, R. Guedes, G. P. Gutierrez, J. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Hartmann, S. Harton, J. L. Haungs, A. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Hofman, G. Hoerandel, J. R. Horneffer, A. Horvat, M. Hrabovsky, M. Hucker, H. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Kemp, E. Kern, H. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Kopmann, A. Krieger, A. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Malek, M. Mandat, D. Mantsch, P. Marchetto, F. Mariazzi, A. G. Maris, I. C. Marquez Falcon, H. R. Martello, D. Martineau, O. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. McNeil, R. R. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mucchi, M. Mueller, S. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nerling, F. Newman-Holmes, C. Newton, D. Nhung, P. T. Nicotra, D. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Osswald, B. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Ponce, V. H. Pontz, M. Pouryamout, J. Prado, L., Jr. Privitera, P. Prouza, M. Quel, E. J. Raia, G. Rautenberg, J. Ravel, O. Ravignani, D. Redondo, A. Reis, H. C. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Robledo, C. Roberts, M. D. Rodriguez, G. Martino, J. Rodriguez Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schleif, G. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Sequieros, G. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Smiatkowski, A. Smida, R. Smith, A. G. K. Smith, B. E. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tamburro, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Thao, N. T. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Todero Peixoto, C. J. Tome, B. Tonachini, A. Torres, I. Trapani, P. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tuci, V. Tueros, M. Tusi, E. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vazquez, J. R. Vazquez, R. A. Veberic, D. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vitali, G. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Westerhoff, S. Whelan, B. J. Wild, N. Wiebusch, C. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Woerner, G. Wu, H. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI The fluorescence detector of the Pierre Auger Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Cosmic rays; Fluorescence detector ID EXTENSIVE AIR-SHOWERS; ATMOSPHERIC MULTIPLE-SCATTERING; ULTRA-HIGH ENERGY; COSMIC-RAYS; LIGHT; RECONSTRUCTION; SIMULATION; DEPENDENCE; AUGER,PIERRE; CAPABILITIES AB The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions. (C) 2010 Elsevier B.V All rights reserved. C1 [Bohacova, M.; Chudoba, J.; Grygar, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Allekotte, I.; Asorey, H.; Bertou, X.; Fonte, R.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Fonte, R.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Abreu, P.; Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sidelnik, I.; Suarez, F.; Wainberg, O.; Wundheiler, B.] UTN FRBA, CONICET, Comis Nacl Energia Atom, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Natl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Gitto, J.; Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Abrahams, J.; De La Vega, G.; Garcia, B.; Videla, M.] UTN FRM, Mendoza, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Smith, A. G. K.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Wild, N.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Ticona, R.; Velarde, A.] Univ Mayor San Andres, La Paz, Bolivia. [Barbosa, A. F.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Barbosa, H. J. M.; Carvalho, W.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Prado, L., Jr.; Reis, H. C.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Todero Peixoto, C. J.] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.; Smida, R.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Goncalves do Amaral, M.] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.; Rossler, T.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Allard, D.; Aublin, J.; Beau, T.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Rouille-d'Orfeuil, B.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Strazzeri, E.; Urban, M.; Wu, H.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris 05, France. [Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris 05, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC, Grenoble, France. [Dallier, R.; Lautridou, P.; Paul, T.; Ravel, O.; Revenu, B.] CNRS IN2P3, SUBATECH, Nantes, France. [Becker, K. H.; Geenen, H.; Hartmann, S.; Kampert, K. H.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Pouryamout, J.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.; Wiebusch, C.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Bollmann, E.; Bolz, H.; Daumiller, K.; Engel, R.; Garrido, X.; Gumbsheimer, R.; Haungs, A.; Heck, D.; Hucker, H.; Huege, T.; Keilhauer, B.; Kern, H.; Klages, H. O.; Kleinfeller, J.; Martineau, O.; Mathes, H. J.; Mueller, S.; Nerling, F.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schleif, G.; Schroeder, F.; Schuessler, F.; Ulrich, R.; Unger, M.; Valino, I.; Woerner, G.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Bacher, A.; Gemmeke, H.; Kleifges, M.; Kopmann, A.; Kroemer, O.; Kunka, N.; Menshikov, A.; Osswald, B.; Schmidt, A.; Tcherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Leuthold, M.; Scharf, N.; Schiffer, P.; Schulte, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Barenthien, N.; Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Guerard, C.; Maris, I. C.; Melissas, M.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe TN, IEKP, Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Pontz, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [Camin, D.; De Donato, C.; Grassi, V.; Miramonti, L.] Univ Milan, Milan, Italy. [Camin, D.; De Donato, C.; Grassi, V.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Moura, C. A.; Pisanti, O.; Valore, L.; Yushkov, A.] Univ Naples Federico 2, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Moura, C. A.; Pisanti, O.; Valore, L.; Yushkov, A.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Bracci, F.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Tusi, E.; Verzi, V.; Vitali, G.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Bracci, F.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Tusi, E.; Verzi, V.; Vitali, G.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Guardone, N.; Insolia, A.; Italiano, A.; Nicotra, D.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Anzalone, A.; Caruso, R.; Catalano, O.; De Domenico, M.; Guardone, N.; Insolia, A.; Italiano, A.; La Rosa, G.; Maccarone, M. C.; Nicotra, D.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Aglietta, M.; Argiro, S.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Daudo, F.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Marchetto, F.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mucchi, M.; Mussa, R.; Navarra, G.; Sequieros, G.; Tonachini, A.; Trapani, P.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.] Ist Astrofis Spaziale Fis Cosm Palermo INAF, Palermo, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Raia, G.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Castro, J.; Cordero, A.; Cuautle, J.; Lopez, R.; Martinez Bravo, O.; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smiatkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Horvat, M.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Gutierrez, J.; Hebrero, G.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Alcala De Henares, Madrid, Spain. [Bueno, A.; Gamez, D. Garcia; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Bueno, A.; Gamez, D. Garcia; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Facal San Luis, P.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez-Cabo, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Clark, P. D. J.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Fracchiolla, C. E.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.; Hofman, G.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Lebrun, P.; Malek, M.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McNeil, R. R.; Meyhandan, R.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Bellido, J. A.; Coutu, S.; Criss, A.; Roberts, M. D.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cazon, L.; Cronin, J. W.; Facal San Luis, P.; Gibbs, K.; Ionita, F.; Olinto, A.; Pavlidou, V.; Privitera, P.; Schmidt, F.; Venters, T.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] INST, Hanoi, Vietnam. RP Prouza, M (reprint author), Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. EM prouza@fzu.cz RI Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Barbosa, Henrique/F-3499-2012; Fauth, Anderson/F-9570-2012; Dias, Sandra/F-8134-2010; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Tamburro, Alessio/A-5703-2013; Yushkov, Alexey/A-6958-2013; Kopmann, Andreas/B-3454-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Pakk Selmi-Dei, Daniel/H-2675-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Prouza, Michael/F-8514-2014; Todero Peixoto, Carlos Jose/G-3873-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Wiebusch, Christopher/G-6490-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Carvalho Jr., Washington/H-9855-2015; Navas, Sergio/N-4649-2014; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Arneodo, Francesco/E-5061-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014 OI Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Barbosa, Henrique/0000-0002-4027-1855; Fauth, Anderson/0000-0001-7239-0288; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Dembinski, Hans/0000-0003-3337-3850; Kopmann, Andreas/0000-0002-2362-3943; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Prouza, Michael/0000-0002-3238-9597; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Shellard, Ronald/0000-0002-2983-1815; Wiebusch, Christopher/0000-0002-6418-3008; Petrolini, Alessandro/0000-0003-0222-7594; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Anzalone, Anna/0000-0003-1849-198X; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; de Jong, Sijbrand/0000-0002-3120-3367; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; Salamida, Francesco/0000-0002-9306-8447; Ravignani, Diego/0000-0001-7410-8522; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; La Rosa, Giovanni/0000-0002-3931-2269; Catalano, Osvaldo/0000-0002-9554-4128; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Carvalho Jr., Washington/0000-0002-2328-7628; Navas, Sergio/0000-0003-1688-5758; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Arneodo, Francesco/0000-0002-1061-0510; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Garcia Pinto, Diego/0000-0003-1348-6735; FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil, Czech Republic [AVCR AV0Z10100502, AV0Z10100522, GAAV KJB300100801, KJB100100904, GACR 202/06/P006, MSMT-CR LA08016, LC527, 1M06002, MSM0021620859]; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS); Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungs- zentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wil rttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [1 P03 D 014 30, N202 090 31/0623, PAP/218/2006]; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology; Slovenian Research Agency, Slovenia; Comunidad de Madrid; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER; Ministerio de Ciencia e Innovacion; Xunta de Galicia, Spain; Science and Technology Facilities Council, UK; Department of Energy [DE-AC02-07CH11359]; National Science Foundation [0450696]; Grainger Foundation USA; ALFA-EC/HELEN; European Union [MEIF-CT-2005-025057, PIEF-GA-2008-220240]; UNESCO FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, GACR 202/06/P006, MSMT-CR LA08016, LC527, 1M06002 and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungs- zentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wil rttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant nos. 1 P03 D 014 30, N202 090 31/0623, and PAP/218/2006, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion, Xunta de Galicia, Spain; Science and Technology Facilities Council, UK; Department of Energy, Contract no. DE-AC02-07CH11359, National Science Foundation, Grant no. 0450696, The Grainger Foundation USA; ALFA-EC/HELEN, European Union Sixth Framework Program, Grant no. MEIF-CT-2005-025057, European Union Seventh Framework Program, Grant no. PIEF-GA-2008-220240 and UNESCO. NR 61 TC 147 Z9 147 U1 3 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 227 EP 251 DI 10.1016/j.nima.2010.04.023 PG 25 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700018 ER PT J AU Meehan, T Hagen, EC Ruiz, CL Cooper, GW AF Meehan, Tim Hagen, E. C. Ruiz, C. L. Cooper, G. W. TI Praseodymium activation detector for measuring bursts of 14 MeV neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detection; Activation detector; (141)Pr; Dense plasma focus; Sum-peak ID DENSE-PLASMA FOCUS; CALIBRATION AB A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation < 10 MeV and to lower-energy (e.g., fission and thermal) neutrons. It is based upon the use of (141)Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fiuences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of approximate to 18%. (C) 2010 Elsevier B.V. All rights reserved. C1 [Meehan, Tim; Hagen, E. C.] Natl Secur Technol LLC, N Las Vegas, NV 89030 USA. [Ruiz, C. L.; Cooper, G. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Meehan, T (reprint author), Natl Secur Technol LLC, POB 98521, N Las Vegas, NV 89030 USA. EM meehanbt@nv.doe.gov FU NSTec under DOE/NNSA [DE-AC52-06NA25946] FX This work was supported by the NSTec Site-Directed Research and Development (SDRD) Program, under DOE/NNSA contract number DE-AC52-06NA25946. We would like to thank co-authors Carlos Ruiz and Gary Cooper from Sandia National Laboratories for their assistance with this project. We would also like to thank Steve Molar, Larry Robbins, and Ron Swegle of the NSTec Dense Plasma Focus Lab for their expertise, Daniel Lowe and Robert O'Brien for the monte-carlo modeling of the detector, Jim Pigg for his assistance with the early portion of this research, and Michele Vochosky for her editing assistance. NR 21 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 397 EP 400 DI 10.1016/j.nima.2010.04.037 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700038 ER PT J AU Santra, S Palos, LB Blessinger, C Bowman, JD Chupp, TE Covrig, S Crawford, C Dabaghyan, M Dadras, J Dawkins, M Gericke, MT Fox, W Gillis, RC Leuschner, MB Lozowski, B Mahurin, R Mason, M Mei, J Nann, H Penttila, SI Salas-Bacci, A Sharma, M Snow, WM Wilburn, WS AF Santra, S. Palos, L. Barron Blessinger, C. Bowman, J. D. Chupp, T. E. Covrig, S. Crawford, C. Dabaghyan, M. Dadras, J. Dawkins, M. Gericke, M. T. Fox, W. Gillis, R. C. Leuschner, M. B. Lozowski, B. Mahurin, R. Mason, M. Mei, J. Nann, H. Penttila, S. I. Salas-Bacci, A. Sharma, M. Snow, W. M. Wilburn, W. S. TI A liquid parahydrogen target for the measurement of a parity-violating gamma asymmetry in (n)over-right-arrow + p -> d plus gamma SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Liquid parahydrogen; Parity-violation; gamma-asymmetry; Neutron depolarization; Bubble suppression; Hydrogen safety; Cryorefrigerator; Ortho-to-para converters ID HYDROGEN TARGET; CIRCULAR-POLARIZATION; BUBBLE CHAMBERS; ELECTRON; TRACKS; BEAM; THIN AB A 161 liquid parahydrogen target has been developed for a measurement of the parity-violating gamma-asymmetry in the capture of polarized cold neutrons on protons in the (n) over right arrow + p -> d + gamma reaction by the NPDGamma collaboration. The target system was carefully designed to meet the stringent requirements on systematic effects for the experiment and also to satisfy hydrogen safety requirements. The target was designed to preserve the neutron polarization during neutron scattering on liquid hydrogen (LH(2)), optimize the statistical sensitivity to the (n) over right arrow + p -> d + gamma reaction, minimize backgrounds coming from neutron interaction with the beam windows of the target cryostat, minimize LH(2) density fluctuations which can introduce extra noise in the gamma asymmetry signal, and control systematic effects. The target incorporates two mechanical refrigerators, two ortho-para convertors, an aluminum cryostat, an aluminum target vessel shielded with (6)Li-rich plastic, a hydrogen fill/vent line with a passive recirculation loop to establish and maintain the equilibrium ortho-para ratio, a hydrogen relief system coupled to a vent stack, a gas handling system, and an alarm and interlock system. Low Z, nonmagnetic materials were used for the target vessel and cryostat. Pressure and temperature sensors monitored the thermodynamic state of the target. Relative neutron transmission measurements were used to monitor the parahydrogen fraction of the target. The target was thoroughly tested and successfully operated during the first phase of the NPDGamma experiment conducted at the FP12 beam line at Los Alamos Neutron Science Center (LANSCE). An upgraded version of the target system will be used in the next stage of the experiment, which will be performed at the Fundamental Neutron Physics Beam (FnPB) line of the Spallation Neutron Source at Oak Ridge National Laboratory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Santra, S.; Blessinger, C.; Dawkins, M.; Gericke, M. T.; Fox, W.; Leuschner, M. B.; Lozowski, B.; Mei, J.; Nann, H.; Snow, W. M.] Indiana Univ, Cyclotron Facil, Bloomington, IN 47408 USA. [Palos, L. Barron] Arizona State Univ, Tempe, AZ 85287 USA. [Bowman, J. D.; Penttila, S. I.; Salas-Bacci, A.; Wilburn, W. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chupp, T. E.; Sharma, M.] Univ Michigan, Ann Arbor, MI 48104 USA. [Covrig, S.; Dabaghyan, M.; Mason, M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Dadras, J.; Mahurin, R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Crawford, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gillis, R. C.] Univ Manitoba, Dept Phys, Winnipeg, MB R3T 2N2, Canada. RP Santra, S (reprint author), Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India. EM s_satyaranjan@rediffmail.com FU NSF [PHY-0100348, PHY-0457219, PHY-0758018]; DOE; Bhabha Atomic Research Centre; Indiana University International Exchange Affiliation FX We would like to thank several people and institutions which made the realization of this nontrivial LH2 target possible. At Indiana University/IUCF the work on this experiment and target was supported in part by NSF Grants PHY-0100348, PHY-0457219, and PHY-0758018. We would like to thank the IUCF lab for the flexible use of infrastructure which allowed several of the target component tests to be performed locally. We received advice and help on the target design at IUCF from Kevin Komicarsik, John Vanderwerp, and Jim Graham. At Los Alamos we would like to thank Jim Knudson for chairing the many safety reviews for the target and the safety advice from various hydrogen target experts at national laboratories who participated in the reviews, Gil Peralta for extensive work with the target and construction of the experiment, B. Teasdale for valuable advice regarding the target and professional design of the target components. B. Etyk for his engineering support for the experiment and especially for the target, the LANSCE personnel for support during the construction and operation of the target, and support from the DOE and the P-23 group at LANL. S. Santra and M. Snow acknowledge partial support from the Bhabha Atomic Research Centre and from the Indiana University International Exchange Affiliation Grant program. NR 57 TC 6 Z9 6 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 421 EP 436 DI 10.1016/j.nima.2010.04.135 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700042 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnet, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clement, B Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Bu, RD Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnet, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Bu, R. Demina Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golling, T. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI b-Jet identification in the D0 experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE b-Jet identification; b-Tagging; D0; Tevatron; Collider ID TOP-QUARK; DETECTOR; TRACK; ALGORITHMS; PHYSICS AB Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p (p) over bar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Alton, A.; Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Joseph Fourier Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Bloch, D.; Brown, D.; Clement, B.; Geist, W.; Gele, D.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lipaev, V. V.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Golling, T.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Abolins, M.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Alverson, G.; Arov, M.; Greenwood, Z. D.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Feligioni, L.] Boston Univ, Boston, MA 02215 USA. [Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.; Sawyer, L.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Schwartzman, A.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Gadfort, T.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Bu, R. Demina; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnet, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Juste, Aurelio/I-2531-2015; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; Ancu, Lucian Stefan/F-1812-2010; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013 OI Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Carrera, Edgar/0000-0002-0857-8507; de Jong, Sijbrand/0000-0002-3120-3367; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Heinson, Ann/0000-0003-4209-6146; Haas, Andrew/0000-0002-4832-0455; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (UK); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 27 TC 85 Z9 85 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 490 EP 517 DI 10.1016/j.nima.2010.03.118 PG 28 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700051 ER PT J AU Honnicke, MG Cusatis, C Rigon, L Menk, RH Arfelli, F Foerster, LA Rosado-Neto, GH AF Hoennicke, M. G. Cusatis, C. Rigon, L. Menk, R. -H. Arfelli, F. Foerster, L. A. Rosado-Neto, G. H. TI External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Phase-contrast X-ray imaging; Microtomography; Weevils ID SYNCHROTRON-RADIATION; HEAD MORPHOLOGY; MICROTOMOGRAPHY; CURCULIONOIDEA; ARCHOSTEMATA; RADIOGRAPHY; MAMMOGRAPHY; TOMOGRAPHY; PHYLOGENY; AMBER AB Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hoennicke, M. G.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. [Cusatis, C.] UFPR, LORXI, Dept Fis, Curitiba, Parana, Brazil. [Rigon, L.; Arfelli, F.] Inst Nazl Fis Nucl, Trieste, Italy. [Menk, R. -H.] Sincrotrone Trieste SCPa, Trieste, Italy. [Arfelli, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Foerster, L. A.; Rosado-Neto, G. H.] UFPR, Dept Zool, Curitiba, Parana, Brazil. RP Honnicke, MG (reprint author), Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. EM mhonnicke@bnl.gov RI Rigon, Luigi/G-4048-2012; Foerster, Luis Amilton/B-9719-2013; Cusatis, Cesar/N-7559-2014; Honnicke, Marcelo/I-8624-2012 OI Foerster, Luis Amilton/0000-0002-5235-0614; Cusatis, Cesar/0000-0002-1621-3727; FU U.S. Department of energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-98CD10886] FX The authors are grateful to ICTP/Elettra users programme (under proposal 2005050). The authors also acknowledge Edson M. Kakuno and Rubens C. da Silva for the help in the experiments preparation and Douglas S.D. da Silva and Hilton C. Guimaraes for the workshop assistance. Data analysis of this work was partially supported by the U.S. Department of energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC-02-98CD10886. NR 35 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2010 VL 620 IS 2-3 BP 589 EP 593 DI 10.1016/j.nima.2010.03.145 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 634RP UT WOS:000280601700061 ER PT J AU Norman, MR Lin, J AF Norman, M. R. Lin, Jie TI Spin zeros and the origin of Fermi-surface reconstruction in the cuprates SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTOR; QUANTUM OSCILLATIONS AB Two recent quantum oscillation studies find contradictory results concerning the existence of spin zeros-zeros of the oscillatory signal induced by Zeeman splitting of the Landau levels. We discuss these experiments in light of calculations of the oscillations assuming a spin-density wave state. We find that the lack of spin zeros reported in one of the experiments is consistent with either hole or electron pockets in such a state, if the staggered moment is perpendicular to the external field. An analysis for field directions near the planes might be able to differentiate between the two. On the other hand, if spin zeros exist as reported in the other experiment, then the staggered moment would have to have a substantial longitudinal component. We suggest several experiments to test whether this is indeed the case. C1 [Norman, M. R.; Lin, Jie] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU U.S. DOE, Office of Science [DE-AC02-06CH11357, DE-AC0298CH1088] FX We thank Revaz Ramazashvili, Andy Millis, Cyril Proust, Brad Ramshaw, Neil Harrison, and Suchitra Sebastian for extensive discussions concerning the spin zeros. This work was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357 and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, under Award No. DE-AC0298CH1088. NR 24 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 11 PY 2010 VL 82 IS 6 AR 060509 DI 10.1103/PhysRevB.82.060509 PG 4 WC Physics, Condensed Matter SC Physics GA 637JG UT WOS:000280812900002 ER PT J AU Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Alford, J Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Jacobs, P Jacobs, WW Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, ZM Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldag, EW Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM De Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xie, W Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, JB Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Alford, J. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Jacobs, P. Jacobs, W. W. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldag, E. W. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. De Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xie, W. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. B. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Balance functions from Au+Au, d+Au, and p+p collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; AU-AU COLLISIONS; TIME PROJECTION CHAMBER; BY-EVENT FLUCTUATIONS; QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM; MEAN-P(T) FLUCTUATIONS; MODEL; HADRONIZATION; SIGNATURES AB Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature. C1 [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Hofman, D. J.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Anderson, B. D.; Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, CZ-115 Prague 19, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst CR, CZ-25068 Rez, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kumar, L.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow, Russia. [Lindenbaum, S. J.] CUNY, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; De Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Anhua 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Univ Texas Austin, Austin, TX 78712 USA. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Variable Energy Cyclotron Ctr, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Chen, J. Y.; Li, N.; Li, Z. M.; Liu, F.; Shi, S. S.; Wu, Y. F.; Zhang, J. B.] CCNU HZNU, Inst Particle Phys, Detroit, MI 48201 USA. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Aggarwal, MM (reprint author), Panjab Univ, Chandigarh 160014, India. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Wang, Haiyan/P-3550-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016 OI Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Wang, Haiyan/0000-0002-7397-1209; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid; Office of NP, US Department of Energy Office of Science; Office of HEP, US Department of Energy Office of Science; US NSF; Sloan Foundation; DFG cluster of excellence "Origin and Structure of the Universe" of Germany; CNRS/IN2P3 of the United Kingdom; STFC of the United Kingdom; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC of China; CAS of China; MoST of China; MoE of China; GA of the Czech Republic; MSMT of the Czech Republic; FOM of the Netherlands; NWO of the Netherlands; DAE of India; DST of India; CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education, and Sports of the Republic of Croatia; Russian Ministry of Science and Technology; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US Department of Energy Office of Science, the US NSF, the Sloan Foundation; the DFG cluster of excellence "Origin and Structure of the Universe" of Germany; CNRS/IN2P3, STFC, and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE, DST, and CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education, and Sports of the Republic of Croatia; and the Russian Ministry of Science and Technology and RosAtom of Russia. NR 52 TC 24 Z9 25 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG 11 PY 2010 VL 82 IS 2 AR 024905 DI 10.1103/PhysRevC.82.024905 PG 16 WC Physics, Nuclear SC Physics GA 637KZ UT WOS:000280817700002 ER PT J AU Vecchi, L AF Vecchi, Luca TI The conformal window of deformed conformal field theories in the planar limit SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SYMMETRY-BREAKING; LARGE N EXPANSION; GAUGE-THEORIES; 4-FERMION INTERACTION; PHASE-STRUCTURE; 4 DIMENSIONS; MODEL; QCD; TRANSITION; DILATON AB We discuss in the planar approximation the effect of double-trace deformations on conformal field theories. We show that this large class of models posses a conformal window describing a nontrivial flow between two fixed points of the renormalization group and reveal the presence of a resonance which we associate to the remnant of a dilaton pole. As the conformal window shrinks to zero measure, the theory undergoes a conformal phase transition separating a symmetric from a nonsymmetric phase. The recently conjectured strongly coupled branch of nonsupersymmetric, non-Abelian gauge theories with a large number of flavors is analyzed in light of these results, and a model for the strong branch is proposed. Some phenomenological implications in the context of unparticle physics are also emphasized. C1 Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. RP Vecchi, L (reprint author), Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. EM vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The author would like to thank T. Bhattacharya for interesting conversations, Stefano Cremonesi for useful comments, and especially M. L. Graesser for numerous and helpful discussions. This work has been supported by the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 56 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 11 PY 2010 VL 82 IS 4 AR 045013 DI 10.1103/PhysRevD.82.045013 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 637OC UT WOS:000280826700007 ER PT J AU Dobrovitski, VV de Lange, G Riste, D Hanson, R AF Dobrovitski, V. V. de Lange, G. Riste, D. Hanson, R. TI Bootstrap Tomography of the Pulses for Quantum Control SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE SPINS; COHERENT DYNAMICS; ELECTRON-SPIN; DIAMOND; DOT; MANIPULATION; SOLIDS; QUBITS; NMR AB Long-time dynamical decoupling and quantum control of qubits require high-precision control pulses. Full characterization (quantum tomography) of imperfect pulses presents a bootstrap problem: tomography requires initial states of a qubit which cannot be prepared without perfect pulses. We present a protocol for pulse error analysis, specifically tailored for a wide range of the single solid-state electron spins. Using a single electron spin of a nitrogen-vacancy center in diamond, we experimentally verify the correctness of the protocol, and demonstrate its usefulness for quantum control tasks. C1 [Dobrovitski, V. V.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [de Lange, G.; Riste, D.; Hanson, R.] Delft Univ Technol, Kavli Inst Nanosci Delft, NL-2600 GA Delft, Netherlands. RP Dobrovitski, VV (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Hanson, Ronald/B-9555-2008; de Lange, Gijs/D-6868-2012; Riste, Diego/G-9215-2012 OI de Lange, Gijs/0000-0002-9437-0816; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; FOM, NWO; DARPA FX We would like to thank D. G. Cory, S. Lyon, A. Tyryshkin, M. Pruski, C. Ramanathan, K. Schmidt-Rohr, and M. Laforest for very useful and enlightening discussions. Work at Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We gratefully acknowledge support from FOM, NWO, and the DARPA QuEST program. NR 41 TC 11 Z9 12 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 11 PY 2010 VL 105 IS 7 AR 077601 DI 10.1103/PhysRevLett.105.077601 PG 4 WC Physics, Multidisciplinary SC Physics GA 637OH UT WOS:000280827200012 PM 20868076 ER PT J AU Sui, HX Downing, KH AF Sui, Haixin Downing, Kenneth H. TI Structural Basis of Interprotofilament Interaction and Lateral Deformation of Microtubules SO STRUCTURE LA English DT Article ID STAIN ELECTRON-MICROSCOPY; ALPHA-BETA-TUBULIN; 3-DIMENSIONAL STRUCTURE; PROTOFILAMENT NUMBER; CRYOELECTRON MICROSCOPY; THERMAL FLUCTUATIONS; FLEXURAL RIGIDITY; SURFACE LATTICE; UCSF CHIMERA; TAU BIND AB The diverse functions of microtubules require stiff structures possessing sufficient lateral flexibility to enable bending with high curvature. We used cryo-electron microscopy to investigate the molecular basis for these critical mechanical properties. High-quality structural maps were used to build pseudoatomic models of microtubules containing 11-16 protofilaments, representing a wide range of lateral curvature. Protofilaments in all these microtubules were connected primarily via interprotofilament interactions between the M loops, and the H1'-S2 and H2-S3 loops. We postulate that the tolerance of the loop-loop interactions to lateral deformation provides the capacity for high-curvature bending without breaking. On the other hand, the local molecular architecture that surrounds these connecting loops contributes to the overall rigidity. Interprotofilament interactions in the seam region are similar to those in the normal helical regions, suggesting that the existence of the seam does not significantly affect the mechanical properties of microtubules. C1 [Sui, Haixin; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Sui, Haixin] SUNY Albany, Wadsworth Ctr, New York State Dept Hlth, Albany, NY 12201 USA. [Sui, Haixin] SUNY Albany, Dept Biomed Sci, Sch Publ Hlth, Albany, NY 12201 USA. RP Sui, HX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM hsui@wadsworth.org OI Sui, Haixin/0000-0002-5560-4325 FU NIH [GM51487]; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank N. K. Banavali at the Wadsworth Center for providing the homology structural model for the H1'-S2 loop of alpha-tubulin, E. H. Egelman at University of Virginia for providing initial scripts of the IHRSR strategy, B. F. McEwen at the Wadsworth Center for valuable suggestions and critical reading of the manuscript, and M. Koonce, A. Khodjakov, and C. L. Rieder at the Wadsworth Center for helpful discussion and suggestions. This work was supported by NIH grant GM51487 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 69 Z9 69 U1 3 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD AUG 11 PY 2010 VL 18 IS 8 BP 1022 EP 1031 DI 10.1016/j.str.2010.05.010 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 639DG UT WOS:000280950400016 PM 20696402 ER PT J AU Buttler, WT Lamoreaux, SK AF Buttler, William T. Lamoreaux, Steven K. TI Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector SO APPLIED OPTICS LA English DT Article ID QUANTUM CRYPTOGRAPHY; POLARIZED PHOTONS; FIBER AB We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces. (C) 2010 Optical Society of America C1 [Buttler, William T.] Los Alamos Natl Lab, Phys Div P23, Los Alamos, NM 87545 USA. [Lamoreaux, Steven K.] Yale Univ, Phys SPL, New Haven, CT 06520 USA. RP Buttler, WT (reprint author), Los Alamos Natl Lab, Phys Div P23, MS H803, Los Alamos, NM 87545 USA. EM buttler@lanl.gov NR 25 TC 3 Z9 3 U1 2 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD AUG 10 PY 2010 VL 49 IS 23 BP 4427 EP 4433 DI 10.1364/AO.49.004427 PG 7 WC Optics SC Optics GA 636OP UT WOS:000280747700014 PM 20697446 ER PT J AU Croft, S Bower, GC Ackermann, R Atkinson, S Backer, D Backus, P Barott, WC Bauermeister, A Blitz, L Bock, D Bradford, T Cheng, C Cork, C Davis, M DeBoer, D Dexter, M Dreher, J Engargiola, G Fields, E Fleming, M Forster, JR Gutierrez-Kraybill, C Harp, G Helfer, T Hull, C Jordan, J Jorgensen, S Keating, G Kilsdonk, T Law, C van Leeuwen, J Lugten, J MacMahon, D McMahon, P Milgrome, O Pierson, T Randall, K Ross, J Shostak, S Siemion, A Smolek, K Tarter, J Thornton, D Urry, L Vitouchkine, A Wadefalk, N Welch, J Werthimer, D Whysong, D Williams, PKG Wright, M AF Croft, Steve Bower, Geoffrey C. Ackermann, Rob Atkinson, Shannon Backer, Don Backus, Peter Barott, William C. Bauermeister, Amber Blitz, Leo Bock, Douglas Bradford, Tucker Cheng, Calvin Cork, Chris Davis, Mike DeBoer, Dave Dexter, Matt Dreher, John Engargiola, Greg Fields, Ed Fleming, Matt Forster, James R. Gutierrez-Kraybill, Colby Harp, Gerry Helfer, Tamara Hull, Chat Jordan, Jane Jorgensen, Susanne Keating, Garrett Kilsdonk, Tom Law, Casey van Leeuwen, Joeri Lugten, John MacMahon, Dave McMahon, Peter Milgrome, Oren Pierson, Tom Randall, Karen Ross, John Shostak, Seth Siemion, Andrew Smolek, Ken Tarter, Jill Thornton, Douglas Urry, Lynn Vitouchkine, Artyom Wadefalk, Niklas Welch, Jack Werthimer, Dan Whysong, David Williams, Peter K. G. Wright, Melvyn TI THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY-A 690 DEG(2), 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; radio continuum: galaxies; surveys ID WIDE-FIELD SURVEY; OBSERVATIONAL EVIDENCE; NEUTRON-STARS; VARIABILITY; EMISSION; BURSTS; GALAXY; JET; MILLIMETER; DISCOVERY AB We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 deg(2) radio image and catalog at 1.4 GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has rms noise sigma = 3.94 mJy beam(-1) and dynamic range 180, with a circular beam of 150 '' FWHM. It contains 4408 sources to a limiting sensitivity of 5 sigma = 20 mJy beam(-1). We compare the catalog generated from this 12 epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than similar to 20 ''. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our ability to compare flux densities. We detect no transients at flux densities greater than 40 mJy in comparison with NVSS and place a 2 sigma upper limit of 0.004 deg(-2) on the transient rate for such sources. These results suggest that the greater than or similar to 1 Jy transients reported by Matsumara et al. may not be true transients, but rather variable sources at their flux density threshold. C1 [Croft, Steve; Bower, Geoffrey C.; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James R.; Gutierrez-Kraybill, Colby; Helfer, Tamara; Hull, Chat; Jorgensen, Susanne; Keating, Garrett; Law, Casey; MacMahon, Dave; Milgrome, Oren; Siemion, Andrew; Thornton, Douglas; Urry, Lynn; Welch, Jack; Werthimer, Dan; Whysong, David; Williams, Peter K. G.; Wright, Melvyn] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Smolek, Ken; Tarter, Jill] SETI Inst, Mountain View, CA 94043 USA. [Barott, William C.] Embry Riddle Aeronaut Univ, Elect Comp Software & Syst Engn Dept, Daytona Beach, FL 32114 USA. [Cork, Chris; Fleming, Matt; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA. [DeBoer, Dave] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McMahon, Peter] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden. RP Croft, S (reprint author), Univ Calif Berkeley, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. OI Williams, Peter/0000-0003-3734-3587; Croft, Steve/0000-0003-4823-129X FU National Science Foundation [AST-050690, AST-0838268] FX The authors acknowledge the generous support of the Paul G. Allen Family Foundation, which has provided major support for the design, construction, and operation of the ATA. Contributions from Nathan Myhrvold, Xilinx Corporation, Sun Microsystems, and other private donors have been instrumental in supporting the ATA. The ATA has been supported by contributions from the US Naval Observatory in addition to National Science Foundation grants AST-050690 and AST-0838268. NR 38 TC 37 Z9 37 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 45 EP 58 DI 10.1088/0004-637X/719/1/45 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100004 ER PT J AU Vieira, JD Crawford, TM Switzer, ER Ade, PAR Aird, KA Ashby, MLN Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Cho, HM Crites, AT de Haan, T Dobbs, MA Everett, W George, EM Gladders, M Hall, NR Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McIntyre, V McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Reichardt, CL Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Vanderlinde, K Walsh, W Williamson, R Yang, Y Zahn, O Zenteno, A AF Vieira, J. D. Crawford, T. M. Switzer, E. R. Ade, P. A. R. Aird, K. A. Ashby, M. L. N. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crites, A. T. de Haan, T. Dobbs, M. A. Everett, W. George, E. M. Gladders, M. Hall, N. R. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McIntyre, V. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Walsh, W. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; submillimeter: galaxies; surveys ID SPECTRUM RADIO-SOURCES; STAR-FORMING GALAXIES; SCUBA SUPER-MAP; GOODS-N FIELD; SUBMILLIMETER-SELECTED GALAXIES; COMPACT STEEP-SPECTRUM; 1200-MU-M MAMBO SURVEY; ALL-SKY SURVEY; 1.1 MM SURVEY; NUMBER COUNTS AB We report the results of an 87 deg(2) point-source survey centered at R. A. 5(h)30(m), decl. -55 degrees taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei and the other consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchrotron-dominated sources above similar to 15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite. However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightestmembers of the population commonly referred to as submillimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe. C1 [Vieira, J. D.; Crawford, T. M.; Switzer, E. R.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M.; Keisler, R.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Vieira, J. D.; Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Vieira, J. D.; Carlstrom, J. E.; Chang, C. L.; Keisler, R.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Crawford, T. M.; Carlstrom, J. E.; Crites, A. T.; Gladders, M.; Meyer, S. S.; Padin, S.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Ashby, M. L. N.; Brodwin, M.; Stalder, B.; Stark, A. A.; Walsh, W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cho, H. -M.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, VP62, Huntsville, AL 35812 USA. [Lee, A. T.; Leitch, E. M.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McIntyre, V.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Yang, Y.; Zenteno, A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Yang, Y.; Zenteno, A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Vieira, JD (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM vieira@caltech.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU Canadian Astronomy Data Centre; National Research Council of Canada; Canadian Space Agency; Commonwealth of Australia; CSIRO; Legacy Archive for Microwave Background Data Analysis (LAMBDA); NASA Office of Space Science FX This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. The ATCA is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a national facility managed by the CSIRO. Some of the results in this paper have been derived using the HEALPix (G ' orski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 107 TC 157 Z9 157 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 763 EP 783 DI 10.1088/0004-637X/719/1/763 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100068 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cesarini, A Ciupik, L Cui, W Dickherber, R Duke, C Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Gotthelf, EV Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Muhkerjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Senturk, GD Slane, P Smith, AW Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Vassiliev, VV Vincent, S Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cesarini, A. Ciupik, L. Cui, W. Dickherber, R. Duke, C. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Gotthelf, E. V. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Muhkerjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Slane, P. Smith, A. W. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Vassiliev, V. V. Vincent, S. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI DISCOVERY OF VERY HIGH ENERGY gamma-RAY EMISSION FROM THE SNR G54.1+0.3 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: general; ISM: supernova remnants; pulsars: individual (J1930+1852, J1928+1746) ID PULSAR WIND NEBULAE; SUPERNOVA REMNANT G54.1+0.3; CRAB-NEBULA; VERITAS; TELESCOPE; ASTRONOMY; G0.9+0.1; CATALOG; SEARCH AB We report the discovery of very high energy (VHE) gamma-ray emission from the direction of the SNR G54.1+ 0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8s and appears pointlike given the resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE similar to E(-Gamma) with a photon index Gamma = 2.39 +/- 0.23(stat) +/- 0.30sys. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability, and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the pulsar wind nebula (PWN) in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Slane, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Grube, J.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gotthelf, E. V.; Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Muhkerjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM ealiu@astro.columbia.edu; wakely@uchicago.edu OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. NR 37 TC 14 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2010 VL 719 IS 1 BP L69 EP L73 DI 10.1088/2041-8205/719/1/L69 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 637YB UT WOS:000280853500016 ER PT J AU Fragos, T Tremmel, M Rantsiou, E Belczynski, K AF Fragos, T. Tremmel, M. Rantsiou, E. Belczynski, K. TI BLACK HOLE SPIN-ORBIT MISALIGNMENT IN GALACTIC X-RAY BINARIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; Galaxy: stellar content; stars: evolution; X-rays: binaries ID COMPACT OBJECT FORMATION; GRO J1655-40; ACCRETION DISCS; MASS; ALIGNMENT; KICKS; GRO-J1655-40; CONTINUUM; DISKS AB In black hole (BH) X-ray binaries (XRBs), a misalignment between the spin axis of the BH and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this Letter, we present population synthesis (PS) models of Galactic BH XRBs and study the probability density function of the misalignment angle and its dependence on our model parameters. In our modeling, we also take into account the evolution of the misalignment angle due to accretion of material onto the BH during the XRB phase. The major factor that sets the misalignment angle for XRBs is the natal kick that the BH may receive at its formation. However, large kicks tend to disrupt binaries, while small kicks allow the formation of XRBs and naturally select systems with small misalignment angles. Our calculations predict that the majority (> 67%) of Galactic field BH XRBs have rather small (less than or similar to 10 degrees) misalignment angles, while some systems may reach misalignment angles as high as similar to 90 degrees. and even higher. These results are robust among all PS models. The assumption of small misalignment angles is extensively used to observationally estimate BH spin magnitudes, and for the first time we are able to confirm this assumption using detailed PS calculations. C1 [Fragos, T.; Tremmel, M.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Rantsiou, E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Belczynski, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. RP Fragos, T (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM tassosfragos@northwestern.edu; michaeltremmel2007@u.northwestern.edu; emmarant@astro.princeton.edu; kbelczyn@nmsu.edu RI Fragos, Tassos/A-3581-2016 OI Fragos, Tassos/0000-0003-1474-1523 FU Northwestern Presidential Fellowship FX The authors thank Professor Kalogera, Dr. McClintock, and Dr. Mandel for their comments on the manuscript and other helpful discussions that greatly improved this work. T.F. acknowledges support from the Northwestern Presidential Fellowship. NR 34 TC 35 Z9 35 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2010 VL 719 IS 1 BP L79 EP L83 DI 10.1088/2041-8205/719/1/L79 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 637YB UT WOS:000280853500018 ER PT J AU Kumar, RS Ke, XZ Zhang, JZ Lin, ZJ Vogel, SC Hartl, M Sinogeikin, S Daemen, L Cornelius, AL Chen, CF Zhao, YS AF Kumar, Ravhi S. Ke, Xuezhi Zhang, Jianzhong Lin, Zhijun Vogel, Sven C. Hartl, Monika Sinogeikin, Stanislav Daemen, Luke Cornelius, Andrew L. Chen, Changfeng Zhao, Yusheng TI Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: A combined X-ray, neutron and theoretical investigation SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; DIHYDROGEN BOND; BASIS-SET; DEHYDROGENATION; STABILITY; CRYSTAL; BH3NH3 AB The crystal structure of NH3BH3 was investigated using synchrotron high pressure X-ray diffraction (HPXRD) up to 27 GPa and neutron diffraction up to 5 GPa. Density functional theoretical (DFT) calculations were carried out simultaneously for comparison. The results confirm a pressure induced phase transition from the tetragonal I4mm phase to a high pressure orthorhombic Cmc21 phase around 1.22 GPa. Further increase of pressure above 8 GPa, we observed a second structural transition from Cmc21 to a tri-clinic P1 phase which are reversible with small hysteresis. The transition pressures and the bulk modulus obtained experimentally are in good agreement with theory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kumar, Ravhi S.; Ke, Xuezhi; Cornelius, Andrew L.; Chen, Changfeng] Univ Nevada, Dept Phys & Astron, HiPSEC, Las Vegas, NV 89154 USA. [Ke, Xuezhi] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China. [Zhang, Jianzhong; Lin, Zhijun; Vogel, Sven C.; Hartl, Monika; Daemen, Luke; Zhao, Yusheng] Los Alamos Neutron Sci Ctr LANSCE, Los Alamos, NM 87545 USA. [Sinogeikin, Stanislav] Carnegie Inst Sci, Adv Photon Source, Argonne, IL 60439 USA. [Sinogeikin, Stanislav] HPCAT, Argonne, IL 60439 USA. RP Kumar, RS (reprint author), Univ Nevada, Dept Phys & Astron, HiPSEC, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu RI Cornelius, Andrew/A-9837-2008; Kumar, Ravhi/B-8427-2012; Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Lin, Zhijun/A-5543-2010; Hartl, Monika/N-4586-2016; OI Hartl, Monika/0000-0002-6601-7273; Hartl, Monika/0000-0002-6601-7273; Kumar, Ravhi/0000-0002-1967-1619; Zhang, Jianzhong/0000-0001-5508-1782; Vogel, Sven C./0000-0003-2049-0361 FU US Department of Energy, National Nuclear Security Administration [DE-FC52-06NA26274]; DOE-NNSA; DOE-BES [DE-AC02-06CH11357]; NSF; DOE [DE-AC52-06NA25396] FX The UNLV High Pressure Science and Engineering Center was supported by the US Department of Energy, National Nuclear Security Administration, under Co-operative agreement number DE-FC52-06NA26274. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. The Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center is funded by the Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract of DE-AC52-06NA25396. NR 32 TC 15 Z9 16 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD AUG 10 PY 2010 VL 495 IS 4-6 BP 203 EP 207 DI 10.1016/j.cplett.2010.06.044 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 634BP UT WOS:000280554300010 ER PT J AU Page, K Proffen, T Niederberger, M Seshadri, R AF Page, Katharine Proffen, Thomas Niederberger, Markus Seshadri, Ram TI Probing Local Dipoles and Ligand Structure in BaTiO3 Nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID PAIR DISTRIBUTION FUNCTION; FERROELECTRIC PHASE-TRANSITION; ATOMIC-SCALE STRUCTURE; X-RAY-DIFFRACTION; BARIUM-TITANATE; CRYSTALLINE BATIO3; CARBON NANOTUBES; THIN-FILMS; SIZE; NANOSCALE AB Improved routes for the preparation of nanoparticles, in conjunction with the development of more sophisticated structural probes for nanostructured materials, allows questions to be addressed regarding fundamental size limits on material properties. The property addressed here is structural off-centering, the molecular basis for the existence of switchable dipoles in polar materials, and whether it is turned off when particles become very small. This is probed using neutron scattering in a sample of free-standing, capped nanoparticles of the canonical perovskite ferroelectric, BaTiO3, with sizes near 5 nm. The structure, analyzed in reciprocal and real space, reveals the atomic correlations of the nanoparticle oxide and the capping benzyloxy ligand groups, and allows careful comparison with the structure of bulk BaTiO3. Even at these very small sizes, Ti is locally strongly off-centered, despite presenting cubic Bragg scattering. C1 [Page, Katharine; Proffen, Thomas] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Niederberger, Markus] ETH, Dept Mat, CH-8093 Zurich, Switzerland. [Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Page, K (reprint author), Los Alamos Natl Lab, LANSCE LC, MS H805, Los Alamos, NM 87545 USA. EM kpage@lanl.gov RI Page, Katharine/C-9726-2009; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Proffen, Thomas/B-3585-2009; Niederberger, Markus/A-6144-2008 OI Page, Katharine/0000-0002-9071-3383; Seshadri, Ram/0000-0001-5858-4027; Proffen, Thomas/0000-0002-1408-6031; Niederberger, Markus/0000-0001-6058-1183 FU DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; National Science Foundation [DM R04-49354, DMR00-76488, DMR05-20415] FX This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. The National Science Foundation is acknowledged for support in the form of a Career Award to RS (grant DM R04-49354) and for an upgrade of the NPDF instrument at Los Alamos (grant DMR00-76488). We thank the National Science Foundation (DMR05-20415) for use of the MRSEC facilities. NR 46 TC 47 Z9 47 U1 7 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 10 PY 2010 VL 22 IS 15 BP 4386 EP 4391 DI 10.1021/cm100440p PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 634TZ UT WOS:000280609800008 ER PT J AU Perez, MS Herrero, P Gannon, D Katz, DS AF Perez, Maria S. Herrero, Pilar Gannon, Dennis Katz, Daniel S. TI Special Issue: Grid Computing, High Performance and Distributed Application SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Editorial Material C1 [Perez, Maria S.; Herrero, Pilar] Univ Politecn Madrid, Fac Informat, E-28660 Madrid, Spain. [Gannon, Dennis] Microsoft Res, Extreme Comp Grp, Redmond, WA 98052 USA. [Katz, Daniel S.] Univ Chicago, Chicago, IL 60637 USA. [Katz, Daniel S.] Argonne Natl Lab, Chicago, IL 60637 USA. RP Perez, MS (reprint author), Univ Politecn Madrid, Fac Informat, Campus Montegancedo S-N, E-28660 Madrid, Spain. RI Herrero, Pilar/I-7909-2012; OI Herrero, Pilar/0000-0002-7479-5673; Katz, Daniel S./0000-0001-5934-7525 NR 8 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 10 PY 2010 VL 22 IS 11 SI SI BP 1335 EP 1337 DI 10.1002/cpe.1613 PG 3 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 632NN UT WOS:000280431500001 ER PT J AU Wicks, JK Jackson, JM Sturhahn, W AF Wicks, J. K. Jackson, J. M. Sturhahn, W. TI Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPIN TRANSITION; EARTHS MANTLE; SHEAR-WAVES; LAYER; ELASTICITY; BASE; SILICATES; CELL AB The sound velocities of (Mg.16Fe.84)O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Mossbauer spectroscopy. We found the sound velocities of (Mg.16Fe.84)O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary. Citation: Wicks, J.K., J.M. Jackson, and W. Sturhahn (2010), Very low sound velocities in iron-rich (Mg, Fe) O: Implications for the core-mantle boundary region, Geophys. Res. Lett., 37, L15304, doi: 10.1029/2010GL043689. C1 [Wicks, J. K.; Jackson, J. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Jackson, J. M.] CALTECH, Seismol Lab, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Sturhahn, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wicks, JK (reprint author), CALTECH, Div Geol & Planetary Sci, MC 170-25, Pasadena, CA 91125 USA. EM wicks@gps.caltech.edu FU NSF [EAR-0711542, DMR-0080065]; CSEDI [EAR-0855815]; U.S. D.O.E., O.S., O.B.E.S [DE-AC02-06CH11357]; COMPRES [NSF EAR 06-49658]; U.S. D.O.E. [DE-AC02-05CH11231] FX We thank H. Yavas, J. Beckett, D. Zhang, C. Murphy, and A. Wolf for assistance with the measurements and NSF-EAR 0711542 and CSEDI EAR-0855815 for financial support. Use of the Advanced Photon Source was supported by the U.S. D.O.E., O.S., O.B.E.S. (DE-AC02-06CH11357). Sector 3 operations are partially supported by COMPRES (NSF EAR 06-49658). The Advanced Light Source is supported by the Director, O.S., O.B.E.S., of the U.S. D.O.E. (DE-AC02-05CH11231). Microprobe analyses were carried out at the Caltech GPS Division Analytical Facility (funded in part by the MRSEC Program of the NSF under DMR-0080065). NR 33 TC 46 Z9 46 U1 4 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 10 PY 2010 VL 37 AR L15304 DI 10.1029/2010GL043689 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 639EQ UT WOS:000280954200001 ER PT J AU Climent, J Perez-Losada, J Quigley, DA Kim, IJ Delrosario, R Jen, KY Bosch, A Lluch, A Mao, JH Balmain, A AF Climent, Joan Perez-Losada, Jesus Quigley, David A. Kim, Il-Jin Delrosario, Reyno Jen, Kuang-Yu Bosch, Ana Lluch, Ana Mao, Jian-Hua Balmain, Allan TI Deletion of the PER3 Gene on Chromosome 1p36 in Recurrent ER-Positive Breast Cancer SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Article ID SLEEP PHASE SYNDROME; ESTROGEN-RECEPTOR; ALLELIC LOSS; DISTINCT REGIONS; TUMOR-SUPPRESSOR; CLOCK GENES; EXPRESSION; POLYMORPHISM; ASSOCIATION; CELLS AB Purpose To investigate the role of the PER3 circadian rhythm gene, located within the commonly deleted region of chromosome 1p36, in human breast cancer development. Patients and Methods The frequency of genetic alterations at 1p36 and PER3 gene copy number status were analyzed in 180 lymph node-negative breast cancers from patients who had received treatment with chemotherapy and/or tamoxifen. The expression levels of PER3 were also analyzed using published microarray profiles from > 400 breast cancer samples. Finally, the effect of loss of Per3 on tumor susceptibility was tested using two mouse models of breast cancer. Results Deletion of PER3 is directly related to tumor recurrence in patients with estrogen receptor (ER) positive breast cancers treated with tamoxifen. Low expression of PER3 mRNA is associated with poor prognosis, particularly in a subset of tumors that are ER positive, and either luminal A or ERBB2-positive tumors. Mice deficient in Per3 showed increased susceptibility to breast cancer induced by carcinogen treatment or by overexpression of Erbb2. Conclusion Disruption of PER3 function may serve as an indicator of probability of tumor recurrence in patients with ER-positive tumors. Further investigations of this pathway may reveal links between deregulation of sleep homeostasis and breast tumorigenesis. J Clin Oncol 28: 3770-3778. (C) 2010 by American Society of Clinical Oncology C1 [Balmain, Allan] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, Canc Res Inst, San Francisco, CA 94158 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Salamanca, CSIC, Inst Biol Mol & Celular Canc, E-37008 Salamanca, Spain. Univ Valencia, Hosp Clin Univ, Valencia, Spain. RP Balmain, A (reprint author), Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, Canc Res Inst, 1450 3rd St, San Francisco, CA 94158 USA. EM abalmain@cc.ucsf.edu RI IBSAL, Secretaria/H-3719-2011 FU National Cancer Institute [U01 CA84244]; Spanish Ministry of Education and Culture [EX-2005-1059]; Department of Defense [BC063443]; Federacion Espanola de Enfermedades Raras and Fondo de Investigaciones Sanitarias [PI070057]; Ministerio de Ciencia e Innovacion [PLE2009-O119]; Junta de Castilla y Leon [SA078A09, SAN126/SA66/09]; Consejo Superior de Investigaciones Cientificas [200920I137]; California Breast Cancer Research Program [I5FB-0099]; Sandra Ibarra Foundation; Barbara Bass Bakar Chair of Cancer Genetics FX Supported by Grants No. U01 CA84244 from the National Cancer Institute (A. B.), EX-2005-1059 from the Spanish Ministry of Education and Culture (J.C.), BC063443 from the Department of Defense (J.C.), PI070057 from Federacion Espanola de Enfermedades Raras and Fondo de Investigaciones Sanitarias, PLE2009-O119 from Ministerio de Ciencia e Innovacion, SA078A09 and SAN126/SA66/09 from Junta de Castilla y Leon, 200920I137 from Consejo Superior de Investigaciones Cientificas, I5FB-0099 from the California Breast Cancer Research Program (K.-Y.J.), and by the Sandra Ibarra Foundation (J.P.-L.) and the Barbara Bass Bakar Chair of Cancer Genetics (A.B.). J.C. and J.P.-L. contributed equally to this work. NR 46 TC 25 Z9 26 U1 0 U2 4 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD AUG 10 PY 2010 VL 28 IS 23 BP 3770 EP 3778 DI 10.1200/JCO.2009.27.0215 PG 9 WC Oncology SC Oncology GA 641LX UT WOS:000281129000015 PM 20625127 ER PT J AU McClarren, RG Hauck, CD AF McClarren, Ryan G. Hauck, Cory D. TI Robust and accurate filtered spherical harmonics expansions for radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiative transfer; Spherical harmonics method ID MONTE-CARLO METHOD; P-N EQUATIONS; RIEMANN SOLVERS; TRANSPORT; TIME; HYDRODYNAMICS; DIFFUSION; P-1 AB We present a novel application of filters to the spherical harmonics (P(N)) expansion for radiative transfer problems in the high-energy-density regime. The filter we use is based on non-oscillatory spherical splines and a filter strength chosen to (i) preserve the equilibrium diffusion limit and (ii) vanish as the expansion order tends to infinity. Our implementation is based on modified equations that are derived by applying the filter after every time step in a simple first-order time integration scheme. The method is readily applied to existing codes that solve the P(N) equations. Numerical results demonstrate that the solution to the filtered P(N) equations are (i) more robust and less oscillatory than standard P(N) solutions and (ii) more accurate than discrete ordinates solutions of comparable order. In particular, the filtered P(7) solution demonstrates comparable accuracy to an implicit Monte Carlo solution for a benchmark hohlraum problem in 2D Cartesian geometry. (C) 2010 Elsevier Inc. All rights reserved. C1 [McClarren, Ryan G.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Hauck, Cory D.] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Math Grp, Oak Ridge, TN 37831 USA. RP McClarren, RG (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM rgm@tamu.edu; hauckc@ornl.gov FU U.S. Government [DE-AC05-00OR22725] FX The submitted manuscript has been authored, in part, by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 40 TC 23 Z9 24 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 10 PY 2010 VL 229 IS 16 BP 5597 EP 5614 DI 10.1016/j.jcp.2010.03.043 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 614MT UT WOS:000279064100002 ER PT J AU Cleveland, MA Gentile, NA Palmer, TS AF Cleveland, Mathew A. Gentile, Nick A. Palmer, Todd S. TI An extension of implicit Monte Carlo diffusion: Multigroup and the difference formulation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE IMD; Non-grey; Multigroup; The difference formulation ID RADIATIVE-TRANSFER SIMULATIONS; TRANSPORT-EQUATION; DISCRETIZATION; TIME AB Implicit Monte Carlo (IMC) and Implicit Monte Carlo Diffusion (IMD) are approaches to the numerical solution of the equations of radiative transfer. IMD was previously derived and numerically tested on grey, or frequency-integrated problems [1]. In this research, we extend Implicit Monte Carlo Diffusion (IMD) to account for frequency dependence, and we implement the difference formulation [2] as a source manipulation variance reduction technique. We derive the relevant probability distributions and present the frequency dependent IMD algorithm, with and without the difference formulation. The IMD code with and without the difference formulation was tested using both grey and frequency dependent benchmark problems. The Su and Olson semi-analytic Marshak wave benchmark was used to demonstrate the validity of the code for grey problems [3]. The Su and Olson semi-analytic picket fence benchmark was used for the frequency dependent problems [4]. The frequency dependent IMD algorithm reproduces the results of both Su and Olson benchmark problems. Frequency group refinement studies indicate that the computational cost of refining the group structure is likely less than that of group refinement in deterministic solutions of the radiation diffusion methods. Our results show that applying the difference formulation to the IMD algorithm can result in an overall increase in the figure of merit for frequency dependent problems. However, the creation of negatively weighted particles from the difference formulation can cause significant numerical instabilities in regions of the problem with sharp spatial gradients in the solution. An adaptive implementation of the difference formulation may be necessary to focus its use in regions that are at or near thermal equilibrium. (C) 2010 Elsevier Inc. All rights reserved. C1 [Cleveland, Mathew A.; Palmer, Todd S.] Oregon State Univ, Ctr Radiat, Corvallis, OR 97331 USA. [Gentile, Nick A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cleveland, MA (reprint author), Oregon State Univ, Ctr Radiat, Corvallis, OR 97331 USA. EM clevelam@onid.oregonstate.edu NR 21 TC 8 Z9 8 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 10 PY 2010 VL 229 IS 16 BP 5707 EP 5723 DI 10.1016/j.jcp.2010.04.004 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 614MT UT WOS:000279064100007 ER PT J AU Pei, JC Dukelsky, J Nazarewicz, W AF Pei, J. C. Dukelsky, J. Nazarewicz, W. TI Competition between normal superfluidity and Larkin-Ovchinnikov phases of polarized Fermi gases in elongated traps SO PHYSICAL REVIEW A LA English DT Article ID SUPERCONDUCTIVITY AB By applying the recently proposed antisymmetric superfluid local density approximation (ASLDA) to strongly interacting polarized atomic gases at unitarity in very elongated traps, we find families of solutions of the Larkin-Ovchinnikov (LO) type with prominent transversal oscillation of the pairing potential. These LO states coexist with a superfluid state having a smooth pairing potential. We suggest that the LO phase could be accessible experimentally by increasing the trap aspect ratio adiabatically. We show that the local asymmetry effects contained in the ASLDA do not support a deformed superfluid core predicted by previous Bogoliubov-de Gennes treatments. C1 [Pei, J. C.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Pei, J. C.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Pei, J. C.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Dukelsky, J.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Pei, JC (reprint author), Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. EM peij@ornl.gov RI Pei, Junchen/E-3532-2010; Dukelsky, Jorge/I-1118-2015 OI Dukelsky, Jorge/0000-0002-7715-5487 FU Office of Nuclear Physics, US Department of Energy [DE-FG02-96ER40963, DE-FC02-07ER41457]; Spanish Ministry of Science and Innovation [FIS2009-07277] FX Discussions with A. Bulgac and M. M. Forbes are gratefully acknowledged. This work was supported by the Office of Nuclear Physics, US Department of Energy, under Contracts No. DE-FG02-96ER40963 and No. DE-FC02-07ER41457 and by the Spanish Ministry of Science and Innovation, under Grant No. FIS2009-07277. Computational resources were provided by the National Institute for Computational Sciences. NR 37 TC 12 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 10 PY 2010 VL 82 IS 2 AR 021603 DI 10.1103/PhysRevA.82.021603 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 636XD UT WOS:000280776900005 ER PT J AU Bajdich, M Reboredo, FA Kent, PRC AF Bajdich, Michal Reboredo, Fernando A. Kent, P. R. C. TI Quantum Monte Carlo calculations of dihydrogen binding energetics on Ca cations: An assessment of errors in density functionals for weakly bonded systems SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; APPROXIMATION AB We investigate the binding of single and quadruple hydrogen molecules on a positively charged Ca ion. By comparing with benchmark quantum Monte Carlo (QMC) calculations we demonstrate wide variability in other more approximate electronic-structure methods including common density functionals. Single determinant QMC calculations find no binding at short range by approximately 0.1 eV for the quadruple hydrogen molecule case, for a fixed hydrogen bond length of 0.77 angstrom. Density-functional calculations using common functionals such a local density approximation and B3LYP differ substantially from the QMC binding curve. We show that use of full Hartree-Fock exchange and Perdew-Burke-Ernzerhof (PBE) correlation (HFX + PBEC) obtains close agreement with the QMC results, both qualitatively and quantitatively. These results both motivate the use and development of improved functionals and indicate that caution is required applying electronic-structure methods to weakly bound systems such as hydrogen-storage materials based on metal-ion-decorated nanostructures. C1 [Bajdich, Michal; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Bajdich, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Kent, Paul/A-6756-2008 OI Kent, Paul/0000-0001-5539-4017 FU U.S. DOE Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; U.S. DOE BES Division of Materials Sciences Engineering; ORNL; U.S. DOE Division of Scientific User Facilities FX We thank V. R. Cooper for helpful conversations. This research used computer resources supported by the U.S. DOE Office of Science under Contracts No. DE-AC02-05CH11231 (NERSC) and No. DE-AC05-00OR22725 (NCCS). Research was sponsored by U.S. DOE BES Division of Materials Sciences & Engineering (F.A.R.) and ORNL LDRD program (M.B.). The Center for Nanophase Materials Sciences research was sponsored by the U.S. DOE Division of Scientific User Facilities (P. R. C. K.). NR 24 TC 9 Z9 9 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 8 AR 081405 DI 10.1103/PhysRevB.82.081405 PG 4 WC Physics, Condensed Matter SC Physics GA 636XH UT WOS:000280777300002 ER PT J AU DiTusa, JF Goodrich, RG Harrison, N Choi, ES AF DiTusa, J. F. Goodrich, R. G. Harrison, N. Choi, E. S. TI Fermi surface of Cr1-xVx across the quantum critical point SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-WAVE ANTIFERROMAGNETISM; ANTI-FERROMAGNETIC CHROMIUM; PHASE-TRANSITIONS; MAGNETIC-FIELDS; Q-VECTOR; ALLOYS; INTERFERENCE; DEPENDENCE; BEHAVIOR; METAL AB We have measured de Haas-van Alphen oscillations of Cr1-xVx, 0 <= x <= 0.05, at high fields for samples on both sides of the quantum critical point at x(c)=0.035. For all samples we observe only those oscillations associated with a single small hole band with magnetic breakdown orbits of the reconstructed Fermi surface evident for x < x(c). The absence of oscillations from Fermi surface sheets most responsible for the spin density wave (SDW) in Cr for x > x(c) is further evidence for strong fluctuation scattering of these charge carriers well into the paramagnetic regime. We find no significant mass enhancement of the carriers in the single observed band at any x. An anomalous field dependence of the de Haas-van Alphen signal for our x=0.035 crystal at particular orientations of the magnetic field is identified as due to magnetic breakdown that we speculate results from a field-induced SDW transition at high fields. C1 [DiTusa, J. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Goodrich, R. G.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Harrison, N.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Choi, E. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP DiTusa, JF (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM ditusa@phys.lsu.edu OI Harrison, Neil/0000-0001-5456-7756 FU National Science Foundation [DMR084376, DMR0654118]; State of Florida; Department of Energy FX We are grateful to D. A. Browne and M. R. Norman for discussions. J.F.D. acknowledges support from the National Science Foundation through Grant No. DMR084376. A portion of this work was performed at the NHMFL, which is supported by National Science Foundation Cooperative Agreement No. DMR0654118, by the State of Florida, and by the Department of Energy. NR 41 TC 3 Z9 3 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 7 AR 075114 DI 10.1103/PhysRevB.82.075114 PG 7 WC Physics, Condensed Matter SC Physics GA 636XG UT WOS:000280777200004 ER PT J AU Schleck, R Nahas, Y Lobo, RPSM Varignon, J Lepetit, MB Nelson, CS Moreira, RL AF Schleck, R. Nahas, Y. Lobo, R. P. S. M. Varignon, J. Lepetit, M. B. Nelson, C. S. Moreira, R. L. TI Elastic and magnetic effects on the infrared phonon spectra of MnF2 SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE-DEPENDENCE; TIO2 RUTILE; DIELECTRIC-CONSTANTS; ACTIVE-MODES; AB-INITIO; PRESSURE; FLUORIDE; FEF2; ZNF2; CRYSTALS AB We measured the temperature-dependent infrared reflectivity spectra of MnF2 between 4 and 600 K. We show that the phonon spectrum undergoes a clear renormalization at T-N. The ab initio calculation we performed on this compound accurately predicts the magnitude and the direction of the changes in the phonon parameters across the antiferromagnetic transition, showing that they are mainly induced by the magnetic order. In this material, we found that the dielectric constant is mostly from phonon origin. The large change in the lattice parameters with temperature seen by x-ray diffraction as well as the A(2u) phonon softening below T-N indicate that magnetic order induced distortions in MnF2 are compatible with the ferroelectric instabilities observed in TiO2, FeF2 and other rutile-type fluorides. This study also shows the anomalous temperature evolution of the lower energy E-u mode in the paramagnetic phase, which can be compared to that of the B-1g phonon seen by Raman spectroscopy in many isostructural materials. This was interpreted as being a precursor of a phase transition from rutile to CaCl2 structure which was observed under pressure in ZnF2. C1 [Schleck, R.; Nahas, Y.; Lobo, R. P. S. M.] Univ Paris 06, LPEM, ESPCI, CNRS,UPR5, F-75231 Paris 5, France. [Varignon, J.; Lepetit, M. B.] CNRS, UMR 6508, CRISMAT, ENSICAEN, F-14050 Caen, France. [Nelson, C. S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Moreira, R. L.] Univ Fed Minas Gerais, Dept Fis, ICEx, BR-31123970 Belo Horizonte, MG, Brazil. RP Schleck, R (reprint author), Univ Paris 06, LPEM, ESPCI, CNRS,UPR5, 10 Rue Vauquelin, F-75231 Paris 5, France. RI Moreira, Roberto/B-8568-2013; OI Lobo, Ricardo/0000-0003-2355-6856 FU CNPq; FAPEMIG; CNRS [PICS 4905]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; IDRIS computational center [1842]; CRIHAN computational center [2007013] FX We thank J.-Y. Gesland for providing us with the MnF2 crystal used in this study. R. L. M. acknowledges an invited "Joliot chair" at ESPCI and R. P. S. M. L. acknowledges an invited scientist position from FAPEMIG. This work was partially funded by the Brazilian agencies CNPq and FAPEMIG. The collaboration between ESPCI and UFMG was supported by the CNRS PICS 4905. Use of the NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Structure diagrams were produced using VESTA software (Ref. 44). The ab initio calculations were performed at the IDRIS and CRIHAN computational centers under Projects No. 1842 (IDRIS) and No. 2007013 (CRIHAN). NR 44 TC 11 Z9 11 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 5 AR 054412 DI 10.1103/PhysRevB.82.054412 PG 10 WC Physics, Condensed Matter SC Physics GA 636XE UT WOS:000280777000006 ER PT J AU Singh, DJ Du, MH AF Singh, David J. Du, Mao-Hua TI Properties of alkaline-earth-filled skutterudite antimonides: A(Fe,Ni)(4)Sb-12 (A=Ca, Sr, and Ba) SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; THERMOELECTRIC PERFORMANCE; TRANSPORT-PROPERTIES; WAVE METHOD; SYSTEMS AB Properties of alkaline-earth-filled skutterudite antimonides based on Fe and Ni are studied using first-principles calculations and Boltzmann transport theory. We find heavy conduction bands and a light-band-heavy-band mixture in the valence bands. The thermopower at high temperature is high for high carrier concentrations up to 0.2 per unit cell for both p type and n type. The results suggest experimental investigation of these materials as potential thermoelectrics. C1 [Singh, David J.; Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Vehicle Technologies FX We are grateful for helpful discussions with B. C. Sales. This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program. NR 60 TC 24 Z9 24 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 7 AR 075115 DI 10.1103/PhysRevB.82.075115 PG 7 WC Physics, Condensed Matter SC Physics GA 636XG UT WOS:000280777200005 ER PT J AU Wakimoto, S Hiraka, H Kudo, K Okamoto, D Nishizaki, T Kakurai, K Hong, T Zheludev, A Tranquada, JM Kobayashi, N Yamada, K AF Wakimoto, Shuichi Hiraka, Haruhiro Kudo, Kazutaka Okamoto, Daichi Nishizaki, Terukazu Kakurai, Kazuhisa Hong, Tao Zheludev, Andrey Tranquada, John M. Kobayashi, Norio Yamada, Kazuyoshi TI Magnetic field effect on Fe-induced short-range magnetic correlation and electrical conductivity in Bi1.75Pb0.35Sr1.90Cu0.91Fe0.09O6+y SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; SPIN-DENSITY-WAVE; TRANSITION-TEMPERATURE; NEUTRON-SCATTERING; CU-MN; LA2-XSRXCUO4; EXCITATIONS; ORDER; BI2SR2CACU2O8+DELTA; MAGNETORESISTANCE AB We report electrical-resistivity measurements and neutron-diffraction studies under magnetic fields of Bi1.75Pb0.35Sr1.90Cu0.91Fe0.09O6+y, in which hole carriers are overdoped. This compound shows short-range incommensurate magnetic correlation with incommensurability delta=0.21, whereas a Fe-free compound shows no magnetic correlation. Resistivity shows an up turn at low temperature in the form of ln (1/T) and shows no superconductivity. We observe reduction in resistivity by applying magnetic fields (i.e., a negative magnetoresistive effect) at temperatures below the onset of short-range magnetic correlation. Application of magnetic fields also suppresses the Fe-induced incommensurate magnetic correlation. We compare and contrast these observations with two different models: (1) stripe order and (2) dilute magnetic moments in a metallic alloy with associated Kondo behavior. The latter picture appears to be more relevant to the present results. C1 [Wakimoto, Shuichi; Kakurai, Kazuhisa] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Hiraka, Haruhiro; Kudo, Kazutaka; Okamoto, Daichi; Nishizaki, Terukazu; Kobayashi, Norio; Yamada, Kazuyoshi] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Hong, Tao; Zheludev, Andrey] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tranquada, John M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Yamada, Kazuyoshi] Adv Inst Mat Res, WPI Res Ctr, Sendai, Miyagi 9808577, Japan. RP Wakimoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. EM wakimoto.shuichi@jaea.go.jp RI Tranquada, John/A-9832-2009; Hong, Tao/F-8166-2010; Yamada, Kazuyoshi/C-2728-2009; Kobayashi, Norio/C-1909-2009; Nishizaki, Terukazu/C-1500-2011; KUDO, Kazutaka/B-1468-2011 OI Tranquada, John/0000-0003-4984-8857; Hong, Tao/0000-0002-0161-8588; FU Division of Scientific User Facilities, Office of Basic Energy Science, U.S. Department of Energy; Ministry of Education, Culture, Sports, Science and Technology; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-98CH110886] FX We thank K. Kaneko, M. Matsuda, M. Fujita, and J. A. Fernandez-Baca for invaluable discussion. We also thank S. Okayasu for his help in SQUID measurements. This work is part of the U. S.-Japan Cooperative Program on neutron scattering. The work at the HFIR at ORNL was partially funded by the Division of Scientific User Facilities, Office of Basic Energy Science, U.S. Department of Energy. The study performed at JRR-3 at Tokai was carried out under the Common-Use Facility Program of JAEA, and the Quantum Beam Technology Program of JST. Magnetoresistive measurement was performed at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University. We acknowledge financial support by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology. J. M. T. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-98CH110886. NR 40 TC 6 Z9 6 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 6 AR 064507 DI 10.1103/PhysRevB.82.064507 PG 7 WC Physics, Condensed Matter SC Physics GA 636XF UT WOS:000280777100005 ER PT J AU Weber, F Rosenkranz, S Castellan, JP Osborn, R Mitchell, JF Zheng, H Casa, D Kim, JH Gog, T AF Weber, F. Rosenkranz, S. Castellan, J. -P. Osborn, R. Mitchell, J. F. Zheng, H. Casa, D. Kim, J. H. Gog, T. TI d-d excitations in bilayer manganites probed by resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID PEROVSKITE-TYPE MANGANITES; CHARGE; LA1.2SR1.8MN2O7 AB We report a high-resolution resonant inelastic x-ray scattering investigation of the bilayer manganites La(2-2x)Sr(1+2x)Mn(2)O(7) with x = 0.36 and 0.5. The momentum dependence along the crystallographic (110) direction for energy losses 1 eV <= Delta E <= 15 eV has been measured in detail with the data analysis focusing on the energy-loss region 1 eV <= Delta E <= 5 eV, which includes a strong peak located at Delta E approximate to 2 eV. We observe a clear dispersion of up to 0.5 eV in the measured q range, which is direct evidence of the nonlocal character of this excitation. Further, we found that the intensity in this low-energy region strongly depends on both the reduced wave vector q = (h, h, 0), h = 0.1-0.5, and temperature, i.e., different ordered phases. Results can be explained via an intersite d-d charge-transfer excitation, proposed for pseudocubic manganites, where the hopping rate is strongly increased (decreased) by ferromagnetic (antiferromagnetic) alignment of neighboring in-plane Mn ion core spins. C1 [Weber, F.; Rosenkranz, S.; Castellan, J. -P.; Osborn, R.; Mitchell, J. F.; Zheng, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Casa, D.; Kim, J. H.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Weber, F (reprint author), Karlsruhe Inst Technol, Inst Solid State Phys, POB 3640, D-76021 Karlsruhe, Germany. EM frank.weber@kit.edu RI Osborn, Raymond/E-8676-2011; Rosenkranz, Stephan/E-4672-2011; Casa, Diego/F-9060-2016 OI Osborn, Raymond/0000-0001-9565-3140; Rosenkranz, Stephan/0000-0002-5659-0383; FU U.S. Department of Energy, Basic Energy Sciences-Materials Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 8 AR 085105 DI 10.1103/PhysRevB.82.085105 PG 7 WC Physics, Condensed Matter SC Physics GA 636XH UT WOS:000280777300003 ER PT J AU Yang, SYA Beach, GSD Knutson, C Xiao, D Zhang, ZY Tsoi, M Niu, Q MacDonald, AH Erskine, JL AF Yang, Shengyuan A. Beach, Geoffrey S. D. Knutson, Carl Xiao, Di Zhang, Zhenyu Tsoi, Maxim Niu, Qian MacDonald, A. H. Erskine, James L. TI Topological electromotive force from domain-wall dynamics in a ferromagnet SO PHYSICAL REVIEW B LA English DT Article ID ELECTRIC-CURRENT; MAGNETIZATION DYNAMICS; SPIN-TRANSFER; BERRY-PHASE; MOTION; NANOWIRES; TORQUES; FILMS AB We formulate a local gauge-invariant theory for the electromotive force induced by domain-wall dynamics in a ferromagnet. We demonstrate that this emf generation is a real-space topological pumping effect. The integral of the emf over one pumping period is a quantized topological invariant which does not depend on the details of the domain-wall configuration nor on its detailed dynamics. Based on our theory, the full instantaneous electric potential distribution can be mapped out by standard electrostatic methods. We also provide further details on our recent experiments which confirmed the emf induced by domain-wall dynamics. C1 [Yang, Shengyuan A.; Beach, Geoffrey S. D.; Knutson, Carl; Xiao, Di; Tsoi, Maxim; Niu, Qian; MacDonald, A. H.; Erskine, James L.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Beach, Geoffrey S. D.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Xiao, Di; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, SYA (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RI Xiao, Di/B-1830-2008; Niu, Qian/G-9908-2013; Yang, Shengyuan/L-2848-2014; OI Xiao, Di/0000-0003-0165-6848; Yang, Shengyuan/0000-0001-6003-1501; Beach, Geoffrey/0000-0001-9158-7430 FU NSF [DMR-0906025, DMR-0903812]; Welch Foundation; Division of Materials Sciences and Engineering (Office of Basic Energy Sciences, U. S. Department of Energy); DOE, Division of Materials Sciences and Engineering [DEFG03-02ER45958] FX The authors thank Changhai Xu, Shufeng Zhang, W. M. Saslow, and O.A. Tretiakov for valuable discussions. S.A.Y. was supported by NSF under Grant No. DMR-0906025, G. B., C. K., M. T., and J.E. were supported by NSF under Grant No. DMR-0903812, G. B. and J.E. by the Welch Foundation, D. X. and Z.Z. by the Division of Materials Sciences and Engineering (Office of Basic Energy Sciences, U. S. Department of Energy), Q.N. and A. H. M. by DOE (Grant No. DEFG03-02ER45958, Division of Materials Sciences and Engineering) and the Welch Foundation. NR 61 TC 25 Z9 25 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 5 AR 054410 DI 10.1103/PhysRevB.82.054410 PG 12 WC Physics, Condensed Matter SC Physics GA 636XE UT WOS:000280777000004 ER PT J AU Zhou, L Wang, YP Zhou, H Li, MH Headrick, RL MacArthur, K Shi, B Conley, R Macrander, AT AF Zhou, Lan Wang, Yiping Zhou, Hua Li, Minghao Headrick, Randall L. MacArthur, Kimberly Shi, Bing Conley, Ray Macrander, Albert T. TI Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress SO PHYSICAL REVIEW B LA English DT Article ID FCC-FE FILMS; X-RAY; MOLECULAR-DYNAMICS; COMPRESSIVE STRESS; GAS CONDENSATION; METAL-CLUSTERS; THIN-FILMS; GROWTH; MULTILAYERS; DEPOSITION AB We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small-angle x-ray scattering. The results show an abrupt transition at an Ar background pressure P-c; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below P-c smooth films are produced while above P-c roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi2 films are correlated with in situ measurement of stress in WSi2/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at P-c. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nanovoids. C1 [Zhou, Lan; Wang, Yiping; Zhou, Hua; Li, Minghao; Headrick, Randall L.] Univ Vermont, Dept Phys & Mat Sci Program, Burlington, VT 05405 USA. [MacArthur, Kimberly; Shi, Bing; Conley, Ray; Macrander, Albert T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhou, L (reprint author), Univ Vermont, Dept Phys & Mat Sci Program, Burlington, VT 05405 USA. EM rheadrick@uvm.edu RI Conley, Ray/C-2622-2013 FU U.S. Department of Energy [DE-FG02-07ER46380]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Department of Energy [DE-AC02-06CH11357] FX The authors acknowledge Nathalie Bouet, Lin Yang, Christie Nelson, D. Peter Siddons, and Tony Kuczewski for experimental assistance with the work done at the NSLS X21 beamline, and Lihua Zhang for experimental assistance with TEM at the Center for Functional Nanomaterials. The authors also acknowledge the support for K. MacArthur provided by A. Genis at Northern Illinois University. This material is based on work supported by the U.S. Department of Energy under Grant No. DE-FG02-07ER46380. Use of the National Synchrotron Light Source and the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at Argonne was performed under Department of Energy Contract No. DE-AC02-06CH11357. NR 52 TC 7 Z9 8 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 10 PY 2010 VL 82 IS 7 AR 075408 DI 10.1103/PhysRevB.82.075408 PG 12 WC Physics, Condensed Matter SC Physics GA 636XG UT WOS:000280777200006 ER PT J AU Yeoh, EY Zhu, SJ Hamilton, JH Ramayya, AV Liu, YX Sun, Y Hwang, JK Liu, SH Wang, JG Luo, YX Rasmussen, JO Lee, IY Ding, HB Gu, L Xu, Q Xiao, ZG AF Yeoh, E. Y. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Liu, Y. X. Sun, Y. Hwang, J. K. Liu, S. H. Wang, J. G. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Ding, H. B. Gu, L. Xu, Q. Xiao, Z. G. TI Identification of a quasiparticle band in very neutron-rich Zr-104 SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION; APPROXIMATELY 100; ROTATIONAL BANDS; HIGH-SPIN; REGION; DEFORMATION; NUCLEI; SPECTROSCOPY; VIBRATIONS; MO-106 AB The high spin levels of a very neutron-rich Zr-104 nucleus have been reinvestigated by measuring the prompt. rays in the spontaneous fission of Cf-252. The ground-state band has been confirmed. A new sideband has been identified with a band-head energy at 1928.7 keV. The projected shell model is employed to investigate the band structure of Zr-104. The results of calculated levels are in good agreement with the experimental data, and suggest that the new band in Zr-104 may be based on the neutron nu 5/2(-)[532] circle times nu 3/2(+)[411] configuration. C1 [Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Ding, H. B.; Gu, L.; Xu, Q.; Xiao, Z. G.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Liu, Y. X.; Sun, Y.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Liu, Y. X.] Huzhou Teachers Coll, Sch Sci, Huzhou 313000, Peoples R China. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yeoh, EY (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn RI XIAO, Zhigang/C-3788-2015; Sun, Yang/P-2417-2015 FU National Natural Science Foundation of China [10775078, 10975082, 10875077, 10975051]; Major State Basic Research Development Program [2007CB815005]; US Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX The work at Tsinghua University, Shanghai Jiao Tong University, and Huzhou Teachers College were supported by National Natural Science Foundation of China under Grants No. 10775078, No. 10975082, No. 10875077, and No. 10975051, the Major State Basic Research Development Program under Grant No. 2007CB815005. The work at Van-derbilt University and Lawrence Berkeley National Laboratory was supported, respectively, by the US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. DE-AC03-76SF00098. NR 25 TC 7 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 10 PY 2010 VL 82 IS 2 AR 027302 DI 10.1103/PhysRevC.82.027302 PG 4 WC Physics, Nuclear SC Physics GA 636XJ UT WOS:000280777500007 ER PT J AU Alves, DSM Lisanti, M Wacker, JG AF Alves, Daniele S. M. Lisanti, Mariangela Wacker, Jay G. TI Poker face of inelastic dark matter: Prospects at upcoming direct detection experiments SO PHYSICAL REVIEW D LA English DT Article ID CRYOGENIC DETECTORS; NUCLEAR RECOILS; WIMP SEARCH; LIMITS; DAMA/NAI; NAI(TL); HALO AB The XENON100 and CRESST experiments will directly test the inelastic dark matter explanation for DAMA's 8.9 sigma anomaly. This article discusses how predictions for direct detection experiments depend on uncertainties in quenching factor measurements, the dark matter interaction with the standard model, and the halo velocity distribution. When these uncertainties are accounted for, an order of magnitude variation is found in the number of expected events at CRESST and XENON100. C1 [Alves, Daniele S. M.; Lisanti, Mariangela; Wacker, Jay G.] SLAC, Theory Grp, Menlo Pk, CA 94025 USA. [Alves, Daniele S. M.; Lisanti, Mariangela] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Alves, DSM (reprint author), SLAC, Theory Grp, Menlo Pk, CA 94025 USA. FU US DOE [DE-AC02-76SF00515]; Stanford Institute for Theoretical Physics; NSF FX We thank Neal Weiner for useful discussions, especially on quenching factors. We would also like to thank Fabio Capella for clarification on the DAMA power spectrum and Rafael Lang for helpful explanations about backgrounds in CRESST's high energy regime. D. S. MA., M. L., and J. G. W. are supported by the US DOE under Contract No. DE-AC02-76SF00515 and receive partial support from the Stanford Institute for Theoretical Physics. M. L. is supported by the NSF.. As we neared completion of this paper, similar ideas were discussed in [41]. NR 47 TC 18 Z9 18 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 10 PY 2010 VL 82 IS 3 AR 031901 DI 10.1103/PhysRevD.82.031901 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 636XK UT WOS:000280777600001 ER PT J AU Atwood, D Soni, A AF Atwood, David Soni, Amarjit TI Measuring B-s width difference at the Y(5s) using quantum entanglement SO PHYSICAL REVIEW D LA English DT Article ID LIFETIME DIFFERENCE; PHYSICS; MESONS; GAMMA AB About 90% of B-s(B) over bar (s) pairs produced at the Y(5s) resonance are initially B-s*(B) over bar (s)* pairs which decay radiatively to B-s(B) over bar (s). This implies that the B-s(B) over bar (s) pair will then be in an eigenstate of charge conjugation (i.e. C = -1) and therefore in an entangled state. This allows for a determination of Delta Gamma(s)/Gamma(s) and the CP phase using a number of possible correlations between the decays of the two B-s mesons. In particular, we consider the time integrated correlation, the time ordering asymmetry, and the time ordering-charge asymmetry, which in addition to time ordering distinguishes B-s from (B) over bar (s), for various combinations of final states. With the statistics of about O(10(7)-10(8)) Y(5s) events available at B factories, we find that the time ordering asymmetry between suitably defined hadronic and flavor specific (tagging) decays offers a promising method for determining the width difference. The corresponding time ordering-charge asymmetry can also bound the mixing phase. Similar observables involving exclusive decays are also considered. At the super B factories with O(50) times greater luminosity time ordering and time ordering-charge asymmetries between inclusive and exclusive modes may also provide additional bounds on the phases in those decays. C1 [Atwood, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA. RP Atwood, D (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU U.S. DOE [DE-FG02-94ER40817, DE-AC02-98CH10886] FX The work of D. A. and A. S. was supported in part by the U.S. DOE Grants No. DE-FG02-94ER40817 (ISU) and No. DE-AC02-98CH10886 (BNL). NR 24 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 10 PY 2010 VL 82 IS 3 AR 036003 DI 10.1103/PhysRevD.82.036003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 636XK UT WOS:000280777600008 ER PT J AU Hall, JMM Leinweber, DB Young, RD AF Hall, J. M. M. Leinweber, D. B. Young, R. D. TI Power counting regime of chiral effective field theory and beyond SO PHYSICAL REVIEW D LA English DT Article ID PERTURBATION-THEORY; NUCLEON MASS; LATTICE QCD; MOMENT AB Chiral effective field theory (chi EFT) complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chi EFT, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory (chi PT) beyond the PCR are reported. C1 [Hall, J. M. M.; Leinweber, D. B.; Young, R. D.] Univ Adelaide, Special Res Ctr Subat Struct Matter CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Young, R. D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hall, JMM (reprint author), Univ Adelaide, Special Res Ctr Subat Struct Matter CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia. RI Young, Ross/H-8207-2012; Leinweber, Derek/J-6705-2013; Hall, Jonathan /E-8644-2013 OI Leinweber, Derek/0000-0002-4745-6027; Hall, Jonathan /0000-0002-7719-1103 NR 29 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 10 PY 2010 VL 82 IS 3 AR 034010 DI 10.1103/PhysRevD.82.034010 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 636XK UT WOS:000280777600005 ER PT J AU Stevanovic, V d'Avezac, M Zunger, A AF Stevanovic, Vladan d'Avezac, Mayeul Zunger, Alex TI Simple Point-Ion Electrostatic Model Explains the Cation Distribution in Spinel Oxides SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY; ALLOYS; RADII AB The A(2)BO(4) spinel oxides are distinguished by having either a normal (N) or an inverse (I) distribution of the A, B cations on their sublattices. A point-ion electrostatic model parametrized by the oxygen displacement parameter u and by the relative cation valencies Z(A) vs Z(B) provides a simple rule for the structural preference for N or I: if Z(A) > Z(B) the structure is normal for u > 0.2592 and inverse for u < 0.2578, while if Z(A) < Z(B) the structure is normal for u < 0.2550 and inverse for u > 0.2578. This rule is illustrated for the known spinel oxides, proving to be similar to 98% successful. C1 [Stevanovic, Vladan; d'Avezac, Mayeul; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stevanovic, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013; OI d'Avezac, Mayeul/0000-0002-2615-8397 FU U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers [DE-AC36-08GO28308] FX Research supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers, under Grant No. DE-AC36-08GO28308 to NREL. NR 26 TC 21 Z9 21 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 10 PY 2010 VL 105 IS 7 AR 075501 DI 10.1103/PhysRevLett.105.075501 PG 4 WC Physics, Multidisciplinary SC Physics GA 637IU UT WOS:000280811700004 PM 20868056 ER PT J AU Molloy, S Emma, P Frisch, J Iverson, R Ross, M McCormick, D Woods, M Walston, S AF Molloy, Stephen Emma, Paul Frisch, Josef Iverson, Rick Ross, Marc McCormick, Doug Woods, Mike Walston, Sean TI Energy-z correlation measurements of electron bunches SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Bunch length and energy-z correlation measurements were performed on the high energy (28.5 GeV) electron test beam of the A-line and End Station A (ESA) facilities at the SLAC National Accelerator Laboratory. The longitudinal profile of each bunch was measured by imaging the synchrotron light emitted as the electrons traversed a highly dispersive bend after being streaked by a transverse rf deflecting cavity. In addition, high frequency diodes and pyroelectric detectors placed at a ceramic gap in the beam line were used to measure the length of the bunch in ESA. C1 [Molloy, Stephen] Univ London, Egham TW20 0EX, Surrey, England. [Emma, Paul; Frisch, Josef; Iverson, Rick; Ross, Marc; McCormick, Doug; Woods, Mike] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Walston, Sean] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Molloy, S (reprint author), Univ London, Egham Hill, Egham TW20 0EX, Surrey, England. EM stephen.molloy@rhul.ac.uk FU U.S. Department of Energy [DE-AC02-76SF00515, W-7405-Eng-48] FX The authors wish to thank the SLAC machine operators for their invaluable contribution to the running of this experiment, and Eric Colby for the provision of many hardware components essential to the successful completion of these studies. This work was supported by U.S. Department of Energy Contract No. DE-AC02-76SF00515, and performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory, under Contract No. W-7405-Eng-48. NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 10 PY 2010 VL 13 IS 8 AR 082802 DI 10.1103/PhysRevSTAB.13.082802 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 637IV UT WOS:000280811800003 ER PT J AU Politis, A Park, AY Hyung, SJ Barsky, D Ruotolo, BT Robinson, CV AF Politis, Argyris Park, Ah Young Hyung, Suk-Joon Barsky, Daniel Ruotolo, Brandon T. Robinson, Carol V. TI Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes SO PLOS ONE LA English DT Article ID DNA-POLYMERASE-III; INTACT PROTEIN COMPLEXES; N-TERMINAL DOMAIN; SUBUNIT ARCHITECTURE; CRYSTAL-STRUCTURE; SLIDING-CLAMP; HELICASE; HOLOENZYME; PEPTIDES; DYNAMICS AB Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (beta(2)), the c complex (gamma(3)delta delta'), the DnaB helicase (DnaB(6)) and the Single-Stranded Binding Protein (SSB(4)). C1 [Politis, Argyris; Park, Ah Young; Robinson, Carol V.] Univ Oxford, Dept Chem, Oxford, England. [Hyung, Suk-Joon; Barsky, Daniel] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Ruotolo, Brandon T.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. RP Politis, A (reprint author), Univ Oxford, Dept Chem, Oxford, England. EM carol.robinson@chem.ox.ac.uk RI Ruotolo, Brandon/F-2669-2013; Hyung, Suk-Joon/N-6449-2014 OI Ruotolo, Brandon/0000-0002-6084-2328; Hyung, Suk-Joon/0000-0001-6759-4219 FU British Biotechnology and Biological Sciences Research Council [BB/G000360/1] FX This work was supported by the British Biotechnology and Biological Sciences Research Council. Grant Reference: BB/G000360/1. URL: http://www.bbsrc.ac.uk/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 50 TC 71 Z9 71 U1 1 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 10 PY 2010 VL 5 IS 8 AR e12080 DI 10.1371/journal.pone.0012080 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 637IW UT WOS:000280811900024 PM 20711472 ER PT J AU Rose, AAN Annis, MG Dong, ZF Pepin, F Hallett, M Park, M Siegel, PM AF Rose, April A. N. Annis, Matthew G. Dong, Zhifeng Pepin, Francois Hallett, Michael Park, Morag Siegel, Peter M. TI ADAM10 Releases a Soluble Form of the GPNMB/Osteoactivin Extracellular Domain with Angiogenic Properties SO PLOS ONE LA English DT Article ID MELANOMA PROTEIN-B; BREAST-CANCER; DC-HIL; OSTEOBLAST DIFFERENTIATION; THERAPEUTIC TARGET; AURISTATIN-E; EXPRESSION; OSTEOACTIVIN; METASTASIS; ACTIVATION AB Background: Glycoprotein non-metastatic melanoma protein B (GPNMB)/Osteoactivin (OA) is a transmembrane protein expressed in approximately 40-75% of breast cancers. GPNMB/OA promotes the migration, invasion and metastasis of breast cancer cells; it is commonly expressed in basal/triple-negative breast tumors and is associated with shorter recurrence-free and overall survival times in patients with breast cancer. Thus, GPNMB/OA represents an attractive target for therapeutic intervention in breast cancer; however, little is known about the functions of GPNMB/OA within the primary tumor microenvironment. Methodology/Principal Findings: We have employed mouse and human breast cancer cells to investigate the effects of GPNMB/OA on tumor growth and angiogenesis. GPNMB/OA-expressing tumors display elevated endothelial recruitment and reduced apoptosis when compared to vector control-derived tumors. Primary human breast cancers characterized by high vascular density also display elevated levels of GPNMB/OA when compared to those with low vascular density. Using immunoblot and ELISA assays, we demonstrate the GPNMB/OA ectodomain is shed from the surface of breast cancer cells. Transient siRNA-mediated knockdown studies of known sheddases identified ADAM10 as the protease responsible for GPNMB/OA processing. Finally, we demonstrate that the shed extracellular domain (ECD) of GPNMB/OA can promote endothelial migration in vitro. Conclusions/Significance: GPNMB/OA expression promotes tumor growth, which is associated with enhanced endothelial recruitment. We identify ADAM10 as a sheddase capable of releasing the GPNMB/OA ectodomain from the surface of breast cancer cells, which induces endothelial cell migration. Thus, ectodomain shedding may serve as a novel mechanism by which GPNMB/OA promotes angiogenesis in breast cancer. C1 [Rose, April A. N.; Annis, Matthew G.; Dong, Zhifeng; Hallett, Michael; Park, Morag; Siegel, Peter M.] McGill Univ, Goodman Canc Res Ctr, Montreal, PQ, Canada. [Rose, April A. N.; Annis, Matthew G.; Dong, Zhifeng; Park, Morag; Siegel, Peter M.] McGill Univ, Dept Med, Montreal, PQ, Canada. [Park, Morag; Siegel, Peter M.] McGill Univ, Dept Biochem, Montreal, PQ, Canada. [Park, Morag] McGill Univ, Dept Oncol, Montreal, PQ, Canada. [Pepin, Francois] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hallett, Michael] McGill Univ, McGill Ctr Bioinformat, Montreal, PQ, Canada. RP Rose, AAN (reprint author), McGill Univ, Goodman Canc Res Ctr, Montreal, PQ, Canada. EM peter.siegel@mcgill.ca FU Canadian Breast Cancer Research Alliance/Canadian Institutes of Health Research [MOP-84386]; Canadian Institutes of Health Research [CTP-79857]; McGill University Health Centre Foundation; "Banque de Tissues et de donnees" of the "Reseau de recherche sur le cancer" of the Fonds de recherche en sante du Quebec; Fonds de recherche en sante du Quebec; Canadian Cancer Society FX This work is supported by grants from the Canadian Breast Cancer Research Alliance/Canadian Institutes of Health Research (MOP-84386 to P. M. S.) and the Canadian Institutes of Health Research (CTP-79857 to M. P. and P. M. S.). Tissue banking activities at McGill were supported by the McGill University Health Centre Foundation and the "Banque de Tissues et de donnees" of the "Reseau de recherche sur le cancer" of the Fonds de recherche en sante du Quebec (M. P.). A.A.N.R. was supported by a studentship from the Fonds de recherche en sante du Quebec and M. G. A. was supported by a post-doctoral fellowship from the Canadian Institutes of Health Research. M. P. holds the Diane and Sal Guerrera Chair in Cancer Genetics at McGill University and P. M. S. acknowledges support from both the Canadian Cancer Society and the Fonds de recherche en sante du Quebec. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 64 Z9 65 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 10 PY 2010 VL 5 IS 8 AR e12093 DI 10.1371/journal.pone.0012093 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 637IW UT WOS:000280811900031 PM 20711474 ER PT J AU Clark, GNI Hura, GL Teixeira, J Soper, AK Head-Gordon, T AF Clark, Gary N. I. Hura, Greg L. Teixeira, Jose Soper, Alan K. Head-Gordon, Teresa TI Small-angle scattering and the structure of ambient liquid water SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE anomalous scattering; density distribution; isothermal compressibility; structural polyamorphism ID X-RAY-SCATTERING; ENHANCED DENSITY-FLUCTUATIONS; RADIAL-DISTRIBUTION FUNCTIONS; SUPERCOOLED WATER; ISOTHERMAL COMPRESSIBILITY; COMPUTER-SIMULATIONS; MOLECULAR-DYNAMICS; NEUTRON-SCATTERING; MODEL; EQUILIBRIUM AB Structural polyamorphism has been promoted as a means for understanding the anomalous thermodynamics and dynamics of water in the experimentally inaccessible supercooled region. In the metastable liquid region, theory has hypothesized the existence of a liquid-liquid critical point from which a dividing line separates two water species of high and low density. A recent small-angle X-ray scattering study has claimed that the two structural species postulated in the supercooled state are seen to exist in bulk water at ambient conditions. We analyze new small-angle X-ray scattering data on ambient liquid water taken at third generation synchrotron sources, and large 32,000 water molecule simulations using the TIP4P-Ew model of water, to show that the small-angle region measures standard number density fluctuations consistent with water's isothermal compressibility temperature trends. Our study shows that there is no support or need for heterogeneities in water structure at room temperature to explain the small-angle scattering data, as it is consistent with a unimodal density of the tetrahedral liquid at ambient conditions. C1 [Clark, Gary N. I.; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Hura, Greg L.; Head-Gordon, Teresa] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Teixeira, Jose] CEA Saclay, CNRS, Lab Leon Brillouin Commissariat Energie Atom & En, CEA, F-91191 Gif Sur Yvette, France. [Soper, Alan K.] Rutherford Appleton Lab, ISIS Facil, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. RP Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM TLHead-Gordon@lbl.gov RI Head-Gordon, Teresa/E-5818-2011 FU National Science Foundation (NSF); Department of Energy FX G.N.I.C. and T.H.G. thank the National Science Foundation (NSF) Cyberinfrastructure program, and G.L.H. and T.H.G. thank the Department of Energy, for support of the work presented here. We also thank the National Energy Research Scientific Computing Center for computational resources. We thank C. Huang for providing us with the structure factor data reported in ref. 16. NR 42 TC 94 Z9 96 U1 2 U2 59 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 10 PY 2010 VL 107 IS 32 BP 14003 EP 14007 DI 10.1073/pnas.1006599107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 636UD UT WOS:000280767700008 PM 20647388 ER PT J AU Schwartz, CP Uejio, JS Duffin, AM England, AH Kelly, DN Prendergast, D Saykally, RJ AF Schwartz, Craig P. Uejio, Janel S. Duffin, Andrew M. England, Alice H. Kelly, Daniel N. Prendergast, David Saykally, Richard J. TI Investigation of protein conformation and interactions with salts via X-ray absorption spectroscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE X-ray absorption near edge structure; molecular dynamics; density functional theory; eXcited electron and Core Hole ID GENERALIZED GRADIENT APPROXIMATION; HYDROGEN-BOND NETWORK; HOFMEISTER SERIES; LIQUID WATER; AQUEOUS-SOLUTIONS; AMINO-ACID; MICROJETS; MACROMOLECULES; TEMPERATURE; CARBOXYLATE AB Nitrogen K-edge spectra of aqueous triglycine were measured using liquid microjets, and the effects of Hofmeister-active salts on the spectra were observed. Spectra simulated using density functional theory, sampled from room temperature classical molecular dynamics trajectories, capture all major features in the measured spectra. The spectrum of triglycine in water is quite similar to that in the presence of chaotropic sodium bromide (and other halides), which raises the solubility of proteins. However, a new feature is found when kosmotropic Na2SO3, which lowers solubility, is present; this feature results from excitations of the nitrogen atom in the terminal amino group of triglycine. Both direct interactions between this salt and the protonated amino terminus, as well as corresponding changes in the conformational dynamics of the system, contribute to this new feature. These molecular measurements support a different mechanism for the Hofmeister effect than has previously been suggested based on thermodynamic measurements. It is also shown that near edge X-ray absorption fine structure (NEXAFS) is sensitive to strong direct interaction between certain salts and charged peptides. However, by investigating the sensitivity of NEXAFS to the extreme structural differences between model beta-sheets and alpha-helices, we conclude that this technique is relatively insensitive to secondary structure of peptides and proteins. C1 [Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Kelly, Daniel N.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu OI England, Alice/0000-0001-7698-8156 FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) through the Lawrence Berkeley National Laboratory Chemical Sciences Division [DE-AC02-05CH11231]; Molecular Foundry; Advanced Light Source FX We thank Wanli Yang for excellent user support of beamline 8.0.1. This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) under Contract DE-AC02-05CH11231 through the Lawrence Berkeley National Laboratory Chemical Sciences Division, the Molecular Foundry, and the Advanced Light Source. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. NR 38 TC 24 Z9 24 U1 2 U2 32 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 10 PY 2010 VL 107 IS 32 BP 14008 EP 14013 DI 10.1073/pnas.1006435107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 636UD UT WOS:000280767700009 PM 20660784 ER PT J AU Zhao, QA Wang, HZ Yin, YB Xu, Y Chen, F Dixon, RA AF Zhao, Qiao Wang, Huanzhong Yin, Yanbin Xu, Ying Chen, Fang Dixon, Richard A. TI Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ferulate 5-hydroxylase; NAC transcription factor; pathway evolution ID CYTOCHROME P450-DEPENDENT MONOOXYGENASE; MONOLIGNOL BIOSYNTHESIS; TRANSCRIPTION FACTOR; FERULATE 5-HYDROXYLASE; TRANSGENIC PLANTS; GENE-EXPRESSION; ARABIDOPSIS; LIGNIFICATION; ANGIOSPERMS; R2R3-MYB AB Lignin is a major component of plant secondary cell walls and is derived from p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monolignols. Among higher plants, S lignin is generally considered to be restricted to angiosperms, which contain the S lignin-specific cytochrome P450-dependent monooxygenase, ferulic acid/coniferaldehyde/ coniferyl alcohol 5-hydoxylase (F5H). The transcription factor MYB58 directly regulates expression of monolignol pathway genes except for F5H. Here we show that F5H expression is directly regulated by the secondary cell wall master switch NST1/SND1, which is known to regulate expression of MYB58. Deletion of NST1 expression in Medicago truncatula leads to a loss of S lignin associated with a more than 25-fold reduction of F5H expression but only around a 2-fold reduction in expression of other lignin pathway genes. A detailed phylogenetic analysis showed that gymnosperms lack both F5H and orthologs of NST1/SND1. We propose that both F5H and NST1 appeared at a similar time after the divergence of angiosperms and gymnosperms, with F5H possibly originating as a component of a defense mechanism that was recruited to cell wall biosynthesis through the evolution of NST1-binding elements in its promoter. C1 [Zhao, Qiao; Wang, Huanzhong; Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30602 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Yin, Yanbin; Xu, Ying; Chen, Fang; Dixon, Richard A.] Bioenergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Dixon, RA (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM radixon@noble.org RI Yin, Yanbin/C-9788-2010 OI Yin, Yanbin/0000-0001-7667-881X FU state of Oklahoma (through the Oklahoma Bioenergy Center); Department of Energy [DE-FG02-06ER64303]; Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the Department of Energy Office of Science FX We thank Drs. Rui Zhou and Zeng-Yu Wang for critical reading of the manuscript. This work was supported by grants to R.A.D. from the state of Oklahoma (through the Oklahoma Bioenergy Center) and the Department of Energy Bioenergy Feedstock Genomics Program (Award DE-FG02-06ER64303) and to R.A.D. and Y.X. from the Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the Department of Energy Office of Science. NR 43 TC 43 Z9 48 U1 5 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 10 PY 2010 VL 107 IS 32 BP 14496 EP 14501 DI 10.1073/pnas.1009170107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 636UD UT WOS:000280767700093 PM 20660755 ER PT J AU Beechem, T Duda, JC Hopkins, PE Norris, PM AF Beechem, Thomas Duda, John C. Hopkins, Patrick E. Norris, Pamela M. TI Contribution of optical phonons to thermal boundary conductance SO APPLIED PHYSICS LETTERS LA English DT Article DE disperse systems; lattice dynamics; phonons; thermal conductivity ID TRANSPORT; TRANSISTORS; DISPERSION AB Thermal boundary conductance (TBC) is a performance determinant for many microsystems due to the numerous interfaces contained within their structure. To assess this transport, theoretical approaches often account for only the acoustic phonons as optical modes are assumed to contribute negligibly due to their low group velocities. To examine this approach, the diffuse mismatch model is reformulated to account for more realistic dispersions containing optical modes. Using this reformulation, it is found that optical phonons contribute to TBC by as much as 80% for a variety of material combinations in the limit of both inelastic and elastic scattering. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478844] C1 [Beechem, Thomas; Hopkins, Patrick E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Duda, John C.; Norris, Pamela M.] Univ Virginia, Charlottesville, VA 22904 USA. RP Beechem, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tebeech@sandia.gov RI Duda, John/A-7214-2011 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Air Force Office of Scientific Research [FA9550-09-1-0245]; National Science Foundation FX P.E.H. is greatly appreciative for funding by the Harry S. Truman Fellowship Program through the LDRD Program Office at Sandia National Laboratories. Sandia National Laboratories is a multi program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors from University of Virginia recognize support from the Air Force Office of Scientific Research under Grant No. FA9550-09-1-0245. J.C.D. acknowledges support from the National Science Foundation through the Graduate Research Fellowship. NR 12 TC 18 Z9 18 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 9 PY 2010 VL 97 IS 6 AR 061907 DI 10.1063/1.3478844 PG 3 WC Physics, Applied SC Physics GA 638ZP UT WOS:000280940900026 ER PT J AU Gray, AX Kronast, F Papp, C Yang, SH Cramm, S Krug, IP Salmassi, F Gullikson, EM Hilken, DL Anderson, EH Fischer, P Duumlrr, HA Schneider, CM Fadley, CS AF Gray, Alexander X. Kronast, Florian Papp, Christian Yang, See-Hun Cramm, Stefan Krug, Ingo P. Salmassi, Farhad Gullikson, Eric M. Hilken, Dawn L. Anderson, Erik H. Fischer, Peter Duumlrr, Hermann A. Schneider, Claus M. Fadley, Charles. S. TI Standing-wave excited soft x-ray photoemission microscopy: Application to Co microdot magnetic arrays SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt; ferromagnetic materials; photoelectron microscopy; X-ray microscopy ID LEVEL PHOTOEMISSION; DICHROISM; SPECTROSCOPY; FERROMAGNETS AB We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478215] C1 [Gray, Alexander X.; Fadley, Charles. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gray, Alexander X.; Papp, Christian; Fischer, Peter; Fadley, Charles. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kronast, Florian; Duumlrr, Hermann A.] Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Papp, Christian] Univ Erlangen Nurnberg, Lehrstuhl Phys Chem 2, D-91054 Erlangen, Germany. [Yang, See-Hun] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Cramm, Stefan; Krug, Ingo P.; Schneider, Claus M.] Res Ctr Julich, Inst Solid State Res IFF 9, D-52425 Julich, Germany. [Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Gray, AX (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM agray@ucdavis.edu RI Gray, Alexander/F-9267-2011; MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; Krug, Ingo/G-5338-2013; Schneider, Claus/H-7453-2012; Papp, Christian /N-7738-2013; Durr, Hermann/F-6205-2012 OI Fischer, Peter/0000-0002-9824-9343; Krug, Ingo/0000-0003-4579-6674; Kronast, Florian/0000-0001-6048-480X; Schneider, Claus/0000-0002-3920-6255; Papp, Christian /0000-0002-1733-4387; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 15 TC 12 Z9 12 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 9 PY 2010 VL 97 IS 6 AR 062503 DI 10.1063/1.3478215 PG 3 WC Physics, Applied SC Physics GA 638ZP UT WOS:000280940900048 ER PT J AU Kim, G Bernholc, J Kwon, YK AF Kim, Gunn Bernholc, J. Kwon, Young-Kyun TI Band gap control of small bundles of carbon nanotubes using applied electric fields: A density functional theory study SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; carbon nanotubes; crystal symmetry; density functional theory; energy gap AB Electrostatic screening between carbon nanotubes (CNTs) in a small CNT bundle leads to a switching behavior induced by electric field perpendicular to the bundle axis. Using a first-principles method, we investigate the electronic structures of bundles consisting of two or three CNTs and the effects of the electric field applied perpendicular to the bundle axis. The applied field causes band gap closure in semiconducting bundles, while a gap opening occurs in metallic ones, which enables considerable modulation of bundle conductivity. The modulation effect originates from symmetry breaking due to electrostatic screening between the adjacent tube walls. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478237] C1 [Kim, Gunn; Kwon, Young-Kyun] Kyung Hee Univ, Dept Phys, Res Inst Basic Sci, Seoul 130701, South Korea. [Bernholc, J.] N Carolina State Univ, Dept Phys, CHiPS, Raleigh, NC 27695 USA. [Bernholc, J.] Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. RP Kim, G (reprint author), Kyung Hee Univ, Dept Phys, Res Inst Basic Sci, Seoul 130701, South Korea. EM gunnkim@khu.ac.kr RI Kwon, Young-Kyun/G-1833-2011 OI Kwon, Young-Kyun/0000-0001-6027-8408 FU Kyung Hee University [KHU-20100119]; DOE [DE-FG02-98ER45685] FX This work was supported by Grant No. KHU-20100119 from Kyung Hee University in 2010 (G.K. and Y.-K.K.) and DOE under Grant No. DE-FG02-98ER45685 (J.B.) NR 15 TC 16 Z9 16 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 9 PY 2010 VL 97 IS 6 AR 063113 DI 10.1063/1.3478237 PG 3 WC Physics, Applied SC Physics GA 638ZP UT WOS:000280940900077 ER PT J AU Lin, TR Chang, SW Chuang, SL Zhang, ZY Schuck, PJ AF Lin, Tzy-Rong Chang, Shu-Wei Chuang, Shun Lien Zhang, Zhaoyu Schuck, P. James TI Coating effect on optical resonance of plasmonic nanobowtie antenna SO APPLIED PHYSICS LETTERS LA English DT Article DE alumina; bow-tie antennas; dielectric materials; gold; nanophotonics; nanostructured materials; optical films; plasmonics; red shift; refractive index ID WAVE-GUIDE; LASER; NANOPARTICLES AB We investigate the effect of dielectric coating on the optical resonance of metallic bowtie nanoantennas, both theoretically and experimentally. The resonance wavelengths of the nanostructures measured by means of dark-field scattering spectroscopy are in excellent agreement with our theoretical calculations. The resonance wavelength is redshifted as the thickness of the coating layer increases, which is attributed to a longer effective optical path due to the larger refractive index of the coating than that of the air. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478228] C1 [Lin, Tzy-Rong; Chang, Shu-Wei; Chuang, Shun Lien] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Lin, Tzy-Rong] Natl Taiwan Ocean Univ, Dept Mech & Mechatron Engn, Chilung 20224, Taiwan. [Zhang, Zhaoyu; Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Zhaoyu] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Chuang, SL (reprint author), Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA. EM s-chuang@illinois.edu RI Chang, Shu-Wei/E-4583-2011 OI Chang, Shu-Wei/0000-0003-0880-2385 FU DARPA NACHOS Program [W911NF-07-1-0314] FX This work was sponsored by the DARPA NACHOS Program under Grant No. W911NF-07-1-0314. We thank many technical discussions with Professors Connie Chang-Hasnain, Ming Wu, and Peidong Yang at the University of California at Berkeley, Professor Cun-Zheng Ning at Arizona State University, and Chien-Yao Lu and Chi-Yu Ni at the University of Illinois at Urbana-Champaign. NR 23 TC 22 Z9 22 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 9 PY 2010 VL 97 IS 6 AR 063106 DI 10.1063/1.3478228 PG 3 WC Physics, Applied SC Physics GA 638ZP UT WOS:000280940900070 ER PT J AU Li, HF Tian, W Yan, JQ Zarestky, JL McCallum, RW Lograsso, TA Vaknin, D AF Li, H-F. Tian, W. Yan, J-Q. Zarestky, J. L. McCallum, R. W. Lograsso, T. A. Vaknin, D. TI Phase transitions and iron-ordered moment form factor in LaFeAsO SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB Elastic neutron-scattering studies of single-crystal LaFeAsO reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O) structural transition occurs at T-S approximate to 156 K, and it exhibits a sharp transition at T-P approximate to 148 K. We argue that in the temperature range T-S to T-P, T and O structures may dynamically coexist possibly due to nematic spin correlations recently proposed for the iron pnictides, and we attribute T-P to the formation of long-range O domains from the finite local precursors. The antiferromagnetic structure emerges at T-N approximate to 140 K, with the iron moment direction along the O a axis. We extract the iron magnetic form factor and use the tabulated < j(0)> of Fe, Fe2+, and Fe3+ to obtain a magnetic moment size of similar to 0.8 mu B at 9.5 K. C1 [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Li, H-F.; Tian, W.; Yan, J-Q.; Zarestky, J. L.; McCallum, R. W.; Lograsso, T. A.; Vaknin, D.] US DOE, Ames Lab, Ames, IA 50011 USA. [Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Li, HF (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM hfli@ameslab.gov; vaknin@ameslab.gov RI Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Vaknin, David/B-3302-2009 OI Tian, Wei/0000-0001-7735-3187; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX D. V. wishes to thank R. J. McQueeney for the many illuminating discussions on the properties of FeAs-based compounds. J.-Q.Y., R.W.M., and T. A. L. thank B. Jensen and K. W. Dennis for their help in crystal growth and characterization. The authors thank Matthew Suchomel for running the powder diffraction measurements on 11-BM on the x-ray Operations and Research Beamline 11-BM at the Advanced Photon Source, Argonne National Laboratory. Research at Ames Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. The Research at Oak Ridge National Laboratory's High Flux Isotope Reactor is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 25 Z9 25 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2010 VL 82 IS 6 AR 064409 DI 10.1103/PhysRevB.82.064409 PG 6 WC Physics, Condensed Matter SC Physics GA 636RU UT WOS:000280758300004 ER PT J AU Ristivojevic, Z Norman, MR AF Ristivojevic, Zoran Norman, M. R. TI Proposal to detect vortices above the superconducting transition temperature SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL SUPERCONDUCTORS; SUPERFLUID DENSITY; FILMS; FLUCTUATIONS; EXCITATIONS; STATE; ORDER AB We propose a simple experiment to determine whether vortices persist above the superconducting transition temperature T(c) in the pseudogap phase of high-temperature cuprate superconductors. This involves using a magnetic dot to stabilize a vortex in a thin cuprate film beneath the dot. We calculate the magnetic field profile as a function of distance from the dot if a vortex is present and discuss possible measurements that could be done to detect this. Finally, we comment on the temperature range where a stable vortex should be observable. C1 [Ristivojevic, Zoran; Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Ristivojevic, Z (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU U.S. DOE, Office of Science [DE-AC02-06CH113573, DE-AC0298CH1088] FX This work was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357 and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, under Award No. DE-AC0298CH1088. NR 28 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2010 VL 82 IS 6 AR 060506 DI 10.1103/PhysRevB.82.060506 PG 3 WC Physics, Condensed Matter SC Physics GA 636RU UT WOS:000280758300002 ER PT J AU Steneteg, P Abrikosov, IA Weber, V Niklasson, AMN AF Steneteg, Peter Abrikosov, Igor A. Weber, Valery Niklasson, Anders M. N. TI Wave function extended Lagrangian Born-Oppenheimer molecular dynamics SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; BASIS-SET; CONVERGENCE; MATRIX; EXTRAPOLATION; TRAJECTORIES; TRANSITION; ORBITALS; METALS AB Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] has been generalized to the propagation of the electronic wave functions. The technique allows highly efficient first principles molecular dynamics simulations using plane wave pseudopotential electronic structure methods that are stable and energy conserving also under incomplete and approximate selfconsistency convergence. An implementation of the method within the plane-wave basis set is presented and the accuracy and efficiency is demonstrated both for semiconductor and metallic materials. C1 [Steneteg, Peter; Abrikosov, Igor A.] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden. [Weber, Valery] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland. [Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Niklasson, Anders M. N.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Steneteg, P (reprint author), Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden. EM peter.steneteg@liu.se; amn@lanl.gov FU Swedish Foundation for Strategic Research (SSF) via the Strategic Research Center MS2E; Goran Gustafsson Foundation for Research in Natural Sciences and Medicine; U.S. Department of Energy FX We gratefully acknowledge the support of the Swedish Foundation for Strategic Research (SSF) via the Strategic Research Center MS2E, the Goran Gustafsson Foundation for Research in Natural Sciences and Medicine, and the U.S. Department of Energy through the LANL LDRD/ER program for this work, as well as Nicolas Bock and Travis Peery for the stimulating environment at the T-Division Ten-Bar Java group. NR 35 TC 22 Z9 22 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2010 VL 82 IS 7 AR 075110 DI 10.1103/PhysRevB.82.075110 PG 6 WC Physics, Condensed Matter SC Physics GA 636RW UT WOS:000280758500002 ER PT J AU Jia, JY Wei, R AF Jia, Jiangyong Wei, Rui TI Dissecting the role of initial collision geometry for jet quenching observables in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; THEORETICAL CHALLENGES; ENERGY-LOSS; QCD; COLLABORATION; PERSPECTIVE; TOMOGRAPHY; LHC AB The observation of large azimuthal anisotropy or upsilon(2) for hadrons above p(T) > 5 GeV/c in Au + Au collisions at root s(nn) = 200 GeV has been a longstanding challenge for jet quenching models based on perturbative QCD (pQCD). Using a simple jet absorption model, we seek to clarify the situation by exploring in detail how the calculated upsilon(2) varies with choices of the collision geometry, as well as choices of the path-length dependence and thermalization time tau(0) in the energy-loss formula. Besides the change of eccentricity owing to distortion from gluon saturation or event-by-event fluctuation, we find that the upsilon(2) is also sensitive to the centrality dependence of multiplicity and the relative size between the matter profile and the jet profile. We find that the upsilon(2) calculated for the naive quadratic path-length dependence of energy loss, even including eccentricity fluctuation and the gluon saturation, is not enough to describe the experimental data at high pT (similar to 6 GeV/c) in Au + Au collisions. However, it can match the full centrality dependence of upsilon(2) data if higher-power path-length dependence of energy loss is allowed. We also find that the calculated upsilon(2) is sensitive to the assumption of the early time dynamics but generally increases with tau(0), opposite to what one expects for elliptic flow. This study attests to the importance of confining the initial geometry, possibly by combining jet quenching upsilon(2) with elliptic flow and other jet quenching observables, for proper interpretation of the experimental data. C1 [Jia, Jiangyong; Wei, Rui] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov FU NSF [PHY-0701487, PHY-1019387] FX We thank W. Horowitz for stimulating discussions and a careful proofreading of the manuscript. We appreciate valuable discussions with R. Lacey and U. Heinz. We thank H. J. Drescher, A. Dumitru, and Y. Nara for providing the MC-KLN code. This research is supported by NSF under Awards No. PHY-0701487 and No. PHY-1019387. NR 74 TC 31 Z9 31 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 9 PY 2010 VL 82 IS 2 AR 024902 DI 10.1103/PhysRevC.82.024902 PG 18 WC Physics, Nuclear SC Physics GA 636SB UT WOS:000280759100003 ER PT J AU Whitelam, S Geissler, PL Pronk, S AF Whitelam, Stephen Geissler, Phillip L. Pronk, Sander TI Microscopic implications of S-DNA SO PHYSICAL REVIEW E LA English DT Article ID STRANDED-DNA; MOLECULE; ENTROPY AB Recent experiments [J. van Mameren et al., Proc. Natl. Acad. Sci. U.S.A. 106, 18231 (2009)] provide a detailed spatial picture of overstretched DNA, showing that under certain conditions the two strands of the double helix separate at about 65 pN. It was proposed that this observation rules out the existence of an elongated, hybridized form of DNA (S-DNA). Here, we argue that the S-DNA picture is consistent with the observation of unpeeling during overstretching. We demonstrate that assuming the existence of S-DNA does not imply DNA overstretching to consist of the complete or near-complete conversion of the molecule from B to S form. Instead, this assumption implies in general a more complex dynamic coexistence of hybridized and unhybridized forms of DNA. We argue that such coexistence can rationalize several recent experimental observations. C1 [Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pronk, Sander] Stockholm Univ, Ctr Biomembrane Res, Dept Biochem & Biophys, SE-10691 Stockholm, Sweden. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Gijs Wuite, Erwin Peterman and John Marko for correspondence. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Figure 2 was reprinted with permission from "Stretching chimeric DNA: A test for the putative S-form" Stephen Whitelam, Sander Pronk, and Phillip L. Geissler, J. Chem. Phys. 129, 205101, Copyright 2008, American Institute of Physics. NR 19 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 9 PY 2010 VL 82 IS 2 AR 021907 DI 10.1103/PhysRevE.82.021907 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 636RO UT WOS:000280757700005 PM 20866837 ER PT J AU Chen, HT Zhou, JF O'Hara, JF Chen, F Azad, AK Taylor, AJ AF Chen, Hou-Tong Zhou, Jiangfeng O'Hara, John F. Chen, Frank Azad, Abul K. Taylor, Antoinette J. TI Antireflection Coating Using Metamaterials and Identification of Its Mechanism SO PHYSICAL REVIEW LETTERS LA English DT Article ID TERAHERTZ; PERMITTIVITY; FREQUENCIES AB We present a novel approach of antireflection coating using metamaterials. It dramatically reduces the reflection and greatly enhances the transmission near a specifically designed frequency over a wide range of incidence angles for both transverse magnetic and transverse electric polarizations. A classical interference mechanism is identified through analytical derivations and numerical simulations. It elucidates that the tailored magnitude and phase of waves reflected and transmitted at boundaries of metamaterial coating are responsible for the antireflection. C1 [Chen, Hou-Tong; Zhou, Jiangfeng; O'Hara, John F.; Chen, Frank; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Zhou, Jiangfeng/D-4292-2009; OI Chen, Hou-Tong/0000-0003-2014-7571; Zhou, Jiangfeng/0000-0002-6958-3342; Azad, Abul/0000-0002-7784-7432 NR 22 TC 133 Z9 136 U1 6 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 9 PY 2010 VL 105 IS 7 AR 073901 DI 10.1103/PhysRevLett.105.073901 PG 4 WC Physics, Multidisciplinary SC Physics GA 636RR UT WOS:000280758000005 PM 20868044 ER PT J AU Kang, ZB Yuan, F Zhou, JA AF Kang, Zhong-Bo Yuan, Feng Zhou, Jian TI Twist-three fragmentation function contribution to the single spin asymmetry in pp collisions SO PHYSICS LETTERS B LA English DT Article DE Single spin asymmetry; Collinear factorization; Twist-three fragmentation function; Collins effect ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; HADRONIC PION-PRODUCTION; CHIRAL-ODD CONTRIBUTION; PARTON DISTRIBUTIONS; HARD-SCATTERING; DRELL-YAN; AZIMUTHAL; ORDER; GAUGE AB We study the twist-three fragmentation function contribution to the single transverse spin asymmetries in inclusive hadron production in pp collisions, p(up arrow) p -> h + X. In particular, we calculate the associated derivative terms which dominate the spin asymmetries in these processes. With certain parameterizations for the twist-three fragmentation function, we estimate its contribution to the single spin asymmetry of pi(0) production at RHIC energy. We find that the contribution is sizable and might be responsible for the big difference between the asymmetries in eta and pi(0) productions observed by the STAR collaboration at RHIC. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yuan, Feng; Zhou, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kang, Zhong-Bo; Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM zkang@bnl.gov; fyuan@lbl.gov; jzhou@lbl.gov RI Yuan, Feng/N-4175-2013; Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We thank Jianwei Qiu and Yuji Koike for helpful discussions. This work was supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 60 TC 51 Z9 51 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD AUG 9 PY 2010 VL 691 IS 5 BP 243 EP 248 DI 10.1016/j.physletb.2010.07.003 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 639OA UT WOS:000280982900005 ER PT J AU Hamilton, J Luo, YX Jiang, Z AF Hamilton, Joseph Luo, Y. X. Jiang, Z. TI Evolution of chirality from gamma soft Ru-108 to triaxial Ru-110,Ru-112 (vol 670, pg 307, 2009) SO PHYSICS LETTERS B LA English DT Correction C1 [Hamilton, Joseph; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Stevenson Ctr 6301, Nashville, TN 37235 USA. [Luo, Y. X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jiang, Z.] AdValue Photon Inc, Tucson, AZ 85714 USA. RP Hamilton, J (reprint author), Vanderbilt Univ, Dept Phys, Stevenson Ctr 6301, Nashville, TN 37235 USA. EM j.h.hamilton@vanderbilt.edu NR 1 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD AUG 9 PY 2010 VL 691 IS 5 BP 285 EP 285 DI 10.1016/j.physletb.2010.06.016 PG 1 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 639OA UT WOS:000280982900012 ER PT J AU Grigorenko, I Rabitz, H AF Grigorenko, Ilya Rabitz, Herschel TI Optimal design strategies for electrostatic energy storage in quantum multiwell heterostructures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SMALL METALLIC PARTICLES AB We study physical principles of optimal design of a nanoscale multiwell heterostructure functioning as an electrostatic energy storage device. We performed numerical optimization of the multiwell trapping potential for electrons in the nanostructure with the goal to obtain the maximum possible static polarizability of the system. The response of the heterostructure is modeled microscopically using nonlocal linear response theory within the random phase approximation. Three main design strategies are identified which lead to the maximization of the stored energy. We found that the efficiency of each strategy crucially depends on the temperature and the broadening of electron levels. The stored energy for optimized heterostructures can exceed the nonoptimized ones by a factor of 450. These findings provide a theoretical basis for the development of new nanoscale capacitors with high energy density storage capabilities. (C) 2010 American Institute of Physics. [doi:10.1063/1.3469984] C1 [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Grigorenko, Ilya] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Grigorenko, Ilya] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM grigoren@gmail.com RI Grigorenko, Ilya/B-5616-2009 NR 16 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2010 VL 133 IS 5 AR 054106 DI 10.1063/1.3469984 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 642LL UT WOS:000281215000007 PM 20707525 ER PT J AU Kaledin, AL McCurdy, CW Miller, WH AF Kaledin, Alexey L. McCurdy, C. William Miller, William H. TI A semiclassical correction for quantum mechanical energy levels SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE dissociation; electron energy loss spectra; organic compounds; radiative lifetimes; spin-orbit interactions ID INITIAL-VALUE REPRESENTATION; MOLECULAR-DYNAMICS SIMULATIONS; PHOTODISSOCIATION DYNAMICS; SCHRODINGER-EQUATION; PERTURBATION THEORY; S-MATRIX; SCATTERING; FREEDOM AB We propose a semiclassical method for correcting molecular energy levels obtained from a quantum mechanical variational calculation. A variational calculation gives the energy level (i.e., eigenvalue) as the expectation value of the molecular Hamiltonian , where vertical bar phi > is the trial wave function. The true (i.e., exact) eigenvalue E can thus be expressed as this variational result plus a correction, i.e., E=+Delta E, the correction being due to the lack of exactness of the trial wave function. A formally exact expression for Delta E is usually given (via Lowdin partitioning methodology) in terms of the Greens function of the Hamiltonian projected onto the orthogonal complement of vertical bar phi >. Formal treatment of this expression (using Brillouin-Wigner perturbation theory to infinite order) leads to an expression for Delta E that involves matrix elements of the Greens function for the unprojected, i.e., full molecular Hamiltonian, which can then be approximated semiclassically. (Specifically, the Greens function is expressed as the Fourier transform of the quantum mechanical time evolution operator, e(-i (H) over capt/(h) over bar), which in turn is approximated by using an initial value representation of semiclassical theory.) Calculations for several test problems (a one dimensional quartic potential, and vibrational energy levels of H(2)O and H(2)CO) clearly support our proposition that the error in the total eigenvalue E arises solely due to the semiclassical error in approximating Delta E, which is usually a small fraction of the total energy E itself. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464318] C1 [McCurdy, C. William; Miller, William H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Kaledin, Alexey L.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Kaledin, Alexey L.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. EM millerwh@berkeley.edu FU National Science Foundation [CHE-0809073, PHY-0604628]; Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation Grant No. CHE-0809073 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C. W. M. also acknowledges support under National Science Foundation Grant No. PHY-0604628. NR 27 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2010 VL 133 IS 5 AR 054101 DI 10.1063/1.3464318 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 642LL UT WOS:000281215000002 PM 20707520 ER PT J AU Koschutzki, D Junker, BH Schwender, J Schreiber, F AF Koschuetzki, Dirk Junker, Bjoern H. Schwender, Joerg Schreiber, Falk TI Structural analysis of metabolic networks based on flux centrality SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE Network centralities; Metabolism; Network analysis; Flux balance analysis ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; CONNECTIVITY STRUCTURE; SMALL WORLD; ORGANIZATION; PATHWAYS; MODEL; RECONSTRUCTION; PREDICTION; MUTANTS AB Metabolic reactions are fundamental to living organisms, and a large number of reactions simultaneously occur at a given time in living cells transforming diverse metabolites into each other. There has been an ongoing debate on how to classify metabolites with respect to their importance for metabolic performance, usually based on the analysis of topological properties of genome scale metabolic networks. However, none of these studies have accounted quantitatively for flux in metabolic networks, thus lacking an important component of a cell's biochemistry. We therefore analyzed a genome scale metabolic network of Escherichia coli by comparing growth under 19 different growth conditions, using flux balance analysis and weighted network centrality investigation. With this novel concept of flux centrality we generated metabolite rankings for each particular growth condition. In contrast to the results of conventional analysis of genome scale metabolic networks, different metabolites were top-ranking dependent on the growth condition. At the same time, several metabolites were consistently among the high ranking ones. Those are associated with pathways that have been described by biochemists as the most central part of metabolism, such as glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The values for the average path length of the analyzed metabolite networks were between 10.5 and 12.6, supporting recent findings that the metabolic network of E. coli is not a small-world network. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Koschuetzki, Dirk] Furtwangen Univ Appl Sci, Dept Comp & Elect Engn, D-78120 Furtwangen, Germany. [Junker, Bjoern H.; Schreiber, Falk] Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Gatersleben, Germany. [Schwender, Joerg] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Schreiber, Falk] Univ Halle Wittenberg, Inst Comp Sci, D-06120 Halle, Germany. RP Koschutzki, D (reprint author), Furtwangen Univ Appl Sci, Dept Comp & Elect Engn, Robert Gerwig Pl 1, D-78120 Furtwangen, Germany. EM Dirk.Koschuetzki@hs-furtwangen.de RI Schwender, Jorg/P-2282-2014 OI Schwender, Jorg/0000-0003-1350-4171 FU German Ministry of Education and Research (BMBF) [0312706A]; Office of Basic Energy Sciences of the US Department of Energy FX This work was supported by the German Ministry of Education and Research (BMBF) under Grant 0312706A (DK+FS) and by the Office of Basic Energy Sciences of the US Department of Energy (BHJ+JS). Additionally, we thank Eva Grafahrend-Belau for assisting us with the computation of the flux values. NR 39 TC 6 Z9 7 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 EI 1095-8541 J9 J THEOR BIOL JI J. Theor. Biol. PD AUG 7 PY 2010 VL 265 IS 3 BP 261 EP 269 DI 10.1016/j.jtbi.2010.05.009 PG 9 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 631UF UT WOS:000280374100006 PM 20471988 ER PT J AU Li, J Chaudhary, A Chmura, SJ Pelizzari, C Rajh, T Wietholt, C Kurtoglu, M Aydogan, B AF Li, Ji Chaudhary, Ahmed Chmura, Steven J. Pelizzari, Charles Rajh, Tijana Wietholt, Christian Kurtoglu, Metin Aydogan, Bulent TI A novel functional CT contrast agent for molecular imaging of cancer SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID RAY COMPUTED-TOMOGRAPHY; GOLD-NANOPARTICLES; RADIATION SENSITIVITY; QUANTUM DOTS; ENHANCEMENT; MEDIA; RADIOTHERAPY; TRANSPORT; DELIVERY; BINDING AB The purpose of this study was to investigate the feasibility of using a 2-deoxy-D-glucose (2-DG) labeled gold nanoparticle (AuNP-2-DG) as a functionally targeted computed tomography (CT) contrast agent to obtain high-resolution metabolic and anatomic information of tumor in a single CT scan. Gold nanoparticles (AuNPs) were fabricated and were conjugated with 1-DG or 2-DG. 1-DG provides an excellent comparison since it is known to interfere with the ability of the glucose transporter to recognize the sugar moiety. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Three groups of cell samples were incubated with the 1-DG or 2-DG labeled AuNP and the unlabeled AuNP. Following the incubation, the cells were washed with sterile phosphate buffered saline to remove the excess AuNPs and spun using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. Internalization of AuNP-2-DG is verified using transmission electron microscopy imaging. Significant contrast enhancement in the cell samples incubated with the AuNP-2-DG with respect to the cell samples incubated with the unlabeled AuNP and the AuNP-1-DG was observed in multiple CT slices. Results from our in vitro experiments suggest that the AuNP-2-DG may be used as a functional CT contrast agent to provide high-resolution metabolic and anatomic information in a single CT scan. These results justify further in vitro and in vivo experiments to study the feasibility of using the AuNP-2-DG as a functional CT contrast agent in radiation therapy settings. C1 [Li, Ji; Chaudhary, Ahmed; Chmura, Steven J.; Pelizzari, Charles; Aydogan, Bulent] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA. [Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wietholt, Christian] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. [Wietholt, Christian] Univ Chicago, Dept Med Cardiol, Chicago, IL 60637 USA. [Kurtoglu, Metin] Emory Univ, Winship Canc Inst, Dept Hematol & Med Oncol, Atlanta, GA 30322 USA. RP Aydogan, B (reprint author), Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA. EM baydogan@radonc.bsd.uchicago.edu FU Research Training in Medical Physics [5T32-EB002103-19]; ACS [IL 160356]; US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX This work was partially supported by Research Training in Medical Physics 5T32-EB002103-19 and ACS, IL 160356. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under contract no DE-AC02-06CH11357. NR 36 TC 37 Z9 38 U1 1 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD AUG 7 PY 2010 VL 55 IS 15 BP 4389 EP 4397 DI 10.1088/0031-9155/55/15/013 PG 9 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 628JI UT WOS:000280115200013 PM 20647599 ER PT J AU Sallah, OM Gray, LJ Fata, SN AF Sallah, Omar M. Gray, L. J. Fata, S. Nintcheu TI Evaluation of Green's function derivatives for exponentially graded elasticity SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE functionally graded materials; Green's function; boundary integral equation ID STRESS INTENSITY FACTORS; CRACK PROBLEM; NONHOMOGENEOUS MATERIALS; INTERFACE CRACK; FINITE-ELEMENTS; SUBSTRATE; LAYERS AB Effective formulas for computing Green's function of an exponentially graded three-dimensional material have been derived in previous work. The expansion approach for evaluating Green's function has been extended to develop corresponding algorithms for its first- and second-order derivatives. The resulting formulas are again obtained as a relatively simple analytic term plus a single double integral, the integrand involving only elementary functions. A primary benefit of the expansion procedure is the ability to compute the second-order derivatives needed for fracture analysis. Moreover, as all singular terms in this hypersingular kernel are contained in the analytic expression, these expressions are readily implemented in a boundary integral equation calculation. The computational formulas for the first derivative are tested by comparing with results of finite difference approximations involving Green's function. In turn, the second derivatives are then validated by comparing with finite difference quotients using the first derivatives. Published in 2010 by John Wiley & Sons, Ltd. C1 [Sallah, Omar M.; Gray, L. J.; Fata, S. Nintcheu] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sallah, Omar M.] Zagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, Egypt. RP Gray, LJ (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM graylj1@ornl.gov FU Egyptian Ministry of Higher Education; Office of Advanced Scientific Computing Research; U.S. Department of Energy [DE-AC05-00OR22725]; U. S. Government [DE-AC05-00OR22725] FX This work was supported by the Egyptian Ministry of Higher Education, and by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle. LLC. O. Sallah is grateful for the hospitality at Oak Ridge National Laboratory. The authors wish to thank R. Criado for the original Green's function code, and V. Mantic for useful comments on a draft of this manuscript.; The submitted manuscript has been authored by a contractor of the U. S. Government under contract DE-AC05-00OR22725. Accordingly the U. S. Government retains a non-exclusive, royalty free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. NR 30 TC 1 Z9 1 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD AUG 6 PY 2010 VL 83 IS 6 BP 693 EP 708 DI 10.1002/nme.2851 PG 16 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 635YZ UT WOS:000280695400002 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI A protocol for the measurement of all the parameters of the mass transfer kinetics in columns used in liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Review DE Mass transfer; Liquid chromatography; Longitudinal diffusion; Eddy diffusion; External film mass transfer coefficient; Trans-particle mass transfer coefficient; Frictional heating; Totally porous particles; Core-shell particles ID RADIAL HETEROGENEITY; THERMAL HETEROGENEITY; PACKED-COLUMNS; HIGH-PRESSURES; FLOW VELOCITY; PERFORMANCE; DIFFUSION; PHASE; DISPERSION; PARTICLES AB Band broadening in chromatography results from the combination of the dispersive effects that are associated with the different steps involved in the migration of compound bands along the column. These steps include longitudinal diffusion, trans-particle mass transfer, external film mass transfer, overall eddy diffusion, including trans-column, short-range inter-channel, trans-channel eddy diffusion, and the possible, additional mass transfer contributions arising from heat friction and the thermal heterogeneity of the column. We describe a series of experiments that provide the data needed to determine the coefficients of the contributions to band broadening of each one of these individual mass transfer steps. This specifically designed protocol can provide key information regarding the kinetic performance of columns used in liquid chromatography and explain why different columns behave so differently. The limitations, accuracy and precision of these methods are discussed. Further avenues of research that could improve the characterization of the mass transfer mechanisms in chromatographic columns, possibly contributing to the development of better columns, are suggested. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem & Analyt Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@ion.chem.utk.edu FU National Science Foundation [CHE-06-08659]; University of Tennessee; Oak Ridge National Laboratory FX This work was supported in part by grant CHE-06-08659 of the National Science Foundation and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. NR 45 TC 64 Z9 64 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD AUG 6 PY 2010 VL 1217 IS 32 BP 5137 EP 5151 DI 10.1016/j.chroma.2010.06.016 PG 15 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 633JF UT WOS:000280497300001 PM 20609443 ER PT J AU Zhang, YC Long, CN Rossow, WB Dutton, EG AF Zhang, Yuanchong Long, Charles N. Rossow, William B. Dutton, Ellsworth G. TI Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA SETS; CLOUD; NETWORK; CLIMATE; SKIES; MODEL; TOP AB Using a meteorological similarity comparison method (MSCM), we performed a mutual and simultaneous evaluation of the surface radiative flux datasets from the International Satellite Cloud Climatology Project-FD and the new radiative-flux-analysis-processed surface observations (RFA-PSO). For downward shortwave (SW), diffuse (Dif), and direct (Dir) fluxes, matching cloud fraction (CF) reduces the flux difference between FD and RFA-PSO by up to a factor of 2. Decreasing the aerosol optical depth values used in the FD calculations accounts for much of the remaining difference. For downward longwave (LW) flux, matching either surface air temperature or CF reduces the flux difference to nearly zero. For the total downward SW diurnal variations, there is excellent agreement for both clear and cloudy sky, but less good agreement for the Dif and Dir components. The latter agree much better for clear sky when the FD aerosol optical depth is reduced and for cloudy sky when matching CF and cloud optical depth jointly. For LW diurnal variations, the agreement is best for clear sky, but FD has a larger amplitude by 3-7 W/m(2) for cloudy sky because of differing sensitivities to cirrus and low clouds in the two datasets. These results confirm that the source of the FD surface flux uncertainty of similar to 10-15 W/m(2) is the input quantities, not the radiative transfer model. An important limitation of the RFA-PSO cloud parameters (not the fluxes) is the inhomogeneous diurnal sampling and the retrieval difficulties with broken clouds (SW) and cirrus clouds (LW). C1 [Zhang, Yuanchong] Columbia Univ, Dept Appl Phys & Appl Math, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dutton, Ellsworth G.] Natl Ocean & Atmospher Adm, ESRL, R GMD, Global Monitoring Div, Boulder, CO 80305 USA. [Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rossow, William B.] CUNY, Remote Sensing CREST, NASA,Goddard Inst Space Studies, Cooperat Remote Sensing Sci & Technol Ctr CREST, New York, NY 10031 USA. RP Zhang, YC (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, NASA, Goddard Inst Space Studies, 2880 Broadway,Rm 320-B, New York, NY 10025 USA. EM yzhang@giss.nasa.gov RI Rossow, William/F-3138-2015 FU NASA [NNXD7AN04G, NNXD7AO90G]; Climate Change Research Division of the U. S. Department of Energy FX We thank the principal investigators, Rick Wagener, Brent N. Holben, and Ross Mitchell for their efforts in establishing and maintaining Nauru, Manus, and Darwin AERONET sites, respectively, and Connor Flynn for his data processing for these sites. The work by two authors (Y. Zhang and W. B. Rossow) is supported by NASA grant NNXD7AN04G, the MAP program directed by Dr. Donald Anderson, and grant NNXD7AO90G, the NEWS project directed by Dr. Jared Entin. C. N. Long acknowledges the support of the Climate Change Research Division of the U. S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program. Recognition is also extended to those responsible for the operation and maintenance of the instruments that produced the measurements used in this study; their diligent and dedicated efforts are often underappreciated. NR 37 TC 16 Z9 16 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 6 PY 2010 VL 115 AR D15105 DI 10.1029/2009JD012743 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GC UT WOS:000280718500001 ER PT J AU Schafer-Nolte, EO Stoica, T Gotschke, T Limbach, FA Sutter, E Sutter, P Grutzmacher, D Calarco, R AF Schaefer-Nolte, E. O. Stoica, T. Gotschke, T. Limbach, F. A. Sutter, E. Sutter, P. Gruetzmacher, D. Calarco, R. TI Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires SO NANOTECHNOLOGY LA English DT Article ID MBE; GROWTH; NANOCOLUMNS; GAN AB In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field. C1 [Schaefer-Nolte, E. O.; Stoica, T.; Gotschke, T.; Limbach, F. A.; Gruetzmacher, D.; Calarco, R.] Forschungszentrum Julich, Inst Bio & Nanosyst IBN 1, D-52425 Julich, Germany. [Schaefer-Nolte, E. O.; Stoica, T.; Gotschke, T.; Limbach, F. A.; Gruetzmacher, D.; Calarco, R.] Forschungszentrum Julich, JARA FIT Julich Aachen Res Alliance, D-52425 Julich, Germany. [Schaefer-Nolte, E. O.; Sutter, E.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Stoica, T (reprint author), Forschungszentrum Julich, Inst Bio & Nanosyst IBN 1, D-52425 Julich, Germany. EM t.stoica@fz-juelich.de RI Calarco, Raffaella/B-8218-2011; OI Grutzmacher, Detlev/0000-0001-6290-9672 FU German Ministry of Education and Research; US Department of Energy [DE-AC02-98CH1-886] FX The authors gratefully acknowledge fruitful discussions and suggestions by Professor H Luth. The authors thank also K H Deussen for technical support. This work was financially supported by the German Ministry of Education and Research project 'EPHQUAM' and performed under the auspices of the US Department of Energy under contract no. DE-AC02-98CH1-886. NR 34 TC 12 Z9 12 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 6 PY 2010 VL 21 IS 31 AR 315702 DI 10.1088/0957-4484/21/31/315702 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 626JC UT WOS:000279961200019 PM 20634570 ER PT J AU Gordon, RT Kim, H Salovich, N Giannetta, RW Fernandes, RM Kogan, VG Prozorov, T Bud'ko, SL Canfield, PC Tanatar, MA Prozorov, R AF Gordon, R. T. Kim, H. Salovich, N. Giannetta, R. W. Fernandes, R. M. Kogan, V. G. Prozorov, T. Bud'ko, S. L. Canfield, P. C. Tanatar, M. A. Prozorov, R. TI Doping evolution of the absolute value of the London penetration depth and superfluid density in single crystals of Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID MUON SPIN ROTATION; SUPERCONDUCTORS; MAGNETISM AB The zero-temperature value of the in-plane London penetration depth, lambda(ab)(0), has been measured in single crystals of Ba(Fe1-xCox)(2)As-2 as a function of the Co concentration, x, across both the underdoped and over-doped superconducting regions of the phase diagram. For x >= 0.047, lambda(ab)(0) has been found to have values between 120+/-50 and 300+/-50 nm. A pronounced increase in lambda(ab)(0), to a value as high as 950+/-50 nm, has been observed for x <= 0.047, corresponding to the region of the phase diagram where the itinerant antiferromagnetic and superconducting phases coexist and compete. Direct determination of the doping-dependent lambda(ab)(0) has allowed us to track the evolution of the temperature-dependent superfluid density, from which we infer the development of a pronounced superconducting gap anisotropy at the edges of the superconducting dome. C1 [Gordon, R. T.; Kim, H.; Fernandes, R. M.; Kogan, V. G.; Prozorov, T.; Bud'ko, S. L.; Canfield, P. C.; Tanatar, M. A.; Prozorov, R.] US DOE, Ames Lab, Ames, IA 50011 USA. [Gordon, R. T.; Kim, H.; Fernandes, R. M.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Salovich, N.; Giannetta, R. W.] Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. RP Prozorov, R (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Fernandes, Rafael/E-9273-2010; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU division of Materials Science and Engineering, Basic Energy Sciences, Department of Energy (US DOE) [DEAC02-07CH11358, DE-AC0298CH1088]; Alfred P. Sloan Foundation FX We thank J. Schmalian and A. Kreyssig for useful discussions. Work at the Ames Laboratory was supported by the division of Materials Science and Engineering, Basic Energy Sciences, Department of Energy (US DOE), under Contract No. DEAC02-07CH11358. Work at UIUC was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE Office of Science, Basic Energy Sciences under Award No. DE-AC0298CH1088. R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 38 TC 52 Z9 52 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 6 PY 2010 VL 82 IS 5 AR 054507 DI 10.1103/PhysRevB.82.054507 PG 6 WC Physics, Condensed Matter SC Physics GA 635WR UT WOS:000280688600002 ER PT J AU Dey, B Meyer, CA Bellis, M McCracken, ME Williams, M Adhikari, KP Aghasyan, M Anghinolfi, M Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Berman, BL Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Carman, DS Crede, V D'Angelo, A De Vita, R De Sanctis, E Deur, A Dhamija, S Dickson, R Djalali, C Doughty, D Dugger, M Dupre, R El Alaoui, A El Fassi, L Eugenio, P Fegan, S Fradi, A Gabrielyan, MY Gilfoyle, GP Giovanetti, KL Girod, FX Gohn, W Gothe, RW Graham, L Griffioen, KA Guler, N Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hicks, K Holtrop, M Ilieva, Y Ireland, DG Jawalkar, SS Jo, HS Joo, K Keller, D Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Konczykowski, P Kubarovsky, V Kuleshov, SV Kuznetsov, V Livingston, K MacGregor, IJD Martinez, D McAndrew, J McKinnon, B Mikhailov, K Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Nasseripour, R Nepali, CS Ni, A Niccolai, S Niculescu, G Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Salamanca, J Salgado, C Schott, D Schumacher, RA Seder, E Seraydaryan, H Strauch, S Tang, W Taylor, CE Tedeschi, DJ Tkachenko, S Ungaro, M Watts, DP Vernarsky, B Vineyard, MF Voutier, E Weinstein, LB Wood, MH Yegneswaran, A Zhang, J Zhao, B Zhao, ZW Daniel, A Sharabian, YG Smith, ES Smith, GD Sober, DI Sokhan, D Stepanyan, SS Strakovsky, II AF Dey, B. Meyer, C. A. Bellis, M. McCracken, M. E. Williams, M. Adhikari, K. P. Aghasyan, M. Anghinolfi, M. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Berman, B. L. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Carman, D. S. Crede, V. D'Angelo, A. De Vita, R. De Sanctis, E. Deur, A. Dhamija, S. Dickson, R. Djalali, C. Doughty, D. Dugger, M. Dupre, R. El Alaoui, A. El Fassi, L. Eugenio, P. Fegan, S. Fradi, A. Gabrielyan, M. Y. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Gohn, W. Gothe, R. W. Graham, L. Griffioen, K. A. Guler, N. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Jawalkar, S. S. Jo, H. S. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, A. Kim, W. Klein, A. Klein, F. J. Konczykowski, P. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Livingston, K. MacGregor, I. J. D. Martinez, D. McAndrew, J. McKinnon, B. Mikhailov, K. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Nasseripour, R. Nepali, C. S. Ni, A. Niccolai, S. Niculescu, G. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Salamanca, J. Salgado, C. Schott, D. Schumacher, R. A. Seder, E. Seraydaryan, H. Strauch, S. Tang, W. Taylor, C. E. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Watts, D. P. Vernarsky, B. Vineyard, M. F. Voutier, E. Weinstein, L. B. Wood, M. H. Yegneswaran, A. Zhang, J. Zhao, B. Zhao, Z. W. Daniel, A. Sharabian, Y. G. Smith, E. S. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. S. Strakovsky, I. I. CA CLAS Collaboration TI Differential cross sections and recoil polarizations for the reaction gamma p -> K+Sigma(0) SO PHYSICAL REVIEW C LA English DT Article ID MESON PHOTOPRODUCTION; BARYON RESONANCES; SPIN OBSERVABLES; ENERGIES; SIGMA(0); LAMBDA; K+ AB High-statistics measurements of differential cross sections and recoil polarizations for the reaction. gamma p -> K+Sigma(0) have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (root s) from 1.69 to 2.84 GeV, with an extensive coverage in the K+ production angle. Independent measurements were made using the K+ p pi(-)(gamma) and K+ p(pi(-),gamma) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR, and LEPS results, while offering better statistical precision and a 300-MeV increase in root s coverage. Above root s approximate to 2.5 GeV, t- and u-channel Regge scaling behavior can be seen at forward and backward angles, respectively. Our recoil polarization (P-Sigma) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles, we find that P-Sigma is of the same order of magnitude but opposite sign as P-A,P- in agreement with the static SU(6) quark model prediction of P-Sigma approximate to P-A. This expectation is violated in some mid-and backward-angle kinematic regimes, where P-Sigma and P-Sigma are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial-wave analyses being performed to search for missing baryon resonances. C1 [Dey, B.; Meyer, C. A.; Bellis, M.; McCracken, M. E.; Williams, M.; Dickson, R.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [McCracken, M. E.] Washington & Jefferson Coll, Washington, PA 15301 USA. [Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Dugger, M.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, New York, NY 14208 USA. [Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Girod, F. X.; Konczykowski, P.; Moreno, B.; Moutarde, H.; Procureur, S.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Seder, E.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Gabrielyan, M. Y.; Nasseripour, R.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.] Florida State Univ, Tallahassee, FL 32306 USA. [Berman, B. L.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Strakovsky, I. I.] George Washington Univ, Washington, DC 20052 USA. [Salamanca, J.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [Aghasyan, M.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] INFN, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Fradi, A.; Jo, H. S.; Niccolai, S.; Sokhan, D.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Mikhailov, K.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, A.; Kim, W.; Kuznetsov, V.; Ni, A.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, INPG,LPSC, Grenoble, France. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Keller, D.; Tang, W.; Daniel, A.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Guler, N.; Klein, A.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Khetarpal, P.; Kubarovsky, V.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Graham, L.; Ilieva, Y.; Nasseripour, R.; Park, K.; Strauch, S.; Tedeschi, D. J.; Tkachenko, S.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Guo, L.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Pasyuk, E.; Raue, B. A.; Yegneswaran, A.; Sharabian, Y. G.; Smith, E. S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Joo, K.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Hassall, N.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Griffioen, K. A.; Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Hakobyan, H.; Paremuzyan, R.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Dey, B (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RI Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Ireland, David/E-8618-2010; MacGregor, Ian/D-4072-2011; Protopopescu, Dan/D-5645-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012 OI Bellis, Matthew/0000-0002-6353-6043; Meyer, Curtis/0000-0001-7599-3973; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907 FU US Department of Energy [DE-FG02-87ER40315]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; UK Research Council; National Research Foundation of Korea; United States DOE [DE-AC05-84ER40150] FX The authors thank the staff and administration of the Thomas Jefferson National Accelerator Facility who made this experiment possible. This work was supported in part by the US Department of Energy (under Grant No. DE-FG02-87ER40315); the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the French Centre National de la Recherche Scientifique; the French Commissariat a l'Energie Atomique; the UK Research Council, S.T.F.C.; and the National Research Foundation of Korea. The Southeastern Universities Research Association (SURA) operated Jefferson Lab under United States DOE Contract DE-AC05-84ER40150 during this work. NR 45 TC 45 Z9 45 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 6 PY 2010 VL 82 IS 2 AR 025202 DI 10.1103/PhysRevC.82.025202 PG 20 WC Physics, Nuclear SC Physics GA 636FA UT WOS:000280714100002 ER PT J AU McAllister, L Silverstein, E Westphal, A AF McAllister, Liam Silverstein, Eva Westphal, Alexander TI Gravity waves and linear inflation from axion monodromy SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC GAUGE-THEORIES; PROBE WMAP OBSERVATIONS; ELECTRIC-MAGNETIC DUALITY; NATURAL INFLATION; ANISOTROPY; POLARIZATION; COMPACTIFICATION; ORIENTIFOLDS; COSMOLOGY; BREAKING AB Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensor to scalar ratio r approximate to 0.07 accessible to upcoming cosmic microwave background observations. C1 [McAllister, Liam] Cornell Univ, LEPP, Ithaca, NY 14853 USA. [McAllister, Liam] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Silverstein, Eva; Westphal, Alexander] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Silverstein, Eva; Westphal, Alexander] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP McAllister, L (reprint author), Cornell Univ, LEPP, Ithaca, NY 14853 USA. OI Westphal, Alexander/0000-0003-1578-6539 FU NSF [PHY-0355005, PHY-0244728]; DOE [DE-AC03-76SF00515]; BSF; FQXi; Alexander-von-Humboldt foundation FX We thank O. Aharony, T. Banks, D. Baumann, C. Burgess, P. Camara, J. Cline, K. Dasgupta, M. Dine, T. Grimm, S. Kachru, R. Kallosh, I. Klebanov, A. Linde, J. Maldacena, A. Nicolis, F. Quevedo, and T. Weigand for useful discussions. We are also grateful to D. Baumann for assistance with the figures. L. M. thanks the Stanford Institute for Theoretical Physics for hospitality during the completion of this work. The research of L. M. is supported by NSF Grant No. PHY-0355005. The research of E. S. is supported by NSF Grant No. PHY-0244728, by the DOE under Contract No. DE-AC03-76SF00515, and by BSF and FQXi grants. The research of A. W. is supported in part by the Alexander-von-Humboldt foundation, as well as by NSF Grant No. PHY-0244728. NR 65 TC 317 Z9 317 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 6 PY 2010 VL 82 IS 4 AR 046003 DI 10.1103/PhysRevD.82.046003 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 636FC UT WOS:000280714500013 ER PT J AU Arleo, F Brodsky, SJ Hwang, DS Sickles, AM AF Arleo, Francois Brodsky, Stanley J. Hwang, Dae Sung Sickles, Anne M. TI Higher-Twist Dynamics in Large Transverse Momentum Hadron Production SO PHYSICAL REVIEW LETTERS LA English DT Article ID CROSS-SECTIONS; ROOT-S; COLLISIONS; DISTRIBUTIONS; QUARK; TEV AB A scaling law analysis of the world data on inclusive large-p(perpendicular to) hadron production in hadronic collisions is carried out. Significant deviations from leading-twist perturbative QCD predictions at next-to-leading order are observed, particularly at high x(perpendicular to) = 2p(perpendicular to)/root s. In contrast, the production of prompt photons and jets exhibits near-conformal scaling behavior in agreement with leading-twist expectations. These results indicate a non-negligible contribution of higher-twist processes in large-p(perpendicular to) hadron production, where the hadron is produced directly in the hard subprocess, rather than by quark and gluon fragmentation. Predictions for the scaling exponents at RHIC and LHC are given. Triggering on isolated large-p(perpendicular to) hadron production will enhance the higher-twist processes. We also note that the use of isolated hadrons as a signal for new physics can be affected by the presence of direct hadron production. C1 [Arleo, Francois] Univ Savoie, CNRS, LAPTH, UMR5108, F-74941 Annecy Le Vieux, France. [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Brodsky, Stanley J.] CP3 Origins So Denmark Univ Odense, Odense, Denmark. [Hwang, Dae Sung] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Sickles, Anne M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Arleo, F (reprint author), Univ Savoie, CNRS, LAPTH, UMR5108, BP 110, F-74941 Annecy Le Vieux, France. FU Department of Energy [DE-AC02-76SF00515, DE-AC02-98CH10886]; KICOS; Korea Research Foundation [KRF-2008-313-C00166] FX F. A. thanks P. Aurenche for useful discussions and CERN-TH for hospitality. S. J. B. was supported by the Department of Energy under Contract No. DE-AC02-76SF00515. D. S. H. was supported by the International Cooperation Program of the KICOS and the Korea Research Foundation Grant (KRF-2008-313-C00166). A. M. S. was supported by the Department of Energy under Contract No. DE-AC02-98CH10886. NR 32 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2010 VL 105 IS 6 AR 062002 DI 10.1103/PhysRevLett.105.062002 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RK UT WOS:000284097700003 PM 20867975 ER PT J AU George, RE Witzel, W Riemann, H Abrosimov, NV Notzel, N Thewalt, MLW Morton, JJL AF George, Richard E. Witzel, Wayne Riemann, H. Abrosimov, N. V. Noetzel, N. Thewalt, Mike L. W. Morton, John J. L. TI Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICON; RELAXATION; DECAY AB Donors in silicon hold considerable promise for emerging quantum technologies, due to their uniquely long electron spin coherence times. Bismuth donors in silicon differ from more widely studied group V donors, such as phosphorous, in several significant respects: They have the strongest binding energy (70.98 meV), a large nuclear spin (I = 9/2), and a strong hyperfine coupling constant (A = 1475.4 MHz). These larger energy scales allow us to perform a detailed test of theoretical models describing the spectral diffusion mechanism that is known to govern the electron spin decoherence of P donors in natural silicon. We report the electron-nuclear double resonance spectra of the Bi donor, across the range 200 MHz to 1.4 GHz, and confirm that coherence transfer is possible between electron and nuclear spin degrees of freedom at these higher frequencies. C1 [George, Richard E.; Morton, John J. L.] Univ Oxford, Dept Phys, Clarendon Lab, CAESR, Oxford OX1 3PU, England. [Witzel, Wayne] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Riemann, H.; Abrosimov, N. V.; Noetzel, N.] Inst Crystal Growth, D-12489 Berlin, Germany. [Thewalt, Mike L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Morton, John J. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP George, RE (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, CAESR, Oxford OX1 3PU, England. EM john.morton@materials.ox.ac.uk RI Morton, John/I-3515-2013 FU Royal Society; EPSRC [EP/D048559/1]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Alexei Tyryshkin, Steve Lyon, Arzhang Ardavan, and Andrew Briggs for helpful discussions. J. J. L. M. is supported by the Royal Society. The research is supported by the EPSRC through CAESR (No. EP/D048559/1). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 29 TC 54 Z9 54 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2010 VL 105 IS 6 AR 067601 DI 10.1103/PhysRevLett.105.067601 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RK UT WOS:000284097700012 PM 20868014 ER PT J AU Heinonen, OG Stokes, SW Yi, JY AF Heinonen, O. G. Stokes, S. W. Yi, J. Y. TI Perpendicular Spin Torque in Magnetic Tunnel Junctions SO PHYSICAL REVIEW LETTERS LA English DT Article ID VOLTAGE-DEPENDENCE; DRIVEN; MULTILAYERS AB A steady-state electrical current flowing in a magnetic heterostructure can exert a torque on the magnetization, and provides a means to control magnetization states and dynamics in spintronics structures. However, some components of the torque are difficult to measure and to calculate. We have determined the perpendicular spin torque in MgO magnetic tunnel junctions by measuring their lowest ferromagnetic resonance frequency and find that it decreases linearly with increasing bias voltage. Micromagnetic modeling shows that this decrease is caused by the perpendicular component of spin torque. We obtain a quantitative value for the perpendicular spin torque effective field as a function of bias voltage, and show that this effective field is a linear function in bias voltage and approximately equal in magnitude to the in-plane spin torque effective field. C1 [Heinonen, O. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Heinonen, O. G.; Stokes, S. W.; Yi, J. Y.] Seagate Technol, Recording Heads Operat, Bloomington, MN 55435 USA. RP Heinonen, OG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM heinonen@anl.gov OI Heinonen, Olle/0000-0002-3618-6092 NR 27 TC 21 Z9 21 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2010 VL 105 IS 6 AR 066602 DI 10.1103/PhysRevLett.105.066602 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RK UT WOS:000284097700007 PM 20867995 ER PT J AU van der Laan, G Chopdekar, RV Suzuki, Y Arenholz, E AF van der Laan, G. Chopdekar, R. V. Suzuki, Y. Arenholz, E. TI Strain-Induced Changes in the Electronic Structure of MnCr2O4 Thin Films Probed by X-Ray Magnetic Circular Dichroism SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2P ABSORPTION-SPECTRA; GROUND-STATE MOMENTS; SYMMETRY AB We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr2O4 films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations. C1 [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Chopdekar, R. V.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP van der Laan, G (reprint author), Diamond Light Source, Didcot OX11 0DE, Oxon, England. RI Chopdekar, Rajesh/D-2067-2009; van der Laan, Gerrit/Q-1662-2015 OI Chopdekar, Rajesh/0000-0001-6727-6501; van der Laan, Gerrit/0000-0001-6852-2495 FU U.S. Department of Energy [DE-AC02-05CH11231] FX Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 15 Z9 15 U1 4 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2010 VL 105 IS 6 AR 067405 DI 10.1103/PhysRevLett.105.067405 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RK UT WOS:000284097700011 PM 20868013 ER PT J AU Chen, YL Chu, JH Analytis, JG Liu, ZK Igarashi, K Kuo, HH Qi, XL Mo, SK Moore, RG Lu, DH Hashimoto, M Sasagawa, T Zhang, SC Fisher, IR Hussain, Z Shen, ZX AF Chen, Y. L. Chu, J. -H. Analytis, J. G. Liu, Z. K. Igarashi, K. Kuo, H. -H. Qi, X. L. Mo, S. K. Moore, R. G. Lu, D. H. Hashimoto, M. Sasagawa, T. Zhang, S. C. Fisher, I. R. Hussain, Z. Shen, Z. X. TI Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator SO SCIENCE LA English DT Article ID HGTE QUANTUM-WELLS; BI2TE3; SB2TE3; CONE AB In addition to a bulk energy gap, topological insulators accommodate a conducting, linearly dispersed Dirac surface state. This state is predicted to become massive if time reversal symmetry is broken, and to become insulating if the Fermi energy is positioned inside both the surface and bulk gaps. We introduced magnetic dopants into the three-dimensional topological insulator dibismuth triselenide (Bi(2)Se(3)) to break the time reversal symmetry and further position the Fermi energy inside the gaps by simultaneous magnetic and charge doping. The resulting insulating massive Dirac fermion state, which we observed by angle-resolved photoemission, paves the way for studying a range of topological phenomena relevant to both condensed matter and particle physics. C1 [Chen, Y. L.; Chu, J. -H.; Analytis, J. G.; Liu, Z. K.; Kuo, H. -H.; Qi, X. L.; Moore, R. G.; Lu, D. H.; Zhang, S. C.; Fisher, I. R.; Shen, Z. X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, Y. L.; Chu, J. -H.; Analytis, J. G.; Liu, Z. K.; Kuo, H. -H.; Qi, X. L.; Hashimoto, M.; Zhang, S. C.; Fisher, I. R.; Shen, Z. X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Chen, Y. L.; Chu, J. -H.; Analytis, J. G.; Liu, Z. K.; Kuo, H. -H.; Qi, X. L.; Hashimoto, M.; Zhang, S. C.; Fisher, I. R.; Shen, Z. X.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Chen, Y. L.; Mo, S. K.; Hashimoto, M.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Igarashi, K.; Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Kanagawa 2268503, Japan. RP Shen, ZX (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI Zhang, Shou-Cheng/B-2794-2010; Chen, Yulin/C-1918-2012; Qi, Xiaoliang/F-9245-2010; Mo, Sung-Kwan/F-3489-2013; Sasagawa, Takao/E-6666-2014 OI Qi, Xiaoliang/0000-0003-0388-5003; Mo, Sung-Kwan/0000-0003-0711-8514; Sasagawa, Takao/0000-0003-0149-6696 FU Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515] FX Supported by the Department of Energy, Office of Basic Energy Science, under contract DE-AC02-76SF00515. NR 25 TC 488 Z9 495 U1 23 U2 223 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 6 PY 2010 VL 329 IS 5992 BP 659 EP 662 DI 10.1126/science.1189924 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634RV UT WOS:000280602700032 PM 20689013 ER PT J AU Greenberg, D AF Greenberg, Diane TI Betsy Sutherland, pioneer in DNA damage and repair studies Obituary SO DNA REPAIR LA English DT Biographical-Item C1 Brookhaven Natl Lab, Media & Commun Off, Upton, NY 11973 USA. RP Greenberg, D (reprint author), Brookhaven Natl Lab, Media & Commun Off, Bldg 400C,POB 5000, Upton, NY 11973 USA. EM greenb@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD AUG 5 PY 2010 VL 9 IS 8 BP 937 EP 937 DI 10.1016/j.dnarep.2010.05.008 PG 1 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 642AJ UT WOS:000281174700012 ER PT J AU Chinn, SC Alviso, CT Berman, ESF Harvey, CA Maxwell, RS Wilson, TS Cohenour, R Saalwachter, K Chasse, W AF Chinn, Sarah C. Alviso, Cynthia T. Berman, Elena S. F. Harvey, Christopher A. Maxwell, Robert S. Wilson, Thomas S. Cohenour, Rebecca Saalwaechter, Kay Chasse, Walter TI MQ NMR and SPME Analysis of Nonlinearity in the Degradation of a Filled Silicone Elastomer SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SOLID-PHASE MICROEXTRACTION; NUCLEAR-MAGNETIC-RESONANCE; MULTIPLE-QUANTUM NMR; INDUCED CROSS-LINKING; THERMAL-DEGRADATION; RADIATION-CHEMISTRY; POLYSILOXANE RUBBERS; STATE POLYMERIZATION; MOLECULAR ORDER; OLIVE OIL AB Radiation-induced degradation of polymeric materials occurs through numerous, simultaneous, competing chemical reactions. Although degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit nonlinear dose dependence due to dose-dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used in electronic encapsulation and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS). The mechanical data and 114 spin-echo NMR spectra indicated that radiation exposure leads to predominantly cross-linking over the cumulative dose range studied (0-250 kGy) with a rate roughly linear with dose. (1)H multiple-quantum NMR spectroscopy detected a bimodal distribution in the network structure, as expected from the proposed structure of Sylgard 184. The MQ NMR spectra further indicated that the radiation-induced structural changes were not linear in adsorbed dose and that competing chain scission mechanisms made a greater contribution to the overall degradation process in the range of 50-100 kGy (although cross-linking still dominated). The SPME-GC/MS data were analyzed using principal component analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose. C1 [Chinn, Sarah C.; Alviso, Cynthia T.; Berman, Elena S. F.; Harvey, Christopher A.; Maxwell, Robert S.; Wilson, Thomas S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cohenour, Rebecca] Honeywell Inc, Fed Mfg & Technol, Kansas City Plant, Kansas City, MO 64141 USA. [Saalwaechter, Kay; Chasse, Walter] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. RP Chinn, SC (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM chinn7@llnl.gov RI Chinn, Sarah/E-1195-2011; Saalwachter, Kay/E-7439-2011 OI Saalwachter, Kay/0000-0002-6246-4770 FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors acknowledge Jason Giuliani and Erica Gjersing for assistance with the implementation of the MQ NMR experiments at LLNL and James Lewicki for assistance in the GC/MS data interpretation. We also gratefully acknowledge Theresa Morris for assistance with the DSC analysis at KCP. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 44 TC 11 Z9 12 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 5 PY 2010 VL 114 IS 30 BP 9729 EP 9736 DI 10.1021/jp1013797 PG 8 WC Chemistry, Physical SC Chemistry GA 631PX UT WOS:000280361100002 PM 20617846 ER PT J AU Vijayan, B Dimitrijevic, NM Rajh, T Gray, K AF Vijayan, Baiju Dimitrijevic, Nada M. Rajh, Tijana Gray, Kimberly TI Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; MAGNETRON SPUTTER-DEPOSITION; SENSITIZED SOLAR-CELLS; TIO2 NANOTUBES; NANOCRYSTALLINE TIO2; PHASE-TRANSFORMATION; CHARGE SEPARATION; OXIDE NANOTUBE; CARBON-DIOXIDE; ACETIC-ACID AB Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 degrees C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 degrees C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 degrees C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonance (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO(2) reduction occurring in nanotubes calcined at 400 degrees C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 degrees C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions. C1 [Vijayan, Baiju; Gray, Kimberly] Northwestern Univ, Dept Civil & Environm Engn, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Gray, K (reprint author), Northwestern Univ, Dept Civil & Environm Engn, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. RI Gray, Kimberly/B-6989-2009 FU U.S. Department of Energy [DE-FG02-03 ER 15457/A003, DE-AC02-06CH11357] FX The work was performed under the auspices of the U.S. Department of Energy, under Contract DE-FG02-03 ER 15457/A003 and DE-AC02-06CH11357 (ICEP). Sample characterizations (XRD, SEM, and TEM) were performed in the JB Cohen X-ray facility and NUANCE. BET measurements were made in Prof. Harold Kung's Laboratory at Northwestern University. NR 58 TC 64 Z9 71 U1 4 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 5 PY 2010 VL 114 IS 30 BP 12994 EP 13002 DI 10.1021/jp104345h PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631PS UT WOS:000280360500023 ER PT J AU Kowarik, S Broch, K Hinderhofer, A Schwartzberg, A Osso, JO Kilcoyne, D Schreiber, F Leone, SR AF Kowarik, Stefan Broch, Katharina Hinderhofer, Alexander Schwartzberg, Adam Oriol Osso, J. Kilcoyne, David Schreiber, Frank Leone, Stephen R. TI Crystal Grain Orientation in Organic Homo- and Heteroepitaxy of Pentacene and Perfluoropentacene Studied with X-ray Spectromicroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THIN-FILMS; CHARGE-TRANSPORT; HIGH-MOBILITY; GROWTH; TRANSISTORS; MICROSCOPY; MONOLAYER; EVOLUTION; DEVICES AB We show that the prototypical p- and n-conducting molecular semiconductors pentacene (PEN) and perfluoropentacene (PFP) exhibit correlated crystal orientation in neighboring grains within a thin film. We use scanning transmission X-ray microscopy (STXM) to measure the film topography in PEN and PEP, and importantly X-ray/optical dichroism also makes it possible to map the grain orientation. PEN exhibits an average grain size of 0.46 +/- 0.05 mu m(2), but clusters of aligned grains are measurably larger at > 1.9 mu m(2). This finding is rationalized through nucleation of small grains that maintain the epitaxial relation with an underlying larger grain during homoepitaxy. The orientation of PEN grains in (buried) layers of PEN/PFP heterostructures is also assessed with STXM, but no orientational in-plane alignment is found between layers of the two different materials. The findings are important to quantify the number and type of (orientational) grain boundaries for an understanding of charge carrier mobility and exciton diffusion. C1 [Kowarik, Stefan; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kowarik, Stefan; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kowarik, Stefan; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Broch, Katharina; Hinderhofer, Alexander; Schreiber, Frank] Univ Tubingen, Inst Angew Phys, D-72076 Tubingen, Germany. [Schwartzberg, Adam] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Oriol Osso, J.] Esfera UAB, MATGAS AIE 2000, Barcelona 08193, Spain. [Kilcoyne, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kowarik, S (reprint author), Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. EM stefan.kowarik@physik.hu-berlin.de RI Osso, J. Oriol/E-7449-2011; Schreiber, Frank/J-3311-2014; Kowarik, Stefan/P-5059-2014; Kowarik, Stefan/C-7676-2014; Kilcoyne, David/I-1465-2013; OI Schreiber, Frank/0000-0003-3659-6718; Broch, Katharina/0000-0002-9354-292X FU Deutsche Forschungsgemeinschaft [SCHR 700/13-1, SCHR 700/9-1]; Alexander von Humboldt Foundation; NSF ERC for Extreme Ultraviolet Science and Technology [EEC-0310717]; Catalan government; Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX This research is supported by the Deutsche Forschungsgemeinschaft SCHR 700/13-1 and SCHR 700/9-1 (K.B., A.H., and F.S.) and by a postdoctoral fellowship of the Alexander von Humboldt Foundation (S.K.). The salary of S.K. is partially supported by the NSF ERC for Extreme Ultraviolet Science and Technology (No. EEC-0310717). J.O.O. is supported by the Catalan government through the ICREA JE program. At the Advanced Light Source, D.K., A.S., and S.R.L. are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 32 TC 28 Z9 28 U1 6 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 5 PY 2010 VL 114 IS 30 BP 13061 EP 13067 DI 10.1021/jp103713z PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631PS UT WOS:000280360500033 ER PT J AU Juan, ML Plain, J Bachelot, R Royer, P Gray, SK Wiederrecht, GP AF Juan, Mathieu L. Plain, Jerome Bachelot, Renaud Royer, Pascal Gray, Stephen K. Wiederrecht, Gary P. TI Self-Consistent Model of Light-Induced Molecular Motion Around Metallic Nanostructures SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SURFACE-PLASMON RESONANCE; POLYMER-FILMS; GRATINGS; NANOSENSORS; ANISOTROPY AB Azobenzene derivatives containing polymers deform when exposed to light with a wavelength in the principle absorption band associated with trans-cis isomerization of the azobenzene derivative molecule. When such polymers cover a metallic nanoparticle exposed to light near its surface plasmon resonance, which also happens to overlap with the azobenzene derivative absorption band, the resulting surface deformations are a novel measure or probe of the plasmonic near-field intensities. We developed a self-consistent model of the process by combining a Monte Carlo based model for the absorption and subsequent light-induced mass transport of the polymer with finite difference time domain computations of the electromagnetic fields around the nanoparticle that induce the absorption. The resulting self-consistent approach is shown to describe the key features of experimental observations concerning silver disk nanoparticles. C1 [Juan, Mathieu L.; Plain, Jerome; Bachelot, Renaud; Royer, Pascal] Univ Technol Troyes, ICD, Lab Nanotechnol & Instrumentat Opt, Troyes, France. [Juan, Mathieu L.; Gray, Stephen K.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Plain, J (reprint author), Univ Technol Troyes, ICD, Lab Nanotechnol & Instrumentat Opt, BP 2060, Troyes, France. EM jerome.plain@utt.fr; gray@anl.gov RI Plain, Jerome/A-2888-2009; Juan, Mathieu/C-6331-2008; Bachelot, Renaud/M-6888-2015 OI Juan, Mathieu/0000-0002-2740-8001; FU European Social Fund; Conseil General de l'Aube; ANR; U.S. Department of Energy. Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX The authors are grateful to C. Hubert for helpful discussions. One of the author Ph.D. research (M.J.) is supported by the European Social Fund and the Conseil General de l'Aube (district grant). This work was financially supported by the ANR (Programme blanc Photohybrid 2007). Use of the Center for Nanoscale Materials and work at Argonne National Laboratory were supported by the U.S. Department of Energy. Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 18 TC 9 Z9 9 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 5 PY 2010 VL 1 IS 15 BP 2228 EP 2232 DI 10.1021/jz100754c PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 636EN UT WOS:000280711500002 ER PT J AU Paesani, F Yoo, S Bakker, HJ Xantheas, SS AF Paesani, Francesco Yoo, Soohaeng Bakker, Huib J. Xantheas, Sotiris S. TI Nuclear Quantum Effects in the Reorientation of Water SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID TRANSFERABLE INTERACTION MODELS; BINDING-ENERGIES; 1ST PRINCIPLES; LIQUID WATER; DYNAMICS; CLUSTERS; FORMULATION; MOLECULES AB The molecular reorientation associated with the dynamics of the hydrogen-bond network in liquid water is investigated using quantum molecular dynamics simulations performed with the ab-initio-based TTM3-F interaction potential. The reorientation dynamics calculated at different temperatures are found to be in excellent agreement with the corresponding experimental results obtained from polarization-resolved, femtosecond mid-infrared, pump-probe spectroscopic measurements. A comparison with analogous results obtained from classical molecular dynamics simulations with the same interaction potential clearly indicates that the explicit inclusion of nuclear quantum effects is critical for reproducing the measured time dependence of the anisotropic signal. C1 [Paesani, Francesco] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Bakker, Huib J.] FOM Inst Atom & Mol Phys, NL-1098 XG Amsterdam, Netherlands. RP Paesani, F (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM fpaesani@ucsd.edu; h.bakker@amolf.nl; sotiris.xantheas@pnl.gov RI Paesani, Francesco/B-1435-2009; Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU Division of Chemical Sciences Biosciences and Geosciences, U.S. Department of Energy FX This work was supported by the Division of Chemical Sciences Biosciences and Geosciences, U.S. Department of Energy. Battelle operates the Pacific Northwest National,Laboratory for the U.S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. Additional computational resources were provided in part by a grant of computer time from Teragrid and the TAPP program at the San Diego Supercomputer Center. NR 39 TC 40 Z9 40 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 5 PY 2010 VL 1 IS 15 BP 2316 EP 2321 DI 10.1021/jz100734w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 636EN UT WOS:000280711500017 ER PT J AU Ferguson, AJ Blackburn, JL Holt, JM Kopidakis, N Tenent, RC Barnes, TM Heben, MJ Rumbles, G AF Ferguson, Andrew J. Blackburn, Jeffrey L. Holt, Josh M. Kopidakis, Nikos Tenent, Robert C. Barnes, Teresa M. Heben, Michael J. Rumbles, Garry TI Photoinduced Energy and Charge Transfer in P3HT:SWNT Composites SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID POLYMER PHOTOVOLTAIC CELLS; CARBON-NANOTUBE FILMS; SOLAR-CELLS; HETEROJUNCTIONS; ENHANCEMENT; DYNAMICS; EXCITONS; DEVICES AB Using steady-state photoluminescence and transient microwave conductivity (TRMC) spectroscopies, photoinduced energy and charge transfer from poly(3-hexylthiophene) (P3HT) to single-walled carbon nanotubes (SWNTs) are reported. Long-lived charge carriers are observed for excitons generated in the polymer due to interfacial electron transfer, while excitation of the SWNTs results in short-lived carriers confined to the nanotubes, The TRMC-measured mobility of electrons injected into the SWNTs exhibits a surprisingly small lower limit of 0.057 cm(2)/(V s), which we attribute to carrier scattering within the nanotube that inhibits resonance of the microwave electric field with the confined carriers. The observation of charge transfer and the lifetime of the separated carriers suggest that the primary photoinduced carrier generation process does not limit the performance of organic photovoltaic (OPV) devices based on P3HT:SWNT composites. With optimization, blends of P3HT with semiconducting SWNTs (s-SWNTs) may exhibit promise as an OPV active layer and could provide good solar photoconversion power efficiencies. C1 [Ferguson, Andrew J.; Blackburn, Jeffrey L.; Holt, Josh M.; Kopidakis, Nikos; Tenent, Robert C.; Heben, Michael J.; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Barnes, Teresa M.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Heben, Michael J.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. RP Ferguson, AJ (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM andrew.ferguson@nrel.gov; jeffrey.blackburn@nrel.gov RI Holt, Josh/G-8094-2011; Blackburn, Jeffrey/D-7344-2012; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; OI Rumbles, Garry/0000-0003-0776-1462; Ferguson, Andrew/0000-0003-2544-1753 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX We gratefully acknowledge Prof. Dr. L. D. A. Siebbeles and the Opto-electronic Materials group of the Delft University of Technology for useful discussions regarding TRMC measurements. We acknowledge Dr. R. E. Larsen (NREL) for provision of the P3HT and SWNT structures used in the Table of Contents graphic. The solar image used in the Table of Contents graphic is provided courtesy of the SOHO/EIT consortium. SOHO is a project of international cooperation between ESA and NASA. This work was funded by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 39 TC 50 Z9 50 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 5 PY 2010 VL 1 IS 15 BP 2406 EP 2411 DI 10.1021/jz100768f PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 636EN UT WOS:000280711500034 ER PT J AU Srivastava, M Simakov, O Chapman, J Fahey, B Gauthier, MEA Mitros, T Richards, GS Conaco, C Dacre, M Hellsten, U Larroux, C Putnam, NH Stanke, M Adamska, M Darling, A Degnan, SM Oakley, TH Plachetzki, DC Zhai, YF Adamski, M Calcino, A Cummins, SF Goodstein, DM Harris, C Jackson, DJ Leys, SP Shu, SQ Woodcroft, BJ Vervoort, M Kosik, KS Manning, G Degnan, BM Rokhsar, DS AF Srivastava, Mansi Simakov, Oleg Chapman, Jarrod Fahey, Bryony Gauthier, Marie E. A. Mitros, Therese Richards, Gemma S. Conaco, Cecilia Dacre, Michael Hellsten, Uffe Larroux, Claire Putnam, Nicholas H. Stanke, Mario Adamska, Maja Darling, Aaron Degnan, Sandie M. Oakley, Todd H. Plachetzki, David C. Zhai, Yufeng Adamski, Marcin Calcino, Andrew Cummins, Scott F. Goodstein, David M. Harris, Christina Jackson, Daniel J. Leys, Sally P. Shu, Shengqiang Woodcroft, Ben J. Vervoort, Michel Kosik, Kenneth S. Manning, Gerard Degnan, Bernard M. Rokhsar, Daniel S. TI The Amphimedon queenslandica genome and the evolution of animal complexity SO NATURE LA English DT Article ID SPONGE GEODIA-CYDONIUM; SEA-ANEMONE; PHYLOGENETIC ANALYSIS; MONOSIGA-BREVICOLLIS; MAXIMUM-LIKELIHOOD; TYROSINE KINASES; GENE REPERTOIRE; ORIGIN; METAZOAN; PROTEIN AB Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic-and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity. C1 [Srivastava, Mansi; Mitros, Therese; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Srivastava, Mansi; Mitros, Therese; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Simakov, Oleg] Univ Heidelberg, D-69117 Heidelberg, Germany. [Chapman, Jarrod; Hellsten, Uffe; Goodstein, David M.; Shu, Shengqiang; Rokhsar, Daniel S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Fahey, Bryony; Gauthier, Marie E. A.; Richards, Gemma S.; Larroux, Claire; Adamska, Maja; Degnan, Sandie M.; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Harris, Christina; Jackson, Daniel J.; Woodcroft, Ben J.; Degnan, Bernard M.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. [Conaco, Cecilia; Kosik, Kenneth S.] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA. [Dacre, Michael; Zhai, Yufeng; Manning, Gerard] Salk Inst Biol Studies, Razavi Newman Ctr Bioinformat, La Jolla, CA 92037 USA. [Putnam, Nicholas H.] Rice Univ, Dept Ecol & Evolutionary Biol, Houston, TX 77005 USA. [Stanke, Mario] Abt Bioinformat, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany. [Darling, Aaron] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Oakley, Todd H.; Plachetzki, David C.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [Leys, Sally P.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. [Vervoort, Michel] Univ Paris 07, CNRS, UMR 7592, Dev & Neurobiol Program,Inst Jacques Monod, F-75205 Paris 13, France. RP Srivastava, M (reprint author), Whitehead Inst Biomed Res, Cambridge, MA 02138 USA. EM mansi@wi.mit.edu; b.degnan@uq.edu.au; dsrokhsar@gmail.com RI Putnam, Nicholas/B-9968-2008; Dacre, Michael/C-1131-2008; Jackson, Daniel/J-5158-2012; Adamska, Maja/M-4128-2014; Simakov, Oleg/G-4572-2015; Leys, Sally/A-2660-2014; Adamska, Maja/L-3306-2015; OI Putnam, Nicholas/0000-0002-1315-782X; Dacre, Michael/0000-0002-5561-1656; Jackson, Daniel/0000-0001-9045-381X; Simakov, Oleg/0000-0002-3585-4511; Degnan, Sandie/0000-0001-8003-0426; Adamska, Maja/0000-0002-4223-8450; Oakley, Todd/0000-0002-4478-915X; Manning, Gerard/0000-0002-5087-9151; Calcino, Andrew/0000-0002-3956-1273; Darling, Aaron/0000-0003-2397-7925 FU Australian Research Council; US Department of Energy Joint Genome Institute; NSF; NIH/NHGRI; University of Queensland; Sars International Centre for Marine Molecular Biology; DFG; ANR; CNRS; Gordon and Betty Moore Foundation; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This study was supported by funds from the Australian Research Council (B. M. D., Maj.A), US Department of Energy Joint Genome Institute (B. M. D., D. S. R., S. P. L.) Harvey Karp (K. S. K.), NSF (T.H.O.), NIH/NHGRI (G. M.), University of Queensland Postdocotral Fellowship (Maj.A., S. F. C), Sars International Centre for Marine Molecular Biology (Maj.A.), DFG (M.St.), ANR (M. V.), CNRS (M. V.), Gordon and Betty Moore Foundation (D. S. R.) and Richard Melmon (D. S. R.). We thank J. Huelsenbeck and I. Hariharan for help with phylogenetic analyses and growth pathways, respectively. The work conducted by the US Department of Energy Joint Genome Institute was supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 66 TC 452 Z9 459 U1 12 U2 102 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 5 PY 2010 VL 466 IS 7307 BP 720 EP U3 DI 10.1038/nature09201 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634EN UT WOS:000280562500031 PM 20686567 ER PT J AU Goulielmakis, E Loh, ZH Wirth, A Santra, R Rohringer, N Yakovlev, VS Zherebtsov, S Pfeifer, T Azzeer, AM Kling, MF Leone, SR Krausz, F AF Goulielmakis, Eleftherios Loh, Zhi-Heng Wirth, Adrian Santra, Robin Rohringer, Nina Yakovlev, Vladislav S. Zherebtsov, Sergey Pfeifer, Thomas Azzeer, Abdallah M. Kling, Matthias F. Leone, Stephen R. Krausz, Ferenc TI Real-time observation of valence electron motion SO NATURE LA English DT Article ID PROBING MOLECULAR-DYNAMICS; ATTOSECOND; SPECTROSCOPY; IONIZATION; PULSES; SCALE AB The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions(1). We generate the ions with a controlled few-cycle laser field(2) and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse(3), which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes. C1 [Goulielmakis, Eleftherios; Wirth, Adrian; Yakovlev, Vladislav S.; Zherebtsov, Sergey; Kling, Matthias F.; Krausz, Ferenc] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Loh, Zhi-Heng; Pfeifer, Thomas; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Loh, Zhi-Heng; Pfeifer, Thomas; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Loh, Zhi-Heng; Pfeifer, Thomas; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Rohringer, Nina] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Yakovlev, Vladislav S.; Krausz, Ferenc] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Azzeer, Abdallah M.] King Saud Univ, Dept Phys & Astron, Riyadh 11451, Saudi Arabia. RP Goulielmakis, E (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. EM elgo@mpq.mpg.de; srl@berkeley.edu; krausz@lmu.de RI Azzeer, Abdallah/A-4542-2011; Loh, Zhi-Heng/B-6952-2011; Goulielmakis, Eleftherios/F-1693-2011; Rohringer, Nina/B-8030-2012; Kling, Matthias/D-3742-2014; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014; Yakovlev, Vladislav/C-4091-2015 OI Azzeer, Abdallah/0000-0001-8334-9256; Loh, Zhi-Heng/0000-0001-9729-9632; Goulielmakis, Eleftherios/0000-0003-3386-0245; Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567; Yakovlev, Vladislav/0000-0002-0648-9375 FU Max Planck Society; King Saud University; DFG Cluster of Excellence: Munich Centre for Advanced Photonics; Marie-Curie Reintegration grant [MERG-CT-2007-208643]; DFG; Air Force Office of Scientific Research [FA9550-04-1-0242]; National Science Foundation [CHE-0742662, EEC-0310717]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05-CH11231, DE-AC02-06CH11357]; MPG; US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank U. Kleineberg, M. Hofstetter and M. Fiess for invaluable contributions. This work was supported by the Max Planck Society, the Nobel Program of King Saud University and the DFG Cluster of Excellence: Munich Centre for Advanced Photonics (http://www.munich-photonics.de). E. G. acknowledges a Marie-Curie Reintegration grant (MERG-CT-2007-208643). A. W., S.Z. and M. F. K. acknowledge support by the Emmy Noether programme of the DFG. Z.-H.L., T. P. and S. R. L. acknowledge support from the Air Force Office of Scientific Research (FA9550-04-1-0242), the National Science Foundation (CHE-0742662 and EEC-0310717) and the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05-CH11231). T. P. acknowledges support from the MPRG program of the MPG. R. S. is supported by the Office of Basic Energy Sciences, Office of Science, US Department of Energy (DE-AC02-06CH11357). Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (DE-AC52-07NA27344). S. R. L. gratefully acknowledges appointment as a Miller Research Professor in the Miller Institute for Basic Research in Science. NR 30 TC 466 Z9 469 U1 28 U2 285 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 5 PY 2010 VL 466 IS 7307 BP 739 EP U7 DI 10.1038/nature09212 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634EN UT WOS:000280562500035 PM 20686571 ER PT J AU Cvetkovic, A Menon, AL Thorgersen, MP Scott, JW Poole, FL Jenney, FE Lancaster, WA Praissman, JL Shanmukh, S Vaccaro, BJ Trauger, SA Kalisiak, E Apon, JV Siuzdak, G Yannone, SM Tainer, JA Adams, MWW AF Cvetkovic, Aleksandar Menon, Angeli Lal Thorgersen, Michael P. Scott, Joseph W. Poole, Farris L., II Jenney, Francis E., Jr. Lancaster, W. Andrew Praissman, Jeremy L. Shanmukh, Saratchandra Vaccaro, Brian J. Trauger, Sunia A. Kalisiak, Ewa Apon, Junefredo V. Siuzdak, Gary Yannone, Steven M. Tainer, John A. Adams, Michael W. W. TI Microbial metalloproteomes are largely uncharacterized SO NATURE LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; HYPERTHERMOPHILIC ARCHAEON; MASS-SPECTROMETRY; TRACE-ELEMENTS; KEY ROLE; PROTEINS; DATABASE; METABOLISM; RUBREDOXIN; SEQUENCE AB Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability(1,2). Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized(2-4). We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms. C1 [Cvetkovic, Aleksandar; Menon, Angeli Lal; Thorgersen, Michael P.; Scott, Joseph W.; Poole, Farris L., II; Jenney, Francis E., Jr.; Lancaster, W. Andrew; Praissman, Jeremy L.; Shanmukh, Saratchandra; Vaccaro, Brian J.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Trauger, Sunia A.; Kalisiak, Ewa; Apon, Junefredo V.; Siuzdak, Gary] Scripps Res Inst, Scripps Ctr Mass Spectrometry, La Jolla, CA 92037 USA. [Trauger, Sunia A.; Kalisiak, Ewa; Apon, Junefredo V.; Siuzdak, Gary] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Trauger, Sunia A.; Kalisiak, Ewa; Apon, Junefredo V.; Siuzdak, Gary] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA. [Yannone, Steven M.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM adams@bmb.uga.edu RI Yannone, Steven/G-1927-2011 FU Department of Energy [DE-FG0207ER64326] FX This research is part of the MAGGIE (Molecular Assemblies, Genes and Genomes Integrated Efficiently) project supported by Department of Energy grant (DE-FG0207ER64326). We thank S. Hammond, L. Wells, R. Hopkins and D. Phillips for help with in-gel MS analyses. NR 37 TC 173 Z9 176 U1 12 U2 141 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 5 PY 2010 VL 466 IS 7307 BP 779 EP U18 DI 10.1038/nature09265 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634EN UT WOS:000280562500044 PM 20639861 ER PT J AU Lu, W An, W Zhou, M Joshi, C Huang, C Mori, WB AF Lu, W. An, W. Zhou, M. Joshi, C. Huang, C. Mori, W. B. TI The optimum plasma density for plasma wakefield excitation in the blowout regime SO NEW JOURNAL OF PHYSICS LA English DT Article ID ACCELERATOR AB The optimum plasma density for achieving the largest wakefield accelerating gradient in a plasma wakefield accelerator (PWFA) for a given electron beam driver parameters (fixed charge, spot size and duration) is analyzed. It is found that the peak beam current I(p) (charge per unit time) plays an important role in determining the optimum density. We show that for narrow beams of low peak current (I(p) << I(A) approximate to 17 kA and sigma(r) << sigma(z)), the prediction from linear theory (Lu et al 2005 Phys. Plasma 12 063101) that k(p)sigma(z) = root 2 or n(p) (cm(-3)) approximate to 5.6x10(19)/sigma(2)(z)(mu m) for a bi-Gaussian bunch of length sigma(z) and spot size sigma(r), works well for obtaining the maximum accelerating gradient. However, for narrow beams of high peak current (I(p) greater than or similar to I(A) and sigma(r) < K-S(0) K-+/-pi(-/+) SO PHYSICAL REVIEW D LA English DT Article AB We report an analysis of charmless hadronic decays of neutral B mesons to the final state (KSK +/-)-K-0 pi(-/+) (sic), using a data sample of (465 +/- 5) x 10(6) B (B) over bar events collected with the BABAR detector at the Gamma(4S) resonance. We observe an excess of signal events with a significance of 5.2 standard deviations including systematic uncertainties and measure the branching fraction to be B(B-0 -> (KSK +/-)-K-0 pi(-/+) (sic) (3.2 +/- 0.5 +/- 0.3) x 10(-6), where the uncertainties are statistical and systematic, respectively. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Denis Diderot Paris7, Lab Phys Nucl & Hautes Energies, Univ Paris 06, IN2P3,CNRS, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, SPP, CEA, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Santoro, V.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rizzo, Giuliana/A-8516-2015; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014 OI Raven, Gerhard/0000-0002-2897-5323; Paoloni, Eugenio/0000-0001-5969-8712; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Faccini, Riccardo/0000-0003-2613-5141; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Rizzo, Giuliana/0000-0003-1788-2866; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); A.P. Sloan Foundation; Marie Curie EIF (European Union) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation. NR 34 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 5 PY 2010 VL 82 IS 3 AR 031101 DI 10.1103/PhysRevD.82.031101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 634UT UT WOS:000280611800001 ER PT J AU Tartakovsky, AM AF Tartakovsky, Alexandre M. TI Langevin model for reactive transport in porous media SO PHYSICAL REVIEW E LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; DISPERSION; SIMULATION; BIODEGRADATION; FLOW AB Existing continuum models for reactive transport in porous media tend to overestimate the extent of solute mixing and mixing-controlled reactions because the continuum models treat both the mechanical and diffusive mixings as an effective Fickian process. Recently, we have proposed a phenomenological Langevin model for flow and transport in porous media [A. M. Tartakovsky, D. M. Tartakovsky, and P. Meakin, Phys. Rev. Lett. 101, 044502 (2008)]. In the Langevin model, the fluid flow in a porous continuum is governed by a combination of a Langevin equation and a continuity equation. Pore-scale velocity fluctuations, the source of mechanical dispersion, are represented by the white noise. The advective velocity (the solution of the Langevin flow equation) causes the mechanical dispersion of a solute. Molecular diffusion and sub-pore-scale Taylor-type dispersion are modeled by an effective stochastic advection-diffusion equation. Here, we propose a method for parameterization of the model for a synthetic porous medium, and we use the model to simulate multicomponent reactive transport in the porous medium. The detailed comparison of the results of the Langevin model with pore-scale and continuum (Darcy) simulations shows that: (1) for a wide range of Peclet numbers the Langevin model predicts the mass of reaction product more accurately than the Darcy model; (2) for small Peclet numbers predictions of both the Langevin and the Darcy models agree well with a prediction of the pore-scale model; and (3) the accuracy of the Langevin and Darcy model deteriorates with the increasing Peclet number but the accuracy of the Langevin model decreases more slowly than the accuracy of the Darcy model. These results show that the separate treatment of advective and diffusive mixing in the stochastic transport model is more accurate than the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion coefficient) to describe both types of mixing. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov FU Advanced Scientific Computing Research Program; U.S. Department of Energy Office of Science; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Advanced Scientific Computing Research Program and the Environmental Management Science Program of the U.S. Department of Energy Office of Science. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 26 TC 18 Z9 20 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 5 PY 2010 VL 82 IS 2 AR 026302 DI 10.1103/PhysRevE.82.026302 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 634UY UT WOS:000280612300001 PM 20866900 ER PT J AU Hou, JX Svaneborg, C Everaers, R Grest, GS AF Hou, Ji-Xuan Svaneborg, Carsten Everaers, Ralf Grest, Gary S. TI Stress Relaxation in Entangled Polymer Melts SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; LINEAR VISCOELASTICITY; CHAIN; PATH; ELASTICITY; REPTATION; LIQUIDS AB We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z = 40 entanglements and into the terminal relaxation regime for Z = 10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain. C1 [Hou, Ji-Xuan; Everaers, Ralf] Univ Lyon, Lyon, France. [Hou, Ji-Xuan; Everaers, Ralf] Ecole Normale Super Lyon, Phys Lab, CNRS, UMR 5672, F-69364 Lyon, France. [Hou, Ji-Xuan; Everaers, Ralf] Ecole Normale Super Lyon, Ctr Blaise Pascal, F-69364 Lyon, France. [Svaneborg, Carsten] Univ Aarhus, Dept Chem, DK-8000 Aarhus C, Denmark. [Svaneborg, Carsten] Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hou, JX (reprint author), Univ Lyon, Lyon, France. RI M & C, Matter & Complexity/B-9044-2011; Everaers, Ralf/K-2228-2013 OI Everaers, Ralf/0000-0002-6843-2753 FU Danish Natural Sciences Research Council; EC [MEST-CT-2005-020491]; Agence Nationale de Recherche (France); Sandia National Laboratories FX We thank the New Mexico Computing Application Center NMCAC for generous allocation of computer time and A. Likhtman and S. K. Sukumaran for their Green-Kubo data. C.S. acknowledges financial support from the Danish Natural Sciences Research Council. J.X.H. is supported by the EC through the Marie Curie EST Eurosim Project No. MEST-CT-2005-020491. R.E. acknowledges a chair of excellence grant from the Agence Nationale de Recherche (France). This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 34 TC 36 Z9 36 U1 0 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2010 VL 105 IS 6 AR 068301 DI 10.1103/PhysRevLett.105.068301 PG 4 WC Physics, Multidisciplinary SC Physics GA 634UZ UT WOS:000280612400015 PM 20868018 ER PT J AU Leutenegger, MA Beiersdorfer, P Brown, GV Kelley, RL Kilbourne, CA Porter, FS AF Leutenegger, M. A. Beiersdorfer, P. Brown, G. V. Kelley, R. L. Kilbourne, C. A. Porter, F. S. TI Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-Like Phosphorus Following Charge Exchange with Molecular Hydrogen SO PHYSICAL REVIEW LETTERS LA English DT Article ID BEAM ION-TRAP; SELECTIVE ELECTRON-CAPTURE; SOLAR-WIND; SLOW COLLISIONS; CROSS-SECTIONS; EXCITED-STATES; PDX TOKAMAK; PLASMAS; SPECTROMETER; SPECTROSCOPY AB We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with similar to 6 eV resolution. We find that the emission at the high end of the Lyman series is greater by a factor of 2 for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements. C1 [Leutenegger, M. A.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beiersdorfer, P.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Beiersdorfer, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Leutenegger, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; FU NASA; US Department of Energy [DE-AC52-07NA27344] FX We would like to acknowledge the aid of D. Thorn and J. Clementson in data acquisition; M.F. Gu for calibration support; and E. Magee for technical support. M.A.L. is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Part of this work was performed by Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under Contract No. DE-AC52-07NA27344. The XRS/EBIT instrument was constructed and maintained with support from NASA. NR 34 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2010 VL 105 IS 6 AR 063201 DI 10.1103/PhysRevLett.105.063201 PG 4 WC Physics, Multidisciplinary SC Physics GA 634UZ UT WOS:000280612400005 PM 20867978 ER PT J AU Venturini, M Migliorati, M Ronsivalle, C Ferrario, M Vaccarezza, C AF Venturini, M. Migliorati, M. Ronsivalle, C. Ferrario, M. Vaccarezza, C. TI Dynamics of longitudinal phase-space modulations in an rf compressor for electron beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Free-electron lasers operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper we provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. We develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations. C1 [Venturini, M.] LBNL, Berkeley, CA 94720 USA. [Migliorati, M.] Univ Roma La Sapienza, Rome, Italy. [Ronsivalle, C.] Ctr Ric Frascati, ENEA, Rome, Italy. [Migliorati, M.; Ferrario, M.; Vaccarezza, C.] INFN LNF, Rome, Italy. RP Venturini, M (reprint author), LBNL, Berkeley, CA 94720 USA. EM MVenturini@lbl.gov OI Migliorati, Mauro/0000-0001-7129-7348 FU Department of Energy [DE-AC02-05CH11231] FX We acknowledge useful discussions with A. Zholents and J. Qiang. One of us, M. V., is grateful to the SPARC group for the hospitality during his stay at the INFN Laboratori Nazionali di Frascati. This work was supported in part by Department of Energy Contract No. DE-AC02-05CH11231. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 5 PY 2010 VL 13 IS 8 AR 080703 DI 10.1103/PhysRevSTAB.13.080703 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 634VB UT WOS:000280612600001 ER PT J AU Sharakhova, MV George, P Brusentsova, IV Leman, SC Bailey, JA Smith, CD Sharakhov, IV AF Sharakhova, Maria V. George, Phillip Brusentsova, Irina V. Leman, Scotland C. Bailey, Jeffrey A. Smith, Christopher D. Sharakhov, Igor V. TI Genome mapping and characterization of the Anopheles gambiae heterochromatin SO BMC GENOMICS LA English DT Article ID DROSOPHILA-MELANOGASTER HETEROCHROMATIN; NONHISTONE CHROMOSOMAL PROTEIN; 2L TELOMERIC REGION; POLYTENE CHROMOSOMES; NUCLEAR-ENVELOPE; GENE-EXPRESSION; SPATIAL-ORGANIZATION; INTERCALARY HETEROCHROMATIN; 3-DIMENSIONAL ORGANIZATION; CHROMODOMAIN PROTEINS AB Background: Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector Anopheles gambiae has not been mapped and characterized. Results: To determine the extent of heterochromatin within the An. gambiae genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the An. gambiae chromosomes with antibodies against Drosophila melanogaster heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm(0) identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin. Conclusions: Our results demonstrate that Anopheles polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the An. gambiae heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms. C1 [Sharakhova, Maria V.; George, Phillip; Sharakhov, Igor V.] Virginia Tech, Dept Entomol, Blacksburg, VA 24061 USA. [Brusentsova, Irina V.] Russian Acad Sci, Inst Chem Biol & Fundamental Med, Siberian Branch, Dept Mol & Cellular Biol, Novosibirsk 630090, Russia. [Leman, Scotland C.] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA. [Bailey, Jeffrey A.] Univ Massachusetts, Sch Med, Program Bioinformat & Integrat Biol, Worcester, MA 01605 USA. [Bailey, Jeffrey A.] Univ Massachusetts, Sch Med, Dept Med, Div Transfus Med, Worcester, MA 01605 USA. [Smith, Christopher D.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Smith, Christopher D.] Lawrence Berkeley Lab, Drosophila Heterochromatin Genome Project, Berkeley, CA 94720 USA. RP Sharakhov, IV (reprint author), Virginia Tech, Dept Entomol, Blacksburg, VA 24061 USA. EM igor@vt.edu RI Sharakhov, Igor/B-1972-2008 OI Sharakhov, Igor/0000-0003-0752-3747 FU Virginia Tech; National Institutes of Health [5R21AI074729-02, 1R21AI081023-01, 5R01HG000747-14] FX The SUA colony of An. gambiae was obtained from the Malaria Research and Reference Reagent Resource Center (MR4). We thank Melissa Wade for editing the text and Mike Wong and the SFSU Center for Computing for Life Sciences for technical assistance with software installation and hardware maintenance. This work was supported by startup funds from Virginia Tech and National Institutes of Health grants 5R21AI074729-02 and 1R21AI081023-01 (to I. V. S) and 5R01HG000747-14 (to C. D. S). NR 91 TC 19 Z9 21 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD AUG 4 PY 2010 VL 11 AR 459 DI 10.1186/1471-2164-11-459 PG 17 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 662DW UT WOS:000282788400001 PM 20684766 ER PT J AU Liu, HB Pereira, JH Adams, PD Sabra, R Simmons, BA Sale, KL AF Liu, Hanbin Pereira, Jose Henrique Adams, Paul D. Sabra, Rajat Simmons, Blake A. Sale, Kenneth L. TI Molecular simulations provide new insights into the role of the accessory immunoglobulin-like domain of Cel9A SO FEBS LETTERS LA English DT Article DE Glycosylase-GH9; Cel9A; Immunoglobulin-like domain; Computational modeling; Molecular dynamic ID ALICYCLOBACILLUS-ACIDOCALDARIUS; CELLOBIOHYDROLASE CBHA; ENERGY LANDSCAPE; PROTEIN; CELLULOSE; ENZYMES AB Cel9A from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius belongs to the subfamily E1 of family 9 glycoside hydrolases, many members of which have an N-terminal Ig-like domain followed by the catalytic domain. The Ig-like domain is not directly involved in either carbohydrate binding or biocatalysis; however, deletion of the Ig-domain promotes loss of enzymatic activity. We have investigated the functional role of the Ig-like domain using molecular dynamics simulations. Our simulations indicate that residues within the Ig-like domain are dynamically correlated with residues in the carbohydrate-binding pocket and with key catalytic residues of Cel9A. Free energy perturbation simulations indicate that the Ig-like domain stabilizes the catalytic domain and may be responsible for the enhanced thermostability of Cel9A. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. C1 [Liu, Hanbin; Sabra, Rajat; Simmons, Blake A.; Sale, Kenneth L.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Pereira, Jose Henrique; Adams, Paul D.] Joint BioEnergy Inst, Div Technol, Emeryville, CA USA. [Liu, Hanbin; Sabra, Rajat; Simmons, Blake A.; Sale, Kenneth L.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Pereira, Jose Henrique; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sale, KL (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. EM Klsale@lbl.gov RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. This research utilized the resources of the National Energy Research Scientific Computing Center (NERSC). We thank Drs. Maite Roca and Arieh Warshel for stimulating and informative discussion. NR 21 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD AUG 4 PY 2010 VL 584 IS 15 BP 3431 EP 3435 DI 10.1016/j.febslet.2010.06.041 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 640FG UT WOS:000281033600031 PM 20609364 ER PT J AU Berube, F Khadhraoui, A Janicke, MT Kleitz, F Kaliaguine, S AF Berube, Francois Khadhraoui, Abdelkarim Janicke, Michael T. Kleitz, Freddy Kaliaguine, Serge TI Optimizing Silica Synthesis for the Preparation of Mesoporous Ti-SBA-15 Epoxidation Catalysts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID MOLECULAR-SIEVES; SUBSTITUTED SBA-15; HYDROGEN-PEROXIDE; SELECTIVE OXIDATION; TEMPLATING APPROACH; COPOLYMER TEMPLATE; EPR SPECTROSCOPY; TI CONTENT; TITANIUM; TRIBLOCK AB The influence of the synthesis conditions of SBA-15 silica support in the development of Ti-SBA-15 epoxidation catalysts has been studied in detail. In this study, efficient and stable Ti-SBA-15 epoxidation catalysts were prepared using a recently developed postgrafting method based on the insertion of a chelated titanium alkoxide precursor inside the SBA-15 silica mesophase. First, the nature of the SBA-15 supports was analyzed as a function of different synthesis parameters, such as hydrothermal aging temperature and calcination temperature, by solid-state NMR spectroscopy, thermal analysis, and nitrogen physisorption at -196 degrees C. Subsequently, titanium-substituted SBA-15 materials were characterized by DR UV-vis spectroscopy, elemental analysis, and nitrogen physisorption. As a catalytic test reaction, the activity, selectivity, and catalyst regenerability were studied in the epoxidation of cyclohexene. Our findings show that the density of silanol groups on the support greatly influences the retention and coordination number of the grafted titanium species. This characteristic of the mesoporous silica supports also has an influence on the catalytic activity of the resulting titanosilicate materials. The conversion of cyclohexene obtained with Ti-SBA-15 catalysts synthesized using noncalcined mesoporous silica was found to increase with the hydrothermal aging temperature of the support. Furthermore, the results showed that higher conversions of cyclohexene were obtained with catalysts prepared using SBA-15 calcined at 550 degrees C prior to the Ti grafting step, although lower dispersion of the titanium species was usually observed for these materials. A higher accessibility of the substrates to the active sites on the surface of these materials can explain these results. However, a dramatic deactivation of the catalysts was observed upon recycling of these active materials. In contrast, the grafted catalysts prepared using uncalcined mesoporous silica supports showed a substantially lower catalytic deactivation upon different reaction cycles as compared to those grafted after calcination. C1 [Khadhraoui, Abdelkarim; Kleitz, Freddy] Univ Laval, Dept Chem, Quebec City, PQ G1V 0A6, Canada. [Berube, Francois; Kaliaguine, Serge] Univ Laval, Dept Chem Engn, Quebec City, PQ G1V 0A6, Canada. [Janicke, Michael T.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Kleitz, F (reprint author), Univ Laval, Dept Chem, Quebec City, PQ G1V 0A6, Canada. EM freddy.kleitz@chm.ulaval.ca; serge.kaliaguine@gch.ulaval.ca OI Janicke, Michael/0000-0002-3139-2882; Kleitz, Freddy/0000-0001-6769-4180 FU Natural Sciences and Engineering Research Council of Canada (NSERC); le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) FX Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) is gratefully acknowledged. We thank Professor M. Leclerc from the Department of Chemistry of Universite Laval for access to UV-vis spectrometer. F.K. thanks the Canadian Government for the Canada Research Chair on Functional Nanostructured Materials. NR 54 TC 28 Z9 29 U1 10 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 4 PY 2010 VL 49 IS 15 BP 6977 EP 6985 DI 10.1021/ie901659k PG 9 WC Engineering, Chemical SC Engineering GA 631XU UT WOS:000280384800035 ER PT J AU Smith, DM Hazelton, BJ Grefenstette, BW Dwyer, JR Holzworth, RH Lay, EH AF Smith, D. M. Hazelton, B. J. Grefenstette, B. W. Dwyer, J. R. Holzworth, R. H. Lay, E. H. TI Terrestrial gamma ray flashes correlated to storm phase and tropopause height SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LOCATION NETWORK WWLLN; ATMOSPHERIC ORIGIN; ELECTRIC-FIELDS; X-RAYS; THUNDERSTORM; BURSTS AB We compare the seasonal and geographical occurrence of terrestrial gamma ray flashes (TGFs) with global lightning maps and find that only part of the difference can be explained by differences in tropopause altitude. The altitude hypothesis suggests either that TGFs are produced only in conjunction with the highest lightning or that only the highest events are seen from space because of the easier escape of gamma rays from the atmosphere. We find that the differences in atmospheric transmission due to seasonal and geographical differences in tropopause height play a major but not dominant role in reconciling lightning and TGF maps and that other factors are needed to explain the remaining local differences. In a second analysis, we use radio atmospherics data from the World Wide Lightning Location Network to study at what time in the evolution of a storm TGFs tend to be seen. We find that, on average, TGFs lag the peak flash rate of the associated storm by 38 min, although the range of lags is extremely wide, including some cases where the TGF leads the peak flash rate. C1 [Smith, D. M.; Hazelton, B. J.; Grefenstette, B. W.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.; Hazelton, B. J.; Grefenstette, B. W.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Dwyer, J. R.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Holzworth, R. H.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Lay, E. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Smith, DM (reprint author), Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA. EM dsmith@scipp.ucsc.edu FU NSF [ATM0607885]; NASA [NAS5-98033] FX We thank the referees for constructive and thought-provoking suggestions. This work makes use of the public v1.0 gridded LIS/OTD data. These data were produced by the NASA Lightning Image Sensor/Optical Transient Detector Science Team (Principal Investigator H. J. Christian, NASA/Marshall Space Flight Center) and are available from the Global Hydrology Resource Center (http://ghrc.msfc.nasa.gov). NCEP Reanalysis Derived data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 40 universities and institutions, for providing the lightning location data used in this paper. This work was supported in part by NSF grant ATM0607885 and NASA contract NAS5-98033. NR 34 TC 36 Z9 37 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 4 PY 2010 VL 115 AR A00E49 DI 10.1029/2009JA014853 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636HA UT WOS:000280721200004 ER PT J AU Trelenberg, TW Fatema, R Li, JA Akhadov, EA Van Winkle, DH Skofronick, JG Safron, SA Flaherty, FA Boatner, LA AF Trelenberg, T. W. Fatema, Rifat Li, Jaime A. Akhadov, E. A. Van Winkle, David H. Skofronick, J. G. Safron, Sanford A. Flaherty, F. A. Boatner, L. A. TI Surface structure of niobium-doped potassium tantalate KTa1-xNbxO3 obtained from helium atom scattering studies SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FERROELECTRIC KTA1-XNBXO3; ELEVATED-TEMPERATURES; PHONON-DISPERSION; RAMAN-SCATTERING; SOLID-SOLUTIONS; KTAO3; DYNAMICS; PEROVSKITES; CRYSTALS; DISORDER AB Helium atom scattering experiments have been carried out on the (001) surface of KTaO3 doped with 6, 10 and 15% Nb, produced by cleaving in situ single crystal samples. Several phenomena were observed through He atom diffraction measurements, including metastable behavior immediately after cleaving, reconstruction of a fraction of the surface to (2 x 1) domains after thermally cycling the surface temperatures, and the distribution of step heights of terraces at the surface as multiples of the unit cell dimension of similar to 4 angstrom. In addition, a large hysteresis effect was found in the < 100 > azimuth in the variation of surface reflectivity with surface temperature; a much smaller hysteresis effect was found in the < 110 > azimuth. The hysteresis effects appear for all Nb doping concentrations. Finally, small oscillations in the specular and Bragg diffraction intensities near the surface temperature 80 K were also observed. C1 [Trelenberg, T. W.; Fatema, Rifat; Li, Jaime A.; Akhadov, E. A.; Van Winkle, David H.; Skofronick, J. G.; Safron, Sanford A.] Florida State Univ, MARTECH, Tallahassee, FL 32306 USA. [Trelenberg, T. W.; Fatema, Rifat; Li, Jaime A.; Akhadov, E. A.; Van Winkle, David H.; Skofronick, J. G.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Safron, Sanford A.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Flaherty, F. A.] Valdosta State Univ, Dept Phys, Valdosta, GA 31698 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Trelenberg, TW (reprint author), Florida State Univ, MARTECH, Tallahassee, FL 32306 USA. EM rip@phy.fsu.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU MARTECH; Florida State University; Department of Energy [DE-FG02-97ER45635]; Division of Materials Sciences and Engineering (LAB); US Department of Energy FX We thank Professors R Kennedy and P Stampe, Florida A&M University, Tallahassee, FL, for x-ray alignment of some of our samples. We gratefully acknowledge the support of this research by MARTECH and the Florida State University and in the past by the Department of Energy grant DE-FG02-97ER45635. Research at Oak Ridge National Laboratory is sponsored by the Division of Materials Sciences and Engineering (LAB) and by the US Department of Energy. NR 34 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 4 PY 2010 VL 22 IS 30 AR 304009 DI 10.1088/0953-8984/22/30/304009 PG 9 WC Physics, Condensed Matter SC Physics GA 691ES UT WOS:000285063700010 PM 21399341 ER PT J AU Greenman, L Ho, PJ Pabst, S Kamarchik, E Mazziotti, DA Santra, R AF Greenman, Loren Ho, Phay J. Pabst, Stefan Kamarchik, Eugene Mazziotti, David A. Santra, Robin TI Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes SO PHYSICAL REVIEW A LA English DT Article ID ABOVE-THRESHOLD IONIZATION; ORDER HARMONIC-GENERATION; NONSEQUENTIAL DOUBLE-IONIZATION; DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK THEORY; MULTIPHOTON IONIZATION; LASER-PULSES; RARE-GASES; X-RAYS; MULTIPLE IONIZATION AB We present an implementation of the time-dependent configuration-interaction singles (TDCIS) method for treating atomic strong-field processes. In order to absorb the photoelectron wave packet when it reaches the end of the spatial grid, we add to the exact nonrelativistic many-electron Hamiltonian a radial complex absorbing potential (CAP). We determine the orbitals for the TDCIS calculation by diagonalizing the sum of the Fock operator and the CAP using a flexible pseudospectral grid for the radial degree of freedom and spherical harmonics for the angular degrees of freedom. The CAP is chosen such that the occupied orbitals in the Hartree-Fock ground state remain unaffected. Within TDCIS, the many-electron wave packet is expanded in terms of the Hartree-Fock ground state and its single excitations. The virtual orbitals satisfy nonstandard orthogonality relations, which must be taken into consideration in the calculation of the dipole and Coulomb matrix elements required for the TDCIS equations of motion. We employ a stable propagation scheme derived by second-order finite differencing of the TDCIS equations of motion in the interaction picture and subsequent transformation to the Schrodinger picture. Using the TDCIS wave packet, we calculate the expectation value of the dipole acceleration and the reduced density matrix of the residual ion. The technique implemented will allow one to study electronic channel-coupling effects in strong-field processes. C1 [Greenman, Loren; Kamarchik, Eugene; Mazziotti, David A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Greenman, Loren; Kamarchik, Eugene; Mazziotti, David A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Ho, Phay J.; Pabst, Stefan; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Pabst, Stefan] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. EM damazz@uchicago.edu; robin.santra@cfel.de RI Pabst, Stefan/J-6541-2013; Santra, Robin/E-8332-2014 OI Pabst, Stefan/0000-0003-1134-4629; Santra, Robin/0000-0002-1442-9815 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-06CH11357] FX We thank Nina Rohringer for helpful discussions. This work was supported by the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-06CH11357. L. G. would like to thank Martha Ann and Joseph A. Chenicek and their family for financial support. NR 122 TC 72 Z9 72 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 4 PY 2010 VL 82 IS 2 AR 023406 DI 10.1103/PhysRevA.82.023406 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 634IW UT WOS:000280575300008 ER PT J AU Levchenko, A Micklitz, T Norman, MR Paul, I AF Levchenko, A. Micklitz, T. Norman, M. R. Paul, I. TI Transport implications of Fermi arcs in the pseudogap phase of the cuprates SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; NORMAL-STATE; HIGH-T(C) SUPERCONDUCTORS; EVOLUTION AB We derive the fermionic contribution to the longitudinal and Hall conductivities within a Kubo formalism, using a phenomenological Green's function which has been previously developed to describe photoemission data in the pseudogap phase of the cuprates. We find that the in-plane electrical and thermal conductivities are metalliclike, showing a universal limit behavior characteristic of a d-wave spectrum as the scattering rate goes to zero. In contrast, the c-axis resistivity and the Hall number are insulatinglike, being divergent in the same limit. The relation of these results to transport data in the pseudogap phase is discussed. C1 [Levchenko, A.; Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Micklitz, T.] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany. [Micklitz, T.] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany. [Paul, I.] UJF, Inst Neel, CNRS, F-38042 Grenoble, France. RP Levchenko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU U.S. DOE, Office of Science [DE-AC02-06CH11357] FX This work was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. NR 34 TC 16 Z9 16 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 4 PY 2010 VL 82 IS 6 AR 060502 DI 10.1103/PhysRevB.82.060502 PG 4 WC Physics, Condensed Matter SC Physics GA 634JC UT WOS:000280576000001 ER PT J AU Wang, Y Zhang, J Zhang, XG Cheng, HP Han, XF AF Wang, Yan Zhang, Jia Zhang, X. -G. Cheng, Hai-Ping Han, X. F. TI First-principles study of Fe/MgO based magnetic tunnel junctions with Mg interlayers SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; MAGNETORESISTANCE; SURFACES; LAYER AB -Fe(001)/Mg/MgO/Fe- and -Fe(001)/Mg/MgO/Mg/Fe- magnetic tunnel junctions (MTJs) with Mg inter-layers are studied by first-principles calculations. We find that the Mg interlayer is able to preserve the preferential transmission of the majority-spin states with Delta(1) symmetry, which dominates the spin-dependent electron transport in MTJs with MgO barrier. A monoatomic layer of Mg at the electrode/barrier interface does not decrease the tunneling magnetoresistance (TMR) ratio nearly as much as a similar layer of iron oxide. We also find that at a certain Mg thickness the TMR is strongly influenced by resonant tunneling in the minority-spin channel. These resonances are due to the coupling between the quantum-well states within the Mg interlayer to the interfacial resonance states on the Fe/Mg interface. The calculated results are used to explain experimental measurements of MTJs with Mg interlayers. C1 [Wang, Yan; Zhang, Jia; Han, X. F.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Wang, Yan; Cheng, Hai-Ping] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Wang, Yan; Cheng, Hai-Ping] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. RP Wang, Y (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. RI Wang, Yan/G-8061-2011; Zhang, Jia/A-7494-2016 OI Wang, Yan/0000-0002-8648-2172; FU Ministry of Science and Technology [2006CB932200, 2010CB934400]; National Natural Science Foundation of China [10934099, 50928101, 50721001]; Beijing Municipal Commission of Education; K. C. Wong Education Foundation, Hong Kong; Division of Scientific User Facilities, Office of Basic Energy Sciences, U. S. Department of Energy (DOE); U.S./DOE/BES [DE-FG02-02ER45995] FX The authors would like to thank T. Moriyama and J. Q. Xiao for providing their experimental data. The project is supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (Grants No. 2006CB932200 and No. 2010CB934400), National Natural Science Foundation of China (Grants No. 10934099, No. 50928101, and No. 50721001), and Graduate Education Project of Beijing Municipal Commission of Education and K. C. Wong Education Foundation, Hong Kong. A portion of this research is conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). H. P. C. acknowledges U.S./DOE/BES under Grant No. DE-FG02-02ER45995. The authors acknowledge the UF-HPC center and DOE/NERSC for providing computational resources. NR 41 TC 17 Z9 17 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 4 PY 2010 VL 82 IS 5 AR 054405 DI 10.1103/PhysRevB.82.054405 PG 8 WC Physics, Condensed Matter SC Physics GA 634JB UT WOS:000280575800002 ER PT J AU Nukala, PKVV Barai, P Zapperi, S Alava, MJ Simunovic, S AF Nukala, Phani K. V. V. Barai, Pallab Zapperi, Stefano Alava, Mikko J. Simunovic, Srdan TI Fracture roughness in three-dimensional beam lattice systems SO PHYSICAL REVIEW E LA English DT Article ID FUSE NETWORKS; CRACK-PROPAGATION; SURFACES AB We study the scaling of three-dimensional crack roughness using large-scale beam lattice systems. Our results for prenotched samples indicate that the crack surface is statistically isotropic, with the implication that experimental findings of anisotropy of fracture surface roughness in directions parallel and perpendicular to crack propagation is not due to the scalar or vectorial elasticity of the model. In contrast to scalar fuse lattices, beam lattice systems do not exhibit anomalous scaling or an extra dependence of roughness on system size. The local and global roughness exponents (zeta(loc) and zeta, respectively) are equal to each other, and the three-dimensional crack roughness exponent is estimated to be zeta(loc) = zeta = 0.48 +/- 0.03. This closely matches the roughness exponent observed outside the fracture process zone. The probability density distribution p[Delta h(l)] of the height differences Delta h(l) = [h(x + l)-h(x)] of the crack profile follows a Gaussian distribution, in agreement with experimental results. C1 [Nukala, Phani K. V. V.; Barai, Pallab; Simunovic, Srdan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] CNR, IENI, I-20125 Milan, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. [Alava, Mikko J.] Aalto Univ, Dept Engn Phys, FIN-02015 Aalto, Finland. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 FU Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-00OR22725]; European Commissions [NEST-2005-PATH-COM-043386]; Academy of Finland FX This research was sponsored by the Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. M.J.A. and S.Z. gratefully thank the financial support of the European Commissions NEST Pathfinder program TRIGS under Contract No. NEST-2005-PATH-COM-043386. M.J.A. also acknowledges the financial support from The Center of Excellence program of the Academy of Finland. NR 42 TC 8 Z9 8 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG 4 PY 2010 VL 82 IS 2 AR 026103 DI 10.1103/PhysRevE.82.026103 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 634KJ UT WOS:000280579500003 PM 20866872 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aramaki, Y Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Barish, KN Bassalleck, B Basye, AT Bathe, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Bok, JS Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chen, CH Chi, CY Chiu, M Choi, IJ Choudhury, RK Christiansen, P Chujo, T Chung, P Chvala, O Cianciolo, V Citron, Z Cole, BA Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Danchev, I Das, K Datta, A David, G Denisov, A Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Durham, JM Durum, A Dutta, D Edwards, S Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Hanks, J Han, R Hartouni, EP Haslum, E Hayano, R Heffner, M Hegyi, S Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ide, J Ikeda, Y Imai, K Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Karatsu, K Kawall, D Kawashima, M Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kim, BI Kim, DH Kim, DJ Kim, EJ Kim, E Kim, SH Kim, YJ Kinney, E Kiriluk, K Kiss, A Kistenev, E Kochenda, L Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, DM Lee, J Lee, KB Lee, K Lee, KS Leitch, MJ Leite, MAL Leitner, E Lenzi, B Liebing, P Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Luechtenborg, R Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mignerey, AC Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pantuev, V Papavassiliou, V Park, IH Park, J Park, SK Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Reygers, K Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Rosati, M Rosen, CA Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Sahlmueller, B Saito, N Sakaguchi, T Sakashita, K Samsonov, V Sano, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Sparks, NA Stankus, PW Stenlund, E Stoll, SP Sugitate, T Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Torii, H Towell, RS Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Wei, F Wei, R Wessels, J White, SN Winter, D Wood, JP Woody, CL Wright, RM Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I You, Z Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aramaki, Y. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Barish, K. N. Bassalleck, B. Basye, A. T. Bathe, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Bok, J. S. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chen, C. -H. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Danchev, I. Das, K. Datta, A. David, G. Denisov, A. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Durham, J. M. Durum, A. Dutta, D. Edwards, S. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Hanks, J. Han, R. Hartouni, E. P. Haslum, E. Hayano, R. Heffner, M. Hegyi, S. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ide, J. Ikeda, Y. Imai, K. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Karatsu, K. Kawall, D. Kawashima, M. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. J. Kim, E. Kim, S. H. Kim, Y. J. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Lebedev, A. Lee, D. M. Lee, J. Lee, K. B. Lee, K. Lee, K. S. Leitch, M. J. Leite, M. A. L. Leitner, E. Lenzi, B. Liebing, P. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Luechtenborg, R. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mignerey, A. C. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pantuev, V. Papavassiliou, V. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Reygers, K. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosen, C. A. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakashita, K. Samsonov, V. Sano, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Sparks, N. A. Stankus, P. W. Stenlund, E. Stoll, S. P. Sugitate, T. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Torii, H. Towell, R. S. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Wood, J. P. Woody, C. L. Wright, R. M. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. You, Z. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zolin, L. TI Elliptic and Hexadecapole Flow of Charged Hadrons in Au plus Au Collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; ANISOTROPIC FLOW; COLLABORATION AB Differential measurements of the elliptic (upsilon(2)) and hexadecapole (upsilon(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N-part) for Au + Au collisions at root s(NN) = 200 GeV/ The upsilon(2,4) measurements at pseudorapidity vertical bar eta vertical bar <= 0.35, obtained with four separate reaction-plane detectors positioned in the range 1.0 < vertical bar eta vertical bar < 3.9, show good agreement, indicating the absence of significant Delta eta-dependent nonflow correlations. Sizable values for upsilon(4)(p(T)) are observed with a ratio upsilon(4)(p(T), N-part)/upsilon(2)(2)(p(T), N-part) approximate to 0.8 for 50 less than or similar to N-part less than or similar to 200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N-part greater than or similar to 200 this ratio increases up to 1.7 in the most central collisions. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Levy, L. A. Linden; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Isenhower, D.; Jumper, D. S.; Sparks, N. A.; Towell, R. S.; Wood, J. P.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sano, S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Pereira, H.; Silvestre, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Hohlmann, M.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Edwards, S.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Homma, K.; Horaguchi, T.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Denisov, A.; Durum, A.; Shein, I.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Perdekamp, M. Grosse; Kim, Y. J.; Koster, J.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Nagamiya, S.; Nakamura, T.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Hegyi, S.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Imai, K.; Karatsu, K.; Shoji, K.; Tanida, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, F-63177 Aubiere, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Luechtenborg, R.; Reygers, K.; Sahlmueller, B.; Wessels, J.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Ide, J.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Kotchetkov, D.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.] Univ Paris 11, CNRS, IPN Orsay, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Kametani, S.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Onuki, Y.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, BNL Res Ctr, RIKEN, Upton, NY 11973 USA. [Kawashima, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, K.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Jia, J.; Lacey, R.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Proissl, M.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Garishvili, I.; Hamblen, J.; Hornback, D.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Oka, M.; Sato, T.; Shimomura, M.; Tanabe, R.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Danchev, I.; Greene, S. V.; Huang, S.; Issah, M.; Leitner, E.; Love, B.; Maguire, C. F.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Sano, S.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Bok, J. S.; Choi, I. J.; Kang, J. H.; Kim, S. H.; Kwon, Y.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Mignerey, Alice/D-6623-2011; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014 OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Hayano, Ryugo/0000-0002-1214-7806; FU Office of Nuclear Physics in DOE Office of Science and NSF (USA); MEXT; JSPS (Japan); CNPq; FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE; DST (India); ISF (Israel); NRF (Korea); MES; RAS; FAAE (Russia); VR; KAW (Sweden); FSU; US-Hungary Fulbright; US-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (USA); MEXT and JSPS (Japan); CNPq and FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS and CEA (France); BMBF, DAAD, and AvH (Germany); OTKA (Hungary); DAE and DST (India); ISF (Israel); NRF (Korea); MES, RAS, and FAAE (Russia); VR and KAW (Sweden); US CRDF for the FSU; US-Hungary Fulbright; and US-Israel BSF. NR 31 TC 75 Z9 75 U1 8 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 4 PY 2010 VL 105 IS 6 AR 062301 DI 10.1103/PhysRevLett.105.062301 PG 6 WC Physics, Multidisciplinary SC Physics GA 634KP UT WOS:000280580100003 ER PT J AU Jia, Y Wu, BA Li, C Einstein, TL Weitering, HH Zhang, ZY AF Jia, Yu Wu, Biao Li, Chong Einstein, T. L. Weitering, H. H. Zhang, Zhenyu TI Strong Quantum Size Effects in Pb(111) Thin Films Mediated by Anomalous Friedel Oscillations SO PHYSICAL REVIEW LETTERS LA English DT Article ID METAL-SURFACES; SUPERCONDUCTIVITY; GROWTH; ENERGY; STABILITY; PB AB Using first-principles calculations within density functional theory, we study Friedel oscillations (FOs) in the electron density at different metal surfaces and their influence on the lattice relaxation and stability of ultrathin metal films. We show that the FOs at the Pb(111) surface decay as 1/x with the distance x from the surface, different from the conventional 1/x(2) power law at other metal surfaces. The underlying physical reason for this striking difference is tied to the strong nesting of the two different Fermi sheets along the Pb(111) direction. The interference of the strong FOs emanating from the two surfaces of a Pb(111) film, in turn, not only results in superoscillatory interlayer relaxations around the center of the film, but also determines its stability in the quantum regime. As a simple and generic picture, the present findings also explain why quantum size effects are exceptionally robust in Pb(111) films. C1 [Jia, Yu; Li, Chong] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. [Jia, Yu; Weitering, H. H.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wu, Biao] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Einstein, T. L.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Weitering, H. H.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Jia, Y (reprint author), Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. RI Wu, Biao/B-3329-2008; Li, Chong/H-5402-2011; OI Wu, Biao/0000-0001-9229-5894; Einstein, Theodore L./0000-0001-6031-4923 FU NSF of China [10974182, 10825417]; U.S. NSF [DMR-0906025, DMR-0520471]; U.S. DOE FX We thank Professor Yuping Huo, Professor Caizhuang Wang, Professor Junren Shi, and Professor Di Xiao for helpful discussions. This project was supported in part by the NSF of China (Grants No. 10974182 and No. 10825417), by the U.S. NSF (Grant No. DMR-0906025 and UMD-MRSEC Grant No. DMR-0520471), and by the U.S. DOE (Division of Materials Science and Engineering, Office of Basic Sciences, and BES-CMSN). NR 31 TC 28 Z9 28 U1 4 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 4 PY 2010 VL 105 IS 6 AR 066101 DI 10.1103/PhysRevLett.105.066101 PG 4 WC Physics, Multidisciplinary SC Physics GA 634KP UT WOS:000280580100006 PM 20867988 ER PT J AU Schaller, RD Crooker, SA Bussian, DA Pietryga, JM Joo, J Klimov, VI AF Schaller, R. D. Crooker, S. A. Bussian, D. A. Pietryga, J. M. Joo, J. Klimov, V. I. TI Revealing the Exciton Fine Structure of PbSe Nanocrystal Quantum Dots Using Optical Spectroscopy in High Magnetic Fields SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLOIDAL PBSE; DARK-EXCITON; LIFETIME AB We measure the photoluminescence lifetime tau of excitons in colloidal PbSe nanocrystals (NCs) at low temperatures to 270 mK and in high magnetic fields to 15 T. For all NCs, tau increases sharply below 10 K but saturates by 500 mK. In contrast to the usual picture of well- separated "bright'' and "dark'' exciton states (found, e.g., in CdSe NCs), these dynamics fit remarkably well to a system having two exciton states with comparable-but small-oscillator strengths that are separated by only 300-900 mu eV depending on NC size. Importantly, magnetic fields reduce tau below 10 K, consistent with field-induced mixing between the two states. Magnetic-circular dichroism studies reveal exciton g factors from 2-5, and magneto-photoluminescence shows >10% circularly polarized emission. C1 [Schaller, R. D.; Bussian, D. A.; Pietryga, J. M.; Joo, J.; Klimov, V. I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Crooker, S. A.] Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Schaller, RD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. OI Klimov, Victor/0000-0003-1158-3179 FU U.S. DOE Office of Basic Energy Sciences (BES) Chemical, Bio, and Geosciences Division; Center for Advanced Solar Photophysics; BES Energy Frontier Research Center FX We thank A. Efros, D. Smith, and A. Migliori for helpful discussions, and acknowledge support from the U.S. DOE Office of Basic Energy Sciences (BES) Chemical, Bio, and Geosciences Division. V. I. K. is supported by the Center for Advanced Solar Photophysics, a BES Energy Frontier Research Center. NR 22 TC 25 Z9 25 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 4 PY 2010 VL 105 IS 6 AR 067403 DI 10.1103/PhysRevLett.105.067403 PG 4 WC Physics, Multidisciplinary SC Physics GA 634KP UT WOS:000280580100012 PM 20868011 ER PT J AU Yu, TP Pukhov, A Shvets, G Chen, M AF Yu, Tong-Pu Pukhov, Alexander Shvets, Gennady Chen, Min TI Stable Laser-Driven Proton Beam Acceleration from a Two-Ion-Species Ultrathin Foil SO PHYSICAL REVIEW LETTERS LA English DT Article AB By using multidimensional particle-in-cell simulations, we present a new regime of stable proton beam acceleration which takes place when a two-ion-species shaped foil is illuminated by a circularly polarized laser pulse. In the simulations, the lighter protons are nearly instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy ion layer expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to explain qualitatively the stable acceleration of the light ions. In the absence of the RT instability, the high quality monoenergetic proton bunch persists even after the laser-foil interaction ends. C1 [Yu, Tong-Pu; Pukhov, Alexander; Chen, Min] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Yu, Tong-Pu] Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China. [Shvets, Gennady] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Shvets, Gennady] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Chen, Min] Univ Calif Berkeley, Lawrence Berkeley Lab, Accelerator Fus Res Div, Berkeley, CA 94720 USA. RP Yu, TP (reprint author), Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. EM pukhov@tp1.uni-duesseldorf.de RI Yu, Tong-Pu/A-2360-2011; Chen, Min/A-9955-2010; pukhov, alexander/C-8082-2016 OI Chen, Min/0000-0002-4290-9330; FU DFG [GRK1203, TR18]; China Scholarship Council; NSAF [10976031]; U.S. DOE [DE-FG02-05ER54840, DE-FG02-04ER41321]; Alexander von Humboldt Foundation FX This work is supported by the DFG programs GRK1203 and TR18. T. P. Y. acknowledges financial support from the China Scholarship Council and the NSAF program (Grant No. 10976031). G. S. acknowledges the support of the U.S. DOE Grants No. DE-FG02-05ER54840 and No. DE-FG02-04ER41321. M. C. acknowledges support from the Alexander von Humboldt Foundation. NR 29 TC 91 Z9 91 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 4 PY 2010 VL 105 IS 6 AR 065002 DI 10.1103/PhysRevLett.105.065002 PG 4 WC Physics, Multidisciplinary SC Physics GA 634KP UT WOS:000280580100005 PM 20867984 ER PT J AU Peri, SR Kim, H Akgun, B Enlow, J Jiang, H Bunning, TJ Li, XF Foster, MD AF Peri, Someswara R. Kim, Hyeonjae Akgun, Bulent Enlow, Jesse Jiang, Hao Bunning, Timothy J. Li, Xuefa Foster, Mark D. TI Structure of copolymer films created by plasma enhanced chemical vapor deposition SO POLYMER LA English DT Article DE Plasma enhanced chemical vapor deposition; Plasma copolymerization ID X-RAY REFLECTIVITY; POLYMER THIN-FILMS; FLUOROCARBON PLASMA; SILICON; SCATTERING; INJECTION; GROWTH; SIO2 AB The interface structure in copolymer films made using plasma enhanced chemical vapor deposition (PECVD) has been probed for the first time using X-ray reflectivity. Copolymer films made from comonomers benzene (B), octafluorocyclobutane (OFCB), and hexamethyldisiloxane (HMDS) show extremely sharp interfaces and scattering length density depth profiles that are uniform with depth, making them useful for optical applications. The polymer/air interface has an rms roughness (similar to 5 angstrom) that is only slightly larger than that of the supporting substrate (similar to 3 angstrom). Addition of either benzene or HMDS as a comonomer in the deposition of OFCB alters a transient deposition behavior at the silicon oxide interface that occurs when using only OFCB. For the B-OFCB copolymer films, a facile control of refractive index with monomer feed composition is achieved. A nonlinear variation in the X-ray scattering length density with composition for the HMDS-OFCB copolymer films is consistent with the nonlinear visible light refractive index (632.8 nm) variation reported earlier. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Peri, Someswara R.; Kim, Hyeonjae; Akgun, Bulent; Foster, Mark D.] Univ Akron, Inst Polymer Sci & Polymer Engn, Akron, OH 44325 USA. [Enlow, Jesse; Jiang, Hao; Bunning, Timothy J.] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Li, Xuefa] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Foster, MD (reprint author), Univ Akron, Inst Polymer Sci & Polymer Engn, 170 Univ Ave, Akron, OH 44325 USA. EM mfoster@uakron.edu RI Akgun, Bulent/H-3798-2011 FU Collaborative Center for Polymer Photonics [49620-02-1-0428]; Air Force Office of Scientific Research, Air Force Research Laboratory; University of Akron; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX SP thanks Sergei Lyuksyutov for help in doing AFM measurements and John Grant for help with XPS measurements. This research was funded by the Collaborative Center for Polymer Photonics (49620-02-1-0428) which is co-funded by the Air Force Office of Scientific Research, Air Force Research Laboratory, and The University of Akron. The authors appreciate access to beamline 1-BM and the assistance of Jin Wang and the SRI collaborative access team. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 38 TC 6 Z9 6 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD AUG 4 PY 2010 VL 51 IS 17 BP 3971 EP 3977 DI 10.1016/j.polymer.2010.06.055 PG 7 WC Polymer Science SC Polymer Science GA 638MF UT WOS:000280898300020 ER PT J AU Burckel, DB Wendt, JR Ten Eyck, GA Ellis, AR Brener, I Sinclair, MB AF Burckel, D. Bruce Wendt, Joel R. Ten Eyck, Gregory A. Ellis, A. Robert Brener, Igal Sinclair, Michael B. TI Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography SO ADVANCED MATERIALS LA English DT Article ID PHOTONIC METAMATERIAL; SHADOW-MASK AB A new fabrication approach, self-aligned membrane projection lithography, is used to create composite split ring resonators with a resonance near 10 mu m. The composite resonators are oriented on the interior face of approximately-spheroidal cavities, and hence represent the first instance of fabrication of micrometer-scale SRRs with out-of-plane current flow. C1 [Burckel, D. Bruce; Wendt, Joel R.; Ten Eyck, Gregory A.; Ellis, A. Robert; Brener, Igal; Sinclair, Michael B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Burckel, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dbburck@sandia.gov RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 FU Sandia National Laboratories; United Stated Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Bonnie McKenzie for providing SEM images. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 15 TC 40 Z9 40 U1 4 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD AUG 3 PY 2010 VL 22 IS 29 BP 3171 EP + DI 10.1002/adma.200904153 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 640NM UT WOS:000281058300006 PM 20533414 ER PT J AU Pratt, KA Twohy, CH Murphy, SM Moffet, RC Heymsfield, AJ Gaston, CJ DeMott, PJ Field, PR Henn, TR Rogers, DC Gilles, MK Seinfeld, JH Prather, KA AF Pratt, Kerri A. Twohy, Cynthia H. Murphy, Shane M. Moffet, Ryan C. Heymsfield, Andrew J. Gaston, Cassandra J. DeMott, Paul J. Field, Paul R. Henn, Tobias R. Rogers, David C. Gilles, Mary K. Seinfeld, John H. Prather, Kimberly A. TI Observation of playa salts as nuclei in orographic wave clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL MASS-SPECTROMETER; COUNTERFLOW VIRTUAL IMPACTOR; SECONDARY ORGANIC AEROSOL; OWENS DRY LAKE; INDIVIDUAL PARTICLES; CHEMICAL-COMPOSITION; SIZE DISTRIBUTIONS; HYGROSCOPIC GROWTH; SOUTHERN NEVADA; DUST GENERATION AB During the Ice in Clouds Experiment-Layer Clouds (ICE-L), dry lakebed, or playa, salts from the Great Basin region of the United States were observed as cloud nuclei in orographic wave clouds over Wyoming. Using a counterflow virtual impactor in series with a single-particle mass spectrometer, sodium-potassium-magnesium-calcium-chloride salts were identified as residues of cloud droplets. Importantly, these salts produced similar mass spectral signatures to playa salts with elevated cloud condensation nuclei (CCN) efficiencies close to sea salt. Using a suite of chemical characterization instrumentation, the playa salts were observed to be internally mixed with oxidized organics, presumably produced by cloud processing, as well as carbonate. These salt particles were enriched as residues of large droplets (>19 mu m) compared to smaller droplets (>7 mu m). In addition, a small fraction of silicate-containing playa salts were hypothesized to be important in the observed heterogeneous ice nucleation processes. While the high CCN activity of sea salt has been demonstrated to play an important role in cloud formation in marine environments, this study provides direct evidence of the importance of playa salts in cloud formation in continental North America has not been shown previously. Studies are needed to model and quantify the impact of playas on climate globally, particularly because of the abundance of playas and expected increases in the frequency and intensity of dust storms in the future due to climate and land use changes. C1 [DeMott, Paul J.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Field, Paul R.] Met Off, Exeter EX1 3PB, Devon, England. [Gaston, Cassandra J.; Prather, Kimberly A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Moffet, Ryan C.; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Henn, Tobias R.] Univ Wurzburg, Dept Phys, D-97074 Wurzburg, Germany. [Heymsfield, Andrew J.] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80305 USA. [Pratt, Kerri A.; Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Rogers, David C.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80305 USA. [Seinfeld, John H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Twohy, Cynthia H.] Oregon State Univ, Dept Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Murphy, Shane M.; Seinfeld, John H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RP Pratt, KA (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM kprather@ucsd.edu RI Pratt, Kerri/F-8025-2010; DeMott, Paul/C-4389-2011; Heymsfield, Andrew/E-7340-2011; Prather, Kimberly/A-3892-2008; Field, Paul/B-1692-2009 OI Pratt, Kerri/0000-0003-4707-2290; DeMott, Paul/0000-0002-3719-1889; Prather, Kimberly/0000-0003-3048-9890; Field, Paul/0000-0001-8528-0088 FU NSF; NCAR; NSF [ATM-0650659, ATM-0625526, ATM-0321362, ATM-0612605, ATM-0611936, ATM-0340832]; NASA; Department of Energy's Office of Biological and Environmental Research; Department of Energy's Office of Basic Energy Sciences [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory FX The authors thank the ICE-L C-130 crew and investigators for their support. NSF and NCAR are acknowledged for financial support of the ICE-L field campaign, as well as the work of A.J. Heymsfield and D. C. Rogers. K. A. Pratt, C.J. Gaston, and K. A. Prather acknowledge NSF for support of ICE-L (ATM-0650659), laboratory studies (ATM-0650659 and ATM-0625526), A-ATOFMS development (ATM-0321362), and a graduate research fellowship for K. A. Pratt. C. H. Twohy and P.J. DeMott acknowledge NSF for ICE-L support (ATM-0612605 and ATM-0611936, respectively). S. M. Murphy and J.H. Seinfeld acknowledge NSF for support of ICE-L (ATM-0340832) and NASA for an Earth and Space Sciences Fellowship for S. M. Murphy. R. C. Moffet, T. R. Henn, and M. K. Gilles acknowledge support from the Department of Energy's Office of Biological and Environmental Research, Atmospheric Science Program, and Office of Basic Energy Sciences (DE-AC02-05CH11231), as well as the Lawrence Berkeley National Laboratory Glenn T. Seaborg Fellowship for R. C. Moffet. STEM-EDX was completed by Julia Sobolik (Oregon State University) and Traci Lersch (RJ LeeGroup, Inc). Cloud probe data were provided by NCAR/EOL under sponsorship of NSF (http://data.eol.ucar.edu). Total PM10 and PM2.5 mass concentrations in Utah were provided by the Utah State Division of Air Quality. Gregory Roberts (UCSD) is thanked for use of the CCNc. David Soller and Marith Reheis (USGS) are acknowledged for provision of the playa sediments map. ICE-L lidar and radar data were provided by Zhien Wang, Jeffrey French, and Samuel Haimov (University of Wyoming). Sonia Kreidenweis (Colorado State University) and Trude Eidhammer (NCAR) are thanked for discussions. The authors acknowledge NOAA ARL for the provision of the HYSPLIT READY website (http://www.arl.noaa.gov/ready.html) used in this publication. Salt Lake City radiosonde data were provided by the University of Wyoming; surface wind data were provided by MesoWest. NR 91 TC 25 Z9 25 U1 2 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 3 PY 2010 VL 115 AR D15301 DI 10.1029/2009JD013606 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GA UT WOS:000280718300009 ER PT J AU Das, S Bwambok, D El-Zahab, B Monk, J de Rooy, SL Challa, S Li, M Hung, FR Baker, GA Warner, IM AF Das, Susmita Bwambok, David El-Zahab, Bilal Monk, Joshua de Rooy, Sergio L. Challa, Santhosh Li, Min Hung, Francisco R. Baker, Gary A. Warner, Isiah M. TI Nontemplated Approach to Tuning the Spectral Properties of Cyanine-Based Fluorescent NanoGUMBOS SO LANGMUIR LA English DT Article ID IONIC LIQUIDS; ORGANIC NANOPARTICLES; OPTICAL-PROPERTIES; FORCE-FIELD; DYE NANOPARTICLES; TRANSITION; EMISSION; MICROCRYSTALS; PHOTOPHYSICS; AGGREGATION AB Template-free controlled aggregation and spectral properties in fluorescent organic nanoparticles (FONs) is highly desirable for various applications. Herein, we report a nontemplated method for controlling the aggregation in near-infrared (NIR) cyanine-based nanoparticles derived from a group of uniform materials based on organic salts (GUMBOS). Cationic heptamethine cyanine dye 1,1',3,3,3',3'-hexamethylindotricarbocyanine (HMT) was coupled with five different anions, viz., [NTf(2)(-)], [BETI(-)], [TFPB(-)], [AOT(-)], and [TFP4B(-)], by an ion-exchange method to obtain the respective GUMBOS. The nanoGUMBOS obtained via a reprecipitation method were primarily amorphous and spherical (30-100 nm) as suggested by selected area electron diffraction (SAED) and transmission electron microscopy (TEM). The formation of tunable self-assemblies within the nanoGUMBOS was characterized using absorption and fluorescence spectroscopy in conjunction with molecular dynamics simulations. Counterion-controlled spectral properties observed in the nanoGUMBOS were attributed to variations in J/H ratios with different anions. Association with the [AOT(-)] anion afforded predominant J aggregation enabling the highest fluorescence intensity, whereas [TFP4B(-)] disabled the fluorescence due to predominant H aggregation in the nanoparticles. Analyses of the stacking angle of the cations based on molecular dynamic simulation results in [HMT][NTf(2)], [HMT][BETI], and [HMT][AOT] dispersed in water and a visual analysis of the representative simulation snapshots also imply that the type of aggregation was controlled through the counterion associated with the dye cation. C1 [Das, Susmita; Bwambok, David; El-Zahab, Bilal; de Rooy, Sergio L.; Challa, Santhosh; Li, Min; Warner, Isiah M.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Monk, Joshua; Hung, Francisco R.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Warner, IM (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. EM iwarner@lsu.edu RI LI, MIN/C-2427-2008; kistner, kharol/E-6849-2010; challa, santhosh/D-1363-2011; El-Zahab, Bilal/A-2588-2010; Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; El-Zahab, Bilal/0000-0003-4348-807X FU National Science Foundation (NSF) [CHE-0616827]; National Institutes of Health (NIH) [1R01GM079670]; American Chemical Society Petroleum Research Fund FX I.M.W. acknowledges financial support from the National Science Foundation (NSF) (grant no. CHE-0616827) and the National Institutes of Health (NIH) (grant no. 1R01GM079670). J.M. and F.R.H. acknowledge the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. High-performance computational resources for this research were provided by High Performance Computing at Louisiana State University (http://www.hpc.lsu.edu) and the Louisiana Optical Network Initiative (http://www.loni.org). NR 49 TC 42 Z9 42 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 3 PY 2010 VL 26 IS 15 BP 12867 EP 12876 DI 10.1021/la101463r PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 631NI UT WOS:000280353800057 PM 20583774 ER PT J AU Barberoglou, M Zorba, V Pagozidis, A Fotakis, C Stratakis, E AF Barberoglou, Marios Zorba, Vassilia Pagozidis, Alexios Fotakis, Costas Stratakis, Emmanuel TI Electrowetting Properties of Micro/Nanostructured Black Silicon SO LANGMUIR LA English DT Article ID CONTACT-ANGLE HYSTERESIS; SUPERHYDROPHOBIC SURFACES; WATER REPELLENCY; SOLID-SURFACES; WETTABILITY; DROPLETS; DROPS; MICROFLUIDICS; ACTUATION; MODEL AB This paper reports on the electrowetting on dielectric (EWOD) properties of dual rough black silicon (Si) surfaces, produced by pulsed laser structuring of Si wafers and subsequently coating with a thermally grown oxide and a chloroalkylsilane layer. By varying the laser fluence, it was possible to tune the black Si wettability, from hydrophobicity to water repellence, through a systematic and reproducible variation of the surface roughness at micro- and nanoscales. It is shown that a liquid droplet on these surfaces can be readily switched between superhydrophobicity and hydrophilicity by applying moderate external electric fields. This behavior is reversible or irreversible depending on the geometry of the patterned structures and the water repellence characteristics of the different surfaces. The fundamental role of structural and dynamic wettability characteristics on the switching behavior during the EWOD process is investigated and discussed. The results indicate the potential use of dual rough black Si for EWOD applications. C1 [Barberoglou, Marios; Pagozidis, Alexios; Fotakis, Costas; Stratakis, Emmanuel] FORTH, IESL, Iraklion 71110, Greece. [Barberoglou, Marios; Fotakis, Costas] Univ Crete, Dept Phys, Iraklion 71409, Greece. [Zorba, Vassilia] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pagozidis, Alexios; Stratakis, Emmanuel] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Greece. RP Stratakis, E (reprint author), FORTH, IESL, POB 1385, Iraklion 71110, Greece. EM stratak@iesl.forth.gr RI Stratakis, Emmanuel/B-5365-2011; Zorba, Vassilia/C-4589-2015; Fotakis, Costas/G-8751-2011 OI Stratakis, Emmanuel/0000-0002-1908-8618; FU Integrated Initiative of European Laser Research Infrastructures LASER-LAB-II [228334]; Scanning Electron Microscope FX This work was supported by the Integrated Initiative of European Laser Research Infrastructures LASER-LAB-II (Grant Agreement No. 228334). The authors acknowledge Ms. A. Manousaki for her support with the Scanning Electron Microscope. NR 56 TC 40 Z9 41 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 3 PY 2010 VL 26 IS 15 BP 13007 EP 13014 DI 10.1021/la101138u PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 631NI UT WOS:000280353800076 PM 20593795 ER PT J AU Kheifets, AS Fursa, DV Bray, I Colgan, J Pindzola, MS AF Kheifets, A. S. Fursa, D. V. Bray, I. Colgan, J. Pindzola, M. S. TI Differential cross sections of double photoionization of lithium SO PHYSICAL REVIEW A LA English DT Article ID PHOTO-DOUBLE-IONIZATION; EV ABOVE-THRESHOLD; HELIUM 100 EV; PHOTODOUBLE IONIZATION; ATOMIC CALCIUM; AMPLITUDES; GAMMA; 2E AB We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)]. C1 [Kheifets, A. S.] Australian Natl Univ, Res Sch Phys Sci, Canberra, ACT 0200, Australia. [Fursa, D. V.; Bray, I.] Curtin Univ Technol, Inst Theoret Phys, Perth, WA 6845, Australia. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Kheifets, AS (reprint author), Australian Natl Univ, Res Sch Phys Sci, GPO Box 4, Canberra, ACT 0200, Australia. EM A.Kheifets@anu.edu.au RI Fursa, Dmitry/C-2301-2009; Kheifets, Anatoli/C-9131-2009; Bray, Igor/B-8586-2009; OI Fursa, Dmitry/0000-0002-3951-9016; Kheifets, Anatoli/0000-0001-8318-9408; Bray, Igor/0000-0001-7554-8044; Colgan, James/0000-0003-1045-3858 FU US Department of Energy [DE-AC5206NA25396]; DOE; NSF FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC5206NA25396. A portion of this work was performed through DOE and NSF grants to Auburn University. The computational work was carried out at the National Institute for Computational Sciences in Oak Ridge, TN. Resources of the Australian National Computational Infrastructure (NCI) Facility and its Western Australian node iVEC are gratefully acknowledged. NR 38 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 3 PY 2010 VL 82 IS 2 AR 023403 DI 10.1103/PhysRevA.82.023403 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 634AI UT WOS:000280549300007 ER PT J AU Coh, S Heeg, T Haeni, JH Biegalski, MD Lettieri, J Edge, LF O'Brien, KE Bernhagen, M Reiche, P Uecker, R Trolier-McKinstry, S Schlom, DG Vanderbilt, D AF Coh, Sinisa Heeg, Tassilo Haeni, J. H. Biegalski, M. D. Lettieri, J. Edge, L. F. O'Brien, K. E. Bernhagen, M. Reiche, P. Uecker, R. Trolier-McKinstry, S. Schlom, Darrell G. Vanderbilt, David TI Si-compatible candidates for high-kappa dielectrics with the Pbnm perovskite structure SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE PHASE-TRANSITIONS; SINGLE-CRYSTAL GROWTH; STRAINED SILICON; THIN-FILMS; SCANDATE; OXIDES; SRZRO3; TRANSISTORS; LANTHANIDE; DEPOSITION AB We analyze both experimentally (where possible) and theoretically from first principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-kappa dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared active. We find that CaZrO(3), SrZrO(3), LaHoO(3), and LaYO(3) are among the most promising candidates for high-kappa dielectrics among the compounds we considered. C1 [Coh, Sinisa; Vanderbilt, David] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Heeg, Tassilo; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Haeni, J. H.; Lettieri, J.; Edge, L. F.; O'Brien, K. E.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Bernhagen, M.; Reiche, P.; Uecker, R.] Leibniz Inst Crystal Growth, D-12489 Berlin, Germany. RP Coh, S (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. EM sinisa@physics.rutgers.edu RI Schlom, Darrell/J-2412-2013 OI Schlom, Darrell/0000-0003-2493-6113 FU NSF [DMR-0545198, 0335765, DMR-0602770]; Pennsylvania State University Materials Research Institute Nanofabrication Laboratory; National Nanotechnology Infrastructure Network; Cornell University; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory; Semiconductor Research Corporation; Intel FX The work of S.C. and D.V. was supported in part by NSF under Grant No. DMR-0545198. The work of T.H. was supported by the Pennsylvania State University Materials Research Institute Nanofabrication Laboratory, the National Science Foundation Cooperative under Agreement No. 0335765, and National Nanotechnology Infrastructure Network, with Cornell University. S.T.M. acknowledges support from NSF under Grant No. DMR-0602770. The research conducted by M.D.B. at the Center for Nanophase Materials Sciences is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. D.G.S. would like to acknowledge support from the Semiconductor Research Corporation and Intel. NR 67 TC 34 Z9 34 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 3 PY 2010 VL 82 IS 6 AR 064101 DI 10.1103/PhysRevB.82.064101 PG 16 WC Physics, Condensed Matter SC Physics GA 634BJ UT WOS:000280553600002 ER PT J AU Murphy, ST Chroneos, A Jiang, C Schwingenschlogl, U Grimes, RW AF Murphy, S. T. Chroneos, A. Jiang, C. Schwingenschlogl, U. Grimes, R. W. TI Deviations from Vegard's law in ternary III-V alloys SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-PROPERTIES; CONSTANTS AB Vegard's law states that, at a constant temperature, the volume of an alloy can be determined from a linear interpolation of its constituent's volumes. Deviations from this description occur such that volumes are both greater and smaller than the linear relationship would predict. Here we use special quasirandom structures and density functional theory to investigate such deviations for MxN1-xAs ternary alloys, where M and N are group III species (B, Al, Ga, and In). Our simulations predict a tendency, with the exception of AlxGa1- xAs, for the volume of the ternary alloys to be smaller than that determined from the linear interpolation of the volumes of the MAs and BAs binary alloys. Importantly, we establish a simple relationship linking the relative size of the group III atoms in the alloy and the predicted magnitude of the deviation from Vegard's law. C1 [Murphy, S. T.; Chroneos, A.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Jiang, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Schwingenschlogl, U.] KAUST, PSE Div, Thuwal 239556900, Saudi Arabia. RP Murphy, ST (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM samuel.murphy@ic.ac.uk RI Jiang, Chao/A-2546-2011; Murphy, Samuel/E-9574-2011; OI Chroneos, Alex/0000-0002-2558-495X FU King Abdullah University of Science and Technology (KAUST); U.S. Department of Energy, Office of Basic Energy Sciences FX This paper was based on work supported in part by King Abdullah University of Science and Technology (KAUST). C.J. would like to acknowledge funding from the U.S. Department of Energy, Office of Basic Energy Sciences. Computational resources were provided by the Imperial College High Performance Computing Service (Ref.27). NR 26 TC 41 Z9 41 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 3 PY 2010 VL 82 IS 7 AR 073201 DI 10.1103/PhysRevB.82.073201 PG 4 WC Physics, Condensed Matter SC Physics GA 634BK UT WOS:000280553700002 ER PT J AU Simpson, GS Urban, W Sieja, K Dare, JA Jolie, J Linneman, A Orlandi, R Scherillo, A Smith, AG Soldner, T Tsekhanovich, I Varley, BJ Zlomaniec, A Durell, JL Smith, JF Rzaca-Urban, T Faust, H Ahmad, I Greene, JP AF Simpson, G. S. Urban, W. Sieja, K. Dare, J. A. Jolie, J. Linneman, A. Orlandi, R. Scherillo, A. Smith, A. G. Soldner, T. Tsekhanovich, I. Varley, B. J. Zlomaniec, A. Durell, J. L. Smith, J. F. Rzaca-Urban, T. Faust, H. Ahmad, I. Greene, J. P. TI Near-yrast, medium-spin, excited states of Rb-91, Rb-93, and Rb-95 SO PHYSICAL REVIEW C LA English DT Article ID FISSION FRAGMENTS; LARGE ARRAYS; ISOMERS; IDENTIFICATION; NUCLEI; DETECTORS; PRODUCTS; ISOTOPES; ENERGY; SR AB The medium-spin structure of the nuclei Rb-93 and Rb-95 is studied following the neutron-induced fission of U-235 at the PF1B neutron guide, using the FIFI spectrometer, and at the Lohengrin mass spectrometer of the Institut Laue-Langevin Grenoble. These nuclei, plus Rb-91, are also studied following the spontaneous fission of Cm-248 and Cf-252 sources, using the EUROGAM-II and Gammasphere detector arrays, respectively. A high-spin isomeric state, with a half-life of 111(11) ns, is found in Rb-93 at an excitation energy of 4422.4 keV, which most likely corresponds to the fully aligned [pi(g(9/2)) circle times nu(g(7/2)h(11/2))](27/2)- configuration. An analogous configuration is proposed for the 5297.9-keV level observed in Rb-91. A new E3 decay branch of the 1133.9-keV isomer in Rb-91 is found, for which the rather low transition rate of B(E3) = 3.8(10) W.u. is determined. The energy of the isomeric state of Rb-95 is now proposed to be at 810.6 keV, with a spin of (9/2(+)), and its half-life determined to be T-1/2 = 94(7) ns. A cascade of prompt transitions is observed on top of the 810.6-keV isomer in Rb-95. The near-yrast structures of Rb-91, Rb-93, and Rb-95 are compared to the results of shell-model calculations, which support the proposed 27/2(-) interpretation of states in Rb-91 and Rb-93. An analogous 27/2(-) state is expected to occur in Rb-95, as a long-lived isomer at 3.24 MeV. No such isomeric decay could be observed in a measurement using the Lohengrin spectrometer, which shows that, if it exists, its population, following the fission of U-235, is at least four times lower than that of the analogous 27/2(-) isomer in Y-97. C1 [Simpson, G. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. [Urban, W.; Soldner, T.; Faust, H.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Sieja, K.] Inst Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France. [Dare, J. A.; Orlandi, R.; Smith, A. G.; Tsekhanovich, I.; Varley, B. J.; Durell, J. L.; Smith, J. F.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Jolie, J.; Linneman, A.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Scherillo, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Simpson, GS (reprint author), Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. EM simpson@lpsc.in2p3.fr FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; BMBF [06KY205I]; UK-French [STFC-IN2P3] FX This work was partly supported by the Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and by the BMBF under Grant No. 06KY205I. The authors are indebted to the Office of Basic Energy Sciences, US Department of Energy, for the use of 248Cm through the transplutonium element production facilities at Oak Ridge National Laboratory. The loan of five Ge detectors from the UK-French (STFC-IN2P3) loan pool is acknowledged. NR 34 TC 17 Z9 17 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 3 PY 2010 VL 82 IS 2 AR 024302 DI 10.1103/PhysRevC.82.024302 PG 13 WC Physics, Nuclear SC Physics GA 634BM UT WOS:000280554000001 ER PT J AU Jaramillo, R Feng, Y Wang, J Rosenbaum, TF AF Jaramillo, R. Feng, Yejun Wang, J. Rosenbaum, T. F. TI Signatures of quantum criticality in pure Cr at high pressure SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antiferromagnetism; spin density waves; electric transport ID PHASE-TRANSITION; BREAKDOWN; METAL; TEMPERATURE; CHROMIUM; BEHAVIOR; ALLOYS; STATE AB The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P-c similar to 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T -> 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition. C1 [Feng, Yejun; Wang, J.; Rosenbaum, T. F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Feng, Yejun; Wang, J.; Rosenbaum, T. F.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Feng, Yejun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jaramillo, R.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Rosenbaum, TF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tfr@uchicago.edu RI Feng, Yejun/A-5417-2009; OI Feng, Yejun/0000-0003-3667-056X; , /0000-0003-3116-6719 FU National Science Foundation (NSF) [DMR-0907025] FX We acknowledge Arnab Banerjee and Peter Littlewood for enlightening discussions. The work at the University of Chicago was supported by National Science Foundation (NSF) Grant DMR-0907025. NR 28 TC 32 Z9 32 U1 3 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 3 PY 2010 VL 107 IS 31 BP 13631 EP 13635 DI 10.1073/pnas.1005036107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634SP UT WOS:000280605900017 PM 20643972 ER PT J AU Chinnasamy, CN Huang, JY Lewis, LH Vittoria, C Harris, VG AF Chinnasamy, C. N. Huang, J. Y. Lewis, L. H. Vittoria, C. Harris, V. G. TI Direct chemical synthesis of high coercivity SmCo nanoblades (vol 93, 032505, 2008) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Chinnasamy, C. N.; Vittoria, C.; Harris, V. G.] Northeastern Univ, Dept Elect & Comp Engn, Ctr Microwave Magnet Mat & Integrated Circuits, Boston, MA 02115 USA. [Huang, J. Y.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Lewis, L. H.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. RP Harris, VG (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Ctr Microwave Magnet Mat & Integrated Circuits, Boston, MA 02115 USA. EM harris@ece.neu.edu RI Huang, Jianyu/C-5183-2008 NR 2 TC 4 Z9 4 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 2 PY 2010 VL 97 IS 5 AR 059901 DI 10.1063/1.3456727 PG 2 WC Physics, Applied SC Physics GA 640NY UT WOS:000281059500070 ER PT J AU Wierer, JJ Allerman, AA Li, Q AF Wierer, J. J., Jr. Allerman, A. A. Li, Q. TI Silicon impurity-induced layer disordering of AlGaN/AlN superlattices SO APPLIED PHYSICS LETTERS LA English DT Article ID MU-M; HETEROSTRUCTURES; DIFFUSION; GAAS; ALAS AB Impurity-induced layer disordering is demonstrated in Al(0.1)Ga(0.9)N/AlN superlattices grown by metal-organic vapor phase epitaxy. During growth at temperatures as low as 885 degrees C and under post growth annealing at 1000 degrees C in N(2) the heterointerfaces of Si-doped (Si concentration >8 x 10(19) cm(-3)) superlattices exhibit layer disordering (intermixing) while the unintentionally doped superlattices remain stable. Shifts in the intersubband energy transitions and scanning transmission electron microscope images showing changes in the layer abruptness are used to verify layer disordering due to Si diffusion in Al(0.1)Ga(0.9)N/AlN superlattices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3478002] C1 [Wierer, J. J., Jr.; Allerman, A. A.; Li, Q.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wierer, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwierer@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 14 TC 15 Z9 15 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 2 PY 2010 VL 97 IS 5 AR 051907 DI 10.1063/1.3478002 PG 3 WC Physics, Applied SC Physics GA 640NY UT WOS:000281059500023 ER PT J AU Aguila, D Barrios, LA Luis, F Repolles, A Roubeau, O Teat, SJ Aromi, G AF Aguila, David Barrios, Leoni A. Luis, Fernando Repolles, Ana Roubeau, Olivier Teat, Simon J. Aromi, Guillem TI Synthesis and Properties of a Family of Unsymmetric Dinuclear Complexes of Ln(III) (Ln = Eu, Gd, Tb) SO INORGANIC CHEMISTRY LA English DT Article ID SINGLE-MOLECULAR LEVEL; MAGNETIC-PROPERTIES; TOPOLOGY; LIGAND AB A new ligand has been synthesized with the aim of favoring distinct coordination environments within lanthanide polynuclear complexes. It has led to the formation of three unsymmetrical [Ln(2)(III)] (Ln=Gd, Tb, Eu) complexes, exhibiting weak antiferromagnetic coupling and, for Eu and Tb, high single-ion magnetic anisotropy. All of these attributes are necessary for these clusters to behave as possible 2qubit quantum gates. C1 [Aguila, David; Barrios, Leoni A.; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Luis, Fernando; Repolles, Ana; Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Luis, Fernando; Repolles, Ana; Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM roubeau@unizar.es RI LUIS, Fernando/E-9108-2011; Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; BARRIOS MORENO, LEONI ALEJANDRA/E-5413-2017 OI LUIS, Fernando/0000-0001-6284-0521; Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; BARRIOS MORENO, LEONI ALEJANDRA/0000-0001-7075-9950 FU Spanish MCI [CTQ2009-06959, MAT2009-13977-C03]; CONSOLIDER-INGENIO in Molecular Nanoscience [CSD2007-00010]; U.S. Department of Energy [DE-AC02-05CH11231] FX G.A. thanks the Generalitat de Catalunya for the prize ICREA Academia 2008. The authors thank the Spanish MCI through Grants CTQ2009-06959 (to G.A., L.A. B., and D.A.) and MAT2009-13977-C03 (to F. L.) and the CONSOLIDER-INGENIO in Molecular Nanoscience (Grant CSD2007-00010 to F.L.). The Advanced Light Source (to S.J.T.) is supported by the U.S. Department of Energy under Contract DE-AC02-05CH11231. The authors thank Jorge Echeverria for CShM calculations. NR 20 TC 27 Z9 27 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 2 PY 2010 VL 49 IS 15 BP 6784 EP 6786 DI 10.1021/ic1008285 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 631RL UT WOS:000280365300004 PM 20604562 ER PT J AU Kristian, KE Song, WJ Ellern, A Guzei, IA Bakac, A AF Kristian, Kathleen E. Song, Wenjing Ellern, Arkady Guzei, Ilia A. Bakac, Andreja TI Preparation, Crystal Structure, and Unusually Facile Redox Chemistry of a Macrocyclic Nitrosylrhodium Complex SO INORGANIC CHEMISTRY LA English DT Article ID NITRIC-OXIDE; ELECTRON-TRANSFER; METAL-COMPLEXES; SUPEROXORHODIUM(III) COMPLEX; NO; REACTIVITY; LIGAND; TRPY=2,2'/6',2''-TERPYRIDINE; PHOTOCHEMISTRY; COORDINATION AB The reaction between NO and L(2)(H(2)O)Rh(2+) (L(2) = meso-Me(6)-1,4,8,11-tetraazacyclotetradecane) generates a sky-blue L(2)(H(2)O)RhNO(2+), a {RhNO}(8) complex. The crystal structure of the perchlorate salt features a bent Rh-N-O moiety (122.1(11)degrees), short axial Rh-NO bond (1.998(12) angstrom) and a strongly elongated Rh-OH(2) (2.366(6)angstrom) trans to NO. Acidic aqueous solutions of L(2)(H(2)O)RhNO(2+) are stable for weeks, and are inert toward oxygen. The complex is oxidized rapidly and reversibly with Ru(bpy)(3)(3+), k(f) = (1.9 +/- 0.1) x 10(5) M(-1) s(-1), to an intermediate believed to be L(2)(H(2)O)RhNO(3+). This unprecedented {RhNO}(7) species has a lifetime of about 90 s at room temperature at pH 0. The reverse reaction between L(2)(H(2)O)RhNO(3+) and Ru(bpy)(3)(2+) has k(r) = (1.5 +/- 0.4) x 10(6) M(-1) s(-1). The kinetic data define the equilibrium constant for the L(2)(H(2)O)RhNO(2+)/Ru(bpy)(3)(3+) reaction, K = k(f)/k(f) = 0.13, and yield a reduction potential for the L(2)(H(2)O)RhNO(3f/2+) couple of 1.31 V. Both the redox thermodynamics of L(2)(H(2)O)RhNO(3+/2+) and the kinetics of the reactions with Ru(bpy)(3)(3+2+) are quite similar to those of uncoordinated NO(+)/NO. C1 [Kristian, Kathleen E.; Song, Wenjing; Ellern, Arkady; Guzei, Ilia A.; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM bakac@ameslab.gov RI Song, Wenjing/C-6096-2013 OI Song, Wenjing/0000-0003-1916-8607 FU National Science Foundation [CHE 0602183] FX We are grateful to Dr. Roger Jones for his help in obtaining the photoacoustic spectra, Dr. McClelland for the spectrometer use, and to Dr. Camara and Prof. Rauchfuss for help with solution I R. This work was supported by a grant from National Science Foundation, CHE 0602183. Some of the work was conducted with the use of facilities at the Ames Laboratory. NR 44 TC 10 Z9 10 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 2 PY 2010 VL 49 IS 15 BP 7182 EP 7187 DI 10.1021/ic101236x PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 631RL UT WOS:000280365300060 PM 20604519 ER PT J AU Lehnert, N Sage, JT Silvernail, N Scheidt, WR Alp, EE Sturhahn, W Zhao, J AF Lehnert, Nicolai Sage, J. Timothy Silvernail, Nathan Scheidt, W. Robert Alp, E. Ercan Sturhahn, Wolfgang Zhao, Jiyong TI Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the trans Effect of NO SO INORGANIC CHEMISTRY LA English DT Article ID SOLUBLE GUANYLATE-CYCLASE; NITRIC-OXIDE SYNTHASE; EFFECTIVE CORE POTENTIALS; PORPHYRIN FORCE-FIELD; DENSITY-FUNCTIONAL THEORY; FERROUS HEME-NITROSYLS; ELECTRONIC-STRUCTURE; MOLECULAR CALCULATIONS; NICKEL OCTAETHYLPORPHYRIN; ISOTOPE SHIFTS AB This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)(TPP)(MI)(NO)] (1; TPP2 = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 60 ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (NO)-N-15-O-18 isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distdbuted over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at similar to 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the cop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of 1)(Fe NO) and (delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 60 ferrous heme-nitrosyls where the higher energy feature at 550 cm-1 had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64) has been removed. Comparison to the reported vibrational data for wild-type (wt) Mb-NO then shows that the effect of H bonding to the coordinated NO is weak and mostly leads to a polanzation of the.717r* orbitals of bound NO. In addition, the observation that 60(Fe N-0) does not correlate well with ii(N-O) can be traced back to the very mixed nature of this mode. The Fe N(imidazole) stretching frequency is observed at 149 cm-1 in [Fe(TPP)(M1)(NO)1, and spectral changes upon NO binding to five-coordinate ferrous heme active sites are discussed. The obtained high-quality force constants for the Fe-N-O and N-O bonds of 2.57 and 11.55 mdyn/A can further be compared to those of corresponding 50 species, which allows for a quantitative analysis of the u trans interaction between the proximal imidazole (His) ligand and NO. This is key for the activation of the NO sensor soluble guanylate cyclase. Finally, DFT methods are calibrated against the experimentally determined vibrational properties of the Fe N-O subunit in 1. DFT is in fact incapable of reproducing the vibrational energies and normal mode descriptions of the Fe N-O unit well, and thus, DFT-based predictions of changes in vibrational properties upon heme modification or other perturbations of these 60 complexes have to be treated with caution. C1 [Lehnert, Nicolai] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Sage, J. Timothy] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. [Silvernail, Nathan; Scheidt, W. Robert] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Alp, E. Ercan; Sturhahn, Wolfgang; Zhao, Jiyong] Argonne Natl Lab, APS XFD, Argonne, IL 60439 USA. RP Lehnert, N (reprint author), Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. EM lehnertn@umich.edu; ktsage@ncu.edu; Scheidt.l@nd.edu FU National Institutes of Health [GM-38401]; National Science Foundation [CHE-0846235, PHY-0545787]; DOE, Basic Energy Sciences, Office of Science [DE-AC02-060-CH357] FX The support of the National Institutes of Health (GM-38401 to W.R.S.) and the National Science Foundation (CHE-0846235 to N.L. and PHY-0545787 to J.T.S.) is acknowledged. Use of the Advanced Photon Source is supported by the DOE, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-060-CH357. NR 101 TC 49 Z9 49 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 2 PY 2010 VL 49 IS 15 BP 7197 EP 7215 DI 10.1021/ic1010677 PG 19 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 631RL UT WOS:000280365300062 PM 20586416 ER PT J AU Mitri, FG AF Mitri, F. G. TI Transition from progressive to quasi-standing waves behavior of the radiation force of acoustic waves-Example of a high-order Bessel beam on a rigid sphere SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID LIMITED DIFFRACTION BEAMS; OPTICAL LEVITATION; ELASTIC SPHERE; SCATTERING; PRESSURE; TWEEZERS; LIGHT; EXPRESSIONS; GENERATION; RESONANCE AB Prior computations have predicted the time-averaged acoustic radiation force on fluid spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of quasi-standing waves. These computations are extended to the case of a rigid sphere in water which perfectly mimics a fluid sphere in air. Numerical results for the radiation force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero, first and second order, and discussed with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-standing waves behavior. This investigation may be helpful in the development of acoustic tweezers and methods for manipulating objects in reduced gravity environments and space related applications. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Mitri, F. G.] Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Ultrasound Res Lab, Rochester, MN 55905 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 41 TC 7 Z9 7 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD AUG 2 PY 2010 VL 329 IS 16 BP 3319 EP 3324 DI 10.1016/j.jsv.2010.02.025 PG 6 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 598AN UT WOS:000277804200006 ER PT J AU Azucena, O Crest, J Cao, JA Sullivan, W Kner, P Gavel, D Dillon, D Olivier, S Kubby, J AF Azucena, Oscar Crest, Justin Cao, Jian Sullivan, William Kner, Peter Gavel, Donald Dillon, Daren Olivier, Scot Kubby, Joel TI Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons SO OPTICS EXPRESS LA English DT Article ID POINT-SPREAD FUNCTION; ADAPTIVE OPTICS; HUMAN EYE; MICROSCOPY; SENSOR; COMPUTATION; SCATTERING; SIMULATION; SAMPLES AB We present a new method to directly measure and correct the aberrations introduced when imaging through thick biological tissue. A Shack-Hartmann wavefront sensor is used to directly measure the wavefront error induced by a Drosophila embryo. The wavefront measurements are taken by seeding the embryo with fluorescent microspheres used as "artificial guide-stars." The wavefront error is corrected in ten millisecond steps by applying the inverse to the wavefront error on a micro-electromechanical deformable mirror in the image path of the microscope. The results show that this new approach is capable of improving the Strehl ratio by 2 times on average and as high as 10 times when imaging through 100 mu m of tissue. The results also show that the isoplanatic half-width is approximately 19 mu m resulting in a corrected field of view 38 mu m in diameter around the guide-star. (C) 2010 Optical Society of America C1 [Azucena, Oscar; Kubby, Joel] Univ Calif Santa Cruz, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Kner, Peter] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Gavel, Donald; Dillon, Daren] Univ Calif Santa Cruz, Lab Adapt Opt, Santa Cruz, CA 95064 USA. [Olivier, Scot] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Azucena, O (reprint author), Univ Calif Santa Cruz, Jack Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM azucena@soe.ucsc.edu RI Cao, Jian/B-9084-2013 OI Cao, Jian/0000-0003-0613-1258 FU National Science Foundation Science & Technology Center for Adaptive Optics (CfAO) [AST 9876783]; National Science Foundation Center for Biophotonics Science & Technology (CBST) [PHY 0120999]; California Institute for Regenerative Medicine [RT1-01095-1]; University of California [2008-19]; NIH [GM046409]; California Institute for Quantitative Biosciences (QB3); Center for Biophotonics Science and Technology FX This research has been supported by the National Science Foundation Science & Technology Center for Adaptive Optics (CfAO), managed by the University of California at Santa Cruz under Cooperative Agreement No. AST 9876783 and by funding from the National Science Foundation Center for Biophotonics Science & Technology (CBST), managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. This research was also supported by a grant from the California Institute for Regenerative Medicine (Grant Number RT1-01095-1). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of CIRM or any other agency of the State of California. Oscar Azucena was supported by a University of California Systemwide Biotechnology Research & Education Program GREAT Training Grant #2008-19, Jian Cao and Justin Crest were supported by NIH (GM046409), William Sullivan by the California Institute for Quantitative Biosciences (QB3) and Peter Kner by the Center for Biophotonics Science and Technology. NR 25 TC 36 Z9 36 U1 1 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 2 PY 2010 VL 18 IS 16 BP 17521 EP 17532 DI 10.1364/OE.18.017521 PG 12 WC Optics SC Optics GA 640IB UT WOS:000281042400123 PM 20721137 ER PT J AU Konik, RM Rice, TM Tsvelik, AM AF Konik, R. M. Rice, T. M. Tsvelik, A. M. TI Superconductivity generated by coupling to a cooperon in a two-dimensional array of four-leg Hubbard ladders SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LONG-RANGE; MODEL; ANTIFERROMAGNET; PSEUDOGAP; MAGNETISM; HOLES; STATE; RVB AB Starting from an array of four-leg Hubbard ladders weakly doped away from half-filling and weakly coupled by interladder tunneling, we derive an effective low-energy model which contains a partially truncated Fermi surface and a well-defined cooperon excitation formed by a bound pair of holes. An attractive interaction in the Cooper channel is generated on the Fermi surface through virtual scattering into the cooperon state. Although the model is derived in the weak coupling limit of a four-leg ladder array, an examination of exact results on finite clusters for the strong coupling t-J model suggests the essential features are also present for a strong coupling Hubbard model on a square lattice near half-filling. C1 [Konik, R. M.; Rice, T. M.; Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RP Konik, RM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Konik, Robert/L-8076-2016 OI Konik, Robert/0000-0003-1209-6890 FU U.S. DOE [DE-AC02-98 CH 10886]; U.S. Department of Energy, Office of Science; MANEP network FX A. M. T. and R. M. K. acknowledge support by the U.S. DOE under Contract No. DE-AC02-98 CH 10886. T. M. R. was supported by the Center for Emerging Superconductivity funded by the U.S. Department of Energy, Office of Science and by MANEP network of Swiss National Funds. NR 56 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 2 PY 2010 VL 82 IS 5 AR 054501 DI 10.1103/PhysRevB.82.054501 PG 10 WC Physics, Condensed Matter SC Physics GA 633FP UT WOS:000280485500003 ER PT J AU Liang, ML Kunchur, MN Hua, JO Xiao, ZL AF Liang, Manlai Kunchur, Milind N. Hua, Jiong Xiao, Zhili TI Evaluating free flux flow in low-pinning molybdenum-germanium superconducting films SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL FIELD HC2; II SUPERCONDUCTORS; MAGNETIC-FIELD; TYPE-2 SUPERCONDUCTORS; TRANSPORT-PROPERTIES; PURITY DEPENDENCE; TEMPERATURE; FLUCTUATIONS; MOTION; VORTICES AB Vortex dynamics in molybdenum-germanium superconducting films were found to well approximate the unpinned free limit even at low driving forces. This provided an opportunity to empirically establish the intrinsic character of free flux flow and to test in detail the validity of theories for this regime beyond the Bardeen-Stephen approximation. Our observations are in good agreement with the mean-field result of time-dependent Ginzburg-Landau theory. C1 [Liang, Manlai; Kunchur, Milind N.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Hua, Jiong; Xiao, Zhili] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hua, Jiong; Xiao, Zhili] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Kunchur, MN (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM kunchur@sc.edu FU U.S. Department of Energy [DE-FG02-99ER45763, DE-FG02-06ER46334] FX The authors gratefully acknowledge useful discussions with James M. Knight, Alan T. Dorsey, Boris I. Ivlev, Alexander V. Gurevich, Vladimir G. Kogan, Lev Bulaevski, David K. Christen, Ernst Helmut Brandt, and P. H. Kes. This work was supported by the U.S. Department of Energy through Grant No. DE-FG02-99ER45763. The sample fabrication work at Northern Illinois University was supported by the U.S. Department of Energy through Grant No. DE-FG02-06ER46334. NR 30 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 2 PY 2010 VL 82 IS 6 AR 064502 DI 10.1103/PhysRevB.82.064502 PG 5 WC Physics, Condensed Matter SC Physics GA 633FQ UT WOS:000280485600003 ER PT J AU Reid, JP Tanatar, MA Luo, XG Shakeripour, H Doiron-Leyraud, N Ni, N Bud'ko, SL Canfield, PC Prozorov, R Taillefer, L AF Reid, J-Ph. Tanatar, M. A. Luo, X. G. Shakeripour, H. Doiron-Leyraud, N. Ni, N. Bud'ko, S. L. Canfield, P. C. Prozorov, R. Taillefer, Louis TI Nodes in the gap structure of the iron arsenide superconductor Ba(Fe(1-x)Cox)(2)As-2 from c-axis heat transport measurements SO PHYSICAL REVIEW B LA English DT Article ID D-WAVE SUPERCONDUCTORS; QUASI-PARTICLE TRANSPORT; SPECTROSCOPY; SYMMETRY; STATE AB The thermal conductivity kappa of the iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 was measured down to 50 mK for a heat current parallel (kappa(c)) and perpendicular (kappa(a)) to the tetragonal c axis for seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038 <= x <= 0.127). A residual linear term kappa(c0)/T is observed in the T -> 0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal T-c, they must be accidental, not imposed by symmetry, and are therefore compatible with an s +/- state, for example. The fact that the in-plane residual linear term kappa(a0)/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g., H-c2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but nonzero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Delta(k) which produces nodes on a Fermi-surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets. C1 [Reid, J-Ph.; Luo, X. G.; Shakeripour, H.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Reid, J-Ph.; Luo, X. G.; Shakeripour, H.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tanatar, M. A.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Reid, JP (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. EM louis.taillefer@physique.usherbrooke.ca RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation; NSERC; CFI; FQRNT; Canada Research Chair FX We thank P. J. Hirschfeld, V. G. Kogan, P. A. Lee, I. I. Mazin, S. Sachdev, and T. Senthil for fruitful discussions and J. Corbin for his assistance with the experiments. Work at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from the Alfred P. Sloan Foundation. L. T. acknowledges support from the Canadian Institute for Advanced Research and funding from NSERC, CFI, FQRNT, and a Canada Research Chair. NR 67 TC 117 Z9 117 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 2 PY 2010 VL 82 IS 6 AR 064501 DI 10.1103/PhysRevB.82.064501 PG 12 WC Physics, Condensed Matter SC Physics GA 633FQ UT WOS:000280485600002 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Berge, D Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hickman, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, MG Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Berge, D. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hickman, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C. Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, M. G. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. TI Studying the underlying event in Drell-Yan and high transverse momentum jet production at the Tevatron SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTIONS; COLLISIONS; SHOWERS; MODEL; TEV AB We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles produced in association with a large transverse momentum jet (similar to 2: 2 fb(-1)) or with a Drell-Yan lepton pair (similar to 2.7 fb(-1)) in the Z-boson mass region [70 < M(pair) < 110 GeV/c(2)] as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton pair or the leading jet in each event to define regions of eta-phi space that are sensitive to the modeling of the underlying event. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte Carlo models. C1 [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Chertok, M.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Hickman, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, Santander 39005, Spain. [Canelli, F.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Berge, D.] European Org Nucl Res, Geneva 23, Switzerland. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goldschmidt, N.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Scodellaro, L.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, USA, IN2P3,CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Golossanov, A.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Sapienza Univ Roma, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Wilson, M. G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015 OI Simonenko, Alexander/0000-0001-6580-3638; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Vidal Marono, Miguel/0000-0002-2590-5987; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U.S. Department of Energy; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland; National Science Foundation FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 28 TC 46 Z9 46 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 2 PY 2010 VL 82 IS 3 AR 034001 DI 10.1103/PhysRevD.82.034001 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 633FZ UT WOS:000280486500001 ER PT J AU Mudryk, Y Paudyal, D Pecharsky, VK Gschneidner, KA Misra, S Miller, GJ AF Mudryk, Y. Paudyal, D. Pecharsky, V. K. Gschneidner, K. A., Jr. Misra, S. Miller, G. J. TI Controlling Magnetism of a Complex Metallic System Using Atomic Individualism SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; THERMODYNAMICS AB When the complexity of a metallic compound reaches a certain level, a specific location in the structure may be critically responsible for a given fundamental property of a material while other locations may not play as much of a role in determining such a property. The first-principles theory has pinpointed a critical location in the framework of a complex intermetallic compound-Gd(5)Ge(4)-that resulted in a controlled alteration of the magnetism of this compound using precise chemical tools. C1 [Mudryk, Y.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Misra, S.; Miller, G. J.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Misra, S.; Miller, G. J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Mudryk, Y (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. FU Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-07CH11358] FX This work was supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 28 TC 18 Z9 18 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2010 VL 105 IS 6 AR 066401 DI 10.1103/PhysRevLett.105.066401 PG 4 WC Physics, Multidisciplinary SC Physics GA 633GK UT WOS:000280488200007 PM 20867992 ER PT J AU Xiao, BW Yuan, F AF Xiao, Bo-Wen Yuan, Feng TI Nonuniversality of Transverse Momentum Dependent Parton Distributions at Small x SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINAL-STATE INTERACTIONS; DEEP-INELASTIC SCATTERING; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESSES; HARD PROCESSES; COLLISIONS; GAUGE; SATURATION; DIS AB We study the universality issue of the transverse momentum dependent parton distributions at small x, by comparing the initial and final state interaction effects in di-jet-correlations in pA collisions with those in deep inelastic lepton-nucleus scattering. We demonstrate the nonuniversality by performing an explicit calculation in a particular model where the multiple gauge boson exchange contributions are summed up to all orders. We comment on the implications of our results on the theoretical interpretation of dihadron correlation in dA collisions in terms of the saturation phenomena in deep inelastic lepton-nucleus scattering. C1 [Xiao, Bo-Wen; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Xiao, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RI Yuan, Feng/N-4175-2013 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; RIKEN; Brookhaven National Laboratory FX We thank Les Bland, Stan Brodsky, Paul Hoyer, Larry McLerran, Jianwei Qiu, Raju Venugopalan, and Nu Xu for stimulating discussions. This work was supported in part by the U.S. Department of Energy under contracts DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 41 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 2 PY 2010 VL 105 IS 6 AR 062001 DI 10.1103/PhysRevLett.105.062001 PG 4 WC Physics, Multidisciplinary SC Physics GA 633GK UT WOS:000280488200004 PM 20867974 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Buddy, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P de Cecco, S Deisher, A de Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, M Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, E Nara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY June, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS Mclntyre, P McNuty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Niesen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, TJ Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, R Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, R Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Buddy, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. de Cecco, S. Deisher, A. de Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, Mj. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, E. Nara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. June, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. Mclntyre, P. McNuty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Niesen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, T. J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, R. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, R. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for new color-octet vector particle decaying to t(t)over-bar in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Massive gluon; Top quark ID PHYSICS AB We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb(-1) of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study t (t) over bar events in the lepton + jets channel with at least one b-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV/c(2) and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space. (C) 2010 Elsevier B.V. All rights reserved. C1 [Nara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Chen, Y. C.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.; Whitehouse, B.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Ginsburg, C. M.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; de Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, Mj.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Golossanov, A.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Contabria, Santander 39005, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giurgiu, G.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gimmell, J. L.; Glagolev, V.; Goldschmidt, N.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, R.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Gold, M.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giordani, M.; Happacher, E.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Buddy, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giunta, M.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; June, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Niesen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNuty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Glenzinski, D.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, T. J.; Renton, R.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Sez Padova Trento, Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3,CNRS, UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giakoumopoulou, V.; Giromini, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Univ Siena, Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giakoumopoulou, V.; Giromini, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Giannetti, P.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gibson, K.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [de Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; Mclntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Cauz, D.; Giokaris, N.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Giokaris, N.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. RP Naganoma, J (reprint author), Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. EM junji@fnal.gov RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Warburton, Andreas/0000-0002-2298-7315; FU US Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program, the National Research Foundation of Korea; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the US Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 25 TC 17 Z9 17 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD AUG 2 PY 2010 VL 691 IS 4 BP 183 EP 190 DI 10.1016/j.physletb.2010.06.036 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 631EA UT WOS:000280328200002 ER PT J AU Dai, QQ Duty, CE Hu, MZ AF Dai, Quanqin Duty, Chad E. Hu, Michael Z. TI Semiconductor-Nanocrystals-Based White Light-Emitting Diodes SO SMALL LA English DT Review DE light-emitting diodes; nanocrystals; quantum dots; solid-state lighting; white light ID ONE-POT SYNTHESIS; CADMIUM SELENIDE NANOCRYSTALS; CORE/SHELL QUANTUM DOTS; CDS NANOCRYSTALS; HIGH-QUALITY; OPTICAL-PROPERTIES; ENERGY-TRANSFER; INP/ZNS NANOCRYSTALS; PRECURSOR INJECTION; CONJUGATED POLYMERS AB In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating while light are compared, and the benefits and challenges of the solid-state lighting technology are discussed. C1 [Dai, Quanqin; Duty, Chad E.; Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov OI Hu, Michael/0000-0001-8461-9684 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Industrial Technology Program Office; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Industrial Technology Program Office's Nanomanufacturing Program, and partially the LORD program at the Oak Ridge National Laboratory This manuscript has been authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 130 TC 125 Z9 127 U1 16 U2 172 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD AUG 2 PY 2010 VL 6 IS 15 BP 1577 EP 1588 DI 10.1002/smll.201000144 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 640OJ UT WOS:000281060600001 PM 20602425 ER PT J AU Pfeifer, KB Thornberg, SM AF Pfeifer, Kent B. Thornberg, Steven M. TI Surface Plasmon Sensing of Gas Phase Contaminants Using a Single-Ended Multiregion Optical Fiber SO IEEE SENSORS JOURNAL LA English DT Article DE Gas sensing; optical fiber sensor; surface plasmon resonance ID HYDROGEN SENSOR; ENHANCED SENSITIVITY; REFLECTIVITY CHANGES; RESONANCE BIOSENSOR; FILMS; AU; AL; AG; CU AB Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H(2), H(2)S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 9 Pa partial pressures of H(2) using this technique, < 0.04 partial pressures of H(2)S, and increases in H(2)O concentration from -70 degrees C frost point. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure, H(2), H(2)S and H(2)O without changing the fiber or the analytical system. C1 [Pfeifer, Kent B.; Thornberg, Steven M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pfeifer, KB (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM kbpfeif@sandia.gov; smthorn@sandia.gov FU Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received December 14, 2009; revised February 08, 2010; accepted February 14, 2010. Date of current version May 26, 2010. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The associate editor coordinating the review of this paper and approving it for publication was Dr. M. Abedin. NR 25 TC 2 Z9 3 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD AUG PY 2010 VL 10 IS 8 BP 1360 EP 1367 DI 10.1109/JSEN.2010.2043838 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 707UP UT WOS:000286314300004 ER PT J AU Tang, V Falabella, S Guethlein, G Meyer, G Sampayan, S AF Tang, V. Falabella, S. Guethlein, G. Meyer, G. Sampayan, S. TI Enhanced Resistivity and Breakdown Strength via a Granular Two-phase Silicone Oil and Polypropylene Mixed Media Dielectric SO IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION LA English DT Article DE Dielectric materials; oil insulation; UHV insulation; electrohydraulics AB A new granular two-phase mixed media insulator consisting of packed polypropylene beads and silicone oil is found to have up to 10 times greater resistivity and nearly 2 times greater breakdown strength compared with the same silicone oil when operated in DC mode. C1 [Tang, V.; Falabella, S.; Guethlein, G.; Meyer, G.; Sampayan, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tang, V (reprint author), Lawrence Livermore Natl Lab, 8000 E Ave, Livermore, CA 94550 USA. FU Defense Advanced Research Projects Agency [1026419]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA2734] FX The authors acknowledge and thank technical assistance provided by J. Watson and E. Gower, and guidance from A. Krishnan at LLNL. We also thank J. Harris at NPS for fruitful discussions. This work was supported by the Defense Advanced Research Projects Agency under contract 1026419 and the LLNL Laboratory Directed Research and Development program with the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA2734. NR 12 TC 0 Z9 0 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1070-9878 J9 IEEE T DIELECT EL IN JI IEEE Trns. Dielectr. Electr. Insul. PD AUG PY 2010 VL 17 IS 4 BP 1221 EP 1224 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 672OH UT WOS:000283594900029 ER PT J AU Hazen, E Heintz, U Johnson, M Lipton, R Narain, M Wu, SX AF Hazen, E. Heintz, U. Johnson, M. Lipton, R. Narain, M. Wu, S. X. TI Architecture of a level 1 track trigger for the CMS experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY FEB 03-05, 2010 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab DE Trigger concepts and systems (hardware and software); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors AB The luminosity goal for the Super-LHC is 10(35)/cm(2)/s. At this luminosity the number of proton-proton interactions in each beam crossing will be in the hundreds. This will stress many components of the CMS detector. One system that has to be upgraded is the trigger system. To keep the rate at which the level 1 trigger fires manageable, information from the tracker has to be integrated into the level 1 trigger. Current design proposals foresee tracking detectors that perform on-detector filtering to reject hits from low-momentum particles. In order to build a trigger system, the filtered hit data from different layers and sectors of the tracker will have to be transmitted off the detector and brought together in a logic processor that generates trigger tracks within the time window allowed by the level 1 trigger latency. This paper describes a possible architecture for the off-detector logic that accomplishes this goal. C1 [Heintz, U.; Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Hazen, E.; Wu, S. X.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Johnson, M.; Lipton, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Heintz, U (reprint author), Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. EM Ulrich_Heintz@brown.edu NR 3 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD AUG PY 2010 VL 5 AR C08004 DI 10.1088/1748-0221/5/08/C08004 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 675AI UT WOS:000283795200016 ER PT J AU Yau, DKY Yip, NK Ma, CYT Rao, NSV Shankar, M AF Yau, David K. Y. Yip, Nung Kwan Ma, Chris Y. T. Rao, Nageswara S. V. Shankar, Mallikarjun TI Quality of Monitoring of Stochastic Events by Periodic and Proportional-Share Scheduling of Sensor Coverage SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Performance; Theory; Sensor network; mobile coverage; periodic scheduling; proportional sharing AB We analyze the quality ofmonitoring (QoM) of stochastic events by a periodic sensorwhich monitors a point of interest (PoI) for q time every p time. We show how the amount of information captured at a PoI is affected by the proportion q/p, the time interval p over which the proportion is achieved, the event type in terms of its stochastic arrival dynamics and staying times and the utility function. The periodic PoI sensor schedule happens in two broad contexts. In the case of static sensors, a sensor monitoring a PoI may be periodically turned off to conserve energy, thereby extending the lifetime of the monitoring until the sensor can be recharged or replaced. In the case of mobile sensors, a sensor may move between the PoIs in a repeating visit schedule. In this case, the PoIs may vary in importance, and the scheduling objective is to distribute the sensor's coverage time in proportion to the importance levels of the PoIs. Based on our QoM analysis, we optimize a class of periodic mobile coverage schedules that can achieve such proportional sharing while maximizing the QoM of the total system. C1 [Yau, David K. Y.; Yip, Nung Kwan; Ma, Chris Y. T.] Purdue Univ, W Lafayette, IN 47907 USA. [Rao, Nageswara S. V.; Shankar, Mallikarjun] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yau, DKY (reprint author), 305 N Univ St, W Lafayette, IN 47907 USA. EM yau@cs.purdue.edu; yipn@cs.purdue.edu; ma18@cs.purdue.edu; raons@ornl.gov; shankarm@ornl.gov RI Shankar, Mallikarjun/N-4400-2015; OI Shankar, Mallikarjun/0000-0001-5289-7460; Rao, Nageswara/0000-0002-3408-5941 FU U.S. Department of Energy [AC05-00OR22725]; Office of Advanced Computing Research; U.S. National Science Foundation [DMS-0707926, CNS-0964086]; Laboratory of Directed Research and Development at Oak Ridge National Laboratory (ORNL) FX The research was supported in part by the U.S. Department of Energy under SensorNet grant no. AC05-00OR22725 and Mathematics of Complex, Distributed, Interconnected Systems program, Office of Advanced Computing Research, in part by the U.S. National Science Foundation under grant numbers DMS-0707926 and CNS-0964086, and in part by the Laboratory of Directed Research and Development program at Oak Ridge National Laboratory (ORNL). Work was performed at Purdue University and ORNL managed by UT-Battelle, LLC. NR 45 TC 6 Z9 7 U1 2 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD AUG PY 2010 VL 7 IS 2 AR 18 DI 10.1145/1824766.1824774 PG 49 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 699XH UT WOS:000285695700008 ER PT J AU Lucas, M Macdonald, BA Wagner, GL Joyce, SA Rector, KD AF Lucas, Marcel Macdonald, Brian A. Wagner, Gregory L. Joyce, Stephen A. Rector, Kirk D. TI Ionic Liquid Pretreatment of Poplar Wood at Room Temperature: Swelling and Incorporation of Nanoparticles SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE ionic liquid; wood; pretreatment; lignocellulosic biomass; biofuel ID LIGNOCELLULOSIC MATERIALS; RAMAN-SCATTERING; CELLULOSE; SURFACE; DISSOLUTION; HYDROLYSIS; BIOMASS; LIGNIN; SACCHARIFICATION; HEMICELLULOSE AB Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mu m. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities. C1 [Lucas, Marcel; Macdonald, Brian A.; Wagner, Gregory L.; Joyce, Stephen A.; Rector, Kirk D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Lucas, M (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM mlucas@lanl.gov; kdr@lanl.gov RI Rector, Kirk/C-3584-2011; Lucas, Marcel/J-9462-2012; Joyce, Stephen/Q-7804-2016; OI Joyce, Stephen/0000-0003-1330-7362; Wagner, Gregory/0000-0002-7852-7529 FU Los Alamos National Laboratory [20080001DR] FX This study was funded by a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR). The authors acknowledge Dr. Paul Langan (Los Alamos National Laboratory) and Prof. Constance Schall (University of Toledo) for useful discussions. NR 38 TC 26 Z9 28 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG PY 2010 VL 2 IS 8 BP 2198 EP 2205 DI 10.1021/am100371q PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 641FD UT WOS:000281109300007 PM 20735091 ER PT J AU Dahal, N Wright, JT Willey, TM Meulenberg, RW Chikan, V AF Dahal, Naween Wright, Joshua T. Willey, Trevor M. Meulenberg, Robert W. Chikan, Viktor TI Preparation of Iron and Gold Silicide Nanodomains on Silicon (111) by the Reaction of Gold, Iron-Gold-Core Shell, and Alloy Nanoparticles with Triethylsilane SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE alloy; core-shell; nanoparticles; lattice; substrate; silicide ID BETA-FESI2 THIN-FILMS; PULSED-LASER DEPOSITION; LIQUID-SOLID GROWTH; THERMOELECTRIC PROPERTIES; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; SOLAR-CELLS; AMORPHOUS-SILICON; SINGLE-CRYSTALS; AU AB This study describes a strategy to use composite colloidal nanoparticles and triethylsilane as precursors to synthesize nanometer size structures on single-crystal silicon substrate. The concept is demonstrated by depositing gold, iron-gold alloy, and iron-gold core-shell nanoparticles on silicon (111). Upon heating, the nanoparticles form new crystalline phases on the Si (111) surface. Atomic force microscope (AFM) data show the collapse of the iron gold core-shell and alloy nanoparticles at temperatures 100-200 degrees C higher than gold nanoparticles, indicating the efficient tethering of iron containing nanoparticles on silicon (111). Both structural analysis and X-ray spectroscopy show that the iron-gold alloy and iron-gold core-shell nanoparticles successfully form the semiconducting beta-FeSi2 phase at relatively low temperature. The stabilities of the silicide are assessed at elevated temperatures. Silicon successfully nucleates on the created nanostructures, which suggests strong catalytic activity towards producing further nanostructures on the surface. C1 [Dahal, Naween; Chikan, Viktor] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA. [Wright, Joshua T.; Meulenberg, Robert W.] Univ Maine, Dept Phys & Astron, Orono, ME 04469 USA. [Meulenberg, Robert W.] Univ Maine, Surface Sci & Technol Lab, Orono, ME 04469 USA. [Willey, Trevor M.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. RP Chikan, V (reprint author), Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA. RI Willey, Trevor/A-8778-2011; OI Willey, Trevor/0000-0002-9667-8830; Meulenberg, Robert/0000-0003-2696-8792 FU Department of Chemistry at Kansas State University; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to the Department of Chemistry at Kansas State University for funding. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 70 TC 5 Z9 5 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG PY 2010 VL 2 IS 8 BP 2238 EP 2247 DI 10.1021/am100282q PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 641FD UT WOS:000281109300013 PM 20735094 ER PT J AU Dejoie, C Martinetto, P Dooryhee, E Strobel, P Blanc, S Bordat, P Brown, R Porcher, F del Rio, MS Anne, M AF Dejoie, Catherine Martinetto, Pauline Dooryhee, Eric Strobel, Pierre Blanc, Sylvie Bordat, Patrice Brown, Ross Porcher, Florence del Rio, Manuel Sanchez Anne, Michel TI Indigo@Silicalite: a New Organic Inorganic Hybrid Pigment SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE silicalite; zeolite; indigo; pigment; stability; UV vis fluorescence; diffraction; color ID X-RAY-DIFFRACTION; NEUTRON POWDER DIFFRACTION; SINGLE-CRYSTAL STRUCTURE; MAYA BLUE PIGMENT; SOLID-STATE SI-29; ZEOLITE H-ZSM-5; PALYGORSKITE-INDIGO; FRAMEWORK STRUCTURE; P-NITROANILINE; ZSM-5 AB In the search for stable and enduring organic colors, we have combined indigo, a historical and industrially important chromophore, with silicalite, the MFI zeolite. The resulting pigment presents high color durability against most external agents (e.g., light, temperature). This stability and its physical properties are explained by the association of indigo with an inert mineral, which is also influenced by formation conditions such as the initial indigo concentration and the thermal treatment. The formation of the indigo@silicalite hybrid, particularly diffusion of the organic molecule, is monitored by optical spectroscopies, thermogravimetric measurements, and X-ray diffraction. Color stability is attested when indigo enters the pores of the zeolitic host, thus forming a new pigment with characteristics similar to those of Maya Blue. This opens the way to the low-cost engineering of metal-free, nonhazardous pigment powders based on indigoid and other dyes. C1 [Dejoie, Catherine; Martinetto, Pauline; Dooryhee, Eric; Strobel, Pierre; Anne, Michel] CNRS, Inst Neel, UPR 2940, F-38042 Grenoble 9, France. [Blanc, Sylvie; Bordat, Patrice; Brown, Ross] UPAA CNRS, IPREM, UMR 5254, F-64053 Pau 9, France. [Porcher, Florence] UHP CNRS, Fac Sci, Lab Cristallog Resonnance Magnet & Modelisat CRM2, F-54506 Vandoeuvre Les Nancy, France. [Porcher, Florence] CEA CNRS, LLB, UMR 12, F-91191 Gif Sur Yvette, France. [del Rio, Manuel Sanchez] European Synchrotron Radiat Facil, F-38000 Grenoble, France. [Dooryhee, Eric] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Martinetto, P (reprint author), CNRS, Inst Neel, UPR 2940, 25 Ave Martyrs,BP 166, F-38042 Grenoble 9, France. EM pauline.martinetto@grenoble.cnrs.fr RI dooryhee, eric/D-6815-2013; d2am, beamline/I-6445-2015 FU I_MGP; Region RhOne-Alpes (France) FX The TGA experiments were carried out with the help of P. Odier from Institut Neel. J. Kreisel from I_MGP provided assistance and support for the fluorescence measurements. N. Boudet, J -F. Berar, S. Arnaud, and B. Caillot are thanked for their strong support and advice at the Beamline ESRF/CRG-BMO2 for the diffraction measurements. Elemental analyses were performed with the help of Ph. De Parseval at the Laboratory of the Mechanisms and Transfers in Geology, Paul Sabatier University, Toulouse, France. This project is supported by the Region RhOne-Alpes (France) through the CIBLE programme and the Materials for Sustainable Development (MACODEV) consortium. NR 69 TC 17 Z9 17 U1 6 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG PY 2010 VL 2 IS 8 BP 2308 EP 2316 DI 10.1021/am100349b PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 641FD UT WOS:000281109300022 ER PT J AU Tselev, A Meunier, V Strelcov, E Shelton, WA Luk'yanchuk, IA Jones, K Proksch, R Kolmakov, A Kalinin, SV AF Tselev, Alexander Meunier, Vincent Strelcov, Evgheni Shelton, William A., Jr. Luk'yanchuk, Igor A. Jones, Keith Proksch, Roger Kolmakov, Andrei Kalinin, Sergei V. TI Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2 SO ACS NANO LA English DT Article DE vanadium dioxide; ferroelastic domains; domain walls; metal-insulator phase transition; near-field microwave microscopy; density functional theory ID VANADIUM DIOXIDE; OXIDE; INTERFACE; NANOBEAMS; GAS AB The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 degrees C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies in VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions. C1 [Tselev, Alexander; Meunier, Vincent; Shelton, William A., Jr.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Strelcov, Evgheni; Kolmakov, Andrei] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Luk'yanchuk, Igor A.] Univ Picardie Jules Verne, F-80039 Amiens, France. [Luk'yanchuk, Igor A.] LD Landau Theoret Phys Inst, Moscow, Russia. [Jones, Keith; Proksch, Roger] Asylum Res, Santa Barbara, CA 93117 USA. RP Tselev, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tseleva@ornl.gov RI Meunier, Vincent/F-9391-2010; Kolmakov, Andrei/A-9095-2011; Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Strelcov, Evgheni/H-1654-2013; Tselev, Alexander/L-8579-2015; Igor, Lukyanchuk/C-4206-2008; Kolmakov, Andrei/B-1460-2017 OI Meunier, Vincent/0000-0002-7013-179X; Kalinin, Sergei/0000-0001-5354-6152; Tselev, Alexander/0000-0002-0098-6696; Kolmakov, Andrei/0000-0001-5299-4121 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ANR; NSF [ECCS-0925837]; SISGR-DOE [ERKCM67] FX Authors are grateful to Alexander Tagantsev for helpful discussions. Research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work of I.L was supported by ANR project LOMACOQU. The research at SIUC was supported through NSF ECCS-0925837 and SISGR-DOE ERKCM67. NR 31 TC 43 Z9 43 U1 7 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2010 VL 4 IS 8 BP 4412 EP 4419 DI 10.1021/nn1004364 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 640LM UT WOS:000281052700011 PM 20731427 ER PT J AU Aleman, B Regan, W Aloni, S Altoe, V Alem, N Girit, C Geng, BS Maserati, L Crommie, M Wang, F Zettl, A AF Aleman, Benjamin Regan, William Aloni, Shaul Altoe, Virginia Alem, Nasim Girit, Caglar Geng, Baisong Maserati, Lorenzo Crommie, Michael Wang, Feng Zettl, A. TI Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes SO ACS NANO LA English DT Article DE suspended graphene membrane; atomically thin membrane; graphene TEM grids; TEM; CVD graphene; EELS; EDS ID CHEMICAL-VAPOR-DEPOSITION; SHEETS; FILMS; DYNAMICS; COPPER AB We demonstrate a process for batch production of large-area (100-3000 mu m(2)) patterned freestanding graphene membranes on Cu scaffolds using chemical vapor deposition (CVD)-grown graphene. This technique avoids the use of silicon and transfers of graphene. As one application of this technique, we fabricate transmission electron microscopy (TEM) sample supports. TEM characterization of the graphene membranes reveals relatively clean, highly TEM-transparent, single-layer graphene regions (similar to 50% by area) and, despite the polycrystalline nature of CVD graphene, membrane yields as high as 75-100%. This high yield verifies that the intrinsic strength and integrity of CVD-grown graphene films is sufficient for sub-100 mu m width membrane applications. Elemental analysis (electron energy loss spectroscopy (EELS) and X-ray energy-dispersive spectroscopy (EDS)) of the graphene membranes reveals some nanoscaled contamination left over from the etching process, and we suggest several ways to reduce this contamination and improve the quality of the graphene for electronic device applications. This large-scale production of suspended graphene membranes facilitates access to the two-dimensional physics of graphene that are suppressed by substrate interactions and enables the widespread use of graphene-based sample supports for electron and optical microscopy. C1 [Aleman, Benjamin; Regan, William; Alem, Nasim; Girit, Caglar; Geng, Baisong; Maserati, Lorenzo; Crommie, Michael; Wang, Feng; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Aleman, Benjamin; Regan, William; Alem, Nasim; Girit, Caglar; Crommie, Michael; Wang, Feng; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Aleman, Benjamin; Regan, William; Alem, Nasim; Crommie, Michael; Wang, Feng; Zettl, A.] Ctr Integrated Nanomech Syst COINS, Berkeley, CA 94720 USA. [Aloni, Shaul; Altoe, Virginia] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Geng, Baisong] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China. [Maserati, Lorenzo] Politecn Milan, I-20133 Milan, Italy. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015; OI Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X; Regan, William/0000-0003-0143-9827; Maserati, Lorenzo/0000-0002-9938-8935 FU Office of Naval Research [N00014-09-1-1066]; U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation through the Center of Integrated Nanomechanical Systems [EEC-0832819, DMR 0906539]; UC Berkeley; China Scholarship Council FX We thank B. Kessler for technical assistance, and G. Dour and J. Weldon for discussion. This work was supported in part by the Office of Naval Research MURI program under Grant N00014-09-1-1066, which provided for the development of the fabrication method. Growth facilities and high-resolution analytical TEM were provided by the Director, Office of Energy Research, Lawrence Berkeley National Lab Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the sp2-bonded Materials Program and the Molecular Foundry's user program. Microscopy and diffraction characterization were also provided by the National Science Foundation through the Center of Integrated Nanomechanical Systems under Grant No. EEC-0832819 and through Grant No. DMR 0906539. B.A. acknowledges support from the UC Berkeley AJ. Macchi Fellowship Fund in the Physical Sciences. W.R. acknowledges support through a National Science Foundation Graduate Research Fellowship, and B.G. acknowledges support from the China Scholarship Council. NR 31 TC 55 Z9 55 U1 12 U2 213 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2010 VL 4 IS 8 BP 4762 EP 4768 DI 10.1021/nn100459u PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 640LM UT WOS:000281052700051 PM 20604526 ER PT J AU Ghadiali, JE Cohen, BE Stevens, MM AF Ghadiali, James E. Cohen, Bruce E. Stevens, Molly M. TI Protein Kinase-Actuated Resonance Energy Transfer in Quantum Dot-Peptide Conjugates SO ACS NANO LA English DT Article DE quantum dots; FRET; biosensors; bionanotechnology; protein kinases ID ASSAYS; ASSEMBLIES; TARGETS AB Bioconjugates of quantum dot nanocrystals possess unique optical properties that allow them to serve as exceptional biological imaging and sensing reagents. Protein kinases are an important family of enzymes that phosphorylate serine, threonine, or tyrosine side chains and are critical in cell signaling and cancer biology, but despite their biomedical and pharmaceutical significance, their activity has been little explored using quantum dot technology. We demonstrate that self-assembled peptide-quantum dot conjugates can serve as surrogate substrates in a simple homogeneous assay for protein kinase activity. Enzymatic phosphorylation of the peptide-conjugates is detected by means of a complementary FRET-acceptor labeled antiphosphotyrosine antibody, with formation of the immunocomplex resulting in energy transfer between the quantum dot and FRET acceptor molecules. This approach should facilitate the development of new assays for protein kinases and other enzymes based on quantum dot FRET donors. C1 [Ghadiali, James E.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Ghadiali, James E.; Stevens, Molly M.] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England. [Cohen, Bruce E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Mol Foundry, Berkeley, CA 94720 USA. RP Stevens, MM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, Exhibit Rd, London SW7 2AZ, England. EM becohen@lbl.gov; m.stevens@imperial.ac.uk FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC; ERC FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.M.S. thanks the EPSRC and ERC Grant "Naturale" for financial support. NR 24 TC 71 Z9 73 U1 5 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD AUG PY 2010 VL 4 IS 8 BP 4915 EP 4919 DI 10.1021/nn101293s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 640LM UT WOS:000281052700070 PM 20731464 ER PT J AU Sutter, EA Sutter, PW AF Sutter, Eli A. Sutter, Peter W. TI Size-Dependent Phase Diagram of Nanoscale Alloy Drops Used in Vapor-Liquid-Solid Growth of Semiconductor Nanowires SO ACS NANO LA English DT Article DE semiconductor nanowires; nanoscale phase diagrams; semiconductor-metal alloy drops; Au-Ge binary system; vapor-liquid-solid growth ID SILICON NANOWIRES; GE NANOWIRES AB We use in situ observations during high-temperature transmission electron microscopy to quantify the exchange of semiconductor material between Au-Ge vapor-liquid-solid seed drops and Ge nanowires (NWs). By performing simultaneous measurements under identical conditions on arrays with systematic variations in NW diameter, we establish the nanoscale size dependence of the temperature-dependent equilibrium composition of the Au-Ge binary alloy. We find a significantly enhanced Ge solubility for drops on thin NWs compared to thicker ones. The controlled modification of the surface of the NW by an ordered carbon shell leads to drastic changes in the solubility. C1 [Sutter, Eli A.; Sutter, Peter W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH1-886] FX We thank Dr. T. Picraux and Dr. S. Dayeh for the linear arrays of Ge nanowires and for insightful discussions. We are grateful to K. Kisslinger for technical support. Work was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 28 TC 40 Z9 40 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD AUG PY 2010 VL 4 IS 8 BP 4943 EP 4947 DI 10.1021/nn101366w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 640LM UT WOS:000281052700074 PM 20731466 ER PT J AU Li, M Gustchina, A Rasulova, FS Melnikov, EE Maurizi, MR Rotanova, TV Dauter, Z Wlodawer, A AF Li, Mi Gustchina, Alla Rasulova, Fatima S. Melnikov, Edward E. Maurizi, Michael R. Rotanova, Tatyana V. Dauter, Zbigniew Wlodawer, Alexander TI Structure of the N-terminal fragment of Escherichia coli Lon protease SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CRYSTAL-STRUCTURE; DEPENDENT PROTEASES; LIMITED PROTEOLYSIS; CATALYTIC DOMAIN; ACTIVE-SITES; PROTEINS; CHAPERONE; AAA(+); CLASSIFICATION; RECOGNITION AB The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 angstrom resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal alpha-helix. The structure of the first subdomain (residues 1-117), which consists mostly of beta-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates. C1 [Li, Mi; Gustchina, Alla; Wlodawer, Alexander] NCI, Protein Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. [Li, Mi] SAIC Frederick, Basic Res Program, Frederick, MD 21702 USA. [Rasulova, Fatima S.; Maurizi, Michael R.] NCI, Cell Biol Lab, Bethesda, MD 20892 USA. [Melnikov, Edward E.; Rotanova, Tatyana V.] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia. [Dauter, Zbigniew] Argonne Natl Lab, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, NCI, Argonne, IL 60439 USA. RP Wlodawer, A (reprint author), NCI, Protein Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. EM wlodawer@nih.gov FU Russian Foundation for Basic Research [08-04-00977]; NIH, National Cancer Institute, Center for Cancer Research; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; National Cancer Institute, National Institutes of Health [HHSN261200800001E] FX We thank Gerald G. Leffers (NCI) for constructing the pET30a clone of E. coli Lon with the synonymous mutation eliminating the endogenous NdeI restriction enzyme site. We acknowledge the use of beamline 22-ID of the Southeast Regional Collaborative Access Team (SER-CAT), located at the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. This work was supported in part by a grant from the Russian Foundation for Basic Research (Project No. 08-04-00977) to TVR, by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and by Federal funds from the National Cancer Institute, National Institutes of Health under Contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. NR 52 TC 15 Z9 15 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD AUG PY 2010 VL 66 BP 865 EP 873 DI 10.1107/S0907444910019554 PN 8 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 627ZQ UT WOS:000280083900002 PM 20693685 ER PT J AU Chatterjee, S Del Negro, AS Edwards, MK Twamley, B Krause, JA Bryan, SA AF Chatterjee, Sayandev Del Negro, Andrew S. Edwards, Matthew K. Twamley, Brendan Krause, Jeanette A. Bryan, Samuel A. TI trans-K-3[TcO2(CN)(4)] SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID CRYSTAL-STRUCTURE; COMPLEXES AB The structure of the title compound, tripotassium trans-tetracyanidodioxidotechnetate(V), is isotypic with its Re analogue. The [TcO2(CN)(4)](3-) trans-tetracyanidodioxidotechnetate anion has a slightly distorted octahedral configuration. The Tc atom is located on a center of inversion and is bound to two O atoms in axial and to four cyanide ligands in equatorial positions. The Tc-O distance is consistent with a double-bond character. The two potassium cations, one located on a center of inversion and one in a general position, reside in octahedral or tetrahedral environments, respectively. K center dot center dot center dot O and K center dot center dot center dot N interactions occur in the 2.7877 (19)-2.8598 (15) angstrom range. C1 [Chatterjee, Sayandev; Del Negro, Andrew S.; Edwards, Matthew K.; Bryan, Samuel A.] Pacific NW Natl Lab, Radiochem Proc Lab, Richland, WA 99357 USA. [Twamley, Brendan] Univ Idaho, Dept Chem, Moscow, ID 83844 USA. [Krause, Jeanette A.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. RP Bryan, SA (reprint author), Pacific NW Natl Lab, Radiochem Proc Lab, Richland, WA 99357 USA. EM sam.bryan@pnl.gov RI Bryan, Samuel/D-5457-2015; OI Bryan, Samuel/0000-0001-5664-3249; Chatterjee, Sayandev/0000-0003-2218-5635 FU DOE [DE-FG02-07ER51629, DE-AC05-76RL01830]; NSF-EPSCoR; M. J. Murdock Charitable Trust, Vancouver, WA; DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) FX We thank Dr Sean E. Hightower and Mr Chuck Z. Soder-quist for helpful discussion during the synthesis and crystallization. Financial support was provided by DOE EMSP grant DE-FG02-07ER51629. The SMART APEX Diffraction Facility (University of Idaho) was funded by NSF-EPSCoR and the M. J. Murdock Charitable Trust, Vancouver, WA. The Radiochemical Processing and the Environmental Molecular Science Laboratories are national scientific user facilities sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 21 TC 1 Z9 1 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD AUG PY 2010 VL 66 BP I61 EP U91 DI 10.1107/S1600536810028205 PN 8 PG 10 WC Crystallography SC Crystallography GA 658CW UT WOS:000282468400007 PM 21588082 ER PT J AU Alahuhta, M Xu, Q Brunecky, R Adney, WS Ding, SY Himmel, ME Lunin, VV AF Alahuhta, Markus Xu, Qi Brunecky, Roman Adney, William S. Ding, Shi-You Himmel, Michael E. Lunin, Vladimir V. TI Structure of a fibronectin type III-like module from Clostridium thermocellum SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE fibronectin type III-like modules; X-domain; X-module ID BACILLUS-CIRCULANS WL-12; CHITINASE A1; DOMAINS AB The 1.6 A resolution structure of a fibronectin type III-like module from Clostridium thermocellum (PDB code 3mpc) with two molecules in the asymmetric unit is reported. The crystals used for data collection belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 35.43, b = 45.73, c = 107.72 A, and the structure was refined to an R factor of 0.166. Structural comparisons found over 800 similar structures in the Protein Data Bank. The broad range of different proteins or protein domains with high structural similarity makes it especially demanding to classify these proteins. Previous studies of fibronectin type III-like modules have indicated that they might function as ligand-binding modules, as a compact form of peptide linkers or spacers between other domains, as cellulose-disrupting modules or as proteins that help large enzyme complexes remain soluble. C1 [Alahuhta, Markus; Xu, Qi; Brunecky, Roman; Adney, William S.; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.] Natl Renewable Energy Lab, BioSci Ctr, Golden, CO 80401 USA. RP Lunin, VV (reprint author), Natl Renewable Energy Lab, BioSci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM vladimir.lunin@nrel.gov RI Alahuhta, Markus/E-9344-2012; Ding, Shi-You/O-1209-2013 FU DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center FX This work was supported by the DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center. NR 14 TC 8 Z9 8 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD AUG PY 2010 VL 66 BP 878 EP 880 DI 10.1107/S1744309110022529 PN 8 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 636DK UT WOS:000280708200003 PM 20693658 ER PT J AU Whittle, KR Blackford, MG Aughterson, RD Moricca, S Lumpkin, GR Riley, DP Zaluzec, NJ AF Whittle, K. R. Blackford, M. G. Aughterson, R. D. Moricca, S. Lumpkin, G. R. Riley, D. P. Zaluzec, N. J. TI Radiation tolerance of M(n+1)AX(n) phases, Ti3AlC2 and Ti3SiC2 SO ACTA MATERIALIA LA English DT Article DE Electron diffraction; Ceramics; Ion-beam processing; Transmission electron microscopy (TEM); Titanium ID IRRADIATION-INDUCED AMORPHIZATION; ELECTRONIC-PROPERTIES; SILICON-CARBIDE; SOLID-SOLUTIONS; ION-BEAM; TEMPERATURE AB During investigations of novel material types with uses in future nuclear technologies (ITER/DEMO and GenIV fission reactors), ternary carbides with compositions Ti3AlC2 and Ti3SiC2 have been irradiated with high Xe fluences, 6.25 x 10(15) ions cm(-2) (similar to 25-30 dpa), using the IVEM-TANDEM facility at Argonne National Laboratory. Both compositions show high tolerance to damage, and give indications that they are likely to remain crystalline to much higher fluences. There is a visible difference in tolerance between Ti3AlC2 and Ti3SiC2 that can be related to the changes in bonding within each material. These initial findings provide evidence for a novel class of materials (+200 compounds) with high radiation resistance, while, significantly, both of these materials are composed of low-Z elements and hence exhibit no long-term activation. Crown Copyright (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved. C1 [Whittle, K. R.; Blackford, M. G.; Aughterson, R. D.; Moricca, S.; Lumpkin, G. R.] ANSTO, Inst Mat Engn, Kirrawee Dc, NSW 2232, Australia. [Riley, D. P.] Univ Melbourne, Sch Engn, Melbourne, Vic 3010, Australia. [Zaluzec, N. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Whittle, KR (reprint author), ANSTO, Inst Mat Engn, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia. EM karl.whittle@ansto.gov.au RI Whittle, Karl/A-7404-2008; Lumpkin, Gregory/A-7558-2008 OI Whittle, Karl/0000-0002-8000-0857; FU U.S. DOE, Basic Energy Sciences [W-31-10-ENG-38]; Access to Major Research Facilities Programme FX The authors thank the IVEM-TANDEM facility staff at Argonne National Laboratory (Peter Baldo and Edward Ryan), for assistance during the ion irradiation work. The IVEM-TANDEM is supported as a User Facility by the U.S. DOE, Basic Energy Sciences, under contract W-31-10-ENG-38. We also acknowledge financial support from the Access to Major Research Facilities Programme (a component of the International Science Linkages Programme established under the Australian Government's innovation statement, Backing Australia's Ability). NR 22 TC 70 Z9 72 U1 10 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 13 BP 4362 EP 4368 DI 10.1016/j.actamat.2010.04.029 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 623ZY UT WOS:000279787100007 ER PT J AU Wu, YF Kim, GY Anderson, IE Lograsso, TA AF Wu, Yufeng Kim, Gap-Yong Anderson, Iver E. Lograsso, Thomas A. TI Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing SO ACTA MATERIALIA LA English DT Article DE Semi-solid processing; Metal matrix composites; Particulate reinforced composites; Powder processing; Aluminum alloys ID METAL-MATRIX COMPOSITES; VOLUME-FRACTION; MECHANICAL-PROPERTIES; PRESSURELESS INFILTRATION; RHEOLOGICAL BEHAVIOR; INTERFACIAL REACTION; ALUMINUM-ALLOYS; DIE; REINFORCEMENT; SIZE AB Aluminum alloys reinforced with silicon carbide (SiC) particles have been studied extensively for their favorable properties in structural and thermal applications. However, there has been only limited research into investigating the loading limit of a reinforcement phase of a metal matrix composite. In this paper, semi-solid powder processing (SPP), a fabrication method that exploits the unique behavior of a solid-liquid mixture, was used to synthesize SiC particle-reinforced Al6061. A high volume loading (>45 vol.%) of SiC in Al6061 matrix was investigated by varying the SiC loading volume fraction, forming pressure, SiC particle size and Al6061 particle size. The compaction and synthesis mechanism of the composite by SPP was discussed based on reinforcement phase compaction behavior and processing parameters. Microstructure, hardness, fracture surface and X-ray diffraction results were also analyzed. Results showed that SPP can achieve over 50 vol.% loading of SiC in Al6061 matrix with near theoretical density. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, Yufeng; Kim, Gap-Yong] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Anderson, Iver E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Anderson, Iver E.; Lograsso, Thomas A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Kim, GY (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM gykim@iastate.edu RI wu, yufeng/K-5003-2013 FU Ames Laboratory of US Department of Energy; US DOE [DE-AC02-07CH11358] FX The authors greatly appreciate the financial support from the Ames Laboratory of US Department of Energy. Ames Laboratory is operated for the US DOE by Iowa State University under contract No. DE-AC02-07CH11358. NR 46 TC 34 Z9 37 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 13 BP 4398 EP 4405 DI 10.1016/j.actamat.2010.04.036 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 623ZY UT WOS:000279787100011 ER PT J AU Liu, XY Hoagland, RG Wang, J Germann, TC Misra, A AF Liu, X. -Y. Hoagland, R. G. Wang, J. Germann, T. C. Misra, A. TI The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc-bcc interfaces SO ACTA MATERIALIA LA English DT Article DE Multilayers; Interface structure; Point defects; Interface shear; Molecular dynamics simulations ID MOLECULAR-DYNAMICS; METALS; SIMULATIONS; COMPOSITES; STRENGTH AB Using "tunable" interatomic potentials, the dilute heats of mixing for a face-centered cubic-body-centered cubic (fcc-bcc) metal system have been varied in atomistic models, while keeping the Kurdjumov-Sachs crystallographic orientation relationship and the lattice misfit strain constant. As a result of varying the heats of mixing, the atomic structure of the interface is not significantly altered. Interstitial formation energies at interfaces are quite dependent on the heats of mixing, while vacancy formation energies at interfaces are less so. However, variation in heats of mixing has a strong influence on both the interfacial shear strength and the active shear plane at the interface. The critical stress for interface shear increases continuously with decreasing positive heat of mixing, but begins to decrease as the heat of mixing becomes negative since the active shear plane at the interface changes from fcc-bcc to fcc-fcc. The energy landscape for planar faults near the interface was investigated to understand these phenomena. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, X. -Y.; Hoagland, R. G.; Wang, J.; Germann, T. C.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liu, XY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM xyliu@lanl.gov RI Hoagland, Richard/G-9821-2012; Wang, Jian/F-2669-2012; OI Wang, Jian/0000-0001-5130-300X; Germann, Timothy/0000-0002-6813-238X FU Los Alamos National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the Los Alamos National Laboratory Directed Research and Development Program and the US Department of Energy, Office of Science, Office of Basic Energy Sciences. X.Y.L. thanks Michael J. Demkowicz for providing the potential fitting code. The authors acknowledge discussion with John P. Hirth and his comments on the manuscript. NR 18 TC 24 Z9 24 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 13 BP 4549 EP 4557 DI 10.1016/j.actamat.2010.05.008 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 623ZY UT WOS:000279787100024 ER PT J AU Jarmakani, H Maddox, B Wei, CT Kalantar, D Meyers, MA AF Jarmakani, H. Maddox, B. Wei, C. T. Kalantar, D. Meyers, M. A. TI Laser shock-induced spalling and fragmentation in vanadium SO ACTA MATERIALIA LA English DT Article DE Impact behavior; Fracture; Laser treatment; Vanadium; Schock ID DYNAMIC FRAGMENTATION; INDUCED SPALLATION; MONOCRYSTALLINE COPPER; CONDENSED MATTER; STRAIN-RATE; SOLIDS; COMPRESSION; ALUMINUM; METALS; STRENGTH AB Polycrystalline and monocrystalline (< 1 0 0 > and < 1 1 0 >) vanadium was subjected to shock compression followed by tensile wave release to study spall and fragmentation behavior. The shock pulse was generated by a direct laser drive at energy levels ranging from 11 to 440 J mm(-2) (laser beam irradiated area 1.12 mm(2)) and initial pulse durations of 3 and 8 ns (approximate initial pressures between 10 and 250 GPa). Glass and polycarbonate shields placed at a specific distance behind the vanadium targets were used to collect and analyze the ejected fragments in order to evaluate and quantify the extent of damage. The effects of target thickness, laser energy, poly-crystallinity and pulse duration were studied. Calculations show melting at a pressure threshold of similar to 150 GPa, which corresponds to a laser energy level of similar to 180 J mm(-2). Consistent with the analytical predictions, the recovered specimens and fragments show evidence of melting at the higher energy levels. Spalling in the polycrystals occurred by a ductile tearing mechanism that favored grain boundaries. In the monocrystals it occurred by a mixture of cleavage fracture along the {0 1 0} planes and ductile dimple fracture. This lower spall strength in polycrystals contradicts predictions from the Hall-Petch equation. Experimentally obtained fragment sizes were compared with predictions from the Grady-Kipp model. The spall strength of vanadium under laser loading conditions was calculated from both VISAR pull-back signals and using the spall thickness. It was found to be considerably higher than predictions from gas gun experiments, the monocrystals showing a higher value than polycrystals. This higher spall strength is suggestive of a strong time dependence of the phenomenon, consistent with the nucleation and growth kinetics of voids and the strain rate sensitivity embedded in the Grady theory. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jarmakani, H.; Wei, C. T.; Meyers, M. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Maddox, B.; Kalantar, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meyers, MA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mameyers@ucsd.edu RI Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 FU University of California, Lawrence Livermore National Laboratory, through the Institute for Laser Science and Applications, under ILSA [W-7405-Eng-48] FX This work was performed under the auspices of UCOP by the University of California, Lawrence Livermore National Laboratory, through the Institute for Laser Science and Applications, under ILSA Contract No. W-7405-Eng-48. The help provided by Dr. D. Correll is gratefully acknowledged. The authors thank Dr. Mark Tilak for his generosity in sharing with us the HYADES code and Evelyn York at the Scripps Institute of Oceanography for her help with SEM imaging. The hospitality of Drs. W. Proud and S. Walley, Cavendish Laboratory, Cambridge during the last stages of manuscript preparation is gratefully acknowledged. NR 71 TC 21 Z9 21 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 14 BP 4604 EP 4628 DI 10.1016/j.actamat.2010.04.027 PG 25 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 624TW UT WOS:000279845400004 ER PT J AU Kovarik, L Yang, F Garg, A Diercks, D Kaufman, M Noebe, RD Mills, MJ AF Kovarik, L. Yang, F. Garg, A. Diercks, D. Kaufman, M. Noebe, R. D. Mills, M. J. TI Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys SO ACTA MATERIALIA LA English DT Article DE Shape memory alloys (SMAs); Precipitation; Crystal structure; High-angle annular dark field (HAADF); Ab initio electron theory ID ULTRASOFT PSEUDOPOTENTIALS; TRANSFORMATIONS; TRANSITION AB Aging of the high-temperature shape memory alloy Ti50Ni30Pt20 (at.%) results in precipitation of a previously unidentified phase, which plays a key role in achieving desirable shape memory properties. The precipitate phase has been analyzed with electron diffraction, high-resolution scanning transmission electron microscopy and three-dimensional atom probe tomography. The experimental observations show that the precipitates have unique crystallography due to their non-periodic character along one of the primary crystallographic directions. It will be shown that the structure can be explained in terms of crystal intergrowth of three variants of a monoclinic crystal. The monoclinic crystal structure is closely related to the high-temperature cubic B2 phase; the departure of the structure from the B2 phase can be attributed to ordering of Pt atoms on the Ni sublattice and relaxation of the atoms (shuffle displacements) from the B2 sites. The shuffle displacements and the overall structural refinement were deduced from ab initio calculations. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Kovarik, L.; Yang, F.; Mills, M. J.] Ohio State Univ, Columbus, OH 43210 USA. [Garg, A.] Univ Toledo, Toledo, OH 44145 USA. [Garg, A.; Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Diercks, D.] Univ N Texas, Denton, TX 76207 USA. [Kaufman, M.] Colorado Sch Mines, Golden, CO 80401 USA. RP Kovarik, L (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM libor.kovarik@pnl.gov RI Kaufman, Michael/A-7737-2012; Mills, Michael/I-6413-2013; Kovarik, Libor/L-7139-2016 FU NASA; Ohio Supercomputer Center (OSC) [PAS0203-1] FX This work was supported by the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, API. The Center for Advanced Research and Technology (CART) at the University of North Texas is acknowledged for the APT analysis. The first principle calculations were performed at the Ohio Supercomputer Center (OSC) under Grant # PAS0203-1. NR 18 TC 36 Z9 37 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 14 BP 4660 EP 4673 DI 10.1016/j.actamat.2010.04.039 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 624TW UT WOS:000279845400008 ER PT J AU Wei, QM Misra, A AF Wei, Qiangmin Misra, Amit TI Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers SO ACTA MATERIALIA LA English DT Article DE Transmission electron microscopy; X-ray diffraction; Multilayers; Interface structure; Dislocations ID THIN-FILMS; DEFORMATION MECHANISMS; GROWTH; STRENGTH; DISLOCATIONS; STABILITY; SIMULATIONS; COMPOSITES; INTERFACES; BEHAVIOR AB Microstructures and orientation relationships in sputter-deposited, polycrystalline V/Ag multilayers with different individual thicknesses ranging from 1 to 50 nm were investigated. It was found that the wavy morphology of layers resulting from competitive kinetic limitations of deposited atoms gives rise to a variety of orientation relationships between two adjacent layers. At the top or bottom of curved layers Kurdjumov-Sachs and Nishiyama-Wasserman orientations were dominant, while on the slopes of the wavy interfaces close-packed face-centered cubic and body-centered cubic planes joined each other. As a consequence, Bain, Pitsch and many intermediate orientation relationships were generated. In most cases intermediate orientations with 1-3 degrees deviations from the parallel planes or directions in standard orientations were observed. The tilted interfaces, followed by the introduction of disconnections to relieve misfit stress, had a tendency to form an invariant habit plane in which the strain was completely relieved. A model describing disconnections and invariant planes can explain the observed deviations and orientation of the habit plane. Calculations of the evolution of the surface morphology on the basis of the kinetic behavior of deposits were performed to facilitate interpretation of the formation of the wavy structure. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wei, Qiangmin; Misra, Amit] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wei, QM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wei@lanl.gov RI Wei, Qiangmin/D-3931-2011; Misra, Amit/H-1087-2012 FU DOE, Office of Science, Office of Basic Energy Sciences FX This research was funded by the DOE, Office of Science, Office of Basic Energy Sciences. We thank J. Wang. X.Y. Liu, M.J. Demkowicz, R.G. Hoagland and J.P. Hirth for insightful discussions. NR 54 TC 25 Z9 26 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 14 BP 4871 EP 4882 DI 10.1016/j.actamat.2010.05.025 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 624TW UT WOS:000279845400027 ER PT J AU Bouvard, JL Ward, DK Hossain, D Marin, EB Bammann, DJ Horstemeyer, MF AF Bouvard, J. L. Ward, D. K. Hossain, D. Marin, E. B. Bammann, D. J. Horstemeyer, M. F. TI A general inelastic internal state variable model for amorphous glassy polymers SO ACTA MECHANICA LA English DT Article; Proceedings Paper CT 1st Conference of the American-Academy-of-Mechanics CY JUN, 2008 CL New Orleans, LA SP Amer Acad Mechan ID MECHANICALLY COUPLED THEORY; STRAIN-HARDENING BEHAVIOR; DEFORMATION-BEHAVIOR; CONSTITUTIVE MODEL; WIDE-RANGE; TRANSITION TEMPERATURE; MODERATE DEFORMATIONS; PLASTIC-DEFORMATION; FINITE DEFORMATION; ELASTIC PROPERTIES AB This paper presents the formulation of a constitutive model for amorphous thermoplastics using a thermodynamic approach with physically motivated internal state variables. The formulation follows current internal state variable methodologies used for metals and departs from the spring-dashpot representation generally used to characterize the mechanical behavior of polymers like those used by Ames et al. in Int J Plast, 25, 1495-1539 (2009) and Anand and Gurtin in Int J Solids Struct, 40, 1465-1487 (2003), Anand and Ames in Int J Plast, 22, 1123-1170 (2006), Anand et al. in Int J Plast, 25, 1474-1494 (2009). The selection of internal state variables was guided by a hierarchical multiscale modeling approach that bridged deformation mechanisms from the molecular dynamics scale (coarse grain model) to the continuum level. The model equations were developed within a large deformation kinematics and thermodynamics framework where the hardening behavior at large strains was captured using a kinematic-type hardening variable with two possible evolution laws: a current method based on hyperelasticity theory and an alternate method whereby kinematic hardening depends on chain stretching and material plastic flow. The three-dimensional equations were then reduced to the one-dimensional case to quantify the material parameters from monotonic compression test data at different applied strain rates. To illustrate the generalized nature of the constitutive model, material parameters were determined for four different amorphous polymers: polycarbonate, poly(methylmethacrylate), polystyrene, and poly(2,6-dimethyl-1,4-phenylene oxide). This model captures the complex character of the stress-strain behavior of these amorphous polymers for a range of strain rates. C1 [Bouvard, J. L.; Ward, D. K.; Hossain, D.; Marin, E. B.; Bammann, D. J.; Horstemeyer, M. F.] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39762 USA. [Ward, D. K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Bouvard, JL (reprint author), Mississippi State Univ, Ctr Adv Vehicular Syst, 200 Res Blvd, Starkville, MS 39762 USA. EM jeanluc@cavs.msstate.edu RI Bouvard, Jean-Luc/C-1638-2010; OI Bouvard, Jean-Luc/0000-0001-6113-6639; Horstemeyer, Mark/0000-0003-4230-0063 NR 73 TC 17 Z9 18 U1 0 U2 16 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 J9 ACTA MECH JI Acta Mech. PD AUG PY 2010 VL 213 IS 1-2 BP 71 EP 96 DI 10.1007/s00707-010-0349-y PG 26 WC Mechanics SC Mechanics GA 628AS UT WOS:000280087100006 ER PT J AU Freed, AD Einstein, DR Sacks, MS AF Freed, Alan D. Einstein, Daniel R. Sacks, Michael S. TI Hypoelastic soft tissues SO ACTA MECHANICA LA English DT Article; Proceedings Paper CT 1st Conference of the American-Academy-of-Mechanics CY JUN, 2008 CL New Orleans, LA SP Amer Acad Mechan ID MECHANICAL-PROPERTIES; BIOLOGICAL-MATERIALS; BIOMATERIALS; ANISOTROPY; BEHAVIOR; STRAINS; RATES; SHEAR AB In Part I, a novel hypoelastic framework for soft tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problems of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between nonlinearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde-treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters), the model does a reasonably good job of describing the nonlinear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. C1 [Freed, Alan D.] Saginaw Valley State Univ, University Ctr, MI 48710 USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Olympia, WA 98502 USA. [Sacks, Michael S.] Univ Pittsburgh, Cardiovasc Biomech Lab, Dept Bioengn, Pittsburgh, PA 15419 USA. RP Freed, AD (reprint author), Saginaw Valley State Univ, 202 Pioneer Hall,7400 Bay Rd, University Ctr, MI 48710 USA. EM adfreed@svsu.edu; daniel.einstein@pnl.gov; msacks@pitt.edu RI Sacks, Michael/F-3703-2011; OI Freed, Alan/0000-0002-3492-0628 FU NHLBI NIH HHS [R01 HL084431, R01 HL084431-02, R01 HL089750, R01 HL089750-02] NR 38 TC 4 Z9 4 U1 0 U2 10 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 J9 ACTA MECH JI Acta Mech. PD AUG PY 2010 VL 213 IS 1-2 BP 205 EP 222 DI 10.1007/s00707-010-0357-y PG 18 WC Mechanics SC Mechanics GA 628AS UT WOS:000280087100013 PM 21394222 ER PT J AU McLerran, L Praszalowicz, M AF McLerran, Larry Praszalowicz, Michal TI SATURATION AND SCALING OF MULTIPLICITY, MEAN p(T) AND p(T) DISTRIBUTIONS FROM 200 GeV <= root s <= 7 TeV SO ACTA PHYSICA POLONICA B LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; HIGH-DENSITY QCD; TRANSVERSE-MOMENTUM; HADRON-PRODUCTION; PSEUDORAPIDITY DISTRIBUTIONS; RENORMALIZATION-GROUP; ENERGY-DEPENDENCE; LARGE NUCLEI; SMALL-X AB The multiplicity, average transverse momentum, and charged particle transverse momentum distributions have recently been measured in LHC experiments. The multiplicity and average transverse momentum grow with beam energy. Such growth is expected in the theory of the Color Glass Condensate, a theory that incorporates the physics of saturation into the evolution of the gluon distribution. We show that the energy dependence of the pp data and the LHC data for pp scattering at root s >= 200 GeV may be simply described using a minimal amount of model input. Such a description uses parameters consistent with the Color Glass Condensate descriptions of HERA and RHIC experimental data. C1 [McLerran, Larry] BNL, Upton, NY USA. [McLerran, Larry] Riken Brookhaven Ctr, Upton, NY USA. [Praszalowicz, Michal] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. RP McLerran, L (reprint author), BNL, Upton, NY USA. RI Praszalowicz, Michal/F-1912-2016 FU DOE [DE-AC02-98CH10886] FX We wish to thank the organizers of the Krakow School of Theoretical Physics in Zakopane, Poland where this work was initiated. We particularly thank Andrzej Bialas and Krzysztof Golec Biernat for insightful comments, and Dave Charlton for a very clear presentation of the results from the LHC experiments. We also thank Eugene Levin and Raju Venugopalan for their critical reading of the manuscript. The research of L. McLerran is supported under DOE Contract No. DE-AC02-98CH10886. NR 49 TC 57 Z9 58 U1 0 U2 2 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD AUG PY 2010 VL 41 IS 8 BP 1917 EP 1926 PG 10 WC Physics, Multidisciplinary SC Physics GA 640RA UT WOS:000281068300007 ER PT J AU Clark, BG Gianola, DS Kraft, O Frick, CP AF Clark, Blythe G. Gianola, Daniel S. Kraft, Oliver Frick, Carl P. TI Size Independent Shape Memory Behavior of Nickel-Titanium SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID MARTENSITE START TEMPERATURES; TRANSFORMATION STRESS LEVELS; COMPRESSION PILLARS; SMALL-SCALE; THIN-FILM; NITI; ALLOYS; DEFORMATION; STRENGTH; PSEUDOELASTICITY AB While shape memory alloys such as NiTi have strong potential as active materials in many small-scale applications, much is still unknown about their shape memory and deformation behavior as size scale is reduced. This paper reports on two sets of experiments which shed light onto an inconsistent body of research regarding the behavior of NiTi at the nano- to microscale. In situ SEM pillar bending experiments directly show that the shape memory behavior of NiTi is still present for pillar diameters as small as 200 nm. Uniaxial pillar compression experiments demonstrate that plasticity of the phase transformation in NiTi is size independent and, in contrast to bulk single crystal observations, is not influenced by heat treatment (i.e., precipitate structure). C1 [Clark, Blythe G.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Clark, Blythe G.] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany. [Gianola, Daniel S.; Kraft, Oliver] Karlsruhe Inst Technol, Inst Mat Res 2, D-76021 Karlsruhe, Germany. [Frick, Carl P.] Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. RP Clark, BG (reprint author), Sandia Natl Labs, Phys Chem & Nano Sci Ctr, POB 5800,MS 1423, Albuquerque, NM 87185 USA. EM cfrick@uwyo.edu FU Alexander von Humboldt Fellowships FX The authors would like to acknowledge the assistance of Ulrike Eigenthaler and Dr. Michael Hirscher with the DualBeam (TM), FIB Additionally we would like to thank Dr. Yuri Chumlyakov of the Siberian Physical Technical Institute for creating the single crystal NiTi samples. B. G. C. and D. S. G. would like to acknowledge funding from Alexander von Humboldt Fellowships. NR 37 TC 21 Z9 21 U1 9 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD AUG PY 2010 VL 12 IS 8 SI SI BP 808 EP 815 DI 10.1002/adem.201000048 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 670UC UT WOS:000283451800022 ER PT J AU Vaidya, NK Huang, HX Takagi, S AF Vaidya, Naveen K. Huang, Huaxiong Takagi, Shu TI Coarse Grained Molecular Dynamics Simulation of Interaction between Hemagglutinin Fusion Peptides and Lipid Bilayer Membranes SO ADVANCES IN APPLIED MATHEMATICS AND MECHANICS LA English DT Article DE Coarse-grained molecular dynamics; fusion peptide; hemagglutinin protein; phospholipid bilayer; membrane fusion ID INFLUENZA-VIRUS HEMAGGLUTININ; CONFORMATIONAL CHANGE; FORCE-FIELD; LOW-PH; MECHANISM; VESICLES; GLYCOPROTEIN; PROTEINS; MUTANT; MODEL AB Microscopic level interaction between fusion-peptides and lipid bilayer membranes plays a crucial role in membrane fusion, a key step of viral infection. In this paper, we use coarse-grained molecular dynamics (CGMD) simulations to study the interaction between hemagglutinin fusion-peptides and phospholipid bilayer membranes. With CGMD, we are able to simulate the interaction of fusion peptides with a relatively large piece of membrane for a sufficiently long time period, which is necessary for a detailed understanding of the fusion process. A conformation of the peptide with a kink at the level of phosphate group is obtained, consistent with NMR and EPR studies. Our results show that the N-terminal segment of the peptide inserts more deeply into the membrane bilayer compared to the C-terminal segment, as observed in previous experiments. Our simulations also show that the presence of fusion peptides inside the membrane may cause bilayer thinning and lipid molecule disorder. Finally, our results reveal that peptides tend to aggregate, indicating cluster formation as seen in many experiments. C1 [Vaidya, Naveen K.; Huang, Huaxiong] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada. [Vaidya, Naveen K.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Takagi, Shu] Univ Tokyo, RIKEN, Organ & Body Scale Team, Computat Sci Res Program, Tokyo, Japan. [Takagi, Shu] Univ Tokyo, Dept Mech Engn, Tokyo 113, Japan. RP Huang, HX (reprint author), York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada. EM nvaidya@lanl.gov; hhuang@yorku.ca; takagish@riken.jp FU York University; Natural Science and Engineering Research Council (NSERC) of Canada; Mathematics for Information Technology and Complex System (MITACS) of Canada; Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan FX This research was supported by the Susan Mann Dissertation Scholarship Award of York University; Natural Science and Engineering Research Council (NSERC) of Canada; Mathematics for Information Technology and Complex System (MITACS) of Canada; and Research and Development of the Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The first author wishes to thank The University of Tokyo for providing a visiting fellowship while part of this research was carried out and Mr. Tomofumi Osaki for his valuable help in coding and computation. NR 50 TC 6 Z9 6 U1 1 U2 6 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 2070-0733 J9 ADV APPL MATH MECH JI Adv. Appl. Math. Mech. PD AUG PY 2010 VL 2 IS 4 BP 430 EP 450 DI 10.4208/aamm.09-m0987 PG 21 WC Mathematics, Applied; Mechanics SC Mathematics; Mechanics GA 708ZI UT WOS:000286402400002 ER PT J AU Dunning, FB Reinhold, CO Yoshida, S Burgdorfer, J AF Dunning, F. B. Reinhold, C. O. Yoshida, S. Burgdoerfer, J. TI Steering quantum states toward classical Bohr-like orbits SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID HYDROGEN-ATOMS; RYDBERG ATOMS; WAVE-PACKETS; CIRCULAR STATES; CHARGE-TRANSFER; IONIZATION; MECHANICS; LIMIT; FIELD AB We describe how, almost 100 years after the introduction of the Bohr model of the atom, it is now possible using pulsed electric fields to create localized wavepackets in high n (n approximate to 300) Rydberg atoms that travel in near-circular Bohr-like orbits mimicking the behavior of a classical electron. The protocols employed are explained with the aid of quantum and classical dynamics. Although many aspects of the underlying behavior can be described using classical arguments, purely quantum effects such as revivals can be seen even for n approximate to 300. (C) 2010 American Association of Physics Teachers. [DOI: 10.1119/1.3389134] C1 [Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, EU, A-1040 Vienna, Austria. RP Dunning, FB (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. OI Reinhold, Carlos/0000-0003-0100-4962 FU NSF [0560732]; Robert A. Welch Foundation [C-0734]; Office of Basic Energy Sciences, U.S. Department of Energy [AC05-00OR22725]; Austrian Science Fund [SFB016] FX The work by the authors and their colleagues on which this article is based was supported by NSF under Grant No. 0560732, the Robert A. Welch Foundation under Grant No. C-0734, the Office of Basic Energy Sciences, U.S. Department of Energy, through Contract No. AC05-00OR22725 to Oak Ridge National Laboratory managed by UT-Batelle LLC, and the Austrian Science Fund under Grant No. SFB016. The authors are indebted to B. Wyker for help in preparing the figures. NR 35 TC 11 Z9 11 U1 0 U2 7 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD AUG PY 2010 VL 78 IS 8 BP 796 EP 803 DI 10.1119/1.3389134 PG 8 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 642LK UT WOS:000281214900005 ER PT J AU Zhang, YY Tang, ZW Wang, J Wu, H Maham, AH Lin, YH AF Zhang, Youyu Tang, Zhiwen Wang, Jun Wu, Hong Maham, Aihui Lin, Yuehe TI Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification SO ANALYTICAL CHEMISTRY LA English DT Article ID POLYMERASE-CHAIN-REACTION; MOLECULAR BEACON BIOSENSORS; POLY(METHYL METHACRYLATE); BIOASSAY LABELS; METAL-SURFACE; MESSENGER-RNA; PROBES; QUANTIFICATION; TRANSDUCTION; NANOVEHICLES AB A novel DNA detection platform based on a hairpin DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a "stem-loop" DNA probe dually labeled with a thiol at its 5' end and a biotin at its 3' end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, gamma-globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked streptavidin (streptavidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the streptavidin HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3,3',5,5'-tetramethylbenzidine using a spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe. C1 [Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Youyu] Hunan Normal Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Chem Biol & Tradit Chinese Med Res, Changsha 410081, Hunan, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Zhang, Youyu /D-9617-2013 OI Lin, Yuehe/0000-0003-3791-7587; Zhang, Youyu /0000-0002-7502-6817 FU NIEHS NIH HHS [U54 ES16015] NR 43 TC 61 Z9 64 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 1 PY 2010 VL 82 IS 15 BP 6440 EP 6446 DI 10.1021/ac1006238 PG 7 WC Chemistry, Analytical SC Chemistry GA 632DS UT WOS:000280401400021 PM 20608643 ER PT J AU Sporty, JLS Lemire, SW Jakubowski, EM Renner, JA Evans, RA Williams, RF Schmidt, JG van der Schans, MJ Noort, D Johnson, RC AF Sporty, Jennifer L. S. Lemire, Sharon W. Jakubowski, Edward M. Renner, Julie A. Evans, Ronald A. Williams, Robert F. Schmidt, Jurgen G. van der Schans, Marcel J. Noort, Daan Johnson, Rudolph C. TI Immunomagnetic Separation and Quantification of Butyrylcholinesterase Nerve Agent Adducts in Human Serum SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; RETROSPECTIVE DETECTION; SARIN; EXPOSURE; METABOLITES; CHOLINESTERASES; DIGESTION; SOMAN; VX AB A novel method for extracting butyrylcholinesterase (BuChE) from serum as a means of identifying and measuring nerve agent adducts to human BuChE is presented here. Antibutyrylcholinesterase monoclonal antibodies were conjugated to protein-G ferromagnetic particles and mixed with 500 mu L serum samples. The particle-antibody-BuChE product was rinsed and directly digested with pepsin. Native and isotopically enriched nonapeptides corresponding to the pepsin digest products for uninhibited BuChE, and sarin, cyclohexylsarin, VX, and Russian VX nerve agent-inhibited BuChE were synthesized for use as calibrators and internal standards, respectively. Internal standards were added to the filtered digest sample, and the samples were quantified via high performance liquid chromatography-isotope dilution-tandem mass spectrometry. The ratio of adducted to total BuChE nonapeptides was calculated for each nerve agent-exposed serum sample using data collected in a single chromatogram. Nerve agent-inhibited quality control serum pools were characterized as part of method validation; the method was observed to have extremely low background noise. The measurement of both uninhibited and inhibited BuChE peptides compensated for any variations in the pepsin digestion before the internal standard peptide was added to the sample and may prove useful in individualizing patient results following a nerve agent exposure. C1 [Sporty, Jennifer L. S.; Lemire, Sharon W.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Emergency Response & Air Toxicants Branch, Div Sci Lab, Natl Ctr Environm Hlth, Chamblee, GA 30341 USA. [Jakubowski, Edward M.; Renner, Julie A.; Evans, Ronald A.] USA, Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA. [Williams, Robert F.; Schmidt, Jurgen G.] Los Alamos Natl Lab, Biosci Div Biosecur & Publ Hlth, Los Alamos, NM 87545 USA. [van der Schans, Marcel J.; Noort, Daan] TNO Def Secur & Safety, Business Unit CBRN Protect, NL-2280 AA Rijswijk, Netherlands. RP Johnson, RC (reprint author), Ctr Dis Control & Prevent, Emergency Response & Air Toxicants Branch, Div Sci Lab, Natl Ctr Environm Hlth, 4770 Buford Highway,MS F44, Chamblee, GA 30341 USA. EM RMJ6@cdc.gov OI Schmidt, Jurgen/0000-0002-8192-9940 NR 23 TC 48 Z9 49 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 1 PY 2010 VL 82 IS 15 BP 6593 EP 6600 DI 10.1021/ac101024z PG 8 WC Chemistry, Analytical SC Chemistry GA 632DS UT WOS:000280401400040 PM 20617824 ER PT J AU Gil, GC Iliff, B Cerny, R Velander, WH Van Cottt, KE AF Gil, Geun-Cheol Iliff, Bryce Cerny, Ron Velander, William H. Van Cottt, Kevin E. TI High Throughput Quantification of N-Glycans Using One-Pot Sialic Acid Modification and Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID TRANSGENIC PIG MILK; LINKED OLIGOSACCHARIDES; POSTTRANSLATIONAL MODIFICATIONS; LIQUID-CHROMATOGRAPHY; THERAPEUTIC PROTEINS; CELL CULTURE; MALDI-MS; GLYCOSYLATION; DESORPTION/IONIZATION; DERIVATIZATION AB Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then be released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method. C1 [Gil, Geun-Cheol; Iliff, Bryce; Velander, William H.; Van Cottt, Kevin E.] Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA. [Gil, Geun-Cheol] Sandia Natl Labs, Biosyst Res & Dev Dept, Livermore, CA 94551 USA. [Cerny, Ron] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Van Cottt, KE (reprint author), Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA. EM kvancott2@unl.edu FU NHLBI NIH HHS [R01 HL078944-01, R01 HL078944, R01 HL078944-04] NR 53 TC 24 Z9 26 U1 7 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 1 PY 2010 VL 82 IS 15 BP 6613 EP 6620 DI 10.1021/ac1011377 PG 8 WC Chemistry, Analytical SC Chemistry GA 632DS UT WOS:000280401400043 PM 20586471 ER PT J AU Luo, Y Sun, W Gu, Y Wang, GF Fang, N AF Luo, Yong Sun, Wei Gu, Yan Wang, Gufeng Fang, Ning TI Wavelength-Dependent Differential Interference Contrast Microscopy: Multiplexing Detection Using Nonfluorescent Nanoparticles SO ANALYTICAL CHEMISTRY LA English DT Article ID RAMAN-SCATTERING; DNA; SPECTROSCOPY AB The wavelength dependence of plasmonic nanoparticles' contrasts in differential interference contrast (DIC) microscopy has been exploited previously for unambiguous identification and dynamic tracking of these nanoprobes in complex environments (Anal. Chem. 2009, 81, 9203-9208). In the present study, the suitability of multiplexing detection in DIC microscopy was investigated systematically with 19 kinds of nanoparticles of different materials and/or sizes. A unique DIC contrast spectrum was found for each kind of nanoparticle. Multiplexing detection was accomplished by measuring DIC contrasts at a minimum of two specific illumination wavelengths. The main advantages of DIC microscopy for multiplexing detection over other nonfluorescence techniques, such as dark field microscopy and surface-enhanced Raman scattering, were demonstrated by differentiating four kinds of nanopartides on the cell membrane while providing high-contrast images of both the nanoprobes and cell features. C1 [Fang, Ning] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011; Gu, Yan/B-5014-2014; Gu, Yan/P-1419-2014 OI Gu, Yan/0000-0001-6677-6432 NR 19 TC 7 Z9 7 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 1 PY 2010 VL 82 IS 15 BP 6675 EP 6679 DI 10.1021/ac101336d PG 5 WC Chemistry, Analytical SC Chemistry GA 632DS UT WOS:000280401400051 PM 20614872 ER PT J AU Gardner, JG Keating, DH AF Gardner, Jeffrey G. Keating, David H. TI Requirement of the Type II Secretion System for Utilization of Cellulosic Substrates by Cellvibrio japonicus SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID FLUORESCENS SUBSP CELLULOSA; CELL WALL DEGRADATION; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ERWINIA-CHRYSANTHEMI; ETHANOL FERMENTATION; CATALYTIC RESIDUES; GLYCOSYL HYDROLASE; VAR. CELLULOSA; CORN STOVER AB Cellulosic biofuels represent a powerful alternative to petroleum but are currently limited by the inefficiencies of the conversion process. While Gram-positive and fungal organisms have been widely explored as sources of cellulases and hemicellulases for biomass degradation, Gram-negative organisms have received less experimental attention. We investigated the ability of Cellvibrio japonicus, a recently sequenced Gram-negative cellulolytic bacterium, to degrade bioenergy-related feedstocks. Using a newly developed biomass medium, we showed that C. japonicus is able to utilize corn stover and switchgrass as sole sources of carbon and energy for growth. We also developed tools for directed gene disruptions in C. japonicus and used this system to construct a mutant in the gspD gene, which is predicted to encode a component of the type II secretion system. The gspD::pJGG1 mutant displayed a greater-than-2-fold decrease in endoglucanase secretion compared to wildtype C. japonicus. In addition, the mutant strain showed a pronounced growth defect in medium with biomass as a carbon source, yielding 100-fold fewer viable cells than the wild type. To test the potential of C. japonicus to undergo metabolic engineering, we constructed a strain able to produce small amounts of ethanol from biomass. Collectively, these data suggest that C. japonicus is a useful platform for biomass conversion and biofuel production. C1 [Gardner, Jeffrey G.; Keating, David H.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Keating, DH (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, 3552 Microbial Sci Bldg,1550 Linden Dr, Madison, WI 53706 USA. EM dkeating@glbrc.wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 61 TC 21 Z9 21 U1 0 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2010 VL 76 IS 15 BP 5079 EP 5087 DI 10.1128/AEM.00454-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 630II UT WOS:000280266200019 PM 20543053 ER PT J AU Pei, AY Oberdorf, WE Nossa, CW Agarwal, A Chokshi, P Gerz, EA Jin, ZD Lee, P Yang, LY Poles, M Brown, SM Sotero, S DeSantis, T Brodie, E Nelson, K Pei, ZH AF Pei, Anna Y. Oberdorf, William E. Nossa, Carlos W. Agarwal, Ankush Chokshi, Pooja Gerz, Erika A. Jin, Zhida Lee, Peng Yang, Liying Poles, Michael Brown, Stuart M. Sotero, Steven DeSantis, Todd Brodie, Eoin Nelson, Karen Pei, Zhiheng TI Diversity of 16S rRNA Genes within Individual Prokaryotic Genomes (vol 76, pg 3886, 2010) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Correction C1 [Pei, Anna Y.] NYU, Coll Arts & Sci, New York, NY 10012 USA. NYU, Sch Med, Dept Med, New York, NY 10016 USA. NYU, Sch Med, Dept Pathol, New York, NY 10016 USA. NYU, Sch Med, Ctr Hlth Informat & Bioinformat, New York, NY 10016 USA. Tufts Univ, Coll Arts & Sci, Medford, MA 02155 USA. Harbor Healthcare Syst, Dept Vet Affairs New York, New York, NY 10010 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. J Craig Venter Inst, Rockville, MD 20850 USA. RP Pei, AY (reprint author), NYU, Coll Arts & Sci, 550 1St Ave, New York, NY 10012 USA. RI Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 NR 1 TC 1 Z9 1 U1 1 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2010 VL 76 IS 15 BP 5333 EP 5333 DI 10.1128/AEM.01365-10 PG 1 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 630II UT WOS:000280266200055 ER PT J AU Hong, PY Hwang, CC Ling, FQ Andersen, GL LeChevallier, MW Liu, WT AF Hong, Pei-Ying Hwang, Chiachi Ling, Fangqiong Andersen, Gary L. LeChevallier, Mark W. Liu, Wen-Tso TI Pyrosequencing Analysis of Bacterial Biofilm Communities in Water Meters of a Drinking Water Distribution System SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DISCONTINUOUS CHLORINATION; DENITRIFICATION; DIVERSITY AB The applicability of 454 pyrosequencing to characterize bacterial biofilm communities from two water meters of a drinking water distribution system was assessed. Differences in bacterial diversity and composition were observed. A better understanding of the bacterial ecology of drinking water biofilms will allow for effective management of water quality in distribution systems. C1 [Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Hong, Pei-Ying] Natl Univ Singapore, Div Environm Sci & Engn, Singapore 117576, Singapore. [Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [LeChevallier, Mark W.] Amer Water, Voorhees, NJ 08043 USA. RP Liu, WT (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM wtliu@illinois.edu RI Liu, Wen-Tso/C-8788-2011; Hong, Peiying/A-4813-2009; Andersen, Gary/G-2792-2015 OI Liu, Wen-Tso/0000-0002-8700-9803; Hong, Peiying/0000-0002-4474-6600; Andersen, Gary/0000-0002-1618-9827 FU Water Research Foundation [4116] FX This work (project no. 4116) was supported by the Water Research Foundation. NR 25 TC 94 Z9 95 U1 1 U2 57 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2010 VL 76 IS 16 BP 5631 EP 5635 DI 10.1128/AEM.00281-10 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 635CO UT WOS:000280633400036 PM 20581188 ER PT J AU Schatz, MC Phillippy, AM Gajer, P DeSantis, TZ Andersen, GL Ravel, J AF Schatz, Michael C. Phillippy, Adam M. Gajer, Pawel DeSantis, Todd Z. Andersen, Gary L. Ravel, Jacques TI Integrated Microbial Survey Analysis of Prokaryotic Communities for the PhyloChip Microarray SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DIVERSITY AB PhyloTrac is an integrated desktop application for analysis of PhyloChip microarray data. PhyloTrac combined with PhyloChip provides turnkey and comprehensive identification and analysis of bacterial and archaeal communities in complex environmental samples. PhyloTrac is free for noncommercial organizations and is available for all major operating systems at http://www.phylotrac.org/. C1 [Schatz, Michael C.; Phillippy, Adam M.; Gajer, Pawel; Ravel, Jacques] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Schatz, Michael C.; Phillippy, Adam M.] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [DeSantis, Todd Z.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Ravel, J (reprint author), Univ Maryland, Sch Med, Inst Genome Sci, BioPk 2,Room 611,801 W Baltimore St, Baltimore, MD 21201 USA. EM jravel@som.umaryland.edu RI Andersen, Gary/G-2792-2015; OI Andersen, Gary/0000-0002-1618-9827; Ravel, Jacques/0000-0002-0851-2233; Schatz, Michael/0000-0002-4118-4446 FU University of Maryland School of Medicine FX This work was supported by the University of Maryland School of Medicine. NR 9 TC 20 Z9 20 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2010 VL 76 IS 16 BP 5636 EP 5638 DI 10.1128/AEM.00303-10 PG 3 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 635CO UT WOS:000280633400037 PM 20581189 ER PT J AU Ponsoda, JJMI Soderlund, MJ Koplow, JP Koponen, JJ Honkanen, S AF Montiel i Ponsoda, Joan J. Soderlund, Mikko J. Koplow, Jeffrey P. Koponen, Joona J. Honkanen, Seppo TI Photodarkening-induced increase of fiber temperature SO APPLIED OPTICS LA English DT Article ID DOPED SILICA FIBERS; POWER; LASERS AB We examine the effect of photodarkening-induced pump light absorption on Yb-doped fiber thermal loading. In these experiments, the fiber is cladding pumped at 915 nm, air cooled by natural convection, and monitored with a midinfrared thermal camera. The fiber temperature is found to correlate with progressive photodarkening. The maximum observed fiber temperature was 120 degrees C, recorded at a pump power of 10.5 W. The observed increase in fiber temperature can be explained by a model that takes into account the combined effects of the Yb-silica quantum defect, the temperature dependence of the Yb-absorption cross section, and photodarkening-induced loss at 915 nm. We hypothesize that the latter effect results in the progressive activation of temperature-dependent photochemical processes (e. g., bleaching) and is an important consideration with regard to the accurate modeling of Yb-doped fiber photodarkening kinetics. (C) 2010 Optical Society of America C1 [Montiel i Ponsoda, Joan J.; Soderlund, Mikko J.; Honkanen, Seppo] Aalto Univ, Sch Sci & Technol, Espoo 02150, Finland. [Koplow, Jeffrey P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Koponen, Joona J.] nLIGHT Corp, FIN-08500 Lohja, Finland. RP Ponsoda, JJMI (reprint author), Aalto Univ, Sch Sci & Technol, Tietotie 3, Espoo 02150, Finland. EM joan.montiel@tkk.fi FU Finnish Funding Agency for Technology and Innovation (TEKES),; nLIGHT; Beneq FX The Finnish Funding Agency for Technology and Innovation (TEKES), nLIGHT, and Beneq are gratefully acknowledged for their financial support. NR 13 TC 4 Z9 4 U1 2 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD AUG 1 PY 2010 VL 49 IS 22 BP 4139 EP 4143 DI 10.1364/AO.49.004139 PG 5 WC Optics SC Optics GA 633MH UT WOS:000280506600004 PM 20676165 ER PT J AU Kiser, T Hansen, J Kennedy, B AF Kiser, Tim Hansen, James Kennedy, Brian TI Impacts and Pathways of Mine Contaminants to Bull Trout (Salvelinus confluentus) in an Idaho Watershed SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID WHITEFISH COREGONUS-CLUPEAFORMIS; DISODIUM ARSENATE HEPTAHYDRATE; COEUR-DALENE RIVER; CLARK-FORK RIVER; RAINBOW-TROUT; ONCORHYNCHUS-MYKISS; BENTHIC MACROINVERTEBRATES; CHRONIC TOXICITY; BROWN TROUT; FISH AB Metals contamination from mining activities is a persistent problem affecting aquatic ecosystems throughout mining districts in the western USA. The Gold Creek drainage in northern Idaho has a history of mining within its headwaters and contains elevated sediment concentrations of As, Cd, Cu, Pb, and Zn. To determine system-wide impacts of increased metals, we measured concentrations of metals in water, sediment, and benthic macroinvertebrate tissues and related them to whole-body fish tissues and histopathological alterations in native salmonids. Water concentrations were higher than those in reference areas, but were below water quality criteria for protection of aquatic biota for most of the study area. Sediment and benthic macroinvertebrate tissue concentrations for all metals were significantly higher at all sites compared with the reference site. Fish tissues were significantly higher for all metals below mine sites compared with the reference site, but only Cd and Pb were higher in fish tissues in the furthest downstream reach in the Gold Creek Delta. Metals concentrations in benthic macroinvertebrate tissues and fish tissues were strongly correlated, suggesting a transfer of metals through a dietary pathway. The concentrations within sediments and biota were similar to those reported in other studies in which adverse effects to salmonids occurred. We observed histopathological changes in livers of bull trout, including inflammation, necrosis, and pleomorphism. Our study is consistent with other work in which sediment-driven exposure can transfer up the food chain and may cause adverse impacts to higher organisms. C1 [Kiser, Tim] US Fish & Wildlife Serv, Eastern Washington Field Off, Spokane, WA 99206 USA. [Hansen, James] US DOE, Richland Operat Off, Richland, WA 99352 USA. [Kennedy, Brian] Univ Idaho, Dept Fish & Wildlife Sci, Moscow, ID 83844 USA. RP Kiser, T (reprint author), US Fish & Wildlife Serv, Eastern Washington Field Off, Spokane, WA 99206 USA. EM Tim_Kiser@fws.gov FU US Fish and Wildlife Service; Fish and Wildlife Cooperative Unit at the University of Idaho FX This research was funded by the US Fish and Wildlife Service Environmental Contaminants Program and the Fish and Wildlife Cooperative Unit at the University of Idaho. We would like to thank Roy Brazzle, Toni Davidson, Scott Deeds, Kate Healy, and Jon Lipke for their help with data collection. We thank Beth MacConnell at the Bozeman Fish Health Center for histopathological analysis and guidance on interpretation. Lastly, we thank Greg Moller and Brian Spears for their reviews and suggestions. NR 38 TC 6 Z9 6 U1 2 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD AUG PY 2010 VL 59 IS 2 BP 301 EP 311 DI 10.1007/s00244-009-9457-x PG 11 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 629UR UT WOS:000280225900014 PM 20101401 ER PT J AU Dieckmann, J Brodrick, J AF Dieckmann, John Brodrick, James TI VFDs for Residential Systems SO ASHRAE JOURNAL LA English DT Article C1 [Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 4 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD AUG PY 2010 VL 52 IS 8 BP 66 EP 68 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 636NX UT WOS:000280745300014 ER PT J AU Garg, A Cook, KH Nikolaev, S Huber, ME Rest, A Becker, AC Challis, P Clocchiatti, A Miknaitis, G Minniti, D Morelli, L Olsen, K Prieto, JL Suntzeff, NB Welch, DL Wood-Vasey, WM AF Garg, A. Cook, K. H. Nikolaev, S. Huber, M. E. Rest, A. Becker, A. C. Challis, P. Clocchiatti, A. Miknaitis, G. Minniti, D. Morelli, L. Olsen, K. Prieto, J. L. Suntzeff, N. B. Welch, D. L. Wood-Vasey, W. M. TI HIGH-AMPLITUDE delta-SCUTIS IN THE LARGE MAGELLANIC CLOUD SO ASTRONOMICAL JOURNAL LA English DT Article DE Magellanic Clouds; surveys ID ESSENCE SUPERNOVA SURVEY; RR LYRAE STARS; MACHO PROJECT; IMAGE SUBTRACTION; VARIABLE-STARS; PULSATION; PHOTOMETRY; CATALOG; GALAXY; SPACE AB We present 2323 high-amplitude delta-Scuti (HADS) candidates discovered in the Large Magellanic Cloud by the SuperMACHO survey (Rest et al.). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax. C1 [Garg, A.; Cook, K. H.; Nikolaev, S.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Huber, M. E.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Rest, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Rest, A.; Olsen, K.; Suntzeff, N. B.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Becker, A. C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Challis, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Clocchiatti, A.; Minniti, D.] Pontificia Univ Catolica Chile, Dept Astron, Santiago 22, Chile. [Minniti, D.] Vatican Observ, V-00120 Vatican City, Vatican. [Miknaitis, G.] Ctr Neighborhood Technol, Chicago, IL 60647 USA. [Morelli, L.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Olsen, K.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Prieto, J. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Suntzeff, N. B.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Suntzeff, N. B.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Welch, D. L.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Garg, A (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, 7000 East Ave, Livermore, CA 94550 USA. FU NOAO; National Science Foundation; STScI [GO-10583]; U.S. Department of Energy [DE-AC52-07NA27344]; McDonnell Foundation; Harvard University; ICM-MIDEPLAN [P06-045-F]; FONDAP [15010003, 0609]; Padova University [CPDR061795/06]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX We thank D. H. McNamara for his helpful insights into this data set. The SuperMACHO survey was undertaken under the auspices of the NOAO Survey Program. We are very grateful for the support provided to the Survey program from the NOAO and the National Science Foundation. We are particularly indebted to the scientists and staff at the Cerro Tololo Inter-American Observatory for their assistance in helping us carry out the survey. SuperMACHO is supported by the STScI grant GO-10583. We are grateful to the members of the ESSENCE supernova survey with whom we work closely. We thank the High Performance Technical Computing staff at Harvard. A.G.'s, K.H.C.'s, M.E.H.'s, and S.N.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. C. Stubbs thanks the McDonnell Foundation for its support through a Centennial Fellowship. A. G. and A. R. are also grateful for support from Harvard University. A. C. acknowledges the support of grant P06-045-F ICM-MIDEPLAN. D. M. and A. C. are supported by grants FONDAP CFA 15010003 and Basal CATA 0609. L. M. is supported by grant (CPDR061795/06) from Padova University. D. L. W. acknowledges financial support in the form of a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 36 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 328 EP 338 DI 10.1088/0004-6256/140/2/328 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000003 ER PT J AU Inada, N Oguri, M Shin, MS Kayo, I Strauss, MA Hennawi, JF Morokuma, T Becker, RH White, RL Kochanek, CS Gregg, MD Chiu, K Johnston, DE Clocchiatti, A Richards, GT Schneider, DP Frieman, JA Fukugita, M Gott, JR Hall, PB York, DG Castander, FJ Bahcall, NA AF Inada, Naohisa Oguri, Masamune Shin, Min-Su Kayo, Issha Strauss, Michael A. Hennawi, Joseph F. Morokuma, Tomoki Becker, Robert H. White, Richard L. Kochanek, Christopher S. Gregg, Michael D. Chiu, Kuenley Johnston, David E. Clocchiatti, Alejandro Richards, Gordon T. Schneider, Donald P. Frieman, Joshua A. Fukugita, Masataka Gott, J. Richard, III Hall, Patrick B. York, Donald G. Castander, Francisco J. Bahcall, Neta A. TI THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. IV. STATISTICAL LENS SAMPLE FROM THE FIFTH DATA RELEASE SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; gravitational lensing: strong; quasars: general ID 3RD DATA RELEASE; 7TH DATA RELEASE; GRAVITATIONAL LENS; CANDIDATE SELECTION; REDDEST QUASARS; BINARY QUASARS; IMAGING DATA; ACS SURVEY; GALAXY; SDSS AB We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1 '' < theta < 20 '' and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, three have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be Omega(A) = 0.84(-0.08)(+ 0.06) (stat.)(-0.07)(+0.09) (syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of seven binary quasars with separations ranging from 1.'' 1 to 16.'' 6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set. C1 [Inada, Naohisa] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Inada, Naohisa] Univ Tokyo, Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Oguri, Masamune] Natl Astron Observ, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Shin, Min-Su] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Shin, Min-Su; Strauss, Michael A.; Gott, J. Richard, III; Bahcall, Neta A.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Kayo, Issha; Fukugita, Masataka] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778582, Japan. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hennawi, Joseph F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Morokuma, Tomoki] Natl Astron Observ, Opt & Infrared Astron Div, Mitaka, Tokyo 1818588, Japan. [Becker, Robert H.; Gregg, Michael D.] IGPP LLNL, Livermore, CA 94550 USA. [Becker, Robert H.; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Chiu, Kuenley] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Johnston, David E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clocchiatti, Alejandro] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, Joshua A.; York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Fukugita, Masataka] Inst Adv Study, Princeton, NJ 08540 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Castander, Francisco J.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. RP Inada, N (reprint author), RIKEN, Cosm Radiat Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. RI Oguri, Masamune/C-6230-2011; Kayo, Issha/A-4389-2011; White, Richard/A-8143-2012 FU RIKEN; MEXT [21740151]; Department of Energy [DE-AC02-76SF00515]; JSPS [467]; NSF [AST-0707266, AST-0406713, AST-0708082]; MIDEPLAN [ICM/P06-045-F]; CONICYT [15010003, PFB 06] FX I. acknowledges support from the Special Postdoctoral Researcher Program of RIKEN, the RIKEN DRI Research Grant, and MEXT KAKENHI 21740151. This work was supported in part by Department of Energy contract DE-AC02-76SF00515. I. K. acknowledges support by Grant-in-Aid for JSPS Fellows and Grant-in-Aid for Scientific Research on Priority Areas No. 467. M.-S. S. and M. A. S. acknowledge the support of NSF grant AST-0707266. A. C. is supported by grants from MIDEPLAN (ICM/P06-045-F) and CONICYT (FONDAP 15010003 and PFB 06). J. R. G acknowledges the support of NSF grant AST-0406713. C. S. K. is supported by NSF grant AST-0708082.; U NR 106 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 403 EP 415 DI 10.1088/0004-6256/140/2/403 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000009 ER PT J AU Zou, H Zhou, X Jiang, ZJ Ashley, MCB Cui, XQ Feng, LL Gong, XF Hu, JY Kulesa, CA Lawrence, JS Liu, GR Luong-Van, DM Ma, J Moore, AM Pennypacker, CR Qin, WJ Shang, ZH Storey, JWV Sun, B Travouillon, T Walker, CK Wang, JL Wang, LF Wu, JH Wu, ZY Xia, LR Yan, J Yang, J Yang, HG Yao, YQ Yuan, XY York, DG Zhang, ZH Zhu, ZX AF Zou, Hu Zhou, Xu Jiang, Zhaoji Ashley, M. C. B. Cui, Xiangqun Feng, Longlong Gong, Xuefei Hu, Jingyao Kulesa, C. A. Lawrence, J. S. Liu, Genrong Luong-Van, D. M. Ma, Jun Moore, A. M. Pennypacker, C. R. Qin, Weijia Shang, Zhaohui Storey, J. W. V. Sun, Bo Travouillon, T. Walker, C. K. Wang, Jiali Wang, Lifan Wu, Jianghua Wu, Zhenyu Xia, Lirong Yan, Jun Yang, Ji Yang, Huigen Yao, Yongqiang Yuan, Xiangyan York, D. G. Zhang, Zhanhai Zhu, Zhenxi TI SKY BRIGHTNESS AND TRANSPARENCY IN THE i-BAND AT DOME A, ANTARCTICA SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; methods: statistical; techniques: photometric; telescopes ID 2-M CLASS TELESCOPE; SITE; PILOT; PHOTOMETRY; CATALOG; CSTAR AB The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope Array. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec(-2) in the SDSS i band at the south celestial pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec(-2). There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae. C1 [Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Hu, Jingyao; Ma, Jun; Wang, Jiali; Wu, Jianghua; Wu, Zhenyu; Yan, Jun; Yao, Yongqiang] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Zou, Hu] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Zhou, Xu; Jiang, Zhaoji; Cui, Xiangqun; Feng, Longlong; Gong, Xuefei; Hu, Jingyao; Wang, Jiali; Wang, Lifan; Yan, Jun; Yang, Ji; Yuan, Xiangyan; Zhu, Zhenxi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ashley, M. C. B.; Luong-Van, D. M.; Storey, J. W. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Cui, Xiangqun; Gong, Xuefei; Liu, Genrong; Xia, Lirong; Yuan, Xiangyan] Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China. [Kulesa, C. A.; Walker, C. K.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Lawrence, J. S.] Macquarie Univ, Dept Phys, N Ryde, NSW 2109, Australia. [Moore, A. M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Pennypacker, C. R.; Travouillon, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Qin, Weijia; Sun, Bo; Yang, Huigen; Zhang, Zhanhai] Polar Res Inst China, Shanghai 200136, Peoples R China. [Shang, Zhaohui] Tianjin Normal Univ, Tianjin 300074, Peoples R China. [York, D. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [York, D. G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Zou, H (reprint author), Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. EM zhouxu@bao.ac.cn FU Chinese National Natural Science Foundation [10873016, 10803007, 10473012, 10573020, 10633020, 10673012, 10603006]; National Basic Research Program of China (973 Program) [2007CB815403]; Chinese PANDA International Polar Year; Polar Research Institute of China (PRIC); Australian Research Council; Australian Antarctic Division FX This study has been supported by the Chinese National Natural Science Foundation through grants 10873016, 10803007, 10473012, 10573020, 10633020, 10673012, and 10603006, and by the National Basic Research Program of China (973 Program), No. 2007CB815403. This research is also supported by the Chinese PANDA International Polar Year project and the Polar Research Institute of China (PRIC). The support of the Australian Research Council and the Australian Antarctic Division for the PLATO observatory is gratefully acknowledged. The authors thank all members of the 2008 and 2009 PRIC Dome A expeditions for their heroic effort in reaching the site and for providing invaluable assistance to the expedition astronomers in setting up and servicing the PLATO observatory and its associated instrument suite. Iridium communications were provided by the US National Science Foundation and the United States Antarctic Program. Additional financial contributions have been made by the institutions involved in this collaboration. NR 39 TC 24 Z9 25 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 602 EP 611 DI 10.1088/0004-6256/140/2/602 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000026 ER PT J AU Andreotti, E Arnaboldi, C Avignone, FT Balata, M Bandac, I Barucci, M Beeman, JW Bellini, F Bloxham, T Brofferio, C Bryant, A Bucci, C Canonica, L Capelli, S Carbone, L Carrettoni, M Clemenza, M Cremonesi, O Creswick, RJ Di Domizio, S Dolinski, MJ Ejzak, L Faccini, R Farach, HA Ferri, E Ferroni, F Fiorini, E Foggetta, L Giachero, A Gironi, L Giuliani, A Gorla, P Guardincerri, E Gutierrez, TD Haller, EE Kadel, R Kazkaz, K Kraft, S Kogler, L Kolomensky, YG Maiano, C Maruyama, RH Martinez, C Martinez, M Mizouni, L Morganti, S Nisi, S Nones, C Norman, EB Nucciotti, A Orio, F Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pedretti, M Pessina, G Pirro, S Previtali, E Risegari, L Rosenfeld, C Rusconi, C Salvioni, C Sangiorgio, S Schaeffer, D Scielzo, ND Sisti, M Smith, AR Tomei, C Ventura, G Vignati, M AF Andreotti, E. Arnaboldi, C. Avignone, F. T., III Balata, M. Bandac, I. Barucci, M. Beeman, J. W. Bellini, F. Bloxham, T. Brofferio, C. Bryant, A. Bucci, C. Canonica, L. Capelli, S. Carbone, L. Carrettoni, M. Clemenza, M. Cremonesi, O. Creswick, R. J. Di Domizio, S. Dolinski, M. J. Ejzak, L. Faccini, R. Farach, H. A. Ferri, E. Ferroni, F. Fiorini, E. Foggetta, L. Giachero, A. Gironi, L. Giuliani, A. Gorla, P. Guardincerri, E. Gutierrez, T. D. Haller, E. E. Kadel, R. Kazkaz, K. Kraft, S. Kogler, L. Kolomensky, Yu. G. Maiano, C. Maruyama, R. H. Martinez, C. Martinez, M. Mizouni, L. Morganti, S. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. Orio, F. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pedretti, M. Pessina, G. Pirro, S. Previtali, E. Risegari, L. Rosenfeld, C. Rusconi, C. Salvioni, C. Sangiorgio, S. Schaeffer, D. Scielzo, N. D. Sisti, M. Smith, A. R. Tomei, C. Ventura, G. Vignati, M. TI Muon-induced backgrounds in the CUORICINO experiment SO ASTROPARTICLE PHYSICS LA English DT Article DE CUORICINO; Muons; Cosmic rays; Double beta decay; Neutrinos ID MONTE-CARLO EVALUATION; HIGH-ENERGY MUONS; NEUTRON-PRODUCTION; FLUX AB To better understand the contribution of cosmic ray muons to the CUORICINO background, 10 plastic scintillator detectors were installed at the CUORICINO site and operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV kg yr) (95% CL) was obtained on the cosmic ray-induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to GEANT4 simulations. (c) 2010 Elsevier B.V. All rights reserved. C1 [Beeman, J. W.; Bloxham, T.; Bryant, A.; Haller, E. E.; Kogler, L.; Kolomensky, Yu. G.; Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Andreotti, E.; Giuliani, A.; Nones, C.] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy. [Andreotti, E.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Ferri, E.; Fiorini, E.; Foggetta, L.; Giachero, A.; Gironi, L.; Giuliani, A.; Kraft, S.; Maiano, C.; Martinez, M.; Nones, C.; Nucciotti, A.; Pattavina, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Salvioni, C.; Schaeffer, D.; Sisti, M.] Sez INFN Milano Bicocca, I-20126 Milan, Italy. [Arnaboldi, C.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Ferri, E.; Fiorini, E.; Kraft, S.; Maiano, C.; Nucciotti, A.; Pavan, M.; Schaeffer, D.; Sisti, M.] Univ Milan, Dipartimento Fis, I-20126 Bicocca, Italy. [Bandac, I.; Creswick, R. J.; Farach, H. A.; Martinez, C.; Mizouni, L.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Balata, M.; Bucci, C.; Gorla, P.; Nisi, S.; Tomei, C.] Assergi LAquila, Lab Nazl Gran Sasso, I-67010 Coppito, Italy. [Barucci, M.; Risegari, L.; Ventura, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Barucci, M.; Risegari, L.; Ventura, G.] Sez INFN Firenze, I-50125 Florence, Italy. [Bellini, F.; Faccini, R.; Ferroni, F.; Orio, F.; Vignati, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Faccini, R.; Ferroni, F.; Morganti, S.; Orio, F.; Vignati, M.] Sez INFN Roma, I-00185 Rome, Italy. [Bryant, A.; Dolinski, M. J.; Kolomensky, Yu. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Canonica, L.; Di Domizio, S.; Guardincerri, E.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Canonica, L.; Di Domizio, S.; Guardincerri, E.; Pallavicini, M.] Sez 1NFN Genova, I-16146 Genoa, Italy. [Dolinski, M. J.; Kazkaz, K.; Norman, E. B.; Pedretti, M.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ejzak, L.; Maruyama, R. H.; Sangiorgio, S.] Univ Wisconsin, Madison, WI 53706 USA. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Palmieri, V.] Lab Nazl Legnaro, I-35020 Legnaro, Italy. RP Kogler, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM lkogler@berkeley.edu RI Pattavina, Luca/I-7498-2015; Maruyama, Reina/A-1064-2013; Barucci, Marco/D-4209-2012; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; Di Domizio, Sergio/L-6378-2014; Ferri, Elena/L-8531-2014; Kolomensky, Yury/I-3510-2015; Bellini, Fabio/D-1055-2009; Foggetta, Luca/A-4810-2010; Pallavicini, Marco/G-5500-2012; Nucciotti, Angelo/I-8888-2012; Bucci, Carlo/A-5438-2010; Martinez, Maria/K-4827-2012; Giachero, Andrea/I-1081-2013; Gorla, Paolo/B-5243-2014; Sangiorgio, Samuele/F-4389-2014; Sisti, Monica/B-7550-2013 OI Pattavina, Luca/0000-0003-4192-849X; Maruyama, Reina/0000-0003-2794-512X; Barucci, Marco/0000-0003-0381-3376; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Gutierrez, Thomas/0000-0002-0330-6414; Canonica, Lucia/0000-0001-8734-206X; Faccini, Riccardo/0000-0003-2613-5141; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Di Domizio, Sergio/0000-0003-2863-5895; Ferri, Elena/0000-0003-1425-3669; Kolomensky, Yury/0000-0001-8496-9975; Bellini, Fabio/0000-0002-2936-660X; Foggetta, Luca/0000-0002-6389-1280; Pallavicini, Marco/0000-0001-7309-3023; Nucciotti, Angelo/0000-0002-8458-1556; Martinez, Maria/0000-0002-9043-4691; Giachero, Andrea/0000-0003-0493-695X; Sangiorgio, Samuele/0000-0002-4792-7802; Sisti, Monica/0000-0003-2517-1909 FU US Department of Energy at LLNL [DE-AC52-07NA27344]; US Department of Energy at LBNL [DE-AC02-05CH11231]; INFN of Italy FX This work was supported by the US Department of Energy under contract numbers DE-AC52-07NA27344 at LLNL and DE-AC02-05CH11231 at LBNL, and by the INFN of Italy. We also thank Dr. Joel Rynes of the US Department of Homeland Security, Jose Angel Villar of the Universidad de Zaragoza, and Pierre Lecomte from Eidgenossische Tech. Hochschule Zurich (ETHZ), Switzerland for the loan of plastic scintillator detectors used in the measurements reported here. NR 19 TC 16 Z9 16 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD AUG PY 2010 VL 34 IS 1 BP 18 EP 24 DI 10.1016/j.astropartphys.2010.04.004 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654DR UT WOS:000282149200003 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, S Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, Sw Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. TI The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector SO ASTROPARTICLE PHYSICS LA English DT Article DE Atmospheric neutrinos; Unfolding; Neural net; AMANDA; Cherenkov radiation ID FREJUS DETECTOR; FLUX AB The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm had-ron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed. (c) 2010 Elsevier B.V. All rights reserved. C1 [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bai, X.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Homeier, A.; Kemming, N.; Kolanoski, H.; Lehmann, R.; Panknin, S.; van Santen, J.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Boeser, S.; Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Franckowiak, A.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Muenich, K.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Barwick, Sw; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hallgren, A.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Olivo, M.; de los Heros, C. Perez] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. RP Becker, JK (reprint author), Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. EM julia.becker@rub.de RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Beatty, James/D-9310-2011; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU US National Science Foundation; US National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders Institute; Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation; Ministry of Education of Brazil FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Program, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Kappes and A. Grog acknowledge support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 43 TC 43 Z9 44 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD AUG PY 2010 VL 34 IS 1 BP 48 EP 58 DI 10.1016/j.astropartphys.2010.05.001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654DR UT WOS:000282149200007 ER PT J AU Hall, NR Keisler, R Knox, L Reichardt, CL Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT De Haan, T Dobbs, MA George, EM Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Lee, AT Leitch, EM Lueker, M McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Switzer, ER Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF Hall, N. R. Keisler, R. Knox, L. Reichardt, C. L. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crawford, T. M. Crites, A. T. De Haan, T. Dobbs, M. A. George, E. M. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Lee, A. T. Leitch, E. M. Lueker, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Switzer, E. R. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: abundances; large-scale structure of universe; submillimeter: diffuse background; submillimeter: galaxies ID MULTIBAND IMAGING PHOTOMETER; DEEP-FIELD-SOUTH; SOURCE COUNTS; SUBMILLIMETER GALAXIES; EXTRAGALACTIC SOURCES; ENERGY-DISTRIBUTIONS; RADIO-SOURCES; SPITZER; ANISOTROPIES; EMISSION AB We use data from the first 100 deg(2) field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto- and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices of the Poisson and clustered components are found to be (alpha) over bar alpha(P)(150-220) = 3.86 +/- 0.23 and alpha(C)(150-220) = 3.8 +/- 1.3, implying a steep scaling of the dust emissivity index beta similar to 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200 GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of beta = 2 and dust temperature T-d = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev-Zel'dovich power spectrum at l = 3000 of 13 mu K-2 at 95% confidence. C1 [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Keisler, R.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Switzer, E. R.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Keisler, R.; Bleem, L. E.; Carlstrom, J. E.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.; Switzer, E. R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [De Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Hall, NR (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. EM nrhall@ucdavis.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation (NSF) [ANT-0638937, ANT-0130612, PHY-0114422]; United States Antarctic Program; Raytheon Polar Services Company; Kavli Foundation; Gordon and Betty Moore Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; Fermi Fellowship; GAAN Fellowship; Miller Institute for Basic Research in Science, University of California Berkeley; Alfred P. Sloan Research Fellowship; KICP Fellowships FX We thank Marco Viero and Guilaine Lagache for comparison of calculations as well as Andrew Blain, Douglas Scott, Rashid Sunyaev, Simon White, and George Efstathiou for useful conversations. The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of ironworkers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program, and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank T. Lanting, J. Leong, A. Loehr, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project, and J. Joseph and C. Vu for their contributions to the electronics.; The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: J.J.M. from a Fermi Fellowship, Z.S. from a GAAN Fellowship, A.T.L. from the Miller Institute for Basic Research in Science, University of California Berkeley, N.W.H. from an Alfred P. Sloan Research Fellowship, and K.S., B.A.B., and E.R.S. from KICP Fellowships. NR 67 TC 92 Z9 92 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 632 EP 646 DI 10.1088/0004-637X/718/2/632 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200005 ER PT J AU James, S Baron, E AF James, Spencer Baron, E. TI SEARCHING FOR HYDROGEN IN TYPE Ib SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (1999dn, 2000H) ID EXPLOSION; SPECTRA; 1999DN; STARS AB We present synthetic spectral fits of the typical Type Ib SN 1999dn and the hydrogen-rich Ib SN 2000H using the generalized non-local thermodynamic equilibrium stellar atmospheres code PHOENIX. We fit model spectra to five epochs of SN 1999dn ranging from 10 days pre-maximum light to 17 days post-maximum light and to the two earliest epochs of SN 2000H available, maximum light and six days post-maximum. Our goal is to investigate the possibility of hydrogen in Type Ib supernovae (SNe Ib), specifically a feature around 6200 angstrom which has previously been attributed to high-velocity H alpha. In earlier work on SN 1999dn we found the most plausible alternative to H alpha to be a blend of Si II and Fe II lines which can be adjusted to fit by increasing the metallicity. Our models are simple; they assume a power-law density profile with radius, homologous expansion, and solar compositions. The helium core is produced by "burning" 4H -> He in order to conserve the nucleon number. For models with hydrogen the outer skin of the model consists of a shell of solar composition. The hydrogen mass of the standard solar composition shell is M(H) less than or similar to 10(-3)M(circle dot) in SN 1999dn and M(H) less than or similar to 0.2M(circle dot) for SN 2000H. Our models fit the observed spectra reasonably well, successfully reproducing most features including the characteristic He I absorptions. The hydrogen feature in SN 1999dn is clear, but much more pronounced in SN 2000H. We discuss a possible evolutionary scenario that accounts for the dichotomy in the hydrogen shell mass between these two SNe. C1 [James, Spencer; Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. RP James, S (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks,Rm 100, Norman, OK 73019 USA. OI Baron, Edward/0000-0001-5393-1608 FU NSF [AST-0707704]; Office of Science of the U.S. Department of Energy [DE-FG02-07ER41517, DE-AC02-05CH11231] FX We thank Phillip Podsiadlowski for extensive discussions and tutelage on the nature of binary interactions in stripped envelope SNe. This work was supported in part by NSF grant AST-0707704 and US DOE grant DE-FG02-07ER41517. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 25 TC 10 Z9 10 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 957 EP 962 DI 10.1088/0004-637X/718/2/957 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200032 ER PT J AU Marin, FA Gnedin, NY Seo, HJ Vallinotto, A AF Marin, Felipe A. Gnedin, Nickolay Y. Seo, Hee-Jong Vallinotto, Alberto TI MODELING THE LARGE-SCALE BIAS OF NEUTRAL HYDROGEN SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; large-scale structure of universe ID BARYONIC ACOUSTIC-OSCILLATIONS; HALO OCCUPATION DISTRIBUTION; 3-POINT CORRELATION-FUNCTION; PROBING DARK ENERGY; COSMIC TIME; ELLIPSOIDAL COLLAPSE; REDSHIFT SURVEYS; MATTER HALOES; GALAXIES; EVOLUTION AB We present new analytical estimates of the large-scale bias of neutral hydrogen (HI). We use a simple, non-parametric model which monotonically relates the total mass of a halo M-tot with its Hi mass M-HI at zero redshift; for earlier times we assume limiting models for the Omega(HI) evolution consistent with the data presently available, as well as two main scenarios for the evolution of our M-HI-M-tot relation. We find that both the linear and the first nonlinear bias terms exhibit a strong evolution with redshift, regardless of the specific limiting model assumed for the HI density over time. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the HI power spectrum. C1 [Marin, Felipe A.; Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Marin, Felipe A.; Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Marin, Felipe A.; Gnedin, Nickolay Y.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.; Seo, Hee-Jong; Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Marin, FA (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM fmarinp@oddjob.uchicago.edu; gnedin@fnal.gov; sheejong@fnal.gov; avalli@fnal.gov FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Kavli Foundation; DOE at Fermilab FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. A.V. and H.S. are supported by the DOE at Fermilab. The Millennium Simulation databases used in this paper and the web application providing online access to them were constructed as part of the activities of the German Astrophysical Virtual Observatory. NR 48 TC 22 Z9 22 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 972 EP 980 DI 10.1088/0004-637X/718/2/972 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200034 ER PT J AU Podesta, JJ Bhattacharjee, A AF Podesta, J. J. Bhattacharjee, A. TI THEORY OF INCOMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE WITH SCALE-DEPENDENT ALIGNMENT AND CROSS-HELICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; turbulence; waves ID MAGNETO-HYDRODYNAMIC TURBULENCE; MHD TURBULENCE; HYDROMAGNETIC TURBULENCE; FLUCTUATIONS; SIMULATIONS; SPECTRUM; FIELD AB A phenomenological anisotropic theory of MHD turbulence with nonvanishing cross-helicity is constructed based on Boldyrev's phenomenology and probabilities p and q for fluctuations delta v(perpendicular to). and delta b(perpendicular to) to be positively or negatively aligned. The positively aligned fluctuations occupy a fractional volume p and the negatively aligned fluctuations occupy a fractional volume q. Guided by observations suggesting that the normalized cross-helicity sigma(c) and the probabilities p and q are approximately scale invariant in the inertial range, a generalization of Boldyrev's theory is derived that depends on the three ratios w(+)/w(-), is an element of(+)/is an element of(-), and p/q. It is assumed that the cascade processes for positively and negatively aligned fluctuations are both in a state of critical balance and that the eddy geometries are scale invariant. The theory reduces to Boldyrev's original theory when sigma(c) = 0, is an element of(+) = is an element of(-), and p = q and extends the theory of Perez and Boldyrev when sigma(c) not equal 0. The theory is also an anisotropic generalization of the theory of Dobrowolny, Mangeney, and Veltri. C1 [Podesta, J. J.; Bhattacharjee, A.] Univ New Hampshire, Ctr Integrated Computat & Anal Reconnect & Turbul, Durham, NH 03824 USA. RP Podesta, JJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jpodesta@solar.stanford.edu FU DOE EPSCoR [DE-FG02-07ER46372]; NASA [NNX06AC19G]; NSF/DOE Center for Magnetic Self-Organization; NSF FX We are grateful to S. Boldyrev for valuable comments on an earlier version of the manuscript and to Pablo Mininni and Jean Perez for helpful discussions. This research is supported by the DOE EPSCoR program under grant no. DE-FG02-07ER46372, NASA grant no. NNX06AC19G, and the NSF/DOE Center for Magnetic Self-Organization. Additional support for John Podesta comes from the NASA Solar and Heliospheric Physics Program, the NASA Heliospheric Guest Investigator Program, and the NSF SHINE Program. NR 31 TC 35 Z9 35 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1151 EP 1157 DI 10.1088/0004-637X/718/2/1151 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200048 ER PT J AU Lin, L Cooper, MC Jian, HY Koo, DC Patton, DR Yan, R Willmer, CNA Coil, AL Chiueh, T Croton, DJ Gerke, BF Lotz, J Guhathakurta, P Newman, JA AF Lin, Lihwai Cooper, Michael C. Jian, Hung-Yu Koo, David C. Patton, David R. Yan, Renbin Willmer, Christopher N. A. Coil, Alison L. Chiueh, Tzihong Croton, Darren J. Gerke, Brian F. Lotz, Jennifer Guhathakurta, Puragra Newman, Jeffrey A. TI WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: interactions; large-scale structure of universe ID DIGITAL SKY SURVEY; SIMILAR-TO 1; BRIGHTEST CLUSTER GALAXIES; COLOR-MAGNITUDE RELATION; TRIGGERED STAR-FORMATION; POST-STARBURST GALAXIES; LARGE-SCALE STRUCTURE; MATTER HALO MERGERS; MASSIVE GALAXIES; DARK-MATTER AB We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N(c)) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z similar to 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 +/- 0.3 dry mergers since this time, accounting for (38 +/- 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters. C1 [Lin, Lihwai] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Cooper, Michael C.; Willmer, Christopher N. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Jian, Hung-Yu; Chiueh, Tzihong] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Koo, David C.; Guhathakurta, Puragra] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Patton, David R.] Trent Univ, Dept Phys & Astron, Peterborough, ON K9J 7B8, Canada. [Yan, Renbin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Coil, Alison L.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Coil, Alison L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Croton, Darren J.] Swinburne Univ Technol, Ctr Astrophys Supercomp, Hawthorn, Vic 3122, Australia. [Gerke, Brian F.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Lotz, Jennifer] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15620 USA. RP Lin, L (reprint author), Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. EM lihwailin@asiaa.sinica.edu.tw OI CHIUEH, TZI-HONG/0000-0003-2654-8763 FU National Science Council of Taiwan [NSC99-2112-M-001-003-MY3]; NSC [NSC97-2628-M-002-008-MY3]; NSF [AST-0808133, AST-0806732]; Keck Observatory FX We thank the anonymous referee for helpful comments to improve this paper. L. Lin thanks E. Barton, D. McIntosh, and C. Conselice for their helpful discussions. The work is partially supported by the National Science Council of Taiwan under grant NSC99-2112-M-001-003-MY3. T. Chiueh and H.-Y. Jian acknowledge the support of NSC grant NSC97-2628-M-002-008-MY3. DEEP2 has been supported by NSF grants AST-0808133 and AST-0806732. The DEEP2 Redshift Survey has been made possible through the dedicated efforts of the DEIMOS instrument team at UC Santa Cruz and the support of the staff at Keck Observatory. This work is also based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Access to the CFHT was made possible by the Ministry of Education and the National Science Council of Taiwan as part of the Cosmology and Particle Astrophysics (CosPA) initiative. We close with thanks to the Hawaiian people for use of their sacred mountain. NR 97 TC 43 Z9 43 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1158 EP 1170 DI 10.1088/0004-637X/718/2/1158 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200049 ER PT J AU Xu, X White, M Padmanabhan, N Eisenstein, DJ Eckel, J Mehta, K Metchnik, M Pinto, P Seo, HJ AF Xu, X. White, M. Padmanabhan, N. Eisenstein, D. J. Eckel, J. Mehta, K. Metchnik, M. Pinto, P. Seo, H. -J. TI A NEW STATISTIC FOR ANALYZING BARYON ACOUSTIC OSCILLATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: theory; distance scale; large-scale structure of universe ID LARGE-SCALE STRUCTURE; LUMINOUS RED GALAXIES; HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; ANGULAR-CORRELATION FUNCTIONS; REDSHIFT-SPACE DISTORTIONS; POWER-SPECTRUM ANALYSIS; PROBING DARK ENERGY; REAL-SPACE; MATTER AB We introduce a new statistic w(l)(r(s)) for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. w(l)(r(s)) is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, w(l)(r(s)) can localize most of the acoustic information into a single dip at the acoustic scale while avoiding sensitivity to the poorly constrained large-scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning of data. We measure the shift in the acoustic peak due to nonlinear effects using the monopole w(0)(r(s)) derived from subsampled dark matter (DM) catalogs as well as from mock galaxy catalogs created via halo occupation distribution modeling. All of these are drawn from 44 realizations of 1024(3) particle DM simulations in a 1 h(-1) Gpc box at z = 1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. We therefore expect that distance measurements obtained from w(0)(r(s)) and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information by fitting over a finite range using either w(0)(r(s)) or P(k) derived from equal volume surveys. C1 [Xu, X.; Eisenstein, D. J.; Eckel, J.; Mehta, K.; Metchnik, M.; Pinto, P.] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Padmanabhan, N.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Seo, H. -J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Xu, X (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85121 USA. EM xxu@as.arizona.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU NASA [BEFS NNX07AH11G]; NSF [AST-0707725]; U.S. Department of Energy [DE-AC02-07CH11359] FX This work is supported by NASA BEFS NNX07AH11G and NSF AST-0707725. H.-J.S. is supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359. NR 78 TC 17 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1224 EP 1234 DI 10.1088/0004-637X/718/2/1224 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200053 ER PT J AU Lee, AT Chiang, E Asay-Davis, X Barranco, J AF Lee, Aaron T. Chiang, Eugene Asay-Davis, Xylar Barranco, Joseph TI FORMING PLANETESIMALS BY GRAVITATIONAL INSTABILITY. I. THE ROLE OF THE RICHARDSON NUMBER IN TRIGGERING THE KELVIN-HELMHOLTZ INSTABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; planets and satellites: formation; protoplanetary disks ID PROTOPLANETARY DISKS; SOLAR NEBULA; PROTOSTELLAR DISKS; DUST LAYER; TURBULENCE; CONVECTION; PARTICLES; GROWTH; SHEAR; COAGULATION AB Gravitational instability (GI) of a dust-rich layer at the midplane of a gaseous circumstellar disk is one proposed mechanism to form planetesimals, the building blocks of rocky planets and gas giant cores. Self-gravity competes against the Kelvin-Helmholtz instability (KHI): gradients in dust content drive a vertical shear which risks over-turning the dusty subdisk and forestalling GI. To understand the conditions under which the disk can resist the KHI, we perform three-dimensional simulations of stratified subdisks in the limit that dust particles are small and aerodynamically well coupled to gas, thereby screening out the streaming instability and isolating the KHI. Each subdisk is assumed to have a vertical density profile given by a spatially constant Richardson number Ri. We vary Ri and the midplane dust-to-gas ratio mu(0) and find that the critical Richardson number dividing KH-unstable from KH-stable flows is not unique; rather, Ri(crit) grows nearly linearly with mu(0) for mu(0) = 0.3-10. Plausibly, a linear dependence arises for mu(0) << 1 because in this regime the radial Kepler shear replaces vertical buoyancy as the dominant stabilizing influence. Why this dependence should persist at mu(0) > 1 is a new puzzle. The bulk (height-integrated) metallicity is uniquely determined by Ri and mu(0). Only for disks of bulk solar metallicity is Ri(crit) approximate to 0.2, which is close to the classical value. Our empirical stability boundary is such that a dusty sublayer can gravitationally fragment and presumably spawn planetesimals if embedded within a solar metallicity gas disk similar to 4 x more massive than the minimum-mass solar nebula; or a minimum-mass disk having similar to 3 x solar metallicity; or some intermediate combination of these two possibilities. Gravitational instability seems possible without resorting to the streaming instability or to turbulent concentration of particles. C1 [Lee, Aaron T.; Chiang, Eugene] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Chiang, Eugene] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Asay-Davis, Xylar] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Barranco, Joseph] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. RP Lee, AT (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM a.t.lee@berkeley.edu OI Asay-Davis, Xylar/0000-0002-1990-892X; Barranco, Joseph/0000-0003-2045-677X FU National Science Foundation [TG-AST090079] FX We thank Daniel Lecoanet, Eve Ostriker, Prateek Sharma, Jim Stone, and Yanqin Wu for discussions. An anonymous referee provided a thoughtful and encouraging report that helped to place our work in a broader context. This research was supported by the National Science Foundation, in part through TeraGrid resources provided by Purdue University under grant number TG-AST090079. NR 52 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1367 EP 1377 DI 10.1088/0004-637X/718/2/1367 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200064 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J.-H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI MEASUREMENT OF THE ANISOTROPY OF COSMIC-RAY ARRIVAL DIRECTIONS WITH ICECUBE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; neutrinos AB We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4). C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Labare, M.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Clevermann, F.; Koehne, J.-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM rasha.abbasi@icecube.wisc.edu; paolo.desiati@icecube.wisc.edu RI Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011 OI Buitink, Stijn/0000-0002-6177-497X; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Taavola, Henric/0000-0002-2604-2810; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952 FU U.S. National Science Foundation-Office of Polar Program; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Program, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice NR 11 TC 74 Z9 74 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L194 EP L198 DI 10.1088/2041-8205/718/2/L194 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700031 ER PT J AU Zhang, YX Olsen, SC Dubey, MK AF Zhang, Yongxin Olsen, Seth C. Dubey, Manvendra K. TI WRF/Chem simulated springtime impact of rising Asian emissions on air quality over the US SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Pollution from China and India; Regional impact; WRF/Chem ID NORTH-AMERICA; UNITED-STATES; SURFACE OZONE; MODEL; POLLUTION; TRANSPORT; PACIFIC; VARIABILITY; TROPOSPHERE; CHEMISTRY AB This paper examines the impact of tripled anthropogenic emissions from China and India over the base level (gaseous species and carbonaceous aerosols for 2000) on air quality over the U.S. using the WRF/Chem (Weather Research and Forecasting - Chemistry) model at 1 degrees resolution. WRF/Chem is a state-of-the-science, fully coupled chemistry and meteorology system suitable for simulating the transport and dispersion of pollutants and their impacts. The analyses in this work were focused on MAM (March, April and May). The simulations indicate an extensive area of elevated pollutant concentrations spanning from the Arabian Sea to the Northern Pacific and to the Northern Atlantic. MAM mean contributions from the tripled Asian emissions over the U.S. are found to be: 6-12 ppbv for CO, 1.0-2.5 ppbv for O-3, and 0.6-1.6 mu g m(-3) for PM2.5 on a daily basis. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Yongxin] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80301 USA. [Olsen, Seth C.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Dubey, Manvendra K.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Zhang, YX (reprint author), Natl Ctr Atmospher Res, Res Applicat Lab, 3450 Mitchell Lane, Boulder, CO 80301 USA. EM zhangyx@ucar.edu RI Dubey, Manvendra/E-3949-2010 OI Dubey, Manvendra/0000-0002-3492-790X FU Los Alamos National Laboratory through the Laboratory Directed Research Development (LORD) Program [LA-UR-06-4878, LDRD200500014DR]; National Science Foundation FX This work (LA-UR-06-4878) was supported by the Los Alamos National Laboratory through the Laboratory Directed Research Development (LORD) Program (project number LDRD200500014DR, PI: Dr. Manvendra K. Dubey). Four anonymous reviewers are acknowledged for their constructive comments and suggestions for improving the original version of the manuscript. Drs. Manvendra Dubey and Seth Olsen are thanked for their inputs and suggestions. The National Center for Atmospheric Research (NCAR) MOPITT team is acknowledged for providing the satellite measured CO data. The model simulations were performed at NCAR Computational and Information System Laboratory (CISL). NCAR is sponsored by the National Science Foundation. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy. NR 46 TC 12 Z9 12 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD AUG PY 2010 VL 44 IS 24 BP 2799 EP 2812 DI 10.1016/j.atmosenv.2010.05.003 PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 630MP UT WOS:000280277700002 ER PT J AU Abdalla, M Jones, M Yeluripati, J Smith, P Burke, J Williams, M AF Abdalla, M. Jones, M. Yeluripati, J. Smith, P. Burke, J. Williams, M. TI Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE DayCent; DNDC; Nitrous oxide; Pasture ID NITROUS-OXIDE EMISSIONS; SOIL ORGANIC-MATTER; CARBON-DIOXIDE; UNITED-STATES; TILLAGE SYSTEMS; ECOSYSTEM MODEL; ELEVATED CO2; LAND-USE; TEMPERATURE; WHEAT AB Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification-DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0-20 cm of 38 and 4.4 g kg(-1) dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM(3)) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (-23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (-57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model's response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha(-1) to 45 (+34%) and 50 (+48%) t dry matter ha(-1) for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Abdalla, M.; Jones, M.; Williams, M.] Univ Dublin Trinity Coll, Dept Bot, Sch Nat Sci, Dublin 2, Ireland. [Yeluripati, J.; Smith, P.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. [Burke, J.] Oak Pk Crops Res Ctr, Teagasc, Co Carlow, Ireland. RP Abdalla, M (reprint author), Univ Dublin Trinity Coll, Dept Bot, Sch Nat Sci, Dublin 2, Ireland. EM abdallm@tcd.ie RI Smith, Pete/G-1041-2010 OI Smith, Pete/0000-0002-3784-1124 FU EU [EVK2-CT2001-00105, 017841]; Irish EPA [2001-CD-C1M1]; Royal Society FX This work was funded by the EU sixth framework program (contract EVK2-CT2001-00105, Greengrass Project Europe) and Irish EPA project No: 2001-CD-C1M1 and contributed to the EU-funded Nitro Europe project (project number 017841). We are grateful to the Irish National Meteorological Service Research Group (Met Eireann) for providing us with the C4I climate projections and good collaboration. Pete Smith is a Royal Society-Wolfson Research Merit Award holder. We are also grateful to John Clifton-Brown for providing us with the grass biomass data, Per Ambus for carrying out our gas analysis, and Teagasc in Carlow for facilitating our field work. NR 87 TC 41 Z9 43 U1 10 U2 79 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD AUG PY 2010 VL 44 IS 25 BP 2961 EP 2970 DI 10.1016/j.atmosenv.2010.05.018 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 634WH UT WOS:000280616100003 ER PT J AU Speed, A Verzi, SJ Wagner, JS Warrender, C AF Speed, Ann Verzi, Stephen J. Wagner, John S. Warrender, Christina TI Optical holography as an analogue for a neural reuse mechanism SO BEHAVIORAL AND BRAIN SCIENCES LA English DT Editorial Material ID MODEL AB We propose an analogy between optical holography and neural behavior as a hypothesis about the physical mechanisms of neural reuse. Specifically, parameters in optical holography (frequency, amplitude, and phase of the reference beam) may provide useful analogues for understanding the role of different parameters in determining the behavior of neurons (e.g., frequency, amplitude, and phase of spiking behavior). C1 [Speed, Ann; Verzi, Stephen J.; Wagner, John S.; Warrender, Christina] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Speed, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aespeed@sandia.gov; sjverzi@sandia.gov; jswagne@sandia.gov; cewarr@sandia.gov NR 12 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0140-525X J9 BEHAV BRAIN SCI JI Behav. Brain Sci. PD AUG PY 2010 VL 33 IS 4 BP 291 EP + DI 10.1017/S0140525X10001214 PG 11 WC Psychology, Biological; Behavioral Sciences; Neurosciences SC Psychology; Behavioral Sciences; Neurosciences & Neurology GA 682DW UT WOS:000284381100028 ER PT J AU Michel, FM Hosein, HA Hausner, DB Debnath, S Parise, JB Strongin, DR AF Michel, F. Marc Hosein, Hazel-Ann Hausner, Douglas B. Debnath, Sudeep Parise, John B. Strongin, Daniel R. TI Reactivity of ferritin and the structure of ferritin-derived ferrihydrite SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Review DE Ferritin; Reconstituted; Ferrihydrite; Atomic arrangements; Structural topology; Ferrihydrite reactivity ID SYNTHETIC 6-LINE FERRIHYDRITE; HORSE SPLEEN FERRITIN; X-RAY-DIFFRACTION; ELECTRON NANODIFFRACTION; MAMMALIAN FERRITIN; IRON-STORAGE; MAGNETIC-PROPERTIES; NEURODEGENERATIVE DISORDERS; GAMMA-FE2O3 NANOPARTICLES; NANOCRYSTALLINE MATERIAL AB Background: In nature or in the laboratory, the roughly spherical interior of the ferritin protein is well suited for the formation and storage of a variety of nanosized metal oxy-hydroxide compounds which hold promise for a range of applications. However, the linkages between ferritin reactivity and the structure and physicochemical properties of the nanoparticle core, either native or reconstituted, remain only partly understood. Scope of review: Here we review studies, including those from our laboratory, which have investigated the structure of ferritin-derived ferrihydrite and reactivity of ferritin, both native and reconstituted. Selected proposed structure models for ferrihydrite are discussed along with the structural and genetic relationships that exist among several different forms of ferrihydrite. With regard to reactivity, the review will emphasize studies that have investigated the (photo)reactivity of ferritin and ferritin-derived materials with environmentally relevant gaseous and aqueous species. Major conclusions: The inorganic core formed from apoferritin reconstituted with varied amounts of Fe has the same structural topology as the inorganically derived ferrihydrite that is an important component of many environmental and soil systems. Reactivity of ferritin toward aqueous species resulting from the photoexcitation of the inorganic core of the protein shows promise for driving redox reactions relevant to environmental chemistry. General significance: Ferritin-derived ferrihydrite is effectively maintained in a relatively unaggregated state, which improves reactivity and opens the possibility of future applications in environmental remediation. Advances in our understanding of the structure, composition, and disorder in synthetic, inorganically derived ferrihydrite are shedding new light on the reactivity and stability of ferrihydrite derived artificially from ferritin. (C) 2010 Elsevier B.V. All rights reserved. C1 [Michel, F. Marc; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Hosein, Hazel-Ann] Michigan State Univ, Composite Mat & Struct Ctr, E Lansing, MI 48824 USA. [Hausner, Douglas B.] Dept Chem, Camden, NJ 08102 USA. [Hausner, Douglas B.; Debnath, Sudeep; Strongin, Daniel R.] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. [Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Michel, FM (reprint author), Stanford Linear Accelerator Ctr, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM fmichel@stanford.edu; hosein@egr.msu.edu; dugh@temple.edu; john.parise@sunysb.edu; dstrongi@temple.edu FU National Science Foundation [CHE0714121]; National Center for Environmental Research (NCER); Environmental Protection Agency (EPA) [R829601]; Petroleum Research Fund (PRF); Center for Environmental Molecular Science (CEMS); NSF [CHE0221934, DMR-0800415, EAR-0510501]; DOE [DE-FG02-03ER46085]; U.S. Dept. of Education [P200A060248]; U. S. Dept. of Energy, Office of Science/Basic Energy Sciences [DE-AC02-06CH11357]; SLAC National Accelerator Laboratory; Stanford University FX D.R.S. acknowledges support for research presented in this contribution from current funding from the National Science Foundation (grant CHE0714121), and prior funding from the National Center for Environmental Research (NCER) STAR Program, Environmental Protection Agency (EPA, Grant R829601), and the donors of the Petroleum Research Fund (PRF), administered by the American Chemical Society. Support was also provided by the Center for Environmental Molecular Science (CEMS), NSF Awards: CHE0221934, DMR-0800415, and EAR-0510501, DOE Award: DE-FG02-03ER46085, and also the U.S. Dept. of Education through the GAANN Program Sponsor ID: P200A060248. Data collection was performed primarily at XOR beamline 1-ID at the Advanced Photon Source, Argonne National Laboratory supported by the U. S. Dept. of Energy, Office of Science/Basic Energy Sciences (DE-AC02-06CH11357). F.M.M. gratefully acknowledges the support of John R. Bargar, Gordon E. Brown, Jr., SLAC National Accelerator Laboratory, and Stanford University. We are also grateful to Gordon E. Brown, Jr. and to several anonymous reviewers for insightful comments and improvements to the manuscript. NR 133 TC 23 Z9 25 U1 4 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4165 EI 1872-8006 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD AUG PY 2010 VL 1800 IS 8 SI SI BP 871 EP 885 DI 10.1016/j.bbagen.2010.05.007 PG 15 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 622HL UT WOS:000279652000019 PM 20510340 ER PT J AU Jagadamma, S Lal, R AF Jagadamma, Sindhu Lal, Rattan TI Distribution of organic carbon in physical fractions of soils as affected by agricultural management SO BIOLOGY AND FERTILITY OF SOILS LA English DT Article DE Soil organic carbon; Physical fractionation; Aggregates; Particulate organic matter; Tillage; Crop rotation ID PARTICLE-SIZE FRACTIONS; CROPPING SYSTEMS; LAND-USE; CULTIVATION SEQUENCE; NITROGEN MANAGEMENT; NO-TILL; MATTER; SEQUESTRATION; STABILIZATION; DYNAMICS AB Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0-7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn-soybean rotation at 7.5-45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (> 2,000 mu m) and (ii) 1.5-2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration. However, the clay fraction of soil under native woodlot showed an indication for SOC saturation. The data presented in this study from all the three structural levels of SOC would be helpful for refining the conceptual pool definitions of the current soil organic matter prediction models. C1 [Jagadamma, Sindhu] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Lal, Rattan] Ohio State Univ, Carbon Management & Sequestrat Ctr, Columbus, OH 43210 USA. RP Jagadamma, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM jagadammas@ornl.gov RI Jagadamma, Sindhu/F-7168-2012; Lal, Rattan/D-2505-2013 FU Ohio Agricultural Research and Development Center of the Ohio State University FX The authors are thankful to Prof. WA Dick and Dr. Silvia Mestelan for sharing the archived soil samples. The help from Mr. Sandy Jones for laboratory analyses is greatly appreciated. The senior author is thankful to the Ohio Agricultural Research and Development Center of the Ohio State University for partially supporting this study through a graduate student research grant. NR 56 TC 49 Z9 56 U1 9 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-2762 J9 BIOL FERT SOILS JI Biol. Fertil. Soils PD AUG PY 2010 VL 46 IS 6 BP 543 EP 554 DI 10.1007/s00374-010-0459-7 PG 12 WC Soil Science SC Agriculture GA 622ZB UT WOS:000279705000001 ER PT J AU Seabra, JEA Tao, L Chum, HL Macedo, IC AF Seabra, Joaquim E. A. Tao, Ling Chum, Helena L. Macedo, Isaias C. TI A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering SO BIOMASS & BIOENERGY LA English DT Article DE Hydrolysis; Gasification; Bioethanol; Saccharum officinarum; CHP; Brazil ID BIOMASS AB This work compares the calculated techno-economic performance for thermochemical and biochemical conversion of sugarcane residues, considering future conversion plants adjacent to sugarcane mills in Brazil. Process models developed by the National Renewable Energy Laboratory were adapted to reflect the Brazilian feedstock composition and used to estimate the cost and performance of these two conversion technologies. Models assumed that surplus bagasse from the mill would be used as the feedstock for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. The integration of the conversion technology to the mill enabled an additional ethanol production of 0.033 m(3) per tonne of cane for the biochemical process and 0.025 m(3) t(-1) of cane plus 0.004 m(3) t(-1) of cane of higher alcohols for the thermochemical process. For both cases, electricity is an important co-product for the biorefinery, but especially for biochemical conversion, with surpluses of about 50 kWh t(-1) of cane. The economic performance of the two technologies is quite similar in terms of the minimum ethanol selling price (MESP), at 318 $ m(-3) (United States 2007 dollars) for biochemical conversion and 329 $ m(3) for thermochemical conversion. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Seabra, Joaquim E. A.; Tao, Ling; Chum, Helena L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Macedo, Isaias C.] Univ Estadual Campinas, Interdisciplinary Ctr Energy Planning NIPE, BR-13084971 Campinas, SP, Brazil. RP Seabra, JEA (reprint author), Dr Shigeo Mori St,2013 Cidade Univ, BR-13083770 Campinas, SP, Brazil. EM jeaseabra@gmail.com FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [201362/2008-2]; U.S.-Brazil Bilateral Colaboration in Advanced Biofuels and Strategic Analysis NREL; U.S. Department of Energy Biomass Program FX Joaquim Seabra thankfully acknowledges the financial support of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq (process no. 201362/2008-2). The authors gratefully thank the U.S. Department of Energy Biomass Program and particularly Zia Haq, Paul Grabowski, Valerie Sarisky-Reed, and Alison Goss Eng for their support. This work was conducted as part of the U.S.-Brazil Bilateral Colaboration in Advanced Biofuels and Strategic Analysis NREL activities for the DOE's Biomass Program. The authors thank the staff of the Biorefinery Analysis Section at the National Bioenergy Center - Andy Aden, Abhijit Dutta, and David Humbird - and NREL's management, Tom Foust and Mike Cleary, for their technical support and Ms. Dee Scheaffer for her administrative support. NR 32 TC 64 Z9 64 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD AUG PY 2010 VL 34 IS 8 BP 1065 EP 1078 DI 10.1016/j.biombioe.2010.01.042 PG 14 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 616BI UT WOS:000279182300001 ER PT J AU Igathinathane, C Tumuluru, JS Sokhansanj, S Bi, X Lim, CJ Melin, S Mohammad, E AF Igathinathane, C. Tumuluru, Jaya Shankar Sokhansanj, S. Bi, X. Lim, C. J. Melin, S. Mohammad, E. TI Simple and inexpensive method of wood pellets macro-porosity measurement SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biomass; Density; Physical property; Porosity; Wood pellet ID PHYSICAL-PROPERTIES AB A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0 +/- 2.5% and 35.5 +/- 2.7%, mean bulk density as 670 +/- 29 kg m(-3) and 731 +/- 31 kg m(-3), and classified as "Class-3:Medium" and "Class-3&4:Medium to Low" for loose and tapped fills, respectively. Hausner ratio and Carr's compressibility index classify wood pellets as "freely flowing." The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials. Published by Elsevier Ltd. C1 [Igathinathane, C.] N Dakota State Univ, Dept Agr & Biosyst Engn, Fargo, ND 58102 USA. [Igathinathane, C.; Tumuluru, Jaya Shankar; Sokhansanj, S.; Bi, X.; Lim, C. J.; Melin, S.] Univ British Columbia, Dept Biol & Chem Engn, Vancouver, BC V6T 1Z3, Canada. [Tumuluru, Jaya Shankar] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Energy Sys & Tech Div, Idaho Falls, ID 83415 USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37381 USA. [Melin, S.] Delta Res Corp, Delta, BC V4L 2L5, Canada. [Mohammad, E.] Univ British Columbia, Dept Biol Sci, Vancouver, BC V6T 1Z4, Canada. RP Igathinathane, C (reprint author), N Dakota State Univ, Dept Agr & Biosyst Engn, 1221 Albrecht Blvd, Fargo, ND 58102 USA. EM Igathinathane.Cannayen@ndsu.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 FU Natural Sciences and Engineering Research Council of Canada (NSERC) [CRDPJ 342219-06, UBC PG11R82830]; Wood Pellets Association of Canada (WPA) [UBC PG11R42500] FX Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC: CRDPJ 342219-06, UBC PG11R82830), and Wood Pellets Association of Canada (WPA: UBC PG11R42500) is highly appreciated and gratefully acknowledged. NR 25 TC 3 Z9 4 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD AUG PY 2010 VL 101 IS 16 BP 6528 EP 6537 DI 10.1016/j.biortech.2010.03.034 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 605OH UT WOS:000278356400037 PM 20371174 ER PT J AU Lee, DY Bowen, BP Northen, TR AF Lee, Do Yup Bowen, Benjamin P. Northen, Trent R. TI Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging SO BIOTECHNIQUES LA English DT Review DE mass spectrometry; metabolomics; functional genomics; enzyme assays ID GAS CHROMATOGRAPHY/MASS SPECTROMETRY; IN-VITRO CHARACTERIZATION; MICROBIAL METABOLOMICS; FLUX ANALYSIS; IONIZATION; DATABASE; IDENTIFICATION; EXTRACTION; RESOLUTION; LIBRARIES AB Our understanding of biology has been gready improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites. C1 [Lee, Do Yup; Bowen, Benjamin P.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept GTL Bioenergy & Struct Biol, Div Life Sci, Berkeley, CA 94720 USA. [Northen, Trent R.] Joint BioEnergy Inst, Emeryville, CA USA. RP Northen, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept GTL Bioenergy & Struct Biol, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM trnorthen@lbl.gov RI Northen, Trent/K-3139-2012; OI Northen, Trent/0000-0001-8404-3259 FU Department of Energy [DE-AC02-05CH11231]; National Institutes of Health (NIH); National Cancer Institute (NCI); Bay Area Breast Cancer SPORE [P50 CA 58207]; California Breast Cancer Research Program [15IB-0063] FX We gratefully acknowledge support from the Department of Energy (DE-AC02-05CH11231), the National Institutes of Health (NIH), the National Cancer Institute (NCI), Bay Area Breast Cancer SPORE (P50 CA 58207), and the California Breast Cancer Research Program (15IB-0063). We also thank Deron Herr at Scripps Research Institute images. This paper is subject to the NIH Public Access Policy. NR 62 TC 11 Z9 11 U1 7 U2 30 PU BIOTECHNIQUES OFFICE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD AUG PY 2010 VL 49 IS 2 BP 557 EP + DI 10.2144/000113451 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 726JZ UT WOS:000287719000012 PM 20701590 ER PT J AU Banerjee, G Car, S Scott-Craig, JS Borrusch, MS Aslam, N Walton, JD AF Banerjee, Goutami Car, Suzana Scott-Craig, John S. Borrusch, Melissa S. Aslam, Nighat Walton, Jonathan D. TI Synthetic Enzyme Mixtures for Biomass Deconstruction: Production and Optimization of a Core Set SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE lignocellulose; Trichoderma reesei; Pichia pastoris; cellulase; xylanase; beta-glucosidase; beta-xylosidase; corn stover ID FACTORS INFLUENCING GLYCOSYLATION; TRICHODERMA-REESEI CELLULASES; PICHIA-PASTORIS; LIGNOCELLULOSIC BIOMASS; DEGRADING ENZYMES; N-GLYCOSYLATION; HYDROLYSIS; CELLOBIOHYDROLASE; GENE; AFEX AB The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pre-treated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta 1,4-glucanase I, 14% (5%) beta-glucosidase, 22% (34%) endo-beta 1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 In at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 mu m) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion. Biotechnol. Bioeng. 2010;106: 707-720. (C) 2010 Wiley Periodicals, Inc. C1 [Banerjee, Goutami; Car, Suzana; Scott-Craig, John S.; Borrusch, Melissa S.; Aslam, Nighat; Walton, Jonathan D.] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Banerjee, Goutami; Car, Suzana; Scott-Craig, John S.; Borrusch, Melissa S.; Aslam, Nighat; Walton, Jonathan D.] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Walton, JD (reprint author), Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM walton@msu.edu FU Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). We thank Nick Santoro and Shane Cantu (Great Lakes Bioenergy Research Center) for advice on robotic liquid handlers and automated sugar assays; the laboratory of Bruce Dale (Venkatesh Balan, Shishir Chundawat, and Dahai Gao) for the Kramer stover and for many fruitful discussions; and Cliff Foster (Great Lakes Bioenergy Research Center) for the stover analyses. Pat Whitcomb at Stat-Ease, Inc. (Minneapolis, MN) gave valuable advice on experimental design. NR 45 TC 64 Z9 64 U1 5 U2 42 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD AUG 1 PY 2010 VL 106 IS 5 BP 707 EP 720 DI 10.1002/bit.22741 PG 14 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 627RH UT WOS:000280058800002 PM 20564609 ER PT J AU Geernaert, G Businger, S Jeffery, C Dunn, T Elsberry, R MacGorman, D AF Geernaert, Gerald Businger, Steven Jeffery, Christopher Dunn, Thomas Elsberry, Russ MacGorman, Don TI USING NOVEL LIGHTNING DATA AND ADVANCED MODELING APPROACHES TO PREDICT MARITIME CYCLOGENESIS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Geernaert, Gerald; Jeffery, Christopher] Los Alamos Natl Lab, Los Alamos, NM USA. [Businger, Steven; Dunn, Thomas] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Elsberry, Russ] USN, Postgrad Sch, Monterey, CA USA. [MacGorman, Don] NOAA NSSL, Norman, OK USA. RP Geernaert, G (reprint author), LANL MS T 006, Los Alamos, NM 87545 USA. EM geernaert@lanl.gov OI MacGorman, Donald/0000-0002-2395-8196 NR 0 TC 2 Z9 2 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2010 VL 91 IS 8 BP 1091 EP 1093 DI 10.1175/2010BAMS2926.1 PG 3 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 648OV UT WOS:000281704700008 ER PT J AU Pasyanos, ME AF Pasyanos, Michael E. TI A General Method to Estimate Earthquake Moment and Magnitude Using Regional Phase Amplitudes SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID WAVE ATTENUATION; DISTANCES; TENSOR; ASIA AB This article presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M-0 or regional M-w. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading that accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones and afterward averaged to robustly determine this parameter. We first examine in detail two events to demonstrate the methodology. We then look at various ensembles of phases and frequencies and compare results to existing regional methods. We find regional M-0 to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates with this method to be more robust than typical magnitudes and existing regional methods, and the magnitude estimates might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as Mw. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave L-046,POB 808, Livermore, CA 94551 USA. RI Pasyanos, Michael/C-3125-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX I thank BillWalter for his critical review of this manuscript and Rengin Gok and Eric Matzel for their coda magnitudes. I also thank associate editor Charlotte Rowe, reviewer Xiaoning (David) Yang, and one anonymous reviewer for their comments on the manuscript. This work was prepared under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-420611. NR 22 TC 2 Z9 5 U1 0 U2 2 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD AUG 1 PY 2010 VL 100 IS 4 BP 1724 EP 1732 DI 10.1785/0120090363 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 632AQ UT WOS:000280392700021 ER PT J AU Ma, Z Yin, HF Dai, S AF Ma, Zhen Yin, Hongfeng Dai, Sheng TI Influence of Preparation Methods on the Performance of Metal Phosphate-Supported Gold Catalysts in CO Oxidation SO CATALYSIS LETTERS LA English DT Article DE Gold; Metal phosphate; CO oxidation ID AU NANOPARTICLES; TEMPERATURE; HYDROXYAPATITE; CLUSTERS; SILICA; TIO2; SIO2; SIZE; PARTICLES; COLLOIDS AB The influence of different preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation was surveyed. A series of metal phosphate-supported gold catalysts (Au/M-P-O, M = Al, Ca, Fe, Zn, La, Eu, Ho) were prepared by depositing dodecanethiol-capped gold nanoparticles on the supports, or by using Au(en)(2)Cl-3 as the precursor, and these catalysts were tested in CO oxidation. The catalytic data were compared with the data obtained in our previous work employing catalysts prepared by deposition-precipitation (Ma et al. Catal Lett 126: 20). It was found that only Au/La-P-O is always active whereas Au/Al-P-O, Au/Ca-P-O, and Au/Zn-P-O are always not particularly active, regardless of the preparation methods. These catalysts were characterized by TEM, and it was found that the size of gold nanoparticles is not the only factor that determines the activity. Both catalyst supports and preparation methods are important factors. C1 [Ma, Zhen] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China. [Ma, Zhen; Yin, Hongfeng; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ma, Z (reprint author), Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China. EM zhenma@fudan.edu.cn; dais@ornl.gov RI Ma, Zhen/F-1348-2010; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. This research was also supported by the appointment for H. F. Yin to the ORNL Research Associates Program, administered by Oak Ridge Associated Universities. NR 48 TC 11 Z9 12 U1 3 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD AUG PY 2010 VL 138 IS 1-2 BP 40 EP 45 DI 10.1007/s10562-010-0384-2 PG 6 WC Chemistry, Physical SC Chemistry GA 619TX UT WOS:000279454300007 ER PT J AU Nishiyama, Y Wada, M Hanson, BL Langan, P AF Nishiyama, Yoshiharu Wada, Masahisa Hanson, B. Leif Langan, Paul TI Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I SO CELLULOSE LA English DT Article DE X-ray crystallography; Time-resolved; Cellulose; Ethylenediamine; Scanning microprobe ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; CRYSTAL-STRUCTURE; ELECTRON-MICROSCOPY; TRANSFORMATION; AMMONIA; VALONIA; IIII; HYDROLYSIS AB Structural changes during the treatment of films of highly crystalline microfibers of Cladophora cellulose with ethylenediamine (EDA) have been studied by time-resolved X-ray microprobe diffraction methods. As EDA penetrates the sample and converts cellulose I to EDA-cellulose I, the measured profile widths of reflections reveal changes in the shapes and average dimensions of cellulose I and EDA-cellulose I crystals. The (200) direction of cellulose I is most resistant to EDA penetration, with EDA penetrating most effectively at the hydrophilic edges of the hydrogen bonded sheets of cellulose chains. Most of the cellulose chains in the initial crystals of cellulose I are incorporated into crystals of EDA-cellulose I. The size of the emerging EDA-cellulose I crystals is limited to about half of their size in cellulose I, most likely due to strains introduced by the penetration of EDA molecules. There is no evidence of any gradual structural transition from cellulose I to EDA-cellulose I involving a continuously changing intermediate phase. Rather, the results point to a rapid transition to EDA-cellulose I in regions of the microfibrils that have been penetrated by EDA. C1 [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Nishiyama, Yoshiharu] Univ Grenoble 1, CNRS, Ctr Rech Macromol Vegetales, F-38041 Grenoble, France. [Wada, Masahisa] Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan. [Wada, Masahisa] Kyung Hee Univ, Coll Life Sci, Dept Plant & Environm New Resources, Yongin 446701, Gyeonggi Do, South Korea. RP Langan, P (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM langan_paul@lanl.gov RI Hanson, Bryant Leif/F-8007-2010; Nishiyama, Yoshiharu/A-3492-2012; ID, BioCAT/D-2459-2012; Langan, Paul/N-5237-2015 OI Hanson, Bryant Leif/0000-0003-0345-3702; Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122 FU French Agence Nationale de la Recherche; Office of Biological and Environmental Research of the Department of Energy; Los Alamos National Laboratory [20080001DR]; [18780131] FX We thank BIOCAT at the Advanced Photon Source for use of facilities. We also thank Raul Barrea and Joseph Orgel for help with data collection. MW was supported by a Grant-in-Aid for Scientific Research (18780131). This study was partly funded by the French Agence Nationale de la Recherche. PL was supported in part by the Office of Biological and Environmental Research of the Department of Energy and a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR). NR 22 TC 12 Z9 12 U1 1 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 J9 CELLULOSE JI Cellulose PD AUG PY 2010 VL 17 IS 4 BP 735 EP 745 DI 10.1007/s10570-010-9415-9 PG 11 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 621NL UT WOS:000279585500005 PM 22693365 ER PT J AU Li, DF Xiao, HY Zu, XT Dong, HN Gao, F AF Li Deng-Feng Xiao Hai-Yan Zu Xiao-Tao Dong Hui-Ning Gao Fei TI Structural, electronic and magnetic properties of the Mn-Ni(110) c(2x2) surface alloy SO CHINESE PHYSICS B LA English DT Article DE manganese; nickel; magnetic surface alloy; density of states; density functional theory ID MN; ADSORPTION; 1ST-PRINCIPLES; EXCHANGE; NI(100); CU(110) AB Using first-principles total energy method, we study the structural, the electronic and the magnetic properties of the MnNi(110) c(2 x 2) surface alloy. Paramagnetic, ferromagnetic, and antiferromagnetic surfaces in the top layer and the second layer are considered. It turns out that the substitutional alloy in the outermost layer with ferromagnetic surface is the most stable in all cases. The buckling of the Mn-Ni(110) c(2 x 2) surface alloy in the top layer is as large as 0.26 angstrom (1 angstrom=0.1 nm) and the weak rippling is 0.038 angstrom in the third layer, in excellent agreement with experimental results. It is proved that the magnetism of Mn can stabilize this surface alloy. Electronic structures show a large magnetic splitting for the Mn atom, which is slightly higher than that of Mu-Ni(100) c(2 x 2) surface alloy (3.41 eV) due to the higher magnetic moment. A large magnetic moment for the Mn atom is predicted to be 3.81 mu(B). We suggest the ferromagnetic order of the Mn moments and the ferromagnetic coupling to the Ni substrate, which confirms the experimental results. The magnetism of Mn is identified as the driving force of the large buckling and the work-function change. The comparison with the other magnetic surface alloys is also presented and some trends are predicted. C1 [Li Deng-Feng; Dong Hui-Ning] Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. [Li Deng-Feng; Xiao Hai-Yan; Zu Xiao-Tao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, DF (reprint author), Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. EM lidf@cqupt.edu.cn RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 FU National Natural Science Foundation of China [10947102]; Foundation of Education Committee of Chongqing, China [KJ090503]; Foundation of Science Committee of Chongqing, China [CSTC 2007BB4385]; Doctoral Foundation of Chongqing University of Posts and Telecommunications, China [A2008-64] FX Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 10947102), the Foundation of Education Committee of Chongqing, China (Grant No. KJ090503), the Foundation of Science Committee of Chongqing, China (Grant No. CSTC 2007BB4385), and the Doctoral Foundation of Chongqing University of Posts and Telecommunications, China (Grant No. A2008-64). NR 28 TC 1 Z9 1 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 J9 CHINESE PHYS B JI Chin. Phys. B PD AUG PY 2010 VL 19 IS 8 AR 087102 PG 9 WC Physics, Multidisciplinary SC Physics GA 636MX UT WOS:000280741800075 ER PT J AU Xu, HF Johnson, PM Sears, TJ AF Xu Hai-Feng Johnson, Philip M. Sears, Trevor J. TI Effect of Laser Injection Seeder on Rotationally Resolved Spectra of Benzonitrile SO CHINESE PHYSICS LETTERS LA English DT Article ID DUAL FLUORESCENCE; DIPOLE-MOMENT; JET; PHENYLACETYLENE; SPECTROSCOPY; STATE AB High resolution lasers are necessary to derive the most information from molecular spectra. However, their use uncovers some photophysical processes that compromise the ability to resolve rotational structure. We study the influence of laser optical mode structure on the high resolution spectra of the S(1) states of benzonitrile in a supersonic molecular beam using an Ar(+) pumped cw ring dye laser which is amplified by a pulsed Nd:YAG laser. The latter could be operated either in one optical mode by injecting (seeding) its oscillator with a single mode diode laser, or with many optical modes by not using the seeder. Rotationally resolved lines are obtained when the oscillator of the YAG laser are operated in one single optical mode, but only a continuum is seen when the YAG laser has multiple modes. It is argued that the ac Stark effect is the most probable reason for broadening and blurring the rotational lines. C1 [Xu Hai-Feng] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China. [Johnson, Philip M.; Sears, Trevor J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. [Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Xu, HF (reprint author), Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China. EM xuhf@jlu.edu.cn RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 FU National Natural Science Foundation of China [10874056] FX Supported by the National Natural Science Foundation of China under Grant No 10874056. NR 13 TC 0 Z9 0 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD AUG PY 2010 VL 27 IS 8 AR 083301 DI 10.1088/0256-307X/27/8/083301 PG 3 WC Physics, Multidisciplinary SC Physics GA 634JN UT WOS:000280577200021 ER PT J AU Bishop, ME Jaisi, DP Dong, HL Kukkadapu, RK Ji, JF AF Bishop, Michael E. Jaisi, Deb P. Dong, Hailiang Kukkadapu, Ravi K. Ji, Junfeng TI BIOAVAILABILITY OF Fe(III) IN LOESS SEDIMENTS: AN IMPORTANT SOURCE OF ELECTRON ACCEPTORS SO CLAYS AND CLAY MINERALS LA English DT Article DE Bioreduction; Iron; Loess; Mineral Transformation; Shewanella putrefaciens ID CENTRAL UNITED-STATES; MICROBIAL REDUCTION; IRON REDUCTION; CLAY-MINERALS; MAGNETIC-SUSCEPTIBILITY; STRUCTURAL FE(III); MISSISSIPPI VALLEY; PALEOSOL SEQUENCE; DESERT VARNISH; CHINESE LOESS AB Fe-reducing micro-organisms can change the oxidation state of structural Fe in clay minerals. The interactions with complex clays and clay minerals in natural materials remain poorly understood, however. The objective of this study was to determine if Fe(III) in loess was available as an electron acceptor and to study subsequent mineralogical changes. The loess samples were collected from St. Louis (Peoria), Missouri, USA, and Huanxia (HX) and Yanchang (YCH), in the Shanxi Province of China. The total Fe concentrations for the three samples was 1.69, 2.76, and 3.29 wt.%, respectively, and Fe(III) content was 0.48, 0.69, and 1.27 wt.%, respectively. All unreduced loess sediments contained Fe (oxyhydr)oxides and phyllosilicates. Bioreduction experiments were performed using Shewanella putrefaciens CN32 with lactate as the sole electron donor and Fe(111) in loess as the sole electron acceptor with and without anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle. Experiments were performed in non-growth (bicarbonate buffer) and growth (M1) media. The unreduced and bioreduced solids were analyzed by X-ray diffraction, Mossbauer spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy/energy dispersive spectroscopy. Despite many similarities among the three loess samples, the extent and rate of Fe(III) reduction varied significantly. In the presence of AQDS the extent of reduction in the non-growth experiment was 25% of total Fe(III) in HX, 34% in Peoria, and 38% in YCH. The extent of reduction in the growth experiment was 72% in HX, 94% in Peoria, and 65% in YCH. The extent of bioreduction was less in the absence of AQDS. Overall, AQDS and the Ml growth medium significantly enhanced the rate and extent of bioreduction. Fe(III) in (oxyhydr)oxides and phyllosilicates was bioreduced. Siderite was absent in control samples, but was identified in bioreduced samples. The present research suggests that Fe(III) in loess sediments is an important potential source of electron acceptors that could support microbial activity under favorable conditions. C1 [Bishop, Michael E.; Jaisi, Deb P.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Jaisi, Deb P.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Dong, Hailiang] China Univ Geosci, Geomicrobiol Lab, State Key Lab Geol Proc & Mineral Resources, Beijing 100083, Peoples R China. [Dong, Hailiang] China Univ Geosci, Key Lab Biogeol & Environm Geol, Minist Educ, Fac Earth Sci, Wuhan 430074, Peoples R China. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ji, Junfeng] Nanjing Univ, Dept Earth Sci, Nanjing 210008, Peoples R China. RP Dong, HL (reprint author), Miami Univ, Dept Geol, Oxford, OH 45056 USA. EM dongh@muohio.edu RI Bishop, Michael/K-7622-2012 FU Miami University; U.S. Department of Energy [DE FG02-07ER64369]; National Science Foundation [EAR-0345307] FX Dr Jason Rech and Huifan Xu donated the loess samples for study. This research was supported in part by student grants to MEB from Miami University (Undergraduate Research Grant, 2007). MEB is grateful to Dr Richard Edelmann and Matt Dulley for their help with SEM/EDS training. The authors thank Dr John P. Morton for his help with the DCP analyses and XRD training, and Dr John Rakovan for his help with the XRD analyses. The work was supported by grants from the U.S. Department of Energy (DE FG02-07ER64369) and the National Science Foundation (EAR-0345307) to HD. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Two anonymous reviewers and the associate editor, Dr William F. Jaynes, are acknowledged for their constructive comments which greatly improved the quality of this manuscript. NR 73 TC 6 Z9 6 U1 1 U2 15 PU CLAY MINERALS SOC PI CHANTILLY PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA SN 0009-8604 EI 1552-8367 J9 CLAY CLAY MINER JI Clay Clay Min. PD AUG PY 2010 VL 58 IS 4 BP 542 EP 557 DI 10.1346/CCMN.2010.0580409 PG 16 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil Science SC Chemistry; Geology; Mineralogy; Agriculture GA 749EN UT WOS:000289446500009 ER PT J AU Monier, E Weare, BC Gustafson, WI AF Monier, Erwan Weare, Bryan C. Gustafson, William I., Jr. TI The Madden-Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model SO CLIMATE DYNAMICS LA English DT Article DE Tropical intraseasonal oscillation; Simulation; Propagation speed; Convection; Moisture processes; Atmospheric instability ID PLANETARY-SCALE CIRCULATIONS; OUTGOING LONGWAVE RADIATION; INTRASEASONAL VARIABILITY; VERTICAL STRUCTURE; ADJUSTMENT SCHEME; PACIFIC OCEANS; WAVE; PRECIPITATION; TEMPERATURE; COORDINATE AB The Madden-Julian oscillation (MJO) produced by a mesoscale model is investigated using standardized statistical diagnostics. Results show that upper- and lower-level zonal winds display the correct MJO structure, phase speed (8 m s(-1)) and space-time power spectrum. However, the simulated free atmosphere moisture, outgoing longwave radiation and precipitation do not exhibit any clear MJO signal. Yet, the boundary layer moisture, moist static energy and atmospheric instability, measured using a moist static energy instability index, have clear MJO signals. A significant finding is the ability of the model to simulate a realistic MJO phase speed in the winds without reproducing the MJO wind-convection coupling or a realistic propagation in the free atmosphere water vapor. This study suggests that the convergence of boundary layer moisture and the discharge and recharge of the moist static energy and atmospheric instability may be responsible for controlling the speed of propagation of the MJO circulation. C1 [Monier, Erwan; Weare, Bryan C.] Univ Calif Davis, Dept Land Air & Water Resources, Atmospher Sci Program, Davis, CA 95616 USA. [Gustafson, William I., Jr.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Monier, E (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Atmospher Sci Program, Davis, CA 95616 USA. EM emonier@ucdavis.edu RI Gustafson, William/A-7732-2008; Monier, Erwan/F-6988-2010 OI Gustafson, William/0000-0001-9927-1393; Monier, Erwan/0000-0001-5533-6570 NR 48 TC 3 Z9 3 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD AUG PY 2010 VL 35 IS 2-3 BP 435 EP 447 DI 10.1007/s00382-009-0626-4 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 629YQ UT WOS:000280237900012 ER PT J AU Sorensen, CM Ding, J Zhang, QB Alquier, T Zhao, R Mueller, PW Smith, RD Metz, TO AF Sorensen, Christina M. Ding, Jie Zhang, Qibin Alquier, Thierry Zhao, Rui Mueller, Patricia W. Smith, Richard D. Metz, Thomas O. TI Perturbations in the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus: Lipidomics analysis of a Diabetes Antibody Standardization Program sample subset SO CLINICAL BIOCHEMISTRY LA English DT Article DE Lipidomics; AMT tag approach; Capillary liquid chromatography; Mass spectrometry; Type 1 diabetes; Diabetes Antibody Standardization Program ID TIME TAG APPROACH; MASS-SPECTROMETRY; MOBILIZING FACTOR; ACCURATE MASS; OXIDIZED PHOSPHOLIPIDS; PLASMA-LIPOPROTEINS; PROTEOMICS; PREDICTION; PARTICLES; CHILDREN AB Objectives: To characterize the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag approach. Design and methods: Lipids were extracted from plasma and sera of 10 subjects from the Diabetes Antibody Standardization Program (years 2000-2005) and 10 non-diabetic subjects and analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag approach. Results: Five hundred fifty-nine lipid features differentiated (q <0.05) diabetic from healthy individuals in a partial least-squares analysis, characterizing individuals with recently diagnosed type 1 diabetes mellitus. Conclusions: A lipid profile associated with newly diagnosed type 1 diabetes may aid in further characterization of biochemical pathways involved in lipid regulation or mobilization. (C) 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved. C1 [Sorensen, Christina M.; Ding, Jie; Zhang, Qibin; Zhao, Rui; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Alquier, Thierry] Univ Montreal, Montreal Diabet Res Ctr, CRCHUM, Montreal, PQ H1W 4A4, Canada. [Alquier, Thierry] Univ Montreal, Dept Med, Montreal, PQ H1W 4A4, Canada. [Mueller, Patricia W.] US Ctr Dis Control & Prevent, Diabet & Mol Risk Assessment Lab, Atlanta, GA 30333 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012 OI Alquier, Thierry/0000-0001-8171-802X; Metz, Tom/0000-0001-6049-3968; Smith, Richard/0000-0002-2381-2349 FU NIH [DK070146]; Canadian Diabetes Association; U.S. Department of Energy (DOE) Office of Biological and Environmental Research [DE-AC0676RLO-1830] FX The authors would like to thank the DASP Standardization Committee and the members of the diabetes research community who have contributed DASP samples, as well as Drs. Alicia J. Jenkins and Katrina M. Waters of the University of Melbourne and Pacific Northwest National laboratory (PNNL), respectively, for helpful discussions. This work was supported by NIH grant DK070146 to R. D.S.; T.A. is supported by a post-doctoral fellowship from the Canadian Diabetes Association. Work was performed in the EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility located at PNNL and sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract No. DE-AC0676RLO-1830. NR 33 TC 16 Z9 17 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-9120 J9 CLIN BIOCHEM JI Clin. Biochem. PD AUG PY 2010 VL 43 IS 12 BP 948 EP 956 DI 10.1016/j.clinbiochem.2010.04.075 PG 9 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 627GG UT WOS:000280026900003 PM 20519132 ER PT J AU Li, ZL Chen, RH Phuoc, TX AF Li, Zhiliang Chen, Ruey-Hung Phuoc, Tran X. TI Effects of multi-component diffusion and heat release on laminar diffusion flame liftoff SO COMBUSTION AND FLAME LA English DT Article DE Stabilization; Diffusion flame; Schmidt number; Transport properties ID REACTION KERNEL STRUCTURE; NONPREMIXED JET; LIFTED FLAMES; STABILITY; STABILIZATION AB Numerical simulations were conducted of the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C(3)H(8) and CH(4) fuels. Both non-reacting and reacting jets were investigated, including multi-component diffusivities and heat release effects (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously arrived at in similarity solutions. The cold-flow simulation for He-diluted CH(4) fuel does not predict flame liftoff; however, adding heat release reaction lead to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C(3)H(8) flames, with the flame base location differing from that in the similarity solution - the intersection of the stoichiometric and iso-velocity (equal to 1-D flame speed) is not necessary for flame stabilization (and thus liftoff). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Li, Zhiliang; Chen, Ruey-Hung] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Phuoc, Tran X.] Dept Energy, Natl Energy Technol Lab, Pittsburgh, PA 15261 USA. RP Chen, RH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, 4000 Cent Florida Blvd,Box 162450, Orlando, FL 32816 USA. EM chenrh@mail.ucf.edu NR 19 TC 3 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD AUG PY 2010 VL 157 IS 8 BP 1484 EP 1495 DI 10.1016/j.combustflame.2010.04.008 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 617SF UT WOS:000279300800005 ER PT J AU Kuntz, JD Cervantes, OG Gash, AE Munir, ZA AF Kuntz, Joshua D. Cervantes, Octavio G. Gash, Alexander E. Munir, Zuhair A. TI Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering SO COMBUSTION AND FLAME LA English DT Article DE Sol-gel; Thermite; Composites; SPS ID COMBUSTION WAVE SPEEDS; ENERGETIC MATERIALS; CONSOLIDATION; AEROGELS AB Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sal-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sot-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO(3)) energetic composite was consolidated to a density of 9.17 g cm(-3) or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kuntz, Joshua D.; Cervantes, Octavio G.; Gash, Alexander E.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Cervantes, Octavio G.; Munir, Zuhair A.] Univ Calif Davis, Davis, CA 95616 USA. RP Cervantes, OG (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM cervantes11@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DoD/DOE FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors are grateful to the Joint DoD/DOE Munitions Technology Development Program for funding this project. The authors acknowledge Umberto Anselmi-Tamburini for his general input on the project, Robert Reibold for the synthesis of the energetic powders and Jim Ferreira for the SEM characterization, LLNL-JRNL-410842. NR 28 TC 8 Z9 10 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD AUG PY 2010 VL 157 IS 8 BP 1566 EP 1571 DI 10.1016/j.combustflame.2010.01.005 PG 6 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 617SF UT WOS:000279300800011 ER PT J AU Carrica, PM Huang, J Noack, R Kaushik, D Smith, B Stern, F AF Carrica, P. M. Huang, J. Noack, R. Kaushik, D. Smith, B. Stern, F. TI Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant SO COMPUTERS & FLUIDS LA English DT Article DE Surface combatant; Free surface flow; DES; Large-scale computations ID PHASE LEVEL SET; UNCERTAINTY ASSESSMENT; WAVE PATTERN; SHIP MOTIONS; SIMULATION; FORCES; MOMENT AB This paper aims at presenting the most resolved solutions to date for the ship forward speed diffraction and pitch and heave problems, and discuss the method that enables these computations. Large-scale DES computations (60-115 million grid points. 276-500 processors) of ship hydrodynamics problems are presented for the DTMB model 5512 surface combatant. The forward speed diffraction problem is studied at Fr = 028 with waves of amplitude a = 0.006 and wavelength lambda = 1 5, with the ship static allowing the overset assembly to be a pre-processing step. In the pitch and heave problem the ship faces head waves at Fr = 041 with waves of amplitude a = 0 006 and wavelength lambda = 1 5. with the ship is allowed to pitch and heave, thus requiring dynamic overset grid processing. The code CFDShip-Iowa version 4 and the overset assembly code Suggar were modified to carry out some large scale simulations of free surface ship hydrodynamics These modifications were focused on reducing the memory requirement and optimizing the per-processor and parallel performance at the implementation and algorithmic levels, plus the addition of a lagged mode for the overset domain connectivity computation The simulation results show very significant improvements in the local flow and free surface results, but minor in forces and moments when compared with previous URANS computations performed with grids with about three million points. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Carrica, P. M.; Huang, J.; Stern, F.] Univ Iowa, C Maxwell Stanley Hydraul Lab, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA. [Noack, R.] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA. [Kaushik, D.; Smith, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Carrica, PM (reprint author), Univ Iowa, C Maxwell Stanley Hydraul Lab, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA. FU US Office of Naval Research [N00014-01-1-0073, N00014-06-1-0474] FX This work is sponsored by the US Office of Naval Research through research grants N00014-01-1-0073 and N00014-06-1-0474 administrated by Dr. Patrick Purtell. Computations were performed at DoD NAVO and AFRL HPC centers, and at NASA Advanced Supercomputing center. NR 35 TC 26 Z9 26 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG PY 2010 VL 39 IS 7 BP 1095 EP 1111 DI 10.1016/j.compfluid.2010.02.002 PG 17 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 609NX UT WOS:000278664700002 ER PT J AU Toi, K Isobe, M Osakabe, M Ogawa, K Spong, D Todo, Y AF Toi, K. Isobe, M. Osakabe, M. Ogawa, K. Spong, D. Todo, Y. CA LHD Expt Grp TI Overview of Studies on Energetic-Ion-Driven MHD Instabilities in Stellarator/Helical Plasmas and Comparison with Tokamaks SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Energetic ions; Alfven eigenmodes; geodesic acoustic modes; toroidal plasmas; three dimensional effects ID LARGE-HELICAL-DEVICE; INDUCED ALFVEN EIGENMODES; MAGNETOHYDRODYNAMIC INSTABILITIES; MODES AB Suppression of anomalous radial transport of alpha particles and beam ions due to energetic ion driven MHD instabilities is one of the critical issues toward D-T burning plasma experiments in toroidal magnetic confinement devices such as tokamaks and stellarator/helical devices. This paper reports the characteristics of energetic ion driven MHD modes such as Alfven eigenmodes (AEs) and their effects on transport of energetic ions and bulk plasma in the Large Helical Device (LHD) and some different types of stellarator/helical devices. Beneficial impacts of AEs on toroidal plasma confinement are also included. These experimental results on AEs are compared with those in tokamaks, and the important similarities and differences are pointed out that can lead to better understanding of AEs in toroidal plasmas. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Toi, K.; Isobe, M.; Osakabe, M.; Todo, Y.; LHD Expt Grp] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Ogawa, K.] Nagoya Univ, Dept Energy Sci & Engn, Nagoya, Aichi 4648601, Japan. [Spong, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Toi, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM toi@lhd.nifs.ac.jp RI Spong, Donald/C-6887-2012; OGAWA, Kunihiro/E-7516-2013; Todo, Yasushi/E-7525-2013 OI Spong, Donald/0000-0003-2370-1873; OGAWA, Kunihiro/0000-0003-4555-1837; Todo, Yasushi/0000-0001-9323-8285 NR 57 TC 3 Z9 3 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 6-7 SI SI BP 493 EP 500 DI 10.1002/ctpp.200900044 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 637AS UT WOS:000280787200004 ER PT J AU Isobe, M Ogawa, K Toi, K Osakabe, M Nagaoka, K Shimizu, A Spong, DA Okumura, S AF Isobe, M. Ogawa, K. Toi, K. Osakabe, M. Nagaoka, K. Shimizu, A. Spong, D. A. Okumura, S. CA CHS Expt Grp LHD Expt Grp TI Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Energetic ion; MHD instabilities; Compact Helical System; Large Helical Device ID TOROIDAL ALFVEN EIGENMODES; PARTICLE DIAGNOSTICS; W7-AS STELLARATOR; CONFINEMENT; TOKAMAKS; LOSSES; TFTR; JET AB This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Isobe, M.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Okumura, S.; CHS Expt Grp; LHD Expt Grp] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Ogawa, K.] Nagoya Univ, Dept Energy Sci & Engn, Nagoya, Aichi 4648603, Japan. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Isobe, M (reprint author), Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. EM isobe@nifs.ac.jp RI Spong, Donald/C-6887-2012; OGAWA, Kunihiro/E-7516-2013 OI Spong, Donald/0000-0003-2370-1873; OGAWA, Kunihiro/0000-0003-4555-1837 NR 26 TC 2 Z9 2 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 6-7 SI SI BP 540 EP 545 DI 10.1002/ctpp.200900009 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 637AS UT WOS:000280787200011 ER PT J AU Park, JK Menard, JE Boozer, AH Schaffer, MJ Wolfe, SA AF Park, J. -K. Menard, J. E. Boozer, A. H. Schaffer, M. J. Wolfe, S. A. TI Ideal Perturbed Equilibria in Tokamaks and Control of External Magnetic Perturbations SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2010 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Toroidal plasma; MHD equilibrium; perturbation; magnetic island; error field ID WALL MODE STABILIZATION; BANANA-DRIFT TRANSPORT; PLASMAS; GEOMETRY; PHYSICS AB Tokamaks are sensitive to deviations from axisymmetry as small as delta B/B(0) similar to 0.01% with significant degradation or improvement in performance. Ideal Perturbed Equilibrium Code (IPEC) has been developed in order to understand plasma response to such a small non-axisymmetric perturbation in tokamaks. IPEC has been benchmarked in cylindrical limits, with CAS3D code, and has been validated through Resonant Field Amplification (RFA) measurements and error field correction results. The calculations of perturbed equilibria, such as IPEC in tokamaks, can be used to decompose the distributions of external magnetic perturbations on a control surface by their importance to critical plasma properties. The coupling between the external field at the control surface and the resonant field driving islands at the rational surfaces determine the most important distribution of external magnetic field on the control surface for island opening and plasma locking. It has been shown that the most important distribution of external magnetic field changes little across various plasma profiles and parameters, indicating the possibility of robust error field corrections. The described IPEC method can be also applied to general 3D geometry if a relevant perturbed equilibrium code such as CAS3D is utilized. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Park, J. -K.; Menard, J. E.] Princeton Plasma Phys Lab, Princeton, NJ 08513 USA. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Schaffer, M. J.] Gen Atom Co, San Diego, CA 92186 USA. [Wolfe, S. A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08513 USA. EM jpark@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 18 TC 1 Z9 1 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0863-1042 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 6-7 SI SI BP 669 EP 672 DI 10.1002/ctpp.200900069 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 637AS UT WOS:000280787200037 ER PT J AU Jakubowski, MW Evans, TE Fenstermacher, ME Lasnier, CJ Schmitz, O Wolf, RC Baylor, LR Boedo, JA Burrell, KH Frerichs, H de Grassie, JS Gohil, P Mordijck, S Moyer, RA Leonard, AW Reiter, D Samm, U Schaffer, MJ Osborne, TH Unterberg, EA Watkins, JG AF Jakubowski, M. W. Evans, T. E. Fenstermacher, M. E. Lasnier, C. J. Schmitz, O. Wolf, R. C. Baylor, L. R. Boedo, J. A. Burrell, K. H. Frerichs, H. de Grassie, J. S. Gohil, P. Mordijck, S. Moyer, R. A. Leonard, A. W. Reiter, D. Samm, U. Schaffer, M. J. Osborne, T. H. Unterberg, E. A. Watkins, J. G. TI Influence of the Resonant Magnetic Perturbation on the Plasma Boundary in DIII-D SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Stochastic boundary; ELM suppresion ID LARGE HELICAL DEVICE; TOKAMAK; TRANSPORT; DIVERTOR; EDGE; TANGLES; TEXTOR AB Stochastic boundaries in fusion devices have been investigated in tokamaks, stellarators and reversed field pinch experiments for many years. However, since edge localized modes (ELMs) have been successfully eliminated in H-mode plasmas at the DIII-D tokamak [1,2] with small, edge resonant magnetic perturbations, they have become a widely investigated topic in tokamaks. In DIII-D stochastic boundaries are produced by coils external to the plasma. The magnetic field there consists of field lines with very different connection lengths, which produces a three dimensional, heterogenous structure of stochastic volume. The most obvious manifestation of the perturbed plasma edge is the strike line splitting observable in heat and particle fluxes, which changes with collisionality. The interaction of the magnetic perturbation and the magnetic equilibrium is of a resonant nature and the structure of the stochastic volume is a strong function of q(95). This is observed as a modulation of e.g. electron temperature as measured by ECE or Thomson scattering. In this work we summarize recent experimental findings on properties of the stochastic boundary in DIII-D. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Jakubowski, M. W.; Wolf, R. C.] Max Planck Inst Plasma Phys, Assoc EURATOM IPP, Greifswald, Germany. [Evans, T. E.; Burrell, K. H.; de Grassie, J. S.; Gohil, P.; Leonard, A. W.; Schaffer, M. J.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Evans, T. E.; Burrell, K. H.; de Grassie, J. S.; Gohil, P.; Leonard, A. W.; Schaffer, M. J.; Osborne, T. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Jakubowski, M. W.; Schmitz, O.; Frerichs, H.; Reiter, D.; Samm, U.] Forschungszentrum Julich, IEF Plasmaphys, Assoc FZJ EURATOM, TEC, D-52425 Julich, Germany. [Baylor, L. R.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Boedo, J. A.; Mordijck, S.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jakubowski, MW (reprint author), Max Planck Inst Plasma Phys, Assoc EURATOM IPP, Greifswald, Germany. EM marcin.jakubowski@ipp.mpg.de RI Unterberg, Ezekial/F-5240-2016 OI Unterberg, Ezekial/0000-0003-1353-8865 NR 35 TC 4 Z9 4 U1 1 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 8 SI SI BP 701 EP 707 DI 10.1002/ctpp.201000004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 639OZ UT WOS:000280985400003 ER PT J AU Spong, DA Breizman, BN Brower, DL D'Azevedo, E Deng, CB Konies, A Todo, Y Toi, K AF Spong, D. A. Breizman, B. N. Brower, D. L. D'Azevedo, E. Deng, C. B. Konies, A. Todo, Y. Toi, K. TI Energetic-Particle-Driven Instabilities in General Toroidal Configurations SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Energetic particles; Alfven eigenmodes; stellarator; toroidal plasmas; three-dimensional effects ID STELLARATORS; EIGENMODES; PLASMAS AB Energetic-particle driven instabilities have been extensively observed in both tokamaks and stellarators. In order for such devices to ultimately succeed as D-T fusion reactors, the super-Alfvenic 3.5 Mev fusion-produced alpha particles must be sufficiently well confined. This requires the evaluation of losses from classical collisional transport processes as well as from energetic particle-driven instabilities. An important group of instabilities in this context are the discrete shear Alfven modes, which can readily be destabilized by energetic particles (with velocities of the order of V-Alfven) through wave-particle resonances. While these modes in three-dimensional systems have many similarities to those in tokamalcs, the detailed implementation of modeling tools has required development of new methods. Recent efforts in this direction will be described here, with an emphasis on reduced models. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Spong, D. A.; D'Azevedo, E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Brower, D. L.; Deng, C. B.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA. [Konies, A.] Max Planck Inst Plasma Phys, EURATOM Assoc, Greifswald, Germany. RP Spong, DA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM spongda@ornl.gov RI Spong, Donald/C-6887-2012; Todo, Yasushi/E-7525-2013 OI Spong, Donald/0000-0003-2370-1873; Todo, Yasushi/0000-0001-9323-8285 NR 21 TC 9 Z9 9 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0863-1042 EI 1521-3986 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 8 SI SI BP 708 EP 712 DI 10.1002/ctpp.200900066 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 639OZ UT WOS:000280985400004 ER PT J AU Dodson, T Baylard, C Hartmann, D Greve, H Herold, F AF Dodson, T. Baylard, Ch. Hartmann, D. Greve, H. Herold, F. TI Configuration Space Control for Wendelstein 7-X SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Stellarator; configuration control; management; reverse engineering; design AB The Wendelstein 7-X stellarator (W7-X) is a superconducting fusion experiment presently under construction at the Greifswald branch of the Max-Planck-Institut fur Plasmaphysik in Greifswald, Germany. W7-X is a device with extreme geometrical complexity due to the close-packing of components inside the cryostat and their complex three-dimensional shapes. The task of the Configuration Space Control department is to ensure that these components do not collide with each other under the defined set of configurations such as during assembly, at cool down, or during operation at various coil currents, among others. To fulfill this task, sophisticated tools and procedures were developed and implemented within the realm of a newly founded division that focuses on design, configuration control, and configuration management. This paper will discuss the Configuration Space Control process, explore the advantages to the project resulting from the process, and demonstrate its application in the analysis of the cryogenic cooling pipes of Module 5. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Dodson, T.; Greve, H.; Herold, F.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Baylard, Ch.] CEA DSM IRFM, Inst Rech Fus Confinement Magnt, Cadarache, France. [Baylard, Ch.; Hartmann, D.] Max Planck Inst Plasma Phys, Greifswald, Germany. RP Dodson, T (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM tdodson@pppl.gov NR 5 TC 3 Z9 3 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0863-1042 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 8 SI SI BP 756 EP 760 DI 10.1002/ctpp.200900031 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 639OZ UT WOS:000280985400013 ER PT J AU Terranova, D Gobbin, M Boozer, AH Hirshman, SP Marrelli, L Pomphrey, N AF Terranova, D. Gobbin, M. Boozer, A. H. Hirshman, S. P. Marrelli, L. Pomphrey, N. CA RFX-Mod Team TI Self-Organized Helical Equilibria in the RFX-Mod Reversed Field Pinch SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 17th International Stellarator/Heliotron Workshop CY OCT 12-16, 2009 CL Princeton Plasma Phys Lab, Princeton, NJ SP Int Energy Assoc HO Princeton Plasma Phys Lab DE Self-Organization; helical equilibrium; VMEC; RFP ID PLASMAS AB With operation at high plasma current (Ip similar to 1.5 MA), the plasma in the RFX-mod reversed field pinch self-organises in a 3D helical state with almost conserved flux surfaces featuring strong electron temperature barriers. Up to now the equilibrium of such states was obtained by a perturbative solution of the Newcomb equation in toroidal geometry. This allowed for the mapping of the electron temperature, density and SXR emissivity profiles on helical flux surfaces thus proving the correlation between kinetic plasma quantities and the underlying helical magnetic topology. In order to obtain a full 3D equilibrium reconstruction, the magnetic topology of a SHAx state has been also reconstructed with the VMEC code adapted for the RFP using experimental profiles as input data. Previous results for the axisymmetric case were used as benchmark. It is found that helical equilibria are characterised by a particular q profile with a region of zero magnetic shear as this has been found to be a key ingredient to trigger internal transport barriers. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Terranova, D.; Gobbin, M.; Marrelli, L.] Assoc Euratom ENEA Fus, Consorzio RFX, I-35127 Padua, Italy. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hirshman, S. P.] ORNL Fus Energy Div, Oak Ridge, TN 37830 USA. [Pomphrey, N.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Terranova, D (reprint author), Assoc Euratom ENEA Fus, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM david.terranova@igi.cnr.it RI pomphrey, neil/G-4405-2010; Marrelli, Lionello/G-4451-2013; Dalla Palma, Mauro/J-7709-2012 OI Marrelli, Lionello/0000-0001-5370-080X; Dalla Palma, Mauro/0000-0003-4239-8929 NR 12 TC 1 Z9 1 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0863-1042 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD AUG PY 2010 VL 50 IS 8 SI SI BP 775 EP 779 DI 10.1002/ctpp.200900010 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 639OZ UT WOS:000280985400017 ER EF