FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Cardoso, MB Luckarift, HR Urban, VS O'Neill, H Johnson, GR AF Cardoso, Mateus B. Luckarift, Heather R. Urban, Volker S. O'Neill, Hugh Johnson, Glenn R. TI Protein Localization in Silica Nanospheres Derived via Biomimetic Mineralization SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SMALL-ANGLE NEUTRON; X-RAY-SCATTERING; PARTICLE-SIZE DISTRIBUTIONS; PRECIPITATING PEPTIDES; STRUCTURAL BIOLOGY; LYSOZYME; COMPLEXES; SANS; CONFORMATION; NUCLEATION AB Lysozyme-templated precipitation of silica synthesized by sol-gel chemistry produces a composite material with-antimicrobial properties. This study investigates the structural properties of the composite material that allow for retention of the antimicrobial activity of lysozyme. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a hierarchical structure composed of quasi-spherical structures (similar to 450 nm diameter), which are in turn composed of closely packed spherical structures of similar to 8-10 nm in diameter. Using small-angle neutron scattering (SANS) with contrast variation, the scattering signatures of the lysozyme and silica within the composite were separated. It was determined that the lysozyme molecules are spatially correlated in the material and form clusters with colloidal silica particles. The size of the clusters determined by SANS agrees well with the structural architecture observed by TEM. BET analysis revealed that the surface area the composite is relatively low (4.73 m(2)/g). However, after removal of the protein by heating to 200 degrees C, the surface area is increased by similar to 20%. In addition to demonstrating a well organized sol-gel synthesis which. generates a functional Material with antimicrobial applications, the analysis and modeling approaches described herein can be used for characterizing a wide range of mesoporous and ultrastructural materials. C1 [Luckarift, Heather R.; Johnson, Glenn R.] USAF, Res Lab, AFRL RXQL, Mat Sci Directorate, Tyndall AFB, FL 32403 USA. [Luckarift, Heather R.] Univ Technol Corp, Dayton, OH 45432 USA. [Cardoso, Mateus B.; Urban, Volker S.; O'Neill, Hugh] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP Cardoso, MB (reprint author), LNLS, Caixa Postal 6192, BR-13083970 Campinas, SP, Brazil. EM oneillhm@ornl.gov; Glenn.Johnson@tyndall.af.mil RI Cardoso, Mateus/A-7926-2015; Urban, Volker/N-5361-2015; OI Cardoso, Mateus/0000-0003-2102-1225; Urban, Volker/0000-0002-7962-3408; O'Neill, Hugh/0000-0003-2966-5527 FU AFRL-Materials and Manufacturing directorate; Defense Threat Reduction Agency-Joint Science and Technology Office [AA06CBT008]; ORNL; Office of Biological and Environmental Research, U. S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725]; Capes, Brazil FX The authors acknowledge Dr. Tammy Metroke (Universal Technology Corporation at the Air Force Research Laboratory, Tyndall AFB, FL) for assistance with adsorption/desorption isotherms and BET measurements and to Karen Kelley (University of Florida, Gainesville, Florida) for SEM and TEM images provided as a service through ICBR Electron Microscopy BioImaging Lab. The Air Force Research Laboratory (AFRL) work was supported by the funding from the AFRL-Materials and Manufacturing directorate and the Defense Threat Reduction Agency-Joint Science and Technology Office (Project Code AA06CBT008 (Jennifer Becker, Ilya Elashvili, and Stephen Lee, Program Managers). Research at Oak Ridge National Laboratory (ORNL) was sponsored by the Laboratory Directed Research and Development Program of ORNL. The authors also acknowledge support from ORNL's Center for Structural Molecular Biology (CSMB) that is supported by the Office of Biological and Environmental Research, U. S. Department of Energy. This manuscript has been coauthored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. M.B.C. thanks Capes, Brazil for research support. NR 44 TC 23 Z9 23 U1 0 U2 45 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 23 PY 2010 VL 20 IS 18 BP 3031 EP 3038 DI 10.1002/adfm.201000144 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 663SL UT WOS:000282910000006 ER PT J AU Comstock, DJ Christensen, ST Elam, JW Pellin, MJ Hersam, MC AF Comstock, David J. Christensen, Steven T. Elam, Jeffrey W. Pellin, Michael J. Hersam, Mark C. TI Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILMS; MESOPOROUS PLATINUM; POROUS ALUMINA; SOLAR-CELLS; ALLOY-FILMS; GROWTH; ARRAYS; ELECTROOXIDATION; NANOMATERIALS; ELECTRODEPOSITION AB Nanostructured metal films have been widely studied for their roles in sensing, catalysis, and energy storage. In this work, the synthesis of compositionally controlled and nanostructured Pt/Ir films by atomic layer deposition (ALD) into porous anodized aluminum oxide templates is demonstrated. Templated ALD provides advantages over alternative synthesis techniques, including improved film uniformity and conformality as well as atomic-scale control over morphology and composition. Nanostructured Pt ALD films are demonstrated with morphological control provided by the Pt precursor exposure time and the number of ALD cycles. With these approaches, Pt films with enhanced surface areas, as characterized by roughness factors as large as 310, are reproducibly synthesized. Additionally, nanostructured PtIr alloy films of controlled composition and morphology are demonstrated by templated ALD, with compositions varying systematically from pure Pt to pure Ir. Lastly, the application of nanostructured Pt films to electrochemical sensing applications is demonstrated by the non-enzymatic sensing of glucose. C1 [Comstock, David J.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Christensen, Steven T.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pellin, Michael J.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Comstock, DJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM m-hersam@northwestern.edu RI Hersam, Mark/B-6739-2009; Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU Army Research Office (ARO) [W911NF-05-1-0177]; National Science Foundation (NSF) [ECS-0609064]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; NDSEG Fellowship; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was supported by the Army Research Office (ARO W911NF-05-1-0177) and the National Science Foundation (NSF ECS-0609064). This research made use of public facilities within the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. D. J. Comstock further acknowledges support from an NDSEG Fellowship. Argonne National Laboratory (ANL) is a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 49 TC 34 Z9 35 U1 0 U2 38 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 23 PY 2010 VL 20 IS 18 BP 3099 EP 3105 DI 10.1002/adfm.201000389 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 663SL UT WOS:000282910000014 ER PT J AU Bergenstrahle, M Wohlert, J Himmel, ME Brady, JW AF Bergenstrahle, Malin Wohlert, Jakob Himmel, Michael E. Brady, John W. TI Simulation studies of the insolubility of cellulose SO CARBOHYDRATE RESEARCH LA English DT Article DE Cellulase; Cellobiohydrolase I; Cellulose; Computer modeling; Molecular dynamics ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; MOLECULAR-DYNAMICS SIMULATIONS; SYNCHROTRON X-RAY; I-BETA; FORCE-FIELD; CRYSTAL-STRUCTURE; AQUEOUS-SOLUTION; D-GLUCOSE; ENERGY AB Molecular dynamics simulations have been used to calculate the potentials of mean force for separating short cellooligomers in aqueous solution as a means of estimating the contributions of hydrophobic stacking and hydrogen bonding to the insolubility of crystalline cellulose. A series of four potential of mean force (pmf) calculations for glucose, cellobiose, cellotriose, and cellotetraose in aqueous solution were performed for situations in which the molecules were initially placed with their hydrophobic faces stacked against one another, and another for the cases where the molecules were initially placed adjacent to one another in a co-planar, hydrogen-bonded arrangement, as they would be in cellulose ID. From these calculations, it was found that hydrophobic association does indeed favor a crystal-like structure over solution, as might be expected. Somewhat more surprisingly, hydrogen bonding also favored the crystal packing, possibly in part because of the high entropic cost for hydrating glucose hydroxyl groups, which significantly restricts the configurational freedom of the hydrogen-bonded waters. The crystal was also favored by the observation that there was no increase in chain configurational entropy upon dissolution, because the free chain adopts only one conformation, as previously observed, but against intuitive expectations, apparently due to the persistence of the intramolecular O3-O5 hydrogen bond. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bergenstrahle, Malin; Wohlert, Jakob; Brady, John W.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. [Himmel, Michael E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Brady, JW (reprint author), Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. EM jwb7@cornell.edu FU DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center; Sweden-America Foundation FX The authors thank P.E. Mason, D.B. Wilson, and P.I. Hansen for helpful discussions. This work was supported by the DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center. M.B. and J.W. also thank the Sweden-America Foundation for financial support. NR 46 TC 69 Z9 69 U1 6 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0008-6215 EI 1873-426X J9 CARBOHYD RES JI Carbohydr. Res. PD SEP 23 PY 2010 VL 345 IS 14 BP 2060 EP 2066 DI 10.1016/j.carres.2010.06.017 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 671DW UT WOS:000283481500010 PM 20705283 ER PT J AU Nielsen, IMB Leung, K AF Nielsen, Ida M. B. Leung, Kevin TI Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 1. A Density Functional Study of Intermediates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-ORBITAL METHODS; TOTAL-ENERGY CALCULATIONS; GAS-DIFFUSION ELECTRODES; GAUSSIAN-BASIS SETS; WAVE BASIS-SET; ORGANIC-MOLECULES; REACTION PATHWAYS; CO2 REDUCTION; AXIAL LIGAND; COMPLEXES AB The reduction of carbon dioxide by cobalt porphyrins is thought to be a multistep reaction with several possible intermediates and reaction pathways. We here investigate a number of possible intermediates in this reaction using density functional theory, including both hybrid (B3LYP) and pure (PBE and B1586) functionals. Optimum structures are located, and harmonic vibrational frequencies and thermal corrections are computed for the low-lying electronic states for all intermediates. Free energies of solvation are predicted for all species, providing a reaction profile in the aqueous phase, which enables identification of likely pathways. Finally, the reaction energy for the binding of carbon dioxide to the cobalt porphine cation is determined in the gas phase and in solution. C1 [Leung, Kevin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Nielsen, Ida M. B.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Leung, K (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov FU Department of Energy [DE-AC04-94AL85000]; U.S. Department of Energy FX Acknowledgment. We thank Craig Medforth, John Shelnutt, Susan Rempe, and Bryan Wong for useful discussions. This work was supported by the Department of Energy under Contract DE-AC04-94AL85000, by Sandia's LDRD program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy. NR 58 TC 28 Z9 28 U1 7 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 23 PY 2010 VL 114 IS 37 BP 10166 EP 10173 DI 10.1021/jp101180m PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649FP UT WOS:000281753800026 PM 20687540 ER PT J AU Leung, K Nielsen, IMB Sai, N Medforth, C Shelnutt, JA AF Leung, Kevin Nielsen, Ida M. B. Sai, Na Medforth, Craig Shelnutt, John A. TI Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 2. Mechanism from First Principles SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PARRINELLO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; GAS-DIFFUSION ELECTRODES; WAVE BASIS-SET; AQUEOUS-SOLUTION; CO2 REDUCTION; NUCLEOPHILIC-ATTACK; REACTION PATHWAYS; REDOX POTENTIALS AB We apply first principles computational techniques to analyze the two-electron, multistep, electrochemical reduction of CO(2) to CO in water using cobalt porphyrin as a catalyst. Density functional theory calculations with hybrid functionals and dielectric continuum solvation are used to determine the steps at which electrons are added. This information is corroborated with ab initio molecular dynamics simulations in an explicit aqueous environment which reveal the critical role of water in stabilizing a key intermediate formed by CO(2) bound to cobalt. By use of potential of mean force calculations, the intermediate is found to spontaneously accept a proton to form a carboxylate acid group at pH < 9.0, and the subsequent cleavage of a C-OH bond to form CO is exothermic and associated with a small free energy barrier. These predictions suggest that the proposed reaction mechanism is viable if electron transfer to the catalyst is sufficiently fast. The variation in cobalt ion charge and spin states during bond breaking, DFT+U treatment of cobalt 3d orbitals, and the need for computing electrochemical potentials are emphasized. C1 [Leung, Kevin; Shelnutt, John A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Nielsen, Ida M. B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Sai, Na] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Medforth, Craig] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Leung, K (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. RI Shelnutt, John/A-9987-2009; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; FU Department of Energy [DE-AC04-94AL85000]; U.S. Department of Energy FX We thank Nicola Marzari and Heather Kulik for their input on the self-consistent DFT+U method and Martijn Marsman for the Wannier function VASP module. We also thank Hank Westridge, Rick Muller, and the principal investigators, students, and postdocs involved in this National Institute of Nano Engineering LDRD project at Sandia, including Nicola Spaldin, Graeme Henkelman, Jim Miller, Tiffany Hayes, Elise Li, Zachary Pollack, and Yujiang Song. This work was supported by the Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy. NR 110 TC 41 Z9 41 U1 10 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 23 PY 2010 VL 114 IS 37 BP 10174 EP 10184 DI 10.1021/jp1012335 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649FP UT WOS:000281753800027 PM 20726563 ER PT J AU Mebs, S Grabowsky, S Forster, D Kickbusch, R Hartl, M Daemen, LL Morgenroth, W Luger, P Paulus, B Lentz, D AF Mebs, Stefan Grabowsky, Simon Foerster, Diana Kickbusch, Rainer Hartl, Monika Daemen, Luke L. Morgenroth, Wolfgang Luger, Peter Paulus, Beate Lentz, Dieter TI Charge Transfer via the Dative N-B Bond and Dihydrogen Contacts. Experimental and Theoretical Electron Density Studies of Small Lewis Acid-Base Adducts SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DONOR-ACCEPTOR COMPLEXES; HYDROGEN-BONDS; AB-INITIO; TOPOLOGICAL ANALYSIS; AMMONIA-BORANE; HARTREE-FOCK; NEUTRON-DIFFRACTION; MOLECULAR-CRYSTALS; BH3NH3; DEHYDROGENATION AB The electronic characteristics of the dative N-B bond in three Lewis acid-base adducts, hydrazine borane, hydrazine bisborane, and ammonia trifluoroborane, are analyzed by an approach combining experimental electron density determination with a broad variety of theoretical calculations. Special focus is directed to the weak dihydrogen contacts in hydrazine borane. The Atoms In Molecules partitioning scheme is complemented by additional methods like the Source Function, and the Electron Localizability Indicator. For the multipole-free theoretical models of hydrazine borane and hydrazine bisborane, a weak charge donation from Lewis base to acid of about 0.05 e is found, whereas multipole refinement of theoretical and experimental structure factors resulted in opposite signs for the Lewis acid and base fragments. For ammonia trifluoroborane, the donation from Lewis base to acid is slightly larger (about 0.13 e) in the multipole-free models, and the charges obtained by multipole refinement retain the direction of the charge donation but show quite large variations. The natural population analysis charges predict larger charge donations (similar to 0.35 e) from the Lewis bases to the acids for the three title complexes. Although the three compounds exhibit intermolecular interactions of different types and strengths, including classical hydrogen bonds, F center dot center dot center dot H contacts and the already mentioned dihydrogen bonds, almost no charge transfer is detected between different molecules within the crystal environment. The main electronic effect of the formation of the Lewis acid-base adducts and of the crystallization is an increase in the charge separation within the ammonia/hydrazine fragments, which is supported by all investigated bond and atomic properties. The nature of the dative N-B bond is found to be mainly electrostatic, but with a substantial contribution of covalency. The F-B bonds show similarities and differences from the N-B bonds, which makes a distinction of coordinative (or dative) bonds from polar covalent interactions possible. C1 [Mebs, Stefan; Grabowsky, Simon; Foerster, Diana; Kickbusch, Rainer; Luger, Peter; Lentz, Dieter] Free Univ Berlin, Inst Chem & Biochem Anorgan Chem, D-14195 Berlin, Germany. [Morgenroth, Wolfgang] Goethe Univ Frankfurt, Facheinheit Mineral Abt Kristallog, Inst Geowissensch, D-60438 Frankfurt, Germany. [Hartl, Monika; Daemen, Luke L.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM USA. [Paulus, Beate] Free Univ Berlin, Inst Chem & Biochem Phys & Theoret Chem, D-14195 Berlin, Germany. RP Lentz, D (reprint author), Free Univ Berlin, Inst Chem & Biochem Anorgan Chem, Fabeckstr 34-36, D-14195 Berlin, Germany. EM lentz@chemie.fu-berlin.de RI Lujan Center, LANL/G-4896-2012; Grabowsky, Simon/H-6014-2012; Hartl, Monika/F-3094-2014; Hartl, Monika/N-4586-2016; OI Hartl, Monika/0000-0002-6601-7273; Hartl, Monika/0000-0002-6601-7273; Morgenroth, Wolfgang/0000-0001-8921-0052 FU Deutsche Forschungsgemeinschaft (DFG) [LE423/13-3, LU222/30-2, SPP1178]; Graduiertenkolleg "Fluor als Schlusselelement-Durch neue Synthesekonzepte zu Verbindungen mit einzigartigen Eigenschaften" FX We thank the Deutsche Forschungsgemeinschaft (DFG Grants LE423/13-3 and LU222/30-2 within SPP1178) and the Graduiertenkolleg "Fluor als Schlusselelement-Durch neue Synthesekonzepte zu Verbindungen mit einzigartigen Eigenschaften" for financial support. Miroslav Kohout is acknowledged for his help with the ELI-D. NR 85 TC 36 Z9 36 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 23 PY 2010 VL 114 IS 37 BP 10185 EP 10196 DI 10.1021/jp100995n PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649FP UT WOS:000281753800028 PM 20726618 ER PT J AU Chen, DL Stern, AC Space, B Johnson, JK AF Chen, De-Li Stern, Abraham C. Space, Brian Johnson, J. Karl TI Atomic Charges Derived from Electrostatic Potentials for Molecular and Periodic Systems SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID METAL-ORGANIC FRAMEWORK; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; FORCE-FIELD; NUCLEIC-ACIDS; BASIS-SET; SIMULATION; ADSORPTION; ALGORITHM; FORMAMIDE AB We present a method for fitting atomic charges to the electrostatic potential (ESP) of periodic and nonperiodic systems. This method is similar to the method of Camparla et al. [J. Chem. Theory Comput. 2009, 5, 2866]. We compare the Wolf and Ewald long-range electrostatic summation methods in calculating the ESP for periodic systems. We find that the Wolf summation is computationally more efficient than the Ewald summation by about a factor of 5 with comparable accuracy. Our analysis shows that the choice of grid mesh size influences the fitted atomic charges, especially for systems with buried (highly coordinated) atoms. We find that a maximum grid spacing of 0.2-0.3 angstrom is required to obtain reliable atomic charges. The effect of the exclusion radius for point selection is assessed; we find that the common choice of using the van der Waals (vdW) radius as the exclusion radius for each atom may result in large deviations between the ESP generated from the ab initio calculations and that computed from the fitted charges, especially for points closest to the exclusion radii. We find that a larger value of exclusion radius than commonly used, 1.3 times the vdW radius, provides more reliable results. We find that a penalty function approach for fitting charges for buried atoms, with the target charge taken from Bader charge analysis, gives physically reasonable results. C1 [Chen, De-Li; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Chen, De-Li; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Stern, Abraham C.; Space, Brian] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. RP Johnson, JK (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM karlj@pitt.edu RI Chen, De-Li/H-6867-2012; Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX We thank Thomas Manz, Tom Woo, and Carlos Campana for helpful discussions. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in the area of computational chemistry under the RDS contract DE-AC26-04NT41817. NR 47 TC 44 Z9 44 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 23 PY 2010 VL 114 IS 37 BP 10225 EP 10233 DI 10.1021/jp103944q PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649FP UT WOS:000281753800033 PM 20795694 ER PT J AU Baker, TA Head-Gordon, M AF Baker, Thomas A. Head-Gordon, Martin TI Modeling the Charge Transfer between Alkali Metals and Polycyclic Aromatic Hydrocarbons Using Electronic Structure Methods SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SELF-INTERACTION ERROR; GENERALIZED-GRADIENT-APPROXIMATION; PLESSET PERTURBATION-THEORY; CORRELATION-ENERGY; AB-INITIO; MOLECULAR-HYDROGEN; LITHIUM; SPIN; ADSORPTION AB The interaction of alkali metals-specifically, lithium-with polycyclic aromatic hydrocarbons (PAHs) was studied using a variety of electronic structure methods. Electron transfer from lithium to a PAH depends on the size and structure of the PAH and the electronic structure method used. In some cases, we observe an artificial transfer when using density functional theory (DFT) due to the self-interaction error, whereas Hartree-Fock underestimates the amount of charge transfer due to overlocalization. Our results have interesting implications for the validity of DFT calculations on the alkali metal-PAH interaction in Li batteries, hydrogen storage devices, and alkali-metal-doped superconductors. C1 [Baker, Thomas A.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@bastille.cchem.berkeley.edu FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Dmitry Zubarev and Jinhua Wang for their useful discussions. NR 64 TC 35 Z9 35 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 23 PY 2010 VL 114 IS 37 BP 10326 EP 10333 DI 10.1021/jp105864v PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649FP UT WOS:000281753800045 PM 20806955 ER PT J AU Zhao, D Rodriguez, A Dimitrijevic, NM Rajh, T Koodali, RT AF Zhao, Dan Rodriguez, Adrian Dimitrijevic, Nada M. Rajh, Tijana Koodali, Ranjit T. TI Synthesis, Structural Characterization, and Photocatalytic Performance of Mesoporous W-MCM-48 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VISIBLE-LIGHT; MOLECULAR-SIEVES; SELECTIVE OXIDATION; CATALYTIC-ACTIVITY; LOCAL STRUCTURES; UNDESIRABLE MOLECULES; HYDROGEN-PEROXIDE; CONTAINING MCM-41; REDOX PROPERTIES; SILICATE SIEVE AB Tungsten-containing mesoporous MCM-48 was synthesized by a rapid and facile room-temperature procedure. The mesoporous structure and the local environment of tungsten species were studied by powder X-ray diffraction, transmission electron microscopy, nitrogen adsorption isotherms, UV-visible diffuse reflectance spectroscopy, and Raman spectrometry. The long-range ordered mesoporous structure of MCM-48 was well preserved after tungsten incorporation. Tungsten oxide species were highly dispersed in the MCM-48 matrix, and no bulk crystalline WO(3) was formed. The as-prepared W-MCM-48 materials show notable photocatalytic activity for hydrogen evolution from a methanol-water mixture under UV irradiation though bulk WO(3) is not active for the reaction. The photocatalytic mechanism was studied by electron spin resonance spectroscopy. C1 [Zhao, Dan; Rodriguez, Adrian; Koodali, Ranjit T.] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhao, D (reprint author), Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. EM Dan.Zhao@usd.edu; Ranjit.Koodali@usd.edu RI Koodali, Ranjit/E-5595-2011 OI Koodali, Ranjit/0000-0002-2790-3053 FU NSF [CHE 0722632, CHE 0532242, EPS 0554609]; DOE [DE-FG02-08ER64624]; DOE BES [DE-AC02-06CH11357] FX This work was supported by NSF-CHE 0722632, NSF-CHE 0532242, NSF-EPS 0554609, SD supported 2010 Center-CRDLM, and DOE-DE-FG02-08ER64624. The EPR experiments were performed at Argonne National Laboratory under DOE BES Contract No. DE-AC02-06CH11357. We are thankful to Sarah Chadima for help with powder XRD experiments. NR 55 TC 31 Z9 32 U1 0 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 23 PY 2010 VL 114 IS 37 BP 15728 EP 15734 DI 10.1021/jp105190v PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 649FR UT WOS:000281754000024 ER PT J AU Cohen, BE AF Cohen, Bruce E. TI BIOLOGICAL IMAGING Beyond fluorescence SO NATURE LA English DT Editorial Material ID NANOCRYSTALS; PROBE C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cohen, BE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM becohen@lbl.gov NR 10 TC 53 Z9 56 U1 4 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 23 PY 2010 VL 467 IS 7314 BP 407 EP 408 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 653KO UT WOS:000282090200028 PM 20864989 ER PT J AU Long, F Su, CC Zimmermann, MT Boyken, SE Rajashankar, KR Jernigan, RL Yu, EW AF Long, Feng Su, Chih-Chia Zimmermann, Michael T. Boyken, Scott E. Rajashankar, Kanagalaghatta R. Jernigan, Robert L. Yu, Edward W. TI Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport SO NATURE LA English DT Article ID MEMBRANE-FUSION PROTEIN; MULTIDRUG EFFLUX; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; ACRB; RECOGNITION; SOFTWARE; SYSTEM; CU(I); CRYSTALLOGRAPHY AB Gram-negative bacteria, such as Escherichia coli, frequently use tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel various toxic compounds from the cell(1,2). The efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions(3,4). No previous structural information was available for the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here we describe the crystal structures of the inner-membrane transporter CusA in the absence and presence of bound Cu(I) or Ag(I). These CusA structures provide new structural information about the HME subfamily of RND efflux pumps. The structures suggest that the metal-binding sites, formed by a three-methionine cluster, are located within the cleft region of the periplasmic domain. This cleft is closed in the apo-CusA form but open in the CusA-Cu(I) and CusA-Ag(I) structures, which directly suggests a plausible pathway for ion export. Binding of Cu(I) and Ag(I) triggers significant conformational changes in both the periplasmic and transmembrane domains. The crystal structure indicates that CusA has, in addition to the three-methionine metal-binding site, four methionine pairs-three located in the transmembrane region and one in the periplasmic domain. Genetic analysis and transport assays suggest that CusA is capable of actively picking up metal ions from the cytosol, using these methionine pairs or clusters to bind and export metal ions. These structures suggest a stepwise shuttle mechanism for transport between these sites. C1 [Long, Feng; Yu, Edward W.] Iowa State Univ, Mol Cellular & Dev Biol Interdept Grad Program, Ames, IA 50011 USA. [Su, Chih-Chia; Yu, Edward W.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Zimmermann, Michael T.; Boyken, Scott E.; Jernigan, Robert L.; Yu, Edward W.] Iowa State Univ, Bioinformat & Computat Biol Interdept Grad Progra, Ames, IA 50011 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL 60439 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, NE CAT, Argonne Natl Lab, Argonne, IL 60439 USA. [Jernigan, Robert L.; Yu, Edward W.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Yu, Edward W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Yu, EW (reprint author), Iowa State Univ, Mol Cellular & Dev Biol Interdept Grad Program, Ames, IA 50011 USA. EM ewyu@iastate.edu RI Long, Feng/F-5475-2011; Jernigan, Robert/A-5421-2012; OI Long, Feng/0000-0001-6313-8558; Zimmermann, Michael/0000-0001-7073-0525 FU National Institutes of Health (NIH), National Center for Research Resources [RR-15301]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NIH [GM074027, GM086431, GM081680, GM072014] FX We thank M. D. Routh for critical reading of the manuscript. This work is based on research conducted at the Northeastern Collaborative Access Team beamlines of the Advanced Photon Source, supported by National Institutes of Health (NIH) award RR-15301 from the National Center for Research Resources. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported by NIH grants GM074027 (to E.W.Y.), GM086431 (to E.W.Y.), GM081680 (to R.L.J.) and GM072014 (to R.L.J.). NR 44 TC 104 Z9 106 U1 3 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 23 PY 2010 VL 467 IS 7314 BP 484 EP U140 DI 10.1038/nature09395 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 653KO UT WOS:000282090200048 PM 20865003 ER PT J AU Ofer, O Keren, A Gardner, JS Ren, Y MacFarlane, WA AF Ofer, Oren Keren, Amit Gardner, Jason S. Ren, Yang MacFarlane, W. A. TI Origin of magnetic freezing in pyrochlore Y2Mo2O7 SO PHYSICAL REVIEW B LA English DT Article ID ANTIFERROMAGNET Y2MO2O7; SPIN; BEHAVIOR; TRANSITION; RESONANCE; SYSTEM AB We investigated the nature of the spin-glass like phase transition in the geometrically frustrated pyrochlore lattices Y2Mo2O7 using the local probes nuclear and muon magnetic resonances, and the field-dependent long-range probes x-ray and neutron scatterings. The long-range probes indicated that Y2Mo2O7 does not undergo any global symmetry changes, even in a field of 6 T. In contrast, the local signal indicates a lattice distortion close to the critical temperature. The nuclei show at least two inequivalent Y sites, and the muons show sublinear line broadening as a function of moment size, over a wide temperature range. The conclusion from all the measurements is that even in high field, the distortion of Y2Mo2O7 takes place within the unit cell while its global cubic symmetry is preserved. Moreover, the muon result clearly indicates the presence of magnetoelastic coupling. C1 [Ofer, Oren] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Ofer, Oren; Keren, Amit] Technion, Dept Phys, IL-32000 Haifa, Israel. [Gardner, Jason S.] Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. [Gardner, Jason S.] Indiana Univ, Bloomington, IN 47408 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [MacFarlane, W. A.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. RP Ofer, O (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. EM oren@triumf.ca RI Gardner, Jason/A-1532-2013 FU NATO [PST.CLG.978705]; Israel-U.S. Binational Science Foundation; HFM network of the ESF; European Commission [RII3-CT-2004-506008]; U.S. DOE [DE-AC02-06CH11357] FX We are grateful to the staff of TRIUMF for assistance with the mu+SR experiments. O.O. and A.K. acknowledge the financial support of NATO-Collaborative Linkage Grant, Reference No. PST.CLG.978705, the Israel-U.S. Binational Science Foundation and the HFM network of the ESF, and the European Commission under the Sixth Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. RII3-CT-2004-506008. Use of APS was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 28 TC 12 Z9 12 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2010 VL 82 IS 9 AR 092403 DI 10.1103/PhysRevB.82.092403 PG 4 WC Physics, Condensed Matter SC Physics GA 653NC UT WOS:000282097200001 ER PT J AU Xiao, Y Su, Y Li, HF Kumar, CMN Mittal, R Persson, J Senyshyn, A Gross, K Brueckel, T AF Xiao, Y. Su, Y. Li, H. -F. Kumar, C. M. N. Mittal, R. Persson, J. Senyshyn, A. Gross, K. Brueckel, Th. TI Neutron diffraction investigation of the crystal and magnetic structures in KCrF3 perovskite SO PHYSICAL REVIEW B LA English DT Article ID WEAK FERROMAGNETISM; LAMNO3; SUPEREXCHANGE; TRANSITIONS; DISTORTION; INSULATOR; PHYSICS AB KCrF3 represents another prototypical orbital-ordered perovskite, where Cr2+ possesses the same electronic configuration of 3d(4) as that of strongly Jahn-Teller distorted Mn3+ in many colossal magnetoresistance manganites. The crystal and magnetic structures of KCrF3 compound are investigated by using polarized and unpolarized neutron powder-diffraction methods. The results show that the KCrF3 compound crystallizes in tetragonal structure at room temperature and undergoes a monoclinic distortion with the decrease in temperature. The distortion of the crystal structure indicates the presence of cooperative Jahn-Teller distortion which is driven by orbital ordering. With decreasing temperature, four magnetic phase transitions are observed at 79.5, 45.8, 9.5, and 3.2 K, which suggests a rich magnetic phase diagram. Below T-N = 79.5 K, the Cr2+ moment orders in an incommensurate antiferromagnetic arrangement, which can be defined by the magnetic propagation vector (1/2 + delta, 1/2 + delta, 0). The incommensurate-commensurate magnetic transition occurs at 45.8 K and the magnetic propagation vector locks into (1/2, 1/2, 0) with the Cr moment of 3.34(5) mu(B), aligned ferromagnetically in (220) plane, but antiferromagnetically along [110] direction. Below 9.5 K, the canted antiferromagnetic ordering and weak ferromagnetism arise from the collinear antiferromagnetic structure while the Dzyaloshinskii-Moriya interaction and tilted character of the single-ion anisotropy might give rise to the complex magnetic behaviors below 9.5 K. C1 [Xiao, Y.; Li, H. -F.; Kumar, C. M. N.; Persson, J.; Gross, K.; Brueckel, Th.] Forschungszentrum Julich, Inst Festkoerperforsch, D-52425 Julich, Germany. [Su, Y.; Mittal, R.; Brueckel, Th.] Forschungszentrum Julich, Outstn FRM 2, IFF, Juelich Ctr Neutron Sci, D-85747 Garching, Germany. [Li, H. -F.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, H. -F.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Mittal, R.] Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India. [Senyshyn, A.] Forsch Neutronenquelle Heinz Maier Leibnitz FRM I, D-85747 Garching, Germany. [Senyshyn, A.] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. RP Xiao, Y (reprint author), Forschungszentrum Julich, Inst Festkoerperforsch, D-52425 Julich, Germany. EM y.xiao@fz-juelich.de RI Li, Haifeng/F-9743-2013; Bruckel, Thomas/J-2968-2013; Su, Yixi/K-9119-2013; Senyshyn, Anatoliy/C-8267-2014; Xiao, Yinguo/N-9069-2015 OI Bruckel, Thomas/0000-0003-1378-0416; Su, Yixi/0000-0001-8434-1758; Senyshyn, Anatoliy/0000-0002-1473-8992; NR 32 TC 10 Z9 11 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 23 PY 2010 VL 82 IS 9 AR 094437 DI 10.1103/PhysRevB.82.094437 PG 5 WC Physics, Condensed Matter SC Physics GA 653NC UT WOS:000282097200002 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blocker, C Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M De Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Turini, N Ukegawa, F Uozumi, S Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. De Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the top pair production cross section in the dilepton decay channel in p(p)over-bar collisions at root s = 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; CDF; DETECTOR; PERFORMANCE; COLLIDER; FERMILAB; QCD AB A measurement of the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb(-1) is sigma(t (t) over bar) = 6.27 +/- 0.73(stat) +/- 0.63(syst) +/- 0.39(lum) pb. for an assumed top mass of 175 GeV/c(2). C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Autonomous Univ Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bland, K. R.; Frank, M. J.; Hatakeyama, K.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphysik, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ Burnaby, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] NW Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Compostella, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Compostella, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Giagu, S.; Iori, M.] Sapienza Univ Roma, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 30 TC 28 Z9 28 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 23 PY 2010 VL 82 IS 5 AR 052002 DI 10.1103/PhysRevD.82.052002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 653XG UT WOS:000282130600001 ER PT J AU Martin, SP AF Martin, Stephen P. TI Raising the Higgs mass with Yukawa couplings for isotriplets in vectorlike extensions of minimal supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID PRECISION ELECTROWEAK EXPERIMENTS; RENORMALIZATION-GROUP EQUATIONS; SOFTLY BROKEN SUPERSYMMETRY; DISCRETE GAUGE ANOMALIES; STANDARD MODEL; RADIATIVE-CORRECTIONS; TECHNICOLOR THEORIES; CHARGED LEPTONS; HEAVY-LEPTONS; BETA-FUNCTION AB Extra vectorlike matter with both electroweak-singlet masses and large Yukawa couplings can significantly raise the lightest Higgs boson mass in supersymmetry through radiative corrections. I consider models of this type that involve a large Yukawa coupling between weak isotriplet and isodoublet chiral supermultiplets. The particle content can be completed to provide perturbative gauge coupling unification, in several different ways. The impact on precision electroweak observables is shown to be acceptably small, even if the new particles are as light as the current experimental bounds of order 100 GeV. I study the corrections to the lightest Higgs boson mass, and discuss the general features of the collider signatures for the new fermions in these models. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-0757325] FX This work was supported in part by the National Science Foundation Grant No. PHY-0757325. NR 109 TC 36 Z9 36 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 23 PY 2010 VL 82 IS 5 AR 055019 DI 10.1103/PhysRevD.82.055019 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 653XG UT WOS:000282130600004 ER PT J AU Orsi, D Cristofolini, L Fontana, MP Pontecorvo, E Caronna, C Fluerasu, A Zontone, F Madsen, A AF Orsi, Davide Cristofolini, Luigi Fontana, Marco P. Pontecorvo, Emanuele Caronna, Chiara Fluerasu, Andrei Zontone, Federico Madsen, Anders TI Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy SO PHYSICAL REVIEW E LA English DT Article ID LIQUID-CRYSTALLINE POLYMERS; SIDE-CHAIN POLYMERS; LIGHT; RELAXATION; TRANSITION; FILMS; GELS AB We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q(-1). The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance chi of the degree of correlation as a function of ageing time. A clear peak in chi appears at a well defined time tau(C) which scales with q(-1) and with the ageing time, in a similar fashion as previously reported in colloidal suspensions [O. Dauchot et al., Phys. Rev. Lett. 95, 265701 (2005)]. From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior. C1 [Orsi, Davide; Cristofolini, Luigi; Fontana, Marco P.] Univ Parma, Dept Phys, I-43100 Parma, Italy. [Pontecorvo, Emanuele] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Caronna, Chiara] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Fluerasu, Andrei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zontone, Federico; Madsen, Anders] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Orsi, D (reprint author), Univ Parma, Dept Phys, Viale Usberti 7-A, I-43100 Parma, Italy. RI Cristofolini, Luigi/B-7250-2014; Orsi, Davide/P-5748-2016 OI Cristofolini, Luigi/0000-0003-2440-4934; Orsi, Davide/0000-0003-3223-8622 FU ESRF; BNL FX We wish to acknowledge the ESRF for beamtime and funding. AF wishes to acknowledge the BNL NSLS-II project for funding. NR 42 TC 17 Z9 17 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 23 PY 2010 VL 82 IS 3 AR 031804 DI 10.1103/PhysRevE.82.031804 PN 1 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 653YD UT WOS:000282133400007 PM 21230098 ER PT J AU Hong, T Kim, YH Hotta, C Takano, Y Tremelling, G Turnbull, MM Landee, CP Kang, HJ Christensen, NB Lefmann, K Schmidt, KP Uhrig, GS Broholm, C AF Hong, Tao Kim, Y. H. Hotta, C. Takano, Y. Tremelling, G. Turnbull, M. M. Landee, C. P. Kang, H. -J. Christensen, N. B. Lefmann, K. Schmidt, K. P. Uhrig, G. S. Broholm, C. TI Field-Induced Tomonaga-Luttinger Liquid Phase of a Two-Leg Spin-1/2 Ladder with Strong Leg Interactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; HEISENBERG LADDER; CHAINS AB We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S = 1/2 two-leg spin ladder in the strong-leg regime. C1 [Hong, Tao] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kim, Y. H.; Takano, Y.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Hotta, C.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Tremelling, G.; Turnbull, M. M.; Landee, C. P.] Clark Univ, Carlson Sch Chem, Worcester, MA 01610 USA. [Tremelling, G.; Turnbull, M. M.; Landee, C. P.] Clark Univ, Dept Phys, Worcester, MA 01610 USA. [Kang, H. -J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Christensen, N. B.] ETH Zurich Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Lefmann, K.] Univ Copenhagen, Nanosci Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Schmidt, K. P.; Uhrig, G. S.] TU Dortmund, Lehrstuhl Theoret Phys 1, D-44221 Dortmund, Germany. [Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Hong, T (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM hongt@ornl.gov RI Schmidt, Kai /C-7286-2009; Hong, Tao/F-8166-2010; Broholm, Collin/E-8228-2011; Uhrig, Gotz/F-4940-2011; Lefmann, Kim/M-9228-2014; Christensen, Niels/A-3947-2012; OI Turnbull, Mark/0000-0002-0232-8224; Hong, Tao/0000-0002-0161-8588; Broholm, Collin/0000-0002-1569-9892; Lefmann, Kim/0000-0003-4282-756X; Christensen, Niels/0000-0001-6443-2142; Schmidt, Kai Phillip/0000-0002-8278-8238 FU Division of Scientific User Facilities, Office of BES, DOE; NSF [DMR-0306940, DMR-0706553, DMR-0454672, DMR-0654118]; Ministry of Education, Science, Sports, and Culture of Japan [19740218, 21110522, 22014014]; ESF; EuroHorcs through EURYI; Danish Natural Science Research Council under DANSCATT; Swiss NSF [PP002-102831]; Carlsberg Foundation; State of Florida; DOE FX We thank R. Paul for help with neutron activation analysis, and J.-H. Park and T.P. Murphy for help with cryogenics. The work at ORNL was partially funded by the Division of Scientific User Facilities, Office of BES, DOE. The work at JHU was supported by the NSF through Grants No. DMR-0306940 and No. DMR-0706553. C.H. was supported by Kakenhi Grants No. 19740218, No. 21110522, and No. 22014014 from the Ministry of Education, Science, Sports, and Culture of Japan. K.P.S. acknowledges ESF and EuroHorcs for funding through EURYI. The work at RITA II, PSI was supported by the Danish Natural Science Research Council under DANSCATT and by the Swiss NSF Contract No. PP002-102831. The work at NIST utilized facilities supported in part by the NSF under Agreement No. DMR-0454672. The cryomagnet at PSI was partially funded by the Carlsberg Foundation. The NHMFL is supported by NSF Cooperative Agreement No. DMR-0654118, and by the State of Florida and the DOE. NR 28 TC 53 Z9 53 U1 2 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 23 PY 2010 VL 105 IS 13 AR 137207 DI 10.1103/PhysRevLett.105.137207 PG 4 WC Physics, Multidisciplinary SC Physics GA 653YZ UT WOS:000282136600018 PM 21230808 ER PT J AU Wuosmaa, AH Back, BB Baker, S Brown, BA Deibel, CM Fallon, P Hoffman, CR Kay, BP Lee, HY Lighthall, JC Macchiavelli, AO Marley, ST Pardo, RC Rehm, KE Schiffer, JP Shetty, DV Wiedeking, M AF Wuosmaa, A. H. Back, B. B. Baker, S. Brown, B. A. Deibel, C. M. Fallon, P. Hoffman, C. R. Kay, B. P. Lee, H. Y. Lighthall, J. C. Macchiavelli, A. O. Marley, S. T. Pardo, R. C. Rehm, K. E. Schiffer, J. P. Shetty, D. V. Wiedeking, M. TI C-15(d, p)C-16 Reaction and Exotic Behavior in C-16 SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEAR SHELL-MODEL; PARITY; STATES AB We have studied the C-15(d, p)C-16 reaction in inverse kinematics using the Helical Orbit Spectrometer at Argonne National Laboratory. Prior studies of electromagnetic-transition rates in C-16 suggested an exotic decoupling of the valence neutrons from the core in that nucleus. Neutron-adding spectroscopic factors give a different probe of the wave functions of the relevant states in C-16. Shell-model calculations reproduce both the present transfer data and the previously measured transition rates, suggesting that C-16 may be described without invoking very exotic phenomena. C1 [Wuosmaa, A. H.; Lighthall, J. C.; Marley, S. T.; Shetty, D. V.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Back, B. B.; Baker, S.; Deibel, C. M.; Hoffman, C. R.; Kay, B. P.; Lighthall, J. C.; Marley, S. T.; Pardo, R. C.; Rehm, K. E.; Schiffer, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brown, B. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Fallon, P.; Macchiavelli, A. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lee, H. Y.] Los Alamos Natl Lab, LANSCE NS, Los Alamos, NM 87545 USA. [Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wuosmaa, AH (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Kay, Benjamin/F-3291-2011 OI Kay, Benjamin/0000-0002-7438-0208 FU U.S. Department of Energy, Office of Nuclear Physics [DE-FG02-04ER41320, DE-AC02-06CH11357, DE-AC02-05CH11231, DE-AC52-06NA25396, DE-AC52-07NA27344]; National Science Foundation [PHY-02-16783, PHY-07-58099] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-FG02-04ER41320, No. DE-AC02-06CH11357, No. DE-AC02-05CH11231, No. DE-AC52-06NA25396, and No. DE-AC52-07NA27344, and National Science Foundation Grants No. PHY-02-16783 and No. PHY-07-58099. NR 30 TC 31 Z9 31 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 23 PY 2010 VL 105 IS 13 AR 132501 DI 10.1103/PhysRevLett.105.132501 PG 4 WC Physics, Multidisciplinary SC Physics GA 653YZ UT WOS:000282136600005 PM 21230766 ER PT J AU Parnell, JJ Rompato, G Latta, LC Pfrender, ME Van Nostrand, JD He, ZL Zhou, JZ Andersen, G Champine, P Ganesan, B Weimer, BC AF Parnell, J. Jacob Rompato, Giovanni Latta, Leigh C. Pfrender, Michael E. Van Nostrand, Joy D. He, Zhili Zhou, Jizhong Andersen, Gary Champine, Patti Ganesan, Balasubramanian Weimer, Bart C. TI Functional Biogeography as Evidence of Gene Transfer in Hypersaline Microbial Communities SO PLOS ONE LA English DT Article ID GREAT-SALT-LAKE; BACTERIAL COMMUNITIES; CODON USAGE; DIVERSITY; EVOLUTION; SEQUENCES; GENOME; DNA; RECOMBINATION; POPULATIONS AB Background: Horizontal gene transfer (HGT) plays a major role in speciation and evolution of bacteria and archaea by controlling gene distribution within an environment. However, information that links HGT to a natural community using relevant population-genetics parameters and spatial considerations is scarce. The Great Salt Lake (Utah, USA) provides an excellent model for studying HGT in the context of biogeography because it is a contiguous system with dispersal limitations due to a strong selective salinity gradient. We hypothesize that in spite of the barrier to phylogenetic dispersal, functional characteristics-in the form of HGT-expand beyond phylogenetic limitations due to selective pressure. Methodology and Results: To assay the functional genes and microorganisms throughout the GSL, we used a 16S rRNA oligonucleotide microarray (Phylochip) and a functional gene array (GeoChip) to measure biogeographic patterns of nine microbial communities. We found a significant difference in biogeography based on microarray analyses when comparing Sorensen similarity values for presence/absence of function and phylogeny (Student's t-test; p = 0.005). Conclusion and Significance: Biogeographic patterns exhibit behavior associated with horizontal gene transfer in that informational genes (16S rRNA) have a lower similarity than functional genes, and functional similarity is positively correlated with lake-wide selective pressure. Specifically, high concentrations of chromium throughout GSL correspond to an average similarity of chromium resistance genes that is 22% higher than taxonomic similarity. This suggests active HGT may be measured at the population level in microbial communities and these biogeographic patterns may serve as a model to study bacteria adaptation and speciation. C1 [Parnell, J. Jacob; Rompato, Giovanni; Champine, Patti; Ganesan, Balasubramanian; Weimer, Bart C.] Utah State Univ, Ctr Integrated BioSyst, Logan, UT 84322 USA. [Latta, Leigh C.; Pfrender, Michael E.; Weimer, Bart C.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Ganesan, Balasubramanian] Utah State Univ, Dept Nutr & Food Sci, Logan, UT 84322 USA. [Pfrender, Michael E.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA. [Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Andersen, Gary] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Parnell, JJ (reprint author), Utah State Univ, Ctr Integrated BioSyst, Logan, UT 84322 USA. EM jacob.parnell@usu.edu RI He, Zhili/C-2879-2012; Van Nostrand, Joy/F-1740-2016; Andersen, Gary/G-2792-2015 OI Van Nostrand, Joy/0000-0001-9548-6450; Andersen, Gary/0000-0002-1618-9827 FU National Science Foundation [DEB-021212487]; United States Department of Agriculture CSREES [2006-34526-17001]; Utah Agricultural Experiment Station at Utah State University FX Funding for this project was provided by National Science Foundation grant DEB-021212487 to MEP, and a grant from the United States Department of Agriculture CSREES 2006-34526-17001. This project was supported by the Utah Agricultural Experiment Station at Utah State University as journal paper number 8091. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 31 Z9 31 U1 1 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 23 PY 2010 VL 5 IS 9 AR e12919 DI 10.1371/journal.pone.0012919 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 653KV UT WOS:000282091100023 PM 20957119 ER PT J AU Opresko, DM Breedy, O AF Opresko, D. M. Breedy, Odalisca TI A new species of antipatharian coral (Cnidaria: Anthozoa: Antipatharia: Schizopathidae) from the Pacific coast of Costa Rica SO PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON LA English DT Article AB A new species of antipatharian coral (Anthozoa: Antipatharia) is described from the Pacific coast of Costa Rica. Lillipathes ritamariae, new species, forms large, multi-branched, flabellate colonies that reach a height of 60 cm or more. The genus Lillipathes is characterized by pinnules in four rows and arranged in bilateral alternating pairs. In L. ritamariae, the pinnules occur in only two rows in portions of the corallum; however, the characteristic Lillipathes pinnulation pattern is common enough to support assigning this species to this genus. The species can be distinguished from its cogeners by its very short pinnules (mostly 1-1.5 cm in length) and the development of many of the lateral pinnules into pinnulated branches. In contrast, in L. wingi, the pinnules are up to 5 cm long and only a few in the colony develop into branches. In L. quadribrachiata, the pinnules are up to about 3 cm long, and in Lillipathes lilliei, the pinnules are more than 10 cm in length, and only a small number develop into branches. C1 [Opresko, D. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Breedy, Odalisca] Smithsonian Trop Res Inst, Balboa, Panama. [Breedy, Odalisca] Univ Costa Rica, Ctr Invest Ciencias Mar & Limnol, San Jose, Costa Rica. [Breedy, Odalisca] Univ Costa Rica, Ctr Invest Estruct Microscopicas, San Jose, Costa Rica. RP Opresko, DM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM opreskodm@ornl.gov; odalisca.breedy@ucr.ac.cr FU NSF [OCE-0939557]; Smithsonian Institution; Oak Ridge National Laboratory, Oak Ridge, Tennessee FX The first author is especially grateful to Jorge Cortes for his invitation to visit San Jose to study the antipatharian corals in the university collection and for his kind hospitality during that visit. The authors also wish to thank Rita M. Vargas (Museo de Zoologia, University of Costa Rica) for her assistance with the coral collection. Special thanks to Lisa Levin (Chief Scientist), Greg Rouse and Harim Cha (Scripps Institution of Oceanography, University of California at San Diego) for collecting the material and for providing associated information on the specimens and photographs of the colonies in situ and after collection. The specimens were collected as part of research activities conducted under NSF grant OCE-0939557 to Lisa Levin and Greg Rouse. Photomicrographs were prepared in the Scanning Electron Microscopy Laboratories at the CIEMIC, Microscopic Structures Research Centre, University of Costa Rica, San Jose. Thanks also to C. Bright, W. Keel, P. Greenhall, and L. Ward of the National Museum of Natural History, Smithsonian Institution for their assistance during the first author's visit to the Museum Support Center and for processing the type material. The authors appreciate the indepth reviews of the manuscript by T. Molodtsova and a second anonymous reviewer.; This work was supported in part by the Smithsonian Institution; and Oak Ridge National Laboratory, Oak Ridge, Tennessee. D. Opresko is a Research Associate at the National Museum of Natural History, Smithsonian Institution, and gratefully acknowledges that affiliation. NR 7 TC 2 Z9 2 U1 0 U2 2 PU BIOL SOC WASHINGTON PI WASHINGTON PA NAT MUSEUM NAT HIST SMITHSONIAN INST, WASHINGTON, DC 20560 USA SN 0006-324X J9 P BIOL SOC WASH JI Proc. Biol. Soc. Wash. PD SEP 23 PY 2010 VL 123 IS 3 BP 234 EP 241 PG 8 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 660UW UT WOS:000282672900006 ER PT J AU Kent, MS Murton, JK Sasaki, DY Satija, S Akgun, B Nanda, H Curtis, JE Majewski, J Morgan, CR Engen, JR AF Kent, Michael S. Murton, Jaclyn K. Sasaki, Darryl Y. Satija, Sushil Akgun, Bulent Nanda, Hirsh Curtis, Joseph E. Majewski, Jaroslaw Morgan, Christopher R. Engen, John R. TI Neutron Reflectometry Study of the Conformation of HIV Nef Bound to Lipid Membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; AIDS-LIKE DISEASE; N-TERMINAL REGION; TRANSGENIC MICE; SH3 DOMAIN; VIRAL INFECTIVITY; CRYSTAL-STRUCTURE; DOWN-REGULATION; PROTEIN-KINASE; IMMUNE CELLS AB Nef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins. Despite its medical relevance, to our knowledge there is no direct information about the conformation of membrane-bound Nef. In this work, we used neutron reflection to reveal what we believe are the first details of the conformation of membrane-bound Nef. The conformation of Nef was probed upon binding to Langmuir monolayers through the interaction of an N-terminal His tag with a synthetic metal-chelating lipid, which models one of the possible limiting cases for myr-Nef. The data indicate that residues are inserted into the lipid headgroups during interaction, and that the core domain lies directly against the lipid headgroups, with a thickness of similar to 40 angstrom. Binding of Nef through the N-terminal His tag apparently facilitates insertion of residues, as no insertion occurred upon binding of Nef through weak electrostatic interactions in the absence of the specific interaction through the His tag. C1 [Kent, Michael S.; Murton, Jaclyn K.; Sasaki, Darryl Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Satija, Sushil; Akgun, Bulent; Nanda, Hirsh; Curtis, Joseph E.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM USA. [Morgan, Christopher R.; Engen, John R.] Northeastern Univ, Boston, MA 02115 USA. RP Kent, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mskent@sandia.gov RI Akgun, Bulent/H-3798-2011; Lujan Center, LANL/G-4896-2012 FU Department of Energy Office of Basic Energy Sciences; Los Alamos National Laboratory under Department of Energy [DE-AC52-06NA25396]; National Institutes of Health [R01-GM070590, R01-GM086507] FX This work also benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the Department of Energy Office of Basic Energy Sciences and Los Alamos National Laboratory under Department of Energy contract DE-AC52-06NA25396. The work was partially supported by National Institutes of Health grants R01-GM070590 and R01-GM086507 (to J.R.E.). NR 48 TC 10 Z9 10 U1 0 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 22 PY 2010 VL 99 IS 6 BP 1940 EP 1948 DI 10.1016/j.bpj.2010.07.016 PG 9 WC Biophysics SC Biophysics GA 654UY UT WOS:000282197500032 PM 20858440 ER PT J AU Chen, Y Jayasekera, T Calzolari, A Kim, KW Nardelli, MB AF Chen, Y. Jayasekera, T. Calzolari, A. Kim, K. W. Nardelli, M. Buongiorno TI Thermoelectric properties of graphene nanoribbons, junctions and superlattices SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties. C1 [Chen, Y.; Jayasekera, T.; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Calzolari, A.] CNR, DEMOCRITOS Natl Simulat Ctr, IOM, Theory Elettra Grp, I-34014 Trieste, Italy. [Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Chen, Y (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RI Jayasekera, Thushari /A-3626-2011; Buongiorno Nardelli, Marco/C-9089-2009; Calzolari, Arrigo/B-8448-2015 OI Calzolari, Arrigo/0000-0002-0244-7717 FU DARPA/HRL CERA; SWAN-NRI; NSF-CCI Center for Molecular Spintronics [CHE-0943975]; US ARO; Office of Basic Energy Sciences, US Department of Energy at Oak Ridge National Laboratory with UT-Battelle, LLC [DE-AC05-00OR22725] FX This work was supported, in part, by the DARPA/HRL CERA, SWAN-NRI, the NSF-CCI Center for Molecular Spintronics (CHE-0943975) and US ARO. MBN wishes to acknowledge partial support from the Office of Basic Energy Sciences, US Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Calculations have been run at NCCS-ORNL and HPC-NCSU. NR 26 TC 45 Z9 45 U1 5 U2 58 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 22 PY 2010 VL 22 IS 37 AR 372202 DI 10.1088/0953-8984/22/37/372202 PG 5 WC Physics, Condensed Matter SC Physics GA 645AG UT WOS:000281422700002 PM 21403189 ER PT J AU Wu, H Bai, F Sun, ZC Haddad, RE Boye, DM Wang, ZW Huang, JY Fan, HY AF Wu, Huimeng Bai, Feng Sun, Zaicheng Haddad, Raid E. Boye, Daniel M. Wang, Zhongwu Huang, Jian Yu Fan, Hongyou TI Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOPOROUS GOLD; LOW-TEMPERATURE; CATALYSTS; NANOCAGES; CELLS AB We have demonstrated pressure-directed assembly for preparation of a new class of chemically and mechanically stable gold nanostructures through high pressure-driven sintering of nanoparticle assemblies at room temperature. We show that under a hydrostatic pressure field, the unit cell dimension of a 3D ordered nanoparticle array can be reversibly manipulated allowing fine-tuning of the interparticle separation distance. In addition, 3D nanostructured gold architecture can be formed through high pressure-induced nanoparticle sintering. This work opens a new pathway for engineering and fabrication of different metal nanostructured architectures. C1 [Wu, Huimeng; Huang, Jian Yu; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Bai, Feng; Sun, Zaicheng; Haddad, Raid E.; Fan, Hongyou] Univ New Mexico, NSF Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Wang, Zhongwu] Cornell Univ, Wilson Lab, Ithaca, NY 14853 USA. [Boye, Daniel M.] Davidson Coll, Dept Phys, Davidson, NC 28035 USA. RP Fan, HY (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM hfan@sandia.gov RI Sun, Zaicheng/B-5397-2012; Huang, Jianyu/C-5183-2008 OI Sun, Zaicheng/0000-0001-5277-5308; FU US DOE BES; Sandia National Laboratories; NSF [DMI-0625897]; NIH/NIGMS via NSF [DMR-0225180]; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the US DOE BES Program, Sandia National Laboratories' LDRD program, and NSF (DMI-0625897). STEM and TEM studies were performed in the Center of Integrated Nanotechnologies at the Sandia National Laboratories. CHESS is supported by the NSF and NIH/NIGMS via NSF Award DMR-0225180. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the US DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 22 TC 41 Z9 41 U1 4 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 22 PY 2010 VL 132 IS 37 BP 12826 EP 12828 DI 10.1021/ja105255d PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 652NL UT WOS:000282013700023 PM 20804208 ER PT J AU Karotsis, G Kennedy, S Teat, SJ Beavers, CM Fowler, DA Morales, JJ Evangelisti, M Dalgarno, SJ Brechin, EK AF Karotsis, Georgios Kennedy, Stuart Teat, Simon J. Beavers, Christine M. Fowler, Drew A. Morales, Juan J. Evangelisti, Marco Dalgarno, Scott J. Brechin, Euan K. TI [Mn(4)(III)Ln(4)(III)] Calix[4]arene Clusters as Enhanced Magnetic Coolers and Molecular Magnets SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID STRUCTURAL COORDINATION CHEMISTRY; TRANSITION-METAL; LOW-TEMPERATURE; GROUND-STATE; FE-III; COMPLEXES; REFRIGERATION; CALIXARENES; CAPSULES; ALCOHOLS AB The use of methylene-bridged calix[4]arenes in 3d/4f chemistry produces a family of clusters of general formula [Mn(4)(III)Le(4)(III)(OH)(4)(C4)(4)(NO3)(2)(DMF)(6)(H2O)(6)](OH)(2) (where C4 = calix[4]arene; Ln = Gd (1), Tb (2), Dy (3)). The molecular structure describes a square of Ln(III) ions housed within a square of Mn-III ions. Magnetic studies reveal that 1 has a large number of molecular spin states that are populated even at the lowest investigated temperatures, while the ferromagnetic limit S = 22 is being approached only at the highest applied fields. This, combined with the high magnetic isotropy, makes the complex an excellent magnetic refrigerant for low-temperature applications. Replacement of the isotropic Gd-III ions with the anisotropic Tb-III and Dy-III ions "switches" the magnetic properties of the cluster so that 2 and 3 behave as low-temperature molecular magnets, displaying slow relaxation of the magnetization. C1 [Evangelisti, Marco] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Morales, Juan J.] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. [Fowler, Drew A.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Teat, Simon J.; Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kennedy, Stuart; Dalgarno, Scott J.] Heriot Watt Univ, Sch Engn & Phys Sci Chem, Edinburgh EH14 4AS, Midlothian, Scotland. [Karotsis, Georgios; Brechin, Euan K.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. RP Evangelisti, M (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM evange@unizar.es; s.j.dalgarno@hw.ac.uk; ebrechin@staffmail.ed.ac.uk RI Beavers, Christine/C-3539-2009; Kennedy, Stuart/D-5248-2014; Brechin, Euan/M-5130-2014; Evangelisti, Marco/B-5878-2011; Dalgarno, Scott/A-7358-2010 OI Beavers, Christine/0000-0001-8653-5513; Kennedy, Stuart/0000-0002-1769-8797; Brechin, Euan/0000-0002-9365-370X; Evangelisti, Marco/0000-0002-8028-9064; Dalgarno, Scott/0000-0001-7831-012X FU EPSRC; Leverhulme Trust; Heriot-Watt University; Spanish Ministry for Science and Innovation [MAT2009-13977-C03, CSD2007-0010]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX E.K.B. and S.J.D. thank the EPSRC and Leverhulme Trust for funding and Heriot-Watt University for a studentship (S.K.). M.E. thanks the Spanish Ministry for Science and Innovation for grants MAT2009-13977-C03 and CSD2007-0010. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 50 TC 178 Z9 180 U1 1 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 22 PY 2010 VL 132 IS 37 BP 12983 EP 12990 DI 10.1021/ja104848m PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 652NL UT WOS:000282013700049 PM 20677762 ER PT J AU Zajdel, P Hsieh, PY Rodriguez, EE Butch, NP Magill, JD Paglione, J Zavalij, P Suchomel, MR Green, MA AF Zajdel, Pawel Hsieh, Ping-Yen Rodriguez, Efrain E. Butch, Nicholas P. Magill, Jeff D. Paglione, Johnpierre Zavalij, Peter Suchomel, Matthew R. Green, Mark A. TI Phase Separation and Suppression of the Structural and Magnetic Transitions in Superconducting Doped Iron Tellurides, Fe1+xTe1-ySy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LAYERED QUATERNARY COMPOUND; CRYSTAL-STRUCTURE; DIAGRAM; LIFEAS AB Single crystal and powder samples of the series of iron chalcogenide superconductors with nominal composition, Fe1.15Te1-ySy, are found to form for 0 <= y <= 0.15. They crystallize in the tetragonal anti-PbO structure, which is composed of layers of edge-shared Fe(Te, S)(4) tetrahedra. For y = 0, Fe1+xTe (x approximate to 0.12(1)) is nonsuperconducting and undergoes a tetragonal (P4/nmm) to monoclinic (P2(1)/m) structural transition at similar to 65 K, associated with the onset of commensurate antiferromagnetic order at q = (0.5 0 0.5). We show that on sulfur substitution, Fe1+xTe1-ySy becomes orthorhombic (Pmmn) at low temperature for 0 <= y <= 0.15, where the greatly suppressed magnetic scattering is now incommensurate at q = (0.5-delta 0 0.5) and possesses short ranged magnetic correlations that are well fitted with a two-dimensional Warren peak shape. At much higher concentrations of S (y >= 0.075), there is suppression of both the structural and magnetic transitions and a superconducting transition at 9 K is observed. Between these two composition regimes, there exists a region of phase separation (0.025 <= y <= 0.05), where the low temperature neutron diffraction data is best refined with a model containing both the tetragonal and orthorhombic phases. The increase in the amount of sulfur is found to be associated with a reduction in interstitial iron, x. Microprobe analysis of a single crystal of composition Fe1.123(5)Te0.948(4)S0.052(4) confirms the presence of compositional variation within the crystals, rationalizing the observed phase separation. C1 [Zajdel, Pawel; Hsieh, Ping-Yen; Rodriguez, Efrain E.; Green, Mark A.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20878 USA. [Hsieh, Ping-Yen; Green, Mark A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Zavalij, Peter] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. [Butch, Nicholas P.; Magill, Jeff D.; Paglione, Johnpierre] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Green, MA (reprint author), NIST, NIST Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20878 USA. EM mark.green@nist.gov RI Zavalij, Peter/H-3817-2012; Zajdel, Pawel/B-7574-2013; Rodriguez, Efrain/N-1928-2013; Suchomel, Matthew/C-5491-2015; OI Zavalij, Peter/0000-0001-5762-3469; Zajdel, Pawel/0000-0003-1220-5866; Rodriguez, Efrain/0000-0001-6044-1543; SUCHOMEL, Matthew/0000-0002-9500-5079 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 47 TC 36 Z9 36 U1 2 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 22 PY 2010 VL 132 IS 37 BP 13000 EP 13007 DI 10.1021/ja105279p PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 652NL UT WOS:000282013700051 PM 20806923 ER PT J AU Kliewer, CJ Aliaga, C Bieri, M Huang, WY Tsung, CK Wood, JB Komvopoulos, K Somorjai, GA AF Kliewer, Christopher J. Aliaga, Cesar Bieri, Marco Huang, Wenyu Tsung, Chia-Kuang Wood, Jennifer B. Komvopoulos, Kyriakos Somorjai, Gabor A. TI Furan Hydrogenation over Pt(111) and Pt(100) Single-Crystal Surfaces and Pt Nanoparticles from 1 to 7 nm: A Kinetic and Sum Frequency Generation Vibrational Spectroscopy Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HIGH-PRESSURE; PYRROLE HYDROGENATION; ULTRAHIGH-VACUUM; STRUCTURE SENSITIVITY; MESOPOROUS SILICA; IN-SITU; BENZENE; ADSORPTION; THIOPHENE; DEHYDROGENATION AB Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to systematically study the adsorption and hydrogenation of furan over Pt(111) and Pt(100) single-crystal surfaces and size-controlled 1.0-nm, 3.5-nm and 7.0-nm Pt nanoparticles at Torr pressures (10 Torr of furan, 100 Torr of H(2)) to form dihydrofuran, tetrahydrofuran, and the ring-cracking products butanol and propylene. As determined by SFG, the furan ring lies parallel to all Pt surfaces studied under hydrogenation conditions. Upright THF and the oxametallacycle intermediate are observed over the nanoparticle catalysts under reaction conditions. Butoxy increases in surface concentration over Pt(111) with increasing temperature in agreement with selectivity trends. C1 [Kliewer, Christopher J.; Aliaga, Cesar; Bieri, Marco; Huang, Wenyu; Tsung, Chia-Kuang; Wood, Jennifer B.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Komvopoulos, Kyriakos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kliewer, Christopher J.; Aliaga, Cesar; Bieri, Marco; Huang, Wenyu; Tsung, Chia-Kuang; Wood, Jennifer B.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Kliewer, Christopher/E-4070-2010; Huang, Wenyu/L-3784-2014 OI Kliewer, Christopher/0000-0002-2661-1753; Huang, Wenyu/0000-0003-2327-7259 FU Office of Energy Research, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation (SNF) FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. M.B. thanks the Swiss National Science Foundation (SNF) for financial support. NR 39 TC 56 Z9 56 U1 8 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 22 PY 2010 VL 132 IS 37 BP 13088 EP 13095 DI 10.1021/ja105800z PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 652NL UT WOS:000282013700060 PM 20795670 ER PT J AU Zhang, HL Fontes, CJ Ballance, CP AF Zhang, Hong Lin Fontes, Christopher J. Ballance, Connor P. TI Comment on "Dirac R-matrix method for the calculation of x-ray line polarization" SO PHYSICAL REVIEW A LA English DT Letter ID HIGHLY-CHARGED IONS; EXCITATION; SUBLEVELS; IRON AB In a recent article by Chen et al. [Phys. Rev. A 79, 062715 (2009)], reference is made to magnetic sublevel collision strengths in an earlier relativistic distorted-wave (RDW) article by Zhang et al. [Phys. Rev. A 41, 198 (1990)]. In the former reference, Chen et al. carried out Dirac R-matrix calculations that suggest the polarization of the 3C and 3D lines of Fe XVII, which can be computed from the magnetic sublevel collision strengths, differ from RDW results by as much as 20%. We have recently carried out a variety of RDW and Dirac R-matrix calculations of the 3C and 3D polarizations that demonstrate this quantity to be relatively insensitive to the size and details of the atomic model. Moreover, the polarizations obtained from these recent RDW and Dirac R-matrix calculations agree well, and they also agree well with the polarizations that can be obtained from the fundamental collision data published by Zhang et al. This good agreement between RDW and Dirac R-matrix polarizations contradicts the behavior reported by Chen et al. C1 [Zhang, Hong Lin; Fontes, Christopher J.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. [Ballance, Connor P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Zhang, HL (reprint author), Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM zhang@lanl.gov; cjf@lanl.gov; ballance@physics.auburn.edu NR 18 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 22 PY 2010 VL 82 IS 3 AR 036701 DI 10.1103/PhysRevA.82.036701 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 653ML UT WOS:000282095500013 ER PT J AU Aberg, D Erhart, P Crowhurst, J Zaug, JM Goncharov, AF Sadigh, B AF Aberg, Daniel Erhart, Paul Crowhurst, Jonathan Zaug, Joseph M. Goncharov, Alexander F. Sadigh, Babak TI Pressure-induced phase transition in the electronic structure of palladium nitride SO PHYSICAL REVIEW B LA English DT Article ID LOCALIZED WANNIER FUNCTIONS; LASER-ABLATION; PLATINUM AB We present a combined theoretical and experimental study of the electronic structure and equation of state (EOS) of crystalline PdN(2). The compound forms above 58 GPa in the pyrite structure and is metastable down to 11 GPa. We show that the EOS cannot be accurately described within either the local density or generalized gradient approximations. The Heyd-Scuseria-Ernzerhof exchange-correlation functional (HSE06), however, provides very good agreement with experimental data. We explain the strong pressure dependence of the Raman intensities in terms of a similar dependence of the calculated band gap, which closes just below 11 GPa. At this pressure, the HSE06 functional predicts a first-order isostructural transition accompanied by a pronounced elastic instability of the longitudinal-acoustic branches that provides the mechanism for the experimentally observed decomposition. Using an extensive Wannier function analysis, we show that the structural transformation is driven by a phase transition of the electronic structure, which is manifested by a discontinuous change in the hybridization between Pd d and N p electrons as well as a conversion from single to triple bonded nitrogen dimers. We argue for the possible existence of a critical point for the isostructural transition, at which massive fluctuations in both the electronic as well as the structural degrees of freedom are expected. C1 [Aberg, Daniel; Erhart, Paul; Crowhurst, Jonathan; Zaug, Joseph M.; Sadigh, Babak] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Goncharov, Alexander F.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Aberg, D (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM aberg2@llnl.gov RI Erhart, Paul/G-6260-2011; OI Erhart, Paul/0000-0002-2516-6061; Aberg, Daniel/0000-0003-4364-9419 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001057] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. DE-AC52-07NA27344, as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001057. NR 33 TC 18 Z9 18 U1 5 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 22 PY 2010 VL 82 IS 10 AR 104116 DI 10.1103/PhysRevB.82.104116 PG 9 WC Physics, Condensed Matter SC Physics GA 653UL UT WOS:000282122400002 ER PT J AU Bose, PP Mittal, R Chaplot, SL Loong, CK Boatner, LA AF Bose, Preyoshi P. Mittal, R. Chaplot, S. L. Loong, C. -K. Boatner, L. A. TI Inelastic neutron scattering, lattice dynamics, and high-pressure phase stability of zircon-structured lanthanide orthophosphates SO PHYSICAL REVIEW B LA English DT Article ID ORTHO-PHOSPHATES; MONAZITE; LUPO4; COMPRESSIBILITY; DEPENDENCE; XENOTIME; CRYSTALS; YBPO4 AB Inelastic neutron-scattering experiments and lattice-dynamical calculations are reported on a series of rare-earth orthophosphates RPO4 (R=Tm, Er, Ho, and Tb). The experimental phonon spectra for the compounds are in good agreement with our model calculations. The lattice-dynamical model is found useful for the calculation of various thermodynamic properties such as the lattice specific heat, thermal expansion, and equation of state of these compounds. The RPO4 compounds are known to transform to the scheelite (body-centered tetragonal, I4(1)/a) or monoclinic phase (P2(1)/n) at high pressures. Our calculations show that while the scheelite phase stabilizes at high pressure due to its lower volume, the monoclinic phase may occur as an intermediate phase depending on the ionic size of the R atom. The latter phase is stabilized at higher temperature (at high pressure) due to its high vibrational entropy. A pressure-temperature phase diagram is proposed. C1 [Bose, Preyoshi P.; Mittal, R.; Chaplot, S. L.] Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India. [Loong, C. -K.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Peoples R China. [Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bose, PP (reprint author), Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India. RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU U.S. DOE-BES [W-31-109-ENG-38]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy FX Works performed at Argonne and Oak Ridge National Laboratory is supported by the U.S. DOE-BES under Contract No. W-31-109-ENG-38 and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, respectively. NR 36 TC 5 Z9 5 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 22 PY 2010 VL 82 IS 9 AR 094309 DI 10.1103/PhysRevB.82.094309 PG 8 WC Physics, Condensed Matter SC Physics GA 653MX UT WOS:000282096700004 ER PT J AU El-Khatib, S Bose, S He, C Kuplic, J Laver, M Borchers, JA Huang, Q Lynn, JW Mitchell, JF Leighton, C AF El-Khatib, S. Bose, Shameek He, C. Kuplic, J. Laver, M. Borchers, J. A. Huang, Q. Lynn, J. W. Mitchell, J. F. Leighton, C. TI Spontaneous formation of an exchange-spring composite via magnetic phase separation in Pr1-xCaxCoO3 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-STATE TRANSITION; MANGANITES; POLARONS; LACOO3 AB We present a neutron-diffraction, small-angle scattering, and magnetometry study of the narrow bandwidth perovskite cobaltite Pr1-xCaxCoO3, demonstrating an unusual form of magnetoelectronic phase separation where long-range ordered ferromagnetism coexists spatially with short-range ferromagnetism. The two phases have very different coercivities and, remarkably, are strongly exchange coupled. The electronic phase separation thus leads to spontaneous formation of a hard-soft nanocomposite, exhibiting prototypical exchange-spring behavior in the absence of chemical interfaces. C1 [El-Khatib, S.; Bose, Shameek; He, C.; Kuplic, J.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [El-Khatib, S.; Laver, M.; Borchers, J. A.; Huang, Q.; Lynn, J. W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [El-Khatib, S.; Laver, M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu FU DOE [DE-FG02-06ER46275, DE-AC02-06CH11357]; NSF [DMR-0804432] FX Work at UMN supported by DOE (Grant No. DE-FG02-06ER46275, neutron scattering) and NSF (Grant No. DMR-0804432). Work at ANL supported by DOE (Grant No. DE-AC02-06CH11357) NR 36 TC 15 Z9 15 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 22 PY 2010 VL 82 IS 10 AR 100411 DI 10.1103/PhysRevB.82.100411 PG 4 WC Physics, Condensed Matter SC Physics GA 653UL UT WOS:000282122400001 ER PT J AU Broda, R Wrzesinski, J Gadea, A Marginean, N Fornal, B Corradi, L Stefanini, AM Krolas, W Pawlat, T Szpak, B Lunardi, S Valiente-Dobon, JJ Mengoni, D Farnea, E Carpenter, MP De Angelis, G Della Vedova, F Fioretto, E Guiot, B Janssens, RVF Mantica, PF Mason, P Montagnoli, G Napoli, DR Orlandi, R Pokrovskiy, I Pollarolo, G Sahin, E Scarlassara, F Silvestri, R Szilner, S Ur, CA Trotta, M Zhu, S AF Broda, R. Wrzesinski, J. Gadea, A. Marginean, N. Fornal, B. Corradi, L. Stefanini, A. M. Krolas, W. Pawlat, T. Szpak, B. Lunardi, S. Valiente-Dobon, J. J. Mengoni, D. Farnea, E. Carpenter, M. P. De Angelis, G. Della Vedova, F. Fioretto, E. Guiot, B. Janssens, R. V. F. Mantica, P. F. Mason, P. Montagnoli, G. Napoli, D. R. Orlandi, R. Pokrovskiy, I. Pollarolo, G. Sahin, E. Scarlassara, F. Silvestri, R. Szilner, S. Ur, C. A. Trotta, M. Zhu, S. TI Proton-hole states in the N=30 neutron-rich isotope K-49 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; HEAVY-ION REACTIONS; MAGNETIC SPECTROMETER; SHELL-MODEL; BETA-DECAY; DEFORMATION; PRISMA; CA-52 AB Excited states in the N = 30 neutron-rich isotope K-49 have been studied using multinucleon transfer reactions with thin targets and the PRISMA-CLARA spectrometer combined with thick-target gamma-coincidence data from Gammasphere. The d(3/2) proton-hole state is located 92 keV above the s(1/2) ground state, and the proton-particle f(7/2) state is suggested at 2104 keV. Three other levels are established as involving the coupling to 2(+) of two neutrons above the N = 28 shell. The measured or estimated lifetimes served to reinforce the interpretation of the observed level structure, which is found to be in satisfactory agreement with shell-model calculations. C1 [Broda, R.; Wrzesinski, J.; Fornal, B.; Krolas, W.; Pawlat, T.; Szpak, B.] Niewodniczanski Inst Nucl Phys PAN, Krakow, Poland. [Gadea, A.; Marginean, N.; Corradi, L.; Stefanini, A. M.; Valiente-Dobon, J. J.; De Angelis, G.; Della Vedova, F.; Fioretto, E.; Guiot, B.; Napoli, D. R.; Orlandi, R.; Pokrovskiy, I.; Sahin, E.; Silvestri, R.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Lunardi, S.; Mengoni, D.; Farnea, E.; Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Univ Padua, Dipartimento Fis, Padua, Italy. [Lunardi, S.; Mengoni, D.; Farnea, E.; Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Trotta, M.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Marginean, N.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Szilner, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Gadea, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Mengoni, D.] Univ W Scotland, Sch Sci & Engn, Paisley, Renfrew, Scotland. [Pollarolo, G.] Univ Turin, Dipartimento Fis Teor, Turin, Italy. RP Broda, R (reprint author), Niewodniczanski Inst Nucl Phys PAN, Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Gadea, Andres/L-8529-2014; Carpenter, Michael/E-4287-2015; Marginean, Nicolae Marius/C-4732-2011; Napoli, Daniel R./D-9863-2012 OI Gadea, Andres/0000-0002-4233-1970; Carpenter, Michael/0000-0002-3237-5734; Napoli, Daniel R./0000-0002-8154-6958 FU European Commission [RII3-CT2004-506065]; Polish Scientific Committee [1 PO3B 059 29]; US Dept. of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; [PN2-ID-359/CNCSIS] FX This work was partially supported by the European Commission within the Sixth Framework Programme through I3-EURONS (Contract No. RII3-CT2004-506065), the Polish Scientific Committee Grant No. 1 PO3B 059 29, the Romanian Grant No. PN2-ID-359/CNCSIS, and the US Dept. of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. NR 37 TC 9 Z9 9 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 22 PY 2010 VL 82 IS 3 AR 034319 DI 10.1103/PhysRevC.82.034319 PG 7 WC Physics, Nuclear SC Physics GA 653WV UT WOS:000282129500001 ER PT J AU Maingi, R Bell, RE Canik, JM Gerhardt, SP Kaye, SM LeBlanc, BP Osborne, TH Bell, MG Fredrickson, ED Lee, KC Menard, JE Park, JK Sabbagh, SA AF Maingi, R. Bell, R. E. Canik, J. M. Gerhardt, S. P. Kaye, S. M. LeBlanc, B. P. Osborne, T. H. Bell, M. G. Fredrickson, E. D. Lee, K. C. Menard, J. E. Park, J. -K. Sabbagh, S. A. CA NSTX Team TI Triggered Confinement Enhancement and Pedestal Expansion in High-Confinement-Mode Discharges in the National Spherical Torus Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D TOKAMAK; PLASMAS AB We report observation of a new high performance regime in discharges in the National Spherical Torus Experiment, where the H mode edge "pedestal" temperature doubles and the energy confinement increases by 50%. The spontaneous transition is triggered by a large edge-localized mode, either natural or externally triggered by 3D fields. The transport barrier grows inward from the edge, with a doubling of both the pedestal pressure width and the spatial extent of steep radial electric field shear. The dynamics suggest that 3D fields could be applied to reduce edge transport in fusion devices. C1 [Maingi, R.; Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bell, R. E.; Gerhardt, S. P.; Kaye, S. M.; LeBlanc, B. P.; Bell, M. G.; Fredrickson, E. D.; Menard, J. E.; Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Osborne, T. H.] Gen Atom Co, San Diego, CA 92121 USA. [Lee, K. C.] Univ Calif Davis, Davis, CA 95616 USA. [Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. RP Maingi, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Sabbagh, Steven/C-7142-2011; OI Canik, John/0000-0001-6934-6681; Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-99ER54518, DE-FG02-99ER54524] FX This research was supported by the U.S. Department of Energy under Contracts DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FC02-04ER54698, and grants DE-FG02-99ER54518 and DE-FG02-99ER54524. We gratefully acknowledge the contribution of the NSTX technical staff and neutral beam operations staff, as well as useful discussions with J. H. Harris. NR 23 TC 24 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 22 PY 2010 VL 105 IS 13 AR 135004 DI 10.1103/PhysRevLett.105.135004 PG 4 WC Physics, Multidisciplinary SC Physics GA 653AP UT WOS:000282054600003 PM 21230781 ER PT J AU Purdy, TP Brooks, DWC Botter, T Brahms, N Ma, ZY Stamper-Kurn, DM AF Purdy, T. P. Brooks, D. W. C. Botter, T. Brahms, N. Ma, Z. -Y. Stamper-Kurn, D. M. TI Tunable Cavity Optomechanics with Ultracold Atoms SO PHYSICAL REVIEW LETTERS LA English DT Article DE We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized; within a Fabry-Perot cavity. Effective subwavelength positioning of the atomic ensemble allows for tuning; the linear and quadratic optomechanical coupling parameters; varying the sensitivity to the displacement; and strain of a compressible gaseous medium. We observe effects of such tuning on cavity optical; nonlinearity and optomechanical frequency shifts; providing their first characterization in the quadratic-coupling; regime. ID QUANTUM-NOISE REDUCTION; RADIATION-PRESSURE; MICROMIRROR; BACKACTION; MIRROR C1 [Purdy, T. P.; Brooks, D. W. C.; Botter, T.; Brahms, N.; Ma, Z. -Y.; Stamper-Kurn, D. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stamper-Kurn, D. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Purdy, TP (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dmsk@berkeley.edu RI Stamper-Kurn, Dan/B-5442-2015 OI Stamper-Kurn, Dan/0000-0002-4845-5835 FU NSF; AFOSR; Le Fonds Quebecois de la Recherche sur la Nature et les Technologies; Miller Institute for Basic Research in Science FX This work was supported by the NSF and the AFOSR. T.B. acknowledges support from Le Fonds Quebecois de la Recherche sur la Nature et les Technologies, and D.M.S.-K. from the Miller Institute for Basic Research in Science. NR 21 TC 101 Z9 101 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 22 PY 2010 VL 105 IS 13 AR 133602 DI 10.1103/PhysRevLett.105.133602 PG 4 WC Physics, Multidisciplinary SC Physics GA 653AP UT WOS:000282054600001 PM 21230775 ER PT J AU Witzel, WM Shabaev, A Hellberg, CS Jacobs, VL Efros, AL AF Witzel, Wayne M. Shabaev, Andrew Hellberg, C. Stephen Jacobs, Verne L. Efros, Alexander L. TI Quantum Simulation of Multiple-Exciton Generation in a Nanocrystal by a Single Photon SO PHYSICAL REVIEW LETTERS LA English DT Article ID EFFICIENCY CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; MULTIEXCITON GENERATION; COLLOIDAL PBSE; DOTS AB We have shown theoretically that efficient multiple-exciton generation (MEG) by a single photon can be observed in small nanocrystals. Our quantum simulations that include hundreds of thousands of exciton and multiexciton states demonstrate that the complex time-dependent dynamics of these states in a closed electronic system yields a saturated MEG effect on a picosecond time scale. Including phonon relaxation confirms that efficient MEG requires the exciton-biexciton coupling time to be faster than exciton relaxation time. C1 [Witzel, Wayne M.; Hellberg, C. Stephen; Jacobs, Verne L.; Efros, Alexander L.] USN, Res Lab, Washington, DC 20375 USA. [Witzel, Wayne M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shabaev, Andrew] George Mason Univ, Fairfax, VA 22030 USA. RP Witzel, WM (reprint author), USN, Res Lab, Washington, DC 20375 USA. FU ONR; NIST [70NANB7H6138 Am 001]; Center for Advanced Solar Photophysics, a DOE Energy Frontier Research Center; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Andrew Taube for important scientific advice. We acknowledge financial support from ONR. A.S. acknowledges support from NIST 70NANB7H6138 Am 001, and Center for Advanced Solar Photophysics, a DOE Energy Frontier Research Center. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No DE-AC04-94AL85000. NR 29 TC 46 Z9 46 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 22 PY 2010 VL 105 IS 13 AR 137401 DI 10.1103/PhysRevLett.105.137401 PG 4 WC Physics, Multidisciplinary SC Physics GA 653AP UT WOS:000282054600006 PM 21230809 ER PT J AU Bai, S Aryshev, A Bambade, P Mc Cormick, D Bolzon, B Gao, J Tauchi, T Zhou, F AF Bai, Sha Aryshev, Alexander Bambade, Philip Mc Cormick, Doug Bolzon, Benoit Gao, Jie Tauchi, Toshiaki Zhou, Feng TI First beam waist measurements in the final focus beam line at the KEK Accelerator Test Facility SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COLLIDERS AB The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics based on a novel scheme of local chromaticity correction. Construction of all components and installation were completed at the end of 2008. An initial commissioning phase followed in 2009, using larger than nominal beta functions at the interaction point, corresponding to reduced demagnification factors in comparison to the design, to limit effects from higher-order optical aberrations and hence simplify beam tuning procedures while key instrumentation was being tested and calibrated. In this paper, first measurements of dispersion and Twiss parameters are presented based on scanning the beam during this period with a set of tungsten wires located just behind the interaction point, using two complementary analysis methods. C1 [Bai, Sha; Gao, Jie] IHEP, Beijing, Peoples R China. [Aryshev, Alexander; Bambade, Philip; Tauchi, Toshiaki] Natl Lab High Energy Phys, KEK, Tsukuba, Ibaraki 305, Japan. [Bambade, Philip] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Mc Cormick, Doug; Zhou, Feng] SLAC, Menlo Pk, CA 94025 USA. [Bolzon, Benoit] LAPP, Annecy, France. RP Bai, S (reprint author), IHEP, Beijing, Peoples R China. RI Aryshev, Alexander/J-4054-2016 OI Aryshev, Alexander/0000-0002-0890-4640 FU Agence Nationale de la Recherche of the French Ministry of Research [ATF2-IN2P3-KEK, ANR-06-BLAN-0027]; National Natural Science Foundation of China (NSFC) [10775154, 10525525] FX This work is supported by the Agence Nationale de la Recherche of the French Ministry of Research (Programme Blanc, Projects No. ATF2-IN2P3-KEK and No. ANR-06-BLAN-0027) and by the National Natural Science Foundation of China (NSFC, Contracts No. 10775154 and No. 10525525). One of us (S. B.) would like to thank T. Tauchi, J. Urakawa, and K. Yokoya for being hosted at KEK during extended periods in 2009 to work on the ATF2 commissioning. NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 22 PY 2010 VL 13 IS 9 AR 092804 DI 10.1103/PhysRevSTAB.13.092804 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 653AT UT WOS:000282055100002 ER PT J AU Kandala, S Yang, L Campana, CF Nesterov, V Wang, XP Richmond, MG AF Kandala, Srikanth Yang, Li Campana, Charles F. Nesterov, Vladimir Wang, Xiaoping Richmond, Michael G. TI Isomerization of the diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) at a triosmium cluster and P-C bond cleavage in the unsaturated cluster 1,1-Os-3(CO)(9)(bmf): Synthesis and X-ray diffraction structures of the isomeric Os-3(CO)(10)(bmf) clusters and HOs3(CO)(8)(mu-C6H4) [mu-PhPC=C(Ph2P)CH(OMe)OC(O)] SO POLYHEDRON LA English DT Article DE Osmium clusters; Ligand substitution; Diphosphine ligand; P-C bond-activation; Crystallography ID CRYSTAL-STRUCTURES; CHELATING ISOMERS; 2,3-BIS(DIPHENYLPHOSPHINO)MALEIC ANHYDRIDE; OSMIUM; COORDINATION; DERIVATIVES; REACTIVITY; COMPLEXES; FLUXIONALITY; ACTIVATION AB The labile cluster 1,2-Os-3(CO)(10)(MeCN)(2) (1) reacts with the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) to furnish 1,2-Os-3(CO)(10)(bmf) (2a) in high yield. Heating cluster 2a over the temperature range 358-383 K under CO leads to isomerization of the bmf ligand and formation of the diphosphine-chelated cluster 1,1-Os-3(CO)(10)(bmf) (2b) and an equilibrium mixture consisting of 2a and 2b in a 15:85 ratio. Extended thermolysis of an equilibrium mixture of Os-3(CO)(10)(bmf) is accompanied by CO loss and ortho-metalation of an aryl ring to afford an inseparable mixture of three diastereomeric hydride clusters HOs3(CO)(9)(C29H23O3P2) (3a-c). Thermolysis of HOs3 (CO)(9)(C29H23O3P2) (3a-c) in refluxing toluene leads to P-C bond cleavage and formation of the benzyne-substituted clusters HOs3(CO)(8)(mu-C6H4)(mu-C23H19O3P2) (4a,b) as a 4:1 mixture of diastereomers. The unequivocal identity of the major benzyne-substituted cluster has been determined by X-ray diffraction analysis, where the activation of one of the phenyl groups situated a to the furanone carbonyl group in the bmf ligand has been established. The isomerization and activation of the bmf ligand are contrasted with other Os-3(CO)(10)(diphosphine) derivatives prepared by our groups. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kandala, Srikanth; Yang, Li; Nesterov, Vladimir; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Campana, Charles F.] Bruker AXS Inc, Madison, WI 53711 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Richmond, MG (reprint author), Univ N Texas, Dept Chem, Denton, TX 76203 USA. EM cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU Robert A. Welch Foundation [B-1093-MGR]; US Department of Energy, Office of Science [DE-AC05-00OR22725] FX Financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) is greatly appreciated. X. Wang acknowledges the support by the US Department of Energy, Office of Science, under Contract No. DE-AC05-00OR22725 managed by UT Battelle, LLC. Prof. Arnold Rheingold is thanked for his hospitality and the use of his X-ray diffractometer that was used to collect the X-ray data on the isomeric clusters 2a,b during the 2004 ACS-PRF summer school on Crystallography for Organic Chemists. NR 49 TC 5 Z9 5 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD SEP 22 PY 2010 VL 29 IS 14 BP 2814 EP 2821 DI 10.1016/j.poly.2010.07.003 PG 8 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 654WT UT WOS:000282202500008 ER PT J AU Heath, L Frenkel, LM Foley, BT Mullins, JI AF Heath, Laura Frenkel, Lisa M. Foley, Brian T. Mullins, James I. TI Comment on "The Origins of Sexually Transmitted HIV Among Men Who Have Sex with Men" SO SCIENCE TRANSLATIONAL MEDICINE LA English DT Letter ID INFECTION; DATABASES; SUPERINFECTION AB Whether HIV from seminal cells or free HIV in semen is the origin of transmitted virus has important implications for the design of transmission prevention strategies. We found that a recent claim that HIV originates from seminal plasma and not from seminal cells was erroneous, because it was based on biological specimens that had been mislabeled, mixed-up, or contaminated. The origin of transmitted virus from semen therefore remains an open question. C1 [Heath, Laura; Mullins, James I.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Frenkel, Lisa M.; Mullins, James I.] Univ Washington, Dept Lab Med, Seattle, WA 98195 USA. [Frenkel, Lisa M.] Univ Washington, Dept Pediat, Seattle, WA 98195 USA. [Frenkel, Lisa M.] Seattle Childrens Hosp, Seattle, WA 98101 USA. [Foley, Brian T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mullins, James I.] Univ Washington, Dept Med, Seattle, WA 98195 USA. RP Mullins, JI (reprint author), Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. EM jmullins@uw.edu OI Frenkel, Lisa M/0000-0001-9566-8959; Foley, Brian/0000-0002-1086-0296 FU NIAID NIH HHS [AI27727, AI47734, P30 AI027757, R01 AI047734, R37 AI047734] NR 10 TC 4 Z9 4 U1 0 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1946-6234 J9 SCI TRANSL MED JI Sci. Transl. Med. PD SEP 22 PY 2010 VL 2 IS 50 AR 50le1 DI 10.1126/scitranslmed.3001416 PG 3 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA 735SQ UT WOS:000288437900003 PM 20861507 ER PT J AU Hammond, GE Lichtner, PC AF Hammond, Glenn E. Lichtner, Peter C. TI Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing SO WATER RESOURCES RESEARCH LA English DT Article ID VADOSE ZONE; CONTAMINANT URANIUM; REACTIVE TRANSPORT; SEDIMENTS; SITE; WASHINGTON; SPECIATION; URANYL; DEPTH AB High-resolution, three-dimensional, reactive flow and transport simulations are carried out to describe the migration of hexavalent uranium [U(VI)] at the Hanford 300 Area bordering the Columbia River and to better understand the persistence of the uranium plume at the site. The computer code PFLOTRAN developed under a DOE SciDAC-2 project is employed in the simulations that are executed on ORNL's Cray XT4/XT5 supercomputer Jaguar. The conceptual model used in the simulations is based on the recognition of three distinct phases or time periods in the evolution of the U(VI) plume. These correspond to (1) initial waste emplacement; (2) initial presence of both labile and nonlabile U(VI) with an evolved U(VI) plume extending from the source region to the river boundary, representing present-day conditions; and (3) the complete removal of all nonlabile U(VI) and labile U(VI) in the vadose zone. This work focuses primarily on modeling Phase II using equilibrium and multirate sorption models for labile U(VI) and a continuous source release of nonlabile U(VI) in the South Process Pond through dissolution of metatorbernite as a surrogate mineral. For this case, rapid fluctuations in the Columbia River stage combined with the slow release of nonlabile U(VI) from contaminated sediment are found to play a predominant role in determining the migration behavior of U(VI) with sorption only a second-order effect. Nevertheless, a multirate model was essential in explaining breakthrough curves obtained from laboratory column experiments using the same sediment and is demonstrated to be important in Phase III. The calculations demonstrate that U(VI) is discharged to the river at a highly fluctuating rate in a ratchet-like behavior as the river stage rises and falls. The high-frequency fluctuations must be resolved in the model to calculate the flux of U(VI) at the river boundary. By time averaging the instantaneous flux to average out noise superimposed on the river stage fluctuations, the cumulative U(VI) flux to the river is found to increase approximately linearly with time. The flow rate and U(VI) flux are highly sensitive to the conductance boundary condition that describes the river-sediment interface. By adjusting the conductance coefficient to give a better match to the measured piezometric head, good agreement was obtained with field studies for both the mean flux of water of 10(9) kg/yr and U(VI) of 25 kg/yr at the river-aquifer boundary for a computational domain encompassing the South Process Pond. Finally, it is demonstrated that, through global mass conservation, the U(VI) leach rate from the source region is related to the U(VI) flux at the river boundary. C1 [Hammond, Glenn E.] Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Grp, Richland, WA 99352 USA. [Lichtner, Peter C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Hammond, GE (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Grp, MSIN K9-36, Richland, WA 99352 USA. EM glenn.hammond@pnl.gov; lichtner@lanl.gov FU U.S. Department of Energy; DOE Offices of Biological and Environmental Research (BER); Advanced Scientific Computing Research (ASCR); Office of Biological and Environmental Research (OBER), U.S. Department of Energy FX We thank three anonymous reviewers who greatly improved the manuscript. This research is supported under the U.S. Department of Energy SciDAC-2 (Scientific Discovery through Advanced Computing) program with funding provided by DOE Offices of Biological and Environmental Research (BER) and Advanced Scientific Computing Research (ASCR). In addition, this research was supported by the Environmental Remediation Sciences Program (ERSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy, as part of the Hanford 300 Area Integrated Field Research Challenge Project. Supercomputing resources were provided by the DOE Office of Science Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program with allocations on NCCS Jaguar at Oak Ridge National Laboratory. NR 36 TC 42 Z9 42 U1 4 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 22 PY 2010 VL 46 AR W09527 DI 10.1029/2009WR008819 PG 31 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 759MN UT WOS:000290249800002 ER PT J AU Holian, BL Mareschal, M Ravelo, R AF Holian, Brad Lee Mareschal, Michel Ravelo, Ramon TI Test of a new heat-flow equation for dense-fluid shock waves SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE equations of state; heat conduction; Lennard-Jones potential; Navier-Stokes equations; shock waves ID MOLECULAR-DYNAMICS; GAS AB Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes. (c) 2010 American Institute of Physics. [doi:10.1063/1.3486088] C1 [Holian, Brad Lee] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mareschal, Michel] Univ Libre Bruxelles, Dept Phys, B-1050 Brussels, Belgium. [Ravelo, Ramon] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA. [Ravelo, Ramon] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Holian, BL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM blh@lanl.gov NR 21 TC 6 Z9 6 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2010 VL 133 IS 11 AR 114502 DI 10.1063/1.3486088 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 652YC UT WOS:000282047500025 PM 20866140 ER PT J AU Grosse, AM Sterrett, SC Maerz, JC AF Grosse, Andrew M. Sterrett, Sean C. Maerz, John C. TI Effects of Turbidity on the Foraging Success of the Eastern Painted Turtle SO COPEIA LA English DT Article ID REACTIVE DISTANCE; BROOK TROUT; SEARCH TIME; LAND-USE; COMMUNITIES; REDUCE; LIGHT; BASS; PREY AB The effect of increased turbidity levels on aquatic organisms is an increasing concern for aquatic biologists. Recent studies show reduced foraging efficiency of drift-feeding fish species, which are highly visual predators, with increasing water turbidity. Similar to fish, many aquatic turtle species are highly visual aquatic predators that may be negatively affected by increasing water turbidity. We used Eastern Painted Turtles (Chrysemys picta) to test the hypothesis that increasing water turbidity would decrease prey capture efficiency. We classically conditioned eight C. picta to search for a food item when presented with a novel stimulus, and then measured the time it took each turtle to find a prey item under a range of 26 turbidity levels (<= 40 nephelometric turbidity units, NTUs) presented in a random order. All turtles were successfully trained within 29 days to search for the food item when presented with the stimulus. Turbidity had no effect on the probability of successful prey capture. Turtles located the prey item in 97% of trials regardless of turbidity level. Turbidity had a minor effect on time to prey capture, increasing from an average of 30 seconds at a turbidity level of 2 NTUs to 55 seconds at 40 NTUs. Overall, turbidity level explained approximately 2% of the variation in the time it took a turtle to locate a prey item. These results contrast sharply with a nearly identical study, which showed that turbidity explained 70% and 90% of the variation in drift-feeding fish reactive distance and prey capture success respectively, and that a turbidity of only 9-10 NTUs reduced fish foraging performance by 50%. We suggest that resilience to turbidity effects on foraging proficiency among generalist species may be important to understanding their persistence in more degraded aquatic environments compared to more specialized species. C1 [Grosse, Andrew M.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Grosse, Andrew M.; Sterrett, Sean C.; Maerz, John C.] Univ Georgia, DB Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. RP Grosse, AM (reprint author), Savannah River Ecol Lab, Savannah River Site,Bldg 737-A, Aiken, SC 29802 USA. EM Andrew.Grosse14@gmail.com; sterretts@warnell.uga.edu; jmaerz@warnell.uga.edu NR 31 TC 3 Z9 3 U1 2 U2 10 PU AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS PI CHARLESTON PA UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA SN 0045-8511 J9 COPEIA JI Copeia PD SEP 21 PY 2010 IS 3 BP 463 EP 467 DI 10.1643/CE-09-162 PG 5 WC Zoology SC Zoology GA 655PL UT WOS:000282261800015 ER PT J AU Leung, BO Hitchcock, AP Brash, JL Scholl, A Doran, A AF Leung, Bonnie O. Hitchcock, Adam P. Brash, John L. Scholl, Andreas Doran, Andrew TI An X-ray Spectromicroscopy Study of Protein Adsorption to Polystyrene-Poly(ethylene oxide) Blends SO LANGMUIR LA English DT Article ID MULTICOMPONENT POLYMER SYSTEMS; ADVANCED LIGHT-SOURCE; POLY(ETHYLENE OXIDE); PHOTOELECTRON-SPECTROSCOPY; TRIBLOCK COPOLYMERS; BLOOD COMPATIBILITY; DIBLOCK COPOLYMERS; POLYETHYLENE OXIDE; GRAFT-COPOLYMERS; MOLECULAR-WEIGHT AB Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) and atomic force microscopy (A FM) were used to characterize the composition and surface morphology of thin films of a polystyrene-poly(ethylene oxide) blend (PS-PEO), spun cast from dichloromethane at various mass ratios and polymer concentrations X-PEEM reveals incomplete segregation with similar to 30% of PS in the PEO region and vice versa Protein (human scrum albumin) adsorption studies show that this partial phase separation leads to greater protein repellency in the PS region, whereas more protein is detected in the PEO region compared to control samples C1 [Leung, Bonnie O.; Hitchcock, Adam P.] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. [Brash, John L.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4M1, Canada. [Scholl, Andreas; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hitchcock, AP (reprint author), McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 FU Natural Science and Engineering Research Council (NSERC, Canada); AFMNet; US Department of Energy [DE-AC03-76SF00098] FX This research is supported by the Natural Science and Engineering Research Council (NSERC, Canada), AFMNet and the Canada Research Chair programs X-ray microscopy was carried out using PEEM2 and STXM532 at the ALS The ALS is supported by the US Department of Energy under Contract DE-AC03-76SF00098 NR 52 TC 15 Z9 15 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 21 PY 2010 VL 26 IS 18 BP 14759 EP 14765 DI 10.1021/la102432g PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 648JV UT WOS:000281690600055 PM 20795675 ER PT J AU Fornasiero, F Bin In, J Kim, S Park, HG Wang, Y Grigoropoulos, CP Noy, A Bakajin, O AF Fornasiero, Francesco Bin In, Jung Kim, Sangil Park, Hyung Gyu Wang, Yinmin Grigoropoulos, Costas P. Noy, Aleksandr Bakajin, Olgica TI pH-Tunable Ion Selectivity in Carbon Nanotube Pores SO LANGMUIR LA English DT Article ID FILLED NANOFILTRATION MEMBRANES; NANOFLUIDIC CHANNELS; ELECTROLYTIC TRANSPORT; REVERSE-OSMOSIS; SILICON-NITRIDE; SALT REJECTION; PERMEATION; SEPARATION; SURFACE; WATER AB The selectivity of ion transport in nanochannels is of pi Unary importance for a number of physical, chemical, and biological processes ranging from fluid separation to ion-channel-regulated cellular processes Fundamental understanding of these phenomena requires model nanochannels with well-defined and controllable structural properties Carbon nanotubes provide an ideal choice for nanofluidic studies because of their simple chemistry and structure, the atomic scale smoothness and chemical inertness of the graphitic walls, and the tunability of their diameter and length Here, we investigate the selectivity of single and, for the first time, binary salt mixtures transport through nail ow carbon nanotubes that act as the only pores in a silicon nitride membrane. We demonstrate that negatively charged carboxylic groups are responsible for the ion rejection performance of carbon nanotube pores and that ion permeation of small salts can be tuned by varying solution Investigation of the effect of solution composition and ion valences for binary electrolytes with common cation m a pressure-driven flow reveals that the addition of slower diffusing multivalent anions to a solution of faster diffusing monovalent anions favors permeation of the monovalent anion Larger fractions and valences of the added multivalent anions lower the rejection of the monovalent anion. In some cases, we observe negative rejection at low monovalent ion content C1 [Kim, Sangil; Bakajin, Olgica] Porifera Inc, Hayward, CA 94545 USA. [Fornasiero, Francesco; Wang, Yinmin; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Bin In, Jung; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Park, Hyung Gyu] ETH, Inst Energy Technol, Dept Mech & Proc Engn, Zurich, Switzerland. [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA. [Bakajin, Olgica] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. RP Bakajin, O (reprint author), Porifera Inc, Hayward, CA 94545 USA. RI Fornasiero, Francesco/I-3802-2012; Park, Hyung Gyu/F-3056-2013; Wang, Yinmin (Morris)/F-2249-2010 OI Park, Hyung Gyu/0000-0001-8121-2344; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense [BRBAA07-F-1-0066]; U S Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; NSF NIRT [CBET-0709090]; DTRA [BB08PRO053]; DARPA DSO; Center for Biophotonics, a NSF Science and Technology Center [PHY 0120999] FX This project received partial support from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (Grant BRBAA07-F-1-0066) and from Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U S Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344 AN, C G, S K , J B I , and O B acknowledge support by NSF NIRT CBET-0709090 F F acknowledges support by DTRA (BB08PRO053 project) O B and S K. acknowledge support by DARPA DSO O B, also acknowledges support by the Center for Biophotonics, a NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement PHY 0120999. NR 67 TC 33 Z9 33 U1 5 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 21 PY 2010 VL 26 IS 18 BP 14848 EP 14853 DI 10.1021/la101943h PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 648JV UT WOS:000281690600068 PM 20715879 ER PT J AU Chen, XQ Wang, SB Mao, WL Fu, CL AF Chen, Xing-Qiu Wang, Shibing Mao, Wendy L. Fu, C. L. TI Pressure-induced behavior of the hydrogen-dominant compound SiH4(H-2)(2) from first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID METALLIC HYDROGEN; SOLID HYDROGEN; TEMPERATURE; PHASE; SUPERCONDUCTIVITY; SILANE; FLUID; GPA AB The structural and electronic properties of the high-pressure molecular compound SiH4(H-2)(2) have been calculated using density- functional theory. We identify the molecular hydrogen positions within the face-centered cubic unit cell and further find that pressure-induced intermolecular interaction between SiH4 and H-2 units plays an important role in stabilizing this new compound. The electronic structure is characterized by a wide band gap of 6.1 eV at 6.8 GPa, which closes with pressure and finally becomes metallic at 200 GPa due to electronic band overlap accompanied by a structure change. These findings have potential implications for understanding metallization and superconductivity in H-2. C1 [Chen, Xing-Qiu] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Wang, Shibing] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Wang, Shibing; Mao, Wendy L.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Mao, Wendy L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Mao, Wendy L.] SLAC Natl Accelerator Lab, Photon Sci Dept, Menlo Pk, CA 94025 USA. [Fu, C. L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Chen, XQ (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. RI Mao, Wendy/D-1885-2009 FU Chinese Academy of Science; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy through the Stanford Institute for Materials and Energy Science [DE-AC02-76SF00515] FX We thank Timothy Strobel for helpful discussions. Research at the Shengyang National Laboratory for Materials Science (X.-Q.C.) was supported by the Materials Processing Modeling Division and by the "Hundred Talents Project" of Chinese Academy of Science. Research at Oak Ridge National Laboratory (C.L.F.) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. S.W. and W.L.M. are supported by the U.S. Department of Energy through the Stanford Institute for Materials and Energy Science (Grant No. DE-AC02-76SF00515) NR 29 TC 12 Z9 12 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 21 PY 2010 VL 82 IS 10 AR 104115 DI 10.1103/PhysRevB.82.104115 PG 5 WC Physics, Condensed Matter SC Physics GA 652LE UT WOS:000282007200002 ER PT J AU Sochnikov, I Shaulov, A Yeshurun, Y Logvenov, G Bozovic, I AF Sochnikov, I. Shaulov, A. Yeshurun, Y. Logvenov, G. Bozovic, I. TI Oscillatory magnetoresistance in nanopatterned superconducting La1.84Sr0.16CuO4 films SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; FLUXOID QUANTIZATION; TRANSITION-TEMPERATURE; RESISTIVE TRANSITION; VORTEX LATTICE; THIN-FILMS; YBA2CU3O7; FIELD; WIRES AB A superconducting La1.84Sr0.16CuO4 film patterned into a network of 100 x 100 nm(2) noninteracting square loops exhibits large magnetoresistance oscillations superimposed on a background which increases monotonically with the applied magnetic field. Neither the oscillations amplitude nor its temperature dependence can be explained by the Little-Parks effect. Conversely, a good quantitative agreement is obtained with a recently proposed model ascribing the oscillations to the interaction between thermally excited moving vortices and the oscillating persistent currents induced in the loops. Extension of this model, allowing for direct interaction of the vortices and antivortices magnetic moment with the applied field, accounts quantitatively for the monotonic background as well. Analysis of the background indicates that in the patterned film both vortices and antivortices are present at comparable densities. This finding is consistent with the occurrence of Berezinskii-Kosterlitz-Thouless transition in La1.84Sr0.16CuO4 films. C1 [Sochnikov, I.; Shaulov, A.; Yeshurun, Y.] Bar Ilan Univ, Dept Phys, Inst Superconduct, IL-52900 Ramat Gan, Israel. [Sochnikov, I.; Shaulov, A.; Yeshurun, Y.] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Logvenov, G.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sochnikov, I (reprint author), Bar Ilan Univ, Dept Phys, Inst Superconduct, IL-52900 Ramat Gan, Israel. FU Deutsche Forschungsgemeinschaft through the Deutsch Israelische Projektkooperation [563363]; Israel Science Foundation; US DOE [MA-509-MACA] FX We thank A. Bollinger, A. Frydman, A. Gozar, L. Klein, V. V. Kogan, J. Mannhart, Y. Oreg, O. Pelleg, Z. Radovic, B. Rosenstein, B. Ya. Shapiro, E. Shimshoni, V. Vinokur, and E. Zeldov for helpful discussions. The work at Bar-Ilan University was supported by the Deutsche Forschungsgemeinschaft through the Deutsch Israelische Projektkooperation (Grant No. 563363). Y.Y. acknowledges support of the Israel Science Foundation. I.S. thanks the Israeli Ministry of Science and Technology. The work at BNL was supported by US DOE under Contract No. MA-509-MACA. NR 34 TC 9 Z9 9 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 21 PY 2010 VL 82 IS 9 AR 094513 DI 10.1103/PhysRevB.82.094513 PG 7 WC Physics, Condensed Matter SC Physics GA 652KH UT WOS:000282004800006 ER PT J AU He, M Fries, RJ Rapp, R AF He, Min Fries, Rainer J. Rapp, Ralf TI Scaling of elliptic flow, recombination, and sequential freeze-out of hadrons in heavy-ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; COLLABORATION; PERSPECTIVE AB The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p(T) less than or similar to 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are beligeved to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons (pi, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination. C1 [He, Min; Fries, Rainer J.; Rapp, Ralf] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [He, Min; Fries, Rainer J.; Rapp, Ralf] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP He, M (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. FU US National Science Foundation (NSF) [PHY-0449489, PHY-0847538, PHY-0969394]; A.-v.-Humboldt Foundation; RIKEN/BNL Research Center; DOE [DE-AC02-98CH10886] FX We gratefully acknowledge helpful discussions with H. van Hees, X. Zhao, and F. Riek. This work was supported by US National Science Foundation (NSF) Grants PHY-0449489, PHY-0847538, and PHY-0969394, by the A.-v.-Humboldt Foundation, by the RIKEN/BNL Research Center, and by DOE Grant DE-AC02-98CH10886. NR 55 TC 13 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 21 PY 2010 VL 82 IS 3 AR 034907 DI 10.1103/PhysRevC.82.034907 PG 9 WC Physics, Nuclear SC Physics GA 652NB UT WOS:000282012600003 ER PT J AU Adamson, P Andreopoulos, C Auty, DJ Ayres, DS Backhouse, C Barr, G Bernstein, RH Betancourt, M Bhattarai, P Bishai, M Blake, A Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Bower, C Budd, S Cavanaugh, S Cherdack, D Childress, S Choudhary, BC Cobb, JH Coelho, JAB Coleman, SJ Corwin, L Cronin-Hennessy, D Danko, IZ de Jong, JK Devenish, NE Diwan, MV Dorman, M Escobar, CO Evans, JJ Falk, E Feldman, GJ Frohne, MV Gallagher, HR Godley, A Goodman, MC Gouffon, P Graf, N Gran, R Grashorn, EW Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Heller, K Himmel, A Holin, A Huang, X Hylen, J Ilic, J Irwin, GM Isvan, Z Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kopp, S Kordosky, M Krahn, Z Kreymer, A Lang, K Lefeuvre, G Ling, J Litchfield, PJ Litchfield, RP Loiacono, L Lucas, P Ma, J Mann, WA Marshak, ML Marshall, JS Mayer, N McGowan, AM Mehdiyev, R Meier, JR Messier, MD Michael, DG Miller, WH Mishra, SR Mitchell, J Moore, CD Morfin, J Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Ochoa-Ricoux, JP Oliver, WP Orchanian, M Ospanov, R Paley, J Para, A Patterson, RB Pawloski, G Pearce, GF Petyt, DA Pittam, R Plunkett, RK Rameika, RA Raufer, TM Rebel, B Rodrigues, PA Rosenfeld, C Rubin, HA Ryabov, VA Sanchez, MC Schneps, J Schreiner, P Shanahan, P Smart, W Smith, C Sousa, A Strait, M Swain, S Tagg, N Talaga, RL Thomas, J Thomson, MA Tinti, G Toner, R Tzanakos, G Urheim, J Vahle, P Viren, B Weber, A Webb, RC White, C Whitehead, L Wojcicki, SG Wright, DM Yang, T Zhang, K Zois, M Zwaska, R AF Adamson, P. Andreopoulos, C. Auty, D. J. Ayres, D. S. Backhouse, C. Barr, G. Bernstein, R. H. Betancourt, M. Bhattarai, P. Bishai, M. Blake, A. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Bower, C. Budd, S. Cavanaugh, S. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coelho, J. A. B. Coleman, S. J. Corwin, L. Cronin-Hennessy, D. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. Graf, N. Gran, R. Grashorn, E. W. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Huang, X. Hylen, J. Ilic, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. Kordosky, M. Krahn, Z. Kreymer, A. Lang, K. Lefeuvre, G. Ling, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Michael, D. G. Miller, W. H. Mishra, S. R. Mitchell, J. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Ochoa-Ricoux, J. P. Oliver, W. P. Orchanian, M. Ospanov, R. Paley, J. Para, A. Patterson, R. B. Pawloski, G. Pearce, G. F. Petyt, D. A. Pittam, R. Plunkett, R. K. Rameika, R. A. Raufer, T. M. Rebel, B. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. Schneps, J. Schreiner, P. Shanahan, P. Smart, W. Smith, C. Sousa, A. Strait, M. Swain, S. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Tinti, G. Toner, R. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Weber, A. Webb, R. C. White, C. Whitehead, L. Wojcicki, S. G. Wright, D. M. Yang, T. Zhang, K. Zois, M. Zwaska, R. CA MINOS Collaboration TI New constraints on muon-neutrino to electron-neutrino transitions in MINOS SO PHYSICAL REVIEW D LA English DT Article ID GLOBAL ANALYSIS; LEPTON CHARGE; OSCILLATIONS; DETECTOR AB This paper reports results from a search for nu(mu) -> nu(e) transitions by the MINOS experiment based on a 7 x 10(20) protons-on-target exposure. Our observation of 54 candidate nu(e) events in the far detector with a background of 49.1 +/- 7.0(stat) +/- 2.7(syst) events predicted by the measurements in the near detector requires 2sin(2)(2 theta(13))sin(2)theta(23) < 0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at delta(CP) = 0. The experiment sets the tightest limits to date on the value of theta(13) for nearly all values of delta(CP) for the normal neutrino mass hierarchy and maximal sin(2)(2 theta(23)). C1 [Adamson, P.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Choudhary, B. C.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J.; Para, A.; Plunkett, R. K.; Rameika, R. A.; Rebel, B.; Shanahan, P.; Smart, W.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ayres, D. S.; Budd, S.; Goodman, M. C.; Huang, X.; McGowan, A. M.; Paley, J.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tzanakos, G.; Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Whitehead, L.; Zhang, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Michael, D. G.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Marshall, J. S.; Mitchell, J.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Coelho, J. A. B.; Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Boehm, J.; Cavanaugh, S.; Feldman, G. J.; Sousa, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [de Jong, J. K.; Graf, N.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Bower, C.; Corwin, L.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Sanchez, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ryabov, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 119991, Russia. [Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Nichol, R. J.; Smith, C.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Betancourt, M.; Cronin-Hennessy, D.; Grashorn, E. W.; Heller, K.; Kasahara, S. M. S.; Krahn, Z.; Litchfield, P. J.; Marshak, M. L.; McGowan, A. M.; Meier, J. R.; Miller, W. H.; Petyt, D. A.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Bhattarai, P.; Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Sanchez, M. C.; Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Backhouse, C.; Barr, G.; Cobb, J. H.; de Jong, J. K.; Litchfield, R. P.; Pittam, R.; Rodrigues, P. A.; Sousa, A.; Tinti, G.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Danko, I. Z.; Isvan, Z.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Andreopoulos, C.; Hartnell, J.; Ilic, J.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Godley, A.; Ling, J.; Mishra, S. R.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Swain, S.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Devenish, N. E.; Falk, E.; Harris, P. G.; Hartnell, J.; Lefeuvre, G.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Ma, J.; Mehdiyev, R.; Ospanov, R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Nichol, Ryan/C-1645-2008; Harris, Philip/I-7419-2012; Coelho, Joao/D-3546-2013; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Evans, Justin/P-4981-2014; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Bernstein, Robert/0000-0002-7610-950X; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Hartnell, Jeffrey/0000-0002-1744-7955; Harris, Philip/0000-0003-4369-3874; Evans, Justin/0000-0003-4697-3337; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670; COLEMAN, STEPHEN/0000-0002-4621-9169; Corwin, Luke/0000-0001-7143-3821 FU U.S. DOE; U.K. STFC; U.S. NSF; State and University of Minnesota; University of Athens, Greece; Brazil's FAPESP; CNPq; CAPES FX This work was supported by the U.S. DOE; the U.K. STFC; the U.S. NSF; the state and University of Minnesota; the University of Athens, Greece; and Brazil's FAPESP, CNPq, and CAPES. We are grateful to the Minnesota DNR, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contributions to this effort. NR 29 TC 47 Z9 47 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 21 PY 2010 VL 82 IS 5 AR 051102 DI 10.1103/PhysRevD.82.051102 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 652XP UT WOS:000282046100001 ER PT J AU Horava, P Melby-Thompson, CM AF Horava, Petr Melby-Thompson, Charles M. TI General covariance in quantum gravity at a Lifshitz point SO PHYSICAL REVIEW D LA English DT Article ID FIELD; DYNAMICS AB In the minimal formulation of gravity with Lifshitz-type anisotropic scaling, the gauge symmetries of the system are foliation-preserving diffeomorphisms of spacetime. Consequently, compared to general relativity, the spectrum contains an extra scalar graviton polarization. Here we investigate the possibility of extending the gauge group by a local U(1) symmetry to "nonrelativistic general covariance." This extended gauge symmetry eliminates the scalar graviton, and forces the coupling constant lambda in the kinetic term of the minimal formulation to take its relativistic value, lambda = 1. The resulting theory exhibits anisotropic scaling at short distances, and reproduces many features of general relativity at long distances. C1 [Horava, Petr; Melby-Thompson, Charles M.] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Horava, Petr; Melby-Thompson, Charles M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Horava, Petr; Melby-Thompson, Charles M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Horava, Petr] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. FU NSF [PHY-0855653]; DOE [DE-AC02-05CH11231]; Berkeley Center for Theoretical Physics FX We wish to express our thanks to N. Afshordi, J. Ambjorn, D. Benedetti, D. Blas, R. Brandenberger, G. Dvali, M. Henneaux, E. Kiritsis, R. Loll, A. Maloney, S. Mukohyama, Y. Nakayama, O. Pujolas, S. Sibiryakov, A. Vainshtein, and the participants of the Perimeter Institute workshop on Gravity at a Lifshitz Point (November 2009) for useful discussions. P.H. is grateful to the Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat, Munchen, and the PH-TH Division, CERN, Geneve, for their hospitality during some of the final stages of this work. The results of this work were presented at the GR 19 Conference in Mexico City in July 2010; P.H. wishes to thank the organizers for their invitation and hospitality. This work has been supported by NSF Grant No. PHY-0855653, DOE Grant No. DE-AC02-05CH11231, and by the Berkeley Center for Theoretical Physics. NR 35 TC 154 Z9 154 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 21 PY 2010 VL 82 IS 6 AR 064027 DI 10.1103/PhysRevD.82.064027 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 652YG UT WOS:000282047900006 ER PT J AU Lund, T Marek, A Lunardini, C Janka, HT Raffelt, G AF Lund, Tina Marek, Andreas Lunardini, Cecilia Janka, Hans-Thomas Raffelt, Georg TI Fast time variations of supernova neutrino fluxes and their detectability SO PHYSICAL REVIEW D LA English DT Article ID ACCRETION-SHOCK INSTABILITY; CORE-COLLAPSE SUPERNOVAE; ADVECTIVE-ACOUSTIC CYCLE; DRIVEN SUPERNOVA; SIMULATIONS; EXPLOSIONS; HYDRODYNAMICS; MECHANISM; TRANSPORT; FEATURES AB In the delayed explosion scenario of core-collapse supernovae, the accretion phase shows pronounced convective overturns and a low-multipole hydrodynamic instability, the standing accretion shock instability. These effects imprint detectable fast time variations on the emerging neutrino flux. Among existing detectors, IceCube is best suited to this task, providing an event rate of similar to 1000 ms(-1) during the accretion phase for a fiducial SN distance of 10 kpc, comparable to what could be achieved with a megaton water Cherenkov detector. If the standing accretion shock instability activity lasts for several hundred ms, a Fourier component with an amplitude of 1% of the average signal clearly sticks out from the shot noise. We analyze in detail the output of axially symmetric hydrodynamical simulations that predict much larger amplitudes up to frequencies of a few hundred Hz. If these models are roughly representative for realistic SNe, fast time variations of the neutrino signal are easily detectable in IceCube or future megaton-class instruments. We also discuss the information that could be deduced from such a measurement about the physics in the SN core and the explosion mechanism of the SN. C1 [Lund, Tina] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Marek, Andreas; Janka, Hans-Thomas] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Lunardini, Cecilia] Arizona State Univ, Tempe, AZ 85287 USA. [Lunardini, Cecilia] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Raffelt, Georg] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. RP Lund, T (reprint author), Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. FU DFG (Germany) [TR-27]; NSF [PHY-0854827] FX We acknowledge partial support by the DFG (Germany) under Grant No. TR-27 "Neutrinos and Beyond," the Cluster of Excellence "Origin and Structure of the Universe," and the NSF under Grant No. PHY-0854827. We acknowledge computer time grants at the John von Neumann Institute for Computing (NIC) in Julich, the Hochstleistungsrechenzentrum of the Stuttgart University (HLRS) under Grant No. SuperN/12758, the Leibniz-Rechenzentrum Munchen, and the RZG in Garching. T.L. thanks the MPI Physics for hospitality while this work was begun. We thank the participants of the workshop JIGSAW 2010 (22-26 February 2010, Mumbai, India) for comments and discussions, in particular, Timo Griesel and Thomas Kowarik. NR 31 TC 40 Z9 40 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 21 PY 2010 VL 82 IS 6 AR 063007 DI 10.1103/PhysRevD.82.063007 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 652YG UT WOS:000282047900002 ER PT J AU Kamionka, T Martens, M Chou, KW Curcic, M Drews, A Schutz, G Tyliszczak, T Stoll, H Van Waeyenberge, B Meier, G AF Kamionka, Thomas Martens, Michael Chou, Kang Wei Curcic, Michael Drews, Andre Schuetz, Gisela Tyliszczak, Tolek Stoll, Hermann Van Waeyenberge, Bartel Meier, Guido TI Magnetic Antivortex-Core Reversal by Circular-Rotational Spin Currents SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCITATION; PERMALLOY AB Topological singularities occur as antivortices in ferromagnetic thin-film microstructures. Antivortices behave as two-dimensional oscillators with a gyrotropic eigenmode which can be excited resonantly by spin currents and magnetic fields. We show that the two excitation types couple in an opposing sense of rotation in the case of resonant antivortex excitation with circular-rotational currents. If the sense of rotation of the current coincides with the intrinsic sense of gyration of the antivortex, the coupling to the Oersted fields is suppressed and only the spin-torque contribution locks into the gyrotropic eigenmode. We report on the experimental observation of purely spin-torque induced antivortex-core reversal. The dynamic response of an isolated antivortex is imaged by time-resolved scanning transmission x-ray microscopy on its genuine time and length scale. C1 [Kamionka, Thomas; Martens, Michael; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Kamionka, Thomas; Martens, Michael; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Chou, Kang Wei; Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Curcic, Michael; Schuetz, Gisela; Stoll, Hermann] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Drews, Andre] Univ Hamburg, Arbeitsbereich Tech Informat Syst, D-22527 Hamburg, Germany. [Van Waeyenberge, Bartel] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium. RP Kamionka, T (reprint author), Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. EM tkamionk@physnet.uni-hamburg.de FU Deutsche Forschungsgemeinschaft [Sonder-forschungsbereich 668]; City of Hamburg via the Landesexzellenzcluster Nano-Spintronics; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy FX We would like to thank Rene Eiselt for sharing his experience on sample preparation on Si3N4 membranes and Ulrich Merkt for continuous support. Financial support by the Deutsche Forschungsgemeinschaft via the Sonder-forschungsbereich 668 and the city of Hamburg via the Landesexzellenzcluster Nano-Spintronics is gratefully acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy. NR 26 TC 34 Z9 34 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 21 PY 2010 VL 105 IS 13 AR 137204 DI 10.1103/PhysRevLett.105.137204 PG 4 WC Physics, Multidisciplinary SC Physics GA 653AM UT WOS:000282054300008 PM 21230805 ER PT J AU McCarren, J Becker, JW Repeta, DJ Shi, YM Young, CR Malmstrom, RR Chisholm, SW DeLong, EF AF McCarren, Jay Becker, Jamie W. Repeta, Daniel J. Shi, Yanmei Young, Curtis R. Malmstrom, Rex R. Chisholm, Sallie W. DeLong, Edward F. TI Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon cycle; marine; bacteria; metagenomics; metatranscriptomics ID NORTHWESTERN SARGASSO SEA; CONVECTIVE OVERTURN; METHYL SUGARS; SEQUENCE DATA; WATER-COLUMN; R-PACKAGE; MARINE; CARBON; ENVIRONMENT; DIVERSITY AB Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with marine DOM cycling, we analyzed genomic and transcriptional responses of microbial communities to high-molecular-weight DOM (HMWDOM) addition. The cell density in the unamended control remained constant, with very few transcript categories exhibiting significant differences over time. In contrast, the DOM-amended microcosm doubled in cell numbers over 27 h, and a variety of HMWDOM-stimulated transcripts from different taxa were observed at all time points measured relative to the control. Transcripts significantly enriched in the HMWDOM treatment included those associated with two-component sensor systems, phosphate and nitrogen assimilation, chemotaxis, and motility. Transcripts from Idiomarina and Alteromonas spp., the most highly represented taxa at the early time points, included those encoding TonB-associated transporters, nitrogen assimilation genes, fatty acid catabolism genes, and TCA cycle enzymes. At the final time point, Methylophaga rRNA and non-rRNA transcripts dominated the HMWDOM-amended microcosm, and included gene transcripts associated with both assimilatory and dissimilatory single-carbon compound utilization. The data indicated specific resource partitioning of DOM by different bacterial species, which results in a temporal succession of taxa, metabolic pathways, and chemical transformations associated with HMWDOM turnover. These findings suggest that coordinated, cooperative activities of a variety of bacterial "specialists" may be critical in the cycling of marine DOM, emphasizing the importance of microbial community dynamics in the global carbon cycle. C1 [McCarren, Jay; Becker, Jamie W.; Shi, Yanmei; Young, Curtis R.; Malmstrom, Rex R.; Chisholm, Sallie W.; DeLong, Edward F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [DeLong, Edward F.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Becker, Jamie W.; Repeta, Daniel J.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [McCarren, Jay] Synthet Genom, La Jolla, CA 92037 USA. [Malmstrom, Rex R.] Joint Genome Inst, Walnut Creek, CA 94598 USA. RP DeLong, EF (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM delong@mit.edu RI Malmstrom, Rex/K-7339-2012; OI Becker, Jamie/0000-0003-4564-3192; Becker, Jamie/0000-0001-5308-1818 FU Gordon and Betty Moore Foundation; Office of Science-Biological and Environmental Research, US Department of Energy; National Science Foundation; National Science Foundation Science and Technology Center [EF0424599] FX We thank the captain and crew of the R/V Kilo Moana for facilitating sample collection, Chief Scientist Ricardo Letelier and all participants of the C-MORE BLOOMER cruise for help and encouragement, and Rachel Barry for pyrosequence library production and sequencing. This work was supported by the Gordon and Betty Moore Foundation (E.F.D., S.W.C., and D.J.R.), the Office of Science-Biological and Environmental Research, US Department of Energy (E.F.D and S.W.C), the National Science Foundation (D.J.R.), and National Science Foundation Science and Technology Center Award EF0424599 (to E.F.D. and S.W.C.). This article is a contribution from the National Science Foundation Science and Technology Center for Microbial Oceanography: Research and Education (C-MORE). NR 53 TC 154 Z9 156 U1 18 U2 129 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 21 PY 2010 VL 107 IS 38 BP 16420 EP 16427 DI 10.1073/pnas.1010732107 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 652JW UT WOS:000282003700010 PM 20807744 ER PT J AU Chung, S Shin, SH Bertozzi, CR De Yoreo, JJ AF Chung, Sungwook Shin, Seong-Ho Bertozzi, Carolyn R. De Yoreo, James J. TI Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE in situ atomic force microscopy imaging; protein crystal growth; two-step crystallization; amorphous precursors; assembly kinetics ID ATOMIC-FORCE-MICROSCOPY; BACILLUS-SPHAERICUS; PROTEIN; PHASE; RECRYSTALLIZATION; NUCLEATION; BILAYERS; ARRAYS; SBPA AB The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway. C1 [Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R.; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Chung, Sungwook] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shin, Seong-Ho; Bertozzi, Carolyn R.; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Shin, Seong-Ho; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM crbertozzi@lbl.gov; jjdeyoreo@lbl.gov RI Chung, Sungwook/H-6248-2012 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the assistance of Babak Sanii in fabricating supported lipid bilayers and Julie Norville for providing advice on protein purification. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, with support from the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 33 TC 62 Z9 62 U1 2 U2 41 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 21 PY 2010 VL 107 IS 38 BP 16536 EP 16541 DI 10.1073/pnas.1008280107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 652JW UT WOS:000282003700030 PM 20823255 ER PT J AU Goldstein, RZ Woicik, PA Maloney, T Tomasi, D Alia-Klein, N Shan, JT Honorio, J Samaras, D Wang, RL Telang, F Wang, GJ Volkow, ND AF Goldstein, Rita Z. Woicik, Patricia A. Maloney, Thomas Tomasi, Dardo Alia-Klein, Nelly Shan, Juntian Honorio, Jean Samaras, Dimitris Wang, Ruiliang Telang, Frank Wang, Gene-Jack Volkow, Nora D. TI Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE prefrontal cortex; behavioral intervention; dopamine agonist; functional MRI blood oxygen level-dependent; emotional Stroop ID MEDIAL PREFRONTAL CORTEX; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; POSTTRAUMATIC-STRESS-DISORDER; ANTERIOR CINGULATE; ORBITOFRONTAL CORTEX; EMOTIONAL CONFLICT; BRAIN ACTIVATION; FRONTAL-CORTEX; DOPAMINE; ABUSE AB Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested. C1 [Goldstein, Rita Z.; Woicik, Patricia A.; Maloney, Thomas; Alia-Klein, Nelly; Wang, Ruiliang; Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med Res, Ctr Translat Neuroimaging, Upton, NY 11973 USA. [Tomasi, Dardo; Telang, Frank; Volkow, Nora D.] NIAAA, Intramural Program, Rockville, MD 20857 USA. [Shan, Juntian; Honorio, Jean; Samaras, Dimitris] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Dept Med Res, Ctr Translat Neuroimaging, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU National Institute on Drug Abuse [R01DA023579, R21DA02062, R01DA020949]; General Clinical Research Center [5-MO1-RR-10710] FX This study was supported by National Institute on Drug Abuse Grants R01DA023579 (to R.Z.G.), R21DA02062 (to R.Z.G.), and R01DA020949 (to D.S.), General Clinical Research Center Grant 5-MO1-RR-10710, and the Office of Biological and Environmental Research, Department of Energy (for infrastructure support). NR 59 TC 63 Z9 64 U1 2 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 21 PY 2010 VL 107 IS 38 BP 16667 EP 16672 DI 10.1073/pnas.1011455107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 652JW UT WOS:000282003700052 PM 20823246 ER PT J AU Van Neste, CW Morales-Rodriguez, ME Senesac, LR Mahajan, SM Thundat, T AF Van Neste, Charles W. Morales-Rodriguez, Marissa E. Senesac, Larry R. Mahajan, Satish M. Thundat, Thomas TI Quartz crystal tuning fork photoacoustic point sensing SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Quartz crystal tuning fork; Photoacoustic; Spectroscopy; Quantum cascade laser; Point; Sensing ID QUANTUM CASCADE LASERS; SPECTROSCOPY; SENSOR AB Achieving chemical specificity in trace detection of small molecules is a challenge. Here we describe a highly selective method for detection of trace chemicals using photoacoustic spectroscopy of adsorbed molecules on a quartz crystal tuning fork The technique is demonstrated in an open environment without the need of a resonant cavity Mid-infrared quantum cascade lasers are used as the light source with cyclotrimethylenetrinitromine (RDX) residue being the target analyte The results show absorption peaks matching those of eat her literature (C) 2010 Elseviet B.V. All rights reserved C1 [Van Neste, Charles W.; Morales-Rodriguez, Marissa E.; Senesac, Larry R.; Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Senesac, Larry R.; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Van Neste, Charles W.; Mahajan, Satish M.] Tennessee Technol Univ, Dept Elect Engn, Cookeville, TN 38505 USA. RP Van Neste, CW (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. FU Office of Naval Research; U.S. Dept. of Energy [DE-AC05-00OR22725] FX This work was supported in part by the Office of Naval Research C-IED program and the DOE NA-22 program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. NR 18 TC 9 Z9 9 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP 21 PY 2010 VL 150 IS 1 BP 402 EP 405 DI 10.1016/j.snb.2010.06.045 PG 4 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 661KC UT WOS:000282726200057 ER PT J AU Chow, WW Crawford, MH Tsao, JY Kneissl, M AF Chow, W. W. Crawford, M. H. Tsao, J. Y. Kneissl, M. TI Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model SO APPLIED PHYSICS LETTERS LA English DT Article AB We propose a model to better investigate InGaN light-emitting diode (LED) internal efficiency by extending beyond the usual total carrier density rate equation approach. To illustrate its capability, the model is applied to study intrinsic performance differences between violet and green LEDs. The simulations show performance differences, at different current densities and temperatures, arising from variations in spontaneous emission and heat loss rates. By tracking the momentum-resolved carrier populations, these rate changes are, in turn, traced to differences in bandstructure and plasma heating. The latter leads to carrier distributions that deviate from the quasiequilibrium ones at lattice temperature. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490232] C1 [Chow, W. W.; Crawford, M. H.; Tsao, J. Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kneissl, M.] Tech Univ Berlin, Inst Solid State Phys, D-10623 Berlin, Germany. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov RI Kneissl, Michael/B-9682-2012 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Deutsche Forschungsgemeinschaft [787] FX We thank K. Lyo and J. Wierer for helpful discussions. Sandia authors' contributions are supported by the Solid-State Lighting Science Center, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. M.K. support provided by the Sonderforschungbereich (SFB) 787 funded by the Deutsche Forschungsgemeinschaft. NR 11 TC 24 Z9 24 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 20 PY 2010 VL 97 IS 12 AR 121105 DI 10.1063/1.3490232 PG 3 WC Physics, Applied SC Physics GA 653VC UT WOS:000282124700005 ER PT J AU Droubay, TC Qiao, L Kaspar, TC Engelhard, MH Shutthanandan, V Chambers, SA AF Droubay, T. C. Qiao, L. Kaspar, T. C. Engelhard, M. H. Shutthanandan, V. Chambers, S. A. TI Nonstoichiometric material transfer in the pulsed laser deposition of LaAlO3 SO APPLIED PHYSICS LETTERS LA English DT Article DE lanthanum compounds; pulsed laser deposition; Rutherford backscattering; stoichiometry; X-ray photoelectron spectra ID ACCELERATED EXPANSION; ANGULAR-DISTRIBUTION; ABLATED MATERIALS; SOLID-SURFACE; FILM GROWTH; THIN-FILMS; DIAGNOSTICS; GASES AB Inequivalent angular distributions have been found for La and Al in the ablation plume from LaAlO3 single crystal targets using a KrF laser during pulsed laser deposition. Angular distributions and stoichiometries in the condensate were measured and reveal decidedly nonstoichiometric transfer from target to substrate over most of the angular range. Composition varied dramatically for plume angles parallel to the long axis of the laser spot with the on-axis position exhibiting a peak in the La/Al atom ratio at similar to 1.5. The distributions were more diffuse in the perpendicular direction. Stoichiometric LaAlO3 was found in the condensate only at an extreme off-axis position. (C) 2010 American Institute of Physics. [doi:10.1063/1.3487778] C1 [Droubay, T. C.; Qiao, L.; Kaspar, T. C.; Engelhard, M. H.; Shutthanandan, V.; Chambers, S. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Droubay, TC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM tim.droubay@pnl.gov RI Qiao, Liang/A-8165-2012; Engelhard, Mark/F-1317-2010; Droubay, Tim/D-5395-2016; OI Droubay, Tim/0000-0002-8821-0322; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering and was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 22 TC 28 Z9 28 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 20 PY 2010 VL 97 IS 12 AR 124105 DI 10.1063/1.3487778 PG 3 WC Physics, Applied SC Physics GA 653VC UT WOS:000282124700079 ER PT J AU Erat, S Wadati, H Aksoy, F Liu, Z Graule, T Gauckler, LJ Braun, A AF Erat, Selma Wadati, Hiroki Aksoy, Funda Liu, Zhi Graule, Thomas Gauckler, Ludwig J. Braun, Artur TI Iron-resonant valence band photoemission and oxygen near edge x-ray absorption fine structure study on La1-xSrxFe0.75Ni0.25O3-delta SO APPLIED PHYSICS LETTERS LA English DT Article DE electrical conductivity; electronic density of states; hole density; lanthanum compounds; photoelectron spectra; strontium compounds; valence bands; X-ray absorption spectra ID LA1-XSRXFEO3; CONDUCTIVITY; PEROVSKITES; BEHAVIOR; SPECTRA; FE; CO AB Iron resonant valence band photoemission spectra (VB PES) of Sr substituted LaFe0.75Ni0.25O3-delta have been recorded across the Fe 2p-3d absorption threshold to obtain Fe specific spectral information on the 3d projected partial density of states. Comparison with La1-xSrxFeO3 resonant VB PES literature data suggests that substitution of Fe by Ni forms electron holes which have mainly O 2p character. Substitution of La by Sr increases the hole concentration to an extent that the e(g) structure vanishes. The variation in the e(g) and t(2g) structures is paralleled by the changes in the electrical conductivity. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3484960] C1 [Erat, Selma; Graule, Thomas; Braun, Artur] Empa Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Erat, Selma; Gauckler, Ludwig J.] Swiss Fed Inst Technol, ETH Zurich, Dept Mat, CH-8037 Zurich, Switzerland. [Wadati, Hiroki] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Aksoy, Funda] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Aksoy, Funda; Liu, Zhi] Ernest Orlando Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Graule, Thomas] Tech Univ Bergakad Freiberg, D-09596 Freiberg, Germany. RP Erat, S (reprint author), Empa Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM selmaerat33@gmail.com; artur.braun@alumni.ethz.ch RI Liu, Zhi/B-3642-2009; BRAUN, Artur/A-1154-2009; Gauckler, Ludwig/C-2784-2009 OI Liu, Zhi/0000-0002-8973-6561; BRAUN, Artur/0000-0002-6992-7774; Gauckler, Ludwig/0000-0003-4668-4025 FU E.U. MIRG [CT-2006-042095]; Swiss NSF [200021-116688]; Swiss Federal Office of Energy [100411]; Office of Science/BES, of the U.S. DoE [DE-AC02-05CH11231] FX Funding by E.U. MIRG under Grant No. CT-2006-042095, Swiss NSF under Grant No. 200021-116688, Swiss Federal Office of Energy under Project No. 100411. The ALS is supported by the Director, Office of Science/BES, of the U.S. DoE, Grant No. DE-AC02-05CH11231. The authors would like to thank Dr. Wanli Yang and student Paul Olalde Valesco from ALS for their help during XAS measurements. NR 17 TC 5 Z9 5 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 20 PY 2010 VL 97 IS 12 AR 124101 DI 10.1063/1.3484960 PG 3 WC Physics, Applied SC Physics GA 653VC UT WOS:000282124700075 ER PT J AU Zhou, H Chisholm, MF Pant, P Chang, HJ Gazquez, J Pennycook, SJ Narayan, J AF Zhou, H. Chisholm, M. F. Pant, P. Chang, H. J. Gazquez, J. Pennycook, S. J. Narayan, J. TI Atomic structure of misfit dislocations in nonpolar ZnO/Al2O3 heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; atomic structure; dislocations; II-VI semiconductors; optical properties; scanning electron microscopy; semiconductor heterojunctions; transmission electron microscopy; wide band gap semiconductors; zinc compounds ID TRANSMISSION ELECTRON-MICROSCOPY; GRAIN-BOUNDARIES; ZNO FILMS; EPITAXY AB Understanding dislocation core structures at the atomic level is of significant theoretical and technological importance because of the role dislocations play in the electronic/optical properties of materials. In this paper, we report our aberration-corrected scanning transmission electron microscopy study on misfit dislocation core structures at non-polar (11 (2) over bar0)ZnO/(1 (1) over bar 02)Al2O3 (a-ZnO/r-Al2O3) interface. The atomic configuration of the core structure is found to be closely related to the preferred interfacial bonding configuration. A significant number of these misfit dislocations have undergone a core structure modification involving the incorporation of Zn in the Al2O3 side of the dislocation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489687] C1 [Zhou, H.; Pant, P.; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Zhou, H.; Chisholm, M. F.; Chang, H. J.; Gazquez, J.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhou, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM hzhou4@ncsu.edu FU National Science Foundation (NSF) [DMR-0803663]; DOE Office of Science, Materials Sciences and Engineering Division FX This research was supported by the National Science Foundation (NSF DMR-0803663) and DOE Office of Science, Materials Sciences and Engineering Division. H.Z. acknowledges Dr. J. He for useful discussions. Schematic drawings presented in this paper were produced using Vesta.23 NR 23 TC 11 Z9 11 U1 2 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 20 PY 2010 VL 97 IS 12 AR 121914 DI 10.1063/1.3489687 PG 3 WC Physics, Applied SC Physics GA 653VC UT WOS:000282124700026 ER PT J AU Brodwin, M Ruel, J Ade, PAR Aird, KA Andersson, K Ashby, MLN Bautz, M Bazin, G Benson, BA Bleem, LE Carlstrom, JE Chang, CL Crawford, TM Crites, AT De Haan, T Desai, S Dobbs, MA Dudley, JP Fazio, GG Foley, RJ Forman, WR Garmire, G George, EM Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Murray, SS Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Yang, Y Zahn, O Zenteno, A AF Brodwin, M. Ruel, J. Ade, P. A. R. Aird, K. A. Andersson, K. Ashby, M. L. N. Bautz, M. Bazin, G. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Crawford, T. M. Crites, A. T. De Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Fazio, G. G. Foley, R. J. Forman, W. R. Garmire, G. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Murray, S. S. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI SPT-CL J0546-5345: A MASSIVE z > 1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (SPT-CL J0546-5345); galaxies: distances and redshifts; galaxies: evolution ID IRAC SHALLOW SURVEY; X-RAY; VELOCITY DISPERSIONS; PHOTOMETRIC REDSHIFTS; TEMPERATURE RELATION; COSMOLOGY; CHANDRA; PROFILES; SAMPLE; GAS AB We report the spectroscopic confirmation of SPT-CL J0546-5345 at < z > = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179-(+232)(167) km s(-1), ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M(200) = 1.0(-0.4)(+0.6) x 10(15) M(circle dot), in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M(200) = (7.95 +/- 0.92) x 10(14) M(circle dot). The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high-redshift SZE-selected galaxy cluster era. C1 [Brodwin, M.; Ashby, M. L. N.; Fazio, G. G.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruel, J.; High, F. W.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D. P.] Univ Chicago, Chicago, IL 60637 USA. [Andersson, K.; Bautz, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85758 Garching, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Quebec City, PQ H3A 2T8, Canada. [Desai, S.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Garmire, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Brodwin, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA; Chandra Xray Observatory [SV4-74018, A31]; W. M. Keck Foundation; Brinson Foundation FX Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, under contract with the National Science Foundation; The SPT is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based in part on observations obtained with the Chandra Xray Observatory, under contract SV4-74018, A31 with the Smithsonian Astrophysical Observatory which operates the Chandra for NASA. We are very grateful for the efforts of the Spitzer, Chandra, Magellan, and CTIO support staff without whom this paper would not be possible. Support for M. B. was provided by the W. M. Keck Foundation. B. S. acknowledges support from the Brinson Foundation. NR 60 TC 74 Z9 75 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 90 EP 97 DI 10.1088/0004-637X/721/1/90 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900007 ER PT J AU Seo, HJ Dodelson, S Marriner, J Mcginnis, D Stebbins, A Stoughton, C Vallinotto, A AF Seo, Hee-Jong Dodelson, Scott Marriner, John Mcginnis, Dave Stebbins, Albert Stoughton, Chris Vallinotto, Alberto TI A GROUND-BASED 21 cm BARYON ACOUSTIC OSCILLATION SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark energy; large-scale structure of universe; methods: numerical; radio lines: galaxies ID GALAXY REDSHIFT SURVEYS; LARGE-SCALE STRUCTURE; PROBING DARK ENERGY; POWER SPECTRUM; INTERGALACTIC MEDIUM; 21-CM EMISSION; REAL-SPACE; MATTER; REIONIZATION; FLUCTUATIONS AB Baryon acoustic oscillations (BAO) provide a robust standard ruler with which to measure the acceleration of the universe. The BAO feature has so far been detected in optical galaxy surveys. Intensity mapping of neutral hydrogen emission with a ground-based radio telescope provides another promising window for measuring BAO at redshifts of order unity for relatively low cost. While the cylindrical radio telescope (CRT) proposed for these measurements will have excellent redshift resolution, it will suffer from poor angular resolution (arcminutes at best). We investigate the effect of angular resolution on the standard ruler test with BAO, using the Dark Energy Task Force Figure of Merit (FoM) as a benchmark. We then extend the analysis to include variations in the parameters characterizing the telescope and the underlying physics. Finally, we optimize the survey parameters (holding total cost fixed) and present an example of a CRT BAO survey that is competitive with Stage III dark energy experiments. The tools developed here form the backbone of a publicly available code that can be used to obtain estimates of cost and FoM for any set of survey parameters. C1 [Seo, Hee-Jong; Dodelson, Scott; Marriner, John; Mcginnis, Dave; Stebbins, Albert; Stoughton, Chris; Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. RP Seo, HJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM sheejong@fnal.gov FU US Department of Energy [DE-AC02-07CH11359] FX We thank Patrick McDonald and Nickolay Y. Gnedin for extremely useful communications. H.-J.S., S. D., J.M., D. M., A. S., C. S., and A. V. are supported by the US Department of Energy under contract DE-AC02-07CH11359. NR 49 TC 44 Z9 47 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 164 EP 173 DI 10.1088/0004-637X/721/1/164 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900011 ER PT J AU Peng, YJ Lilly, SJ Kovac, K Bolzonella, M Pozzetti, L Renzini, A Zamorani, G Ilbert, O Knobel, C Iovino, A Maier, C Cucciati, O Tasca, L Carollo, CM Silverman, J Kampczyk, P De Ravel, L Sanders, D Scoville, N Contini, T Mainieri, V Scodeggio, M Kneib, JP Le Fevre, O Bardelli, S Bongiorno, A Caputi, K Coppa, G de la Torre, S Franzetti, P Garilli, B Lamareille, F Le Borgne, JF Le Brun, V Mignoli, M Montero, EP Pello, R Ricciardelli, E Tanaka, M Tresse, L Vergani, D Welikala, N Zucca, E Oesch, P Abbas, U Barnes, L Bordoloi, R Bottini, D Cappi, A Cassata, P Cimatti, A Fumana, M Hasinger, G Koekemoer, A Leauthaud, A Maccagni, D Marinoni, C McCracken, H Memeo, P Meneux, B Nair, P Porciani, C Presotto, V Scaramella, R AF Peng, Ying-Jie Lilly, Simon J. Kovac, Katarina Bolzonella, Micol Pozzetti, Lucia Renzini, Alvio Zamorani, Gianni Ilbert, Olivier Knobel, Christian Iovino, Angela Maier, Christian Cucciati, Olga Tasca, Lidia Carollo, C. Marcella Silverman, John Kampczyk, Pawel De Ravel, Loic Sanders, David Scoville, Nicholas Contini, Thierry Mainieri, Vincenzo Scodeggio, Marco Kneib, Jean-Paul Le Fevre, Olivier Bardelli, Sandro Bongiorno, Angela Caputi, Karina Coppa, Graziano de la Torre, Sylvain Franzetti, Paolo Garilli, Bianca Lamareille, Fabrice Le Borgne, Jean-Francois Le Brun, Vincent Mignoli, Marco Montero, Enrique Perez Pello, Roser Ricciardelli, Elena Tanaka, Masayuki Tresse, Laurence Vergani, Daniela Welikala, Niraj Zucca, Elena Oesch, Pascal Abbas, Ummi Barnes, Luke Bordoloi, Rongmon Bottini, Dario Cappi, Alberto Cassata, Paolo Cimatti, Andrea Fumana, Marco Hasinger, Gunther Koekemoer, Anton Leauthaud, Alexei Maccagni, Dario Marinoni, Christian McCracken, Henry Memeo, Pierdomenico Meneux, Baptiste Nair, Preethi Porciani, Cristiano Presotto, Valentina Scaramella, Roberto TI MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; galaxies: distances and redshifts; galaxies: evolution ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; STAR-FORMATION HISTORY; VLT DEEP SURVEY; 1ST EPOCH DATA; SIMILAR-TO 1; STELLAR MASS; REDSHIFT SURVEY; LUMINOSITY FUNCTION; FORMING GALAXIES AB We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z similar to 1, leading to the idea of two distinct processes of "mass quenching" and "environment quenching." The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z similar to 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and alpha(s) for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by Delta alpha(s) similar to 1. The other component is produced by environment effects and has the same M* and alpha(s) as the star-forming galaxies but an amplitude that is strongly dependent on environment. Subsequent merging of quenched galaxies will modify these predictions somewhat in the denser environments, mildly increasing M* and making alpha(s) slightly more negative. All of these detailed quantitative inter-relationships between the Schechter parameters of the star-forming and passive galaxies, across a broad range of environments, are indeed seen to high accuracy in the SDSS, lending strong support to our simple empirically based model. We find that the amount of post-quenching "dry merging" that could have occurred is quite constrained. Our model gives a prediction for the mass function of the population of transitory objects that are in the process of being quenched. Our simple empirical laws for the cessation of star formation in galaxies also naturally produce the "anti-hierarchical" run of mean age with mass for passive galaxies, as well as the qualitative variation of formation timescale indicated by the relative alpha-element abundances. C1 [Peng, Ying-Jie; Lilly, Simon J.; Kovac, Katarina; Knobel, Christian; Maier, Christian; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; Oesch, Pascal; Barnes, Luke; Bordoloi, Rongmon; Porciani, Cristiano] ETH, Astron Inst, CH-8093 Zurich, Switzerland. [Bolzonella, Micol; Pozzetti, Lucia; Zamorani, Gianni; Coppa, Graziano; Mignoli, Marco; Ricciardelli, Elena; Vergani, Daniela; Zucca, Elena; Cappi, Alberto; Nair, Preethi] INAF Osservatorio Astronom Bologna, I-40127 Bologna, Italy. [Renzini, Alvio] INAF Osservatorio Astronom Padova, I-35122 Padua, Italy. [Ilbert, Olivier; Cucciati, Olga; De Ravel, Loic; Kneib, Jean-Paul; Le Fevre, Olivier; de la Torre, Sylvain; Le Brun, Vincent; Tresse, Laurence; Welikala, Niraj; Abbas, Ummi; Cassata, Paolo] Lab Astrophys Marseille, F-13388 Marseille 13, France. [Iovino, Angela; Presotto, Valentina] INAF Osservatorio Astronom Brera, I-20121 Milan, Italy. [Tasca, Lidia; Scodeggio, Marco; Franzetti, Paolo; Garilli, Bianca; Bottini, Dario; Fumana, Marco; Maccagni, Dario; Memeo, Pierdomenico] INAF IASF Milano, I-20133 Milan, Italy. [Sanders, David] Univ Hawaii, Honolulu, HI 96822 USA. [Scoville, Nicholas] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Contini, Thierry; Lamareille, Fabrice; Le Borgne, Jean-Francois; Montero, Enrique Perez; Pello, Roser] Univ Toulouse, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Mainieri, Vincenzo; Meneux, Baptiste] European So Observ, D-85748 Garching, Germany. [Bongiorno, Angela; Tanaka, Masayuki; Hasinger, Gunther] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Cimatti, Andrea] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Koekemoer, Anton] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Leauthaud, Alexei] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Lab & Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Marinoni, Christian] Ctr Phys Theor, F-13288 Marseille 9, France. [McCracken, Henry] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Scaramella, Roberto] INAF Osservatorio Astronom Roma, Osservatorio Astronom Roma, I-00040 Monte Porzio Catone, Italy. RP Peng, YJ (reprint author), ETH, Astron Inst, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. RI Pello, Roser/G-4754-2010; Le Fevre, Olivier/G-7389-2011; Kneib, Jean-Paul/A-7919-2015; Zucca, Elena/O-9396-2015; Bardelli, Sandro/O-9369-2015; Bolzonella, Micol/O-9495-2015; Cappi, Alberto/O-9391-2015; Mignoli, Marco/O-9426-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Zucca, Elena/0000-0002-5845-8132; Bardelli, Sandro/0000-0002-8900-0298; Bolzonella, Micol/0000-0003-3278-4607; Cappi, Alberto/0000-0002-9200-7167; Mignoli, Marco/0000-0002-9087-2835; Iovino, Angela/0000-0001-6958-0304; Scaramella, Roberto/0000-0003-2229-193X; Barnes, Luke/0000-0002-0016-9485; Bongiorno, Angela/0000-0002-0101-6624; Scodeggio, Marco/0000-0002-2282-5850; Vergani, Daniela/0000-0003-0898-2216; Oesch, Pascal/0000-0001-5851-6649; Garilli, Bianca/0000-0001-7455-8750; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS 5-26555]; Swiss National Science Foundation FX Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839. Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, operated by AURA Inc., under NASA contract NAS 5-26555, with the Subaru Telescope, operated by the National Astronomical Observatory of Japan, with the telescopes of the National Optical Astronomy Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation, and with the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.; The zCOSMOS survey was undertaken at the ESO VLT as Large Program 175.A-0839. We gratefully acknowledge the work of many individuals, not appearing as authors of this paper, whose work has enabled large surveys such as COSMOS and the SDSS. We also thank Sebastiano Cantalupo for a very helpful and critical reading of an earlier draft of this paper, and the anonymous referee for a helpful and sympathetic reading. We gratefully acknowledge NASA's IDL Astronomy Users Library, the IDL code base maintained by D. Schlegel, the kcorrect package of M. Blanton, and the star formation rates from J. Brinchmann taken from the MPA Web site. This work was supported in part by the Swiss National Science Foundation. NR 88 TC 531 Z9 534 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 193 EP 221 DI 10.1088/0004-637X/721/1/193 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900013 ER PT J AU Lopez-Urrutia, JRC Beiersdorfer, P AF Lopez-Urrutia, J. R. Crespo Beiersdorfer, P. TI MEASUREMENT OF THE RADIATIVE DECAY RATE OF THE METASTABLE (2s(2)2p(3/2)(5)3s(1/2))((J=2)) LEVEL IN Fe XVII SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; atomic processes; line: formation; X-rays: general ID BEAM ION-TRAP; SPECTRAL-LINE INTENSITIES; HIGHLY-CHARGED IONS; 1S2S S-3(1) LEVEL; X-RAY; ATOMIC DATA; LABORATORY MEASUREMENTS; LIFETIME MEASUREMENTS; CORONAL LINES; XMM-NEWTON AB The radiative decay rate of the (2s(2)2p(3/2)(5)3s(1/2))(J=2) -> (2s(2)2p(6))(J=0) transition was measured in Ne-like Fe XVII. This transition forms the prominent magnetic quadrupole line, dubbed M2 or 3H, in the Fe XVII spectrum at 17.10 angstrom. Different theoretical models predict radiative rates for this transition that diverge by almost a factor of 2, making intensity predictions for this line uncertain in environments where it is affected by de-excitation due to either electron-impact collisions or photoionization. Our result of (2.04(-0.09)(+0.03)) x 10(5) s(-1) is very close to the value of 2.06 x 10(5) s(-1) predicted by the Flexible Atomic Code. C1 [Lopez-Urrutia, J. R. Crespo; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lopez-Urrutia, JRC (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. RI Crespo Lopez-Urrutia, Jose R./F-7069-2011 OI Crespo Lopez-Urrutia, Jose R./0000-0002-2937-8037 FU NASA [NNG06WF08I]; US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX P.B. gratefully acknowledges the help from Ming-Feng Gu in setting up and executing the Flexible Atomic Code. This work was supported by NASA's Astronomy and Physics Research and Analysis Program under work order NNG06WF08I and performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 48 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 576 EP 581 DI 10.1088/0004-637X/721/1/576 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900040 ER PT J AU Arcavi, I Gal-Yam, A Kasliwal, MM Quimby, RM Ofek, EO Kulkarni, SR Nugent, PE Cenko, SB Bloom, JS Sullivan, M Howell, DA Poznanski, D Filippenko, AV Law, N Hook, I Jonsson, J Blake, S Cooke, J Dekany, R Rahmer, G Hale, D Smith, R Zolkower, J Velur, V Walters, R Henning, J Bui, K McKenna, D Jacobsen, J AF Arcavi, Iair Gal-Yam, Avishay Kasliwal, Mansi M. Quimby, Robert M. Ofek, Eran O. Kulkarni, Shrinivas R. Nugent, Peter E. Cenko, S. Bradley Bloom, Joshua S. Sullivan, Mark Howell, D. Andrew Poznanski, Dovi Filippenko, Alexei V. Law, Nicholas Hook, Isobel Joensson, Jakob Blake, Sarah Cooke, Jeff Dekany, Richard Rahmer, Gustavo Hale, David Smith, Roger Zolkower, Jeff Velur, Viswa Walters, Richard Henning, John Bui, Kahnh McKenna, Dan Jacobsen, Janet TI CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID GAMMA-RAY BURSTS; RICH CIRCUMSTELLAR MEDIUM; DIGITAL SKY SURVEY; RELATIVE FREQUENCIES; IC SUPERNOVA-2004GT; LOW-RESOLUTION; HOST GALAXIES; IA SUPERNOVA; SN 2005GL; PROGENITOR AB We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M(r) approximate to -14 mag) and including a substantial fraction (>20%) of dwarf (M(r) approximate to -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "normal" SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as "normal" SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25(-0.15)(+0.3) and 0.23(-0.08)(+0.11), respectively; 1 sigma uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population. C1 [Arcavi, Iair; Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel. [Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Kulkarni, Shrinivas R.; Law, Nicholas; Zolkower, Jeff] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Nugent, Peter E.; Poznanski, Dovi] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Bloom, Joshua S.; Poznanski, Dovi; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Sullivan, Mark; Joensson, Jakob; Blake, Sarah] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Howell, D. Andrew] Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Law, Nicholas] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Hook, Isobel] INAF Osserv Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan; Jacobsen, Janet] Caltech Opt Observ, Caltech Opt Observ, Pasadena, CA 91125 USA. RP Arcavi, I (reprint author), Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel. EM iair.arcavi@weizmann.ac.il OI Sullivan, Mark/0000-0001-9053-4820; Gal-Yam, Avishay/0000-0002-3653-5598 FU Israeli Science Foundation; US-Israel Binational Science Foundation; EU; Benoziyo Center for Astrophysics; Minerva grant; Peter and Patricia Gruber Awards; US Department of Energy Scientific Discovery [DE-FG02-06ER06-04]; Royal Society; Weizmann-UK Making Connections grant; Gary and Cynthia Bengier; US National Science Foundation [AST-0908886]; TABASGO Foundation; US Department of Energy; National Science Foundation [0941742]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The Weizmann Institute PTF partnership is supported by the Israeli Science Foundation via grants to A. G. Collaborative work between A. G. and S. R. K. is supported by the US-Israel Binational Science Foundation. A. G. further acknowledges support from the EU FP7 Marie Curie program via an IRG fellowship, the Benoziyo Center for Astrophysics, a Minerva grant, and the Peter and Patricia Gruber Awards. P.E.N. is supported by the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. M. S. acknowledges support from the Royal Society; M. S. and A. G. are also grateful for a Weizmann-UK Making Connections grant. A. V. F. and S. B. C. acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, US National Science Foundation grant AST-0908886, and the TABASGO Foundation. J.S.B. was partially supported by a SciDAC grant from the US Department of Energy and a grant from the National Science Foundation (award 0941742). The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project.; The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We are grateful to the staff of the Keck, Lick, Palomar, Roque de los Muchachos, VLT, and Gemini Observatories for their assistance. We thank Chris Lidman for processing the X-Shooter data used for the classification of PTF10bau. NR 63 TC 90 Z9 90 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 777 EP 784 DI 10.1088/0004-637X/721/1/777 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900057 ER PT J AU Anstey, MR Corbett, MT Majzoub, EH Cordaro, JG AF Anstey, Mitchell R. Corbett, Michael T. Majzoub, Eric H. Cordaro, Joseph G. TI Improved Synthesis of Bis(borano)hypophosphite Salts SO INORGANIC CHEMISTRY LA English DT Article ID P-STEREOGENIC PHOSPHINES; FREE HYDROGEN ACTIVATION; PROTIC ACID BEHAVIOR; ASYMMETRIC CATALYSIS; BORANE ADDUCTS; AMINE-BORANE; PHOSPHORUS; DERIVATIVES; PRECURSORS; DIHYDROGEN AB A synthesis of the bis(borano)hypophosphite anion with various counterions has been developed to make use of more benign and commercially available reagents. This method avoids the use of potentially dangerous reagents used by previous methods and gives the final products in good yield. Details of the crystal structure determination of the sodium salt in space group Ama2 are given using a novel computational technique combined with Rietveld refinement. C1 [Anstey, Mitchell R.; Corbett, Michael T.; Cordaro, Joseph G.] Sandia Natl Labs, Livermore, CA 94551 USA. [Majzoub, Eric H.] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Majzoub, Eric H.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. RP Cordaro, JG (reprint author), Sandia Natl Labs, POB 969,MS 9403, Livermore, CA 94551 USA. EM jgcorda@sandia.gov FU U.S. Department of Energy, Office of Efficiency; Renewable Energy; Metal Hydrides Center of Excellence [DE-AC04-94AL8500] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the United States Department of Energy under Contract DE-AC04-94AL85000. The authors acknowledge the U.S. Department of Energy, Office of Efficiency and Renewable Energy, and the Metal Hydrides Center of Excellence (Award DE-AC04-94AL8500) for funding and Dr. Vitalie Stavila (Sandia National Laboratories) for his intellectual and experimental contributions. NR 34 TC 7 Z9 7 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 20 PY 2010 VL 49 IS 18 BP 8197 EP 8199 DI 10.1021/ic101326c PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 647PF UT WOS:000281630000007 PM 20722376 ER PT J AU Bugaris, DE Wells, DM Yao, JY Skanthakumar, S Haire, RG Soderholm, L Ibers, JA AF Bugaris, Daniel E. Wells, Daniel M. Yao, Jiyong Skanthakumar, S. Haire, Richard G. Soderholm, L. Ibers, James A. TI Dichalcogenide Bonding in Seven Alkali-Metal Actinide Chalcogenides of the KTh2Se6 Structure Type SO INORGANIC CHEMISTRY LA English DT Article ID CHARGE-DENSITY-WAVE; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; URANIUM CHALCOGENIDES; OXYSULFURES DURANIUM; TRANSPORT-PROPERTIES; DES SULFURES; SELENIDES; POTASSIUM; NPASTE AB The solid-state compounds CsTh2Se6, Rb0.85U1.74S6, RbU2Se6, TIU2Se6, Cs-0.88(La0.68U1.32)Se-6, KNP2Se6, and CsNp2Se6 of the AAn(2)Q(6) family (A = alkali metal or TI; An = Th, U, Np; Q = S, Se, Te) have been synthesized by high-temperature techniques. All seven crystallize in space group lmmm of the orthorhombic system in the KTh2Se6 structure type. Evidence of long-range order and modulation were found in the X-ray diffraction patterns of TIU2Se6 and CsNp2Se6. A 4a X 4b supercell was found for TIU2Se6 whereas a 5a x 5b x 5c supercell was found for CsNp2Se6. All seven compounds exhibit Q-Q interactions and, depending on the radius ratio R-An/R-A1 disorder of the A cation over two sites. The electrical conductivity of RbU2Se6, measured along [100], is 6 x 10(-5) S cm(-1) at 298 K. The interatomic distances, including those in the modulated structure of TIU2Se6, and physical properties suggest the compounds may be formulated as containing tetravalent Th or U, but the formal oxidation state of Np in the modulated structure of CsNp2Se6 is less certain. The actinide contraction from Th to U to Np is apparent in the interatomic distances. C1 [Bugaris, Daniel E.; Wells, Daniel M.; Yao, Jiyong; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wells, Daniel M.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ibers, JA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM ibers@chem.northwestern.edu FU Northwestern University by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering [ER-15522]; National Science Foundation [DMR 05-20513]; U.S. Department of Energy, OBES, Chemical Sciences Division [DEAC02-06CH11357] FX This research was supported at Northwestern University by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522 and by the MRSEC program of the National Science Foundation (DMR 05-20513) at the Materials Research Center, and at Argonne National Laboratory by the U.S. Department of Energy, OBES, Chemical Sciences Division, under contract DEAC02-06CH11357. The measurements of magnetism and electrical conductivity for RbU2Se6 were made at Northwestern University in the Materials Research Science and Engineering Center, Magnet and Low Temperature Facility, supported by the National Science Foundation (DMR05-20513). D.M.W. would like to thank Dr. Christos Malliakas of Northwestern University and Dr. Danielle Gray of the University of Illinois for helpful discussions. NR 53 TC 14 Z9 14 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 20 PY 2010 VL 49 IS 18 BP 8381 EP 8388 DI 10.1021/ic1008895 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 647PF UT WOS:000281630000027 PM 20712355 ER PT J AU Wendroff, B AF Wendroff, Burton TI A compact artificial viscosity equivalent to a tensor viscosity SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Artificial viscosity; Tensor viscosity; Staggered Lagrangian AB We present a compact artificial viscosity for staggered grid Lagrangian hydrodynamics on polygonal cells in two Cartesian dimensions and using a decomposition into triangles we show that this viscosity is equivalent to a tensor viscosity of Campbell and Shashkov for quadrilaterals. (C) 2010 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wendroff, B (reprint author), Los Alamos Natl Lab, Div Theoret, T-5,MS-B284, Los Alamos, NM 87545 USA. EM bbw@lanl.gov FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [W-7405-ENG-36, DE-AC52-06NA25396]; DOE; DOE Office of Science; Los Alamos National Laboratory FX This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory, under Contract W-7405-ENG-36 and Contract DE-AC52-06NA25396. The author acknowledges the partial support of the DOE Advance Simulation and Computing (ASC) Program and the DOE Office of Science ASCR Program, and the Laboratory Directed Research and Development program (LDRD) at the Los Alamos National Laboratory. NR 2 TC 3 Z9 3 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6673 EP 6675 DI 10.1016/j.jcp.2010.05.034 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700002 ER PT J AU Marksteiner, QR AF Marksteiner, Q. R. TI The use of tricubic interpolation with spectral derivatives to integrate particle trajectories in complicated electromagnetic fields SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Electromagnetic; Hermite; Interpolation; Particle follower; Spectral ID COLUMBIA NONNEUTRAL TORUS; PLASMAS; STELLARATOR; TRANSPORT AB Codes that calculate the trajectories of particles in complicated electromagnetic fields often include spectral methods, which take advantage of the speed of FFTs to rapidly solve for the fields. In this case, Hermite tricubic interpolation can be used to calculate the fields between grid points, with spectral derivates used to determine the interpolation coefficients. This method is extremely accurate, and in the case of electrostatic fields produces an energy conserving force when incorporated into a particle follower code. Published by Elsevier Inc. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Marksteiner, QR (reprint author), Los Alamos Natl Lab, ISR-6,MS H851, Los Alamos, NM 87545 USA. EM qrm@lanl.gov FU US DOE [DE-FG02-02ER54690]; NSF-DOE Partnership in Basic Plasma Science [NSF-PHY-03-17359]; NSF [NSF-PHY-04-49813, NSF-PHY-06-13662] FX The authors thank Paul Ennever and Dr. Thomas Sunn Pedersen. This work was supported by the US DOE Grant No. DE-FG02-02ER54690, the NSF-DOE Partnership in Basic Plasma Science, Grant No. NSF-PHY-03-17359, the NSF CAREER program, Grant Nos. NSF-PHY-04-49813 and NSF-PHY-06-13662. NR 21 TC 0 Z9 0 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6688 EP 6695 DI 10.1016/j.jcp.2010.05.011 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700004 ER PT J AU Rector, DR Stewart, ML AF Rector, David R. Stewart, Mark L. TI A semi-implicit lattice method for simulating flow SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lattice-Boltzmann method; Incompressible Navier-Stokes equation; Lid-driven cavity; Unsteady Poiseuille flow; Oscillating plate ID INCOMPRESSIBLE VISCOUS FLOWS; NAVIER-STOKES EQUATIONS; BOLTZMANN BGK MODEL; BOUNDARY-CONDITIONS; KINETIC SCHEME; PRESSURE AB We propose a new semi-implicit lattice numerical method for modeling fluid flow that depends only on local primitive variable information (density, pressure, velocity) and not on relaxed upstream distribution function values. This method has the potential for reducing parallel processor communication and permitting larger time steps than the lattice-Boltzmann method. Several benchmark problems are solved to demonstrate the accuracy of the method. (C) 2010 Elsevier Inc. All rights reserved. C1 [Rector, David R.; Stewart, Mark L.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Rector, DR (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM david.rector@pnl.gov FU US Department of Energy FX This work was performed under a US Department of Energy LDRD program. NR 22 TC 3 Z9 3 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6732 EP 6743 DI 10.1016/j.jcp.2010.05.020 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700007 ER PT J AU Lin, PT Shadid, JN AF Lin, Paul T. Shadid, John N. TI Towards large-scale multi-socket, multicore parallel simulations: Performance of an MPI-only semiconductor device simulator SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Multicore; Multicore efficiency; MPI-only; Multilevel preconditioners; Newton-Krylov; Drift-diffusion; Semiconductor devices ID DOMAIN DECOMPOSITION PRECONDITIONERS; SMOOTHED AGGREGATION; LINEAR-SYSTEMS; FORMULATION; FLOW AB This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a set of multi-socket, multicore architectures with nonuniform memory access (NUMA) compute nodes. These multicore architectures include two linux clusters with multicore processors: a quad-socket, quad-core AMD Opteron platform and a dual-socket, quad-core Intel Xeon Nehalem platform; and a dual-socket, six-core AMD Opteron workstation. These platforms have complex memory hierarchies that include local core-based cache, local socket-based memory, access to memory on the same mainboard from another socket, and then memory across network links to different nodes. The specific semiconductor device simulator used in this study employs a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling results presented include a large-scale problem of 100+ million unknowns on 4096 cores and a comparison with the Cray XT3/4 Red Storm capability platform. Although the MPI- only device simulator employed for this work can take advantage of all the cores of quad-core and six-core CPUs, the efficiency of the linear system solve is decreasing with increased core count and eventually a different programming paradigm will be needed. (C) 2010 Elsevier Inc. All rights reserved. C1 [Lin, Paul T.; Shadid, John N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lin, PT (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM ptlin@sandia.gov FU DOE; DOE Office of Science FX Partially supported by the DOE NNSA ASC program and the DOE Office of Science ASCR Applied Math Research program and ASCR IAA program at Sandia National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 48 TC 10 Z9 10 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6804 EP 6818 DI 10.1016/j.jcp.2010.05.023 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700010 ER PT J AU Luo, H Luo, LQ Nourgaliev, R Mousseau, VA Dinh, N AF Luo, Hong Luo, Luqing Nourgaliev, Robert Mousseau, Vincent A. Dinh, Nam TI A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Reconstruction schemes; Discontinuous Galerkin methods; Compressible Navier-Stokes equations ID FINITE-ELEMENT METHOD; UNSTRUCTURED MESHES; CONSERVATION-LAWS; EULER EQUATIONS; SCHEMES; FLOWS; CONSTRUCTION; VOLUME AB A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the NavierStokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Luo, Hong; Luo, Luqing] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Nourgaliev, Robert; Mousseau, Vincent A.; Dinh, Nam] Idaho Natl Lab, Thermal Sci & Safety Anal Dept, Idaho Falls, ID 83415 USA. RP Luo, H (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. EM hong_luo@ncsu.edu RI Luo, Hong/A-9133-2011 FU US Department of Energy [DE-AC07-051D14517 (INL/CON-10-17570)]; INL FX This manuscript has been authored by Battelle Energy Alliance, LLC under contract No. DE-AC07-051D14517 (INL/CON-10-17570) with the US Department of Energy. The United States Government retains and the published, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The first author would like to acknowledge the partial support for this work provided by the INL staff-faculty exchange program, while he was in residence at Reactor Safety Simulation Group, Idaho National Laboratory, Idaho Falls, ID. NR 37 TC 42 Z9 47 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6961 EP 6978 DI 10.1016/j.jcp.2010.05.033 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700018 ER PT J AU Lin, G Tartakovsky, AM Tartakovsky, DM AF Lin, G. Tartakovsky, A. M. Tartakovsky, D. M. TI Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Random composite; Polynomial chaos; Stochastic finite element; Stochastic collocation method ID HETEROGENEOUS POROUS-MEDIA; PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; MONOMIAL CUBATURE RULES; PARAMETRIC UNCERTAINTY; ORTHOGONAL POLYNOMIALS; TRANSIENT FLOW; SOBOLEV SPACES; MEAN FLOW; AQUIFERS AB Quantitative predictions of the behavior of many deterministic systems are uncertain due to ubiquitous heterogeneity and insufficient characterization by data. We present a computational approach to quantify predictive uncertainty in complex phenomena, which is modeled by (partial) differential equations with uncertain parameters exhibiting multiscale variability. The approach is motivated by flow in random composites whose internal architecture (spatial arrangement of constitutive materials) and spatial variability of properties of each material are both uncertain. The proposed two-scale framework combines a random domain decomposition (RDD) and a probabilistic collocation method (PCM) on sparse grids to quantify these two sources of uncertainty, respectively. The use of sparse grid points significantly reduces the overall computational cost, especially for random processes with small correlation lengths. A series of one-, two-, and three-dimensional computational examples demonstrate that the combined RDD-PCM approach yields efficient, robust and non-intrusive approximations for the statistics of diffusion in random composites. Published by Elsevier Inc. C1 [Lin, G.; Tartakovsky, A. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Tartakovsky, D. M.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP Lin, G (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM guang.lin@pnl.gov; dmt@ucsd.edu RI Lin, Guang/D-1376-2011; Tartakovsky, Daniel/E-7694-2013 FU US DOE Office of Advanced Scientific Computing Research; US Department of Energy [DE-AC05-76RL01830] FX This work was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Research. Simulations were performed using the computational resources of the Environmental Molecular Sciences Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. NR 59 TC 24 Z9 24 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 6995 EP 7012 DI 10.1016/j.jcp.2010.05.036 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700020 ER PT J AU Athenes, M Marinica, MC AF Athenes, Manuel Marinica, Mihai-Cosmin TI Free energy reconstruction from steered dynamics without post-processing SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Free-energy calculations; Statistical thermodynamics; Computer chemistry; Molecular simulation; Monte Carlo method ID MONTE-CARLO SIMULATION; MOLECULAR-DYNAMICS; STOCHASTIC DYNAMICS; ENSEMBLE AVERAGES; SYSTEMS; ALGORITHM; DIFFUSION; STATES; EQUILIBRIUM; INFORMATION AB Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-a. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing. (C) 2010 Elsevier Inc. All rights reserved. C1 [Athenes, Manuel; Marinica, Mihai-Cosmin] CEA Saclay, Serv Rech Met Phys, Dept Mat Nucl, F-91191 Gif Sur Yvette, France. [Athenes, Manuel] LLNL, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Athenes, M (reprint author), CEA Saclay, Serv Rech Met Phys, Dept Mat Nucl, Batiment 520, F-91191 Gif Sur Yvette, France. EM Manuel.Athenes@cea.fr RI Marinica, Mihai -Cosmin/C-7058-2009 FU Commissariat a L'Energie Atomique; GENCI-CINES [2009-x2009096020] FX We are much indebted to Eric Vanden-Eijnden for suggesting the use of autonomous steering [12] and for advising us. We warmly thank Gabriel Stoltz for relevant comments on early versions of the manuscript, Florent Calvo for providing us with the (Q4-gradient subroutine, Giovanni Ciccotti, John Chodera and David Minh for valuable advice. This work was mainly financed by Commissariat a L'Energie Atomique (DSOE program), partly carried out at Lawrence Livermore National Laboratory (under a VSP agreement) and performed using HPC resources from GENCI-CINES (Grant 2009-x2009096020). NR 70 TC 13 Z9 13 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 7129 EP 7146 DI 10.1016/j.jcp.2010.06.003 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700027 ER PT J AU Liovic, P Francois, M Rudman, M Manasseh, R AF Liovic, Petar Francois, Marianne Rudman, Murray Manasseh, Richard TI Efficient simulation of surface tension-dominated flows through enhanced interface geometry interrogation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Height functions; Curvature; Surface tension; Volume-of-Fluid; Level-set; Elliptic solvers ID COUPLED LEVEL SET; OF-FLUID METHOD; DISCONTINUOUS COEFFICIENTS; VOLUME FRACTIONS; BUBBLE DYNAMICS; ALGORITHM; CAVITATION; CURVATURE; EQUATIONS; SYSTEMS AB In this paper, three improvements for modelling surface tension-dominated interfacial flows using interface tracking-based solution algorithms are presented. We have developed an improved approach to curvature estimation for incorporation into modern mesh-based surface tension models such as the Continuum Surface Force (CSF) and Sharp Surface Force (SSF) models. The scheme involves generating samples of curvature estimates from the multitude of height functions that can be generated from VOF representations of interfaces, and applying quality statistics based on interface orientation and smoothness to choose optimal candidates from the samples. In this manner, the orientation-dependence of past schemes for height function-based curvature estimation is ameliorated, the use of compact stencils for efficient computation can be maintained, and robustness is enhanced even in the presence of noticeable subgrid-scale disturbances in the interface representation. For surface tension-dominated flows, the explicit capillary timestep restriction is relaxed through timescale-separated slope limiting that identifies spurious modes in curvature evolution and omits them from contributing to surface force computations, thus promoting efficiency in simulation through the use of less timesteps. Efficiency in flow simulation is further promoted by incorporating awareness of interface location into multigrid preconditioning for Krylov subspace-based solution of elliptic problems. This use of interface-cognizance in solving problems such as the Helmholtz equation and the Poisson equation enables multigrid-like convergence in discontinuous-coefficient elliptic problems without the expense of constructing the Galerkin coarse-grid operator. The key improvements in the surface tension modelling and the numerical linear algebra are also applicable to level-set-based interfacial flow simulation. (C) 2010 Elsevier Inc. All rights reserved. C1 [Liovic, Petar] CSIRO, Math Informat & Stat Div, Highett, Vic 3190, Australia. [Francois, Marianne] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Rudman, Murray] CSIRO, Math & Informat Sci Div, Clayton, Vic 3168, Australia. [Manasseh, Richard] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia. RP Liovic, P (reprint author), CSIRO, Math Informat & Stat Div, Graham Rd, Highett, Vic 3190, Australia. EM Petar.Liovic@csiro.au RI Rudman, Murray/C-6737-2008; Liovic, Petar/E-7081-2010; Francois, Marianne/B-2423-2012; Manasseh, Richard/A-2088-2010; OI Rudman, Murray/0000-0002-5649-4180; Manasseh, Richard/0000-0003-4572-4945; Francois, Marianne/0000-0003-3062-6234 FU NCI National Facility at the Australian National University; Preventative Health Flagship of the Commonwealth Scientific and Industrial Research Organization (CSIRO); US Department of Energy ASC; National Nuclear Security Administration [DE-AC52-06NA25396] FX This work was supported by the NCI National Facility at the Australian National University www.nci.org.au. PL and RM acknowledge the support of the Preventative Health Flagship of the Commonwealth Scientific and Industrial Research Organization (CSIRO). MF acknowledges the support of the US Department of Energy ASC and LDRD programs at Los Alamos National Laboratory under contract DE-AC52-06NA25396 with Los Alamos National Security, LLC for the National Nuclear Security Administration. NR 46 TC 16 Z9 16 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2010 VL 229 IS 19 BP 7520 EP 7544 DI 10.1016/j.jcp.2010.06.034 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 646VG UT WOS:000281570700049 ER PT J AU Kelkar, S Ding, M Chu, S Robinson, BA Arnold, B Meijer, A Eddebbarh, AA AF Kelkar, Sharad Ding, Mei Chu, Shaoping Robinson, Bruce A. Arnold, Bill Meijer, Arend Eddebbarh, Al-Aziz TI Modeling solute transport through saturated zone ground water at 10 km scale: Example from the Yucca Mountain license application SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Modeling solute transport; Breakthrough curves; Dispersion; Matrix diffusion; Volcanic formations; Fractured rock ID CONTAMINANT TRANSPORT; POROUS-MEDIA; SIMULATION; MIGRATION; ROCKS AB This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site. (c) 2010 Elsevier By. All rights reserved. C1 [Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A.; Eddebbarh, Al-Aziz] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arnold, Bill] Sandia Natl Labs, Albuquerque, NM 87815 USA. [Meijer, Arend] GCX Inc, Tucson, AZ 85737 USA. RP Kelkar, S (reprint author), Los Alamos Natl Lab, MS T003, Los Alamos, NM 87545 USA. EM kelkar@lanl.gov RI Robinson, Bruce/F-6031-2010 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This manuscript has been authored by Los Alamos National Laboratory, and by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy, Sandia National Laboratories, Los Alamos National Laboratory, or GCX, Inc. NR 45 TC 5 Z9 5 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD SEP 20 PY 2010 VL 117 IS 1-4 BP 7 EP 25 DI 10.1016/j.jconhyd.2010.05.003 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 655LX UT WOS:000282252600002 PM 20633953 ER PT J AU Gong, R Lu, C Wu, WM Cheng, H Gu, B Watson, DB Criddle, CS Kitanidis, PK Brooks, SC Jardine, PM Luo, J AF Gong, R. Lu, C. Wu, W. -M. Cheng, H. Gu, B. Watson, D. B. Criddle, C. S. Kitanidis, P. K. Brooks, S. C. Jardine, P. M. Luo, J. TI Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Flow-interruption tracer test; Mass transfer; Multiple-well system; Memory function; Breakthrough curve ID HIGHLY CONTAMINATED AQUIFER; POROUS-MEDIA; DIFFUSION; TRANSPORT; URANIUM; TIME; BIOAVAILABILITY; BIODEGRADATION; COLUMNS; ZONE AB Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models. (c) 2010 Elsevier B.V. All rights reserved. C1 [Gong, R.; Lu, C.; Luo, J.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Wu, W. -M.; Criddle, C. S.; Kitanidis, P. K.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Cheng, H.] Chinese Acad Sci, State Key Lab Organ Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China. [Gu, B.; Watson, D. B.; Brooks, S. C.; Jardine, P. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Luo, J (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM jian.luo@ce.gatech.edu RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012; Cheng, Hefa/A-1193-2007; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956; Cheng, Hefa/0000-0003-4911-6971; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research FX This research was sponsored by the U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, as part of the Integrated Field Research Challenge (IFRC) at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for DOE under Contract DE-ACO5-00OR22725. We thank the constructive comments from two anonymous reviewers and Dr. A Valocchi. NR 30 TC 3 Z9 3 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD SEP 20 PY 2010 VL 117 IS 1-4 BP 37 EP 45 DI 10.1016/j.jconhyd.2010.06.003 PG 9 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 655LX UT WOS:000282252600004 PM 20638152 ER PT J AU Ofan, A Gaathon, O Zhang, LH Bakhru, S Bakhru, H Zhu, YM Welch, D Osgood, RM AF Ofan, Avishai Gaathon, Ophir Zhang, Lihua Bakhru, Sasha Bakhru, Hssaram Zhu, Yimei Welch, David Osgood, Richard M., Jr. TI Spherical solid He nanometer bubbles in an anisotropic complex oxide SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; EQUATION-OF-STATE; DOUBLE WAVE-GUIDE; ION-IMPLANTATION; LITHIUM-NIOBATE; PHASE-DIAGRAM; HELIUM; LINBO3; IRRADIATION; SILICON AB We show, using room temperature, high-resolution electron microscopy studies, that implanted He in LiNbO(3) nucleates and accumulates as bubbles. These He inclusions are at similar to 20 GPa pressure and most probably in the solid phase. In addition, the energetically favored shape of the inclusions in their as-implanted form is spherical and not oblate; this spherical shape is due to the fact that their diameter is below a critical radius for balancing the surface and elastic energies as predicted by elastic theory. When annealed, the characteristic length scale of the He inclusions increases, forming faceted bubbles. Annealing also causes the He inclusions to migrate and accumulate into strings due to the preferred {10 (1) over bar4}-pyramidal-twinning planes. C1 [Ofan, Avishai; Gaathon, Ophir; Osgood, Richard M., Jr.] Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. [Zhang, Lihua; Zhu, Yimei; Welch, David] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bakhru, Sasha; Bakhru, Hssaram] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12222 USA. RP Ofan, A (reprint author), Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. EM ao2199@columbia.edu RI Zhang, Lihua/F-4502-2014 FU NSF [DMR-08-0668206]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank K. Kisslinger and D. Su for assistance on TEM imaging and helpful discussions. This work was supported by the NSF (Grant No. DMR-08-0668206). In addition, the research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 39 TC 20 Z9 21 U1 5 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2010 VL 82 IS 10 AR 104113 DI 10.1103/PhysRevB.82.104113 PG 8 WC Physics, Condensed Matter SC Physics GA 652KU UT WOS:000282006100002 ER PT J AU Schafgans, AA Homes, CC Gu, GD Komiya, S Ando, Y Basov, DN AF Schafgans, A. A. Homes, C. C. Gu, G. D. Komiya, Seiki Ando, Yoichi Basov, D. N. TI Breakdown of the universal Josephson relation in spin-ordered cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-FIELD; STATE; PSEUDOGAP; LA2-XSRXCUO4; DEPENDENCE; RESONANCE; DYNAMICS; DENSITY; PHASE AB We present c-axis infrared optical data on a number of Ba-, Sr-, and Nd-doped cuprates of the La(2)CuO(4) (La214) series in which we observe significant deviations from the universal Josephson relation linking the normal-state transport (dc conductivity sigma(dc) measured at T(c)) with the superfluid density (rho(s)): rho(s) proportional to sigma(dc)(T(c)). We find the violation of Josephson scaling is associated with striking enhancement of the anisotropy in the superfluid density. The data allow us to link the breakdown of Josephson interlayer physics with the development of magnetic order in the CuO(2) planes. C1 [Schafgans, A. A.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Homes, C. C.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Komiya, Seiki] Cent Res Inst Elect Power Ind, Kanagawa 2400196, Japan. [Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. RP Schafgans, AA (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM aschafgans@physics.ucsd.edu RI Ando, Yoichi/B-8163-2013; Gu, Genda/D-5410-2013 OI Ando, Yoichi/0000-0002-3553-3355; Gu, Genda/0000-0002-9886-3255 FU NSF; AFOSR MURI; KAKENHI [19674002, 20030004] FX We thank S. A. Kivelson, E. Fradkin, J. M. Tranquada, and E. Berg for great discussions and acknowledge funding from the NSF and AFOSR MURI. Y.A. was supported by KAKENHI under Grants No. 19674002 and No. 20030004. NR 38 TC 12 Z9 12 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2010 VL 82 IS 10 AR 100505 PG 4 WC Physics, Condensed Matter SC Physics GA 652KU UT WOS:000282006100001 ER PT J AU Williams, TJ Aczel, AA Baggio-Saitovitch, E Bud'ko, SL Canfield, PC Carlo, JP Goko, T Kageyama, H Kitada, A Munevar, J Ni, N Saha, SR Kirschenbaum, K Paglione, J Sanchez-Candela, DR Uemura, YJ Luke, GM AF Williams, T. J. Aczel, A. A. Baggio-Saitovitch, E. Bud'ko, S. L. Canfield, P. C. Carlo, J. P. Goko, T. Kageyama, H. Kitada, A. Munevar, J. Ni, N. Saha, S. R. Kirschenbaum, K. Paglione, J. Sanchez-Candela, D. R. Uemura, Y. J. Luke, G. M. TI Superfluid density and field-induced magnetism in Ba(Fe1-xCox)(2)As-2 and Sr(Fe1-xCox)(2)As-2 measured with muon spin relaxation SO PHYSICAL REVIEW B LA English DT Article ID CUPRATE SUPERCONDUCTORS; PENETRATION DEPTH; VORTEX CORES; ROTATION; TL2BA2CUO6+DELTA; EXCITATIONS; HEAT; TC AB We report muon spin rotation (mu SR) measurements of single-crystal Ba(Fe1-xCox)(2)As-2 and Sr(Fe1-xCox)(2)As-2. From measurements of the magnetic field penetration depth lambda we find that for optimally and overdoped samples, 1/lambda(T -> 0)(2) varies monotonically with the superconducting transition temperature T-C. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied. C1 [Williams, T. J.; Aczel, A. A.; Goko, T.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Baggio-Saitovitch, E.; Munevar, J.; Sanchez-Candela, D. R.] Ctr Brasilieiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Carlo, J. P.; Goko, T.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Goko, T.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Kageyama, H.; Kitada, A.] Kyoto Univ, Dept Chem, Kyoto 6068502, Japan. [Saha, S. R.; Kirschenbaum, K.; Paglione, J.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Williams, TJ (reprint author), McMaster Univ, Dept Phys & Astron, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. EM luke@mcmaster.ca RI Kageyama, Hiroshi/A-4602-2010; Candela, Dalber/G-3636-2012; Canfield, Paul/H-2698-2014; Saitovitch, Elisa/A-6769-2015; Kitada, Atsushi/H-5819-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; Williams, Travis/A-5061-2016 OI Luke, Graeme/0000-0003-4762-1173; Kitada, Atsushi/0000-0002-4387-8687; Aczel, Adam/0000-0003-1964-1943; Williams, Travis/0000-0003-3212-2726 FU NSERC; CIFAR; US NSF under the Materials World Network (MWN) [DMR-0806846]; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; AFOSR-MURI [FA9550-09-1-0603]; Partnership for International Research and Education (PIRE) [OISE-0968226] FX We appreciate the hospitality of the TRIUMF Centre for Molecular and Materials Science where the majority of these experiments were performed. Research at McMaster University is supported by NSERC and CIFAR. Work at Columbia University is supported by the US NSF under the Materials World Network (MWN: DMR-0806846) and the Partnership for International Research and Education (PIRE: OISE-0968226) programs. Work at Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Work at the University of Maryland was supported by AFOSR-MURI Grant No. FA9550-09-1-0603. NR 48 TC 20 Z9 20 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 20 PY 2010 VL 82 IS 9 AR 094512 DI 10.1103/PhysRevB.82.094512 PG 7 WC Physics, Condensed Matter SC Physics GA 652KG UT WOS:000282004700006 ER PT J AU Graham, PW Harnik, R Rajendran, S AF Graham, Peter W. Harnik, Roni Rajendran, Surjeet TI Observing the dimensionality of our parent vacuum SO PHYSICAL REVIEW D LA English DT Article ID ANISOTROPY; UNIVERSE AB It seems generic to have vacua with lower dimensionality than ours. We consider the possibility that the observable universe originated in a transition from one of these vacua. Such a universe has anisotropic spatial curvature. This may be directly observable through its late-time effects on the CMB if the last period of slow-roll inflation was not too long. These affect the entire sky, leading to correlations which persist up to the highest CMB multipoles, thus allowing a conclusive detection above cosmic variance. Further, this anisotropic curvature causes different dimensions to expand at different rates. This leads to other potentially observable signals including a quadrupolar anisotropy in the CMB which limits the size of the curvature. Conversely, if isotropic curvature is observed it may be evidence that our parent vacuum was at least 3 + 1 dimensional. Such signals could reveal our history of decompactification, providing evidence for the existence of vastly different vacua. C1 [Graham, Peter W.; Harnik, Roni] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Harnik, Roni] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Rajendran, Surjeet] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Rajendran, Surjeet] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Graham, PW (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. OI Graham, Peter/0000-0002-1600-1601 FU DOE Office of Nuclear Physics [DE-FG02-94ER40818]; NSF [PHY-0600465] FX We would like to thank Savas Dimopoulos, Sergei Dubovsky, Ben Freivogel, Steve Kahn, John March-Russell, Stephen Shenker, Leonard Susskind, and Kirsten Wickelgren for useful discussions and the Dalitz Institute at Oxford for hospitality. S. R. was supported by the DOE Office of Nuclear Physics under Grant No. DE-FG02-94ER40818. S. R. is also supported by NSF Grant No. PHY-0600465. While this work was in progress we became aware of interesting work by another group working on different signals of a similar general framework [27]. NR 44 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 20 PY 2010 VL 82 IS 6 AR 063524 DI 10.1103/PhysRevD.82.063524 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 652YB UT WOS:000282047400001 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Deviveiros, PO Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Deviveiros, P. -O. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for New Physics with a Dijet Plus Missing E-T Signature in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCALAR LEPTOQUARKS; HADRON COLLIDERS; FERMILAB; FB(-1); JETS AB We present results of a signature-based search for new physics using a dijet plus missing transverse energy (E-T) data sample collected in 2 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. We observe no significant event excess with respect to the standard model prediction and extract a 95% C. L. upper limit on the cross section times acceptance for a potential contribution from a nonstandard model process. The search is made by using novel, data-driven techniques for estimating backgrounds that are applicable to first searches at the LHC. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84228, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Deviveiros, P. -O.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Deviveiros, P. -O.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Deviveiros, P. -O.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Deviveiros, P. -O.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013 OI Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank M. Kramer for providing next-to-leading order leptoquark production cross sections. We thank Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 24 TC 20 Z9 20 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 20 PY 2010 VL 105 IS 13 AR 131801 DI 10.1103/PhysRevLett.105.131801 PG 8 WC Physics, Multidisciplinary SC Physics GA 653AK UT WOS:000282054100003 ER PT J AU Buividovich, PV Chernodub, MN Kharzeev, DE Kalaydzhyan, T Luschevskaya, EV Polikarpov, MI AF Buividovich, P. V. Chernodub, M. N. Kharzeev, D. E. Kalaydzhyan, T. Luschevskaya, E. V. Polikarpov, M. I. TI Magnetic-Field-Induced Insulator-Conductor Transition in SU(2) Quenched Lattice Gauge Theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID DILEPTON EMISSION; QCD; COLLISIONS; VIOLATION; PHOTON; PLASMA AB We study the correlator of two vector currents in quenched SU(2) lattice gauge theory with a chirally invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement phase the correlator of the components of the current parallel to the magnetic field decays much slower than in the absence of a magnetic field, while for other components the correlation length slightly decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find that in the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field. C1 [Buividovich, P. V.; Kalaydzhyan, T.; Luschevskaya, E. V.; Polikarpov, M. I.] ITEP, Moscow 117218, Russia. [Buividovich, P. V.; Luschevskaya, E. V.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chernodub, M. N.] Univ Tours, LMPT, CNRS UMR 6083, F-37200 Tours, France. [Chernodub, M. N.] Univ Ghent, DMPA, B-9000 Ghent, Belgium. [Kharzeev, D. E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, D. E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kalaydzhyan, T.] DESY, Theory Grp, D-22607 Hamburg, Germany. RP Buividovich, PV (reprint author), ITEP, B Cheremushkinskaya 25, Moscow 117218, Russia. RI Chernodub, Maxim/B-9426-2009 OI Chernodub, Maxim/0000-0003-2101-4914 FU RFBR [08-02-00661-a, 09-02-00338-a]; DFG-RFBR [436 RUS]; Russian Federal Agency for Nuclear Power; U.S. Department of Energy [DE-AC02-98CH10886]; Dynasty foundation; FAIR-Russia Research Center (FRRC); French Agence Nationale de la Recherche [ANR-09-JCJC HYPERMAG]; [NSh-679.2008.2] FX The authors are grateful to A. S. Gorsky, A. Krikun, V. I. Shevchenko, O. V. Teryaev, and V. I. Zakharov for interesting and useful discussions. This work was partly supported by Grants RFBR No. 08-02-00661-a, 09-02-00338-a and DFG-RFBR No. 436 RUS, a Grant for scientific schools No. NSh-679.2008.2, and by the Russian Federal Agency for Nuclear Power. The work of D. K. was supported by Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. P. B. was partially supported by a personal grant from the Dynasty foundation and from the FAIR-Russia Research Center (FRRC). The work of M. N. C. was partially supported by the French Agence Nationale de la Recherche project ANR-09-JCJC HYPERMAG. The calculations were partially done on the MVS 50 K at the Moscow Joint Supercomputer Center. NR 28 TC 78 Z9 79 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 20 PY 2010 VL 105 IS 13 AR 132001 DI 10.1103/PhysRevLett.105.132001 PG 4 WC Physics, Multidisciplinary SC Physics GA 653AK UT WOS:000282054100004 PM 21230764 ER PT J AU Wang, M Guo, ZY AF Wang, Moran Guo, Zeng-Yuan TI Understanding of temperature and size dependences of effective thermal conductivity of nanotubes SO PHYSICS LETTERS A LA English DT Article DE Thermal conductivity; One-dimensional materials; Heat conduction; Non-Fourier conduction; Nanotubes ID CARBON NANOTUBES; HEAT PROPAGATION; LENGTH AB The anomalous thermal transport properties of nanotubes may lead to many important applications, but the mechanisms are still unclear. In this work, we present new governing equations for non-Fourier heat conduction in nanomaterials based on the concept of thermomass. The effective thermal conductivities of nanotubes are therefore predicted which agree very well with the available experimental data. Analysis suggests that the inertial effect of heat and the confined heat flux by nanostructured surfaces are two key mechanisms causing the anomalous temperature and size dependences of effective thermal conductivity of nanotubes. Published by Elsevier B.V. C1 [Wang, Moran] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Wang, Moran] Los Alamos Natl Lab, Phys Condense Matter & Complex Syst Theoret Div, Los Alamos, NM 87545 USA. [Guo, Zeng-Yuan] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. RP Wang, M (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mwang@lanl.gov RI Wang, Moran/A-1150-2010 FU DOE [20080727PRD2]; National Natural Science Foundation of China [50606018] FX We acknowledge helpful discussions with L. Shi and R.K. Chen on experimental details and with G. Chen on theory. This work is supported by the DOE LDRD Project 20080727PRD2 through the J.R. Oppenheimer Fellowship awarded to M.W. and the National Natural Science Foundation of China (No. 50606018). NR 32 TC 41 Z9 44 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD SEP 20 PY 2010 VL 374 IS 42 BP 4312 EP 4315 DI 10.1016/j.physleta.2010.08.058 PG 4 WC Physics, Multidisciplinary SC Physics GA 661LD UT WOS:000282728900007 ER PT J AU Airapetian, A Akopovz, N Akopov, Z Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetisyan, E Bacchetta, A Belostotski, S Bianchi, N Blok, HP Borissov, A Bowles, J Brodsky, I Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Elschenbroichk, U Fabbrif, R Fantonij, A Felawka, L Frullani, S Gabbert, D Gapienkos, G Gapienkos, V Garibaldi, F Gharibyan, V Giordano, F Gliske, S Golembiovskaya, M Hadjidakis, C Hartig, M Hasch, D Hill, G Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Lvanilov, A Jackson, HE Jo, HS Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Kobayashi, N Korotkov, V Kozlov, V Kravchenko, P Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, XG Le, XR Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Manfre, L Mao, Y Marianski, B de la Ossad, AM Marukyan, H Miller, CA Miyachi, Y Movsisyan, A Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Seitz, B Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, J Stenzel, H Stewart, J Stinzingh, F Taroian, S Terkulov, A Trzcinski, A Tytgat, M van der Nat, PB Van Haarlem, Y Van Hulse, C Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenkof, S Ye, H Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopovz, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetisyan, E. Bacchetta, A. Belostotski, S. Bianchi, N. Blok, H. P. Borissov, A. Bowles, J. Brodsky, I. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Elschenbroichk, U. Fabbrif, R. Fantonij, A. Felawka, L. Frullani, S. Gabbert, D. Gapienkos, G. Gapienkos, V. Garibaldi, F. Gharibyan, V. Giordano, F. Gliske, S. Golembiovskaya, M. Hadjidakis, C. Hartig, M. Hasch, D. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Lvanilov, A. Jackson, H. E. Jo, H. S. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Kobayashi, N. Korotkov, V. Kozlov, V. Kravchenko, P. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, X. -G. Le, X. -R. Ma, B. -Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Manfre, L. Mao, Y. Marianski, B. de la Ossad, A. Martinez Marukyan, H. Miller, C. A. Miyachi, Y. Movsisyan, A. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Seitz, B. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzingh, F. Taroian, S. Terkulov, A. Trzcinski, A. Tytgat, M. van der Nat, P. B. Van Haarlem, Y. Van Hulse, C. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenkof, S. Ye, H. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. TI Effects of transversity in deep-inelastic scattering by polarized protons SO PHYSICS LETTERS B LA English DT Article DE Semi-inclusive DIS; Single-spin asymmetries; Polarized structure functions; Transversity; Collins function ID HERMES; COLLINS; LEPTOPRODUCTION; DISTRIBUTIONS; ASYMMETRIES; NUCLEON; QUARKS; TARGET; QCD AB Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization (phi s) and the produced hadron (phi) is found to have a substantial sin(phi +phi s) modulation for the production of pi(+), pi(-) and K(+). This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For pi(0) and K(-) production the amplitude of this Fourier component is consistent with zero. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mussgiller, A.; Nass, A.; Raithel, M.; Rith, K.; Sanftl, F.; Steffens, E.; Stinzingh, F.; Vogel, C.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Bacchetta, A.; Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Ehrenfried, M.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Mahon, D.; Mao, Y.; Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Kinney, E.; de la Ossad, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Dueren, M.; Elbakian, G.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Fabbrif, R.; Gabbert, D.; Golembiovskaya, M.; Hillenbrand, A.; Hristova, I.; Le, X. -R.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenkof, S.] DESY, D-15738 Zeuthen, Germany. [Rubin, J.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Diefenthaler, M.; Giordano, F.; Pappalardo, L. L.; Ryckbosch, D.; Salomatin, Y.; Stancari, M.; Statera, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Ellinghaus, F.; Fantonij, A.; Hadjidakis, C.; Hasch, D.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [De Nardo, L.; Elbakian, G.; Elschenbroichk, U.; Gabbert, D.; Jo, H. S.; Joosten, S.; Schnell, G.; Tytgat, M.; Van Hulse, C.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Airapetian, A.; Aschenauer, E. C.; Brodsky, I.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Bowles, J.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Makins, N. C. R.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Joosten, S.; Lamb, R.; Manaenkov, S. I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Gliske, S.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Schaefer, A.; Steijger, J. J. M.; van der Nat, P. B.] Natl Inst Subat Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Kisselev, A.; Kravchenko, P.; Manfre, L.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Bryzgalov, V.; Gapienkos, G.; Gapienkos, V.; Lvanilov, A.; Korotkov, V.] Inst High Energy Phys, Moscow 142281, Russia. Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Garibaldi, F.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. [Felawka, L.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Kobayashi, N.; Ma, B. -Q.; Rostomyan, A.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopovz, N.; Avakian, R.; Avetissian, A.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Bacchetta, A.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Bacchetta, A.] Ist Nazl Fis Nucl, Sezione Pavia, I-27100 Pavia, Italy. RP Rith, K (reprint author), Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. RI Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; Cisbani, Evaristo/C-9249-2011; Bacchetta, Alessandro/F-3199-2012; Deconinck, Wouter/F-4054-2012; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014 OI Cisbani, Evaristo/0000-0002-6774-8473; Lagamba, Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716; Bacchetta, Alessandro/0000-0002-8824-8355; FU Ministry of Economy; Ministry of Education and Science of Armenia; FWO-Flanders and IWT, Belgium; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT; JSPS; G-COE of Japan; Dutch Foundation; Russian Academy of Science; Russian Federal Agency for Science and Innovations; U.K. Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; U.S. Department of Energy (DOE); National Science Foundation (NSF); European Community [227431] FX We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the Ministry of Economy and the Ministry of Education and Science of Armenia; the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung, the German Bundesministerium fur Bildung und Forschung (BMBF), and the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the U.K. Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the U.S. Department of Energy (DOE) and the National Science Foundation (NSF); and the European Community Research Infrastructure Integrating Activity under the FP7 "Study of strongly interacting matter (HadronPhysics2, Grant Agreement number 227431)". NR 45 TC 110 Z9 110 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 20 PY 2010 VL 693 IS 1 BP 11 EP 16 DI 10.1016/j.physletb.2010.08.012 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654GW UT WOS:000282157500002 ER PT J AU Vivero-Escoto, JL Slowing, II Trewyn, BG Lin, VSY AF Vivero-Escoto, Juan L. Slowing, Igor I. Trewyn, Brian G. Lin, Victor S. -Y. TI Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery SO SMALL LA English DT Review ID RESPONSIVE CONTROLLED-RELEASE; MESENCHYMAL STEM-CELLS; CANCER-CELLS; CARBON NANOTUBES; IN-VIVO; POLYSTYRENE MICROSPHERES; SUPRAMOLECULAR CHEMISTRY; MAGNETIC NANOPARTICLES; MESOSTRUCTURED SILICA; GOLD NANOPARTICLES AB The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic-based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous-silica-based nanocarriers with stimuli-responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site-specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli-responsive mesoporous-silica-based systems are described. C1 [Vivero-Escoto, Juan L.] Iowa State Univ, Ames Lab, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. RP Vivero-Escoto, JL (reprint author), Iowa State Univ, Ames Lab, Dept Chem, Ames, IA 50011 USA. EM jlvivero@email.unc.edu; bgtrewyn@iastate.edu RI Vivero-Escoto, Juan/I-8015-2014; OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521]; Biopharmaceuticals & Bioindustrials Initiative of the Plant Science Institute at Iowa State University FX The authors thank U.S. National Science Foundation (CHE-0809521), and Biopharmaceuticals & Bioindustrials Initiative of the Plant Science Institute at Iowa State University for financial support. NR 113 TC 470 Z9 477 U1 71 U2 577 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD SEP 20 PY 2010 VL 6 IS 18 BP 1952 EP 1967 DI 10.1002/smll.200901789 PG 16 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 660SR UT WOS:000282664800001 PM 20690133 ER PT J AU Ashino, T Sudhahar, V Urao, N Oshikawa, J Chen, GF Wang, HA Huo, YQ Finney, L Vogt, S McKinney, RD Maryon, EB Kaplan, JH Ushio-Fukai, M Fukai, T AF Ashino, Takashi Sudhahar, Varadarajan Urao, Norifumi Oshikawa, Jin Chen, Gin-Fu Wang, Huan Huo, Yuqing Finney, Lydia Vogt, Stefan McKinney, Ronald D. Maryon, Edward B. Kaplan, Jack H. Ushio-Fukai, Masuko Fukai, Tohru TI Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration SO CIRCULATION RESEARCH LA English DT Article DE vascular remodeling; vascular smooth muscle; migration; copper transporter; platelet-derived growth factor ID SUPEROXIDE DISMUTASE FUNCTION; LYSYL OXIDASE; CARDIOVASCULAR-DISEASE; NEOINTIMA FORMATION; ARTERIAL INJURY; MENKES-SYNDROME; MEMBRANE; PROTEIN; PROLIFERATION; TRAFFICKING AB Rationale: Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective: To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results: Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions: These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. (Circ Res. 2010;107:787-799.) C1 [Fukai, Tohru] Univ Illinois, Dept Med, Cardiol Sect, Cardiovasc Res Ctr, Chicago, IL 60612 USA. [Ashino, Takashi; Sudhahar, Varadarajan; Chen, Gin-Fu; McKinney, Ronald D.; Fukai, Tohru] Univ Illinois, Dept Pharmacol, Cardiovasc Res Ctr, Chicago, IL 60612 USA. [Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Ushio-Fukai, Masuko] Univ Illinois, Dept Pharmacol, Ctr Lung & Vasc Biol, Cardiovasc Res Ctr, Chicago, IL 60612 USA. [Maryon, Edward B.; Kaplan, Jack H.] Univ Illinois, Dept Biochem & Mol Genet, Chicago, IL USA. [Finney, Lydia] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA. [Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Fukai, T (reprint author), Univ Illinois, Dept Med, Cardiol Sect, Cardiovasc Res Ctr, 835 S Wolcott,M-C868,E403 MSB, Chicago, IL 60612 USA. EM tfukai@uic.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Kaplan, Jack/0000-0002-7048-6574; Ashino, Takashi/0000-0003-4402-0989 FU NIH [R01 HL070187, R01 HL077524, R01 HL080569-01]; American Heart Association [09POST2250151, 10GRNT4400005]; Ruth L. Kirschstein-National Service Research Award [T32]; Uehara Memorial Foundation; Naito Foundation; American Diabetes Association Research Award [1-10-BS-76]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by NIH grants R01 HL070187 (T.F.), R01 HL077524 (to M.U.-F.), and R01 HL080569-01 (to Y.H.); American Heart Association Postdoctoral Fellowship 09POST2250151 (to N.U.); Ruth L. Kirschstein-National Service Research Award (Kirschstein-NRSA) T32 training grant (to G-F.C.); the Uehara Memorial Foundation (to J.O.); the Naito Foundation (to J.O.); American Diabetes Association Research Award 1-10-BS-76 (to Y.H.); and American Heart Association Grant 10GRNT4400005 (to Y.H.). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 57 TC 34 Z9 34 U1 0 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7330 J9 CIRC RES JI Circ.Res. PD SEP 17 PY 2010 VL 107 IS 6 BP 787 EP U292 DI 10.1161/CIRCRESAHA.110.225334 PG 33 WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Hematology GA 652ME UT WOS:000282010000011 PM 20671235 ER PT J AU Zhang, Y Pan, Y Wang, K Fast, JD Grell, GA AF Zhang, Yang Pan, Ying Wang, Kai Fast, Jerome D. Grell, Georg A. TI WRF/Chem-MADRID: Incorporation of an aerosol module into WRF/Chem and its initial application to the TexAQS2000 episode SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID URBAN OZONE FORMATION; AIR-QUALITY MODELS; SOUTHEAST TEXAS; PARTICULATE MATTER; PERFORMANCE EVALUATION; INDUSTRIAL EMISSIONS; SPATIAL TRENDS; NEW-ENGLAND; PM2.5 MASS; HOUSTON AB The Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) with three improved gas/particle mass transfer approaches (i.e., bulk equilibrium (EQUI), hybrid (HYBR), and kinetic (KINE)) has been incorporated into the Weather Research and Forecast/Chemistry Model (WRF/Chem) (referred to as WRF/Chem-MADRID) and evaluated with a 5-day episode from the 2000 Texas Air Quality Study (TexAQS2000). WRF/Chem-MADRID demonstrates an overall good skill in simulating surface/aloft meteorological parameters and chemical concentrations of O-3 and PM2.5, tropospheric O-3 residuals, and aerosol optical depths. The discrepancies can be attributed to inaccuracies in meteorological predictions (e. g., overprediction in mid-day boundary layer height), sensitivity to meteorological schemes used (e. g., boundary layer and land-surface schemes), inaccurate total emissions or their hourly variations (e. g., HCHO, olefins, other inorganic aerosols) or uncounted wildfire emissions, uncertainties in initial and boundary conditions for some species (e. g., other inorganic aerosols, CO, and O-3) at surface and aloft, and some missing/inactivated model treatments for this application (e. g., chlorine chemistry and secondary organic aerosol formation). Major differences in the results among the three gas/particle mass transfer approaches occur over coastal areas, where EQUI predicts higher PM2.5 than HYBR and KINE due to improperly redistributing condensed nitrate from chloride depletion process to fine PM mode. The net direct, semi-direct, and indirect effects of PM2.5 decrease domainwide shortwave radiation by 11.2-14.4 W m(-2) (or 4.1-5.6%) and near-surface temperature by 0.06-0.14 degrees C (or 0.2-0.4%), lead to 125 to 796 cm(-3) cloud condensation nuclei at a supersaturation of 0.1%, produce cloud droplet numbers as high as 2064 cm(-3), and reduce domainwide mean precipitation by 0.22-0.59 mm day(-1). C1 [Zhang, Yang; Pan, Ying; Wang, Kai] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27606 USA. [Fast, Jerome D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Grell, Georg A.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Grell, Georg A.] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Zhang, Y (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Campus Box 8208, Raleigh, NC 27606 USA. EM yang_zhang@ncsu.edu RI Pan, Ying/A-3908-2015; grell, georg/B-6234-2015; Wang, Kai/D-4262-2013 OI grell, georg/0000-0001-5214-8742; Wang, Kai/0000-0002-2375-5989 FU National Science Foundation [Atm-0348819]; U.S. Environmental Protection Agency (EPA) [DW13921548]; U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) [DW13921548]; U.S. EPA-Science to Achieve Results [RD833376] FX This work was performed at NCSU under the National Science Foundation Career Award Atm-0348819, the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement DW13921548, and the U.S. EPA-Science to Achieve Results (STAR) program (grant RD833376). Thanks are due to Naresh Kumar and Eladio Knipping, EPRI and Christian Seigneur, formerly at AER and now at CEREA, France, for permitting the use of original version of MADRID code for NCSU's further improvement and incorporation into WRF/Chem; Mark Z. Jacobson, Stanford University, for providing APC and coagulation source codes for the improvement of MADRID; and Richard C. Easter and Rahul Zaveri, PNNL, for helpful discussions on MADRID incorporation and the conversion code from FORTRAN 77/90 fixed format to FORTRAN 90 free format. Thanks are also due to Xiao-Ming Hu, a former student at NCSU, for his work on the incorporation of an earlier version of MADRID into WRF/Chem v2.2 and scripts for post-processing model results. Thanks are also due to Mark Estes, TCEQ, for providing observational data from TexAQS2000 collected by TCEQ; Jack Fishman and John K. Creilson, NASA Langley Research Center, for providing TOR data; D. Allen Chu, NASA Goddard Space Flight Center, for providing AERONET data at Stennis, Mississippi and MODIS-derived AOD data; Shao-Cai Yu, the U.S. EPA, for providing the script for statistical calculation and aircraft data extraction; Alice Gilliland and Steve Howard, U.S. EPA, for providing observations from AIRS-AQS and CASTNET; Steven Peckham and Stuart McKeen, NOAA/ESRL, for helpful discussions on WRF/Chem. NR 73 TC 24 Z9 24 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 17 PY 2010 VL 115 AR D18202 DI 10.1029/2009JD013443 PG 32 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MW UT WOS:000282012100004 ER PT J AU Alahuhta, M Xu, Q Bomble, YJ Brunecky, R Adney, WS Ding, SY Himmel, ME Lunin, VV AF Alahuhta, Markus Xu, Qi Bomble, Yannick J. Brunecky, Roman Adney, William S. Ding, Shi-You Himmel, Michael E. Lunin, Vladimir V. TI The Unique Binding Mode of Cellulosomal CBM4 from Clostridium thermocellum Cellobiohydrolase A SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE carbohydrate-binding module; CBM4; cellulosome; CbhA; cellulose degradation ID MOLECULAR REPLACEMENT; PROTEIN-STRUCTURE; DIELECTRIC MEDIUM; STRUCTURAL BASIS; GLUCAN-BINDING; FORCE-FIELDS; CORN STOVER; MODULES; FAMILY; RECOGNITION AB The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 angstrom resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature-a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose "whiskers" of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Alahuhta, Markus; Xu, Qi; Bomble, Yannick J.; Brunecky, Roman; Adney, William S.; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lunin, VV (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM vladimir.lunin@nrel.gov RI Alahuhta, Markus/E-9344-2012; Ding, Shi-You/O-1209-2013 FU Department of Energy Office of Science, Office of the Biological and Environmental Research, through the BioEnergy Science Center, a Department of Energy Bioenergy Research Center; National Science Foundation [TG-MCB090159]; National Renewable Energy Laboratory FX This work was supported by the Department of Energy Office of Science, Office of the Biological and Environmental Research, through the BioEnergy Science Center, a Department of Energy Bioenergy Research Center. Computational time for this research was supported, in part, by the Golden Energy Computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. Simulations were also performed, in part, using the Texas Advanced Computing Center Ranger cluster under National Science Foundation Teragrid grant TG-MCB090159. NR 58 TC 14 Z9 14 U1 0 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 17 PY 2010 VL 402 IS 2 BP 374 EP 387 DI 10.1016/j.jmb.2010.07.028 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 667QM UT WOS:000283208700007 PM 20654622 ER PT J AU Khare, A Rasmussen, KO Samuelsen, MR Saxena, A AF Khare, Avinash Rasmussen, Kim O. Samuelsen, Mogens R. Saxena, Avadh TI Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID WAVE-GUIDE ARRAYS AB We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Samuelsen, Mogens R.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. EM kor@lanl.gov RI Rasmussen, Kim/B-5464-2009; Samuelsen, Mogens/A-2633-2012 OI Rasmussen, Kim/0000-0002-4029-4723; FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under contract no DE-AC52-06NA25396. NR 14 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD SEP 17 PY 2010 VL 43 IS 37 AR 375209 DI 10.1088/1751-8113/43/37/375209 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 644OO UT WOS:000281388800016 ER PT J AU Schneebeli, S Kamenetska, M Foss, F Vazquez, H Skouta, R Hybertsen, M Venkataraman, L Breslow, R AF Schneebeli, Severin Kamenetska, Maria Foss, Frank Vazquez, Hector Skouta, Rachid Hybertsen, Mark Venkataraman, Latha Breslow, Ronald TI The Electrical Properties of Biphenylenes SO ORGANIC LETTERS LA English DT Article ID MOLECULAR JUNCTIONS; ELECTROPHILIC SUBSTITUTION; AB-INITIO; WIRES; CONDUCTANCE; POTENTIALS; RESISTANCE; TRANSPORT AB The effect of the partial antiaromaticity of biphenylene on its substitution chemistry, its oxidation potential, and its single-molecule conductance is explored. Biphenylene and fluorene molecules with linkers of two amino groups or two cyclic thioether groups were synthesized and their conduction properties were investigated using scanning tunneling microscopy (STM) break-junction techniques and OFT calculations. Despite the partial antiaromaticity of biphenylene, which causes the biphenylenes to be much more easily oxidizable, no significant increase in molecular conductance was found. C1 [Hybertsen, Mark] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Schneebeli, Severin; Foss, Frank; Skouta, Rachid; Breslow, Ronald] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Kamenetska, Maria; Vazquez, Hector; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Hybertsen, M (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu; rb33@columbia.edu RI Foss, Frank/A-3318-2009; Schneebeli, Severin/D-7898-2013; Vazquez, Hector/G-5788-2014; Skouta, Rachid/Q-7132-2016; OI Foss, Frank/0000-0003-1940-6580; Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU Nanoscale Science and Engineering Initiative of the NSF [CHE-0641523]; New York State Office of Science, Technology; Packard Foundation; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported in part by the Nanoscale Science and Engineering Initiative of the NSF (Award CHE-0641523) and the New York State Office of Science, Technology. L.V. thanks the Packard Foundation for support. This work was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 (M.S.H.). NR 29 TC 11 Z9 11 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD SEP 17 PY 2010 VL 12 IS 18 BP 4114 EP 4117 DI 10.1021/ol1017036 PG 4 WC Chemistry, Organic SC Chemistry GA 647DP UT WOS:000281596800039 PM 20722383 ER PT J AU Dracoulis, GD Lane, GJ Hughes, RO Kondev, FG Watanabe, H Seweryniak, D Zhu, S Carpenter, MP Chiara, CJ Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Stefanescu, I Chowdhury, P AF Dracoulis, G. D. Lane, G. J. Hughes, R. O. Kondev, F. G. Watanabe, H. Seweryniak, D. Zhu, S. Carpenter, M. P. Chiara, C. J. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Stefanescu, I. Chowdhury, P. TI Structure of three-quasiparticle isomers in Ho-169 and Tm-171 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; ISOTOPES; BANDS AB A three-quasiparticle isomer with tau = 170(8) mu s and K-pi = (19/2(+)) has been identified in the neutron-rich isotope Ho-169. The isomer decays with K-forbidden transitions to members of a band associated with the 7/2(-)[523] proton configuration, whose structure is characterized through analysis of the in-band gamma-ray branching ratios. In the isotone Tm-171, the rotational band based on the known 19/2(+), three-quasiparticle isomer has also been observed. Alternative one-proton two-neutron configurations for the isomer in Ho-169 are discussed in terms of multiquasiparticle calculations and through a comparison with the structures observed in Tm-171. C1 [Dracoulis, G. D.; Lane, G. J.; Hughes, R. O.] Australian Natl Univ, Dept Nucl Phys, RSPE, Canberra, ACT 0200, Australia. [Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Watanabe, H.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Seweryniak, D.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. RP Dracoulis, GD (reprint author), Australian Natl Univ, Dept Nucl Phys, RSPE, GPO Box 4, Canberra, ACT 0200, Australia. EM george.dracoulis@anu.edu.au RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU Australian Research Council [DP0986725]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848] FX The authors thank R. B. Turkentine for producing the target and the staff of the ATLAS accelerator facility for their assistance in various phases of the experiment. This work is supported by the Australian Research Council Discovery program (DP0986725) and the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848. NR 23 TC 6 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 17 PY 2010 VL 82 IS 3 AR 034317 DI 10.1103/PhysRevC.82.034317 PG 6 WC Physics, Nuclear SC Physics GA 652MP UT WOS:000282011400001 ER PT J AU Gibson, JM Treacy, MMJ Sun, T Zaluzec, NJ AF Gibson, J. M. Treacy, M. M. J. Sun, T. Zaluzec, N. J. TI Substantial Crystalline Topology in Amorphous Silicon SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEDIUM-RANGE ORDER; FLUCTUATION MICROSCOPY; DISORDERED MATERIALS; THIN-FILMS; SCATTERING; PROBE AB Using electron correlograph analysis we show that coherent nanodiffraction patterns from sputtered amorphous silicon indicate that there is more local crystallinity in unannealed amorphous silicon than was previously suspected. By comparing with simulations for various models we show that within a typical unannealed amorphous silicon film a substantial volume fraction (> 50%) is topologically crystalline with correlation lengths up to 2 nm. Electron correlograph analysis is a variant of the fluctuation electron microscopy technique and its sensitivity to local crystalline ordering is derived from its sensitivity to four-body correlations. C1 [Gibson, J. M.; Sun, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Treacy, M. M. J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Treacy, M. M. J.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Zaluzec, N. J.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA. RP Gibson, JM (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM treacy@asu.edu RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 FU Leverhulme Trust; Advanced Photon Source, and the Electron Microscopy Center, at Argonne National Laboratory, U. S. Department of Energy [DE-AC02-06CH11357] FX M. M. J. T is grateful for support from the Leverhulme Trust. We acknowledge support from the Advanced Photon Source, and the Electron Microscopy Center, at Argonne National Laboratory, U. S. Department of Energy, Contract No. DE-AC02-06CH11357. We thank J. R. Abelson and B. S. Lee of the University of Illinois, Urbana-Champaign, for providing the samples. NR 24 TC 36 Z9 36 U1 6 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 17 PY 2010 VL 105 IS 12 AR 125504 DI 10.1103/PhysRevLett.105.125504 PG 4 WC Physics, Multidisciplinary SC Physics GA 653ZW UT WOS:000282138900012 PM 20867656 ER PT J AU Sun, CM Pager, CT Luo, GX Sarnow, P Cate, JHD AF Sun, Chaomin Pager, Cara T. Luo, Guangxiang Sarnow, Peter Cate, Jamie H. D. TI Hepatitis C Virus Core-Derived Peptides Inhibit Genotype 1b Viral Genome Replication via Interaction with DDX3X SO PLOS ONE LA English DT Article ID BOX RNA HELICASE; CANDIDATE TUMOR-SUPPRESSOR; HEPATOCELLULAR-CARCINOMA; PROTEIN INTERACTS; TRANSLATION; REQUIREMENT; TARGETS; EIF4E AB The protein DDX3X is a DEAD-box RNA helicase that is essential for the hepatitis C virus (HCV) life cycle. The HCV core protein has been shown to bind to DDX3X both in vitro and in vivo. However, the specific interactions between these two proteins and the functional importance of these interactions for the HCV viral life cycle remain unclear. We show that amino acids 16-36 near the N-terminus of the HCV core protein interact specifically with DDX3X both in vitro and in vivo. Replication of HCV replicon NNeo/C-5B RNA (genotype 1b) is significantly suppressed in HuH-7-derived cells expressing green fluorescent protein (GFP) fusions to HCV core protein residues 16-36, but not by GFP fusions to core protein residues 16-35 or 16-34. Notably, the inhibition of HCV replication due to expression of the GFP fusion to HCV core protein residues 16-36 can be reversed by overexpression of DDX3X. These results suggest that the protein interface on DDX3X that binds the HCV core protein is important for replicon maintenance. However, infection of HuH-7 cells by HCV viruses of genotype 2a (JFH1) was not affected by expression of the GFP fusion protein. These results suggest that the role of DDX3X in HCV infection involves aspects of the viral life cycle that vary in importance between HCV genotypes. C1 [Sun, Chaomin] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Pager, Cara T.; Sarnow, Peter] Stanford Univ, Dept Microbiol & Immunol, Sch Med, Stanford, CA 94305 USA. [Luo, Guangxiang] Univ Kentucky, Dept Microbiol Immunol & Mol Genet, Lexington, KY USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Sun, CM (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. FU National Institutes of Health (NIH) [GM073732]; Damon Runyon Cancer Research Foundation [DRG1954-07] FX This work was supported by National Institutes of Health (NIH) grant GM073732 to J.H.D.C. and P. S. (www.nih.gov). C.T.P. is supported by the Damon Runyon Cancer Research Foundation (DRG1954-07, http://www.damonrunyon.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 37 TC 10 Z9 10 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 17 PY 2010 VL 5 IS 9 AR e12826 DI 10.1371/journal.pone.0012826 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 651XL UT WOS:000281960800021 ER PT J AU Riihimaki, LD McFarlane, SA AF Riihimaki, L. D. McFarlane, S. A. TI Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection? SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE IMPACTS; EL-NINO; CLOUDS; THIN; LIDAR; DEPOLARIZATION AB Tropical tropopause layer cirrus (TTLC) profiles identified from CALIPSO lidar measurements are grouped into cloud objects and classified according to whether or not they are directly connected to deep convection. TTLC objects directly connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if convective objects were formed from convective detrainment and isolated objects formed in situ. The frequency of occurrence of these different classifications of TTLC varies depending on height and region. Thirty- six percent of TTLC profiles contain convective TTLC when TTLC is defined with cloud base height greater than 14 km (+/- 20 degrees Latitude). This estimate of convective TTLC is thought to be a lower limit on the percentage of TTLC formed by convective detrainment. Aged anvil that has persisted longer than the thick regions of the convective cloud would not be classified as convective in our classification. Regions with higher occurrence of deep convection also have higher occurrence of TTLC, and a greater percentage of those TTLC are classified as convective. Definitions of TTLC using higher cloud base height thresholds contain a smaller percentage of TTLC that are classified as convective. Cloud top heights of both isolated and convective TTLC are distributed similarly with respect to the height of the cold point tropopause. Cloud optical depths were found to be higher in TTLC over thick clouds than in TTLC over clear sky during the day but not in night measurements. It is not clear whether this has a physical cause or is due to daytime measurement uncertainties. Both cloud base and top heights are higher over deep convection than over clear sky. C1 [Riihimaki, L. D.; McFarlane, S. A.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Riihimaki, LD (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999, Richland, WA 99352 USA. EM laura.riihimaki@pnl.gov RI McFarlane, Sally/C-3944-2008 FU NASA FX The authors thank Jennifer Comstock for helpful discussions regarding lidar measurements, Nat Beagley and Amanda White for developing the code used to process the CERES SSF data, and anonymous reviewers whose comments improved the manuscript. This research was funded by the NASA New Investigator Program. CALIPSO and CERES SSF data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. CloudSat ECMWF-AUX data were obtained from the CloudSat Data Processing Center. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. NR 37 TC 12 Z9 12 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2010 VL 115 AR D18201 DI 10.1029/2009JD013133 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MR UT WOS:000282011600002 ER PT J AU Torres, B Cachorro, VE Toledano, C de Galisteo, JPO Berjon, A de Frutos, AM Bennouna, Y Laulainen, N AF Torres, B. Cachorro, V. E. Toledano, C. Ortiz de Galisteo, J. P. Berjon, A. de Frutos, A. M. Bennouna, Y. Laulainen, N. TI Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR TRANSMITTANCE MEASUREMENTS; AEROSOL OPTICAL DEPTH; RETRIEVALS; ABSORPTION; CLIMATOLOGY; RADIOMETER; AERONET; METEOROLOGY; HUMIDITY; LIDAR AB Total precipitable water vapor (PWV) is characterized for the first time over southwestern Europe by means of ground-based measurements during the period 2001-2005. Existing data from three sites located in the Cadiz Gulf region, El Arenosillo, San Fernando, and Gibraltar, using three different techniques, Sun photometer (SP), GPS, and radiosondes, are used for the analysis. The 5 year data series gives a mean value of about 2 cm (SD = 0.7 cm) and a clear seasonal pattern. In the multiannual monthly means basis, the highest values are reached in August-September, with a mean value of 2.5-2.6 cm, whereas the lowest are obtained in January-February, with an average of 1.4-1.5 cm. The data in the three sites have been compared in order to assess regional variability. Differences could be due to real local variability but also could arise from the differences in the measurement techniques. From daily to monthly bases, water vapor behavior is similar in the three sites, with the largest differences ranging from 3% in summer to 14% in winter. Outstanding results from these analyses are the observed local minimum in July, occurring during the maximum of desert dust intrusions in the southern Iberian Peninsula, and the significant differences found between the El Arenosillo (SP) and San Fernando (GPS) measurements, related to the periodical replacement of the SP instrument at El Arenosillo. The observed differences highlight the importance of drift in each SP because of filter aging or other calibration problems. Finally, the Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared water vapor product has been compared to the data from the GPS station (San Fernando). MODIS retrieval slightly overestimates PWV in summer (5%-8%) and significantly underestimates in winter (-23%). C1 [Torres, B.; Cachorro, V. E.; Toledano, C.; Ortiz de Galisteo, J. P.; Berjon, A.; de Frutos, A. M.; Bennouna, Y.] Univ Valladolid, Grp Atmospher Opt, ES-47071 Valladolid, Spain. [Ortiz de Galisteo, J. P.] Spanish Meteorol Agcy, Valladolid, Spain. [Laulainen, N.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Torres, B (reprint author), Univ Valladolid, Grp Atmospher Opt, Prado Magdalena S-N, ES-47071 Valladolid, Spain. EM chiqui@baraja.opt.cie.uva.es RI Toledano, Carlos/J-3672-2012; Ortiz-de-Galisteo, Jose Pablo/O-4607-2014; Berjon, Alberto/M-4203-2015; OI Toledano, Carlos/0000-0002-6890-6648; Ortiz-de-Galisteo, Jose Pablo/0000-0001-6649-8970; Berjon, Alberto/0000-0002-4508-7037; Cachorro, Victoria/0000-0002-4627-9444 FU CICYT [CGL2005-05693-C03/CLI, CGL2008-05939-C03-01/CLI]; Junta de Castilla y Leon [GR220]; Office of Science, U.S. Department of Energy (DOE) [DE-AC06-76RLO 1830] FX The authors gratefully acknowledge the AERONET and PHOTONS teams for their technical support and advice and the staff at San Fernando and Gibraltar stations. Special thanks are due to the people of INTA-El Arenosillo for the maintenance of the Cimel Sun photometer. This work was funded by CICYT under projects CGL2005-05693-C03/CLI and CGL2008-05939-C03-01/CLI and by Junta de Castilla y Leon under reference GR220. This work was also supported (N.L.) by the Office of Science, U.S. Department of Energy (DOE), under contract DE-AC06-76RLO 1830. Pacific Northwest Laboratory is operated for the DOE by Battelle Memorial Institute. NR 56 TC 8 Z9 8 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2010 VL 115 AR D18103 DI 10.1029/2009JD012724 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MR UT WOS:000282011600001 ER PT J AU Wang, JH Domin, D Austin, B Zubarev, DY McClean, J Frenklach, M Cui, TA Lester, WA AF Wang, Jinhua Domin, Dominik Austin, Brian Zubarev, Dmitry Yu McClean, Jarrod Frenklach, Michael Cui, Tian Lester, William A., Jr. TI A Diffusion Monte Carlo Study of the O-H Bond Dissociation of Phenol SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COUPLED-CLUSTER CALCULATIONS; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; HOMOLYTIC DISSOCIATION; THERMAL-DECOMPOSITION; SUBSTITUTED PHENOLS; PROTON-TRANSFER; HARTREE-FOCK; ENTHALPY; RADICALS AB The homolytic O-H bond dissociation energy (BDE) of phenol was determined from diffusion Monte Carlo (DMC) calculations using single determinant trial wave functions. DMC gives an O-H BDE of 87.0 +/- 0.3 kcal/mol when restricted Hartree-Fock orbitals are used and a BDE of 87.5 +/- 0.3 kcal/mol with restricted B3LYP Kohn-Sham orbitals. These results are in good agreement with the extrapolated B3P86 results of Costa Cabral and Canuto (88.3 kcal/mol), the recommended experimental value of Borges dos Santos and Martinho Simoes (88.7 +/- 0.5 kcal/mol), and the G3 (88.2 kcal/mol), CBS-APNO (88.2 kcal/mol), CBS-QB3 (87.1 kcal/mol) results of Mulder. C1 [Wang, Jinhua; Domin, Dominik; Austin, Brian; Zubarev, Dmitry Yu; McClean, Jarrod; Lester, William A., Jr.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Wang, Jinhua; Cui, Tian] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Domin, Dominik; Austin, Brian; Lester, William A., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Frenklach, Michael] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Frenklach, Michael] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy [DE-AC03-76F00098]; US Army Corps of Engineers, Humphreys Engineering Center Support Activity [W912HQ-07-C-0044]; National Science Foundation [NSF CHE-0809969]; National Basic Research Program of China [2005CB724400]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX B.A., D.D., W.A.L., and M.F. were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under Contract No. DE-AC03-76F00098. M.F. was supported by the US Army Corps of Engineers, Humphreys Engineering Center Support Activity, under Contract No. W912HQ-07-C-0044. D.Y.Z. was supported by the National Science Foundation under grant NSF CHE-0809969. J.W. and T.C. were supported by the National Basic Research Program of China, Grant No. 2005CB724400. This research used computational resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 9 Z9 9 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 16 PY 2010 VL 114 IS 36 BP 9832 EP 9835 DI 10.1021/jp103010g PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 646UC UT WOS:000281567500031 PM 20825240 ER PT J AU Xu, ZH Tsai, HH Wang, HL Cotlet, M AF Xu, Zhihua Tsai, Hsinhan Wang, Hsing-Lin Cotlet, Mircea TI Solvent Polarity Effect on Chain Conformation, Film Morphology, and Optical Properties of a Water-Soluble Conjugated Polymer SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIGHT-EMITTING-DIODES; FLUORESCENCE CORRELATION SPECTROSCOPY; INTERCHAIN INTERACTIONS; ENERGY-TRANSFER; ELECTRON INJECTION; COLLAPSED COILS; SOLAR-CELLS; POLYELECTROLYTES; DERIVATIVES; DEPENDENCE AB The solvent polarity effect on chain conformation, film morphology, and photophysical properties of a nonionic water-soluble conjugated polymer (WSCP), poly[2,5-bis(diethylaminetetraethylene glycol)phenylene vinylene] (DEATG-PPV) is investigated in detail. The combination of stationary absorption and photoluminescence (PL) spectroscopy, time-resolved PL spectroscopy, and fluorescence correlation spectroscopy methods enables us to probe the chain conformation of DEATG-PPV, down to the level of a single chain when working with extremely diluted solutions. The use of correlated atomic force microscopy and confocal fluorescence lifetime imaging microscopy measurements of drop-casted DEATG-PPV films reveals the intrinsic relationship between chain conformation, film morphology, and optical properties. Depending on solvent polarity, DEATG-PPV presents extended, coiled, and collapsed chain conformations in solutions, which lead to distinct morphology and optical properties in solid films. Our work presents a pathway to control and characterize the film morphologies of WSCPs toward the optimal performance of various optoelectronic devices. C1 [Tsai, Hsinhan; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Xu, Zhihua; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM hwang@lanl.gov; cotlet@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 (MC. with user H.-L.W.). We thank Dr. D. Nkypanchuk and Mr. S. Baker from BNL for help with the integration of the AFM and FLIM experiments at BNL. NR 44 TC 16 Z9 16 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 16 PY 2010 VL 114 IS 36 BP 11746 EP 11752 DI 10.1021/jp105032y PG 7 WC Chemistry, Physical SC Chemistry GA 644TP UT WOS:000281404500008 PM 20726542 ER PT J AU Peng, LJ Morris, JR AF Peng, Lujian Morris, James R. TI Prediction of Hydrogen Adsorption Properties in Expanded Graphite Model and in Nanoporous Carbon SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ACTIVATED CARBONS; STORAGE CAPACITY; MOLECULAR-DYNAMICS; SURFACE-AREA; NANOTUBES; NANOSTRUCTURES; NANOFIBERS; TEMPERATURES; FUGACITY AB This paper calculates that the theoretical hydrogen uptake in nanoporous carbons is close to 0.5 wt % at 298 K and 5 MPa, higher than most reported values in activated carbons. The isosteric heats of adsorption for nanoporous carbons and for an expanded graphite model are between 14 and 18 kJ/mol, close to the suitable energy range for practical hydrogen storage (15-40 kJ/mol). Over the density ranges examined, total hydrogen adsorption can be improved by increasing the volume available for adsorption in amorphous carbons. These calculations are performed by using an efficient and accurate method. This method can reproduce previous, more computational intensive calculations in the expanded graphite model yet is readily applicable to more complex geometries. The limitations of this method are discussed carefully; under conditions given above, these limitations are minimal. C1 [Morris, James R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Peng, Lujian; Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Morris, JR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy FX We greatly appreciate helpful comments from C. I. Contescu, N. C. Gallego, V. R. Cooper, and T. Egami. This research is sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy. NR 37 TC 19 Z9 20 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 16 PY 2010 VL 114 IS 36 BP 15522 EP 15529 DI 10.1021/jp104595m PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 644TQ UT WOS:000281404600039 ER PT J AU Mei, DH Kwak, JH Hu, JZ Cho, SJ Szanyi, J Allard, LF Peden, CHF AF Mei, Donghai Kwak, Ja Hun Hu, Jianzhi Cho, Sung June Szanyi, Janos Allard, Lawrence F. Peden, Charles H. F. TI Unique Role of Anchoring Penta-Coordinated Al3+ Sites in the Sintering of gamma-Al2O3-Supported Pt Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SUPPORTED-METAL-CATALYSTS; THERMAL-EXPANSION; PLATINUM; CLUSTERS; MODEL; EXAFS; IONS; SIZE AB gamma-Al2O3-supported Pt group catalysts are widely used in many industrially important catalytic processes. However, gamma-Al2O3-supported Pt catalysts are prone to deactivation via metal sintering at high temperatures, in oxidative reaction environments, or both. Using a combination of experimental HRTEM and EXAFS measurements and theoretical DFT calculations, we find that pentacoordinated Al3+ sites (Al-p) on the gamma-Al2O3(100) surface can inhibit Pt sintering both thermodynamically and kinetically because of their strong interactions with atomic Pt or Pt oxide species. The present work suggests a promising approach for stabilizing the size and morphology of supported catalytically active phases, C1 [Mei, Donghai; Kwak, Ja Hun; Hu, Jianzhi; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, Kwanju, South Korea. [Allard, Lawrence F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov; kwak@pnl.gov; chuck.peden@pnl.gov RI Mei, Donghai/D-3251-2011; Hu, Jian Zhi/F-7126-2012; Mei, Donghai/A-2115-2012; Kwak, Ja Hun/J-4894-2014; OI Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy, Office of Basic Energy Sciences; Pacific Northwest National Laboratory; Brookhaven National Laboratory [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences and by an LDRD project at Pacific Northwest National Laboratory. Sample preparation and NMR experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL). HR-STEM images were acquired at the High Temperature Materials Laboratory at ORNL. EXAFS data were collected using the National Synchrotron Light Source at Brookhaven National Laboratory under contract no. DE-AC02-98CH10886. Computing time was granted by the National Energy Research Scientific Computing Center and EMSL (st30469). NR 24 TC 32 Z9 33 U1 5 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 16 PY 2010 VL 1 IS 18 BP 2688 EP 2691 DI 10.1021/jz101073p PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 652OO UT WOS:000282017400014 ER PT J AU Wang, Y DePrince, AE Gray, SK Lin, XM Pelton, M AF Wang, Yiliang DePrince, A. Eugene, III Gray, Stephen K. Lin, Xiao-Min Pelton, Matthew TI Solvent-Mediated End-to-End Assembly of Gold Nanorods SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID AU NANORODS; GROWTH; MONOLAYERS; MECHANISM; SURFACE; SILVER AB We demonstrate a new method for the bottom-up assembly of anisotropic nanoparticles, showing that alkanethiol molecules can induce controlled end-to-end assembly of gold nanorods in mixed water/acetonitrile solutions. The assembly is driven by solvent-mediated interactions among hydrophobic alkanethiol ligands selectively bound to the ends of the nanorods and among hydrophilic cetyltrimethylammonium bromide (CTAB) surfactants on the sides of the rods. It occurs only when the gold-nanorod samples have been aged for approximately two weeks. We compare the kinetics of solvent-mediated assembly using undecanethiol ligands to assembly processes driven by covalent bonding using alpha,omega-undecanedithiol ligands and processes driven by hydrogen bonding using 11-mercaptoundecanoic acid ligands. Our experiments demonstrate the different assembly mechanisms involved as well as the conditions needed to obtain selective end-to-end assembly. C1 [Wang, Yiliang; DePrince, A. Eugene, III; Gray, Stephen K.; Lin, Xiao-Min; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lin, XM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xmlin@anl.gov; pelton@anl.gov RI Pelton, Matthew/H-7482-2013 OI Pelton, Matthew/0000-0002-6370-8765 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Transmission electron microscopy was performed at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 30 TC 41 Z9 43 U1 5 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 16 PY 2010 VL 1 IS 18 BP 2692 EP 2698 DI 10.1021/jz1010048 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 652OO UT WOS:000282017400015 ER PT J AU Fernandez-Alberti, S Kleiman, VD Tretiak, S Roitberg, AE AF Fernandez-Alberti, S. Kleiman, Valeria D. Tretiak, S. Roitberg, Adrian E. TI Unidirectional Energy Transfer in Conjugated Molecules: The Crucial Role of High-Frequency C C Bonds SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CORRELATED EXCIMER FORMATION; PHENYLACETYLENE DENDRIMERS; OPTICAL-EXCITATIONS; PHOTOEXCITED POLYFLUORENES; ELECTRONIC EXCITATIONS; ANTENNA SUPERMOLECULES; GAUSSIAN WAVEPACKETS; DYNAMICS SIMULATIONS; NANOSCALE SYSTEMS; MMVB DYNAMICS AB Excited-state nonadiabatic molecular dynamics is used to study energy transfer in dendrimer building blocks, between two-, three-, and four-ring linear polyphenylene ethynylene units linked by meta-substitutions. Upon excitation, dendrimers with these building blocks have been shown to undergo highly efficient and unidirectional energy transfer. The simulations start by initial vertical excitation to the S-4, localized on the two-ring unit. We observe ultrafast directional S-4 -> S-3 -> S-2 -> S-1 electronic energy transfer, corresponding to sequential two-ring three-ring four-ring transfer. The electronic energy transfer is concomitant with vibrational energy transfer through a dominant C C stretching motion. Upon Sn+1 -> S-n population transfer, a rapid increase of the Sn+1 -> S-n energy gaps and decrease of the corresponding values for S-n-Sn-1 gaps are observed. As a consequence, the Sn+1 and S-n states become less coupled, while the S-n and Sn-1 become more coupled. This behavior guarantees,the successful Sn+1 -> S-n -> Sn-1 unidirectional energy transfer associated with the efficient energy funneling in light-harvesting dendrimers. C1 [Roitberg, Adrian E.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Fernandez-Alberti, S.] Univ Nacl Quilmes, Bernal, Argentina. [Kleiman, Valeria D.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Kleiman, Valeria D.] Univ Florida, Ctr Chem Phys, Gainesville, FL 32611 USA. [Tretiak, S.] Los Alamos Natl Lab, Div Theoret, CNLS, Los Alamos, NM 87545 USA. [Tretiak, S.] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Roitberg, AE (reprint author), Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. RI Roitberg, Adrian/A-2378-2009; Tretiak, Sergei/B-5556-2009; Kleiman, Valeria/H-7818-2013 OI Tretiak, Sergei/0000-0001-5547-3647; Kleiman, Valeria/0000-0002-9975-6558 FU CONICET; UNQ; NSF [CHE-0239120]; Center for Integrated Nanotechnologies; U.S. Department of Energy, Office of Basic Energy Sciences; Center for Nonlinear Studies (CNLS) at LANL; UF's High-Performance Computing Center; NSF Large Allocations Resource Committee [MCA05S010, UT-NTNL0002] FX This work was partially supported by CONICET, UNQ, NSF Grant CHE-0239120, and the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. We also acknowledge support of the Center for Nonlinear Studies (CNLS) at LANL. We acknowledge UF's High-Performance Computing Center and NSF Large Allocations Resource Committee through Grants TG-MCA05S010 and UT-NTNL0002 for providing computational resources. NR 66 TC 36 Z9 36 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 16 PY 2010 VL 1 IS 18 BP 2699 EP 2704 DI 10.1021/jz100794z PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 652OO UT WOS:000282017400016 ER PT J AU Grills, DC Fujita, E AF Grills, David C. Fujita, Etsuko TI New Directions for the Photocatalytic Reduction of CO2: Supramolecular, scCO(2) or Biphasic Ionic Liquid-scCO(2) Systems SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID PHOTOCHEMICAL CARBON-DIOXIDE; METAL-COMPLEXES; HOMOGENEOUS CATALYSTS; SUPERCRITICAL FLUIDS; VISIBLE-LIGHT; HIGH-PRESSURE; STEADY-STATE; RE-RE; LIQUIDS; RUTHENIUM AB There is an urgent need for the discovery of carbon-neutral sources of energy to avoid the consequences of global warming caused by ever-increasing atmospheric CO2 levels. An attractive possibility is to use CO2 captured from industrial emissions as a feedstock for the production of useful fuels and precursors such as carbon monoxide and methanol. An active field of research to achieve this goal is the development of catalysts capable of harnessing solar energy for use in artificial photosynthetic processes for CO2 reduction. Transition-metal complexes are excellent candidates, and it has already been shown that they can be used to reduce CO2 with high quantum efficiency. However, they generally, suffer from poor visible light absorption, short catalyst lifetimes, and poor reaction. rates. In this Perspective, the field of photocatalytic CO2 reduction is introduced, and recent developments that seek to improve the efficiency of such catalytic processes are highlighted, especially CO2 reduction with supramolecules and molecular systems in supercritical CO2 (scCO(2)) or biphasic ionic liquid scCO(2) mixtures. C1 [Grills, David C.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Grills, DC (reprint author), Brookhaven Natl Lab, Dept Chem, POB 5000, Upton, NY 11973 USA. EM dcgrills@bnl.gov RI Fujita, Etsuko/D-8814-2013; Grills, David/F-7196-2016 OI Grills, David/0000-0001-8349-9158 FU U.S. Department of Energy, Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The work at Brookhaven National Laboratory is funded under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. We thank Dr. James Wishart for helpful discussions on RTILs. NR 42 TC 56 Z9 56 U1 10 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 16 PY 2010 VL 1 IS 18 BP 2709 EP 2718 DI 10.1021/jz1010237 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 652OO UT WOS:000282017400018 ER PT J AU Kay, JJ Klos, J Alexander, MH Strecker, KE Chandler, DW AF Kay, Jeffrey J. Klos, Jacek Alexander, Millard H. Strecker, Kevin E. Chandler, David W. TI Cold atoms by kinematic cooling SO PHYSICAL REVIEW A LA English DT Article ID MOLECULES; COLLISIONS; ENERGY; ARGON; BEAMS; SLOW AB We report the preparation and observation of translationally cold atoms using kinematic cooling. In these experiments, krypton atoms are cooled to subkelvin temperatures by elastic collisions in crossed atomic beams. Two independent velocity measurements indicate an upper-bound mean velocity of 13 m/s (E(trans)/k = 850 mK) and are consistent with a much lower mean velocity of 4m/s (E(trans)/k = 80 mK) (k is Boltzmann's constant). The density of the cold atoms is measured to be 109 atoms/cm(3). Scattering calculations and diffusion models support these velocity and density measurements. The results demonstrate that cold, dense samples of ground-state atoms and molecules can be prepared by elastic collisions between identical collision partners. C1 [Kay, Jeffrey J.; Strecker, Kevin E.; Chandler, David W.] Sandia Natl Labs, Livermore, CA 94550 USA. [Klos, Jacek; Alexander, Millard H.] Univ Maryland, College Pk, MD 20742 USA. RP Strecker, KE (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM kstreck@sandia.gov; chand@sandia.gov RI Klos, Jacek/A-6457-2008 OI Klos, Jacek/0000-0002-7407-303X FU US Department of Energy, Office of Basic Energy Science FX The authors would like to acknowledge Mark Jaska for technical support. Funding for this work was provided by the US Department of Energy, Office of Basic Energy Science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy. NR 25 TC 0 Z9 0 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 16 PY 2010 VL 82 IS 3 AR 032709 DI 10.1103/PhysRevA.82.032709 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 652JU UT WOS:000282003500005 ER PT J AU Androulakis, J Todorov, I Chung, DY Ballikaya, S Wang, GY Uher, C Kanatzidis, M AF Androulakis, John Todorov, Iliya Chung, Duck-Young Ballikaya, Sedat Wang, Guoyu Uher, Ctirad Kanatzidis, Mercouri TI Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands SO PHYSICAL REVIEW B LA English DT Article ID LEAD-TELLURIDE; NANOSTRUCTURED THERMOELECTRICS; CHALCOGENIDES; EFFICIENCY; STATES AB The effect of K and K-Na substitution for Pb atoms in the rocksalt lattice of PbTe was investigated to test a hypothesis for development of resonant states in the valence band that may enhance the thermoelectric power. We combined high-temperature Hall-effect, electrical conductivity, and thermal conductivity measurements to show that K-Na codoping do not form resonance states but can control the energy difference of the maxima of the two primary valence subbands in PbTe. This leads to an enhanced interband interaction with rising temperature and a significant rise in the thermoelectric figure of merit of p-type PbTe. The experimental data can be explained by a combination of a single- and two-band models for the valence band of PbTe depending on hole density that varies in the range of 1-15 X 10(19) cm(-3). C1 [Androulakis, John; Kanatzidis, Mercouri] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Todorov, Iliya; Chung, Duck-Young; Kanatzidis, Mercouri] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ballikaya, Sedat; Wang, Guoyu; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Ballikaya, Sedat] Istanbul Univ, Dept Phys, TR-34134 Istanbul, Turkey. RP Androulakis, J (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Wang, Guoyu/A-9544-2011; OI Wang, Guoyu/0000-0003-0431-742X FU Office of Naval Research [N00014-08-1-0613]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001054]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Office of Naval Research (Grant No. N00014-08-1-0613). The work at the University of Michigan is supported as part of the Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0001054. The work at Argonne National Laboratory is supported by Department of Energy, Office of Basic Energy Sciences (Grant No. DE-AC02-06CH11357). NR 34 TC 65 Z9 66 U1 5 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2010 VL 82 IS 11 AR 115209 DI 10.1103/PhysRevB.82.115209 PG 8 WC Physics, Condensed Matter SC Physics GA 652LG UT WOS:000282007400002 ER PT J AU Burdman, G Da Rold, L Matheus, RD AF Burdman, G. Da Rold, L. Matheus, R. D. TI Lepton sector of a fourth generation SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; COMPOSITE HIGGS; QUARK; PHYSICS; FAMILY; PHASE AB In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models. C1 [Burdman, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Burdman, G.; Matheus, R. D.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Da Rold, L.] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. RP Burdman, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Burdman, Gustavo/D-3285-2012; Matheus, Ricardo D'Elia/G-2957-2012 OI Matheus, Ricardo D'Elia/0000-0003-2132-8251 FU John Simon Guggenheim Foundation; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); U.S. Department of Energy [DE-AC02-07CH11359]; FAPESP (Sao Paulo State Research Foundation) FX G. B. acknowledges support from the John Simon Guggenheim Foundation and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. L. D. thanks Alejandro Szynkman for very useful discussions on four body decays and Daniel de Florian for suggesting the use of COMPHEP for many-body decays. R. D. M. acknowledges support from FAPESP (Sao Paulo State Research Foundation). NR 62 TC 15 Z9 15 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 16 PY 2010 VL 82 IS 5 AR 055015 DI 10.1103/PhysRevD.82.055015 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 652XI UT WOS:000282045400003 ER PT J AU Sanchez, PDA Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Aitchison, IJR Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Aitchison, I. J. R. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA Collaboration, B TI Evidence for Direct CP Violation in the Measurement of the Cabbibo-Kobayashi-Maskawa Angle gamma with B--/+ -> D-(*K-)(()*()-/+) Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS; MATRIX; ASYMMETRIES AB We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle gamma through a Dalitz plot analysis of neutral D-meson decays to K-S(0)pi(+) pi(-) and K-S(0) K+ K- produced in the processes B--/+ -> DK -/+, B--/+ -> D* K--/+ with D* -> D pi(0), D gamma and B -/+ DK*-/+ with K*(-/+) -> K-S(0)pi(-/+), using 468 million B (B) over bar pairs collected by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC. We measure gamma = (68 +/- 14 +/- 4 +/- 3)degrees (modulo 180 degrees), where the first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the uncertainty in the description of the neutral D decay amplitudes. This result is inconsistent with gamma = 0 ( no direct CP violation) with a significance of 3.5 standard deviations. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.; Pappagallo, M.] INFN Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Eigen, G.; Stugu, B.; Sun, L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dresden, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] INFN Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] INFN Lab Naz Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Lab Accelrateur Lineaire, CNRS, IN2P3, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Denis Diderot Paris 7, IN2P3, CNRS, Lab Phys Nucl & Hautes Energies,Univ Pierre & Cur, F-75252 Paris, France. [Biasini, M.; Manoni, E.] INFN Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aitchison, I. J. R.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-4071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, Perugia, Italy. Univ Roma La Sapienza, I-00185 Rome, Italy. [Carpinelli, M.] Univ Sassari, Sassari, Italy. [Aitchison, I. J. R.] Univ Oxford, Dept Theoret Phys, Oxford OX1 3NP, England. RP Sanchez, PDA (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; Neri, Nicola/G-3991-2012; White, Ryan/E-2979-2015; Forti, Francesco/H-3035-2011; Calabrese, Roberto/G-4405-2015; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Luppi, Eleonora/0000-0002-1072-5633; Neri, Nicola/0000-0002-6106-3756; White, Ryan/0000-0003-3589-5900; Forti, Francesco/0000-0001-6535-7965; Calabrese, Roberto/0000-0002-1354-5400; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 NR 35 TC 40 Z9 40 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 16 PY 2010 VL 105 IS 12 AR 121801 DI 10.1103/PhysRevLett.105.121801 PG 7 WC Physics, Multidisciplinary SC Physics GA 653ZH UT WOS:000282137400002 ER PT J AU Hudelson, S Newman, BK Bernardis, S Fenning, DP Bertoni, MI Marcus, MA Fakra, SC Lai, B Buonassisi, T AF Hudelson, Steve Newman, Bonna K. Bernardis, Sarah Fenning, David P. Bertoni, Mariana I. Marcus, Matthew A. Fakra, Sirine C. Lai, Barry Buonassisi, Tonio TI Retrograde Melting and Internal Liquid Gettering in Silicon SO ADVANCED MATERIALS LA English DT Article ID X-RAY MICROPROBE; MULTICRYSTALLINE SILICON; ELECTRON-MICROSCOPE; BINARY-SYSTEMS; METAL; MECHANISMS; DEFECTS; GROWTH AB Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems. C1 [Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. [Marcus, Matthew A.; Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Buonassisi, T (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM buonassisi@mit.edu RI Buonassisi, Tonio/J-2723-2012; OI Fenning, David/0000-0002-4609-9312 FU U.S. Department of Energy [DE-FG36-09GO19001]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; National Science Foundation [ECS-0335765] FX We thank J. McGinn and S. Cortex at McCrone Scientific for their outstanding equipment support; M. Heuer, S. Langkau, M.D. Pickett, S. Riepe, and E.L. Thomas for enlightening discussions; S. Speakman for assistance with XRD; and Y.S. Lee for assisting with e-beam evaporation and sputtering. Support for this research was provided by the U.S. Department of Energy, under contract number DE-FG36-09GO19001, and through the generous support of Doug Spreng and the Chesonis Family Foundation. S. Hudelson and D.P. Fenning acknowledge the National Science Foundation; B. Newman the Claire Boothe Luce Foundation. The Advanced Light Source and the Advanced Photon Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. This work was performed in part at the Center for Nanoscale Systems (CNS), a. member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of the Faculty or Arts and Sciences at Harvard University. NR 29 TC 9 Z9 9 U1 2 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 15 PY 2010 VL 22 IS 35 BP 3948 EP + DI 10.1002/adma.200904344 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 663SM UT WOS:000282910100005 PM 20672312 ER PT J AU Cabana, J Monconduit, L Larcher, D Palacin, MR AF Cabana, Jordi Monconduit, Laure Larcher, Dominique Rosa Palacin, M. TI Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions SO ADVANCED MATERIALS LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; METAL FLUORIDE NANOCOMPOSITES; X-RAY-DIFFRACTION; FE-57 MOSSBAUER-SPECTROSCOPY; ALLOY NEGATIVE ELECTRODES; COMPOSITE ANODE MATERIALS; HIGH-TEMPERATURE CELLS; THIN-FILM ELECTRODES; HIGH-ENERGY DENSITY; ELECTROCHEMICAL PERFORMANCE AB Despite the imminent commercial introduction of Li-ion batteries in electric drive vehicles and their proposed use as enablers of smart grids based on renewable energy technologies, an intensive quest for new electrode materials that bring about improvements in energy density, cycle life, cost, and safety is still underway. This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li-ion batteries. By moving beyond classical intercalation reactions, a variety of low cost compounds with gravimetric specific capacities that are two-to-five times larger than those attained with currently used materials, such as graphite and LiCoO2, can be achieved. Nonetheless, several factors currently handicap the applicability of electrode materials entailing conversion reactions. These factors, together with the scientific breakthroughs that are necessary to fully assess the practicality of this concept, are reviewed in this report. C1 [Rosa Palacin, M.] CSIC, Inst Ciencia Mat Barcelona, E-08193 Bellaterra, Catalonia, Spain. [Cabana, Jordi] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Monconduit, Laure] Univ Montpellier 2, Inst Charles Gerhardt, CNRS, F-34095 Montpellier, France. [Larcher, Dominique] Univ Picardie Jules Verne, Lab React & Chim Solides, CNRS, UMR6007, F-80039 Amiens, France. RP Palacin, MR (reprint author), CSIC, Inst Ciencia Mat Barcelona, Campus UAB, E-08193 Bellaterra, Catalonia, Spain. EM rosa.palacin@icmab.es RI Cabana, Jordi/G-6548-2012; Palacin, Maria Rosa/H-2163-2012 OI Cabana, Jordi/0000-0002-2353-5986; Palacin, Maria Rosa/0000-0001-7351-2005 FU Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministerio de Ciencia e Innovacion (Spain) [MAT2008-04587] FX The authors thank Dr. K. A. Persson and Dr. T. J. Richardson (LBNL, USA), and Prof. J.-M. Tarascon (LRCS, France) for providing very valuable comments on the manuscript, and the academic and industrial members of the ALISTORE-ERI for sharing interesting discussions. JC is grateful to the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy for financial support under contract no. DE-AC02-05CH11231. MRP would like to acknowledge funding from the Ministerio de Ciencia e Innovacion (Spain) through grant MAT2008-04587. NR 344 TC 938 Z9 949 U1 118 U2 943 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 15 PY 2010 VL 22 IS 35 BP E170 EP E192 DI 10.1002/adma.201000717 PG 23 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 663SM UT WOS:000282910100008 PM 20730811 ER PT J AU Kalinin, SV Balke, N AF Kalinin, Sergei V. Balke, Nino TI Local Electrochemical Functionality in Energy Storage Materials and Devices by Scanning Probe Microscopies: Status and Perspectives SO ADVANCED MATERIALS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; LITHIUM-ION BATTERIES; IN-SITU AFM; GRAPHITE NEGATIVE ELECTRODE; ORIENTED PYROLYTIC-GRAPHITE; SURFACE-MORPHOLOGY CHANGE; LIMN2O4 THIN-FILMS; ELEVATED-TEMPERATURES; IMPEDANCE MICROSCOPY; NANOELECTRODE ARRAYS AB Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed. C1 [Kalinin, Sergei V.; Balke, Nino] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Balke, Nina/Q-2505-2015 OI Kalinin, Sergei/0000-0001-5354-6152; Balke, Nina/0000-0001-5865-5892 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; Alexander von Humboldt foundation FX We gratefully acknowledge multiple interactions with Nick Lavrik and Maxim Nikiforov and their perspective on the microcantilever and thermal imaging for battery studies. Research was supported by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCC61, and by the Alexander von Humboldt foundation. NR 131 TC 41 Z9 41 U1 7 U2 129 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 15 PY 2010 VL 22 IS 35 BP E193 EP E209 DI 10.1002/adma.201001190 PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 663SM UT WOS:000282910100009 PM 20730814 ER PT J AU Zeitlin, C Guetersloh, S Heilbronn, L Miller, J Fukumura, A Iwata, Y Murakami, T Sihver, L AF Zeitlin, C. Guetersloh, S. Heilbronn, L. Miller, J. Fukumura, A. Iwata, Y. Murakami, T. Sihver, L. TI Nuclear fragmentation database for GCR transport code development SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Galactic Cosmic Rays; Nuclear fragmentation; Cross section; Transport; Monte Carlo; PHITS ID CROSS-SECTIONS; PHITS; FE-56; MODEL AB A critical need for NASA is the ability to accurately model the transport of heavy ions in the Galactic Cosmic Rays (GCR) through matter, including spacecraft walls, equipment racks, etc. Nuclear interactions are of great importance in the GCR transport problem, as they can cause fragmentation of the incoming ion into lighter ions. Since the radiation dose delivered by a particle is proportional to the square of (charge/velocity), fragmentation reduces the dose delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight since the particles in the GCR tend to be too energetic to be stopped in the relatively thin shielding that is possible within payload mass constraints. Our group has measured a large number of fragmentation cross sections, intended to be used as input to, or for validation of, NASA's radiation transport models. A database containing over 200 charge-changing cross sections and over 2000 fragment production cross sections has been compiled. In this report, we examine in detail the contrast between fragment measurements at large acceptance and small acceptance. We use output from the PHITS Monte Carlo code to test our assumptions using as an example (40)Ar data (and simulated data) at a beam energy of 650 MeV/nucleon. We also present preliminary analysis in which isotopic resolution was attained for beryllium fragments produced by beams of (10)B and (11)B. Future work on the experimental data set will focus on extracting and interpreting production cross sections for light fragments. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Zeitlin, C.] SW Res Inst, Boulder, CO 80302 USA. [Guetersloh, S.; Sihver, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Heilbronn, L.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Miller, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fukumura, A.; Iwata, Y.; Murakami, T.] Natl Inst Radiol Sci, Inage Ku, Chiba 2638555, Japan. [Sihver, L.] Chalmers, SE-41296 Gothenburg, Sweden. [Sihver, L.] Roanoke Coll, Dept Math Comp Sci & Phys, Salem, VA 24153 USA. RP Zeitlin, C (reprint author), SW Res Inst, 1050 Walnut St, Boulder, CO 80302 USA. EM zeitlin@boulder.swri.edu RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 FU Southwest Research Institute under NASA [NNX09AE18A] FX These measurements would not be possible without the outstanding efforts of the accelerator operators at HIMAC and NSRL. We thank them. The lead author also wishes to thank Dr. Steve Blattnig of the NASA Langley Research Center for many useful discussions and for continuing support of the data-mining effort. This work is supported at Southwest Research Institute under NASA Grant No. NNX09AE18A. NR 11 TC 3 Z9 4 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 728 EP 734 DI 10.1016/j.asr.2010.04.035 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600007 ER PT J AU Shvartsburg, AA Prior, DC Tang, KQ Smith, RD AF Shvartsburg, Alexandre A. Prior, David C. Tang, Keqi Smith, Richard D. TI High-Resolution Differential Ion Mobility Separations Using Planar Analyzers at Elevated Dispersion Fields SO ANALYTICAL CHEMISTRY LA English DT Article ID SPECTROMETRY-MASS-SPECTROMETRY; ESI-FAIMS-MS; GAS-PHASE CONFORMATIONS; DYNAMIC-RANGE; PROTEOMICS; PEPTIDE; TEMPERATURE; SENSITIVITY; THROUGHPUT; DISTORTION AB The ion mobility spectrometry (IMS) methods are grouped into conventional IMS, based on the absolute ion mobility, and differential or field asymmetric waveform IMS (FAIMS), based on mobility differences between strong and weak electric fields. A key attraction of FAIMS is substantial orthogonality to mass spectrometry (MS). Although several FAIMS/MS platforms were commercialized, their utility was limited by FAIMS resolving power, typically similar to 10-20. Recently, gas mixtures comprising up to 75% Ile have enabled resolving power >100 that permits separation of numerous heretofore "coeluting" isomers. This performance opens major new proteomic and other biological applications. Here, we show that raising the separation field by 35% over the previous 21 kV/cm provides similar or better resolution (with resolving powers of >200 for multiply charged peptides) using only 50% He, which avoids problems due to elevated pressure and He content in the mass spectrometer. The heating of ions by the separation field in this regime exceeds that at higher He content but weaker field, inducing greater izomerization of labile species. C1 [Shvartsburg, Alexandre A.; Prior, David C.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH NCRR [RR18522] FX We thank Ron Moore, Karl Weitz, Rui Zhao, Bill Danielson, and Dr. Michael Belov for experimental help. This research was supported by NIH NCRR (Grant RR18522). The work was performed in the Environmental Molecular Sciences Laboratory, a DoE-BER user facility at PNNL. NR 56 TC 35 Z9 35 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 15 PY 2010 VL 82 IS 18 BP 7649 EP 7655 DI 10.1021/ac101413k PG 7 WC Chemistry, Analytical SC Chemistry GA 648RF UT WOS:000281710900018 PM 20666414 ER PT J AU Jun, SH Chang, MS Kim, BC An, HJ Lopez-Ferrer, D Zhao, R Smith, RD Lee, SW Kim, J AF Jun, Seung-Hyun Chang, Mun Seock Kim, Byoung Chan An, Hyo Jin Lopez-Ferrer, Daniel Zhao, Rui Smith, Richard D. Lee, Sang-Won Kim, Jungbae TI Trypsin Coatings on Electrospun and Alcohol-Dispersed Polymer Nanofibers for a Trypsin Digestion Column SO ANALYTICAL CHEMISTRY LA English DT Article ID ONLINE PROTEIN DIGESTION; AMINO-ACID-SEQUENCE; MASS-SPECTROMETRY; YEAST ENOLASE; PEPTIDE SEPARATION; CAPILLARY-ELECTROPHORESIS; EFFICIENT PROTEOLYSIS; IDENTIFICATION; PROTEOMICS; INTEGRATION AB The construction of a trypsin column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coatings, which were prepared by a two-step process of covalent attachment and enzyme cross-linking. In a comparative study with the trypsin coatings on as-spun and nondispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than 20 min. By applying the alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the trypsin coatings were improved, yielding more complete and reproducible digestions. Regardless of alcohol dispersion or not, trypsin coatings showed better digestion performance and improved performance stability under recycled uses than covalently attached trypsin, in-solution digestion, and commercial trypsin beads. The combination of highly stable trypsin coatings and alcohol dispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for online and automated protein digestion. C1 [Chang, Mun Seock; Lee, Sang-Won] Korea Univ, Dept Chem, Seoul 136701, South Korea. [Jun, Seung-Hyun; An, Hyo Jin; Kim, Jungbae] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Kim, Byoung Chan] Inst Pasteur Korea, Songnam 463400, Gyeonggi Do, South Korea. [Lopez-Ferrer, Daniel; Zhao, Rui; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lee, SW (reprint author), Korea Univ, Dept Chem, 1 5 Ka, Seoul 136701, South Korea. EM sw_lee@korea.ac.kr; jbkim3@korea.ac.kr RI Smith, Richard/J-3664-2012; Lee, Sang-Won/H-6760-2013; OI Smith, Richard/0000-0002-2381-2349; Lee, Sang-Won/0000-0002-5042-0084; Jun, Seung-Hyun/0000-0002-7978-958X FU Korean Ministry of Education, Science, and Technology (MEST) [20090082314, 2009-0059861, 2009-0075638]; 21C Frontier Functional Proteomics Project [FPR08A1-010]; Ministry of Education, Science and Technology [2010K001300]; Ministry of Knowledge Economy; NIH National Center for Research Resources (NCRR) [RR018522]; NIH National Cancer Institute [R21 CA12619-01]; Pacific Northwest National Laboratory's (PNNL) FX Portions of this work were supported by grants from the National Research Foundation (NIT) funded by the Korean Ministry of Education, Science, and Technology (MEST; No. 20090082314, No. 2009-0059861, and No. 2009-0075638). S.L. and M.C. acknowledge 21C Frontier Functional Proteomics Project (FPR08A1-010) the Converging Research Center Program (2010K001300) through the Ministry of Education, Science and Technology, and the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy. D.L.-F. and R.D.S. also acknowledge the NIH National Center for Research Resources (NCRR, RR018522), NIH National Cancer Institute (R21 CA12619-01), and the Pacific Northwest National Laboratory's (PNNL) Laboratory Directed Research and Development Program. NR 35 TC 19 Z9 20 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 15 PY 2010 VL 82 IS 18 BP 7828 EP 7834 DI 10.1021/ac101633e PG 7 WC Chemistry, Analytical SC Chemistry GA 648RF UT WOS:000281710900042 PM 20718428 ER PT J AU Finnegan, S Yuan, HL Wang, YF Orville, AM Weber, IT Gadda, G AF Finnegan, Steffan Yuan, Hongling Wang, Yuan-Fang Orville, Allen M. Weber, Irene T. Gadda, Giovanni TI Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Oxidase; Flavoprotein; Kinetics; Mechanism; Reductive half-reaction; Choline ID ARTHROBACTER-GLOBIFORMIS; HYDRIDE TRANSFER; TOLERANCE; SUBSTRATE; MECHANISM; BINDING AB The oxidation of choline catalyzed by choline oxidase includes two reductive half-reactions where FAD is reduced by the alcohol substrate and by an aldehyde intermediate transiently formed in the reaction Each reductive half-reaction is followed by an oxidative half-reaction where the reduced Flavin is oxidized by oxygen Here, we have used mutagenesis to prepare the Ser101Ala mutant of choline oxidase and have investigated the impact of this mutation on the structural and kinetic properties of the enzyme The crystallographic structure of the Ser101Ala enzyme indicates that the only differences between the mutant and wild-type enzymes are the lack of a hydroxyl group on residue 101 and a more planar configuration of the flavin in the mutant enzyme Kinetics established that replacement of Ser101 with alanine yields a mutant enzyme with increased efficiencies in the oxidative half-reactions and decreased efficiencies in the reductive half-reactions This is accompanied by a significant decrease in the overall rate of turnover with choline Thus, this mutation has revealed the importance of a specific residue for the optimization of the overall turnover of choline oxidase, which requires fine-tuning of four consecutive half-reactions for the conversion of an alcohol to a carboxylic acid (C) 2010 Elsevier Inc All rights reserved C1 [Finnegan, Steffan; Yuan, Hongling; Weber, Irene T.; Gadda, Giovanni] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA. [Wang, Yuan-Fang; Weber, Irene T.; Gadda, Giovanni] Georgia State Univ, Dept Biol, Atlanta, GA 30302 USA. [Weber, Irene T.; Gadda, Giovanni] Georgia State Univ, Ctr Biotechnol & Drug Design, Atlanta, GA 30302 USA. [Orville, Allen M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gadda, G (reprint author), Georgia State Univ, Dept Chem, POB 4098, Atlanta, GA 30302 USA. FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. NR 26 TC 12 Z9 13 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD SEP 15 PY 2010 VL 501 IS 2 BP 207 EP 213 DI 10.1016/j.abb.2010.06.014 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 647KD UT WOS:000281616500006 PM 20561507 ER PT J AU Lin, G Li, DY Chidawanyika, T Nathan, C Li, HL AF Lin, Gang Li, Dongyang Chidawanyika, Tamutenda Nathan, Carl Li, Huilin TI Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome SO ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS LA English DT Article DE Mycobacterium tuberculosis; Proteasome; Slow-binding inhibition; Peptide aldehyde; Fellutamide B; Enzyme conformational change ID 20S PROTEASOME; PROTEIN-DEGRADATION; ALDEHYDES; PEPTIDES; DISTINCT AB Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K(1) = 68 nM, whereas it inhibits the human proteasome beta 5 active site following a two-step mechanism with K(1) = 11 5 nM and K(1) = 0.93 nM Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes (C) 2010 Elsevier Inc All rights reserved C1 [Lin, Gang; Chidawanyika, Tamutenda; Nathan, Carl] Cornell Univ, Dept Microbiol & Immunol, Weill Med Coll, New York, NY 10065 USA. [Li, Dongyang; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Lin, G (reprint author), Cornell Univ, Dept Microbiol & Immunol, Weill Med Coll, 1300 York Ave, New York, NY 10065 USA. FU Milstein Program in Chemical Biology of Infectious Diseases; Bill and Melinda Gates Foundation; US DOE; William Randolph Hearst Foundation; [NIH P01-A1056293]; [NIH R01A1070285] FX Supported by NIH P01-A1056293, NIH R01A1070285 and the Milstein Program in Chemical Biology of Infectious Diseases. A TB Drug Accelerator grant from the Bill and Melinda Gates Foundation supported the purchase of the natural product library. We thank Dr. F. Glickman and R. Realubit of the High-Throughput Screening Resource Facility for their help and Drs. L. Dick and C. Tsu (Millennium Pharmaceuticals Inc., Boston, MA) for donation of N-Ac-Leu-Leu-Xaa-aldehydes X-ray diffraction data were collected at beam-lines X6A, X25, and X29 in the National Synchrotron Light Source, a facility supported by US DOE and NIH The Department of Microbiology and Immunology is supported by the William Randolph Hearst Foundation. NR 29 TC 27 Z9 31 U1 5 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0003-9861 J9 ARCH BIOCHEM BIOPHYS JI Arch. Biochem. Biophys. PD SEP 15 PY 2010 VL 501 IS 2 BP 214 EP 220 DI 10.1016/j.abb.2010.06 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 647KD UT WOS:000281616500007 PM 20558127 ER PT J AU Crochet, AP Kabir, MM Francis, MB Paavola, CD AF Crochet, Amanda P. Kabir, Mohiuddin M. Francis, Matthew B. Paavola, Chad D. TI Site-selective dual modification of periplasmic binding proteins for sensing applications SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Periplasmic binding proteins (PBPs); Glutamine binding protein; Reagentless sensor; Fluorescence resonance energy transfer (FRET); Transamination ID RESONANCE ENERGY-TRANSFER; FLUORESCENT NANOSENSORS; TRANSPORT-SYSTEMS; CELLS; TRANSAMINATION; CONSTRUCTION; BIOSENSOR; RELEASE; SENSORS; FAMILY AB We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations The periplasmic glutamine binding protein from E colt was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an L-glutamine dependent optical response Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity This represents a readily generalizable method for construction of reagentless biosensors The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction. Published by Elsevier B.V. C1 [Paavola, Chad D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kabir, Mohiuddin M.] SETI Inst, Mountain View, CA 94043 USA. RP Paavola, CD (reprint author), NASA, Ames Res Ctr, Mail Stop 239-15, Moffett Field, CA 94035 USA. FU National Aeronautics and Space Administration [ASTID04-0000-0108, 07-ASTID07-0092] FX This work was supported by National Aeronautics and Space Administration, Astrobiology Science and Technology Instrument Development program grants ASTID04-0000-0108 and 07-ASTID07-0092. NR 32 TC 8 Z9 9 U1 0 U2 6 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 15 PY 2010 VL 26 IS 1 BP 55 EP 61 DI 10.1016/j.bios.2010.05.012 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 659IP UT WOS:000282560500009 PM 20541393 ER PT J AU Haynes, DJ Campos, A Smith, MW Berry, DA Shekhawat, D Spivey, JJ AF Haynes, Daniel J. Campos, Andrew Smith, Mark W. Berry, David A. Shekhawat, Dushyant Spivey, James J. TI Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 11th Internation Symposium on Catalyst Deactivation CY OCT 25-28, 2009 CL Delft, NETHERLANDS DE Pyrochlore; Hexaaluminate; Nickel; Logistic fuel reforming; Partial oxidation catalyst ID BEARING SILICATE GLASSES/MELTS; HYDROGEN-PRODUCTION; TRANSITION-ELEMENTS; NI-AL2O3 CATALYSTS; CARBON DEPOSITION; SUPPORTED NI; METHANE; TETRADECANE; ISOOCTANE; SULFUR AB Ni catalysts are active and selective for the conversion of hydrocarbon into synthesis gas. However, conventional supported Ni catalysts rapidly deactivate at the high temperatures required for partial oxidation of diesel fuel by sintering and metal vaporization, as well as by carbon deposition and sulfur poisoning. Thus, to reduce deactivation Ni (3 wt%) was substituted into the structures of Ba-hexaaluminate (BNHA) and La-Sr-Zr pyrochlore (LSZN), and their activity was compared to a supported Ni/Al(2)O(3) for the catalytic partial oxidation (CPOX) of a surrogate diesel fuel. Characterization by XRD showed a single phase beta-alumina for the hexaaluminate, while LSZN had a pyrochlore structure with a defect SrZrO(3) perovskite phase. Temperature programmed reduction experiments confirmed Ni was reducible in all catalysts. XANES results confirmed that Ni atoms were substituted into the hexaaluminate and pyrochlore structures, as spectra for each catalyst showed different coordination environments for Ni compared to a NiO standard. During CPOX activity tests (T = 900 degrees C and WHSV= 50,000 scc/g(cat)/h), the LSZN pyrochlore produced stable H(2) and CO yields in the presence of 5 wt% 1-methylnaphthalene and 50ppmw dibenzothiophene/n-tetradecane for 2 h, while both Ni/Al(2)O(3) and BNHA catalysts were irreversibly deactivated by this mixture over the same time. Activity loss was strongly linked to carbon formation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Haynes, Daniel J.; Berry, David A.; Shekhawat, Dushyant] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Haynes, Daniel J.] URS Washington Div, Morgantown, WV 26505 USA. [Campos, Andrew; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. [Smith, Mark W.] REM Engn Serv, Morgantown, WV 26505 USA. RP Haynes, DJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Daniel.Haynes@ur.netl.doe.gov NR 44 TC 16 Z9 16 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD SEP 15 PY 2010 VL 154 IS 3-4 BP 210 EP 216 DI 10.1016/j.cattod.2010.03.072 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 647GW UT WOS:000281607400006 ER PT J AU Kessler, SH Smith, JD Che, DL Worsnop, DR Wilson, KR Kroll, JH AF Kessler, Sean H. Smith, Jared D. Che, Dung L. Worsnop, Douglas R. Wilson, Kevin R. Kroll, Jesse H. TI Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MASS-SPECTROMETRY; SECONDARY; PHOTOOXIDATION; PARTICLES; ISOPRENE; RADICALS AB The heterogeneous oxidation of pure erythritol (C(4)H(10)O(4)) and levoglucosan (C(6)H(10)O(5)) particles was studied in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol. In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. However, the ratio of the decrease in particle mass to the decrease in the concentration of the parent species is about three times higher for erythritol than for levoglucosan, indicating that details of chemical structure (such as carbon number, cyclic moieties, and oxygen-containing functional groups) play a governing role in the importance of volatilization reactions. The kinetics of the reaction indicate that while both compounds react at approximately the same rate, reactions of their oxidation products appear to be slowed substantially. Estimates of volatilities of organic species based on elemental composition measurements suggest that the heterogeneous oxidation of oxygenated organics may be an important loss mechanism of organic aerosol. C1 [Kessler, Sean H.; Kroll, Jesse H.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Smith, Jared D.; Che, Dung L.; Wilson, Kevin R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Che, Dung L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Worsnop, Douglas R.] Aerodyne Res Inc, Ctr Aerosol & Cloud Chem, Billerica, MA 01821 USA. [Kroll, Jesse H.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. RP Kroll, JH (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. EM jhkroll@mit.edu RI Worsnop, Douglas/D-2817-2009 OI Worsnop, Douglas/0000-0002-8928-8017 NR 28 TC 75 Z9 75 U1 5 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2010 VL 44 IS 18 BP 7005 EP 7010 DI 10.1021/es101465m PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 647PD UT WOS:000281629800018 PM 20707414 ER PT J AU Um, W Zachara, JM Liu, CX Moore, DA Rod, KA AF Um, Wooyong Zachara, John M. Liu, Chongxuan Moore, Dean A. Rod, Kenton A. TI Resupply mechanism to a contaminated aquifer: A laboratory study of U(VI) desorption from capillary fringe sediments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SURFACE COMPLEXATION MODEL; URANIUM(VI) ADSORPTION; HANFORD SEDIMENTS; VADOSE ZONE; GEOCHEMICAL CONDITIONS; REACTIVE TRANSPORT; TERNARY COMPLEXES; POROUS-MEDIA; WATER-FLOW; SORPTION AB Contaminated capillary fringe sediments are believed to function as long-term source of U(VI) to Hanford's 300 Area groundwater uranium plume that discharges to the Columbia River. The deep vadose zone at this site experiences seasonal water table elevation and water compositional changes in response to Columbia River stage. Batch and column desorption experiments of U(VI) were performed on two mildly contaminated sediments from this system that vary in hydrologic position to ascertain their U(VI) release behavior and factors controlling it. Solid phase characterization of the sediments was performed to identify mineralogic and chemical factors controlling U(VI) desorption. Low adsorbed U(VI) concentrations prevented spectroscopic analysis. The desorption behavior of U(VI) was different for the two sediments in spite of similar chemical and textural characteristics, and non-carbonate mineralogy. Adsorption strength and sorbed U(VI) lability was higher in the near-river sediment. The inland sediment displayed low sorbed U(VI) lability (similar to 10%) and measurable solid-phase carbonate content. Kinetic desorption was observed that was attributed to regeneration of labile U(VI) in the near river sediment, and carbonate mineral dissolution in the inland sediment. The desorption reaction was best described as an equilibrium surface complexation reaction. The noted differences in desorption behavior appear to result from U(VI) contamination and hydrologic history, as well as sediment carbonate content. Insights are provided on the dynamic adsorption/desorption behavior of contaminants in linked groundwater river systems. (C) 2010 Published by Elsevier Ltd. C1 [Um, Wooyong; Zachara, John M.; Liu, Chongxuan; Moore, Dean A.; Rod, Kenton A.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zachara, JM (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99354 USA. EM john.zachara@pnl.gov RI Liu, Chongxuan/C-5580-2009 FU U.S. Department of Energy, Office of Biological and Environmental Research (BER); U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Hanford Integrated Field Research Challenge (IFRC) and PNNL SFA FX This work was supported by the U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Hanford Integrated Field Research Challenge (IFRC) and PNNL SFA. Vadose zone samples were provided by the EM-40 Limited Field Investigation (LFI). Paul Gassman, Eric Clayton, and Steven Baum are acknowledged for their contribution to sample preparation and analyses. Pacific Northwest National Laboratory is operated for the DOE by Battelle. Three insightful reviews served to enhance the presentation in this final manuscript. NR 63 TC 14 Z9 14 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2010 VL 74 IS 18 BP 5155 EP 5170 DI 10.1016/j.gca.2010.02.001 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 641AE UT WOS:000281094900001 ER PT J AU Oster, JL Montanez, IP Guilderson, TP Sharp, WD Banner, JL AF Oster, Jessica L. Montanez, Isabel P. Guilderson, Thomas P. Sharp, Warren D. Banner, Jay L. TI Modeling speleothem delta C-13 variability in a central Sierra Nevada cave using C-14 and Sr-87/Sr-86 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOUTHWESTERN UNITED-STATES; STABLE-ISOTOPE VARIATIONS; HIGH-RESOLUTION; TRACE-ELEMENT; LATE PLEISTOCENE; CARBON-DIOXIDE; OXYGEN-ISOTOPE; NORTH-ATLANTIC; CLIMATE-CHANGE; YOUNGER DRYAS AB Carbon isotopes in speleothems can vary in response to a number of complex processes active in cave systems that are both directly and indirectly related to climate. Progressing downward from the soil zone overlying the cave, these processes include soil respiration, fluid-rock interaction in the host limestone, degassing of CO2 and precipitation of calcite upflow from the speleothem drip site, and calcite precipitation at the drip site. Here we develop a new approach to independently constrain the roles of water-rock interaction and soil processes in controlling stalagmite delta C-13. This approach uses the dead carbon proportion (dcp) estimated from coupled C-14 and Th-230/U measurements, in conjunction with Sr isotope analyses on stalagmite calcite from a central Sierra Nevada foothills cave in California, a region characterized by a highly seasonal Mediterranean-type climate, to determine the roles of water-rock interaction and soil processes in determining stalagmite delta C-13. Increases in stalagmite dcp between 16.5 and 8.8 ka are coincident with decreased delta C-13, indicating a varying yet substantial contribution from the soil organic matter (SOM) reservoir, likely due to significantly increased average age of SOM in the soil veneer above the cave during wet climatic intervals. We use geochemical and isotope mixing models to estimate the host-carbonate contribution throughout the delta C-13 time series and determine the degree of degassing and calcite precipitation that occurred prior to precipitation of stalagmite calcite. The degree of degassing and prior calcite precipitation we calculate varies systematically with other climate indicators, with less degassing and prior calcite precipitation occurring during wetter climatic intervals and more during drier intervals. Modeled delta C-13 values and degassing calculations suggest that some degree of prior calcite precipitation is necessary at all time intervals to explain measured stalagmite delta C-13 values, even during relatively wet intervals. These results illustrate the importance of constraining degassing and prior calcite precipitation in the interpretation of speleothem delta C-13 records, particularly those from caves that formed in seasonal semi-arid to arid environments. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Oster, Jessica L.; Montanez, Isabel P.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr AMS, Livermore, CA USA. [Sharp, Warren D.] Berkeley Geochronol Ctr, Berkeley, CA USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Banner, Jay L.] Univ Texas Austin, Austin, TX 78712 USA. RP Oster, JL (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM jloster@stanford.edu RI Banner, Jay/C-8676-2011; OI Oster, Jessica/0000-0002-1780-2435 FU Cave Research Foundation; NSF [NSF-ATM0823656, NSF-ATM0823541, NSF ATM-0823665] FX This work was supported by a Cave Research Foundation student Grant to Jessica Oster and NSF Grants NSF-ATM0823656 to Isabel P. Montanez. NSF-ATM0823541 to Warren D. Sharp and NSF ATM-0823665 to Jay L. Banner. NR 78 TC 30 Z9 34 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2010 VL 74 IS 18 BP 5228 EP 5242 DI 10.1016/j.gca.2010.06.030 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 641AE UT WOS:000281094900006 ER PT J AU Kelemen, SR Walters, CC Kwiatek, PJ Freund, H Afeworki, M Sansone, M Lamberti, WA Pottorf, RJ Machel, HG Peters, KE Bolin, T AF Kelemen, Simon R. Walters, Clifford C. Kwiatek, Peter J. Freund, Howard Afeworki, Mobae Sansone, Michael Lamberti, William A. Pottorf, Robert J. Machel, Hans G. Peters, Kenneth E. Bolin, Trudy TI Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ARGONNE PREMIUM COALS; RAY PHOTOELECTRON-SPECTROSCOPY; CANADA SEDIMENTARY BASIN; ORGANIC SULFUR FORMS; WESTERN CANADA; X-RAY; CARBONATE RESERVOIRS; SMACKOVER FORMATION; SOUTHEAST MISSOURI; HYDROCARBON GASES AB Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and (13)C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA. The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic carbon. TCA-bitumens exposed to greater thermal stress can have a higher aromaticity, like that observed in TSR-bitumens. Organic sulfur in TCA-organic solids remains relatively constant with increasing maturation (S/C atomic ratio <0.035) due to offsetting preservation and H(2)S elimination reactions. Although S-XANES and (13)C NMR provide information needed to understand changes in structure and reactivity that occur in the formation of petroleum solids, in some cases XPS analysis is sufficient to determine whether a solid bitumen is formed by TCA or TSR. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kelemen, Simon R.; Walters, Clifford C.; Kwiatek, Peter J.; Freund, Howard; Afeworki, Mobae; Sansone, Michael; Lamberti, William A.] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. [Pottorf, Robert J.] ExxonMobil Upstream Res Co, Houston, TX 77252 USA. [Machel, Hans G.] Univ Alberta, Edmonton, AB T6G 2E3, Canada. [Peters, Kenneth E.] Schlumberger Informat Solut, Mill Valley, CA 94941 USA. [Bolin, Trudy] Argonne Natl Lab, Argonne, IL 60439 USA. RP Walters, CC (reprint author), ExxonMobil Res & Engn Co, 1545 Route 22 E, Annandale, NJ 08801 USA. EM clifford.c.walters@exxonmobil.com OI Walters, Clifford/0000-0002-4654-0139 FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-Eng-38] FX The authors wish to thank Robert C. Burruss and two anonymous reviewers for their thoughtful and constructive comments and ExxonMobil Research & Engineering for granting permission to publish this paper. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract No. W-31-109-Eng-38. NR 87 TC 34 Z9 37 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2010 VL 74 IS 18 BP 5305 EP 5332 DI 10.1016/j.gca.2010.06.013 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 641AE UT WOS:000281094900011 ER PT J AU Le Clainche, Y Vezina, A Levasseur, M Cropp, RA Gunson, JR Vallina, SM Vogt, M Lancelot, C Allen, JI Archer, SD Bopp, L Deal, C Elliott, S Jin, M Malin, G Schoemann, V Simo, R Six, KD Stefels, J AF Le Clainche, Yvonnick Vezina, Alain Levasseur, Maurice Cropp, Roger A. Gunson, Jim R. Vallina, Sergio M. Vogt, Meike Lancelot, Christiane Allen, J. Icarus Archer, Stephen D. Bopp, Laurent Deal, Clara Elliott, Scott Jin, Meibing Malin, Gill Schoemann, Veronique Simo, Rafel Six, Katharina D. Stefels, Jacqueline TI A first appraisal of prognostic ocean DMS models and prospects for their use in climate models SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID DIMETHYL SULFIDE; SULFUR EMISSIONS; SARGASSO SEA; ATMOSPHERIC SULFUR; NORTHEAST PACIFIC; SURFACE OCEAN; GAS-EXCHANGE; DIMETHYLSULFONIOPROPIONATE; PHYTOPLANKTON; FLUX AB Ocean dimethylsulfide (DMS) produced by marine biota is the largest natural source of atmospheric sulfur, playing a major role in the formation and evolution of aerosols, and consequently affecting climate. Several dynamic process-based DMS models have been developed over the last decade, and work is progressing integrating them into climate models. Here we report on the first international comparison exercise of both 1D and 3D prognostic ocean DMS models. Four global 3D models were compared to global sea surface chlorophyll and DMS concentrations. Three local 1D models were compared to three different oceanic stations (BATS, DYFAMED, OSP) where available time series data offer seasonal coverage of chlorophyll and DMS variability. Two other 1D models were run at one site only. The major point of divergence among models, both within 3D and 1D models, relates to their ability to reproduce the summer peak in surface DMS concentrations usually observed at low to mid- latitudes. This significantly affects estimates of global DMS emissions predicted by the models. The inability of most models to capture this summer DMS maximum appears to be constrained by the basic structure of prognostic DMS models: dynamics of DMS and dimethylsulfoniopropionate (DMSP), the precursor of DMS, are slaved to the parent ecosystem models. Only the models which include environmental effects on DMS fluxes independently of ecological dynamics can reproduce this summer mismatch between chlorophyll and DMS. A major conclusion of this exercise is that prognostic DMS models need to give more weight to the direct impact of environmental forcing (e. g., irradiance) on DMS dynamics to decouple them from ecological processes. C1 [Allen, J. Icarus; Archer, Stephen D.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Bopp, Laurent] IPSL, LSCE, F-91191 Gif Sur Yvette, France. [Cropp, Roger A.] Griffith Univ, Atmospher Environm Res Ctr, Griffith Sch Environm, Nathan, Qld 4111, Australia. [Deal, Clara; Jin, Meibing] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Elliott, Scott] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gunson, Jim R.] CSIRO Marine & Atmospher Res, Hobart, Tas 7000, Australia. [Lancelot, Christiane; Schoemann, Veronique] Univ Libre Bruxelles, B-1050 Brussels, Belgium. [Le Clainche, Yvonnick; Levasseur, Maurice] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada. [Vogt, Meike; Malin, Gill] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Vallina, Sergio M.; Simo, Rafel] CSIC, ICM, E-08003 Barcelona, Spain. [Six, Katharina D.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Stefels, Jacqueline] Univ Groningen, Dept Plant Ecophysiol, NL-9750 AA Haren, Netherlands. [Vezina, Alain] Fisheries & Oceans Canada, BIO, Dartmouth, NS B2Y 4A2, Canada. RP Le Clainche, Y (reprint author), Univ Quebec, Inst Sci Mer Rimouski, Rimouski, PQ G5L 3A1, Canada. EM yvonnick_leclainche@uqar.ca RI Jin, Meibing/F-7666-2010; Le Clainche, Yvonnick/G-2933-2010; Cropp, Roger/C-1019-2008; Archer, Stephen/H-5490-2012; Monahan, Adam/J-9895-2012; Malin, Gill/C-6985-2009 OI Cropp, Roger/0000-0001-9582-857X; Malin, Gill/0000-0002-3639-9215 FU National Sciences and Engineering Research Council of Canada; Canadian Foundation for Climate and Atmospheric Sciences; U.K. Natural Environmental Research Council; North Pacific Research Board; European Research and Training Network GREENCYCLES; Australian Research Council; EU; U.S. Department of Energy Office of Biology and Environmental Research and the Spanish MEC FX We thank Surface Ocean Lower Atmosphere Study (SOLAS) and the Belgian Federal Science Policy Office for supporting the workshop. Support for participation of individual participants was provided by the National Sciences and Engineering Research Council of Canada and the Canadian Foundation for Climate and Atmospheric Sciences, the U.K. Natural Environmental Research Council Advanced Research Fellowship, the North Pacific Research Board Project, the European Research and Training Network GREENCYCLES, the Australian Research Council, the EU 6th Framework Programme, the U.S. Department of Energy Office of Biology and Environmental Research and the Spanish MEC. Finally, we thank everyone in the DMS community who has contributed data to the Global Surface Seawater Dimethylsulfide (DMS) Database. NR 51 TC 26 Z9 26 U1 0 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD SEP 15 PY 2010 VL 24 AR GB3021 DI 10.1029/2009GB003721 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 652MG UT WOS:000282010300002 ER PT J AU Fleming, RM Seager, CH Lang, DV Campbell, JM AF Fleming, R. M. Seager, C. H. Lang, D. V. Campbell, J. M. TI Annealing neutron damaged silicon bipolar transistors: Relating gain degradation to specific lattice defects SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE annealing; bipolar transistors; deep level transient spectroscopy; elemental semiconductors; silicon ID JUNCTION TRANSISTORS; RECOMBINATION; RADIATION AB Isochronal anneal sequences have been carried out on pnp and npn transistors irradiated with fast neutrons at a variety of fluences. The evolution of base and collector currents was utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. Various annealing biases, theoretical modeling, as well as previous deep level transient spectroscopy (DLTS) data, were used to assign the relative magnitude of each of the important defects to the total recombination current. We find that donor-vacancy pairs in the neutral n-type base of our pnp transistors are responsible for about 1/3 of the postdamage lifetime degradation, while the remaining recombination currents can be largely attributed to a cluster-related divacancylike defect which has no shallow state DLTS emission peak. This latter defect anneals gradually from 350 to 590 K. Generation/recombination currents in the base-emitter junctions in both types of devices were found to anneal in a similar, gradual fashion, suggesting that this same cluster-related intrinsic lattice defect is also responsible for the large, damage-induced base currents. (C) 2010 American Institute of Physics. [doi:10.1063/1.3480798] C1 [Fleming, R. M.; Seager, C. H.; Lang, D. V.; Campbell, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, RM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmflemi@sandia.gov RI Fleming, Robert/B-1248-2008 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Ed Bielejec, Chuck Hembree, Don King, Kyle McDonald, Sam Myers, Peter Schultz, Bill Wampler, Alan Wright, and George Vizkelethy for stimulating discussions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 22 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2010 VL 108 IS 6 AR 063716 DI 10.1063/1.3480798 PG 7 WC Physics, Applied SC Physics GA 660MD UT WOS:000282646400075 ER PT J AU Ganapati, V Schoenfelder, S Castellanos, S Oener, S Koepge, R Sampson, A Marcus, MA Lai, B Morhenn, H Hahn, G Bagdahn, J Buonassisi, T AF Ganapati, Vidya Schoenfelder, Stephan Castellanos, Sergio Oener, Sebastian Koepge, Ringo Sampson, Aaron Marcus, Matthew A. Lai, Barry Morhenn, Humphrey Hahn, Giso Bagdahn, Joerg Buonassisi, Tonio TI Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SINGLE-CRYSTAL SILICON; LOCK-IN THERMOGRAPHY; X-RAY TOPOGRAPHY; SI SOLAR-CELLS; PLASTIC-DEFORMATION; DIFFUSION LENGTH; GRAIN-BOUNDARIES; RIBBON GROWTH; OPTICAL ANISOTROPY; THERMAL-EXPANSION AB This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: beta-SiC and beta-Si(3)N(4) microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing. c 2010 American Institute of Physics. [doi:10.1063/1.3468404] C1 [Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Sampson, Aaron; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. [Schoenfelder, Stephan; Koepge, Ringo; Bagdahn, Joerg] Fraunhofer Ctr Silicon Photovolta CSP, D-06120 Halle, Germany. [Schoenfelder, Stephan; Koepge, Ringo] Fraunhofer Inst Mech Mat IWM, D-06120 Halle, Germany. [Oener, Sebastian; Morhenn, Humphrey; Hahn, Giso] Univ Konstanz, D-78457 Constance, Germany. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lai, Barry] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ganapati, V (reprint author), MIT, Cambridge, MA 02139 USA. EM buonassisi@mit.edu RI Buonassisi, Tonio/J-2723-2012; Hahn, Giso/D-3111-2013; OI Bagdahn, Joerg/0000-0002-1600-2444 FU U.S. Department of Energy [DE-FG36-09GO19001]; Endowed Fund for UROP and MISTI-Germany; Federal Ministry of Education and Research (BMBF) [03IP607]; German Federal Law on Support in Education; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX We acknowledge A. S. Argon, A. E. Hosoi, G. H. McKinley, and G. Barbastathis for insightful comments, J. Lesniak for GFP equipment support, A. Zuschlag for EBSD support, S. Olibet for lifetime measurement support, H.-J. Axman for providing String Ribbon samples, and D. P. Fenning, S. Hudelson, B. Pope, A. Fecych, B. K. Newman, and M. I. Bertoni for mu-XRF and laboratory support. Financial support for this research was provided by the U.S. Department of Energy, under Contract No. DE-FG36-09GO19001, and through the generous support of Doug Spreng and the Chesonis Family Foundation. Individual researcher support was provided by the Paul E. Gray (1954) Endowed Fund for UROP and MISTI-Germany (V. Ganapati), the Federal Ministry of Education and Research (BMBF) within the project "SiThinSolar" (Contract No. 03IP607) (S. Schoenfelder, R. Koepge), the German Federal Law on Support in Education, BAfoeG (S. Oener). The Advanced Light Source and the Advanced Photon Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. NR 124 TC 28 Z9 28 U1 3 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2010 VL 108 IS 6 AR 063528 DI 10.1063/1.3468404 PG 13 WC Physics, Applied SC Physics GA 660MD UT WOS:000282646400046 ER PT J AU Li, JV Johnston, SW Li, XN Albin, DS Gessert, TA Levi, DH AF Li, Jian V. Johnston, Steve W. Li, Xiaonan Albin, David S. Gessert, Timothy A. Levi, Dean H. TI Discussion of some "trap signatures" observed by admittance spectroscopy in CdTe thin-film solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE cadmium compounds; carrier density; electrical conductivity; II-VI semiconductors; semiconductor diodes; semiconductor thin films; solar cells; thin film devices ID LEVEL TRANSIENT SPECTROSCOPY; BACK-CONTACT FORMATION AB Considerable ambiguity and controversy exist concerning the defect signatures (H1, H2, and H3) frequently observed in admittance spectroscopy of thin-film CdTe solar cells. We prove that the commonly labeled H1 defects, observed in all devices in this study, are actually due to the freeze-out of the majority carriers in the neutral CdTe absorber. This freeze-out is evident in the temperature dependencies of capacitance, carrier concentration, and depletion region width. Contrary to intuitive expectation, the activation energy of freeze-out is less than, not identical to, that of the conductivity. In some other cases, H2 or H3 are observed and attributed to the back-contact potential barrier, rather than to the carrier emission from the traps. We extract the back-contact barrier height from the activation energy of the saturation current determined from the temperature-dependent current-voltage curves using the back-to-back diode model. The back-contact barrier height agrees well with the H2 or H3 energy determined by admittance spectroscopy. We present a more comprehensive and realistic equivalent circuit that includes the admittances from both the back-contact and the neutral absorber. (C) 2010 American Institute of Physics. [doi:10.1063/1.3475373] C1 [Li, Jian V.; Johnston, Steve W.; Li, Xiaonan; Albin, David S.; Gessert, Timothy A.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08GO28308] FX The authors are grateful for insightful discussions with Dr. Yanfa Yan at the National Renewable Energy Laboratory, Dr. Jennifer Heath at Linfield College, and Dr. Oleg Sulima at GE Global Research. This research is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 24 TC 8 Z9 8 U1 6 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2010 VL 108 IS 6 AR 064501 DI 10.1063/1.3475373 PG 5 WC Physics, Applied SC Physics GA 660MD UT WOS:000282646400154 ER PT J AU Oo, WMH McCluskey, MD Huso, J Morrison, JL Bergman, L Engelhard, MH Saraf, LV AF Oo, W. M. Hlaing McCluskey, M. D. Huso, J. Morrison, J. L. Bergman, L. Engelhard, M. H. Saraf, L. V. TI Incorporation of Cu acceptors in ZnO nanocrystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; COPPER; NANOPARTICLES; SURFACE AB Doping of semiconductor nanocrystals is an important problem in materials research. Using infrared and x-ray photoelectron spectroscopy, we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals during growth. The incorporation of Cu(2+) dopants increased as the average diameter of the nanocrystals was increased from similar to 3 to 6 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material. (C) 2010 American Institute of Physics. [ doi:10.1063/1.3486060] C1 [Oo, W. M. Hlaing; McCluskey, M. D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Huso, J.; Morrison, J. L.; Bergman, L.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Engelhard, M. H.; Saraf, L. V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Oo, WMH (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM mattmcc@wsu.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy [DE-FG02-07ER46386, DE-FG02-04ER46142]; National Science Foundation [DMR-1004804]; Department of Energy's Office of Biological and Environmental Research, Pacific Northwest National Laboratory FX This work was supported by the U.S. Department of Energy (Grant Nos. DE-FG02-07ER46386 and DE-FG02-04ER46142) and National Science Foundation (Grant No. DMR-1004804). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 24 TC 7 Z9 8 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2010 VL 108 IS 6 AR 064301 DI 10.1063/1.3486060 PG 3 WC Physics, Applied SC Physics GA 660MD UT WOS:000282646400124 ER PT J AU Ramos, KJ Hooks, DE Sewell, TD Cawkwell, MJ AF Ramos, K. J. Hooks, D. E. Sewell, Thomas D. Cawkwell, M. J. TI Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PENTAERYTHRITOL TETRANITRATE; RDX; ORIENTATION; INITIATION; PRESSURE AB We recently proposed that the change observed in the elastic-plastic response of (111)-oriented cyclotrimethylene trinitramine (RDX) crystals under shock compression is caused by an anomalous hardening that is mediated by the homogeneous nucleation of partial dislocation loops with Burgers vector 0.16[010] on (001) {Cawkwell et al., [J. Appl. Phys. 107, 063512 (2010)]}. The orientation dependencies of the (001)[010] slip system suggested that (021)-oriented RDX crystals should also display an anomalous hardening. Molecular dynamics simulations of (021) -oriented RDX crystals confirm that this slip system is activated at a shock pressure 1.34

0.84), remain relatively high (similar to 0.80-0.9) from May to October, and then decrease from November to the following March (0.8 -> 0.57), having an annual average of 0.76. These CFs are comparable to those derived from ground-based radar-lidar observations during the Surface Heat Budget of the Arctic Ocean experiment and from satellite observations over the western Arctic regions. The monthly means of estimated clear-sky and measured all-sky shortwave (SW)-down and longwave (LW)-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 Wm(-2). Values of LW cloud radiative forcing (CRF) are minimum (6 Wm(-2)) in March, then increase monotonically to reach maximum (63 Wm(-2)) in August, then decrease continuously to the following March. The cycle of SW CRF mirrors its LW counterpart with the greatest negative impact occurring during the snow-free months of July and August. On annual average, the negative SW CRFs and positive LW CRFs nearly cancel, resulting in annual average NET CRF of about 3.5 Wm(-2) on the basis of the combined ARM and BRW analysis. Compared with other studies, we find that LW CRF does not change over the Arctic regions significantly, but NET CRFs change from negative to positive from Alaska to the Beaufort Sea, indicating that Barrow is at a critical latitude for neutral NET CRF. The sensitivity study has shown that LW CRFs increase with increasing cloud fraction, liquid water path, and radiating temperature with high positive correlations (0.8-0.9). Negative correlations are found for SW CRFs, but a strong positive correlation between SW CRF and surface albedo exists. C1 [Dong, Xiquan; Xi, Baike; Crosby, Kathryn] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Long, Charles N.] Pacific NW Natl Lab, US Dept Energy, Richland, WA 99352 USA. [Stone, Robert S.; Shupe, Matthew D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Stone, Robert S.; Shupe, Matthew D.] Natl Ocean & Atmospher Adm Earth Syst Res Lab, Boulder, CO USA. RP Dong, XQ (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Stop 9006, Grand Forks, ND 58202 USA. EM dong@aero.und.edu RI Shupe, Matthew/F-8754-2011; OI Shupe, Matthew/0000-0002-0973-9982; Dong, Xiquan/0000-0002-3359-6117 FU NASA at the University of North Dakota [NNX07AW05G]; NSF [ATM0649549]; NASA [NNL04AA11G, NNG06GB59G]; Climate Change Research Division of the U.S. Department of Energy; NOAA-ESRL FX We would like to thank Sally Benson and Gerald G. Mace of the University of Utah for providing preprocessed ARM radar-lidar data. This research was primarily supported by NASA NEWS project under grant NNX07AW05G at the University of North Dakota. The University of North Dakota authors were also supported by NSF under grant ATM0649549, the NASA CERES project under grant NNL04AA11G, and the NASA MAP project under grant NNG06GB59G. Long and Shupe acknowledge the support of the Climate Change Research Division of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program. R. Stone receives support from NOAA-ESRL. We thank D. Longenecker and T. Mefford of NOAA-ESRL for their processing and dissemination of the BRW data. Recognition is also extended to those responsible for the operation and maintenance of the instruments that produced the data used in this study; their diligent and dedicated efforts are often underappreciated. NR 51 TC 21 Z9 22 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 15 PY 2010 VL 115 AR D17212 DI 10.1029/2009JD013489 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MQ UT WOS:000282011500007 ER PT J AU Nag, A Monine, MI Blinov, ML Goldstein, B AF Nag, Ambarish Monine, Michael I. Blinov, Michael L. Goldstein, Byron TI A Detailed Mathematical Model Predicts That Serial Engagement of IgE-Fc epsilon RI Complexes Can Enhance Syk Activation in Mast Cells SO JOURNAL OF IMMUNOLOGY LA English DT Article ID BASOPHILIC LEUKEMIA-CELLS; FOLLICULAR DENDRITIC CELLS; PROTEIN-TYROSINE KINASE; HIGH-AFFINITY RECEPTOR; SIGNAL-TRANSDUCTION; ANTIBODY-AFFINITY; LOOP TYROSINES; TCR ENGAGEMENT; DIMERS; PHOSPHORYLATION AB The term serial engagement was introduced to describe the ability of a single peptide, bound to a MHC molecule, to sequentially interact with TCRs within the contact region between a T cell and an APC. In addition to ligands on surfaces, soluble multivalent ligands can serially engage cell surface receptors with sites on the ligand, binding and dissociating from receptors many times before all ligand sites become free and the ligand leaves the surface. To evaluate the role of serial engagement in Syk activation, we use a detailed mathematical model of the initial signaling cascade that is triggered when Fc epsilon RI is aggregated on mast cells by multivalent Ags. Although serial engagement is not required for mast cell signaling, it can influence the recruitment of Syk to the receptor and subsequent Syk phosphorylation. Simulating the response of mast cells to ligands that serially engage receptors at different rates shows that increasing the rate of serial engagement by increasing the rate of dissociation of the ligand-receptor bond decreases Syk phosphorylation. Increasing serial engagement by increasing the rate at which receptors are cross-linked ( for example by increasing the forward rate constant for cross-linking or increasing the valence of the ligand) increases Syk phosphorylation. When serial engagement enhances Syk phosphorylation, it does so by partially reversing the effects of kinetic proofreading. Serial engagement rapidly returns receptors that have dissociated from aggregates to new aggregates before the receptors have fully returned to their basal state. The Journal of Immunology, 2010, 185: 3268-3276. C1 [Nag, Ambarish; Monine, Michael I.; Goldstein, Byron] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Blinov, Michael L.] Univ Connecticut, Ctr Hlth, Ctr Cell Anal & Modeling, Farmington, CT 06032 USA. RP Goldstein, B (reprint author), Los Alamos Natl Lab, Grp T6, MS K710, Los Alamos, NM 87545 USA. EM bxg@lanl.gov FU National Institutes of Health [R37-GM035556, R01 GM076570, U54 RR022232]; Department of Energy [W-7405-ENG-36] FX This work was supported by National Institutes of Health Grant R37-GM035556 and by the Department of Energy through Contract W-7405-ENG-36. M. L. B. received partial support from National Institutes of Health Grants R01 GM076570 and U54 RR022232. NR 42 TC 10 Z9 11 U1 0 U2 2 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD SEP 15 PY 2010 VL 185 IS 6 BP 3268 EP 3276 DI 10.4049/jimmunol.1000326 PG 9 WC Immunology SC Immunology GA 646RI UT WOS:000281559300018 PM 20733205 ER PT J AU Annunziata, O Miller, DG Albright, JG AF Annunziata, Onofrio Miller, Donald G. Albright, John G. TI Quaternary diffusion coefficients for the sucrose-NaCl-KCl-water system at 25 degrees C SO JOURNAL OF MOLECULAR LIQUIDS LA English DT Article DE Diffusion; electrolyte; carbohydrates; cross diffusion; coupled diffusion ID MUTUAL DIFFUSION; MULTICOMPONENT DIFFUSION; ISOTHERMAL DIFFUSION; AQUEOUS-SOLUTIONS; CRYSTAL-GROWTH; DENSITIES; PRECISION; RELEVANT; RAYLEIGH; BINARY AB Transport properties of saccharide-salt aqueous mixtures are important for basic research and applications in the biochemical and biotechnological fields. We have experimentally determined the nine multicomponent diffusion coefficients for the sucrose (0.25 M) + NaCl (0.50 M) + KCl (0.50 M) + H(2)O quaternary system at 25 degrees C. Our results are compared with those previously obtained for all the corresponding ternary systems and binary systems. A simple excluded-volume model can be used to successfully predict the effect of sucrose on salt cross-term diffusion coefficients for ternary and quaternary systems. We have found that the ternary cross-term diffusion coefficients can be used to make reasonable estimates of the corresponding quaternary coefficients. These estimates can replace the corresponding experimental data when they cannot be measured with satisfactory precision. (C) 2010 Elsevier By. All rights reserved. C1 [Annunziata, Onofrio; Albright, John G.] Texas Christian Univ, Ft Worth, TX 76129 USA. [Miller, Donald G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Annunziata, O (reprint author), Texas Christian Univ, Ft Worth, TX 76129 USA. EM o.annunziata@tcu.edu FU NASA [NAG8-1356]; ACS [47244-G4]; TCU FX This research was supported by the NASA BioTechnology Program (NAG8-1356), the ACS Petroleum Research Funds (47244-G4) and TCU RCAF funds. NR 22 TC 3 Z9 3 U1 5 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7322 J9 J MOL LIQ JI J. Mol. Liq. PD SEP 15 PY 2010 VL 156 IS 1 SI SI BP 33 EP 37 DI 10.1016/j.molliq.2010.05.016 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 654TU UT WOS:000282194100006 ER PT J AU Warshavsky, VB Song, XY AF Warshavsky, Vadim B. Song, Xueyu TI Perturbation theory for solid-liquid interfacial free energies SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CRYSTAL-MELT INTERFACES; FUNDAMENTAL MEASURE-THEORY; DENSITY-FUNCTIONAL THEORY; EMBEDDED-ATOM METHOD; SURFACE-TENSION; CLASSICAL SOLIDS; FLUID; METALS; VAPOR; POINT AB A perturbation theory is developed to calculate solid-liquid interfacial free energies, including anisotropy. The method is applied to systems with inverse-power and Lennard-Jones pair potentials as well as to metal systems with embedded-atom model potentials. The results are in reasonable agreement with the corresponding ones obtained from molecular dynamics simulations. C1 [Warshavsky, Vadim B.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Warshavsky, VB (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM xsong@iastate.edu FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy with Iowa State University [W-7405-ENG-82]; NSF [CHE-0809431] FX This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy, under contract W-7405-ENG-82 with Iowa State University (VBW and XS) and by an NSF grant CHE-0809431(XS). NR 61 TC 5 Z9 5 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 15 PY 2010 VL 22 IS 36 AR 364112 DI 10.1088/0953-8984/22/36/364112 PG 7 WC Physics, Condensed Matter SC Physics GA 645AE UT WOS:000281422500014 PM 21386528 ER PT J AU Zhang, ZC Dong, JA West, R Amine, K AF Zhang, Zhengcheng Dong, Jian West, Robert Amine, Khalil TI Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article; Proceedings Paper CT 4th International Conference on Polymer Batteries and Fuel Cells CY AUG 02-06, 2009 CL Jeju Isl, SOUTH KOREA DE Lithium-ion batteries; Electrolytes; Functionalized disiloxanes; Thermal stability; Cycling performance ID SOLID POLYMER ELECTROLYTES; CARBENE COMPLEXES; CONDUCTIVITY; SALTS AB Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH(2)CH(2)O)-(n), n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by (1) H, (13)C, and (29)Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF(6), the disiloxane electrolytes showed conductivities up to 6.2 x 10(-4) S cm(-1) at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF6, LiBOB can provide a good passivation film on the graphite anode. The LiPF(6)/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi(0.80)Co(0.15)Al(0.05)O(2) as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Zhengcheng; Dong, Jian; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [West, Robert] Univ Wisconsin, Dept Chem, Organosilicon Res Ctr, Madison, WI 53706 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013 NR 30 TC 21 Z9 22 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 15 PY 2010 VL 195 IS 18 SI SI BP 6062 EP 6068 DI 10.1016/j.jpowsour.2009.12.067 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 616IS UT WOS:000279203100041 ER PT J AU Barnese, K Sheng, YW Stich, TA Gralla, EB Britt, RD Cabelli, DE Valentine, JS AF Barnese, Kevin Sheng, Yuewei Stich, Troy A. Gralla, Edith B. Britt, R. David Cabelli, Diane E. Valentine, Joan Selverstone TI Investigation of the Highly Active Manganese Superoxide Dismutase from Saccharomyces cerevisiae SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PRODUCT INHIBITION; HYDROGEN-PEROXIDE; MITOCHONDRIA; EXPRESSION; YEAST AB Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O-2(-)), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD). It was a tetramer with 0.6 equiv of Mn per monomer. The catalytic activity of ScMnSOD was investigated by pulse radiolysis and compared with human and two bacterial (Escherichia coli and Deinococcus radiodurans) MnSODs. To our surprise, ScMnSOD most efficiently facilitates removal of high concentrations of O-2(-) among these MnSODs. The gating value k(2)/ k(3) that characterizes the level of product inhibition scales as ScMnSOD > D. radiodurans MnSOD > E coli MnSOD > human MnSOD. While most MnSODs rest as the oxidized form, ScMnSOD was isolated in the Mn2+ oxidation state as revealed by its optical and electron paramagnetic resonance spectra. This finding poses the possibility of elucidating the origin of product inhibition by comparing human MnSOD with ScMnSOD. C1 [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Barnese, Kevin; Sheng, Yuewei; Gralla, Edith B.; Valentine, Joan Selverstone] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Barnese, Kevin; Valentine, Joan Selverstone] Ewha Womans Univ, Dept Bioinspired Chem, Seoul 120750, South Korea. [Stich, Troy A.; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Cabelli, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM cabelli@bnl.gov; jsv@chem.ucla.edu RI Stich, Troy/F-1625-2013 OI Stich, Troy/0000-0003-0710-1456 FU KOSEF/MEST [R31-2008-000-10010-0]; National Institutes of Health; U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; [DK46828]; [GM48242] FX This work was supported by Grant DK46828, KOSEF/MEST through WCU project (R31-2008-000-10010-0) to J.S.V. and National Institutes of Health and Grant GM48242 to R.D.B. Radiolysis studies were carried out at the Center for Radiation Chemistry Research at BNL, which is funded under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences. NR 19 TC 14 Z9 14 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 15 PY 2010 VL 132 IS 36 BP 12525 EP 12527 DI 10.1021/ja104179r PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 653FP UT WOS:000282074200003 PM 20726524 ER PT J AU Berezniak, T Zahran, M Imhof, P Jaschke, A Smith, JC AF Berezniak, Tomasz Zahran, Mai Imhof, Petra Jaeschke, Andres Smith, Jeremy C. TI Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; RNA WORLD; MACROPHOMATE SYNTHASE; BOND FORMATION; CATALYSIS; BIOSYNTHESIS; INSIGHT; MG2+ AB The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of similar to 5.5 kJ/mol and the closed state similar to 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration. C1 [Berezniak, Tomasz; Zahran, Mai; Imhof, Petra; Smith, Jeremy C.] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. [Berezniak, Tomasz; Jaeschke, Andres] Univ Heidelberg, Inst Pharm & Mol Biotechnol, D-69120 Heidelberg, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Imhof, P (reprint author), Univ Heidelberg, IWR, Neuenheinzer Feld 368, D-69120 Heidelberg, Germany. EM petra.imhof@iwr.uni-heidelberg.de RI Jaschke, Andres/F-1575-2010; smith, jeremy/B-7287-2012; Imhof, Petra/G-5656-2013 OI Jaschke, Andres/0000-0002-4625-2655; smith, jeremy/0000-0002-2978-3227; FU German Research Foundation (DFG); Landesstiftung Baden-Wurttemberg; U.S. Department of Energy; National Science Foundation FX T.B. thanks Emal M. Alekozai, Thomas Splettstoesser, and Lars Meinhold for useful discussions. We gratefully acknowledge funding from the German Research Foundation (DFG) through the award of a doctoral scholarship in the International Research Training Group IGK 710 "Complex Processes: Modeling, Simulation and Optimization". P.I. is grateful to the Landesstiftung Baden-Wurttemberg for funding in the Postdoctoral Elite Program. J.C.S. was supported by a Laboratory Directed Research and Development "Systems Biology" grant from the U.S. Department of Energy. The simulations were run on the Heidelberg Linux Cluster System at the Interdisciplinary Center for Scientific Computing (IWR) of the University of Heidelberg. The work was also supported by a National Science Foundation TeraGrid allocation provided by the National Institute for Computational Sciences. NR 37 TC 15 Z9 15 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 15 PY 2010 VL 132 IS 36 BP 12587 EP 12596 DI 10.1021/ja101370e PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 653FP UT WOS:000282074200020 PM 20722413 ER PT J AU Fulton, JL Balasubramanian, M AF Fulton, John L. Balasubramanian, Mahalingam TI Structure of Hydronium (H3O+)/Chloride (Cl-) Contact Ion Pairs in Aqueous Hydrochloric Acid Solution: A Zundel-like Local Configuration SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ABSORPTION FINE-STRUCTURE; MOLECULAR-DYNAMICS SIMULATIONS; SUPERCRITICAL WATER; MICROSCOPIC STRUCTURE; COMPUTER-SIMULATIONS; DIFFRACTION PATTERN; HCL SOLUTIONS; BROMIDE ION; HYDRATION; SPECTROSCOPY AB A comprehensive analysis of the H3O+ and H2O structure in the first solvation shell about Cl- in aqueous HCl solutions is reported from X-ray absorption fine structure (XAFS) measurements. Results show increasing degree of contact ion pairing between Cl- and H3O+ as the HCl concentration increases from 6.0 m, 10.0 m, and finally 16.1 m HCl (acid concentrations are expressed as molality or mole HCl/ 1000 g water). At the highest acid concentration there are on average, approximately 1.6 H3O+ ions and 4.2 H2O's in the first shell about Cl-. The structure of the Cl-/H3O+ contact ion pair is distinctly different from that of the H2O structure about Cl-. The Cl-O bond length (2.98 angstrom) for Cl-/H3O+ is approximately 0.16 angstrom shorter than the Cl-/H2O bond. The bridging proton resides at an intermediate position between Cl and O at 1.60 angstrom from the Cl- and approximately 1.37 angstrom from the O of the H3O+. The bridging-proton structure of this contact ion pair, (Cl-H-OH2), is similar to the structure of the water Zundel ion, (H2O-H-OH2+). In both cases there is a shortened CI-O or O-O bond, and the intervening proton bond distances are substantially longer than for the covalent bonds of either HCI or H20. A detailed structural analysis of the aqueous chloride species, Cl-/(H2O)(n), was also completed as part of this study in order to understand the relative importance of various XAFS photoelectron scattering paths. For aqueous Cl- the measured Cl-O and Cl-H distances of 3.14 angstrom and 2.23 angstrom, respectively, are in excellent agreement with earlier neutron and X-ray diffraction results. Overall, these results significantly improve our understanding of the interaction of H3O+ with Cl-. The results are of interest to fundamental physical chemistry and they have important consequences in biochemical, geochemical, and atmospheric processes. C1 [Fulton, John L.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. EM john.fulton@pnl.gov FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; NSERC; University of Washington; Simon Fraser University; Pacific Northwest National Laboratory; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy - Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the Pacific Northwest National Laboratory, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 46 TC 27 Z9 27 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 15 PY 2010 VL 132 IS 36 BP 12597 EP 12604 DI 10.1021/ja1014458 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 653FP UT WOS:000282074200021 PM 20731390 ER PT J AU Fay, AW Blank, MA Lee, CC Hu, YL Hodgson, KO Hedman, B Ribbe, MW AF Fay, Aaron W. Blank, Michael A. Lee, Chi Chung Hu, Yilin Hodgson, Keith O. Hedman, Britt Ribbe, Markus W. TI Characterization of Isolated Nitrogenase FeVco SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID IRON-MOLYBDENUM COFACTOR; RAY-ABSORPTION-SPECTROSCOPY; AZOTOBACTER-VINELANDII NITROGENASE; ACID-LABILE SULFIDE; MOFE-PROTEIN; FEMO-COFACTOR; K-EDGE; VANADIUM NITROGENASE; PRE-EDGE; COMPLEXES AB The cofactors of the Mo- and V-nitrogenases (i.e., FeMoco and FeVco) are homologous metal centers with distinct catalytic properties. So far, there has been only one report on the isolation of FeVco from Azotobacter chroococcum. However, this isolated FeVco species did not carry the full substrate-reducing capacity, as it is unable to restore the N(2)-reducing ability of the cofactor-deficient MoFe protein. Here, we report the isolation and characterization of a fully active species of FeVco from A. vinelandii. Our metal and activity analyses show that FeVco has been extracted intact, carrying with it the characteristic capacity to reduce C(2)H(2) to C(2)H(6) and, perhaps even more importantly, the ability to reduce N(2) to NH(3). Moreover, our EPR and XAS/EXAFS investigations indicate that FeVco is similar to, yet distinct from FeMoco in electronic properties and structural topology, which could account for the differences in the reactivity of the two cofactors. The outcome of this study not only permits the proposal of the first EXAFS-based structural model of the isolated FeVco but also lays a foundation for future catalytic and structural investigations of this unique metallocluster. C1 [Fay, Aaron W.; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Blank, Michael A.; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Hu, YL (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM yilinh@uci.edu; hodgson@ssrl.slac.stanford.edu; hedman@ssrl.slac.stanford.edu; mribbe@uci.edu FU Herman Frasch Foundation [617-HF07]; NIH [GM 67626, RR 01209]; Department of Energy, Office of Basic Energy Science; National Institutes of Health, National Center for Research Resources; DOE Office of Biological and Environmental Research FX This work was supported by Herman Frasch Foundation Grant 617-HF07 (M.W.R.), NIH Grant GM 67626 (M.W.R.) and NIH Grant RR 01209 (K.O.H.). SSRL operations are funded by the Department of Energy, Office of Basic Energy Science, and the SSRL Structural Molecular Biology Program by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the DOE Office of Biological and Environmental Research. NR 36 TC 42 Z9 42 U1 6 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 15 PY 2010 VL 132 IS 36 BP 12612 EP 12618 DI 10.1021/ja1019657 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 653FP UT WOS:000282074200023 PM 20718463 ER PT J AU Sun, N Dey, A Xiao, ZG Wedd, AG Hodgson, KO Hedman, B Solomon, EI AF Sun, Ning Dey, Abhishek Xiao, Zhiguang Wedd, Anthony G. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. TI Solvation Effects on S K-Edge XAS Spectra of Fe-S Proteins: Normal and Inverse Effects on WT and Mutant Rubredoxin SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC POPULATION ANALYSIS; MOLECULAR WAVE FUNCTIONS; IRON-SULFUR CLUSTERS; RESONANCE RAMAN-SPECTRA; CLOSTRIDIUM-PASTEURIANUM; MODEL COMPLEXES; REDOX POTENTIALS; DFT CALCULATIONS; 2FE FERREDOXIN AB S K-edge X-ray absorption spectroscopy (XAS) was performed on wild type Cp rubredoxin and its Cys - Ser mutants in both solution and lyophilized forms. For wild type rubredoxin and for the mutants where an interior cysteine residue (C6 or C39) is substituted by serine, a normal solvent effect is observed, that is, the S covalency increases upon lyophilization. For the mutants where a solvent accessible surface cysteine residue is substituted by serine, the S covalency decreases upon lyophilization which is an inverse solvent effect. Density functional theory (DFT) calculations reproduce these experimental results and show that the normal solvent effect reflects the covalency decrease due to solvent H-bonding to the surface thiolates and that the inverse solvent effect results from the covalency compensation from the interior thiolates. With respect to the Cys Ser substitution, the S covalency decreases. Calculations indicate that the stronger bonding interaction of the alkoxide with the Fe relative to that of thiolate increases the energy of the Fe d orbitals and reduces their bonding interaction with the remaining cysteines. The solvent effects support a surface solvent tuning contribution to electron transfer, and the Cys Ser result provides an explanation for the change in properties of related iron-sulfur sites with this mutation. C1 [Sun, Ning; Dey, Abhishek; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Xiao, Zhiguang; Wedd, Anthony G.] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia. [Xiao, Zhiguang; Wedd, Anthony G.] Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Parkville, Vic 3010, Australia. [Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Hodgson, KO (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM edward.solomon@stanford.edu RI Dey, Abhishek/D-2825-2013; OI Dey, Abhishek/0000-0002-9166-3349; Xiao, Zhiguang/0000-0001-6908-8897 FU NSF [CHE-0948211]; Australian Research Council [A29930204]; Department of Energy, Office of Basic Energy Sciences; Department of Energy, Office of Biological and Environmental Research; National Center for Research Resources (NCRR), National Institutes of Health (NIH) [5 P41 RR001209] FX This research was supported by NSF CHE-0948211 (E.I.S.) and Australian Research Council A29930204 (A.G.W.). SSRL operations are supported by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. This publication was made possible by Grant Number 5 P41 RR001209 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). NR 47 TC 11 Z9 11 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 15 PY 2010 VL 132 IS 36 BP 12639 EP 12647 DI 10.1021/ja102807x PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 653FP UT WOS:000282074200026 PM 20726554 ER PT J AU Quan, HT Zurek, WH AF Quan, H. T. Zurek, W. H. TI Testing quantum adiabaticity with quench echo SO NEW JOURNAL OF PHYSICS LA English DT Article ID COSMOLOGICAL EXPERIMENTS; PHASE-TRANSITION; STRINGS AB Adiabaticity of quantum evolution is important in many settings; one example is adiabatic quantum computation (AQC). Nevertheless, to date, there is no effective method available for testing the adiabaticity of the evolution for the case where the eigenenergies of the driven Hamiltonian are not known. We propose a simple method for checking the adiabaticity of a quantum process for an arbitrary quantum system. We further propose an operational method for finding more efficient protocols that approximate adiabaticity, and suggest a 'uniformly adiabatic' quench scheme based on the Kibble-Zurek mechanism for the case where the initial and final Hamiltonians are given. This method should help in implementing AQC and other tasks where preserving the system in the ground state of a time-dependent Hamiltonian is desired. C1 [Quan, H. T.; Zurek, W. H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zurek, WH (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. EM whzurek@gmail.com RI Quan, Haitao/G-8521-2012 OI Quan, Haitao/0000-0002-4130-2924 FU US Department of Energy FX This work was the supported by the US Department of Energy through the LANL/LDRD Program. We thank Bogdan Damski, Anarb Das and Rishi Sharma for helpful discussions. NR 37 TC 11 Z9 11 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 15 PY 2010 VL 12 AR 093025 DI 10.1088/1367-2630/12/9/093025 PG 16 WC Physics, Multidisciplinary SC Physics GA 651CI UT WOS:000281901800007 ER PT J AU Nau, D Seidel, A Orzekowsky, RB Lee, SH Deb, S Giessen, H AF Nau, D. Seidel, A. Orzekowsky, R. B. Lee, S. -H. Deb, S. Giessen, H. TI Hydrogen sensor based on metallic photonic crystal slabs SO OPTICS LETTERS LA English DT Article ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; THIN-FILMS; SENSITIVITY; MECHANISM; ANALOG AB We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed. (C) 2010 Optical Society of America C1 [Nau, D.; Seidel, A.; Orzekowsky, R. B.; Giessen, H.] Univ Stuttgart, Inst Phys 4, D-70550 Stuttgart, Germany. [Nau, D.] Univ Bonn, Inst Angew Phys, D-53115 Bonn, Germany. [Nau, D.; Seidel, A.; Orzekowsky, R. B.; Giessen, H.] Univ Stuttgart, Res Ctr SCoPE, D-70550 Stuttgart, Germany. [Seidel, A.; Orzekowsky, R. B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Lee, S. -H.; Deb, S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Giessen, H (reprint author), Univ Stuttgart, Inst Phys 4, D-70550 Stuttgart, Germany. EM giessen@physik.uni-stuttgart.de RI Lee, Sehee/A-5989-2011 FU Deutsches Bundesministerium fur Bildung und Forschung (FKZ) [13N8340/1, 13N9049] FX We thank the teams of R. Langen and K. D. Krause for technical support. Financial support by the Deutsches Bundesministerium fur Bildung und Forschung (FKZ 13N8340/1 and 13N9049) is gratefully acknowledged. NR 15 TC 24 Z9 25 U1 8 U2 22 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 15 PY 2010 VL 35 IS 18 BP 3150 EP 3152 PG 3 WC Optics SC Optics GA 652HN UT WOS:000281994500051 PM 20847808 ER PT J AU Luo, QL Martins, G Yao, DX Daghofer, M Yu, R Moreo, A Dagotto, E AF Luo, Qinlong Martins, George Yao, Dao-Xin Daghofer, Maria Yu, Rong Moreo, Adriana Dagotto, Elbio TI Neutron and ARPES constraints on the couplings of the multiorbital Hubbard model for the iron pnictides SO PHYSICAL REVIEW B LA English DT Article ID LAYERED SUPERCONDUCTOR; PHASE; COMPOUND; GAPS AB The results of neutron-scattering and angle-resolved photoemission experiments for the Fe-pnictide parent compounds, and their metallic nature, are shown to impose severe constraints on the range of values that can be considered "realistic" for the intraorbital Hubbard repulsion U and Hund coupling J in multiorbital Hubbard models treated in the mean-field approximation. Phase diagrams for three-and five-orbital models are here provided, and the physically realistic regime of couplings is highlighted, to guide future theoretical work into the proper region of parameters of Hubbard models. In addition, using the random phase approximation, the pairing tendencies in these realistic coupling regions are investigated. It is shown that the dominant spin-singlet pairing channels in these coupling regimes correspond to nodal superconductivity, with strong competition between several states that belong to different irreducible representations. This is compatible with experimental bulk measurements that have reported the existence of nodes in several Fe-pnictide compounds. C1 [Luo, Qinlong; Yao, Dao-Xin; Moreo, Adriana; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Luo, Qinlong; Yao, Dao-Xin; Moreo, Adriana; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Martins, George] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Yao, Dao-Xin] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China. [Daghofer, Maria] IFW Dresden, D-01171 Dresden, Germany. [Yu, Rong] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Luo, QL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Daghofer, Maria/C-5762-2008; YU, RONG/C-1506-2012; Yu, Rong/K-5854-2012; Yu, Rong/H-3355-2016; Martins, George/C-9756-2012 OI Daghofer, Maria/0000-0001-9434-8937; Martins, George/0000-0001-7846-708X FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Deutsche Forschungsgemeinschaft; Sun Yat-Sen University; W.M. Keck Foundation FX This research was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (A.M. and E.D.), the Deutsche Forschungsgemeinschaft under the Emmy-Noether program (M.D.), the Sun Yat-Sen University under the Hundred Talents program (D.X.Y.), and by the W.M. Keck Foundation (R.Y.). G. B. M. especially acknowledges the help of S. Graser in developing the RPA code, as well as discussions with A. Liebsch. E. D. acknowledges useful discussions with D. Scalapino. NR 70 TC 46 Z9 46 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 15 PY 2010 VL 82 IS 10 AR 104508 DI 10.1103/PhysRevB.82.104508 PG 16 WC Physics, Condensed Matter SC Physics GA 650JP UT WOS:000281845400004 ER PT J AU Wang, X Hartley, DJ Riley, MA Riedinger, LL Aguilar, A Carpenter, MP Chiara, CJ Chowdhury, P Darby, I Garg, U Ijaz, Q Janssens, RVF Kondev, FG Lakshmi, S Lauritsen, T Ma, WC McCutchan, EA Mukhopadhyay, S Seyfried, EP Stefanescu, I Tandel, SK Tandel, US Teal, C Vanhoy, JR Zhu, S AF Wang, X. Hartley, D. J. Riley, M. A. Riedinger, L. L. Aguilar, A. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Darby, I. Garg, U. Ijaz, Q. Janssens, R. V. F. Kondev, F. G. Lakshmi, S. Lauritsen, T. Ma, W. C. McCutchan, E. A. Mukhopadhyay, S. Seyfried, E. P. Stefanescu, I. Tandel, S. K. Tandel, U. S. Teal, C. Vanhoy, J. R. Zhu, S. TI Multi-quasiparticle structures up to spin similar to 44h in the odd-odd nucleus Ta-168 SO PHYSICAL REVIEW C LA English DT Article ID RARE-EARTH NUCLEI; WOBBLING MODE; BAND; HF-167; SPECTROSCOPY; EXCITATIONS; REGION AB High-spin states in the odd-odd nucleus Ta-168 have been populated in the Sn-120(V-51, 3n) reaction. Two multi-quasiparticle structures have been extended significantly from spin similar to 20h to above 40h. As a result, the first rotational alignment has been fully delineated and a second band crossing has been observed for the first time in this nucleus. Configurations for these strongly coupled rotational bands are proposed based on signature splitting, B(M1)/ B(E2) ratio information, and observed rotation-alignment behavior. Properties of the observed bands in 168Ta are compared to related structures in the neighboring odd-Z, odd-N, and odd-odd nuclei and are discussed within the framework of the cranked shell model. C1 [Wang, X.; Riley, M. A.; Aguilar, A.; Teal, C.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hartley, D. J.; Seyfried, E. P.; Vanhoy, J. R.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Riedinger, L. L.; Darby, I.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; McCutchan, E. A.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chowdhury, P.; Lakshmi, S.; Tandel, S. K.; Tandel, U. S.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Garg, U.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Ijaz, Q.; Ma, W. C.; Mukhopadhyay, S.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Wang, X (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015 OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter, Michael/0000-0002-3237-5734 FU US National Science Foundation [PHY-0554762, PHY-0456463, PHY-0754674]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848, DE-FG02-96ER40983]; State of Florida FX The authors gratefully acknowledge J. P. Greene for the preparation of the targets and the ATLAS operations staff for providing the high-quality beam. We also thank D. C. Radford and H. Q. Jin for their software support. This work has been supported in part by the US National Science Foundation under Grants No. PHY-0554762 (USNA), No. PHY-0456463 (FSU), and No. PHY-0754674 (UND); the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40848 (UML), and No. DE-FG02-96ER40983 (UTK); and the State of Florida. NR 34 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 15 PY 2010 VL 82 IS 3 AR 034315 DI 10.1103/PhysRevC.82.034315 PG 9 WC Physics, Nuclear SC Physics GA 650JI UT WOS:000281844700001 ER PT J AU Almeida, LG Sturm, C AF Almeida, Leandro G. Sturm, Christian TI Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes SO PHYSICAL REVIEW D LA English DT Article ID ABELIAN GAUGE THEORIES; QCD BETA-FUNCTION; HARMONIC POLYLOGARITHMS; FEYNMAN-INTEGRALS; PERTURBATIVE QCD; BINOMIAL SUMS; RENORMALIZATION; DIAGRAMS; ORDER; (MS)OVER-BAR AB Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the (MS) over bar scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM(gamma mu) schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients of the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n(f) = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator. C1 [Almeida, Leandro G.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Almeida, Leandro G.; Sturm, Christian] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Almeida, LG (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RI Sturm, Christian/Q-2713-2015 OI Sturm, Christian/0000-0002-3137-4940 FU U.S. DOE [DE-AC02-98CH10886] FX We are grateful to our colleagues of the RBC-UKQCD Collaborations for many valuable discussions, in particular, to A. Soni for advice and encouragement. We would like to thank T. Izubuchi and S. Uccirati for conversations about the master integrals as well as Y. Aoki for important discussions. This work was supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. NR 58 TC 28 Z9 28 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 15 PY 2010 VL 82 IS 5 AR 054017 DI 10.1103/PhysRevD.82.054017 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 650IX UT WOS:000281843600002 ER PT J AU Paller, MH Knox, AS AF Paller, Michael H. Knox, Anna S. TI Amendments for the in situ remediation of contaminated sediments: Evaluation of potential environmental impacts SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Active caps; Contaminated sediments; Toxicity; Benthos; Apatite; Organoclay ID BIOAVAILABILITY; METALS AB Active sediment caps represent a comparatively new technology for remediating contaminated sediments. They are made by applying chemically active amendments that reduce contaminant mobility and bioavailability to the sediment surface. The objective of this study was to determine if active cap amendments including organoclay, apatite, and biopolymers have the potential to harm benthic organisms. Methods included laboratory bioassays of amendment toxicity and field evaluations of amendment impacts on organisms held in cages placed within pilot-scale active caps located in Steel Creek, a South Carolina (USA) stream. Test organisms included Hyalella azteca, Leptocheirus plumulosus, Lumbriculus variegatus, and Corbicula fluminea to represent a range of feeding modes, burrowing behaviors, and both fresh and saltwater organisms. In addition to the laboratory and field assays, chemical extractions were performed to determine if the amendments contained harmful impurities that could leach into the ambient environment. Laboratory bioassays indicated that 100% apatite had minimal effects on Hyalella in freshwater and up to 25% organoclay was nontoxic to Leptocheirus in brackish water. Field evaluations indicated that pilot-scale caps composed of up to 50% apatite and 25% organoclay did not harm Hyalella. Lumbriculus, or Corbicula. In contrast, organisms in caps containing biopolymers died because of physical entrapment and/or suffocation by the viscous biopolymers. The extractions showed that the amendments did not release harmful concentrations of metals. These studies indicated that apatite and organoclay are nontoxic at concentrations (up to 50% and 25% by weight, respectively) needed for the construction of active caps that are useful for the remediation of metals and organic contaminants in sediments. (C) 2010 Elsevier B.V. All rights reserved. C1 [Paller, Michael H.; Knox, Anna S.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Paller, MH (reprint author), Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA. EM michael.paller@srnl.doe.gov FU DoD [ER 1501]; Savannah River National Laboratory FX We thank Matthew Brim, William Macky, and Perry Allen for assistance in the laboratory and field. This work was sponsored by the DoD Strategic Environmental Research and Development Program (SERDP) under project ER 1501 and the Savannah River National Laboratory. NR 25 TC 17 Z9 17 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 15 PY 2010 VL 408 IS 20 BP 4894 EP 4900 DI 10.1016/j.scitotenv.2010.06.055 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 651MJ UT WOS:000281931500072 PM 20655093 ER PT J AU Windisch, CF Thallapally, PK McGrail, BP AF Windisch, Charles F., Jr. Thallapally, Praveen K. McGrail, B. P. TI Competitive adsorption study of CO2 and SO2 on Co-3(II)[Co-III(CN)(6)](2) using DRIFTS SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE Carbon dioxide; Sulfur dioxide; Competitive adsorption; DRIFTS; Infrared; Reflectance ID PRUSSIAN BLUE ANALOGS; CATALYSTS; HYDROGEN; NITROSYL; DIOXIDE; ALUMINA; CARBON; ZN AB Diffuse reflectance infrared Fourier transform spectroscopy was used to study the competitive adsorption of CO2 and SO2 on the cobalt Prussian blue analogue Co-3(II)[Co-III(CN)(6)](2) at 298 K. Characteristic peaks for adsorbed CO2 and SO2 species were identified and their relative areas, measured simultaneously as a function of pressure at 298 K, varied in accordance with a Langmuir-Freundlich isotherm fitted to both gases in the low-coverage Henry's Law limit. Evidence for co-adsorption of trace water was also obtained, as well as the apparent formation of an analogous cobalt nitroprusside compound as a reaction product under certain conditions. The several aspects of the adsorption of CO2 and SO2 determined in this work point to an important role for real-time diffuse reflectance infrared measurements in adsorption studies, particularly in the case of competitive adsorption where the occurrence and fate of molecular-level markers arising from more than one adsorbed species can be monitored simultaneously. Depending on the application, this may more than offset certain quantitative limitations of the technique that confine measurements to a relatively narrow set of experimental conditions and demand careful consideration of the effects of sample preparation and treatment. (c) 2010 Elsevier B.V. All rights reserved. C1 [Windisch, Charles F., Jr.; Thallapally, Praveen K.; McGrail, B. P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Windisch, CF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM cf.windisch@pnl.gov RI thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU U.S. Department of Energy, Office of Fossil Energy; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 18 TC 4 Z9 4 U1 3 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD SEP 15 PY 2010 VL 77 IS 1 BP 287 EP 291 DI 10.1016/j.saa.2010.05.024 PG 5 WC Spectroscopy SC Spectroscopy GA 654WO UT WOS:000282202000046 PM 20541964 ER PT J AU Ganusov, VV Lukacher, AE Byers, AM AF Ganusov, Vitaly V. Lukacher, Aron E. Byers, Anthony M. TI Persistence of viral infection despite similar killing efficacy of antiviral CD8(+) T cells during acute and chronic phases of infection SO VIROLOGY LA English DT Article ID LYMPHOCYTIC CHORIOMENINGITIS VIRUS; DYNAMICS IN-VIVO; EFFECTOR FUNCTION; CUTTING EDGE; MEMORY; ANTIGEN; RESPONSES; NAIVE; DIFFERENTIATION; RATES AB Why some viruses establish chronic infections while others do not is poorly understood One possibility is that the host's immune response is impaired during chronic infections and is unable to clear the virus from the host In this report, we use a recently proposed framework to estimate the per capita killing efficacy of CD8(+) T cells, specific for the polyoma virus (PyV), which establishes a chronic infection in mice Surprisingly, the estimated per cell killing efficacy of PyV-specific effector CD8(+) T cells during the acute phase of the infection was very similar to the efficacy of effector CD8(+) T cells specific to lymphocytic choriomeningitis virus (LCMV-Armstrong). which is cleared from the host Our results suggest that persistence of PyV does not result from the generation of an inefficient PyV-specific CD8(+) T cell response, and that other host or viral factors are responsible for the ability of PyV to establish chronic infection (C) 2010 Elsevier Inc All rights reserved C1 [Ganusov, Vitaly V.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Lukacher, Aron E.] Emory Univ, Sch Med, Dept Pathol, Atlanta, GA 30322 USA. [Byers, Anthony M.] VaxDesign, Orlando, FL 32826 USA. [Ganusov, Vitaly V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ganusov, VV (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. OI Ganusov, Vitaly/0000-0001-6572-1691 FU US Department of Energy; University of Tennessee; NIH [R01CA71971] FX We would like to thank Ruy Ribeiro, Alan Perelson and Amber Smith for comments and suggestions during this work This work was supported by the Marie Curie Incoming International Fellowship (FP6, VVG), US Department of Energy through the LANL/LDRD Program (VVG), start-up funds from the University of Tennessee (VVG), and NIH (R01CA71971, AEI.) NR 53 TC 14 Z9 14 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD SEP 15 PY 2010 VL 405 IS 1 BP 193 EP 200 DI 10.1016/j.virol.2010.05.029 PG 8 WC Virology SC Virology GA 635XR UT WOS:000280691700022 PM 20580390 ER PT J AU Levin, I Woicik, JC Llobet, A Tucker, MG Krayzman, V Pokorny, J Reaney, IM AF Levin, I. Woicik, J. C. Llobet, A. Tucker, M. G. Krayzman, V. Pokorny, J. Reaney, I. M. TI Displacive Ordering Transitions in Perovskite-Like AgNb1/2Ta1/2O3 SO CHEMISTRY OF MATERIALS LA English DT Article ID PHASE-TRANSITIONS; X-RAY; DIELECTRIC-PROPERTIES; SOLID-SOLUTIONS; CENTRAL PEAK; SCATTERING; MICROWAVE; SPECTRA; OXIDES; SYSTEM AB Displacive phase transitions in perovskite-like solid solutions AgNb1/2Ta1/2O3 were studied using several diffraction and spectroscopic techniques sensitive to average and local structures. The room-temperature phase of AgNb1/2Ta1/2O3 (M-2) is analogous to that of the end-member AgNbO3 and exhibits Pbcm orthorhombic symmetry with lattice parameters root 2a(c) x root 2a(c) x 4a(c) (a(c) approximate to 4 angstrom refers to an ideal cubic perovskite cell). This structure combines complex octahedral tilting and average antipolar B-cation (Nb, Ta) displacements. Similar to AgNbO3, at higher temperatures, B-cations are disordered among multiple sites displaced along (111), directions. Partial ordering of local B-cation displacements is manifested in the so-called M-3 <-> M-2 transition, which preserves the average Pbcm symmetry determined by the tilted octahedral framework; the transition is accompanied by a broad exploitable maximum of dielectric constant. Ta substitution suppresses this ordering because of the dissimilar off-centering trends for Ta and Nb. According to the extended X-ray absorption fine structure (EXAFS) measurements, Nb cations exhibit much larger local off-center displacements than Ta, consistent with larger dielectric constants typically displayed by niobates compared to tantalates. AgNb1/2Ta1/2O3 maintains residual 8-site disorder down to low temperatures as opposed to 2-site disorder in AgNbO3. Our results suggest that Ag cations also exhibit displacive disorder and, on cooling, undergo ordering coupled to that of the B-cations. C1 [Levin, I.; Woicik, J. C.] NIST, Div Ceram, Gaithersburg, MD 20899 USA. [Llobet, A.] Los Alamos Natl Lab, Lujan Neutron Ctr, Los Alamos, NM 87545 USA. [Tucker, M. G.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Pokorny, J.; Reaney, I. M.] Univ Sheffield, Dept Mat Engn, Sheffield, S Yorkshire, England. [Pokorny, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. RP Levin, I (reprint author), NIST, Div Ceram, Gaithersburg, MD 20899 USA. EM igor.levin@nist.gov RI Llobet, Anna/B-1672-2010; Levin, Igor/F-8588-2010; Pokorny, Jan/F-4569-2011; Tucker, Matt/C-9867-2016 OI Pokorny, Jan/0000-0002-2614-1667; Tucker, Matt/0000-0002-2891-7086 FU Department of Energy Office of Basic Energy Sciences; Los Alamos National Laboratory [W-7405-ENG-36] FX Neutron diffraction measurements were conducted at (1) the Lujan Center at Los Alamos Neutron Science Center funded by the Department of Energy Office of Basic Energy Sciences and Los Alamos National Laboratory under contract No. W-7405-ENG-36 and (2) the ISIS Pulsed Neutron and Muon Source supported by a beam-time allocation from the Science and Technology Facilities Council. NR 21 TC 12 Z9 12 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD SEP 14 PY 2010 VL 22 IS 17 BP 4987 EP 4995 DI 10.1021/cm101263p PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 645MA UT WOS:000281461100019 ER PT J AU Todorov, I Chung, DY Claus, H Gray, KE Li, QA Schleuter, J Bakas, T Douvalis, AP Gutmann, M Kanatzidis, MG AF Todorov, Iliya Chung, Duck Young Claus, Helmut Gray, Kenneth E. Li, Qing'an Schleuter, John Bakas, Thomas Douvalis, Alexios P. Gutmann, Matthias Kanatzidis, Mercouri G. TI Selective Substitution of Cr in CaFe4As3 and Its Effect on the Spin Density Wave SO CHEMISTRY OF MATERIALS LA English DT Article ID T-C; SUPERCONDUCTIVITY; LIFEAS; LAO1-XFXFEAS; PRESSURE AB Single crystals of CaCr0.84Fe3.16As3, a Cr substituted analog of CaFe4As3, were grown from Sn flux and characterized with single crystal neutron diffraction. CaCr0.84Fe3.16As3 crystallizes in the orthorhombic space group Pnma with a three-dimensional framework, where Fe, Cr, and As form a covalent channel-like network with Ca2+ cations residing in the channels. CaCr0.84Fe3.16As3 has a unit cell of a = 12.057(4) angstrom, b = 3.7374(13) angstrom, and c = 11.694(3) A, as determined by room temperature single crystal neutron diffraction (R-1 = 0.0747, wR(2) = 0.1825). Structural data was also collected at 10 K. The single crystal neutron data showed that Cr selectively occupies a particular metal site, Fe(4). The antiferromagnetic transition associated with spin density wave (SDW) in the parent compound is preserved and shifts from 96 to 103 K with the selective Cr doping. Mossbauer, magnetic, and electrical resistivity measurements are reported. C1 [Todorov, Iliya; Chung, Duck Young; Claus, Helmut; Gray, Kenneth E.; Li, Qing'an; Schleuter, John; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Bakas, Thomas; Douvalis, Alexios P.] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece. [Gutmann, Matthias] Rutherford Appleton Lab, ISIS Facil, Oxford, England. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Li, Qingan/L-3778-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 31 TC 7 Z9 7 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 14 PY 2010 VL 22 IS 17 BP 4996 EP 5002 DI 10.1021/cm1012679 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 645MA UT WOS:000281461100020 ER PT J AU Kim, SH Halasyamani, PS Melot, BC Seshadri, R Green, MA Sefat, AS Mandrus, D AF Kim, Sang-Hwan Halasyamani, P. Shiv Melot, Brent C. Seshadri, Ram Green, Mark A. Sefat, Athena S. Mandrus, David TI Experimental and Computational Investigation of the Polar Ferrimagnet VOSe2O5 SO CHEMISTRY OF MATERIALS LA English DT Article ID BOND-VALENCE PARAMETERS; CRYSTAL-STRUCTURE; FERROELECTRICITY; POLARIZATION; SOLIDS; FIELDS; STATES; TERMS AB We have re-examined the crystal structure and the physical properties of VOSe2O5 by performing single crystal X-ray and powder neutron diffraction, alternating current (AC) and direct current (DC) magnetization measurements, heat capacity, dielectric properties, and second-harmonic generation (SHG) measurements. From these studies, we observed that the compound undergoes three magnetic transitions near 4, 5.5, and 8 K. In addition, we observed ferrimagnetic behavior as the magnetic ground state, confirmed by the isothermal magnetization measured below 8 K that reveals a saturated magnetic moment of 0.5 mu(B) per formula unit, consistent with density functional calculations of the magnetically ordered ground state. We propose a ferrimagnetic spin arrangement that is consistent with neutron diffraction measurements as well. Frequency dependence in the AC magnetic susceptibility, observed at 5.5 K, is considered as short-range magnetic ordering and may be associated with the competition between nearest neighbor and next nearest neighbor interactions of the V4+ cations. A dielectric anomaly near 240 K and non-centrosymmetric functional properties, notably, second harmonic generation and electric polarization, are also discussed. C1 [Kim, Sang-Hwan; Halasyamani, P. Shiv] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Melot, Brent C.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Melot, Brent C.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Green, Mark A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Green, Mark A.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Sefat, Athena S.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Halasyamani, PS (reprint author), Univ Houston, Dept Chem, 136 Fleming Bldg, Houston, TX 77204 USA. EM psh@uh.edu RI Seshadri, Ram/C-4205-2013; Halasyamani, P. Shiv/A-8620-2009; Mandrus, David/H-3090-2014; Halasyamani, Shiv/J-3438-2014; Melot, Brent/B-6456-2008; Sefat, Athena/R-5457-2016 OI Seshadri, Ram/0000-0001-5858-4027; Halasyamani, Shiv/0000-0003-1787-1040; Melot, Brent/0000-0002-7078-8206; Sefat, Athena/0000-0002-5596-3504 FU Welch Foundation [E-1457]; NSF [DMR-0652150]; ACS PRF [47345-AC10]; National Science Foundation [DMR 0449354]; Division of Materials Science and Engineering, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725] FX S.-H.K. and P.S.H. thank the Welch Foundation (Grant E-1457), NSF (DMR-0652150), and ACS PRF (47345-AC10) for support. B.C.M. and R.S acknowledge the National Science Foundation for support through Career Awards to R.S. (DMR 0449354) and for the use of MRSEC facilities at UCSB (DMR 0520415), D.P. Shoemaker and A. Llobet are thanked for their assistance in data collection at Los Alamos National Lab. Research is also sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 52 TC 10 Z9 10 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD SEP 14 PY 2010 VL 22 IS 17 BP 5074 EP 5083 DI 10.1021/cm1011839 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 645MA UT WOS:000281461100028 ER PT J AU Kim, TW Chung, PW Lin, VSY AF Kim, Tae-Wan Chung, Po-Wen Lin, Victor S. -Y. TI Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size SO CHEMISTRY OF MATERIALS LA English DT Article ID BINARY SURFACTANT SYSTEM; HUMAN CANCER-CELLS; MOLECULAR-SIEVES; DRUG-DELIVERY; CONTROLLED-RELEASE; STRUCTURAL CONTROL; CARBON MATERIALS; RECENT PROGRESS; SPHERES; REPLICATION AB A rapid and facile synthesis route to the monodisperse spherical MCM-48 mesoporous silica nanoparticles (MSN) with cubic Ia (3) over bard mesostructure is developed based on the modified Stober method. The phase domain of MCM-48-type MSNs can be extended by controlling the stirring rate and molar ratios of silica source and surfactant. The formation of monodispersed spherical MCM-48-type MSNs is obtained using triblock copolymer Pluronic F127 as a particle size designer. The average size of monodisperse spherical MSN can be controlled within the range of 70-500 nm depending on the amount of F127. Moreover, the pore diameter of MSNs can be precisely controllable in pore diameters from 2.3 to 3.3 nm using different alkyl chain surfactants and simple posthydrothermal treatment. An investigation of MCM-48-type MSN materials using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen physisorption clearly reveals that MSNs show high specific surface area, high pore volumes, controllable morphological aspects, and tunable pore diameters. The MCM-48-type MSNs thus obtained are demonstrated as a good hard template for the preparation of other mesoporous nanoparticles, such as mesoporous metal oxides. The present discovery of the extended synthesis conditions and the binary surfactant system in MCM-48 synthesis offers reproducible and facile synthesis of the monodisperse spherical MCM-48 mesoporous silica nanoparticles with precise structural control, and thus has vast prospects for future applications of ultrafine mesostructured nanoparticle materials. C1 [Kim, Tae-Wan] Korea Res Inst Chem Technol, Green Chem Res Div, Taejon 305600, South Korea. [Chung, Po-Wen; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Kim, TW (reprint author), Korea Res Inst Chem Technol, Green Chem Res Div, POB 107,Sinseongro 19, Taejon 305600, South Korea. EM twkim@krict.re.kr RI Chung, Po-Wen/J-7476-2015 FU U.S. DOE Ames Laboratory through the office of Basic Energy Sciences [DE-AC02-07CH11358] FX This study was supported by the U.S. DOE Ames Laboratory through the office of Basic Energy Sciences under Contract DE-AC02-07CH11358. NR 61 TC 111 Z9 115 U1 17 U2 195 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 14 PY 2010 VL 22 IS 17 BP 5093 EP 5104 DI 10.1021/cm1017344 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 645MA UT WOS:000281461100030 ER PT J AU Kelly, DN Schwartz, CP Uejio, JS Duffin, AM England, AH Saykally, RJ AF Kelly, Daniel N. Schwartz, Craig P. Uejio, Jane S. Duffin, Andrew M. England, Alice H. Saykally, Richard J. TI Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID METAL-ION COMPLEXES; SELF-ASSOCIATION; MACROCHELATE FORMATION; LIQUID MICROJETS; ADENINE; DNA; NUCLEOBASES; PROTON; OXYGEN; NUCLEOTIDES AB Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote pi-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not. (c) 2010 American Institute of Physics. [doi:10.1063/1.3478548] C1 [Kelly, Daniel N.; Schwartz, Craig P.; Uejio, Jane S.; Duffin, Andrew M.; England, Alice H.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Uejio, Jane S.; Duffin, Andrew M.; England, Alice H.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu OI England, Alice/0000-0001-7698-8156 FU Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [AC02-05CH11231]; Molecular Foundry; Advanced Light Source FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the LBNL Chemical Sciences Division, the Molecular Foundry, and the Advanced Light Source. We wish to thank Wanli Yang and Jonathan Denlinger for excellent user support of Beamline 8.0.1. NR 26 TC 8 Z9 8 U1 5 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2010 VL 133 IS 10 AR 101103 DI 10.1063/1.3478548 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 658FH UT WOS:000282475400003 PM 20849154 ER PT J AU Stottlemyer, AL Liu, P Chen, JGG AF Stottlemyer, Alan Lee Liu, Ping Chen, Jingguang G. TI Comparison of bond scission sequence of methanol on tungsten monocarbide and Pt-modified tungsten monocarbide SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL APPLICATION; SURFACE REACTIVITIES; BIMETALLIC SURFACES; STEPPED SURFACE; ETHYLENE-GLYCOL; PLATINUM 111; GROUP METALS; DECOMPOSITION; PT(111); ADSORPTION AB The ability to control the bond scission sequence of O-H, C-H, and C-O bonds is of critical importance in the effective utilization of oxygenate molecules, such as in reforming reactions and in alcohol fuel cells. In the current study, we use methanol as a probe molecule to demonstrate the possibility to control the decomposition pathways by supporting monolayer coverage of Pt on a tungsten monocarbide (WC) surface. Density functional theory (DFT) results reveal that on the WC and Pt/WC surfaces CH(3)OH decomposes via O-H bond scission to form the methoxy (*CH(3) O) intermediate. The subsequent decomposition of methoxy on the WC surface occurs through the C-O bond scission to form *CH(3), which reacts with surface *H to produce CH(4). In contrast, the decomposition of methoxy on the Pt/WC surface favors the C-H bond scission to produce *CH(2) O, which prevents the formation of the *CH(3) species and leads to the formation of a *CO intermediate through subsequent deprotonation steps. The DFT predictions are validated using temperature programmed desorption to quantify the gas-phase product yields and high resolution electron energy loss spectroscopy to determine the surface intermediates from methanol decomposition on Pt, WC, and Pt/WC surfaces. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488056] C1 [Stottlemyer, Alan Lee; Chen, Jingguang G.] Univ Delaware, Ctr Catalyt Sci & Technol, Dept Chem Engn, Newark, DE 19716 USA. [Liu, Ping] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Chen, JGG (reprint author), Univ Delaware, Ctr Catalyt Sci & Technol, Dept Chem Engn, Newark, DE 19716 USA. EM jgchen@udel.edu FU Basic Energy Sciences of the Department of Energy (DOE/BES) [DE-FG02-00ER15104]; NASA [NNG05GO92H] FX The authors acknowledge support from the Basic Energy Sciences of the Department of Energy (DOE/BES Grant No. DE-FG02-00ER15104). A.L.S. acknowledges support from the NASA Delaware Space Grant College and Fellowship Program (NASA Grant No. NNG05GO92H). DFT calculations were carried out using computational resources at Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. DOE/BES, under Contract No. DE-AC02-98CH10886. NR 45 TC 16 Z9 16 U1 2 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2010 VL 133 IS 10 AR 104702 DI 10.1063/1.3488056 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 658FH UT WOS:000282475400030 PM 20849181 ER PT J AU Colgan, J Abdallah, J Faenov, AY Pikuz, TA Skobelev, IY Flora, F Francucci, M Martellucci, S AF Colgan, J. Abdallah, J., Jr. Faenov, A. Ya Pikuz, T. A. Skobelev, I. Yu Flora, F. Francucci, M. Martellucci, S. TI Model calculations and measurements of the emission of a barium plasma in the spectral range of high-n Rydberg levels in a near Ni-like state SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID X-RAY-SPECTRUM; WAVELENGTH RANGE; IONIZATION; ANGSTROM AB The Los Alamos suite of atomic codes is used to model several high-resolution spectral measurements from recent laser-produced plasma experiments involving barium fluoride targets. The spectral range of observation is from 7.8 to 9.5 angstrom and the observed lines correspond to 3-5, 3-6, 3-7 and 3-8 transitions of principal quantum number, for Ga-like through Co-like barium ions. The observed spectra are complicated because of many overlapping lines from the various ion stages in a small wavelength region. A MUTA model that includes many configurations is compared to a detailed level-to-level collisional-radiative model that includes fewer configurations. Spectra are calculated to show the sensitivity to plasma temperature, density and size. The contributions to the spectra for the individual ion stages are also presented. The model calculations are in reasonable agreement with experiment. C1 [Colgan, J.; Abdallah, J., Jr.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia. [Flora, F.] ENEA, Dipartimento Innovaz, Settore Fis Applicata, I-00044 Frascati, Roma, Italy. [Francucci, M.; Martellucci, S.] Univ Roma Tor Vergata, INFM, Dipartimento Sci & Tecnol Fis & Energet, I-00133 Rome, Italy. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcolgan@lanl.gov OI Colgan, James/0000-0003-1045-3858 FU US Department of Energy [DE-AC5206NA25396]; RFBR [10-07-00227a]; ISTC [3504]; RAS Presidium [12] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no DE-AC5206NA25396. This research was partially supported by the RFBR Project 10-07-00227a, ISTC Grant No. 3504, and by the RAS Presidium Program of basic researches No. 12. NR 20 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 14 PY 2010 VL 43 IS 17 SI SI AR 175701 DI 10.1088/0953-4075/43/17/175701 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 646HO UT WOS:000281530200012 ER PT J AU Hinestrosa, JP Alonzo, J Osa, M Kilbey, SM AF Hinestrosa, Juan Pablo Alonzo, Jose Osa, Masashi Kilbey, S. Michael, II TI Solution Behavior of Polystyrene-Polyisoprene Miktoarm Block Copolymers in a Selective Solvent for Polyisoprene SO MACROMOLECULES LA English DT Article ID BRANCHED MACROMOLECULES; LIGHT-SCATTERING; MICELLES; MICELLIZATION; ARCHITECTURE; POLYMERS; DEPENDENCE; STARS; SIZE AB The dynamics and self-assembly of polystyrene- (PS-) polyisoprene (PI) miktoarm (mixed-arm) block copolymers in n-hexane, a selective solvent for PI, are investigated. The miktoarms present a branched arrangement in the soluble block in the fashion of PI-(PI)2, where two PI blocks are connected by a common end point to a linear PS-PI diblock. It is found that these copolymers self-assemble into spherical micelles having cores composed of the insoluble PS blocks and coronas of the well-solvated PI-(PI)(2) blocks. Micelles formed from the branched polymer amphiphiles are more compact, having smaller sizes than the micelles formed from a linear PS-PI diblock copolymer of similar molecular weight and composition. As the concentration is decreased, the micelles with large aggregation numbers remain stable, only showing changes in the aggregation number. The hydrodynamic sizes and aggregation numbers determined from the micelles formed from miktoarm copolymers differ from theoretical predictions for spherical micelles made of the equivalent linear amphiphilic diblock copolymers. These differences may arise from the arrangements of the branched blocks inside the micellar corona. C1 [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hinestrosa, Juan Pablo; Alonzo, Jose] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. [Osa, Masashi] Kyoto Univ, Dept Polymer Chem, Kyoto 6158510, Japan. [Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kilbey, SM (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. FU American Chemical Society; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy [2008-297] FX The donors of the Petroleum Research Fund, administered by the American Chemical Society, are gratefully acknowledged for partial support of this work. A portion of this work was conducted at the Center for Nanophase Materials Sciences (enabled through User Project 2008-297), which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Professor Paul Russo of Louisiana State University is acknowledged for fruitful discussions and Professor Jimmy W. Mays of the University of Tennessee, Knoxville is thanked for providing the materials used also in this study. NR 43 TC 9 Z9 9 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD SEP 14 PY 2010 VL 43 IS 17 BP 7294 EP 7304 DI 10.1021/ma100428a PG 11 WC Polymer Science SC Polymer Science GA 645PG UT WOS:000281474500050 ER PT J AU Law, KJH Saxena, A Kevrekidis, PG Bishop, AR AF Law, K. J. H. Saxena, Avadh Kevrekidis, P. G. Bishop, A. R. TI Stable structures with high topological charge in nonlinear photonic quasicrystals SO PHYSICAL REVIEW A LA English DT Article ID SCHRODINGER LATTICES; DISCRETE SOLITONS; OPTICAL VORTICES; VORTEX SOLITONS; STABILITY; WAVE AB Stable vortices with topological charges of 3 and 4 are examined numerically and analytically in photonic quasicrystals created by interference of five as well as eight beams, for cubic as well as saturable nonlinearities. Direct numerical simulations corroborate the analytical and numerical linear stability analysis predictions for such experimentally realizable structures. C1 [Law, K. J. H.] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England. [Law, K. J. H.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, Avadh; Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh; Bishop, A. R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Law, KJH (reprint author), Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England. EM kodylaw@gmail.com RI Law, Kody/A-6375-2010; OI Law, Kody/0000-0003-3133-2537 FU NSF; DOE FX K.J.H.L. acknowledges LANL and CNLS for hospitality. The work was supported by the NSF and DOE. NR 31 TC 6 Z9 6 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD SEP 14 PY 2010 VL 82 IS 3 AR 035802 DI 10.1103/PhysRevA.82.035802 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 650JV UT WOS:000281846100014 ER PT J AU Zhang, ZX Hung, HH Ho, CM Zhao, E Liu, WV AF Zhang, Zixu Hung, Hsiang-Hsuan Ho, Chiu Man Zhao, Erhai Liu, W. Vincent TI Modulated pair condensate of p-orbital ultracold fermions SO PHYSICAL REVIEW A LA English DT Article AB We show that an interesting kind of pairing occurs for spin-imbalanced Fermi gases under a specific experimental condition-the spin up and spin down Fermi levels lying within the p(x) and s orbital bands of an optical lattice, respectively. The pairs condense at a finite momentum equal to the sum of the two Fermi momenta of spin up and spin down fermions and form a p-orbital pair condensate. This 2k(F) momentum dependence has been seen before in spin-and charge-density waves, but it differs from the usual p-wave superfluids such as (3)He, where the orbital symmetry refers to the relative motion within each pair. Our conclusion is based on the density matrix renormalization group analysis for the one-dimensional (1D) system and mean-field theory for the quasi-1D system. The phase diagram of the quasi-1D system is calculated, showing that the p-orbital pair condensate occurs in a wide range of fillings. In the strongly attractive limit, the system realizes an unconventional BEC beyond Feynman's no-node theorem. The possible experimental signatures of this phase in molecule projection experiment are discussed. C1 [Zhang, Zixu; Zhao, Erhai; Liu, W. Vincent] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Hung, Hsiang-Hsuan] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Ho, Chiu Man] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ho, Chiu Man] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ho, Chiu Man] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Zhang, ZX (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RI Zhang, Zixu/F-8658-2010; Ho, Chiu Man /C-2741-2013; Zhao, Erhai/B-3463-2010 OI Zhao, Erhai/0000-0001-8954-1601 FU ARO [W911NF-07-1-0293] FX We thank Chungwei Lin for helpful discussions. This work is supported by ARO Grant No. W911NF-07-1-0293. NR 25 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 14 PY 2010 VL 82 IS 3 AR 033610 DI 10.1103/PhysRevA.82.033610 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 650JV UT WOS:000281846100011 ER PT J AU Boukharouba, N Bateman, FB Brient, CE Carlson, AD Grimes, SM Haight, RC Massey, TN Wasson, OA AF Boukharouba, N. Bateman, F. B. Brient, C. E. Carlson, A. D. Grimes, S. M. Haight, R. C. Massey, T. N. Wasson, O. A. TI Measurement of the n-p elastic scattering angular distribution at E-n = 10 MeV (vol 65, 014004, 2001) SO PHYSICAL REVIEW C LA English DT Correction AB The reported data are given for the mean angles measured rather than for the central angles. The data are normalized to the most recent Evaluated Nuclear Data File evaluated angle-integrated elastic-scattering cross section and refitted with a Legendre polynomial expansion. C1 [Boukharouba, N.] Univ Guelma, Dept Phys, Guelma 24000, Algeria. [Bateman, F. B.; Carlson, A. D.; Wasson, O. A.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Brient, C. E.; Grimes, S. M.; Massey, T. N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Haight, R. C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Boukharouba, N (reprint author), Univ Guelma, Dept Phys, Guelma 24000, Algeria. NR 6 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 14 PY 2010 VL 82 IS 3 AR 039901 DI 10.1103/PhysRevC.82.039901 PG 1 WC Physics, Nuclear SC Physics GA 650JF UT WOS:000281844400003 ER PT J AU Cooper, F Khare, A Mihaila, B Saxena, A AF Cooper, Fred Khare, Avinash Mihaila, Bogdan Saxena, Avadh TI Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity SO PHYSICAL REVIEW E LA English DT Article ID SCHRODINGER-EQUATION; FIELD-THEORIES; SPINOR FIELDS; STABILITY; MODEL AB We consider the nonlinear Dirac equations (NLDE's) in 1 + 1 dimension with scalar- scalar self interaction g(2)/k+1((Psi) over bar Psi)(k+1), as well as a vector- vector self interaction g(2)/k+1((Psi) over bar gamma(mu)Psi(Psi) over bar gamma(omega Psi))(k+1). We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrodinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when vertical bar omega-m vertical bar << 2m, where omega is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k < 2. C1 [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Cooper, F (reprint author), Santa Fe Inst, Santa Fe, NM 87501 USA. EM fcooper@lanl.gov; khare@iopb.res.in; bmihaila@lanl.gov; avadh@lanl.gov RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 FU U.S. Department of Energy FX This work was performed in part under the auspices of the U.S. Department of Energy. F. C. and B. M. would like to thank the Santa Fe Institute for its hospitality during the completion of this work. A. K. would like to thank Center for Nonlinear Studies, Los Alamos National Laboratory, for warm hospitality during his stay. F. C. would like to thank T. Goldman for useful conversations about the nonrelativistic reduction of the Dirac equation. NR 28 TC 21 Z9 21 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 14 PY 2010 VL 82 IS 3 AR 036604 DI 10.1103/PhysRevE.82.036604 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 650SW UT WOS:000281873700006 PM 21230200 ER PT J AU Kress, JD Cohen, JS Horner, DA Lambert, F Collins, LA AF Kress, J. D. Cohen, James S. Horner, D. A. Lambert, F. Collins, L. A. TI Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime SO PHYSICAL REVIEW E LA English DT Article ID ONE-COMPONENT PLASMA; MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS; IGNITION TARGET DESIGNS; LIQUID MODEL MIXTURES; BINARY IONIC MIXTURES; JONES 12-6 POTENTIALS; EQUATION-OF-STATE; WAVE BASIS-SET; TRANSPORT-COEFFICIENTS AB We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm(3) and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm3 where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter Gamma, with a minimum in the reduced viscosity at Gamma approximate to 25, approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model. C1 [Kress, J. D.; Cohen, James S.; Horner, D. A.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lambert, F.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Kress, JD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU Advanced Simulation and Computing Program; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Advanced Simulation and Computing Program. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 52 TC 35 Z9 36 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 14 PY 2010 VL 82 IS 3 AR 036404 DI 10.1103/PhysRevE.82.036404 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 650SW UT WOS:000281873700005 PM 21230193 ER PT J AU Baker, SE Pocha, MD Chang, ASP Sirbuly, DJ Cabrini, S Dhuey, SD Bond, TC Letant, SE AF Baker, Sarah E. Pocha, Michael D. Chang, Allan S. P. Sirbuly, Donald J. Cabrini, Stefano Dhuey, Scott D. Bond, Tiziana C. Letant, Sonia E. TI Detection of bio-organism simulants using random binding on a defect-free photonic crystal SO APPLIED PHYSICS LETTERS LA English DT Article ID VIRUS; MICROCAVITY; SENSOR AB The defect-free photonic crystal (PC) slab geometry was explored for size-selective detection of bio-organism simulants. Through feedback between finite-difference time-domain simulations and experiments, we generated a conservative limit of detection estimate for randomized pore filling of a two-dimensional PC slab, and predict that random binding affords the label-free PC-based optical detection of low numbers (of the order of 10) of biological particles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3487998] C1 [Baker, Sarah E.; Pocha, Michael D.; Chang, Allan S. P.; Sirbuly, Donald J.; Bond, Tiziana C.; Letant, Sonia E.] Lawrence Livermore Natl Lab, Phys & Life Sci & Engn Directorates, Livermore, CA 94550 USA. [Cabrini, Stefano; Dhuey, Scott D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Baker, SE (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci & Engn Directorates, 7000 E Ave, Livermore, CA 94550 USA. EM baker74@llnl.gov FU U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [TC09-LW-003]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Funding for this research was provided by a Laboratory Directed Research and Development Grant No. TC09-LW-003. Portions of this work (fabrication) were performed with a user grant at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Corey Bennett, Bryan Moran, and Vincent Hernandez at Lawrence Livermore National Laboratory for valuable contributions, Rel. No. LLNL-JRNL-432541. NR 20 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 113701 DI 10.1063/1.3487998 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900081 ER PT J AU Gan, ZQ Liu, R Shinar, R Shinar, J AF Gan, Zhengqing Liu, Rui Shinar, Ruth Shinar, Joseph TI Transient electroluminescence dynamics in small molecular organic light-emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID STRETCHED-EXPONENTIAL RELAXATION; NUMERICAL-MODEL; DEVICES; FIELD; RECOMBINATION; DIFFUSION; ARRAYS AB Intriguing electroluminescence (EL) spikes, following a voltage pulse applied to small molecular OLEDs, are discussed, elucidating carrier and exciton quenching dynamics and their relation to device structure. At low temperatures, all devices exhibit spikes at similar to 70-300 ns and mu s-long tails. At 295 K only those with a hole injection barrier, carrier-trapping guest-host emitting layer, and no strong hole-blocking layer exhibit the spikes. They narrow and appear earlier under post-pulse reverse bias. The spikes and tails are in agreement with a revised model of recombination of correlated charge pairs (CCPs) and initially unpaired charges. Decreased post-pulse field-induced dissociative quenching of singlet excitons and CCPs, and possibly increased post-pulse current of holes that "turn back" toward the recombination zone after having drifted beyond it are suspected to cause the spikes' amplitude, which exceeds the dc EL. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3481687] C1 [Gan, Zhengqing; Liu, Rui; Shinar, Joseph] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Gan, Zhengqing; Liu, Rui; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shinar, Ruth] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Shinar, Ruth] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. RP Shinar, R (reprint author), Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. EM rshinar@iastate.edu; jshinar@iastate.edu FU U.S. Department of Energy (USDOE) [DE-AC 02-07CH11358] FX Ames Laboratory is operated by Iowa State University for the U.S. Department of Energy (USDOE) under Contract No. DE-AC 02-07CH11358. This work was supported by the Director for Energy Research, Basic Energy Sciences, USDOE. NR 21 TC 11 Z9 12 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 113301 DI 10.1063/1.3481687 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900071 ER PT J AU Kumar, A Denev, S Zeches, RJ Vlahos, E Podraza, NJ Melville, A Schlom, DG Ramesh, R Gopalan, V AF Kumar, Amit Denev, Sava Zeches, Robert J. Vlahos, Eftihia Podraza, Nikolas J. Melville, Alexander Schlom, Darrell G. Ramesh, R. Gopalan, Venkatraman TI Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation SO APPLIED PHYSICS LETTERS LA English DT Article ID BIFEO3 AB Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3483923] C1 [Kumar, Amit; Denev, Sava; Vlahos, Eftihia; Podraza, Nikolas J.; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Zeches, Robert J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Melville, Alexander; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kumar, A (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM sad22@psu.edu RI Kumar, Amit/C-9662-2012; Schlom, Darrell/J-2412-2013 OI Kumar, Amit/0000-0002-1194-5531; Schlom, Darrell/0000-0003-2493-6113 FU National Science Foundation [DMR-0820404, DMR-0908718] FX We acknowledge support from the National Science Foundation through Grant Nos. DMR-0820404 and DMR-0908718. NR 7 TC 16 Z9 16 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 112903 DI 10.1063/1.3483923 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900056 ER PT J AU Lingnau, B Ludge, K Scholl, E Chow, WW AF Lingnau, Benjamin Luedge, Kathy Schoell, Eckehard Chow, Weng W. TI Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser SO APPLIED PHYSICS LETTERS LA English DT Article ID DYNAMICS; POPULATION AB We investigate many-body and nonequilibrium effects on the dynamical behavior of a quantum-dot laser diode. Simulations, based on the Maxwell-semiconductor-Bloch equations, show strong dependence of the turn-on delay on initial cavity detuning, because of a dynamical shift in the quantum-dot distribution caused by band gap renormalization. Gain switch behavior is found to be insensitive to inhomogeneous broadening, because the balancing between many-body and free-carrier effects inhibits a cavity resonance walk-off. Both the relaxation oscillation damping and frequency are found to increase with decreasing inhomogeneous broadening widths. However, in contrast to bulk and quantum-well lasers, oscillation damping increases less than the frequency. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488004] C1 [Lingnau, Benjamin; Luedge, Kathy; Schoell, Eckehard] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany. [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lingnau, B (reprint author), Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany. EM lingnau@itp.tu-berlin.de FU DFG; U.S. Department of Energy [DE-AC04-94AL85000]; Alexander von Humboldt Foundation FX This work was supported by DFG within SFB 787, U.S. Department of Energy under Contract No. DE-AC04-94AL85000 and Alexander von Humboldt Foundation. NR 22 TC 7 Z9 7 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 111102 DI 10.1063/1.3488004 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900002 ER PT J AU Mihajlovic, G Schreiber, DK Liu, YZ Pearson, JE Bader, SD Petford-Long, AK Hoffmann, A AF Mihajlovic, Goran Schreiber, Daniel K. Liu, Yuzi Pearson, John E. Bader, Samuel D. Petford-Long, Amanda K. Hoffmann, Axel TI Enhanced spin signals due to native oxide formation in Ni80Fe20/Ag lateral spin valves SO APPLIED PHYSICS LETTERS LA English DT Article DE galvanomagnetic effects; iron alloys; nickel alloys; silver; spin valves; transmission electron microscopy ID ROOM-TEMPERATURE; INJECTION; FILMS; DIFFUSION; CURRENTS AB Large nonlocal spin valve signals are reported in mesoscopic Ni80Fe20/Ag lateral spin valves upon exposing them to air. Magnetotransport measurements combined with transmission electron microscopy show that the formation of a native oxide layer at the Ni80Fe20/Ag interface is responsible for the large signals. The results indicate that lateral spin valves with superior performance to those based on high-resistance tunnel barriers can be achieved via controllable growth of native permalloy oxides. (c) 2010 American Institute of Physics. [doi:10.1063/1.3484141] C1 [Mihajlovic, Goran; Schreiber, Daniel K.; Liu, Yuzi; Pearson, John E.; Bader, Samuel D.; Petford-Long, Amanda K.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Schreiber, Daniel K.; Petford-Long, Amanda K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Bader, Samuel D.; Petford-Long, Amanda K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Mihajlovic, G (reprint author), Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. EM hoffmann@anl.gov RI Bader, Samuel/A-2995-2013; Hoffmann, Axel/A-8152-2009; Petford-Long, Amanda/P-6026-2014; Liu, Yuzi/C-6849-2011 OI Hoffmann, Axel/0000-0002-1808-2767; Petford-Long, Amanda/0000-0002-3154-8090; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank O. Mosendz, R. Winkler, and F. Fradin for many stimulating discussions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 31 TC 20 Z9 20 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 112502 DI 10.1063/1.3484141 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900045 ER PT J AU Park, M Hong, S Klug, JA Bedzyk, MJ Auciello, O No, K Petford-Long, A AF Park, Moonkyu Hong, Seungbum Klug, Jeffrey A. Bedzyk, Michael J. Auciello, Orlando No, Kwangsoo Petford-Long, Amanda TI Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID HETEROSTRUCTURES; MULTIFERROICS; POLARIZATION; MEMORIES AB Here we introduce angle-resolved piezoresponse force microscopy (AR-PFM), whereby the sample is rotated by 30 degrees increments around the surface normal vector and the in-plane PFM phase signals are collected at each angle. We obtained the AR-PFM images of BaTiO3 single crystal and cube-on-cube epitaxial (001) BiFeO3 (BFO) thin film on SrRuO3/SrTiO3 substrate, and confirmed that the AR-PFM provides more unambiguous information on the in-plane polarization directions than the conventional PFM method. Moreover, we found eight additional in-plane polarization variants in epitaxial BFO thin films, which are formed to mitigate highly unstable charged domain boundaries. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3487933] C1 [Park, Moonkyu; Hong, Seungbum; Klug, Jeffrey A.; Bedzyk, Michael J.; Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Auciello, Orlando; Petford-Long, Amanda] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Park, Moonkyu; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Klug, Jeffrey A.; Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM hong@anl.gov; ksno@kaist.ac.kr RI No, Kwangsoo/G-4891-2010; Bedzyk, Michael/B-7503-2009; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009; Klug, Jeffrey/A-3653-2013; Bedzyk, Michael/K-6903-2013; Petford-Long, Amanda/P-6026-2014 OI Hong, Seungbum/0000-0002-2667-1983; Petford-Long, Amanda/0000-0002-3154-8090 FU U.S. Department of Energy Office of Science laboratory [DE-AC02- 06CH11357]; MRSEC [DMR-0520513]; MEST [2010-0015063, 2009-0081946] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The XRD facility at NU is supported by MRSEC Grant No. DMR-0520513 from the National Science Foundation. M.P. and K.N. acknowledge the financial support by Mid-career Researcher Program (Grant No. 2010-0015063) and Nano R&D Program (Grant No. 2009-0081946) through NRF grant funded by the MEST. We thank Professor A. Gruverman at University of Nebraska for his critical reading of our manuscript. NR 16 TC 28 Z9 28 U1 2 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 112907 DI 10.1063/1.3487933 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900060 ER PT J AU Safarik, DJ Salje, EKH Lashley, JC AF Safarik, D. J. Salje, E. K. H. Lashley, J. C. TI Spectral analysis of resonance ultrasonic spectroscopy: Kramers-Kronig analysis, Fano profiles, and the case of precursor softening in SnTe:Cr SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-TRANSITIONS; MINERALS; WALLS AB The analysis of resonant ultrasound spectroscopy (RUS) spectra is exemplified by the study of elastic softening in single-crystal Sn(0.995)Cr(0.005)Te near the ferroelastic phase transition at T similar or equal to 100 K. Kramers-Kronig analysis of the resonance peaks shows that the elastic response is linear over the entire temperature range. In the paraelastic phase the Cole-Cole plots of the RUS spectra are circles with small gaps that are related to linear damping. In the ferroelastic phase strong coupling with domain boundary movement occurs, and results in distortion of the Cole-Cole circles. The RUS line profiles in the ferroelastic phase are well-described by the sum of a resonance term and a Fano spectrum with a Fano parameter of q=0.46. The general equations and some simple approximations, which can conveniently be used to analyze RUS spectra, are summarized. We expect that this analysis is transportable to a large parameter space and can be applied to most RUS spectra for both ferroic and nonferroic materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489376] C1 [Safarik, D. J.; Salje, E. K. H.; Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. RP Safarik, DJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dsafarik@lanl.gov RI Salje, Ekhard/M-2931-2013; OI Salje, Ekhard/0000-0002-8781-6154; Safarik, Douglas/0000-0001-8648-9377 FU Department of Energy FX This work was supported in part by the Department of Energy's Laboratory Directed Research and Development Program. NR 36 TC 11 Z9 11 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 13 PY 2010 VL 97 IS 11 AR 111907 DI 10.1063/1.3489376 PG 3 WC Physics, Applied SC Physics GA 652TN UT WOS:000282032900025 ER PT J AU Rodionov, DA Yang, C Li, XQ Rodionova, IA Wang, YB Obraztsova, AY Zagnitko, OP Overbeek, R Romine, MF Reed, S Fredrickson, JK Nealson, KH Osterman, AL AF Rodionov, Dmitry A. Yang, Chen Li, Xiaoqing Rodionova, Irina A. Wang, Yanbing Obraztsova, Anna Y. Zagnitko, Olga P. Overbeek, Ross Romine, Margaret F. Reed, Samantha Fredrickson, James K. Nealson, Kenneth H. Osterman, Andrei L. TI Genomic encyclopedia of sugar utilization pathways in the Shewanella genus SO BMC GENOMICS LA English DT Article ID ESCHERICHIA-COLI; ONEIDENSIS MR-1; SP-NOV.; SUCROSE UTILIZATION; METABOLISM; CARBON; IDENTIFICATION; BACTERIUM; RECONSTRUCTION; PUTREFACIENS AB Background: Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. Results: We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the Shewanella genus. The obtained genomic encyclopedia of sugar utilization includes similar to 170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars. Comparison of the reconstructed catabolic pathways with E. coli identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks. Conclusions: The reconstructed sugar catabolome in Shewanella spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data. C1 [Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Rodionova, Irina A.; Osterman, Andrei L.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Rodionov, Dmitry A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Yang, Chen] Chinese Acad Sci, Key Lab Synthet Biol, Inst Plant Physiol & Ecol, Shanghai Inst Biol Sci, Shanghai 200032, Peoples R China. [Wang, Yanbing; Obraztsova, Anna Y.; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Zagnitko, Olga P.; Overbeek, Ross; Osterman, Andrei L.] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. [Romine, Margaret F.; Reed, Samantha; Fredrickson, James K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Obraztsova, Anna Y.; Nealson, Kenneth H.] J Craig Venter Inst, San Diego, CA 92121 USA. RP Osterman, AL (reprint author), Burnham Inst Med Res, La Jolla, CA 92037 USA. EM osterman@burnham.org OI Rodionov, Dmitry/0000-0002-0939-390X; Romine, Margaret/0000-0002-0968-7641 FU Department of Energy (DOE) Office of Biological and Environmental Research; Battelle Memorial Institute [DE-AC05-76RLO 1830]; National Science Foundation [DBI-0850546]; Russian Foundation for Basic Research [10-04-01768]; Russian Academy of Sciences; National Science Foundation of China [30970035]; Chinese Academy of Sciences [KSCX2-YW-G-029]; [MK-422.2009.4] FX We are grateful to Pavel Novichkov (LBNL) for help with regulon analysis and presentation in RegPrecise database. This research was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research under the Genomics:GTL Program via the Shewanella Federation consortium and the Microbial Genome Program (MGP). Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. D. A. R. was partially supported by National Science Foundation (DBI-0850546), Russian Foundation for Basic Research (10-04-01768), Russian Academy of Sciences program 'Molecular and Cellular Biology' and Russian President's grant for young scientists (MK-422.2009.4). C. Y. was supported by National Science Foundation of China (30970035) and One-hundred-Talented-People program of Chinese Academy of Sciences (KSCX2-YW-G-029). NR 42 TC 39 Z9 39 U1 2 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 13 PY 2010 VL 11 AR 494 DI 10.1186/1471-2164-11-494 PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 662EW UT WOS:000282791100001 PM 20836887 ER PT J AU Negres, RA Norton, MA Cross, DA Carr, CW AF Negres, Raluca A. Norton, Mary A. Cross, David A. Carr, Christopher W. TI Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation SO OPTICS EXPRESS LA English DT Article ID INITIATED DAMAGE; 351 NM; COMPONENTS AB The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range. (C) 2010 Optical Society of America C1 [Negres, Raluca A.; Norton, Mary A.; Cross, David A.; Carr, Christopher W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Negres, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM negres2@llnl.gov RI Carr, Chris/F-7163-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-439171] FX We thank W. A. Steele, J. J. Adams, M. Bolourchi and the OSL team for assistance in the sample preparation and execution of the experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-439171 NR 23 TC 44 Z9 45 U1 2 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 13 PY 2010 VL 18 IS 19 BP 19966 EP 19976 DI 10.1364/OE.18.019966 PG 11 WC Optics SC Optics GA 649NX UT WOS:000281779600039 PM 20940888 ER PT J AU Intravaia, F Ellingsen, SA Henkel, C AF Intravaia, Francesco Ellingsen, Simen A. Henkel, Carsten TI Casimir-Foucault interaction: Free energy and entropy at low temperature SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM OSCILLATOR; THERMODYNAMICS; FORCES AB It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments. C1 [Intravaia, Francesco] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ellingsen, Simen A.] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway. [Henkel, Carsten] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. RP Intravaia, F (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Henkel, Carsten/C-2540-2011; Ellingsen, Simen/C-5149-2008; Intravaia, Francesco/E-6500-2010 OI Ellingsen, Simen/0000-0002-0294-0405; Intravaia, Francesco/0000-0001-7993-4698 FU European Science Foundation (ESF); Humboldt foundation; LANL FX We have benefited from discussions with Gert-Ludwig Ingold. We also thank G. L. Klimchitskaya and V. M. Mostepanenko for constructive comments. Support from the European Science Foundation (ESF) within the Research Networking Programme "New Trends and Applications of the Casimir Effect" is gratefully acknowledged. F. I. acknowledges partial financial support by the Humboldt foundation and LANL. NR 37 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 13 PY 2010 VL 82 IS 3 AR 032504 DI 10.1103/PhysRevA.82.032504 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 649NS UT WOS:000281779000005 ER PT J AU Shah, AB Ramasse, QM May, SJ Kavich, J Wen, JG Zhai, X Eckstein, JN Freeland, J Bhattacharya, A Zuo, JM AF Shah, A. B. Ramasse, Q. M. May, S. J. Kavich, Jerald Wen, J. G. Zhai, X. Eckstein, J. N. Freeland, J. Bhattacharya, A. Zuo, J. M. TI Presence and spatial distribution of interfacial electronic states in LaMnO3-SrMnO3 superlattices SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; MICROSCOPE; OXIDES; DIFFRACTION; TRANSITION; ANGSTROM AB We report direct evidence of interfacial states at the onset of O K edge confined to a spatial distance of 1 unit-cell full-width at half maximum at the sharp interfaces between epitaxial films of LaMnO3 and SrMnO3 from electron energy-loss spectroscopy (EELS) measurements. The interfacial states are sensitive to interface sharpness; at rough interfaces with interfacial steps of 1-2 unit cells in height, experimental data shows a reduction, or suppression, of the interfacial states. The EELS measurements were performed using a fine electron probe obtained by electron lens aberration correction. By scanning the electron probe across the interface, we are able to map the spatial distribution of the interfacial states across interfaces at high resolution. C1 [Shah, A. B.; Zuo, J. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Shah, A. B.; Wen, J. G.; Zhai, X.; Eckstein, J. N.; Zuo, J. M.] Univ Illinois, Fredrick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Ramasse, Q. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [May, S. J.; Kavich, Jerald; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Shah, AB (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860 FU U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471, DE-AC02-05CH11231]; National Center for Electron Microscopy; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-06CH11357] FX Research in this manuscript was carried out at the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under Grants No. DE-FG02-07ER46453 and No. DE-FG02-07ER46471, the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, which is supported by the U.S. Department of Energy under Grant No. DE-AC02-05CH11231 and Argonne National Laboratory which is supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Grant No. DE-AC02-06CH11357. NR 40 TC 18 Z9 18 U1 1 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 13 PY 2010 VL 82 IS 11 AR 115112 DI 10.1103/PhysRevB.82.115112 PG 10 WC Physics, Condensed Matter SC Physics GA 649MB UT WOS:000281773700001 ER PT J AU Vlasko-Vlasov, V Welp, U Kwok, W Rosenmann, D Claus, H Buzdin, AA Melnikov, A AF Vlasko-Vlasov, V. Welp, U. Kwok, W. Rosenmann, D. Claus, H. Buzdin, A. A. Melnikov, A. TI Coupled domain structures in superconductor/ferromagnet Nb-Fe/garnet bilayers SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; HETEROSTRUCTURES; FILMS AB We investigate the magnetic structure in a superconducting Nb and ferromagnetic garnet hybrid film. Direct magneto-optical observations reveal a strong interaction between the superconducting vortices in Nb and the magnetic domains in the garnet, resulting in a unique coupled domain structure. The cooperative motion of vortices and domain walls results in an enhanced pinning and a modified electromagnetic response of the hybrid similar to that in type I superconductors. Application of ac field, routinely used for equilibration of domains, leads to their significant contraction. Our calculations explain this effect by a domain shrinkage instability induced by the vortex annihilation around oscillating domain walls. C1 [Vlasko-Vlasov, V.; Welp, U.; Kwok, W.; Rosenmann, D.; Claus, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Buzdin, A. A.] Inst Univ France, CPMOH, F-33405 Talence, France. [Buzdin, A. A.] Univ Bordeaux 1, UMR CNRS 5798, F-33405 Talence, France. [Melnikov, A.] RAS, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. RP Vlasko-Vlasov, V (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Buzdin, Alexander/I-6038-2013 FU UChicago Argonne, LLC [DE-AC02-06CH11357]; French ANR [NT09-612693]; Russian Agency of Education FX The work supported by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. A. B. acknowledges the support from the French ANR under Program No. NT09-612693 "SINUS" and A. M. acknowledges the support of the Russian Agency of Education. NR 19 TC 11 Z9 11 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 13 PY 2010 VL 82 IS 10 AR 100502 DI 10.1103/PhysRevB.82.100502 PG 4 WC Physics, Condensed Matter SC Physics GA 649MA UT WOS:000281773600001 ER PT J AU Costantini, H deBoer, RJ Azuma, RE Couder, M Gorres, J Hammer, JW LeBlanc, PJ Lee, HY O'Brien, S Palumbo, A Simpson, EC Stech, E Tan, W Uberseder, E Wiescher, M AF Costantini, H. deBoer, R. J. Azuma, R. E. Couder, M. Goerres, J. Hammer, J. W. LeBlanc, P. J. Lee, H. Y. O'Brien, S. Palumbo, A. Simpson, E. C. Stech, E. Tan, W. Uberseder, E. Wiescher, M. TI O-16(alpha,gamma)Ne-20 S factor: Measurements and R-matrix analysis SO PHYSICAL REVIEW C LA English DT Article ID THERMONUCLEAR REACTION-RATES; NONRESONANT CAPTURE; ALPHA+O-16 SYSTEM; ELECTRIC-DIPOLE; ENERGY-LEVELS; NE-20; STRENGTHS; SEARCH; MODEL AB The article presents new measurements of low-energy resonances in the O-16(alpha,gamma)Ne-20 reaction, which represents the endpoint for the reaction sequence responsible for energy production in stellar helium burning in massive red giant stars. The present data and previous unpublished data are analyzed in the framework of R-matrix theory to derive a reaction rate for the temperature regime of stellar helium burning. C1 [Costantini, H.] Inst Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Costantini, H.; deBoer, R. J.; Azuma, R. E.; Couder, M.; Goerres, J.; Hammer, J. W.; LeBlanc, P. J.; O'Brien, S.; Palumbo, A.; Stech, E.; Tan, W.; Uberseder, E.; Wiescher, M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Azuma, R. E.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Lee, H. Y.] Los Alamos Natl Lab, LANLSCE NE, Los Alamos, NM 87545 USA. [Simpson, E. C.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. [Hammer, J. W.] Univ Stuttgart, Inst Strahlenphys, D-7000 Stuttgart, Germany. RP Costantini, H (reprint author), Inst Nazl Fis Nucl, Sez Genova, Genoa, Italy. EM rdeboer1@nd.edu RI Tan, Wanpeng/A-4687-2008; Couder, Manoel/B-1439-2009 OI Tan, Wanpeng/0000-0002-5930-1823; Couder, Manoel/0000-0002-0636-744X FU National Science Foundation [Phys-0758100]; Joint Institute for Nuclear Astrophysics [Phys-0822648]; Natural Sciences and Engineering Research Council of Canada FX The authors would like to thank Heinrich Knee and Armin Mayer for the use of the data presented in their thesis works as well as Ralf Kunz for his considerable aid in the experimental work at the University of Stuttgart. This work was funded by the National Science Foundation through Grant No. Phys-0758100, and the Joint Institute for Nuclear Astrophysics Grant No. Phys-0822648. R. E. A. thanks the Natural Sciences and Engineering Research Council of Canada for support through the DRAGON grant at TRIUMF. NR 34 TC 9 Z9 9 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 13 PY 2010 VL 82 IS 3 AR 035802 DI 10.1103/PhysRevC.82.035802 PG 11 WC Physics, Nuclear SC Physics GA 649MD UT WOS:000281774000005 ER PT J AU Berger, EL Cao, QH Jackson, CB Liu, T Shaughnessy, G AF Berger, Edmond L. Cao, Qing-Hong Jackson, C. B. Liu, Tao Shaughnessy, Gabe TI Higgs boson search sensitivity in the H -> WW dilepton decay mode at root s=7 and 10 TeV SO PHYSICAL REVIEW D LA English DT Article ID PROTON COLLIDERS; HADRON COLLIDERS; ELECTROWEAK CORRECTIONS; QCD CORRECTIONS; COLLISIONS; MASS AB Prospects for discovery of the standard model Higgs boson are examined at center-of-mass energies of 7 and 10 TeV at the CERN Large Hadron Collider. We perform a simulation of the signal and principal backgrounds for Higgs boson production and decay in the W(+)W(-) dilepton mode, finding good agreement with the ATLAS and CMS collaboration estimates of signal significance at 14 TeV for Higgs boson masses near m(H) = 160 GeV. At the lower energy of 7 TeV, using the same analysis cuts as these collaborations, we compute expected signal sensitivities of about 2 standard deviations (sigma's) at m(H) = 160 GeV in the ATLAS case, and about 3:6 sigma in the CMS case for 1 fb(-1) of integrated luminosity. Integrated luminosities of 8 fb(-1) and 3 fb(-1) are needed in the ATLAS case at 7 and 10 TeV, respectively, for 5 sigma level discovery. In the CMS case, the numbers are 2 fb(-1) and 1 fb(-1) at 7 and 10 TeV. Our different stated expectations for the two experiments arise from the more restrictive analysis cuts in the CMS case and from the different event samples in the two cases. Recast as exclusion limits, our results show that with 1 fb(-1) of integrated luminosity at 7 TeV, the LHC may be able to exclude m(H) values in the range 160 to 180 GeV provided no signal is seen. C1 [Berger, Edmond L.; Cao, Qing-Hong; Jackson, C. B.; Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong; Liu, Tao] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov; caoq@hep.anl.gov; jackson@hep.anl.gov; xtaoliu@theory.uchicago.edu; g-shaughnessy@northwestern.edu FU U. S. Department of Energy [DE-AC02-06CH11357, DE-FG02-90ER40560, DE-FG02-91ER40684, DEFG02-90ER40560]; Argonne National Laboratory; University of Chicago Joint Theory Institute (JTI) [03921-07-137] FX The research by E.L.B., Q.-H.C., C.B.J., and G.S. in the High Energy Physics Division at Argonne is supported the U. S. Department of Energy under Grant No. DE-AC02-06CH11357. Q.-H.C. is also supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant No. 03921-07-137 and by the U. S. Department of Energy under Grant No. DE-FG02-90ER40560, and G.S. is also supported in part by the U. S. Department of Energy under Grant No. DE-FG02-91ER40684. T.L. is supported in part by the U. S. Department of Energy under Grant No. DEFG02-90ER40560. NR 37 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 13 PY 2010 VL 82 IS 5 AR 053003 DI 10.1103/PhysRevD.82.053003 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649RQ UT WOS:000281791100001 ER PT J AU Linder, EV AF Linder, Eric V. TI Uniqueness of current cosmic acceleration SO PHYSICAL REVIEW D LA English DT Article ID COINCIDENCE PROBLEM; DARK ENERGY AB One of the strongest arguments against the cosmological constant as an explanation of the current epoch of accelerated cosmic expansion is the existence of an earlier, dynamical acceleration, i.e. inflation. We examine the likelihood that acceleration is an occasional phenomenon, putting stringent limits on the length of any accelerating epoch due to minimally coupled dark energy between recombination and the recent acceleration; such an epoch must last less than 0.05 e-fold (at z > 2) or the matter power spectrum is modified by more than 20%. C1 [Linder, Eric V.] Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Univ, Seoul, South Korea. RP Linder, EV (reprint author), Berkeley Lab, Berkeley, CA 94720 USA. FU Office of Science, Office of High Energy Physics, U.S. Department of Energy [DE-AC02-05CH11231]; World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0] FX I thank Stephen Appleby, Marina Cortes, Roland de Putter, Manoj Kaplinghat, and especially Tristan Smith for useful discussions. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea. NR 19 TC 15 Z9 15 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 13 PY 2010 VL 82 IS 6 AR 063514 DI 10.1103/PhysRevD.82.063514 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649RS UT WOS:000281791300002 ER PT J AU Guo, H Chien, CC Levin, K AF Guo, Hao Chien, Chih-Chun Levin, K. TI Establishing the Presence of Coherence in Atomic Fermi Superfluids: Spin-Flip and Spin-Preserving Bragg Scattering at Finite Temperatures SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAS AB We show how in ultracold Fermi gases the difference between the finite temperature T structure factors, called S(-)(omega, q), associated with spin and density, reflects coherent order at all omega, q, k(F)a, and T. This observation can be exploited in two photon Bragg scattering experiments on gases which are subject to variable attractive interactions. Our calculations incorporate spin and particle number conservation laws which lead to compatibility at general T with two f-sum rules. Because of its generality a measurement of S(-) (omega, q) can be a qualitative, direct, in situ approach for establishing superfluid order. C1 [Guo, Hao; Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Guo, Hao; Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Guo, H (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU NSF-MRSEC [DMR-0213745]; U.S. Department of Energy FX This work was supported by Grant No. NSF-MRSEC DMR-0213745. C. C. C. acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program. NR 15 TC 27 Z9 27 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 13 PY 2010 VL 105 IS 12 AR 120401 DI 10.1103/PhysRevLett.105.120401 PG 4 WC Physics, Multidisciplinary SC Physics GA 649SB UT WOS:000281792400001 PM 20867615 ER PT J AU Ramos, SM Fontes, MB Hering, EN Continentino, MA Baggio-Saitovich, E Neto, FD Bittar, EM Pagliuso, PG Bauer, ED Sarrao, JL Thompson, JD AF Ramos, S. M. Fontes, M. B. Hering, E. N. Continentino, M. A. Baggio-Saitovich, E. Dinola Neto, F. Bittar, E. M. Pagliuso, P. G. Bauer, E. D. Sarrao, J. L. Thompson, J. D. TI Superconducting Quantum Critical Point in CeCoIn5-xSnx SO PHYSICAL REVIEW LETTERS LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; MAGNETISM; PRESSURE; CERHIN5 AB We report a combined pressure-doping study in the nearly two-dimensional heavy fermion superconductor CeCoIn5 as its superconducting phase is driven to the normal state by Sn doping and/or applied pressure. Temperature-pressure-dependent electrical resistivity measurements were performed at the vicinity of a superconducting quantum critical point where T-c -> 0. A universal plot of the concentration- and pressure-dependent phase diagram suggests that for the concentrations studied a single mechanism is responsible for reducing T-c and bringing the system to the superconducting quantum critical point. A two-band model with hybridization controlled by pressure and doping provides a consistent description of the phase diagram and the suppression of the d-wave superconductivity in this material. C1 [Ramos, S. M.; Fontes, M. B.; Hering, E. N.; Continentino, M. A.; Baggio-Saitovich, E.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Dinola Neto, F.] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil. [Bittar, E. M.; Pagliuso, P. G.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ramos, SM (reprint author), Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil. EM smr@if.uff.br RI Bauer, Eric/D-7212-2011; Pagliuso, Pascoal/C-9169-2012; Continentino, Mucio/B-7271-2013; Bittar, Eduardo/B-6266-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Continentino, Mucio/0000-0003-0167-8529; Bittar, Eduardo/0000-0002-2762-1312; Bauer, Eric/0000-0003-0017-1937 FU FAPERJ; FAPEAM; FAPESP; CNPq (Brazil); U.S. DOE FX The authors thank FAPERJ, FAPEAM, FAPESP, CNPq (Brazil), and U.S. DOE for funding this work. NR 26 TC 19 Z9 19 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 13 PY 2010 VL 105 IS 12 AR 126401 DI 10.1103/PhysRevLett.105.126401 PG 4 WC Physics, Multidisciplinary SC Physics GA 649SB UT WOS:000281792400012 PM 20867661 ER PT J AU Kessedjian, G Jurado, B Aiche, M Barreau, G Bidaud, A Czajkowski, S Dassie, D Haas, B Mathieu, L Audouin, L Capellan, N Tassan-Got, L Wilson, JN Berthoumieux, E Gunsing, F Theisen, C Serot, O Bauge, E Ahmad, I Greene, JP Janssens, RVF AF Kessedjian, G. Jurado, B. Aiche, M. Barreau, G. Bidaud, A. Czajkowski, S. Dassie, D. Haas, B. Mathieu, L. Audouin, L. Capellan, N. Tassan-Got, L. Wilson, J. N. Berthoumieux, E. Gunsing, F. Theisen, Ch Serot, O. Bauge, E. Ahmad, I. Greene, J. P. Janssens, R. V. F. TI Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method SO PHYSICS LETTERS B LA English DT Article DE Surrogate reaction method; neutron-induced fission cross sections ID TRANSFER-REACTION TH-232(HE-3; PA-233(N; P)PA-234 AB Neutron-induced fission cross sections for (242,243)cm and Am-241 have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of Cm-243 are questioned by the present data. For the first time, the (CM)-C-242 cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kessedjian, G.; Jurado, B.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.] Univ Bordeaux 1, CENBG, CNRS, IN2P3, F-33175 Gradignan, France. [Audouin, L.; Capellan, N.; Tassan-Got, L.; Wilson, J. N.] Univ Paris 11, IPN, CNRS, IN2P3, F-91405 Orsay, France. [Berthoumieux, E.; Gunsing, F.; Theisen, Ch] CEA Saclay, DSM, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [Serot, O.] CEN Cadarache, DEN, DER, SPRC,LEPh, F-13108 St Paul Les Durance, France. [Bauge, E.] CEA DAM DIF, F-91297 Arpajon, France. [Ahmad, I.; Greene, J. P.; Janssens, R. V. F.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Jurado, B (reprint author), Univ Bordeaux 1, CENBG, CNRS, IN2P3, Chemin Solarium BP 120, F-33175 Gradignan, France. EM jurado@cenbg.in2p3.fr RI THEISEN, Christophe/A-9343-2015 OI THEISEN, Christophe/0000-0002-8509-1022 FU CNRS; Conseil Regional d'Aquitaine; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank the tandem accelerator staff and the target laboratory of the IPN Orsay for their support during the experiment. This work was partly supported by the CNRS program PACEN/GEDEPEON, the Conseil Regional d'Aquitaine, the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357. The authors are also indebted for the use of 243Am to the Office of Basic Energy Sciences, US Department of Energy, through the transplutonium element production facilities at Oak Ridge National Laboratory. NR 20 TC 39 Z9 39 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 13 PY 2010 VL 692 IS 5 BP 297 EP 301 DI 10.1016/j.physletb.2010.07.048 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 657YH UT WOS:000282454800002 ER PT J AU Alves, DSM Behbahani, SR Schuster, P Wacker, JG AF Alves, Daniele S. M. Behbahani, Siavosh R. Schuster, Philip Wacker, Jay G. TI Composite inelastic dark matter SO PHYSICS LETTERS B LA English DT Article DE Inelastic dark matter; DAMA; Dark sector ID NUCLEAR RECOIL; DAMA/NAI; LIMITS AB Peaking consistently in June for nearly eleven years, the annual modulation signal reported by DAMA/Nal and DAMA/LIBRA offers strong evidence for the identity of dark matter. DAMA's signal strongly suggest that dark matter inelastically scatters into an excited state split by O(100 key). We propose that DAMA is observing hyperfine transitions of a composite dark matter particle. As an example, we consider a meson of a QCD-like sector, built out of constituent fermions whose spin-spin interactions break the degeneracy of the ground state. An axially coupled U(1) gauge boson that mixes kinetically with hypercharge induces inelastic hyperfine transitions of the meson dark matter that can explain the DAMA signal. Published by Elsevier B.V. C1 [Alves, Daniele S. M.; Behbahani, Siavosh R.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Alves, Daniele S. M.; Behbahani, Siavosh R.; Schuster, Philip; Wacker, Jay G.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Alves, DSM (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM alves@stanford.edu FU US DOE [DE-AC02-76SF00515]; NSF [PHY-0244728] FX We thank Rouven Essig and Natalia Toro for numerous illuminating discussions, and Mariangela Lisanti for collaboration in setting constraints. We also thank Savas Dimopoulos, Michael Peskin, and Neal Weiner for helpful feedback. S.R.B.. P.C.S. and J.G.W. are supported by the US DOE under contract number DE-AC02-76SF00515. D.S.M.A. is supported by the NSF under grant PHY-0244728. NR 36 TC 64 Z9 64 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 13 PY 2010 VL 692 IS 5 BP 323 EP 326 DI 10.1016/j.physletb.2010.08.006 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 657YH UT WOS:000282454800007 ER PT J AU Zaveri, RA Barnard, JC Easter, RC Riemer, N West, M AF Zaveri, Rahul A. Barnard, James C. Easter, Richard C. Riemer, Nicole West, Matthew TI Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER; BLACK CARBON; ATMOSPHERIC AEROSOLS; CHEMICAL-COMPOSITION; ALPHA-PINENE; MODEL; ABSORPTION; DENSITY; COAGULATION AB The recently developed particle-resolved aerosol box model PartMC-MOSAIC (Particle Monte Carlo model-Model for Simulating Aerosol Interactions and Chemistry) was used to rigorously simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation, evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC)-specific absorption cross section increased by 40% over the course of 2 days due to BC aging by condensation and coagulation. Threefold and fourfold enhancements in CCN/CN ratios were predicted to occur within 6 h for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally mixed particles within each bin. This assumption artificially increased the ensemble BC-specific absorption by 14-30% and decreased the single scattering albedo (SSA) by 0.03-0.07, while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution for a chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally mixed bins. Neglecting coagulation overpredicted aerosol water content and number concentrations (<0.2 mu m), causing errors in SSA from -0.02 to 0.035 and overprediction of CCN concentrations by 25-80% at S = 0.5%. C1 [Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Riemer, Nicole] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [West, Matthew] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Zaveri, RA (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM rahul.zaveri@pnl.gov RI West, Matthew/A-7398-2012; OI West, Matthew/0000-0002-7605-0050; Zaveri, Rahul/0000-0001-9874-8807 FU Aerosol-Climate Initiative as part of the Pacific Northwest National Laboratory (PNNL); National Science Foundation (NSF) [ATM 0739404, CMG 0934491]; NASA [NNX09AK66G]; U.S. Department of Energy [DE-AC06-76RLO 1830] FX Funding for R. A. Zaveri, J. C. Barnard, and R. C. Easter was provided by the Aerosol-Climate Initiative as part of the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development (LDRD) program. Funding for N. Riemer and M. West was provided by the National Science Foundation (NSF) under grant ATM 0739404 and CMG 0934491. N. Riemer also acknowledges funding from the NASA MAP program, grant NNX09AK66G. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 66 TC 41 Z9 41 U1 1 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 11 PY 2010 VL 115 AR D17210 DI 10.1029/2009JD013616 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GJ UT WOS:000281755900001 ER PT J AU Belczynski, K Lorimer, DR Ridley, JP Curran, SJ AF Belczynski, K. Lorimer, D. R. Ridley, J. P. Curran, S. J. TI Double and single recycled pulsars: an evolutionary puzzle? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; stars: kinematics and dynamics; stars: neutron; pulsars: general ID NEUTRON-STAR BINARIES; ELECTRON-CAPTURE SUPERNOVAE; DATA-ANALYSIS SYSTEMS; X-RAY BINARIES; CORE-COLLAPSE; RADIO PULSARS; GALACTIC POPULATION; MILLISECOND PULSARS; COMPACT OBJECTS; SPIN EVOLUTION AB We investigate the statistics of isolated recycled pulsars and double neutron star binaries in the Galactic disc. Since recycled pulsars are believed to form through accretion and spin-up in close binaries, the isolated objects presumably originate from disrupted progenitors of double neutron stars. There are a comparable number of double neutron star systems compared to isolated recycled pulsars. We find that standard evolutionary models cannot explain this fact, predicting several times the number of isolated recycled pulsars than those in double neutron star systems. We demonstrate, through population synthesis calculations, that the velocity distribution of isolated recycled pulsars is broader than for binary systems. When this is accounted for in a model for radio pulsar survey selection effects, which include the effects of Doppler smearing for the double neutron star binaries, we find that there is a small (similar to 25 per cent) bias towards the detection of double neutron star systems. This bias, however, is not significant enough to explain the observational discrepancy if standard (Sigma = 265 km s-1) neutron star natal kick velocities are invoked in binary population syntheses. Population syntheses in which the 1D Maxwellian velocity dispersion of the natal kick is Sigma similar to 170 km s-1 are consistent with the observations. These conclusions further support earlier findings the neutron stars formed in close interacting binaries receive significantly smaller natal kicks than the velocities of Galactic single pulsars would seem to indicate. C1 [Belczynski, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Lorimer, D. R.; Ridley, J. P.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Lorimer, D. R.] Green Bank Observ, Green Bank, WV 24944 USA. [Curran, S. J.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. RP Belczynski, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kbelczyn@nmsu.edu FU WVU Center for Astrophysics; Polish MSHE [N N203 302835, N N203 511238]; LANL [DE-AC52-06NA25396] FX We would like to thank T. Bulik, W. Kluzniak and P. Haensel for useful discussions on pulsar populations. This research was partially supported by a WVEPSCoR Research Challenge Grant held by the WVU Center for Astrophysics. KB acknowledges the partial support from the Polish MSHE grants N N203 302835 and N N203 511238 and by LANL under contract No. DE-AC52-06NA25396. The pulsar parameters used in Table 1 were obtained from the ATNF Pulsar Catalogue (Manchester et al. 2005). NR 81 TC 21 Z9 21 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2010 VL 407 IS 2 BP 1245 EP 1254 DI 10.1111/j.1365-2966.2010.16970.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646OG UT WOS:000281551300042 ER PT J AU Gould, A Dong, S Gaudi, BS Udalski, A Bond, IA Greenhill, J Street, RA Dominik, M Sumi, T Szymanski, MK Han, C Allen, W Bolt, G Bos, M Christie, GW Depoy, DL Drummond, J Eastman, JD Gal-Yam, A Higgins, D Janczak, J Kaspi, S Kozlowski, S Lee, CU Mallia, F Maury, A Maoz, D McCormick, J Monard, LAG Moorhouse, D Morgan, N Natusch, T Ofek, EO Park, BG Pogge, RW Polishook, D Santallo, R Shporer, A Spector, O Thornley, G Yee, JC Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Wyrzykowski, E Ulaczyk, K Poleski, R Abe, F Bennett, DP Botzler, CS Douchin, D Freeman, M Fukui, A Furusawa, K Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Perrott, YC Philpott, L Rattenbury, N Saito, T Sako, T Sullivan, DJ Sweatman, WL Tristram, PJ von Seggern, E Yock, PCM Albrow, M Batista, V Beaulieu, JP Brillant, S Caldwell, J Calitz, JJ Cassan, A Cole, A Cook, K Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Hill, K Hoffman, M Jablonski, F Kane, SR Kains, N Kubas, D Marquette, JB Martin, R Martioli, E Meintjes, P Menzies, J Pedretti, E Pollard, K Sahu, KC Vinter, C Wambsganss, J Watson, R Williams, A Zub, M Allan, A Bode, MF Bramich, DM Burgdorf, MJ Clay, N Fraser, S Hawkins, E Horne, K Kerins, E Lister, TA Mottram, C Saunders, ES Snodgrass, C Steele, IA Tsapras, Y Jorgensen, UG Anguita, T Bozza, V Novati, SC Harpsoe, K Hinse, TC Hundertmark, M Kjaergaard, P Liebig, C Mancini, L Masi, G Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Thone, CC AF Gould, A. Dong, Subo Gaudi, B. S. Udalski, A. Bond, I. A. Greenhill, J. Street, R. A. Dominik, M. Sumi, T. Szymanski, M. K. Han, C. Allen, W. Bolt, G. Bos, M. Christie, G. W. DePoy, D. L. Drummond, J. Eastman, J. D. Gal-Yam, A. Higgins, D. Janczak, J. Kaspi, S. Kozlowski, S. Lee, C. -U. Mallia, F. Maury, A. Maoz, D. McCormick, J. Monard, L. A. G. Moorhouse, D. Morgan, N. Natusch, T. Ofek, E. O. Park, B. -G. Pogge, R. W. Polishook, D. Santallo, R. Shporer, A. Spector, O. Thornley, G. Yee, J. C. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Wyrzykowski, E. Ulaczyk, K. Poleski, R. Abe, F. Bennett, D. P. Botzler, C. S. Douchin, D. Freeman, M. Fukui, A. Furusawa, K. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Perrott, Y. C. Philpott, L. Rattenbury, N. Saito, To. Sako, T. Sullivan, D. J. Sweatman, W. L. Tristram, P. J. von Seggern, E. Yock, P. C. M. Albrow, M. Batista, V. Beaulieu, J. P. Brillant, S. Caldwell, J. Calitz, J. J. Cassan, A. Cole, A. Cook, K. Coutures, C. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Hill, K. Hoffman, M. Jablonski, F. Kane, S. R. Kains, N. Kubas, D. Marquette, J. -B. Martin, R. Martioli, E. Meintjes, P. Menzies, J. Pedretti, E. Pollard, K. Sahu, K. C. Vinter, C. Wambsganss, J. Watson, R. Williams, A. Zub, M. Allan, A. Bode, M. F. Bramich, D. M. Burgdorf, M. J. Clay, N. Fraser, S. Hawkins, E. Horne, K. Kerins, E. Lister, T. A. Mottram, C. Saunders, E. S. Snodgrass, C. Steele, I. A. Tsapras, Y. Jorgensen, U. G. Anguita, T. Bozza, V. Novati, S. Calchi Harpsoe, K. Hinse, T. C. Hundertmark, M. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Thone, C. C. CA FUN Collaboration OGLE Collaboration MOA Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; EXTRASOLAR PLANETS; GALACTIC BULGE; MASS PLANET; EARTH-MASS; JUPITER/SATURN ANALOG; COMPANIONS; SEARCH; CONSTRAINTS; STELLAR AB We present the first measurement of the planet frequency beyond the "snow line," for the planet-to-star mass-ratio interval -4.5 < log q < -2, corresponding to the range of ice giants to gas giants. We find d(2)N(pl)/d log q d log s = (0.36 +/- 0.15) dex(-2) at the mean mass ratio q = 5 x 10(-4) with no discernible deviation from a flat (Opik's law) distribution in log-projected separation s. The determination is based on a sample of six planets detected from intensive follow-up observations of high-magnification (A > 200) microlensing events during 2005-2008. The sampled host stars have a typical mass M(host) similar to 0.5M(circle dot), and detection is sensitive to planets over a range of planet-star-projected separations (s(max)(-1)R(E), s(max)R(E)), where R(E) similar to 3.5 AU(M(host)/M(circle dot))(1/2) is the Einstein radius and s(max) similar to (q/10(-4.3))(1/3). This corresponds to deprojected separations roughly three times the " snow line." We show that the observations of these events have the properties of a "controlled experiment," which is what permits measurement of absolute planet frequency. High-magnification events are rare, but the survey-plus-follow-up high-magnification channel is very efficient: half of all high-mag events were successfully monitored and half of these yielded planet detections. The extremely high sensitivity of high-mag events leads to a policy of monitoring them as intensively as possible, independent of whether they show evidence of planets. This is what allows us to construct an unbiased sample. The planet frequency derived from microlensing is a factor 8 larger than the one derived from Doppler studies at factor similar to 25 smaller star-planet separations (i.e., periods 2-2000 days). However, this difference is basically consistent with the gradient derived from Doppler studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the solar system, our sample would have yielded 18.2 planets (11.4 "Jupiters," 6.4 "Saturns," 0.3 "Uranuses," 0.2 "Neptunes") including 6.1 systems with two or more planet detections. This compares to six planets including one twoplanet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems. C1 [Gould, A.; Gaudi, B. S.; Eastman, J. D.; Janczak, J.; Kozlowski, S.; Morgan, N.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Poleski, R.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Bond, I. A.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Greenhill, J.; Cole, A.; Hill, K.; Watson, R.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Street, R. A.; Hawkins, E.; Lister, T. A.; Saunders, E. S.; Tsapras, Y.] Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dominik, M.; Kains, N.; Pedretti, E.; Horne, K.; Liebig, C.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Bolt, G.] Craigie Observ, Perth, WA, Australia. [Bos, M.] Molehill Astron Observ, Auckland, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Higgins, D.] Hunters Hill Observ, Canberra, ACT, Australia. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Kaspi, S.] Dept Phys, IL-32000 Haifa, Israel. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro, Chile. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Monard, L. A. G.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Philpott, L.; Rattenbury, N.; von Seggern, E.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M.; Pollard, K.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8780, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Batista, V.; Beaulieu, J. P.; Cassan, A.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Brillant, S.; Kubas, D.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Caldwell, J.] McDonald Observ, Ft Davis, TX 79734 USA. [Calitz, J. J.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa. [Cook, K.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Coutures, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Omladinska 51000, Rijeka, Croatia. [Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria. [Fouque, P.] Univ Toulouse, CNRS, LATT, Toulouse, France. [Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, SP, Brazil. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vinter, C.; Jorgensen, U. G.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Mathiasen, M.; Thone, C. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Univ Heidelberg, Zent Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany. [Zub, M.] Univ Zielona Gora, Inst Astron, PL-66265 Zielona Gora, Poland. [Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bode, M. F.; Clay, N.; Fraser, S.; Mottram, C.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Kerins, E.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London E1 4NS, England. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis E R Caianiello, I-84085 Fisciano, SA, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Gruppo Collegato Salerno, Sez Napoli, Milan, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Masi, G.] Bellatrix Astron Observ, I-03023 Ceccano, FR, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Southworth, J.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Thone, C. C.] INAF, Osservatorio Astron Brera, I-23806 Merate, LC, Italy. EM gould@astronomy.ohio-state.edu; dong@ias.edu; gaudi@astronomy.ohio-state.edu; udalski@astrouw.edu.pl; i.a.bond@massey.ac.nz; John.Greenhill@utas.edu.au; md35@st-andrews.ac.uk; sumi@stelab.nagoya-u.ac.jp; msz@astrouw.edu; cheongho@astroph.chungbuk.ac.kr; whallen@xtra.co.nz; gbolt@iinet.net.au; molehill@ihug.co.nz; gwchristie@christie.org.nz; depoy@physics.tamu.edu; john_drummond@xtra.co.nz; jdeast@astronomy.ohio-state.edu; avishay.gal-yam@weizmann.ac.il; dhi67540@bigpond.net.au; shai@wise.tau.ac.il; simkoz@astronomy.ohio-state.edu; leecu@kasi.re.kr; francomallia@campocatinobservatory.org; alain@spaceobs.com; dani@wise.tau.ac.il; farmcoveobs@xtra.co; lagmonar@nmisa.org; acrux@orcon.net.nz; nick.morgan@alum.mit.edu; tim.natusch@aut.ac.nz; eran@astro.caltech.edu; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu; david@wise.tau.ac.il; obs930@southernstars-observatory.org; shporer@wise.tau.ac.il; odedspec@wise.tau.ac; guy.thornley@gmail.com; jyee@astronomy.ohio-state.edu; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl; szewczyk@astro-udec.cl; wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl; rpoleski@astrouw.edu.pl; abe@stelab.nagoya-u.ac.jp; bennett@nd.edu; c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp; okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz; sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz; w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr; sbrillan@eso.org; caldwell@astro.as.utexas.edu; HoffmaMJ.SCI@mail.uovs.ac.za; Andrew.Cole@utas.edu.au; kcook@llnl.gov; coutures@iap.fr; donatowicz@tuwien.ac.at; pfouque@ast.obs-mip.fr; skane@ipac.caltech.edu; nk87@st-andrews.ac.uk; dkubas@eso.org; marquett@iap.fr; rmartin@physics.uwa.edu.au; ep41@st-andrews.ac.uk; andrew@physics.uwa.edu.au; kdh1@st-andrews.ac.uk; Eamonn.Kerins@manchester.ac.uk RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Williams, Andrew/K-2931-2013; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Cole, Andrew/0000-0003-0303-3855; Eastman, Jason/0000-0003-3773-5142; Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Dominik, Martin/0000-0002-3202-0343; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Philpott, Lydia/0000-0002-5286-8528 FU NSF [AST 0757888, AST-0708890]; NASA [1277721]; Polish MNiSW [N20303032/4275]; Marsden Fund of New Zealand; JSPS; MEXT of Japan; PPARC (Particle Physics and Astronomy Research Council); STFC (Science and Technology Facilities Council); National Research Foundation of Korea [2009-0081561]; EU; Minerva Foundation, Benoziyo Center for Astrophysics; Weizmann Institute; Technion; Israel-Niedersachsen collaboration program; [JSPS18749004]; [JSPS20740104]; [MEXT19015005] FX Work by A. G. was supported in part by NSF grant AST 0757888 and in part by NASA grant 1277721 issued by JPL/Caltech. Work by S. D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. The MOA collaboration was supported by the Marsden Fund of New Zealand. The MOA collaboration and a part of authors are supported by the Grant-in-Aid for Scientific Research, JSPS Research fellowships and the Global COE Program "Quest for Fundamental Principles in the Universe" from JSPS and MEXT of Japan. T. S. acknowledges support from grants JSPS18749004, JSPS20740104, and MEXT19015005. The RoboNet project acknowledges support from PPARC (Particle Physics and Astronomy Research Council) and STFC (Science and Technology Facilities Council). C. H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. AGY's activity is supported by a Marie Curie IRG grant from the EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. Work by S. K. was supported at the Technion by the Kitzman Fellowship and by a grant from the Israel-Niedersachsen collaboration program. Mt Canopus observatory is financially supported by Dr. David Warren. NR 62 TC 152 Z9 152 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1073 EP 1089 DI 10.1088/0004-637X/720/2/1073 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300011 ER PT J AU Acciari, VA Arlen, T Aune, T Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Christiansen, JL Ciupik, L Cui, W Dickherber, R Duke, C Finley, JP Finnegan, G Furniss, A Galante, N Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Senturk, GD Smith, AW Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Zitzer, B AF Acciari, V. A. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Christiansen, J. L. Ciupik, L. Cui, W. Dickherber, R. Duke, C. Finley, J. P. Finnegan, G. Furniss, A. Galante, N. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Smith, A. W. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Zitzer, B. TI VERITAS SEARCH FOR VHE GAMMA-RAY EMISSION FROM DWARF SPHEROIDAL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; gamma rays: galaxies ID EXPLORING HALO SUBSTRUCTURE; DARK-MATTER SUBSTRUCTURE; VELOCITY DISPERSION PROFILES; MILKY-WAY HALO; URSA-MINOR; GIANT STARS; DENSITY PROFILES; GALACTIC-CENTER; DRACO; TELESCOPE AB Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of similar to 20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) x 10(-12) photons cm(-2) s(-1). We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs ( less than or similar to 10(-23) cm(3) s(-1) for m(chi) greater than or similar to 300 GeV c(-2)). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Quinn, J.; Ward, J. E.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Christiansen, J. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM rgwcdf@hep.anl.gov OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586 FU US National Science Foundation; US Department of Energy; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK; U.S. National Science Foundation [0422093] FX This research is supported by grants from the US National Science Foundation, the US Department of Energy, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. V. V. V. acknowledges the support of the U.S. National Science Foundation under CAREER program (Grant No. 0422093). NR 71 TC 59 Z9 59 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1174 EP 1180 DI 10.1088/0004-637X/720/2/1174 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300021 ER PT J AU Hearin, AP Zentner, AR Ma, ZM Huterer, D AF Hearin, Andrew P. Zentner, Andrew R. Ma, Zhaoming Huterer, Dragan TI A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; dark energy; galaxies: distances and redshifts; galaxies: photometry; gravitational lensing: weak ID LARGE-SCALE STRUCTURE; WEAK-LENSING SURVEYS; VIRMOS-DESCART SURVEY; DARK ENERGY; POWER SPECTRUM; GALAXY SAMPLES; MATTER; CONSTRAINTS; HALO; REQUIREMENTS AB A goal of forthcoming imaging surveys is to use weak gravitational lensing shear measurements to constrain dark energy. A challenge to this program is that redshifts to the lensed, source galaxies must be determined using photometric, rather than spectroscopic, information. We quantify the importance of uncalibrated photometric redshift outliers to the dark energy goals of forthcoming imaging surveys in a manner that does not assume any particular photometric redshift technique or template. In so doing, we provide an approximate blueprint for computing the influence of specific outlier populations on dark energy constraints. We find that outlier populations whose photo-z distributions are tightly localized about a significantly biased redshift must be controlled to a per-galaxy rate of (1-3) x 10(-3) to insure that systematic errors on dark energy parameters are rendered negligible. In the complementary limit, a subset of imaged galaxies with uncalibrated photometric redshifts distributed over a broad range must be limited to fewer than a per-galaxy error rate of F-cat less than or similar to (2-4) x 10(-4). Additionally, we explore the relative importance of calibrating the photo-z's of a core set of relatively well-understood galaxies as compared to the need to identify potential catastrophic photo-z outliers. We discuss the degradation of the statistical constraints on dark energy parameters induced by excising source galaxies at high-and low-photometric redshifts, concluding that removing galaxies with photometric redshifts z(ph) greater than or similar to 2.4 and z(ph) less than or similar to 0.3 may mitigate damaging catastrophic redshift outliers at a relatively small (less than or similar to 20%) cost in statistical error. In an Appendix, we show that forecasts for the degradation in dark energy parameter constraints due to uncertain photometric redshifts depend sensitively on the treatment of the nonlinear matter power spectrum. In particular, previous work using Peacock & Dodds may have overestimated the photo-z calibration requirements of future surveys. C1 [Hearin, Andrew P.; Zentner, Andrew R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Ma, Zhaoming] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ma, Zhaoming] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Huterer, Dragan] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Hearin, AP (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. FU University of Pittsburgh; National Science Foundation (NSF) [AST 0806367, AST 0807564]; Department of Energy (DOE) [DOE-DE-AC02-98CH10886, DOE-DE-FG02-95ER40893, DOE-DE-FG02-95ER40899]; National Aeronautics and Space Administration [NNX09AC89G]; Michigan Center for Theoretical Physics at the University of Michigan FX We thank Carlos Cunha, Joe Davola, Scott Dodelson, Salman Habib, Wayne Hu, Zeljko Ivezic, Bhuvnesh Jain, Arthur Kosowsky, Dan Matthews, Jeff Newman, Hiro Oyaizu, Martin White, and Michael Wood-Vasey for useful discussions and email exchanges during the course of this work. We are particularly grateful to Gary Bernstein and Alexia Schulz for detailed comments on an early draft of this manuscript. A.P.H. and A.R.Z. are supported by the University of Pittsburgh and by the National Science Foundation (NSF) through grant NSF AST 0806367 and by the Department of Energy (DOE). Z.M. is supported by the DOE under contracts DOE-DE-AC02-98CH10886 and DOE-DE-FG02-95ER40893. D.H. is supported by the DOE OJI under contract DOE-DE-FG02-95ER40899, NSF under grant NSF AST 0807564, and the National Aeronautics and Space Administration under grant NNX09AC89G. A.R.Z. and A.P.H. thank the organizers of the 2009 Santa Fe Cosmology Workshop, where a significant portion of this work was completed. A.R.Z. thanks the Michigan Center for Theoretical Physics at the University of Michigan for hospitality and support while some of this work was performed. This research made use of the National Aeronautics and Space Administration Astrophysics Data System. NR 89 TC 31 Z9 32 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1351 EP 1369 DI 10.1088/0004-637X/720/2/1351 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300036 ER PT J AU Hole, KT Kasen, D Nordsieck, KH AF Hole, K. T. Kasen, D. Nordsieck, K. H. TI SPECTROPOLARIMETRIC SIGNATURES OF CLUMPY SUPERNOVA EJECTA SO ASTROPHYSICAL JOURNAL LA English DT Article DE line: profiles; methods: numerical; polarization; radiative transfer; supernovae: general ID IA SUPERNOVAE; POLARIZATION; EXPLOSION; DETONATION; DEVIATION; SYMMETRY; SPECTRA; LIGHT AB Polarization has been detected at early times for all types of supernovae (SNe), indicating that all such systems result from or quickly develop some form of asymmetry. In addition, the detection of strong line polarization in SNe is suggestive of chemical inhomogeneities ("clumps") in the layers above the photosphere, which may reflect hydrodynamical instabilities during the explosion. We have developed a fast, flexible, approximate semi-analytic code for modeling polarized line radiative transfer within three-dimensional inhomogeneous rapidly expanding atmospheres. Given a range of model parameters, the code generates random sets of clumps in the expanding ejecta and calculates the emergent line profile and Stokes parameters for each configuration. The ensemble of these configurations represents the effects both of various host geometries and of different viewing angles. We present results for the first part of our survey of model geometries, specifically the effects of the number and size of clumps (and the related effect of filling factor) on the emergent spectrum and Stokes parameters. Our simulations show that random clumpiness can produce line polarization in the range observed in SNe Ia, as well as the Q-U loops that are frequently seen in all SNe. We have also developed a method to connect the results of our simulations to robust observational parameters such as maximum polarization and polarized equivalent width in the line. Our models, in connection with spectropolarimetric observations, can constrain the three-dimensional structure of SN ejecta and offer important insight into the SN explosion physics and the nature of their progenitor systems. C1 [Hole, K. T.; Nordsieck, K. H.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Kasen, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hole, K. T.] E Tennessee State Univ, Dept Phys, Johnson City, TN 37614 USA. RP Hole, KT (reprint author), Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. FU NSF [AST-0922981, PHY 05-51164, AST 07-07633]; DOE [DE-FC02-06ER41438] FX K.T.H. is grateful to Jay Gallagher, Jennifer Hoffman, and Rico Ignace for helpful discussion on this work. This research was funded in part by NSF grants AST-0922981, PHY 05-51164, and AST 07-07633, and by the DOE SciDAC Program (DE-FC02-06ER41438). NR 28 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1500 EP 1512 DI 10.1088/0004-637X/720/2/1500 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300048 ER PT J AU McKee, CF Li, PS Klein, RI AF McKee, Christopher F. Li, Pak Shing Klein, Richard I. TI SUB-ALFVENIC NON-IDEAL MHD TURBULENCE SIMULATIONS WITH AMBIPOLAR DIFFUSION. II. COMPARISON WITH OBSERVATION, CLUMP PROPERTIES, AND SCALING TO PHYSICAL UNITS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: kinematics and dynamics; ISM: magnetic fields; magnetic fields; magnetohydrodynamics (MHD); stars: formation ID INITIAL MASS FUNCTION; REGULATED STAR-FORMATION; DENSE CLOUD CORES; MAGNETIC INTERSTELLAR CLOUDS; GALACTIC MOLECULAR CLOUDS; IONIZATION FRACTION; SHOCK-WAVES; MAGNETOHYDRODYNAMIC TURBULENCE; FORMATION EFFICIENCY; FIELDS AB Ambipolar diffusion (AD) is important in redistributing magnetic flux and in damping Alfven waves in molecular clouds. The importance of AD on a length scale l is governed by the AD Reynolds number, R(AD) = l/l(AD), where l(AD) is the characteristic length scale for AD. The logarithmic mean of the AD Reynolds number in a sample of 15 molecular clumps with measured magnetic fields is 17, comparable to the theoretically expected value. We identify several regimes of AD in a turbulent medium, depending on the ratio of the flow time to collision times between ions and neutrals; the clumps observed by Crutcher in 1999 are all in the standard regime of AD, in which the neutrals and ions are coupled over a flow time. We have carried out two-fluid simulations of AD in isothermal, turbulent boxes for a range of values of R(AD). The mean Mach numbers were fixed at M = 3 and M(A) = 0.67; self-gravity was not included. We study the properties of overdensities-i.e., clumps-in the simulation and show that the slope of the higher-mass portion of the clump mass spectrum increases as R(AD) decreases, which is qualitatively consistent with Padoan et al.'s finding that the mass spectrum in hydrodynamic turbulence is significantly steeper than in ideal MHD turbulence. For a value of R(AD) similar to the observed value, we find a slope that is consistent with that of the high-mass end of the initial mass function (IMF) for stars. However, the value we find for the spectral index in our ideal MHD simulation differs from theirs, presumably because our simulations have different initial conditions. This suggests that the mass spectrum of the clumps in the Padoan et al. turbulent fragmentation model for the IMF depends on the environment, which would conflict with evidence for a universal IMF. In addition, we give a general discussion of how the results of simulations of magnetized, turbulent, isothermal boxes can be scaled to physical systems. Each physical process that is introduced into the simulation, such as AD, introduces a dimensionless parameter, such as R(AD), which must be fixed for the simulation, thereby reducing the number of scaling parameters by one. We show that the importance of self-gravity is fixed in any simulation of AD; it is not possible to carry out a simulation in which self-gravity and AD are varied independently unless the ionization is a free parameter. We show that our simulations apply to small regions in molecular clouds, generally with l(0) less than or similar to 0.4 pc and M less than or similar to 25 M(circle dot). A general discussion of the scaling relations for magnetized, isothermal, turbulent boxes, including self-gravitating systems, is given in the appendix. C1 [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [McKee, Christopher F.; Li, Pak Shing; Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McKee, Christopher F.] Ecole Normale Super, LRA, LERMA, F-75005 Paris, France. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP McKee, CF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM cmckee@astro.berkeley.edu; psli@astron.berkeley.edu; klein@astron.berkeley.edu FU NSF [AST-0606831, AST-0908553]; NASA [NNX09AK31G]; Groupement d'Interet Scientifique (GIS); US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA 27344]; National Center of Supercomputing Application [TG-MCA00N020] FX We thank Charles Hansen, Patrick Hennebelle, Mark Heyer, Mark Krumholz, Enrique Vazquez-Semadeni, Ellen Zweibel, and particularly an anonymous referee and Telemachos Mouschovias for helpful comments. This research has been supported by the NSF under grants AST-0606831 and AST-0908553 and by NASA under an ATFP grant, NNX09AK31G. C. F. M. also acknowledges the support of the Groupement d'Interet Scientifique (GIS) "Physique des deux infinis (P2I)" in the completion of this work. R. I. K. received support for this work provided by the US Department of Energy at Lawrence Livermore National Laboratory under contract DE-AC52-07NA 27344. This research was also supported by the grant of high-performance computing resources from the National Center of Supercomputing Application through grant TG-MCA00N020. NR 90 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1612 EP 1634 DI 10.1088/0004-637X/720/2/1612 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300055 ER PT J AU Seo, HJ Eckel, J Eisenstein, DJ Mehta, K Metchnik, M Padmanabhan, N Pinto, P Takahashi, R White, M Xu, XY AF Seo, Hee-Jong Eckel, Jonathan Eisenstein, Daniel J. Mehta, Kushal Metchnik, Marc Padmanabhan, Nikhil Pinto, Phillip Takahashi, Ryuichi White, Martin Xu, Xiaoying TI HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; large-scale structure of universe; methods: numerical ID LUMINOUS RED GALAXIES; DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPY; PROBE WMAP OBSERVATIONS; ANGULAR POWER SPECTRUM; BARYON OSCILLATIONS; PERTURBATION-THEORY; REDSHIFT SURVEYS; REAL-SPACE; GRAVITATIONAL-INSTABILITY AB We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5 sigma for shift values from different simulations and derive shift alpha(z) - 1 = (0.300 +/- 0.015)%[ D(z)/D(0)](2) using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations. After reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the initial and the low redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compare with the Zel'dovich approximation and the shifts measured from the chi(2) fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations, but we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 h(-3) Gpc(3) of cosmological Particle-Mesh simulations from Takahashi et al. At an expected sample variance level of 1%, the agreement between the Fisher matrix estimates based on Seo and Eisenstein and the N-body results is better than 10%. C1 [Seo, Hee-Jong] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Pinto, Phillip; Xu, Xiaoying] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Takahashi, Ryuichi] Hirosaki Univ, Fac Sci & Technol, Hirosaki, Aomori 0368560, Japan. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Seo, HJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM sheejong@fnal.gov RI Takahashi, Ryuichi/F-3362-2013; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU U.S. Department of Energy [DE-AC02-07CH11359]; NSF [AST-0707725]; NASA [BEFS NNX07AH11G]; [467] FX We thank Martin Crocce for useful conversations. H-J.S. is supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359. J.E., D.J.E., K. M., and X. X. were supported by NSF AST-0707725 and by NASA BEFS NNX07AH11G. R. T. is supported by Grant-in-Aid for Scientific Research on Priority Areas No. 467 "Probing the Dark Energy through an Extremely Wide and Deep Survey with Subaru Telescope." M. W. was partially supported by NASA BEFS NNX07AH11G. NR 79 TC 65 Z9 65 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1650 EP 1667 DI 10.1088/0004-637X/720/2/1650 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300058 ER PT J AU Assary, RS Redfern, PC Hammond, JR Greeley, J Curtiss, LA AF Assary, Rajeev S. Redfern, Paul C. Hammond, Jeff R. Greeley, Jeffrey Curtiss, Larry A. TI Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ZERO-POINT ENERGIES; LIQUID ALKANES; ALDOL-CONDENSATION; BIOMASS; HYDROGENATION; HYDROCARBONS; DEHYDRATION; GEOMETRIES; FUELS AB The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate GAUSSIAN-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to be thermodynamically favorable. The hydrogenation reactions involving the keto groups in the nonane reaction sequence were found to be enhanced at low temperatures and high pressures of H(2). The hydrogenation, selective oxidation, and hydration of HMF were also found to be thermodynamically favorable. Gas phase enthalpies of formation of all the intermediate compounds were calculated at the G4 level of theory and compared against existing experimental data. (C) 2010 Elsevier B. V. All rights reserved. C1 [Assary, Rajeev S.] Northwestern Univ, Evanston, IL 60208 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Greeley, Jeffrey; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hammond, Jeff R.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Assary, RS (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM rajeev@anl.gov; curtiss@anl.gov RI Surendran Assary, Rajeev/E-6833-2012; Hammond, Jeff/G-8607-2013 OI Surendran Assary, Rajeev/0000-0002-9571-3307; Hammond, Jeff/0000-0003-3181-8190 FU US Department of Energy [DE-AC0206CH11357]; Institute for Atom-efficient Chemical Transformations (IACT); US Department of Energy, Office of Science, Office of Basic Energy Sciences; Pacific Northwest National Laboratory; ANL Laboratory Computing Resource Center (LCRC); Center of Nanoscale materials (CNM) FX This work was supported by the US Department of Energy under Contract DE-AC0206CH11357 and supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.; We gratefully acknowledge grants of computer time a national scientific user facility located at Pacific Northwest National Laboratory, ANL Laboratory Computing Resource Center (LCRC), and Center of Nanoscale materials (CNM). NR 22 TC 24 Z9 24 U1 1 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD SEP 10 PY 2010 VL 497 IS 1-3 BP 123 EP 128 DI 10.1016/j.cplett.2010.07.082 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 646GM UT WOS:000281526700026 ER PT J AU Subbaraman, R Strmcnik, D Paulikas, AP Stamenkovic, VR Markovic, NM AF Subbaraman, Ram Strmcnik, Dusan Paulikas, Arvydas P. Stamenkovic, Vojislav R. Markovic, Nenad M. TI Oxygen Reduction Reaction at Three-Phase Interfaces SO CHEMPHYSCHEM LA English DT Article DE electrochemistry; interfaces; kinetics; oxygen reduction; Nafion-Pt three-phase interface ID SINGLE-CRYSTAL ELECTRODES; TRANSFORM INFRARED-SPECTROSCOPY; FUEL-CELL ELECTROCATALYSTS; SULFURIC-ACID-SOLUTION; O-2 REDUCTION; BISULFATE ADSORPTION; ANION ADSORPTION; NAFION INTERFACE; METAL-SURFACES; PLATINUM AB The kinetics of the oxygen reduction reaction (ORR) is studied at metal-supporting electrolyte-Nafion three-phase interfaces. We first demonstrate that the sulfonate anions of Nafion are specifically adsorbed on a wide range of surfaces ranging from Pt(hkl) single-crystal surfaces, Pt-poly, Pt-skin [produced on a Pt(3)Ni(111) surface by annealing in ultrahigh vacuum, UHV] to high-surface-area nanostructured thin-film (NSTF) catalysts. The surface coverage by sulfonate and the strength of the Pt-sulfonate interaction are strongly dependent on the geometry and the nature of the Pt surface atoms. Also, they are found to behave analogous to (bi)sulfate anion-specific adsorption on these surfaces, where for the Pt(hkl) surfaces, the trend is Pt(111) > Pt(110) > Pt(100) and for the Pt-skin surface on Pt(3)Ni(111), the interaction strength is found to be Pt-skin < Pt(111). We also found that irrespective of the surface orientation and/or the electronic properties of the surface atoms, the ORR is always inhibited by the presence of ionomers at the electrode surface, confirming that Nafion is not a non-adsorbing electrolyte. Finally, the knowledge gained from studying well-defined Pt(hkl) surfaces is applied to propose that deactivation of the ORR on Nafion-covered high-surface-area catalysts is also controlled by specific adsorption of sulfonate anions. C1 [Strmcnik, Dusan; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Subbaraman, Ram; Paulikas, Arvydas P.] Argonne Natl Lab, Dept Nucl Engn, Argonne, IL 60439 USA. RP Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science Division [DE-AC02-06CH11357]; Argonne National Laboratory FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science Division under Contract No. DE-AC02-06CH11357. R.S. would like to acknowledge Argonne National Laboratory postdoctoral fellowship for his funding.. NR 42 TC 64 Z9 64 U1 11 U2 101 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD SEP 10 PY 2010 VL 11 IS 13 SI SI BP 2825 EP 2833 DI 10.1002/cphc.201000190 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 659AJ UT WOS:000282539100016 PM 20648513 ER PT J AU Dolotko, O Zhang, HQ Li, S Jena, P Pecharsky, V AF Dolotko, Oleksandr Zhang, Haiqiao Li, Sa Jena, Puru Pecharsky, Vitalij TI Mechanochemically driven nonequilibrium processes in MNH2-CaH2 systems (M = Li or Na) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Hydrides; Hydrogen storage; Mechanical milling; Density functional theory ID HYDROGEN STORAGE-SYSTEM; CRYSTAL-STRUCTURE; H SYSTEM; NEUTRON-DIFFRACTION; DICALCIUM NITRIDE; CALCIUM NITRIDE; METAL NITRIDES; AMIDE; IMIDE; CA AB Mechanochemical transformations of lithium and sodium amides with calcium hydride have been investigated using gas volumetric analysis, X-ray powder diffraction, and residual gas analysis. The overall mechanochemical transformations are equimolar, and they proceed as the following solid state reaction: MNH2 + CaH2 -> CaNH + MH + H-2, where M = Li or Na. The transformation kinetics of the lithium containing system is markedly faster compared to the system with sodium. The difference in the rates of solid state transformations, and therefore, in hydrogen release kinetics can be explained by difference in mobility of lithium and sodium atoms. Total energies and enthalpies of formation for different reaction products during the dehydrogenation of CaH2-MNH2 mixtures were calculated using density functional theory. Compared to thermochemical transformations, which proceed in accordance with thermodynamic equilibrium, reactions induced by mechanical energy drive the MNH2-CaH2 systems to nonequilibrium configurations with different final products. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pecharsky, Vitalij] Iowa State Univ, Ames Lab, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Dolotko, Oleksandr; Zhang, Haiqiao; Pecharsky, Vitalij] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Li, Sa; Jena, Puru] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA. RP Pecharsky, V (reprint author), Iowa State Univ, Ames Lab, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU Office of Basic Energy Science, Materials Sciences Division of the Office of Science of the US Department of Energy; Office of Science of the United States Department of Energy [DE-AC02-07CH11358]; Office of Science of the US Department of Energy [DE-AC02-05-CH11231] FX Support of this work by the Office of Basic Energy Science, Materials Sciences Division of the Office of Science of the US Department of Energy is acknowledged. Ames Laboratory is supported by the Office of Science of the United States Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University. The computations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05-CH11231. NR 48 TC 3 Z9 3 U1 3 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 10 PY 2010 VL 506 IS 1 BP 224 EP 230 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 655IJ UT WOS:000282242700045 ER PT J AU Wang, SW Zhao, F Zhang, LL Brinkman, K Chen, FL AF Wang, Siwei Zhao, Fei Zhang, Lingling Brinkman, Kyle Chen, Fanglin TI Stability and electrical property of Ba1-xSrxC0.8Y0.2O3-delta high temperature proton conductor SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Barium cerate; Strontium cerate; Proton conductor; Electrical conductivity; Stability ID OXIDE FUEL-CELLS; INTERMEDIATE TEMPERATURE; TRANSPORT-PROPERTIES; COMPLEXING PROCESS; SINTERED OXIDES; BACEO3; ELECTROLYTE; ATMOSPHERES; CERAMICS; PEROVSKITES AB The morphological and electrical properties of Ba1-xSrxCe0.8Y0.2O3-delta with x in the range from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500 degrees C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0 <= x <= 0.2, while for x larger than 0.5, impurity phases of Sr2CeO4 and Y2O3 appeared. The tolerance to H2O for the samples improved with the increase in Sr content when exposed to boiling water, while the electrical conductivity decreased from x =0 to 1. However, the resistance to CO2 attack at elevated temperatures was not improved for Ba1-xSrxCe0.8Y0.2O3-delta within the whole x range studied. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Siwei; Zhao, Fei; Zhang, Lingling; Chen, Fanglin] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Brinkman, Kyle] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Chen, FL (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM chenfa@cec.sc.edu RI Zhang, Lingling/I-4031-2012; Chen, Fanglin/K-1039-2012; Wang, Siwei/A-9048-2012; OI Chen, Fanglin/0000-0001-9942-8872; Wang, Siwei/0000-0001-5118-8267 FU Department of Energy [09-510]; SRNL LDRD program FX The authors acknowledge gratefully the financial support of the Department of Energy Nuclear Energy University Program (NEUP) (award no. 09-510) and the SRNL LDRD program. NR 42 TC 19 Z9 20 U1 2 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 10 PY 2010 VL 506 IS 1 BP 263 EP 267 DI 10.1016/j.jallcom.2010.06.188 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 655IJ UT WOS:000282242700051 ER PT J AU Burns, KE Cerda-Maira, FA Wang, T Li, HL Bishai, WR Darwin, KH AF Burns, Kristin E. Cerda-Maira, Francisca A. Wang, Tao Li, Huilin Bishai, William R. Darwin, K. Heran TI "Depupylation" of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates SO MOLECULAR CELL LA English DT Article ID TUBERCULOSIS PROTEASOME; IN-VIVO; PUP; PUPYLATION; DEGRADATION; ENZYMES AB Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins. Dop (deamidase of Pup; Mtb Ry2112c/MT2172) deamidates the C-terminal glutamine of Pup to glutamate, preparing it for ligation to target proteins by proteasome accessory factor A (PafA). While studies have shed light on the conjugation of Pup to proteins, it was not known if Pup could be removed from substrates in a manner analogous to the deconjugation of Ub from eukaryotic proteins. Here, we show that Mycobacteria have a "depupylase" activity provided by Dop. The discovery of a depupylase strengthens the parallels between the Pup- and Ub-tagging systems of prokaryotes and eukaryotes, respectively. C1 [Burns, Kristin E.; Cerda-Maira, Francisca A.; Darwin, K. Heran] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA. [Wang, Tao; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Bishai, William R.] Johns Hopkins Sch Med, Dept Med, Div Infect Dis, Baltimore, MD 21231 USA. RP Darwin, KH (reprint author), NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA. EM heran.darwin@med.nyu.edu RI li, lianbo/H-1152-2011 FU NIH [HL92774, AI070285, AI 30036, 37856, 36973]; Burroughs Wellcome Investigator in the Pathogenesis of Infectious Disease award FX We are grateful to A. Darwin, D. Finley, T. Huang, and K. Walters for critical review of drafts of this manuscript. We thank J. Raper and R. Thomson for use of their FPLC instrumentation and Superdex 200 column. We thank C. Barry for gifts of the proteasome mutant Msm and the polyG vector and G. DeMartino and R. Hampton for helpful conversations. This work was supported by NIH R01 grants HL92774 awarded to K.H.D., AI070285 awarded to H.L., and AI 30036, 37856, and 36973 awarded to W.R.B. K.H.D is supported by a Burroughs Wellcome Investigator in the Pathogenesis of Infectious Disease award. NR 29 TC 52 Z9 54 U1 0 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD SEP 10 PY 2010 VL 39 IS 5 BP 821 EP 827 DI 10.1016/j.molcel.2010.07.019 PG 7 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 651QA UT WOS:000281941000018 PM 20705495 ER PT J AU Noh, JH Nikiforov, M Kalinin, SV Vertegel, AA Rack, PD AF Noh, Joo Hyon Nikiforov, Maxim Kalinin, Sergei V. Vertegel, Alexey A. Rack, Philip D. TI Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ELECTROCHEMICAL MICROSCOPY; THIN-FILMS; TUNNELING-MICROSCOPY; STRESS; TIPS; MICROELECTRODES; BIOMOLECULES; CANTILEVERS; DEPOSITION AB In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at the tip apex using focused-electron-beam-induced etching (FEBIE) with XeF2. The chromium layer acted not only as the conductive path from the tip, but also as an etch-resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of a standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments. C1 [Noh, Joo Hyon; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Nikiforov, Maxim; Kalinin, Sergei V.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vertegel, Alexey A.] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; OI Kalinin, Sergei/0000-0001-5354-6152; Rack, Philip/0000-0002-9964-3254 FU NIH [RR024449]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy FX This work was supported in part by NIH grant no. RR024449. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. NR 36 TC 13 Z9 13 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD SEP 10 PY 2010 VL 21 IS 36 AR 365302 DI 10.1088/0957-4484/21/36/365302 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 638FJ UT WOS:000280878500002 PM 20702930 ER PT J AU Fuchs, GD Dobrovitski, VV Toyli, DM Heremans, FJ Weis, CD Schenkel, T Awschalom, DD AF Fuchs, G. D. Dobrovitski, V. V. Toyli, D. M. Heremans, F. J. Weis, C. D. Schenkel, T. Awschalom, D. D. TI Excited-state spin coherence of a single nitrogen-vacancy centre in diamond SO NATURE PHYSICS LA English DT Article AB Nitrogen-vacancy centres in diamond are a solid-state analogue of trapped atoms, with fine structure in both the ground and excited states that may be used for advanced quantum control. These centres are promising candidates for spin-based quantum information processing1-3 and magnetometry4-6 at room temperature. Knowledge of the excited-state (ES) structure and coherence is critical to evaluating the ES as a room-temperature quantum resource, for example for a fast, optically gated swap operation with a nuclear-spin memory(7). Here we report experiments that probe the ES-spin coherence of single nitrogen-vacancy centres. Using a combination of pulsed-laser excitation and nanosecond-scale microwave manipulation, we observed ES Rabi oscillations, and multipulse resonant control enabled us to study coherent ES electron/nuclear-spin interactions. To understand these processes, we developed a finite-temperature theory of ES spin dynamics that also provides a pathway towards engineering longer ES spin coherence. C1 [Fuchs, G. D.; Toyli, D. M.; Heremans, F. J.; Awschalom, D. D.] Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. [Dobrovitski, V. V.] Ames Lab, Ames, IA 50011 USA. [Dobrovitski, V. V.] Iowa State Univ, Ames, IA 50011 USA. [Weis, C. D.; Schenkel, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Awschalom, DD (reprint author), Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. EM awsch@physics.ucsb.edu RI Heremans, F. Joseph/D-5555-2009 FU AFOSR; ARO; DARPA; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We gratefully acknowledge support from the AFOSR, ARO and DARPA. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under contract No DE-AC02-07CH11358. NR 27 TC 47 Z9 47 U1 2 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD SEP 10 PY 2010 VL 6 IS 9 BP 668 EP 672 DI 10.1038/NPHYS1716 PG 5 WC Physics, Multidisciplinary SC Physics GA 646KX UT WOS:000281540200014 ER PT J AU Norrgard, EB Tupa, D Dreiling, JM Gay, TJ AF Norrgard, E. B. Tupa, D. Dreiling, J. M. Gay, T. J. TI Electron-spin-reversal phenomenon in optically pumped rubidium SO PHYSICAL REVIEW A LA English DT Article ID ALKALI-METAL VAPOR; STORAGE-RING; POLARIZATION; TARGETS AB We have studied the optical pumping of mixtures of Rb vapor and N(2) buffer gas by laser light tuned to the D(1) transition having a spectral width of similar to 500 MHz. The Rb densities are of the order of 10(13) cm(-3), while the buffer-gas pressures range from 0.1 to 10 torr. As the frequency of the right-hand circularly polarized laser is varied across the D(1) absorption profile, the electron spin polarization of the Rb is found to take on negative values for small negative values of pump detuning from the absorption profile center. This occurs for N(2) pressures below similar to 1 torr; at 10 torr the electron spins consistently point in the same direction as the angular momentum of the pump light. The spin-reversal effect can be understood in terms of populations of the F = 2 ((85)Rb) and F = 1 ((87)Rb) states caused by small unpolarized fractions in the pump beam and its elimination in terms of pressure broadening caused by the N(2) buffer gas. We speculate that this effect could be used for fast Rb spin modulation. C1 [Norrgard, E. B.; Dreiling, J. M.; Gay, T. J.] Univ Nebraska, Behlen Lab Phys, Lincoln, NE 68588 USA. [Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Norrgard, EB (reprint author), Univ Nebraska, Behlen Lab Phys, Lincoln, NE 68588 USA. OI Norrgard, Eric/0000-0002-8715-4648; Tupa, Dale/0000-0002-6265-5016 FU NSF [PHY-0855629]; Los Alamos Unlimited [LA-UR 10-02789] FX The authors acknowledge very helpful discussions with Mike Romalis and Herman Batelaan. This work was supported by NSF Grant No. PHY-0855629 and is unclassified: Los Alamos Unlimited Release LA-UR 10-02789. NR 18 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 10 PY 2010 VL 82 IS 3 AR 033408 DI 10.1103/PhysRevA.82.033408 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 648UL UT WOS:000281719700008 ER PT J AU Chmaissem, O Grigoraviciute, I Yamauchi, H Karppinen, M Marezio, M AF Chmaissem, O. Grigoraviciute, I. Yamauchi, H. Karppinen, M. Marezio, M. TI Superconductivity and oxygen ordering correlations in the homologous series of (Cu, Mo)Sr-2(Ce, Y)(s)Cu2O5+2s+delta SO PHYSICAL REVIEW B LA English DT Article ID CU-O SYSTEM; BOND-VALENCE PARAMETERS; HIGH-TEMPERATURE SUPERCONDUCTOR; LAYERED COPPER OXIDES; CRYSTAL-STRUCTURE; T-C; BLOCK; HGBA2CUO4+DELTA; SR2CUO3+DELTA; LANTHANIDES AB A detailed study of the structure-property relationship is reported for the first four members of the high-T-c superconducting homologous series of (Cu,Mo)Sr-2(Ce, Y)(s)Cu2O5+2s+delta [(Cu, Mo)-12s2]. In this series, the adjacent CuO2 planes are separated by a single Y-cation layer for s=1 and a fluorite-type (Ce, Y)-[O-2-(Ce, Y)](s-1) layer block for s >= 2. Even though this series may be considered a conventional homologous series from the chemical point of view, we emphasize that the structures are different from those of the Tl-, Hg-, Bi-, etc.,-based series by the fact that the inserted fluorite-type blocks are insulating. We show the formation of the higher s members via intercalation of additional Ce-O-2 layer(s) into the crystal lattices of the lower members of the series. Neutron powder-diffraction data demonstrate that the Ce/Y ratio is not constant at the different (Ce, Y) layers in the fluorite-structured block and that the innermost (Ce, Y) layer(s) are significantly Ce rich compared with the outer ones. Two independent crystallographic sites are identified for the extra oxygen atoms in the basal (Cu0.75Mo0.25)O1+delta plane with site fractional occupancies that strongly correlate with the properties of the material. A short-range ordered structure is proposed for the (Cu0.75Mo0.25)O1+delta layers that could explain both the superconducting properties of the materials and the enhanced T-c for the first member of the series. C1 [Chmaissem, O.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chmaissem, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Grigoraviciute, I.; Yamauchi, H.; Karppinen, M.] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Yamauchi, H.; Karppinen, M.] Aalto Univ, Inorgan Chem Lab, Sch Sci & Technol, FI-00076 Aalto, Finland. [Marezio, M.] CNRS, CRETA, F-38042 Grenoble 9, France. RP Chmaissem, O (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM chmaissem@niu.edu RI Karppinen, Maarit/G-8035-2012 FU Tekes [1726/31/07]; Academy of Finland [116254, 126528]; Ministry of Education, Culture, Sports, Science and Technology of Japan [ID 043145]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was partly supported by Tekes under Grant No. 1726/31/07 and the Academy of Finland under Grants No. 116254 and No. 126528. I. G. acknowledges (Grant No. ID 043145) the Ministry of Education, Culture, Sports, Science and Technology of Japan. At Argonne, the work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 47 TC 13 Z9 14 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 10 PY 2010 VL 82 IS 10 AR 104507 DI 10.1103/PhysRevB.82.104507 PG 9 WC Physics, Condensed Matter SC Physics GA 648UP UT WOS:000281720100008 ER PT J AU Daghofer, M Zheng, N Moreo, A AF Daghofer, Maria Zheng, Nan Moreo, Adriana TI Spin-polarized semiconductor induced by magnetic impurities in graphene SO PHYSICAL REVIEW B LA English DT Article ID FERMI-LIQUID; GRAPHITE AB The effective magnetic coupling between magnetic impurities adsorbed on graphene, which is mediated by the itinerant graphene electrons, and its impact on the electrons' spectral density are studied. The magnetic interaction breaks the symmetry between the sublattices, leading to antiferromagnetic order, and a gap for the itinerant electrons develops. Random doping produces a semiconductor but if all or most of the impurities are localized in the same sublattice the spin degeneracy can be lifted and a spin-polarized semiconductor induced. C1 [Daghofer, Maria; Zheng, Nan; Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daghofer, Maria; Zheng, Nan; Moreo, Adriana] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Daghofer, Maria] IFW Dresden, D-01171 Dresden, Germany. [Zheng, Nan] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA. RP Daghofer, M (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM m.daghofer@ifw-dresden.de RI Daghofer, Maria/C-5762-2008 OI Daghofer, Maria/0000-0001-9434-8937 FU National Science Foundation [DMR-0706020]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE; DFG FX This work was supported by the National Science Foundation under Grant No. DMR-0706020, the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE, and the DFG under the Emmy-Noether program. NR 37 TC 10 Z9 10 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 10 PY 2010 VL 82 IS 12 AR 121405 DI 10.1103/PhysRevB.82.121405 PG 4 WC Physics, Condensed Matter SC Physics GA 648VU UT WOS:000281723300002 ER PT J AU Han, Y Liu, DJ AF Han, Yong Liu, Da-Jiang TI Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model SO PHYSICAL REVIEW B LA English DT Article ID STABILIZED JELLIUM MODEL; LIQUID-DROP MODEL; SUPERSHELL STRUCTURE; WORK FUNCTION; CLUSTERS; CONDUCTANCE; PHYSICS; FORCE; NANOCOHESION; ENERGIES AB The electronic and dynamic properties of metal nanowires are analyzed by using a minimal electron-gas model (EGM), in which the nanowire is treated as a close system with variable Fermi energy as a function of nanowire radius. We show that the planar surface energy and the curvature energy from the EGM are reasonably consistent with those from previous stabilized-jellium-model calculations, especially for metals with low electron densities. The EGM shell structure due to the fillings of quantum-well subbands is similar to that from the stabilized jellium model. The crossings between subbands and Fermi energy level for the metal nanowire correspond to cusps on the chemical-potential curve versus nanowire radius, but inflection points on the surface-free-energy curve versus the radius, as in the case of metal nanofilms. We also find an oscillatory variation in electron density versus radius at the nanowire center with a global oscillation period which approximately equals half Fermi wavelength. Wire string tension, average binding energy, and thermodynamic stability from the EGM are in good agreement with the data from previous first-principles density-functional theory calculations. We also compare our model with those from previous reported free-electron models, in which the nanowire is treated as an open system with a constant Fermi energy. We demonstrate that the fundamental thermodynamic properties depend sensitively on the way that the potential wall is constructed in the models. C1 [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Liu, Da-Jiang] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Han, Y (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. EM octavian2009@gmail.com RI Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 FU NSF [CHE-0809472]; Division of Chemical Sciences of the U.S. DOE-BES; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX Y.H. was supported for this work by NSF under Grant No. CHE-0809472. D.J.L. was supported by the Division of Chemical Sciences of the U.S. DOE-BES. Computational supports at NERSC and TeraGrid were provided by U.S. DOE and NSF, respectively. We thank James W. Evans for a critical reading of the manuscript. We are also grateful to C.A. Stafford, Frank Kassubek, and Jerome Burki, as well as Daning Shi, for sharing their data. The work was performed at Ames Laboratory which is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 43 TC 3 Z9 3 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 10 PY 2010 VL 82 IS 12 AR 125420 DI 10.1103/PhysRevB.82.125420 PG 9 WC Physics, Condensed Matter SC Physics GA 648VU UT WOS:000281723300008 ER PT J AU Wang, LW AF Wang, Lin-Wang TI Relationship between the random-phase approximation ground-state total energy and GW quasiparticle energy SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ELECTRON-GAS; EXACT EXCHANGE; SOLIDS AB A connection between the random-phase-approximation (RPA) total energy E(RPA) and the GW quasiparticle energy (is an element of)GW has been pointed out. More specifically we show that: delta E(RPA)(N)/delta N=is an element of(GW), where N is the total number of electron. The variational property of the RPA total energy is also discussed and the variational equations for the orbital wave functions are derived. We argue that the RPA formalism is a method which can provide both accurate ground-state energies and single quasiparticle energies. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. FU U.S. Department of Energy BES/SC [DE-AC02-05CH11231] FX This work has been supported by the U.S. Department of Energy BES/SC under Contract No. DE-AC02-05CH11231. NR 31 TC 8 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 10 PY 2010 VL 82 IS 11 AR 115111 DI 10.1103/PhysRevB.82.115111 PG 5 WC Physics, Condensed Matter SC Physics GA 648VS UT WOS:000281723100003 ER PT J AU Hwang, JK Ramayya, AV Hamilton, JH Liu, SH Brewer, NT Luo, YX Rasmussen, JO Zhu, SJ Donangelo, R AF Hwang, J. K. Ramayya, A. V. Hamilton, J. H. Liu, S. H. Brewer, N. T. Luo, Y. X. Rasmussen, J. O. Zhu, S. J. Donangelo, R. TI High spin states in Pr-151,Pr-153, Sm-157, and Kr-93 SO PHYSICAL REVIEW C LA English DT Article ID OCTUPOLE CORRELATIONS; SPONTANEOUS FISSION; NUCLEI; TRANSITIONS; BAND; ISOTOPES; SHAPES; ND-146; DECAY AB High spin states are observed for the first time in the neutron-rich nuclei Pr-151,Pr-153, Sm-157, and Kr-93 from the spontaneous fission of Cf-252. Twenty new transitions in Pr-151, twelve in Pr-153, five in Sm-157, and four in Kr-93 were identified by using x-ray(Pr/Sm)-gamma-gamma and gamma-gamma-gamma triple coincidences. From the measured total internal conversion coefficients alpha(T) of four low-energy transitions in Pr-151,Pr-153, we determine that two bands in each nucleus have opposite parity. The interlacing E1 transitions between the bands suggest a form of parity doubling in Pr-151,Pr-153. New bands in Sm-157 and Kr-93 are reported. The half-life of the 354.8 keV state in Kr-93 is measured to be 10(2)ns. C1 [Hwang, J. K.; Ramayya, A. V.; Hamilton, J. H.; Liu, S. H.; Brewer, N. T.; Luo, Y. X.; Zhu, S. J.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Donangelo, R.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Donangelo, R.] Fac Ingn, Inst Fis, Montevideo 11300, Uruguay. RP Hwang, JK (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. RI Sistemas Complexos, Inct/J-8597-2013; OI Hwang, Jae-Kwang/0000-0002-4100-3473 FU US Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098]; National Natural Science Foundation of China [10975082]; Major State Basic Research Development Program [2007CB815005]; PEDECIBA (Uruguay); CNPq (Brazil) FX The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by the US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. DE-AC03-76SF00098. The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant No. 10975082 and the Major State Basic Research Development Program 2007CB815005. R.D. acknowledges partial financial support from PEDECIBA (Uruguay) and CNPq (Brazil). NR 31 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 10 PY 2010 VL 82 IS 3 AR 034308 DI 10.1103/PhysRevC.82.034308 PG 9 WC Physics, Nuclear SC Physics GA 649BV UT WOS:000281742200004 ER PT J AU Bauer, CW Dunn, ND Hornig, A AF Bauer, Christian W. Dunn, Nicholas Daniel Hornig, Andrew TI Factorization of boosted multijet processes for threshold resummation SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION CROSS-SECTION; QCD HARD SCATTERING; B-MESON DECAYS; END-POINT; NORMALIZATION; OBSERVABLES; JETS AB Explicit applications of factorization theorems for processes at hadron colliders near the hadronic end point have largely focused on simple final states with either no jets (e.g., Drell-Yan) or one inclusive jet (e. g., deep-inelastic scattering and prompt photon production). Factorization for the former type of process gives rise to a soft function that depends on timelike momenta, whereas the soft function for the latter type depends on null momenta. We derive in soft-collinear effective theory a factorization theorem that allows for an arbitrary number of jets, where the jets are defined with respect to a jet algorithm, together with any number of nonstrongly interacting particles. We find the soft function in general depends on the null components of the soft momenta inside the jets and on a timelike component of the soft momentum outside of the jets. This generalizes and interpolates between the soft functions for the cases of no jets and one inclusive jet. We verify consistency of our factorization theorem to O(alpha(s)) for any number of jets. While in this paper we demonstrate consistency only near the hadronic end point, we keep the kinematics general enough (in particular allowing for nonzero boost) to allow for an extension to partonic threshold resummation away from the hadronic end point. C1 [Bauer, Christian W.; Dunn, Nicholas Daniel; Hornig, Andrew] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bauer, CW (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Office of Science, and Offices of High Energy and Nuclear Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [PHY-0705682] FX This work was supported by the Director, Office of Science, and Offices of High Energy and Nuclear Physics of the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231. A.H. also acknowledges support from an NSF Grant No. PHY-0705682. NR 69 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 10 PY 2010 VL 82 IS 5 AR 054012 DI 10.1103/PhysRevD.82.054012 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649BO UT WOS:000281741400004 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, R Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Study of B -> X gamma decays and determination of vertical bar V-td/V-ts vertical bar SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRY; MODEL AB Using a sample of 471 x 10(6) B (B) over bar events collected with the BABAR detector, we study the sum of seven exclusive final states B -> X-s(d)gamma, where X-s(d) is a strange (nonstrange) hadronic system with a mass of up to 2.0 GeV/c(2). After correcting for unobserved decay modes, we obtain a branching fraction for b -> d gamma of (9.2 +/- 2.0(stat) +/- 2.3(syst) x 10(-6) in this mass range, and a branching fraction for b -> s gamma of (23.0 +/- 0.8(stat) +/- 3.0(syst) x 3.0(syst) x 10(-5) in the same mass range. We find B(b -> d gamma)/B(b -> s gamma) = 0.040 +/- 0.009(stat) +/- 0.010(syst), from which we determine vertical bar Vtd/Vts vertical bar = 0.199 +/- 0.022(stat) +/- 0.024(syst) +/- 0.002(th). C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Calcaterra, A.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.] Univ Oregon, Eugene, OR 97403 USA. [Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 06, CNRS, IN2P3, Phys Theor & Hautes Energies Lab,Univ Denis Dider, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, CEA, SPP, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Bellis, Matthew/0000-0002-6353-6043 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom) STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 22 TC 24 Z9 24 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 10 PY 2010 VL 82 IS 5 AR 051101 DI 10.1103/PhysRevD.82.051101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649BO UT WOS:000281741400001 ER PT J AU Amendt, P Landen, OL Robey, HF AF Amendt, Peter Landen, O. L. Robey, H. F. TI Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; SHOCK-WAVE; TARGETS AB The observation of large, self-generated electric fields (>= 10(9) V/m) in imploding capsules using proton radiography has been reported [C. K. Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D(3)He [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)] and (DT)(3)He [H. W. Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit. C1 [Amendt, Peter; Landen, O. L.; Robey, H. F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU [LDRD-08-ERD-062] FX We are grateful to an anonymous referee for numerous and useful suggestions. Prepared by LLNL under Contract No. DE-AC52-07NA27344 and supported by LDRD-08-ERD-062. NR 15 TC 40 Z9 40 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 10 PY 2010 VL 105 IS 11 AR 115005 DI 10.1103/PhysRevLett.105.115005 PG 4 WC Physics, Multidisciplinary SC Physics GA 703AJ UT WOS:000285939000004 PM 20867580 ER PT J AU Haurwitz, RE Jinek, M Wiedenheft, B Zhou, KH Doudna, JA AF Haurwitz, Rachel E. Jinek, Martin Wiedenheft, Blake Zhou, Kaihong Doudna, Jennifer A. TI Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease SO SCIENCE LA English DT Article ID COMPLEX; PROKARYOTES; IDENTIFICATION; DEFENSE; TRANSCRIPTION; RECOGNITION; SULFOLOBUS; REPEATS; MOTIF; DNA AB Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence-and structure-specific processing by a large family of CRISPR-specific endoribonucleases. C1 [Haurwitz, Rachel E.; Jinek, Martin; Wiedenheft, Blake; Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wiedenheft, Blake; Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Jinek, Martin/0000-0002-7601-210X FU U.S. NIH [5 T32 GM08295]; Human Frontier Science Program; NSF; Bill and Melinda Gates Foundation FX We thank W. Westphal for help with purification of Csy4 constructs; J. van der Oost for discussion; J. Doudna Cate and members of the Doudna laboratory for critical reading of the manuscript; and C. Ralston and J. Holton (Beamlines 8.2.2 and 8.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory) and S. Coyle for assistance with X-ray data collection. R.E.H. is supported by the U.S. NIH training grant 5 T32 GM08295. M.J. is supported by a Human Frontier Science Program Long-Term Fellowship. B. W. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. This work was supported in part by grants from NSF and the Bill and Melinda Gates Foundation. J.A.D. is a Howard Hughes Medical Institute Investigator. Coordinates and structure factors for the Csy4-crRNA complex have been deposited in the Protein Data Bank under accession codes 2xli, 2xlj, and 2xlk. The authors have filed a related patent. NR 23 TC 263 Z9 280 U1 14 U2 109 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 10 PY 2010 VL 329 IS 5997 BP 1355 EP 1358 DI 10.1126/science.1192272 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647YR UT WOS:000281657300042 PM 20829488 ER PT J AU Aklujkar, M Young, ND Holmes, D Chavan, M Risso, C Kiss, HE Han, CS Land, ML Lovley, DR AF Aklujkar, Muktak Young, Nelson D. Holmes, Dawn Chavan, Milind Risso, Carla Kiss, Hajnalka E. Han, Cliff S. Land, Miriam L. Lovley, Derek R. TI The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments SO BMC GENOMICS LA English DT Article ID STREPTOMYCES-COELICOLOR A3(2); GLUTACONYL-COA DECARBOXYLASE; HYBRID CLUSTER PROTEIN; ESCHERICHIA-COLI K-12; C-TYPE CYTOCHROMES; BACILLUS-SUBTILIS; FE(III) REDUCTION; ACIDAMINOCOCCUS-FERMENTANS; DISSIMILATORY FE(III); BIOCHEMICAL-ANALYSIS AB Background: Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results: Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion: Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in subsurface environments, compared to non-subsurface Geobacter species, such as the ability to disproportionate fumarate, more efficient oxidation of propionate, enhanced responses to oxygen stress, and dependence on the environment for a vitamin requirement. Therefore, an understanding of the activity of Geobacter species in the subsurface is more likely to benefit from studies of subsurface isolates such as G. bemidjiensis than from the non-subsurface model species studied so far. C1 [Aklujkar, Muktak; Young, Nelson D.; Holmes, Dawn; Chavan, Milind; Risso, Carla; Lovley, Derek R.] Univ Massachusetts, Amherst, MA 01003 USA. [Kiss, Hajnalka E.; Han, Cliff S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Land, Miriam L.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Aklujkar, M (reprint author), Univ Massachusetts, Amherst, MA 01003 USA. EM muktak@microbio.umass.edu RI Land, Miriam/A-6200-2011 OI Land, Miriam/0000-0001-7102-0031 FU Office of Science (Biological and Environmental Research), U.S. Department of Energy [DE-FC02-02ER63446]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Mounir Izallalen for helpful discussions and P. Brown, T. Woodard, K. Nevin, T. Brettin, C. Detter, and C. Kuske for technical assistance. This research was supported by the Office of Science (Biological and Environmental Research), U.S. Department of Energy (Grant No. DE-FC02-02ER63446). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 81 TC 30 Z9 31 U1 2 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 9 PY 2010 VL 11 AR 490 DI 10.1186/1471-2164-11-490 PG 18 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 662EU UT WOS:000282790900001 PM 20828392 ER PT J AU Sun, PP Siddiqi, G Chi, MF Bell, AT AF Sun, Pingping Siddiqi, Georges Chi, Miaofang Bell, Alexis T. TI Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation SO JOURNAL OF CATALYSIS LA English DT Article DE Pt bimetallic catalyst; Mg(Ga)(Al)O support; STEM; EXAFS; Dehydrogenation ID N-BUTANE DEHYDROGENATION; MG-AL HYDROTALCITE; PT-GA INTERACTION; PROPANE DEHYDROGENATION; DISSOCIATIVE CHEMISORPTION; SELECTIVE DEHYDROGENATION; ISOBUTANE DEHYDROGENATION; ACETONE TRANSFORMATION; THERMAL TREATMENTS; PT/SN CATALYSTS AB A novel approach is described for preparing Ga-promoted Pt particles for the dehydrogenation of light alkanes to alkenes. The modifying element, Ga, was introduced by transference from the support, a calcined Mg(Ga)(Al)O hydrotalcite-like material. Pt nanoparticles were dispersed onto the calcined Mg(Ga)(Al)O starting from an organometallic precursor, followed by reduction. The formation of PtGa alloy particles is dependent on reduction temperature. Reduction at 723 K produces mainly metallic Pt particles. The average diameter of the Pt nanoparticles increased from 1.4 nm to 2.2 nm with increasing Ga content, and decreasing Al content of the support, demonstrating the importance of support Al atoms in stabilizing the dispersion of Pt. After reduction at 773-873 K, PtGa alloys were observed. It is proposed that at high reduction temperatures. H atoms formed on the surface of the metal particles spill over onto the support where they reduce Ga(3+) cation to atomic Ga, which then interacts with the supported Pt to form PtGa alloys. The activity, selectivity and stability of Pt/Mg(Ga)(Al)O catalysts for ethane and propane dehydrogenation are described in the second part of this study (G. Siddiqi, P. Sun, V. Galvita, A.T. Bell, Journal of catalysis (2010), doi:10.1016/j.jcat.2010.06.016 [40]). (C) 2010 Elsevier Inc. All rights reserved. C1 [Sun, Pingping; Siddiqi, Georges; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu RI Chi, Miaofang/Q-2489-2015; OI Chi, Miaofang/0000-0003-0764-1567; Bell, Alexis/0000-0002-5738-4645 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by Chevron Energy and Technology Company. The authors would like to thank Chris Canlas (Berkeley NMR facility) for his assistance in acquiring the Ga NMR spectra. TEM work was supported by ORNL's SHaRE User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 69 TC 44 Z9 46 U1 13 U2 97 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD SEP 9 PY 2010 VL 274 IS 2 BP 192 EP 199 DI 10.1016/j.jcat.2010.06.017 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 653SD UT WOS:000282116100008 ER PT J AU Borovsky, JE AF Borovsky, Joseph E. TI On the variations of the solar wind magnetic field about the Parker spiral direction SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; HELIOSPHERIC CURRENT SHEET; ROTATING RAREFACTION REGIONS; COROTATING STREAM FRONTS; INTER-PLANETARY SHOCK; TANGENTIAL DISCONTINUITIES; ALFVEN WAVES; SURFACE-WAVES; MAGNETOHYDRODYNAMIC TURBULENCE; VOYAGER-2 OBSERVATIONS AB Using ACE, Helios, and OMNI2 measurements, the direction vectors of the solar wind magnetic field are statistically analyzed. Two populations of direction vectors are found: a Gaussian distribution about the Parker spiral direction and an isotropic population. Examination of the isotropic population finds ejecta, long-duration non-Parker spiral intervals, magnetic depressions, heliospheric-current-sheet crossings, and spillover from the Gaussian population. Via numerical experiments, spillover in spherical coordinates from the Gaussian population into the isotropic population is explored and quantified. ACE measurements find that the angular width of the Gaussian Parker spiral population increases with solar wind speed. Examining the properties of the two populations year by year, no clear solar-cycle trends are found. Inside the compression regions of corotating interaction regions, the longitudinal width of the Gaussian Parker spiral population decreases by about a factor of two, while the latitudinal width of that population is approximately unchanged. Helios measurements find that the angular width of the Gaussian Parker spiral population decreases closer to the Sun, and the isotropic fraction decreases. The flux tube model of the solar wind structure is compared with spacecraft measurements: the model approximately agrees with the Helios behavior versus the distance from the Sun, and the model approximately agrees with the ACE behavior in the corotating interaction region compressions. C1 Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM 87545 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Mail Stop D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov FU NASA; NSF; Los Alamos National Laboratory FX The author wishes to thank Mick Denton for producing the superposed epoch data sets and to thank Jack Gosling, Pete Riley, Ruth Skoug, and John Steinberg for helpful conversations. This research was supported by the NASA Heliospheric SR&T Program, by the NASA Heliospheric Guest-Investigator Program, by the NSF SHINE Program, and by the LDRD Program at Los Alamos National Laboratory. NR 132 TC 27 Z9 27 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 9 PY 2010 VL 115 AR A09101 DI 10.1029/2009JA015040 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 649GZ UT WOS:000281757500002 ER PT J AU Sivaramakrishnan, R Su, MC Michael, JV Klippenstein, SJ Harding, LB Ruscic, B AF Sivaramakrishnan, R. Su, M. -C. Michael, J. V. Klippenstein, S. J. Harding, L. B. Ruscic, B. TI Rate Constants for the Thermal Decomposition of Ethanol and Its Bimolecular Reactions with OH and D: Reflected Shock Tube and Theoretical Studies SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TEMPERATURE RATE CONSTANTS; ACTIVE THERMOCHEMICAL TABLES; CORRELATED MOLECULAR CALCULATIONS; DENSITY-FUNCTIONAL GEOMETRIES; PRESSURE RATE-CONSTANT; SET MODEL CHEMISTRY; GAUSSIAN-BASIS SETS; GAS-PHASE REACTIONS; HYDROXYL RADICALS; ALIPHATIC-ALCOHOLS AB The thermal decomposition of ethanol and its reactions with OH and D have been studied with both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for ethanol have been measured at high T in reflected shock waves using OH optical absorption and high-sensitivity H-atom ARAS detection. The three dissociation processes that are dominant at high T are C(2)HSOH -> C(2)H(4) + H(2)O (A) -> CH(3) + CH(2)OH (B) -> C(2)H(5) + OH (C) The rate coefficient for reaction C was measured directly with high sensitivity at 308 nm using a multipass optical White cell. Meanwhile, H-atom ARAS measurements yield the overall rate coefficient and that for the sum of reactions B and C, since H-atoms are instantaneously formed from the decompositions of CH(2)OH and C(2)H(5) into CH(2)O H and C(2)H(4) H, respectively. By difference, rate constants for reaction 1 could be obtained. One potential complication is the scavenging of OH by unreacted ethanol in the OH experiments, and therefore, rate constants for OH + C(2)H(5)OH -> products (D) were measured using tert-butyl hydroperoxide (tBH) as the thermal source for OH. The present experiments can be represented by the Arrhenius expression k = (2.5 +/- 0.43) x 10(-11) exp(-911 +/- 191 K/T) cm(3) molecule(-1) s(-1) over the T range 857-1297 K. For completeness, we have also measured the rate coefficient for the reaction of D atoms with ethanol D + C(2)H(5)OH -> products (E) whose H analogue is another key reaction in the combustion of ethanol. Over the T range 1054-1359 K, the rate constants from the present experiments can be represented by the Arrhenius expression, k = (3.98 +/- 0.76) x 10(-10) exp(-4494 +/- 235 K/T) cm(3) molecule(-1) s(-1) The high-pressure rate coefficients for reactions B and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A, D, and E were studied with conventional transition state theory employing QCISD(T)/CBS energies. For the saddle point in reaction A, additional high-level corrections are evaluated. The predicted reaction exo- and endothermicities are in good agreement with the current Active Thermochemical Tables values. The transition state theory predictions for the microcanonical rate coefficients in ethanol decomposition are incorporated in master equation calculations to yield predictions for the temperature and pressure dependences of reactions A C. With modest adjustments (<1 kcal/mol) to a few key barrier heights, the present experimental and adjusted theoretical results yield a consistent description of both the decomposition (1-3) and abstraction kinetics (4 and 5). The present results are compared with earlier experimental and theoretical work. C1 [Sivaramakrishnan, R.; Su, M. -C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Su, M. -C.] Sonoma State Univ, Dept Chem, Rohnert Pk, CA 94928 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmichael@anl.gov; sjk@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010; Ruscic, Branko/A-8716-2008; OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; Ruscic, Branko/0000-0002-4372-6990; Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract no. DE-AC02-06CH11357. NR 92 TC 57 Z9 57 U1 3 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 9 PY 2010 VL 114 IS 35 BP 9425 EP 9439 DI 10.1021/jp104759d PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 644TO UT WOS:000281404400003 PM 20715882 ER PT J AU Wang, XL Feygenson, M Aronson, MC Han, WQ AF Wang, Xiao-Liang Feygenson, Mikhail Aronson, Meigan C. Han, Wei-Qiang TI Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LITHIUM BATTERIES; MAGNETIC-PROPERTIES; POLYOL SYNTHESIS; LOW-TEMPERATURE; SN NANOWIRES; TIN; NANOCRYSTALS; COMPOSITE; NANOSTRUCTURES; ELECTRODES AB Sn/SnOx core-shell nanospheres have been synthesized via a modified polyol process. Their size can be readily controlled by tuning the usage of surface stabilizers and the temperature. Anode performance in Li ion batteries and their superconducting properties is detailed. As anode materials, 45 nm nanospheres outperform both larger and smaller ones. Thus, they exhibit a capacity of about 3443 mAh cm(-3) and retain about 88% of after 10 cycles. We propose a model based on the microstructural evolution to explain the size impact on nanosphere performance. Magnetic measurements indicate that the nanospheres become superconducting below the transition temperature T-C = 3.7 K, which is similar to the value obtained in bulk tin. Although Tc does not significantly change with the size of the Sn core, we determined that the critical field H-C of nanospheres can be as much as a factor of 30 larger compared to the bulk value. Alternating current measurements demonstrated that a transition from conventional to filamentary superconducting structure occurs in Sn/SnOx particles as their size increases. The transition is determined by the relationship between the particle size and the magnetic field penetration depth. C1 [Wang, Xiao-Liang; Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Feygenson, Mikhail; Aronson, Meigan C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Aronson, Meigan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Han, WQ (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM whan@bnl.gov RI Han, WQ/E-2818-2013; Feygenson, Mikhail /H-9972-2014 OI Feygenson, Mikhail /0000-0002-0316-3265 FU U.S. DOE [DE-AC02-980CH10886]; Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences at Brookhaven [DE-AC02-98CH1886] FX This work is supported by the U.S. DOE under Contract No. DE-AC02-980CH10886 and E-LDRD Fund of Brookhaven National Laboratory. This work was carried out under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences at Brookhaven under Contract No. DE-AC02-98CH1886. We thank Drs. Lihua Zhang, Jia-Jun Chen, Jason Graetz, and Myron Strongin (Brookhaven National Laboratory) for their technical help and valuable discussions. NR 51 TC 45 Z9 46 U1 7 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 14697 EP 14703 DI 10.1021/jp101852y PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100004 ER PT J AU Shepherd, DP Whitcomb, KJ Milligan, KK Goodwin, PM Gelfand, MP Van Orden, A AF Shepherd, Douglas P. Whitcomb, Kevin J. Milligan, Kenneth K. Goodwin, Peter M. Gelfand, Martin P. Van Orden, Alan TI Fluorescence Intermittency and Energy Transfer in Small Clusters of Semiconductor Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLAR-CELLS; NANOCRYSTALS; INTENSITY; EMISSION; DYNAMICS; BEHAVIOR; GENERATION; EFFICIENCY; MOLECULES; SOLIDS AB We have studied isolated semiconductor nanocrystal quantum dots (QDs) and small clusters of QDs by single-molecule time-correlated single-photon counting, from which fluorescence intensity trajectories, autocorrelation functions, decay histograms, and lifetime-intensity distributions have been constructed. These measurements confirm that QD clusters exhibit unique fluorescence behavior not observed in isolated QDs. In particular, the QD clusters exhibit a short-lifetime component in their fluorescence decay that is correlated with low fluorescence intensity of the cluster. A model based on nonradiative energy transfer to QDs within a cluster that have smaller energy gaps, combined with independent blinking for the QDs in a cluster, accounts for the main experimental features. C1 [Whitcomb, Kevin J.; Milligan, Kenneth K.; Van Orden, Alan] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Shepherd, Douglas P.; Gelfand, Martin P.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Goodwin, Peter M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Van Orden, A (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. EM vanorden@lamar.colostate.edu RI Van Orden, Alan/N-4219-2015; OI Gelfand, Martin/0000-0002-1867-6231 FU Colorado Renewable Energy Collaboratory-Center for Revolutionary Solar Photo-conversion; American Chemistry Society [46878-ac]; Gary E. Maciel Fellowship Foundation; McNair Scholars Program; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396, DE-AC04-94AL85000] FX Support from the Colorado Renewable Energy Collaboratory-Center for Revolutionary Solar Photo-conversion and the Petroleum Research Fund of the American Chemistry Society (grant no. 46878-ac) is gratefully acknowledged. K.J.M received support from the Gary E. Maciel Fellowship Foundation. K.K.M. was supported by the McNair Scholars Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We also thank Justin Sambur, Bruce Parkinson, and Justin Johnson for helpful discussions. NR 48 TC 19 Z9 19 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 14831 EP 14837 DI 10.1021/jp105150x PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100023 ER PT J AU Siegal, MP Overmyer, DL Provencio, PP Tallant, DR AF Siegal, Michael P. Overmyer, Donald L. Provencio, Paula P. Tallant, David R. TI Linear Behavior of Carbon Nanotube Diameters with Growth Temperature SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; CATALYST; FILMS; NUCLEATION; SUBSTRATE; DENSITY; ARRAYS AB High crystalline quality single- and multiwalled carbon nanotubes (CNTs) grow using thermal chemical vapor deposition (CVD) at temperatures ranging from 530 to 630 degrees C. Using identical Ni catalyst layers and a constant CO reduction annealing process at 600 degrees C, the number of walls in the resulting CNTs increases linearly from one to eight over this growth temperature range. The highest temperature used in the growth process appears to control the resulting inner core diameter, which is similar to 1 nm for all CNTs grown <= 610 degrees C, near the CO reduction anneal used for all the samples. The corresponding CNT outer diameters also increase linearly from 1 to 5 nm up to 610 degrees C. Using growth temperatures measurably higher than that of the reduction anneal results in both larger inner and outer diameters, inferring that the Ni catalyst islands grow with increasing temperature. These results suggest that independent control of the number of walls and the inner core diameter in CNTs is possible. C1 [Siegal, Michael P.; Overmyer, Donald L.; Provencio, Paula P.; Tallant, David R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Siegal, MP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mpsiega@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 27 TC 4 Z9 4 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 14864 EP 14867 DI 10.1021/jp105815u PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100029 ER PT J AU Arima, K Jiang, P Deng, XY Bluhm, H Salmeron, M AF Arima, Kenta Jiang, Peng Deng, Xingyi Bluhm, Hendrik Salmeron, Miquel TI Water Adsorption, Solvation, and Deliquescence of Potassium Bromide Thin Films on SiO2 Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLARIZATION FORCE MICROSCOPY; SALT-SOLUTIONS; POLAR SUNRISE; SEA-SALT; OZONE DESTRUCTION; ELECTRON-SPECTROSCOPY; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; ALKALI-HALIDES; IN-SITU AB The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30% RH, adsorbed water reaches a coverage of approximately 1 ML (monolayer). As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60% RH, followed by a rapid increase. At low RHs, the Br/K ratio on a submonolayer-thick film drops to less than 0.1, as a result of loss of Br atoms in the film due to radiation damage. With increasing humidity, solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60% RI-I, the increase of the Br/K ratio accelerates. Above the deliquescence point (85% RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor of 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the air-liquid interface of the thin saline solution on SiO2. C1 [Jiang, Peng; Deng, Xingyi; Salmeron, Miquel] Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Arima, Kenta] Osaka Univ, Grad Sch Engn, Dept Precis Sci & Technol, Suita, Osaka 5650871, Japan. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Deng, Xingyi] US DOE, Parsons Project Serv Inc, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Bluhm, Hendrik] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov OI Deng, Xingyi/0000-0001-9109-1443 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Yamada Science Foundation FX The authors would like to thank Dr. Albert Verdaguer for technical discussions on AP-XPS. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. K.A. acknowledges financial support from Yamada Science Foundation. NR 67 TC 15 Z9 15 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 14900 EP 14906 DI 10.1021/jp101683z PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100034 ER PT J AU Chen, ZX Cao, YL Qian, JF Ai, XP Yang, HX AF Chen, Zhongxue Cao, Yuliang Qian, Jiangfeng Ai, Xinping Yang, Hanxi TI Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL PERFORMANCE; IMPEDANCE SPECTROSCOPY; NEGATIVE ELECTRODE; C COMPOSITE; LITHIUM; NANOCOMPOSITE; STORAGE; SILICON; CELLS; SB AB A simple synthetic route was developed to transform micrometer-sized Sb powders into new Sb-sandwiched nanocomposite particles (SiC-Sb-C) with Sb nanoparticles pinned on rigid SiC nanocores and surface-coated with carbon by use of a high-energy mechanical milling technique at ambient temperature. The as-prepared SiC-Sb-C nanoparticles exhibited excellent cycling ability and rate capability, delivering a specific capacity of >440 mA.h g(-1) after 120 cycles and a quite high capacity of >= 220 mA.h g(-1) at a very high-rate of 4 C (2000 mA g(-1)). This greatly improved electrochemical performance could be attributed to the structural stability of this material, which can not only effectively confine the volume expansion of the sandwiched Sb layer but also prevent the aggregation of Sb nanocrystallites and keep the mechanical integrity of the electrodes. In addition, this new synthetic method is completely green with a full utilization of raw materials and without any emission of wastes, easily adopted for large-scale production and also extended for other attractive lithium storage metals and alloys. C1 [Chen, Zhongxue; Cao, Yuliang; Qian, Jiangfeng; Ai, Xinping; Yang, Hanxi] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China. [Cao, Yuliang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, YL (reprint author), Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China. EM ylcao@whu.edu.cn; hxyang@whu.edu.cn RI Chen, Zhongxue/J-9070-2014 FU National Basic Research Program of China [2009CB220103]; National Science Foundation of China [20873095] FX We acknowledge financial support by the National Basic Research Program of China (2009CB220103) and the National Science Foundation of China (No. 20873095). NR 28 TC 16 Z9 17 U1 6 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 15196 EP 15201 DI 10.1021/jp104099r PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100077 ER PT J AU Qin, Y Chen, ZH Lee, HS Yang, XQ Amine, K AF Qin, Yan Chen, Zonghai Lee, H. S. Yang, X-Q Amine, K. TI Effect of Anion Receptor Additives on Electrochemical Performance of Lithium-Ion Batteries SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THERMAL-STABILITY; TRIS(PENTAFLUOROPHENYL) BORANE; NONAQUEOUS SOLUTIONS; PAIR DISSOCIATION; BINDING PROPERTIES; LEWIS-ACID; ELECTROLYTE; CONDUCTIVITY; SALTS; MOLECULES AB Four boron-based anion receptors were investigated as electrolyte additives for lithium-ion batteries. The electrochemical performance of lithium-ion cells was found to strongly depend on the structure of the anion receptor added to the electrolyte. The capacity retention of the lithium-ion cell was slightly improved by adding 0.07 M bis(1,1,1,3,3,3-hexafluoroisopropyl)pentafluorophenylboronate additive, whereas the addition of 2,5-bis(trifluoromethylphenyl)tetrafluoro-1,3,2-benzodioxaborole dramatically deteriorated the electrochemical performance. The addition of a certain type of anion receptor can promote the electrochemical decomposition of the electrolyte, resulting in high interfacial impedance and accelerated capacity fading of lithium-ion cells. Ab initio calculations showed that the electrochemical performance of anion receptors had good correlation to the degree of localization of the lowest unoccupied molecular orbital at the boron center of anion receptors, which can potentially be used in the search for new anion receptors for lithium-ion batteries. C1 [Qin, Yan; Chen, Zonghai; Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, H. S.; Yang, X-Q] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 FU U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office; UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy [DEAC02-98CH10886] FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under Contract DE-AC02-06CH11357. The work at Brookhaven National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems", of the U.S. Department of Energy under Contract No. DEAC02-98CH10886. NR 38 TC 13 Z9 13 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 15202 EP 15206 DI 10.1021/jp104341t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100078 ER PT J AU Graham, DD Graetz, J Reilly, J Wegrzyn, JE Robertson, IM AF Graham, Dennis D. Graetz, Jason Reilly, James Wegrzyn, James E. Robertson, Ian M. TI Location of Ti Catalyst in the Reversible AlH3 Adduct of Triethylenediamine SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ALUMINUM-HYDRIDE; HYDROGEN STORAGE; POLYMORPHS; KINETICS AB AlH3, a metastable binary hydride with a hydrogen content of 10.1 wt % hydrogen and a density of 1.48 g/mL, is a potential lightweight hydrogen storage system for transportation applications. A key component to understanding the discharge and uptake of hydrogen is the role of the Ti dopant in these processes. Here, the morphological and compositional changes caused by the synthesis and dehydriding of the AlH3 adduct of triethylenediamine was determined by using a combination of scanning electron and scanning transmission electron microscopy as well as X-ray energy dispersive spectroscopy. It is shown that there is significant loss of the added Ti at each step in the synthesis; the Ti agglomerates in the Al particles, causing enrichment, and the amount of Ti needed to catalyze the activity is on the order of 0.4 at.%, which amounts to approximately a 90% reduction from the amount added. C1 [Graham, Dennis D.; Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Graetz, Jason; Reilly, James; Wegrzyn, James E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Robertson, IM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM ianr@illinois.edu FU Metal Hydrides Center of Excellence, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-AC02-98CH1-886, DE-FC36-05GO15064] FX This work was partially supported through the Metal Hydrides Center of Excellence, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under Contract No. DE-AC02-98CH1-886 (BNL) and Grant No. DE-FC36-05GO15064 (University of Illinois). The electron microscopy was performed in the Center for Microanalysis of Materials in the Frederick Seitz Materials Research Laboratory at the University of Illinois. D.D.G. thanks B. D. Miller for his assistance with the scanning electron microscopy. NR 17 TC 8 Z9 8 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 9 PY 2010 VL 114 IS 35 BP 15207 EP 15211 DI 10.1021/jp104453w PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 684AT UT WOS:000284520100079 ER PT J AU Fang, A Koschny, T Soukoulis, CM AF Fang, A. Koschny, Th. Soukoulis, C. M. TI Self-consistent calculations of loss-compensated fishnet metamaterials SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE-INDEX METAMATERIALS; REFRACTIVE-INDEX; GAIN AB We present a computational approach, allowing for a self-consistent treatment of three-dimensional fishnet metamaterial coupled to a gain material incorporated into the nanostructure. We show numerically that one can compensate the losses by incorporating gain material inside the fishnet structure. The pump rate needed to compensate the loss is much smaller than the bulk gain and the figure of merit [FOM=vertical bar Re(n)/Im(n)vertical bar] increases dramatically with the pump rate. Transmission, reflection, and absorption data, as well as the retrieved effective parameters, are presented for the fishnet structure with and without gain material. Kramers-Kronig relations of the effective parameters are in excellent agreement with the retrieved results with gain. C1 [Fang, A.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fang, A.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Th.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, FORTH, Iraklion 71110, Crete, Greece. [Koschny, Th.; Soukoulis, C. M.] Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion 71110, Crete, Greece. RP Fang, A (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; European Community [213390]; Sandia National Laboratories FX We thank M. Wegener for useful discussions. Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FET project PHOME (Contract No. 213390) and by Laboratory-Directed Research and Development Program at Sandia National Laboratories. NR 39 TC 59 Z9 60 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 12 AR 121102 DI 10.1103/PhysRevB.82.121102 PG 4 WC Physics, Condensed Matter SC Physics GA 647ZD UT WOS:000281658500001 ER PT J AU Gambari, J Fernandez-Dominguez, AI Maier, SA Williams, BS Kumar, S Reno, JL Hu, Q Phillips, CC AF Gambari, Johannes Fernandez-Dominguez, Antonio I. Maier, Stefan A. Williams, Ben S. Kumar, Sushil Reno, John L. Hu, Qing Phillips, Chris C. TI Thresholdless coherent light scattering from subband polaritons in a strongly coupled microcavity SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-CASCADE LASERS; FIELD ENHANCEMENT; MODE AB We study a "strongly coupled" (SC) polariton system formed between the atomlike intersubband transitions in a semiconductor nanostructure and the terahertz optical modes that are localized at the edges of a gold aperture. The polaritons can be excited optically, by incoherent excitation with band-gap radiation, and we find that they also coherently scatter the same input laser, to give strikingly sharp "sideband" (SB) spectral peaks, in the backscattered spectrum. The SB intensity is a sensitive track of the polariton density and they can be detected down to a quantum noise floor that is more than 2500 times lower than the excitation thresholds of comparable quantum cascade laser diodes. Compared with other coherent scattering mechanisms, higher-order SB scattering events are readily observable, and we speculate that if suitably optimized, the effect may find utility in a passive component capable of all-optical wavelength shifting for telecommunications systems. C1 [Gambari, Johannes; Fernandez-Dominguez, Antonio I.; Maier, Stefan A.; Phillips, Chris C.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Williams, Ben S.] Univ Calif Los Angeles, Calif NanoSyst Inst, Dept Elect Engn, Los Angeles, CA 90095 USA. [Williams, Ben S.; Kumar, Sushil; Hu, Qing] MIT, Dept Elect Engn, Comp Sci & Res Lab Elect, Cambridge, MA 02139 USA. [Reno, John L.] Sandia Natl Labs, Dept 1123, Albuquerque, NM 87185 USA. RP Gambari, J (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RI Williams, Benjamin/B-4494-2013; Fernandez-Dominguez, Antonio I./C-4448-2013 OI Williams, Benjamin/0000-0002-6241-8336; Fernandez-Dominguez, Antonio I./0000-0002-8082-395X FU Engineering and Physical Sciences Research Council (EPSRC); U.S. Air Force Office of Scientific Research (AFOSR) FX Helpful conversations with Paul Eastham are gratefully acknowledged. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), and by the U.S. Air Force Office of Scientific Research (AFOSR) NR 18 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 12 AR 121303 DI 10.1103/PhysRevB.82.121303 PG 4 WC Physics, Condensed Matter SC Physics GA 647ZD UT WOS:000281658500002 ER PT J AU Ginis, V Tassin, P Soukoulis, CM Veretennicoff, I AF Ginis, V. Tassin, P. Soukoulis, C. M. Veretennicoff, I. TI Confining light in deep subwavelength electromagnetic cavities SO PHYSICAL REVIEW B LA English DT Article ID MAXWELLS EQUATIONS; METAMATERIALS; REFRACTION; DESIGN; CLOAK AB We demonstrate that it is possible to confine electromagnetic radiation in cavities that are significantly smaller than the wavelength of the radiation it encapsulates. To this aim, we use the techniques of transformation optics. First, we present a "perfect cavity" of arbitrarily small size in which such confined modes can exist. Furthermore, we show that these eigenmodes have a continuous spectrum and that bending losses are absent, in contrast to what is observed in traditional microcavities. Finally, we introduce an alternative cavity configuration that is less sensitive to material imperfections and still exhibits deep subwavelength modes combined with high quality factor, even if considerable material losses are included. Such a cavity may be interesting for the storage of information in optical data processing and for applications in quantum optics. C1 [Ginis, V.; Tassin, P.; Veretennicoff, I.] Vrije Univ Brussel, Dept Appl Phys & Photon, B-1050 Brussels, Belgium. [Tassin, P.; Soukoulis, C. M.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Tassin, P.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Ginis, V (reprint author), Vrije Univ Brussel, Dept Appl Phys & Photon, Pl Laan 2, B-1050 Brussels, Belgium. RI Tassin, Philippe/B-7152-2008; Ginis, Vincent/J-9700-2014; Soukoulis, Costas/A-5295-2008 FU BelSPO [IAP6/10]; FWO-Vlaanderen; Research Council (OZR) of the VUB; Department of Energy (Basic Energy Sciences) [DE-AC02-07CII11358]; Belgian American Educational Foundation FX We thank Ingo Fischer for inspiring conversations on using invisibility cloaks as electromagnetic cavities. Work at the VUB was supported by BelSPO (Grant No. IAP6/10 Photonics@be), the FWO-Vlaanderen, and the Research Council (OZR) of the VUB. Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CII11358. P.T. acknowledges the FWO-Vlaanderen and the Belgian American Educational Foundation for financial support. NR 25 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 11 AR 113102 DI 10.1103/PhysRevB.82.113102 PG 4 WC Physics, Condensed Matter SC Physics GA 647ZC UT WOS:000281658400001 ER PT J AU Pennycook, TJ Hadjisavvas, G Idrobo, JC Kelires, PC Pantelides, ST AF Pennycook, Timothy J. Hadjisavvas, George Idrobo, Juan C. Kelires, Pantelis C. Pantelides, Sokrates T. TI Optical gaps of free and embedded Si nanoclusters: Density functional theory calculations SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; POROUS SILICON; QUANTUM CONFINEMENT; OXIDIZED SI; BASIS-SET; NANOCRYSTALS; LUMINESCENCE; ABSORPTION AB The optical gaps of free and embedded Si nanoclusters are studied within the time-dependent local-density approximation. The effects of deformation, the bonding of individual O atoms on the surface, and coverage by SiO2 layers on the highest occupied molecular orbital-lowest unoccupied molecular orbital and optical gaps are systematically compared. It is found that all three can have a significant impact. Oxygen bonded to the surface and deformation cause the greatest reduction in the gaps, particularly in combination. C1 [Pennycook, Timothy J.; Idrobo, Juan C.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pennycook, Timothy J.; Idrobo, Juan C.; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hadjisavvas, George; Kelires, Pantelis C.] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus. RP Pennycook, TJ (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM t.pennycook@vanderbilt.edu RI Pennycook, Timothy/B-4946-2014; Idrobo, Juan/H-4896-2015 OI Pennycook, Timothy/0000-0002-0008-6516; Idrobo, Juan/0000-0001-7483-9034 FU National Science Foundation GOALI [DMR-0513048]; Alcoa, Inc.; McMinn Endowment at Vanderbilt University; Division of Materials Sciences and Engineering, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231.] FX This work was supported in part by the National Science Foundation GOALI under Grant No. DMR-0513048, by Alcoa, Inc., by the McMinn Endowment at Vanderbilt University, and by the Division of Materials Sciences and Engineering, U.S. Department of Energy. Computations were performed at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 53 TC 15 Z9 15 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 12 AR 125310 DI 10.1103/PhysRevB.82.125310 PG 6 WC Physics, Condensed Matter SC Physics GA 647ZD UT WOS:000281658500006 ER PT J AU Persson, K Hinuma, Y Meng, YS Van der Ven, A Ceder, G AF Persson, Kristin Hinuma, Yoyo Meng, Ying Shirley Van der Ven, Anton Ceder, Gerbrand TI Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; INTERCALATION COMPOUNDS; PHASE-DIAGRAM; LITHIUM DIFFUSION; LITHIATED GRAPHITE; ENERGY; CARBON; COEFFICIENT; BATTERIES; DENSITY AB We present an ab initio study of the thermodynamics and kinetics of Li(x)C(6), relevant for anode Li intercalation in rechargeable Li batteries. In graphite, the interlayer interactions are dominated by Van der Waals forces, which are not captured with standard density-functional theory (DFT). By calculating the voltage profile for Li intercalation into graphite and comparing it to experimental results, we find that only by correcting for vdW interactions between the graphene planes is it possible to reproduce the experimentally observed sequence of phases, as a function of Li content. At higher Li content the interlayer binding forces are increasingly due to Li-C interactions, which are well characterized by DFT. Using the calculated energies, corrected for the vdW interactions, we derive an ab initio lattice model, based on the cluster-expansion formalism, that accounts for interactions among Li ions in Li(x)C(6) having a stage I and stage II structure. We find that the resulting cluster expansions are dominated by Li-Li repulsive interactions. The phase diagram, obtained from Monte Carlo simulations, agrees well with experiments except at low Li concentrations as we exclude stage III and stage IV compounds. Furthermore, we calculate Li migration barriers for stage I and stage II compounds and identify limiting factors for Li mobility in the in-plane dilute as well as in the high Li concentration range. The Li diffusivity, obtained through kinetic Monte Carlo simulations, slowly decreases as a function of Li content, consistent with increasing Li-Li repulsions. However, overall we find very fast Li diffusion in bulk graphite, which may have important implications for Li battery anode optimizations. C1 [Persson, Kristin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hinuma, Yoyo; Meng, Ying Shirley] Univ Calif San Diego, La Jolla, CA 92093 USA. [Van der Ven, Anton] Univ Michigan, Ann Arbor, MI 48109 USA. [Ceder, Gerbrand] MIT, Cambridge, MA 02139 USA. RP Persson, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Meng, Shirley /I-1276-2013 FU Office of Vehicle Technologies of the U. S. Department of Energy [DE-AC02-05CH11231]; Ford Motor Co. [014502-010]; NSF [DMR 0748516] FX Work at the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U. S. Department of Energy, under Contract No. DE-AC02-05CH11231. Work at the Massachusetts Institute of Technology was supported by Ford Motor Co. under Grant No. 014502-010. Anton van der Ven acknowledges support from NSF under Grant No. DMR 0748516. NR 54 TC 91 Z9 93 U1 14 U2 162 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 12 AR 125416 DI 10.1103/PhysRevB.82.125416 PG 9 WC Physics, Condensed Matter SC Physics GA 647ZD UT WOS:000281658500012 ER PT J AU Zhang, LX Zhou, XF Wang, HT Xu, JJ Li, JB Wang, EG Wei, SH AF Zhang, Lixin Zhou, Xiang-Feng Wang, Hui-Tian Xu, Jing-Jun Li, Jingbo Wang, E. G. Wei, Su-Huai TI Origin of insulating behavior of the p-type LaAlO3/SrTiO3 interface: Polarization-induced asymmetric distribution of oxygen vacancies SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; ELECTRON GASES; HETEROSTRUCTURES; TRANSITION AB It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting. C1 [Zhang, Lixin; Zhou, Xiang-Feng; Wang, Hui-Tian; Xu, Jing-Jun] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Zhang, Lixin; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Jingbo] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China. [Wang, E. G.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. RP Zhang, LX (reprint author), Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. RI Zhou, Xiang-Feng/A-1714-2010; Wang, Hui-Tian/B-8406-2009 OI Zhou, Xiang-Feng/0000-0001-8651-9273; FU Nankai University in P. R. China; U.S. DOE [DE-AC36-08GO28308] FX The work is supported by the start-up grant to Lixin Zhang from Nankai University in P. R. China. The work at NREL is supported by the U.S. DOE under Contract No. DE-AC36-08GO28308. NR 23 TC 32 Z9 33 U1 0 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 9 PY 2010 VL 82 IS 12 AR 125412 DI 10.1103/PhysRevB.82.125412 PG 4 WC Physics, Condensed Matter SC Physics GA 647ZD UT WOS:000281658500008 ER PT J AU Aamodt, K Abel, N Abeysekara, U Quintana, AA Abramyan, A Adamova, D Aggarwal, MM Rinella, GA Agocs, AG Salazar, SA Ahammed, Z Ahmad, A Ahmad, N Ahn, SU Akimoto, R Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Andrei, C Andronic, A Anelli, G Angelov, V Anson, C Anticic, T Antinori, F Antinori, S Antipin, K Antonczyk, D Antonioli, P Anzo, A Aphecetche, L Appelshauser, H Arcelli, S Arceo, R Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bablok, S Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Baldit, A Ban, J Barbera, R Barnafoldi, GG Barnby, LS Barret, V Bartke, J Barile, F Basile, M Basmanov, V Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Becker, B Belikov, I Bellwied, R Belmont-Moreno, E Belogianni, A Benhabib, L Beole, S Berceanu, I Bercuci, A Berdermann, E Berdnikov, Y Betev, L Bhasin, A Bhati, AK Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bimbot, L Biolcati, E Blanc, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Bohm, J Boldizsar, L Bombara, M Bombonati, C Bondila, M Borel, H Borisov, A Bortolin, C Bose, S Bosisio, L Bossu, F Botje, M Bottger, S Bourdaud, G Boyer, B Braun, M Braun-Munzinger, P Bravina, L Bregant, M Breitner, T Bruckner, G Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Calvo, E Camacho, E Camerini, P Campbell, M Roman, VC Capitani, GP Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castellanos, JC Hernandez, JFC Catanescu, V Cattaruzza, E Cavicchioli, C Cerello, P Chambert, V Chang, B Chapeland, S Charpy, A Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chuman, F Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Cobanoglu, O Coffin, JP Coli, S Colla, A Balbastre, GC del Valle, ZC Conner, ES Constantin, P Contin, G Contreras, JG Morales, YC Cormier, TM Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Cuautle, E Cunqueiro, L Cussonneau, J Dainese, A Dalsgaard, HH Danu, A Das, I Dash, A Dash, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gaspari, M de Groot, J De Gruttola, D De Marco, N De Pasquale, S De Remigis, R De Rooij, R de Vaux, G Delagrange, H Delgado, Y Dellacasa, G Deloff, A Demanov, V Denes, E Deppman, A D'Erasmo, G Derkach, D Devaux, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dialinas, M Diaz, L Diaz, R Dietel, T Divia, R Djuvsland, O Dobretsov, V Dobrin, A Dobrowolski, T Donigus, B Dominguez, I Don, DMM Dordic, O Dubey, AK Dubuisson, J Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Enokizono, A Espagnon, B Estienne, M Esumi, S Evans, D Evrard, S Eyyubova, G Fabjan, CW Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fateev, O Fearick, R Fedunov, A Fehlker, D Fekete, V Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferreiro, EG Ferretti, A Ferretti, R Figueredo, MAS Filchagin, S Fini, R Fionda, FM Fiore, EM Floris, M Fodor, Z Foertsch, S Foka, P Fokin, S Formenti, F Fragiacomo, E Fragkiadakis, M Frankenfeld, U Frolov, A Fuchs, U Furano, F Furget, C Girard, MF Gaardhoje, JJ Gadrat, S Gagliardi, M Gago, A Gallio, M Ganoti, P Ganti, MS Garabatos, C Trapaga, CG Gebelein, J Gemme, R Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Giraudo, G Giubellino, P Gladysz-Dziadus, E Glasow, R Glassel, P Glenn, A Jimenez, RG Santos, HG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Gorbunov, Y Gotovac, S Gottschlag, H Grabski, V Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerra, C Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Gustafsson, HA Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamblen, J Han, BH Harris, JW Hartig, M Harutyunyan, A Hasch, D Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Heinz, M Helstrup, H Herghelegiu, A Hernandez, C Corral, GH Herrmann, N Hetland, KF Hicks, B Hiei, A Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Hu, S Huang, M Huber, S Humanic, TJ Hutter, D Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Innocenti, PG Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Iwasaki, T Jacholkowski, A Jacobs, P Jancurova, L Jangal, S Janik, R Jena, C Jena, S Jirden, L Jones, GT Jones, PG Jovanovic, P Jung, H Jung, W Jusko, A Kaidalov, AB Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kamal, A Kamermans, R Kanaki, K Kang, E Kang, JH Kapitan, J Kaplin, V Kapusta, S Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, MM Khan, SA Khanzadeev, A Kharlov, Y Kikola, D Kileng, B Kim, DJ Kim, DS Kim, DW Kim, HN Kim, J Kim, JH Kim, JS Kim, M Kim, M Kim, SH Kim, S Kim, Y Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Klovning, A Kluge, A Knichel, ML Kniege, S Koch, K Kolevatov, R Kolojvari, A Kondratiev, V Kondratyeva, N Konevskih, A Kornas, E Kour, R Kowalski, M Kox, S Kozlov, K Kral, J Kralik, I Kramer, F Kraus, I Kravcakova, A Krawutschke, T Krivda, M Krumbhorn, D Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kumar, L Kumar, N Kupczak, R Kurashvili, P Kurepin, A Kurepin, AN Kuryakin, A Kushpil, S Kushpil, V Kutouski, M Kvaerno, H Kweon, MJ Kwon, Y La Rocca, P Lackner, F de Guevara, PL Lafage, V Lal, C Lara, C Larsen, DT Laurenti, G Lazzeroni, C Le Bornec, Y Le Bris, N Lee, H Lee, KS Lee, SC Lefevre, F Lenhardt, M Leistam, L Lehnert, J Lenti, V Leon, H Monzon, IL Vargas, HL Levai, P Li, X Li, Y Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loginov, V Lohn, S Lopez, X Noriega, ML Lopez-Ramirez, R Torres, EL Lovhoiden, G Soares, ALF Lu, S Lunardon, M Luparello, G Luquin, L Lutz, JR Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Makhlyueva, I Mal'Kevich, D Malaev, M Malagalage, KJ Cervantes, IM Malek, M Malinina, L Malkiewicz, T Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Mares, J Margagliotti, GV Margotti, A Marin, A Martashvili, I Martinengo, P Hernandez, MIM Davalos, AM Garcia, GM Maruyama, Y Chiesa, AM Masciocchi, S Masera, M Masetti, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mazza, G Mazzoni, MA Meddi, F Menchaca-Rocha, A Lorenzo, PM Meoni, M Perez, JM Mereu, P Miake, Y Michalon, A Miftakhov, N Milano, L Milosevic, J Minafra, F Mischke, A Miskowiec, D Mitu, C Mizoguchi, K Mlynarz, J Mohanty, B Molnar, L Mondal, MM Zetina, LM Monteno, M Montes, E Morando, M Moretto, S Morsch, A Moukhanova, T Muccifora, V Mudnic, E Muhuri, S Muller, H Munhoz, MG Munoz, J Musa, L Musso, A Nandi, BK Nania, R Nappi, E Navach, F Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nendaz, F Newby, J Nianine, A Nicassio, M Nielsen, BS Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyatha, A Nygaard, C Nyiri, A Nystrand, J Ochirov, A Odyniec, G Oeschler, H Oinonen, M Okada, K Okada, Y Oldenburg, M Oleniacz, J Oppedisano, C Orsini, F Velasquez, AO Ortona, G Oskarsson, A Osmic, F Osterman, L Ostrowski, P Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, SK Palaha, A Palmeri, A Panse, R Papikyan, V Pappalardo, GS Park, WJ Pastircak, B Pastore, C Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Pepato, A Pereira, H Peressounko, D Perez, C Perini, D Perrino, D Peryt, W Peschek, J Pesci, A Peskov, V Pestov, Y Peters, AJ Petracek, V Petridis, A Petris, M Petrov, P Petrovici, M Petta, C Peyre, J Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Platt, R Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Lerma, PLMP Poggio, F Poghosyan, MG Polak, K Polichtchouk, B Polozov, P Polyakov, V Pommeresch, B Pop, A Posa, F Pospisil, V Potukuchi, B Pouthas, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Pulvirenti, A Punin, A Punin, V Putis, M Putschke, J Quercigh, E Rachevski, A Rademakers, A Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Rammler, M Raniwala, R Raniwala, S Rasanen, SS Rashevskaya, I Rath, S Read, KF Real, JS Redlich, K Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, RA Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Roed, K Rohrich, D Lopez, SR Romita, R Ronchetti, F Rosinsky, P Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Rousseau, S Roy, C Roy, P Rubio-Montero, AJ Rui, R Rusanov, I Russo, G Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Saini, J Saiz, P Sakata, D Salgado, CA da Silva, RSD Salur, S Samanta, T Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Saturnini, P Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schindler, H Schmidt, C Schmidt, HR Schossmaier, K Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Segato, G Semenov, D Senyukov, S Seo, J Serci, S Serkin, L Serradilla, E Sevcenco, A Sgura, I Shabratova, G Shahoyan, R Sharkov, G Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddi, E Siemiarczuk, T Silenzi, A Silvermyr, D Simili, E Simonetti, G Singaraju, R Singh, R Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, R Snow, H Sogaard, C Soloviev, A Soltveit, HK Soltz, R Sommer, W Son, CW Son, H Song, M Soos, C Soramel, F Soyk, D Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Staley, F Stan, E Stefanek, G Stefanini, G Steinbeck, T Stenlund, E Steyn, G Stocco, D Stock, R Stolpovsky, P Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sumbera, M Susa, T Swoboda, D Symons, J de Toledo, AS Szarka, I Szostak, A Szuba, M Tadel, M Tagridis, C Takahara, A Takahashi, J Tanabe, R Takaki, JDT Taureg, H Tauro, A Tavlet, M Munoz, GT Telesca, A Terrevoli, C Thader, J Tieulent, R Tlusty, D Toia, A Tolyhy, T de Matos, CT Torii, H Torralba, G Toscano, L Tosello, F Tournaire, A Traczyk, T Tribedy, P Troger, G Truesdale, D Trzaska, WH Tsiledakis, G Tsilis, E Tsuji, T Tumkin, A Turrisi, R Turvey, A Tveter, TS Tydesjo, H Tywoniuk, K Ulery, J Ullaland, K Uras, A Urban, J Urciuoli, GM Usai, GL Vacchi, A Vala, M Palomo, LV Vallero, S van der Kolk, N Vande Vyvre, P van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasiliev, A Vassiliev, I Vasileiou, M Vechernin, V Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vetlitskiy, I Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopianov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, V Wallet, L Wan, R Wang, D Wang, Y Wang, Y Watanabe, K Wen, Q Wessels, J Westerhoff, U Wiechula, J Wikne, J Wilk, A Wilk, G Williams, MCS Willis, N Windelband, B Xu, C Yang, C Yang, H Yasnopolskiy, S Yermia, F Yi, J Yin, Z Yokoyama, H Yoo, IK Yuan, X Yurevich, V Yushmanov, I Zabrodin, E Zagreev, B Zalite, A Zampolli, C Zanevsky, Y Zaporozhets, S Zarochentsev, A Zavada, P Zbroszczyk, H Zelnicek, P Zenin, A Zepeda, A Zgura, I Zhalov, M Zhang, X Zhou, D Zhou, S Zhu, J Zichichi, A Zinchenko, A Zinovjev, G Zoccarato, Y Zychacek, V Zynovyev, M AF Aamodt, K. Abel, N. Abeysekara, U. Quintana, A. Abrahantes Abramyan, A. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Salazar, S. Aguilar Ahammed, Z. Ahmad, A. Ahmad, N. Ahn, S. U. Akimoto, R. Akindinov, A. Aleksandrov, D. Alessandro, B. Molina, R. Alfaro Alici, A. Avina, E. Almaraz Alme, J. Alt, T. Altini, V. Altinpinar, S. Andrei, C. Andronic, A. Anelli, G. Angelov, V. Anson, C. Anticic, T. Antinori, F. Antinori, S. Antipin, K. Antonczyk, D. Antonioli, P. Anzo, A. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arceo, R. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bablok, S. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Baldit, A. Ban, J. Barbera, R. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Barile, F. Basile, M. Basmanov, V. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Becker, B. Belikov, I. Bellwied, R. Belmont-Moreno, E. Belogianni, A. Benhabib, L. Beole, S. Berceanu, I. Bercuci, A. Berdermann, E. Berdnikov, Y. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bimbot, L. Biolcati, E. Blanc, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Bohm, J. Boldizsar, L. Bombara, M. Bombonati, C. Bondila, M. Borel, H. Borisov, A. Bortolin, C. Bose, S. Bosisio, L. Bossu, F. Botje, M. Boettger, S. Bourdaud, G. Boyer, B. Braun, M. Braun-Munzinger, P. Bravina, L. Bregant, M. Breitner, T. Bruckner, G. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo, E. Camacho, E. Camerini, P. Campbell, M. Roman, V. Canoa Capitani, G. P. Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Hernandez, J. F. Castillo Catanescu, V. Cattaruzza, E. Cavicchioli, C. Cerello, P. Chambert, V. Chang, B. Chapeland, S. Charpy, A. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chuman, F. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Cobanoglu, O. Coffin, J. -P. Coli, S. Colla, A. Balbastre, G. Conesa del Valle, Z. Conesa Conner, E. S. Constantin, P. Contin, G. Contreras, J. G. Morales, Y. Corrales Cormier, T. M. Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cuautle, E. Cunqueiro, L. Cussonneau, J. Dainese, A. Dalsgaard, H. H. Danu, A. Das, I. Dash, A. Dash, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gaspari, M. de Groot, J. De Gruttola, D. De Marco, N. De Pasquale, S. De Remigis, R. De Rooij, R. de Vaux, G. Delagrange, H. Delgado, Y. Dellacasa, G. Deloff, A. Demanov, V. Denes, E. Deppman, A. D'Erasmo, G. Derkach, D. Devaux, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dialinas, M. Diaz, L. Diaz, R. Dietel, T. Divia, R. Djuvsland, O. Dobretsov, V. Dobrin, A. Dobrowolski, T. Doenigus, B. Dominguez, I. Don, D. M. M. Dordic, O. Dubey, A. K. Dubuisson, J. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Enokizono, A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evrard, S. Eyyubova, G. Fabjan, C. W. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fateev, O. Fearick, R. Fedunov, A. Fehlker, D. Fekete, V. Felea, D. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Ferretti, R. Figueredo, M. A. S. Filchagin, S. Fini, R. Fionda, F. M. Fiore, E. M. Floris, M. Fodor, Z. Foertsch, S. Foka, P. Fokin, S. Formenti, F. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Frolov, A. Fuchs, U. Furano, F. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gadrat, S. Gagliardi, M. Gago, A. Gallio, M. Ganoti, P. Ganti, M. S. Garabatos, C. Garcia Trapaga, C. Gebelein, J. Gemme, R. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Giraudo, G. Giubellino, P. Gladysz-Dziadus, E. Glasow, R. Glaessel, P. Glenn, A. Gomez Jimenez, R. Gonzalez Santos, H. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Gorbunov, Y. Gotovac, S. Gottschlag, H. Grabski, V. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerra, C. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Gustafsson, H. -A. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamblen, J. Han, B. H. Harris, J. W. Hartig, M. Harutyunyan, A. Hasch, D. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Heinz, M. Helstrup, H. Herghelegiu, A. Hernandez, C. Corral, G. Herrera Herrmann, N. Hetland, K. F. Hicks, B. Hiei, A. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Hu, S. Huang, M. Huber, S. Humanic, T. J. Hutter, D. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Iwasaki, T. Jacholkowski, A. Jacobs, P. Jancurova, L. Jangal, S. Janik, R. Jena, C. Jena, S. Jirden, L. Jones, G. T. Jones, P. G. Jovanovic, P. Jung, H. Jung, W. Jusko, A. Kaidalov, A. B. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kamal, A. Kamermans, R. Kanaki, K. Kang, E. Kang, J. H. Kapitan, J. Kaplin, V. Kapusta, S. Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kikola, D. Kileng, B. Kim, D. J. Kim, D. S. Kim, D. W. Kim, H. N. Kim, J. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kim, S. H. Kim, S. Kim, Y. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Klovning, A. Kluge, A. Knichel, M. L. Kniege, S. Koch, K. Kolevatov, R. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskih, A. Kornas, E. Kour, R. Kowalski, M. Kox, S. Kozlov, K. Kral, J. Kralik, I. Kramer, F. Kraus, I. Kravcakova, A. Krawutschke, T. Krivda, M. Krumbhorn, D. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kumar, L. Kumar, N. Kupczak, R. Kurashvili, P. Kurepin, A. Kurepin, A. N. Kuryakin, A. Kushpil, S. Kushpil, V. Kutouski, M. Kvaerno, H. Kweon, M. J. Kwon, Y. La Rocca, P. Lackner, F. Ladron de Guevara, P. Lafage, V. Lal, C. Lara, C. Larsen, D. T. Laurenti, G. Lazzeroni, C. Le Bornec, Y. Le Bris, N. Lee, H. Lee, K. S. Lee, S. C. Lefevre, F. Lenhardt, M. Leistam, L. Lehnert, J. Lenti, V. Leon, H. Leon Monzon, I. Leon Vargas, H. Levai, P. Li, X. Li, Y. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loginov, V. Lohn, S. Lopez, X. Lopez Noriega, M. Lopez-Ramirez, R. Lopez Torres, E. Lovhoiden, G. Soares, A. Lozea Feijo Lu, S. Lunardon, M. Luparello, G. Luquin, L. Lutz, J. -R. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Makhlyueva, I. Mal'Kevich, D. Malaev, M. Malagalage, K. J. Maldonado Cervantes, I. Malek, M. Malinina, L. Malkiewicz, T. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Martashvili, I. Martinengo, P. Martinez Hernandez, M. I. Martinez Davalos, A. Martinez Garcia, G. Maruyama, Y. Chiesa, A. Marzari Masciocchi, S. Masera, M. Masetti, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mazza, G. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Lorenzo, P. Mendez Meoni, M. Mercado Perez, J. Mereu, P. Miake, Y. Michalon, A. Miftakhov, N. Milano, L. Milosevic, J. Minafra, F. Mischke, A. Miskowiec, D. Mitu, C. Mizoguchi, K. Mlynarz, J. Mohanty, B. Molnar, L. Mondal, M. M. Zetina, L. Montano Monteno, M. Montes, E. Morando, M. Moretto, S. Morsch, A. Moukhanova, T. Muccifora, V. Mudnic, E. Muhuri, S. Mueller, H. Munhoz, M. G. Munoz, J. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Navach, F. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nendaz, F. Newby, J. Nianine, A. Nicassio, M. Nielsen, B. S. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyatha, A. Nygaard, C. Nyiri, A. Nystrand, J. Ochirov, A. Odyniec, G. Oeschler, H. Oinonen, M. Okada, K. Okada, Y. Oldenburg, M. Oleniacz, J. Oppedisano, C. Orsini, F. Ortiz Velasquez, A. Ortona, G. Oskarsson, A. Osmic, F. Osterman, L. Ostrowski, P. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Panse, R. Papikyan, V. Pappalardo, G. S. Park, W. J. Pastircak, B. Pastore, C. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Pepato, A. Pereira, H. Peressounko, D. Perez, C. Perini, D. Perrino, D. Peryt, W. Peschek, J. Pesci, A. Peskov, V. Pestov, Y. Peters, A. J. Petracek, V. Petridis, A. Petris, M. Petrov, P. Petrovici, M. Petta, C. Peyre, J. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Platt, R. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta Lerma, P. L. M. Poggio, F. Poghosyan, M. G. Polak, K. Polichtchouk, B. Polozov, P. Polyakov, V. Pommeresch, B. Pop, A. Posa, F. Pospisil, V. Potukuchi, B. Pouthas, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Pulvirenti, A. Punin, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Rammler, M. Raniwala, R. Raniwala, S. Rasanen, S. S. Rashevskaya, I. Rath, S. Read, K. F. Real, J. S. Redlich, K. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Cahuantzi, M. Rodriguez Roed, K. Roehrich, D. Roman Lopez, S. Romita, R. Ronchetti, F. Rosinsky, P. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Rousseau, S. Roy, C. Roy, P. Rubio-Montero, A. J. Rui, R. Rusanov, I. Russo, G. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Saini, J. Saiz, P. Sakata, D. Salgado, C. A. da Silva, R. Salgueiro Domingues Salur, S. Samanta, T. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Saturnini, P. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schindler, H. Schmidt, C. Schmidt, H. R. Schossmaier, K. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Segato, G. Semenov, D. Senyukov, S. Seo, J. Serci, S. Serkin, L. Serradilla, E. Sevcenco, A. Sgura, I. Shabratova, G. Shahoyan, R. Sharkov, G. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddi, E. Siemiarczuk, T. Silenzi, A. Silvermyr, D. Simili, E. Simonetti, G. Singaraju, R. Singh, R. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Snow, H. Sogaard, C. Soloviev, A. Soltveit, H. K. Soltz, R. Sommer, W. Son, C. W. Son, H. Song, M. Soos, C. Soramel, F. Soyk, D. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Staley, F. Stan, E. Stefanek, G. Stefanini, G. Steinbeck, T. Stenlund, E. Steyn, G. Stocco, D. Stock, R. Stolpovsky, P. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sumbera, M. Susa, T. Swoboda, D. Symons, J. de Toledo, A. Szanto Szarka, I. Szostak, A. Szuba, M. Tadel, M. Tagridis, C. Takahara, A. Takahashi, J. Tanabe, R. Takaki, J. D. Tapia Taureg, H. Tauro, A. Tavlet, M. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Tieulent, R. Tlusty, D. Toia, A. Tolyhy, T. de Matos, C. Torcato Torii, H. Torralba, G. Toscano, L. Tosello, F. Tournaire, A. Traczyk, T. Tribedy, P. Troeger, G. Truesdale, D. Trzaska, W. H. Tsiledakis, G. Tsilis, E. Tsuji, T. Tumkin, A. Turrisi, R. Turvey, A. Tveter, T. S. Tydesjoe, H. Tywoniuk, K. Ulery, J. Ullaland, K. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vacchi, A. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. Vande Vyvre, P. van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasiliev, A. Vassiliev, I. Vasileiou, M. Vechernin, V. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vetlitskiy, I. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopianov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, V. Wallet, L. Wan, R. Wang, D. Wang, Y. Wang, Y. Watanabe, K. Wen, Q. Wessels, J. Westerhoff, U. Wiechula, J. Wikne, J. Wilk, A. Wilk, G. Williams, M. C. S. Willis, N. Windelband, B. Xu, C. Yang, C. Yang, H. Yasnopolskiy, S. Yermia, F. Yi, J. Yin, Z. Yokoyama, H. Yoo, I-K. Yuan, X. Yurevich, V. Yushmanov, I. Zabrodin, E. Zagreev, B. Zalite, A. Zampolli, C. Zanevsky, Yu. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zbroszczyk, H. Zelnicek, P. Zenin, A. Zepeda, A. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zhou, S. Zhu, J. Zichichi, A. Zinchenko, A. Zinovjev, G. Zoccarato, Y. Zychacek, V. Zynovyev, M. CA Alice Collaboration TI Two-pion Bose-Einstein correlations in pp collisions at root s=900 GeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; INTERFEROMETRY; FEMTOSCOPY; MOMENTUM; HADRON; PION AB We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data. C1 [Arsene, I. C.; Bravina, L.; Bregant, M.; Dordic, O.; Eyyubova, G.; Hille, P. T.; Kolevatov, R.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Nyiri, A.; Skaali, T. B.; Tveter, T. S.; Tywoniuk, K.; Wikne, J.; Zabrodin, E.] Univ Oslo, Dept Phys, Oslo, Norway. [Abel, N.; Alt, T.; Angelov, V.; Boettger, S.; Breitner, T.; de Cuveland, J.; Gorbunov, S.; Kalcher, S.; Kebschull, U.; Kisel, I.; Lara, C.; Lindenstruth, V.; Painke, F.; Panse, R.; Peschek, J.; Rettig, F.; Steinbeck, T.; Thaeder, J.; Torralba, G.; Troeger, G.; Vassiliev, I.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Abeysekara, U.; Cherney, M.; Gorbunov, Y.; Malagalage, K. J.; Nilsen, B. S.; Turvey, A.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Quintana, A. Abrahantes; Lopez Torres, E.; Shtejer, K.] CEADEN, Havana, Cuba. [Abramyan, A.; Grigoryan, A.; Gulkanyan, H.; Harutyunyan, A.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adamova, D.; Bielcikova, J.; Kapitan, J.; Kushpil, S.; Kushpil, V.; Sumbera, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Kumar, N.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Rinella, G. Aglieri; Anelli, G.; Antinori, F.; Augustinus, A.; Betev, L.; Boccioli, M.; Bruckner, G.; Brun, R.; Buncic, P.; Campbell, M.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; Colla, A.; Costa, F.; de Groot, J.; Di Mauro, A.; Divia, R.; Dubuisson, J.; Evrard, S.; Fabjan, C. W.; Formenti, F.; Fuchs, U.; Furano, F.; Gheata, A.; Gheata, M.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hristov, P.; Innocenti, P. G.; Jacholkowski, A.; Jirden, L.; Kapusta, S.; Kirsch, S.; Klein-Boesing, C.; Kluge, A.; Lackner, F.; Leistam, L.; Lippmann, C.; Lohn, S.; Makhlyueva, I.; Martinengo, P.; Lorenzo, P. Mendez; Meoni, M.; Morsch, A.; Mueller, H.; Musa, L.; Oldenburg, M.; Osmic, F.; Perini, D.; Peters, A. J.; Piuz, F.; Quercigh, E.; Rademakers, A.; Revol, J. -P.; Riedler, P.; Riegler, W.; Roehrich, D.; Rosinsky, P.; Rossegger, S.; Roukoutakis, F.; Safarik, K.; Saiz, P.; da Silva, R. Salgueiro Domingues; Schindler, H.; Schossmaier, K.; Schreiner, S.; Schukraft, J.; Shahoyan, R.; Sicking, E.; Soos, C.; Stefanini, G.; Swoboda, D.; Tadel, M.; Taureg, H.; Tauro, A.; Tavlet, M.; Telesca, A.; Toia, A.; de Matos, C. Torcato; Tydesjoe, H.; Vande Vyvre, P.; von Haller, B.; Wallet, L.; Zampolli, C.] European Org Nucl Res CERN, Geneva, Switzerland. [Agocs, A. G.; Barnafoeldi, G. G.; Boldizsar, L.; Denes, E.; Fodor, Z.; Hamar, G.; Levai, P.; Molnar, L.; Pochybova, S.; Tolyhy, T.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Salazar, S. Aguilar; Molina, R. Alfaro; Avina, E. Almaraz; Anzo, A.; Arceo, R.; Belmont-Moreno, E.; Gonzalez-Trueba, L. H.; Leon, H.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.; Palomo, L. Valencia] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Ahammed, Z.; Chattopadhyay, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Khan, S. A.; Mohanty, B.; Mondal, M. M.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Prasad, S. K.; Raniwala, S.; Saini, J.; Samanta, T.; Singaraju, R.; Singhal, V.; Sinha, B. C.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, A.; Ahmad, N.; Azmi, M. D.; Irfan, M.; Kamal, A.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kang, E.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Seo, J.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Akimoto, R.; Gunji, T.; Hamagaki, H.; Hori, Y.; Okada, K.; Ozawa, K.; Sano, S.; Takahara, A.; Tsuji, T.] Univ Tokyo, Tokyo, Japan. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Polozov, P.; Sharkov, G.; Vetlitskiy, I.; Voloshin, K.; Zagreev, B.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Dobretsov, V.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kozlov, K.; Kucheriaev, Y.; Manko, V.; Moukhanova, T.; Nianine, A.; Nikolaev, S.; Nikulin, S.; Peressounko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Cerello, P.; Coli, S.; De Marco, N.; De Remigis, R.; Giraudo, G.; Giubellino, P.; Mazza, G.; Mereu, P.; Monteno, M.; Musso, A.; Oppedisano, C.; Piccotti, A.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Toscano, L.; Tosello, F.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Alici, A.; Antinori, S.; Arcelli, S.; Basile, M.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Masetti, M.; Preghenella, R.; Scioli, G.; Silenzi, A.; Zichichi, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alici, A.; Antinori, S.; Aphecetche, L.; Arcelli, S.; Basile, M.; Batigne, G.; Benhabib, L.; Bourdaud, G.; Cifarelli, L.; del Valle, Z. Conesa; Cussonneau, J.; Delagrange, H.; Dialinas, M.; Estienne, M.; Falchieri, D.; Germain, M.; Guerzoni, B.; Ichou, R.; Le Bris, N.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Martinez Garcia, G.; Masetti, M.; Pillot, P.; Preghenella, R.; Roy, C.; Schutz, Y.; Scioli, G.; Silenzi, A.; Tournaire, A.; Yermia, F.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Alme, J.; Bablok, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Liu, L.; Nystrand, J.; Ovrebekk, G.; Pommeresch, B.; Richter, M.; Skjerdal, K.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Altini, V.; Barile, F.; Bruno, G. E.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Minafra, F.; Navach, F.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Minafra, F.; Navach, F.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Knichel, M. L.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Hernandez, J. F. Castillo; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Knichel, M. L.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Andrei, C.; Berceanu, I.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Anson, C.; Bock, N.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antipin, K.; Antonczyk, D.; Appelshaeuser, H.; Arend, A.; Blume, C.; Buesching, H.; Hartig, M.; Kliemant, M.; Kniege, S.; Kramer, F.; Lehnert, J.; Leon Vargas, H.; Pitz, N.; Renfordt, R.; Schuchmann, S.; Sommer, W.; Stock, R.; Ulery, J.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Aphecetche, L.; Batigne, G.; Benhabib, L.; Bourdaud, G.; del Valle, Z. Conesa; Cussonneau, J.; Delagrange, H.; Dialinas, M.; Estienne, M.; Germain, M.; Ichou, R.; Le Bris, N.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Martinez Garcia, G.; Pillot, P.; Roy, C.; Schutz, Y.; Tournaire, A.; Yermia, F.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Heinz, M.; Hicks, B.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Asryan, A.; Braun, M.; Derkach, D.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Semenov, D.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Awes, T. C.; Enokizono, A.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Bach, M.; Hutter, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Chiavassa, E.; Cobanoglu, O.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Garcia Trapaga, C.; Luparello, G.; Chiesa, A. Marzari; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poggio, F.; Poghosyan, M. G.; Siciliano, M.; Stocco, D.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Orsini, F.; Pereira, H.; Rakotozafindrabe, A.; Staley, F.] CEA, IRFU, Saclay, France. [Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Crochet, P.; Devaux, A.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.] Univ Blaise Pascal, CNRS, IN2P3, Clermont Univ,LPC, Clermont Ferrand, France. [Ban, J.; Kalinak, P.; Kralik, I.; Pastircak, B.; Sandor, L.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Barbera, R.; Blanco, F.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Univ Catania, Dipartimento Fis Astron, Catania, Italy. [Barbera, R.; Blanco, F.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Barnby, L. S.; Evans, D.; Jones, G. T.; Jones, P. G.; Jovanovic, P.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Platt, R.; Scott, P. A.; Snow, H.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Bartke, J.; Gladysz-Dziadus, E.; Kornas, E.; Kowalski, M.; Matyja, A.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Basmanov, V.; Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Nazarov, G.; Punin, A.; Punin, V.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Bathen, B.; Baumann, C.; Dietel, T.; Glasow, R.; Gottschlag, H.; Heide, M.; Kalisky, M.; Rammler, M.; Reygers, K.; Santo, R.; Wessels, J.; Westerhoff, U.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Batyunya, B.; Fateev, O.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Kutouski, M.; Malinina, L.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopianov, A.; Yurevich, V.; Zanevsky, Yu.; Zaporozhets, S.; Zinchenko, A.] JINR, Dubna, Russia. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Fenton-Olsen, B.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Becker, B.; Cicalo, C.; Masoni, A.; Siddi, E.; Szostak, A.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Belikov, I.; Coffin, J. -P.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Lutz, J. -R.; Maire, A.; Michalon, A.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Bellwied, R.; Cormier, T. M.; Mlynarz, J.; Pavlinov, A.; Pruneau, C. A.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Belogianni, A.; Fragkiadakis, M.; Ganoti, P.; Petridis, A.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Tsilis, E.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Miftakhov, N.; Nikulin, V.; Polyakov, V.; Samsonov, V.; Zalite, A.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bhasin, A.; Gupta, A.; Gupta, R.; Lal, C.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Bianchi, N.; Capitani, G. P.; Diaz, A. Casanova; Balbastre, G. Conesa; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Bielcik, J.; Kral, J.; Krus, M.; Pachr, M.; Petracek, V.; Pospisil, V.; Smakal, R.; Tlusty, D.; Wagner, V.; Zychacek, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Snellings, R.; van der Kolk, N.] Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bimbot, L.; Boyer, B.; Chambert, V.; Charpy, A.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lafage, V.; Le Bornec, Y.; Lopez Noriega, M.; Malek, M.; Peyre, J.; Pouthas, J.; Rousseau, S.; Suire, C.; Takaki, J. D. Tapia; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Ladron de Guevara, P.; Montes, E.; Rubio-Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Kharlov, Y.; Kim, J.; Polichtchouk, B.; Sadovsky, S.; Soloviev, A.; Stolpovsky, P.; Zenin, A.] Inst High Energy Phys, Protvino, Russia. [Bohm, J.; Chang, B.; Kang, J. H.; Kim, M.; Kim, Y.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Bombara, M.; Kravcakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Borisov, A.; Grinyov, B.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Bose, S.; Chattopadhyay, S.; Das, I.; Majumdar, A. K. Dutta; Pal, S.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Bosisio, L.; Bregant, M.; Camerini, P.; Cattaruzza, E.; Contin, G.; Margagliotti, G. V.; Rossi, A.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Bosisio, L.; Bregant, M.; Camerini, P.; Cattaruzza, E.; Contin, G.; Margagliotti, G. V.; Rossi, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Braun-Munzinger, P.; Kalweit, A.; Kraus, I.; Mager, M.; Oeschler, H.; Ricaud, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Busch, O.; Constantin, P.; De Gaspari, M.; Emschermann, D.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krumbhorn, D.; Kweon, M. J.; Mercado Perez, J.; Oyama, K.; Pachmayer, Y.; Radomski, S.; Rusanov, I.; Schicker, R.; Schweda, K.; Soltveit, H. K.; Stachel, J.; Tsiledakis, G.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.; Yang, H.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Buthelezi, Z.; Cleymans, J.; de Vaux, G.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba Labs, ZA-7925 Cape Town, South Africa. [Cai, X.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Xu, C.; Yang, C.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.; Zhu, J.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Calvo, E.; Delgado, Y.; Gago, A.; Guerra, C.; Perez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Camacho, E.; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Ramirez Reyes, A.; Zepeda, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Camacho, E.; Contreras, J. G.; Crescio, E.; Corral, G. Herrera; Zetina, L. Montano; Ramirez Reyes, A.; Zepeda, A.] CINVESTAV, Merida, Mexico. [Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Chinellato, D. D.; Cosentino, M. R.; Takahashi, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Choi, K.; Lee, H.; Son, C. W.; Yi, J.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Chojnacki, M.; Christakoglou, P.; De Rooij, R.; Grelli, A.; Ivan, C.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Simili, E.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Christiansen, P.; Dobrin, A.; Gros, P.; Gustafsson, H. -A.; Oskarsson, A.; Osterman, L.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Shimomura, M.; Tanabe, R.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Chuman, F.; Hiei, A.; Horaguchi, T.; Iwasaki, T.; Maruyama, Y.; Mizoguchi, K.; Okada, Y.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Conner, E. S.; Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Coll INFN, Alessandria, Italy. [Cortes Maldonado, I.; Fernandez Tellez, A.; Gonzalez Santos, H.; Lopez-Ramirez, R.; Martinez Hernandez, M. I.; Munoz, J.; Cahuantzi, M. Rodriguez; Roman Lopez, S.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cuautle, E.; Diaz, L.; Dominguez, I.; Maldonado Cervantes, I.; Mayani, D.; Ortiz Velasquez, A.; Paic, G.; Peskov, V.; Serkin, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, E.; Zgura, I.] ISS, Bucharest, Romania. [Dash, A.; Dash, S.; Jena, C.; Mahapatra, D. P.; Rath, S.] Inst Phys, Bhubaneswar 751007, Orissa, India. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Soares, A. Lozea Feijo; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Sezione Ist Nazl Fis Nucl, Salerno, Italy. [de Cataldo, G.; Elia, D.; Fini, R.; Lenti, V.; Manzari, V.; Mastromarco, M.; Nappi, E.; Nicassio, M.; Pastore, C.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [De Falco, A.; Floris, M.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [De Falco, A.; Floris, M.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Di Liberto, S.; Mazzoni, M. A.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Don, D. M. M.; Madagodahettige-Don, D. M.; Pinsky, L.] Univ Houston, Houston, TX USA. [Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Real, J. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble,LPSC, Grenoble, France. [Fekete, V.; Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Frolov, A.; Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Glenn, A.; Newby, J.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gomez Jimenez, R.; Leon Monzon, I.; Podesta Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskih, A.; Kurepin, A.; Kurepin, A. N.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Hamblen, J.; Martashvili, I.; Read, K. F.] Univ Tennessee, Knoxville, TN USA. [Han, B. H.; Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Helstrup, H.; Hetland, K. F.; Kileng, B.; Roed, K.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Hu, S.; Li, X.; Li, Y.; Lu, S.; Wen, Q.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Jacobs, P.; Odyniec, G.; Ploskon, M.; Salur, S.; Symons, J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Jena, S.; Nandi, B. K.; Nyatha, A.; Pujahari, P.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Kikola, D.; Kupczak, R.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szuba, M.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. RP Aamodt, K (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. RI feofilov, grigory/A-2549-2013; Traczyk, Tomasz/C-1310-2013; Ramello, Luciano/F-9357-2013; Voloshin, Sergei/I-4122-2013; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Castillo Castellanos, Javier/G-8915-2013; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Cortese, Pietro/G-6754-2012; SCAPPARONE, EUGENIO/H-1805-2012; Bagnasco, Stefano/J-4324-2012; Masera, Massimo/J-4313-2012; Colla, Alberto/J-4694-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Yoo, In-Kwon/J-6222-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012; Christensen, Christian/D-6461-2012; Peitzmann, Thomas/K-2206-2012; Felea, Daniel/C-1885-2012; Deppman, Airton/F-6332-2010; Sevcenco, Adrian/C-1832-2012; Pshenichnov, Igor/A-4063-2008; Chinellato, David/D-3092-2012; Barbera, Roberto/G-5805-2012; Barnby, Lee/G-2135-2010; Christensen, Christian Holm/A-4901-2010; Haiduc, Maria /C-5003-2011; Mitu, Ciprian/E-6733-2011; Mischke, Andre/D-3614-2011; Petta, Catia/A-7023-2012; Takahashi, Jun/B-2946-2012; Wagner, Vladimir/G-5650-2014; Bielcikova, Jana/G-9342-2014; Adamova, Dagmar/G-9789-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Vacchi, Andrea/C-1291-2010; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; HAMAGAKI, HIDEKI/G-4899-2014; BRAUN, MIKHAIL/I-6826-2013; Vechernin, Vladimir/J-5832-2013; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kutouski, Mikalai/I-1555-2016; Kurepin, Alexey/H-4852-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Deppman, Airton/J-5787-2014; Zagreev, Boris/R-6460-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Graciani Diaz, Ricardo/I-5152-2016; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Vinogradov, Leonid/K-3047-2013; OI feofilov, grigory/0000-0003-3700-8623; Traczyk, Tomasz/0000-0002-6602-4094; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Castillo Castellanos, Javier/0000-0002-5187-2779; Guber, Fedor/0000-0001-8790-3218; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Christensen, Christian/0000-0002-1850-0121; Peitzmann, Thomas/0000-0002-7116-899X; Felea, Daniel/0000-0002-3734-9439; Deppman, Airton/0000-0001-9179-6363; Sevcenco, Adrian/0000-0002-4151-1056; Pshenichnov, Igor/0000-0003-1752-4524; Chinellato, David/0000-0002-9982-9577; Barbera, Roberto/0000-0001-5971-6415; Barnby, Lee/0000-0001-7357-9904; Christensen, Christian Holm/0000-0002-1850-0121; Takahashi, Jun/0000-0002-4091-1779; Cosentino, Mauro/0000-0002-7880-8611; Vacchi, Andrea/0000-0003-3855-5856; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; BRAUN, MIKHAIL/0000-0001-7398-7801; Vechernin, Vladimir/0000-0003-1458-8055; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kutouski, Mikalai/0000-0002-2920-8775; Kurepin, Alexey/0000-0002-1851-4136; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Deppman, Airton/0000-0001-9179-6363; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Graciani Diaz, Ricardo/0000-0001-7166-5198; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Vinogradov, Leonid/0000-0001-9247-6230; Mohanty, Bedangadas/0000-0001-9610-2914; Riggi, Francesco/0000-0002-0030-8377; Gago Medina, Alberto Martin/0000-0002-0019-9692; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Tosello, Flavio/0000-0003-4602-1985; Beole', Stefania/0000-0003-4673-8038 FU Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; European Research Council under the European Community; Helsinki Institute of Physics; German BMBF; Helmholtz Association; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; Korea Foundation for International Cooperation of Science and Technology (KICOS); Danish National Research Foundation; Academy of Finland; Department of Atomic Energy of the Government of India FX The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire,'' "Region Alsace,'' "Region Auvergne,'' and CEA, France; German BMBF and the Helmholtz Association; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna;Korea Foundation for International Cooperation of Science and Technology (KICOS); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin American European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nat, ionala. pentru Cercetare S, tiint, ifica. -ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educaci ' on), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 32 TC 48 Z9 50 U1 3 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 9 PY 2010 VL 82 IS 5 AR 052001 DI 10.1103/PhysRevD.82.052001 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 647ZG UT WOS:000281658800001 ER PT J AU Graham, PW Harnik, R Rajendran, S Saraswat, P AF Graham, Peter W. Harnik, Roni Rajendran, Surjeet Saraswat, Prashant TI Exothermic dark matter SO PHYSICAL REVIEW D LA English DT Article ID DAMA/LIBRA; LIMITS; SUN AB We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass similar to few GeV and splittings similar to 5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100. C1 [Graham, Peter W.; Saraswat, Prashant] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Harnik, Roni] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Rajendran, Surjeet] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Rajendran, Surjeet] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Graham, PW (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. OI Graham, Peter/0000-0002-1600-1601 FU DOE Office of Nuclear Physics [DE-FG02-94ER40818]; NSF [PHY-0600465, 0756174]; Stanford Institute for Theoretical Physics; United States Department of Energy [DE-AC02-07CH11359] FX We would like to thank Yang Bai, Blas Cabrera, Savas Dimopoulos, Sergei Dubovsky, David E. Kaplan, Joachim Kopp, Chris McCabe, Matthew McCullough, John March-Russell, Jesse Thaler, Natalia Toro, and Jay Wacker for useful discussions. We are particularly grateful to Peter Sorensen for discussions on the cuts employed by XENON10 at low energies. We also thank Jeter Hall for comments on channeling in Ge crystals. S. R. is supported by the DOE Office of Nuclear Physics under Grant No. DE-FG02-94ER40818. S. R. is also supported by NSF Grant No. PHY-0600465. P. S. is supported by the Stanford Institute for Theoretical Physics and NSF Grant No. 0756174. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 60 TC 60 Z9 60 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 9 PY 2010 VL 82 IS 6 AR 063512 DI 10.1103/PhysRevD.82.063512 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 647ZI UT WOS:000281659000002 ER PT J AU Kane, G Kumar, P Shao, J AF Kane, Gordon Kumar, Piyush Shao, Jing TI CP-violating phases in M theory and implications for electric dipole moments SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; QUANTUM CHROMODYNAMICS; SPLIT SUPERSYMMETRY; N=1 SUPERGRAVITY; NEUTRON; MSSM; BARYOGENESIS; CONSTRAINTS; MANIFOLDS; BREAKING AB We demonstrate that in effective theories arising from a class of N = 1 fluxless compactifications of M theory on a G(2) manifold with low-energy supersymmetry, CP-violating phases do not appear in the soft-breaking Lagrangian except via the Yukawas appearing in the trilinear parameters. Such a mechanism may be present in other string compactifications as well; we describe properties sufficient for this to occur. CP violation is generated via the Yukawas since the soft trilinear matrices are generically not proportional to the Yukawa matrices. Within the framework considered, the estimated theoretical upper bounds for electric dipole moments of the electron, the neutron, and mercury are all within the current experimental limits and could be probed in the near future. C1 [Kane, Gordon; Shao, Jing] Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Kumar, Piyush] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kumar, Piyush] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Kane, G (reprint author), Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. FU Department of Energy [DE-AC02-05CH11231]; NSF [PHY-04-57315] FX We would like to thank Bobby Acharya, Nima Arkani-Hamed, Konstantin Bobkov, Jacob Bourjaily, Lisa Everett, Eric Kuflik, Arjun Menon, Brent Nelson, Aaron Pierce, and Liantao Wang for useful discussions. P. K. would also like to thank the Michigan Center for Theoretical Physics (MCTP) for its hospitality where part of the research was conducted. The work of G. K. and J. S. is supported in part by the Department of Energy. The work of P. K. is supported by the DOE under Contract No. DE-AC02-05CH11231 and NSF Grant No. PHY-04-57315. NR 64 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 9 PY 2010 VL 82 IS 5 AR 055005 DI 10.1103/PhysRevD.82.055005 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 647ZG UT WOS:000281658800004 ER PT J AU Rubenstein, BM Gubernatis, JE Doll, JD AF Rubenstein, B. M. Gubernatis, J. E. Doll, J. D. TI Comparative Monte Carlo efficiency by Monte Carlo analysis SO PHYSICAL REVIEW E LA English DT Article ID COMPUTATION; MATRIX AB We propose a modified power method for computing the subdominant eigenvalue lambda(2) of a matrix or continuous operator. While useful both deterministically and stochastically, we focus on defining simple Monte Carlo methods for its application. The methods presented use random walkers of mixed signs to represent the subdominant eigenfunction. Accordingly, the methods must cancel these signs properly in order to sample this eigenfunction faithfully. We present a simple procedure to solve this sign problem and then test our Monte Carlo methods by computing lambda(2) of various Markov chain transition matrices. As vertical bar lambda(2)vertical bar of this matrix controls the rate at which Monte Carlo sampling relaxes to a stationary condition, its computation also enabled us to compare efficiencies of several Monte Carlo algorithms as applied to two quite different types of problems. We first computed lambda(2) for several one-and two-dimensional Ising models, which have a discrete phase space, and compared the relative efficiencies of the Metropolis and heat-bath algorithms as functions of temperature and applied magnetic field. Next, we computed lambda(2) for a model of an interacting gas trapped by a harmonic potential, which has a mutidimensional continuous phase space, and studied the efficiency of the Metropolis algorithm as a function of temperature and the maximum allowable step size Delta. Based on the lambda(2) criterion, we found for the Ising models that small lattices appear to give an adequate picture of comparative efficiency and that the heat-bath algorithm is more efficient than the Metropolis algorithm only at low temperatures where both algorithms are inefficient. For the harmonic trap problem, we found that the traditional rule of thumb of adjusting Delta so that the Metropolis acceptance rate is around 50% is often suboptimal. In general, as a function of temperature or Delta, lambda(2) for this model displayed trends defining optimal efficiency that the acceptance ratio does not. The cases studied also suggested that Monte Carlo simulations for a continuum model are likely more efficient than those for a discretized version of the model. C1 [Rubenstein, B. M.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Doll, J. D.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Rubenstein, BM (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. FU DOE [DE-FG02-97ER25308]; NSF FX J.D.D. and J.E.G. gratefully acknowledge joint grant support of this research through the DOE Multiscale Mathematics and Optimization for Complex Systems Program. The work of B. M. R. was supported by the NSF and DOE Grant No. DE-FG02-97ER25308. NR 16 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 9 PY 2010 VL 82 IS 3 AR 036701 DI 10.1103/PhysRevE.82.036701 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 647ZM UT WOS:000281659400004 PM 21230207 ER PT J AU Shiltsev, V AF Shiltsev, Vladimir TI Review of observations of ground diffusion in space and in time and fractal model of ground motion SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COLLIDERS; LAW AB We present numerous observations of the diffusive motion of the ground and tunnels for scientific instruments and show that if systematic movements are excluded the remaining uncorrelated component of the motion obeys a characteristic fractal law with the displacement variance dY(2) scaling with time and spatial intervals T and L as dY(2) proportional to T(alpha) L(gamma) with both exponents close to 1 (alpha approximate to gamma approximate to 1). We briefly describe experimental methods of the mesoscopic and microscopic ground motion detection used in measurements at physics research facilities sensitive to ground motion, particularly large high energy elementary particle accelerators. A simple mathematical model of the fractal motion demonstrating the observed scaling law is also presented and discussed. This paper is a subsequent full detail publication to [V. Shiltsev, Phys. Rev. Lett. 104, 238501 (2010)]. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU United States Department of Energy [DE-AC02-07CH11359] FX The author acknowledges very fruitful long-term collaboration on the development of HLS probes suitable for the ground motion studies for large accelerators and series of the studies with them at various places within the FNAL-SLAC-BINP team (Batavia-Stanford-Novosibirsk) of B. Baklakov, A. Chupyra, A. Erokhin, J. Lach, A. Medvedko, M. Kondaurov, V. Parkhomchuk, S. Singatulin, A. Seryi, E. Shubin, and J. Volk. I am very thankful to the collaborators who provided me with numerous records of raw data for further ground diffusion analysis-Professor S. Takeda, Dr. N. Yamomoto, Professor K. Oide, and Dr. M. Masuzawa (KEK, Japan), Dr. F. Tecker, Dr. J.-P. Quesnel, and Dr. M. Mayoud (CERN), the Fermilab's Alignment Group. Over the years I have had the pleasure of collaborating on theoretical studies of the ground motion effects on high energy particle accelerators with Dr. G. Stupakov, Dr. A. Seryi, and Dr. T. Raubenheimer (SLAC), Dr. R. Steining (SSCL), Dr. V. Lebedev (FNAL), Dr. J. Rossbach (DESY), and Dr. C. Montag (BNL). My special acknowledgements to Professor Vasily Parkhomchuk of Budker INP (Novosibirsk, Russia) who-at the time when we both were working on the design of a linear e+e- collider VLEPP-brought my attention to deep underlying physics issues associated with ground motion. He also was the first who coined the term "ATL law'' while trying to analyze results of long-term measurement of the alignment monuments motion at the site of the UNK collider (Protvino, Russia). I am indebted to R. Carrigan for numerous suggestions which helped to improve the manuscript. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 55 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 9 PY 2010 VL 13 IS 9 AR 094801 DI 10.1103/PhysRevSTAB.13.094801 PG 25 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 647ZP UT WOS:000281659700002 ER PT J AU Virkar, AA Mannsfeld, S Bao, ZA Stingelin, N AF Virkar, Ajay A. Mannsfeld, Stefan Bao, Zhenan Stingelin, Natalie TI Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors SO ADVANCED MATERIALS LA English DT Review ID FIELD-EFFECT TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; MOLECULAR-BEAM DEPOSITION; CHARGE-CARRIER MOBILITY; SINGLE-CRYSTALLINE; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); GATE DIELECTRICS; CONJUGATED POLYMERS; SIZE DISTRIBUTION; EPITAXIAL-GROWTH AB Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al). [1] The second part of the Review focuses on polymeric semiconductors. The dependence of physicochemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described. C1 [Virkar, Ajay A.; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Mannsfeld, Stefan] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [Stingelin, Natalie] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7AZ, England. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, 381 N-S Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu; n.stingelin-stutzmann@imperial.ac.uk RI Stingelin, Natalie/D-6745-2016 OI Stingelin, Natalie/0000-0002-1414-4545 FU Stanford Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC); NSF DMR; Air Force Office of Scientific Research; Stanford School of Engineering; Sloan Research Fellowship; UK Engineering and Physical Sciences Research Council (EPSRC); Royal Society FX This work was partially supported by the Stanford Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC), NSF DMR Solid State Chemistry, Air Force Office of Scientific Research, the Stanford School of Engineering, a Sloan Research Fellowship, the UK Engineering and Physical Sciences Research Council (EPSRC) and the Royal Society. NS is deeply indebted to Paul Smith (ETH Zurich) for being given a unique education in classical polymer science-not only during the preparation of this manuscript. She also wishes to thank Pascal Wolfer and Wolfgang Kaiser (ETH Zurich) for their invaluable help in the preparation of this manuscript, and Mohammed A. Baklar, Avinesh Kumar (Imperial College London), Christian Muller, and Nikolai Zhigadlo (ETH Zurich) for supplying yet unpublished results. This article is part of a Special Issue on Organic Electronics. NR 202 TC 210 Z9 210 U1 34 U2 333 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 8 PY 2010 VL 22 IS 34 BP 3857 EP 3875 DI 10.1002/adma.200903193 PG 19 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 662FU UT WOS:000282793600007 PM 20715062 ER PT J AU Jablin, MS Flasinski, M Dubey, M Ratnaweera, DR Broniatowski, M Dynarowicz-Latka, P Majewski, J AF Jablin, Michael S. Flasinski, Michal Dubey, Manish Ratnaweera, Dilru R. Broniatowski, Marcin Dynarowicz-Latka, Patrycja Majewski, Jaroslaw TI Effects of beta-Cyclodextrin on the Structure of Sphingomyelin/Cholesterol Model Membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID AIR-WATER-INTERFACE; LIPID RAFTS; CHOLESTEROL INTERACTIONS; NEUTRON REFLECTOMETRY; CELL-MEMBRANES; X-RAY; MONOLAYERS; PHOSPHOLIPIDS; REFLECTIVITY; EXTRACTION AB The interaction of beta-cyclodextrin (beta-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after beta-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by beta-CD, indicating that beta-CD is unable to remove sphingomyelin or complexed Chol. However, beta-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by beta-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of beta-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by beta-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane. C1 [Jablin, Michael S.; Dubey, Manish; Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM USA. [Flasinski, Michal; Broniatowski, Marcin; Dynarowicz-Latka, Patrycja] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland. [Ratnaweera, Dilru R.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM USA. EM jarek@lanl.gov RI Dubey, Manish/C-9946-2011; Lujan Center, LANL/G-4896-2012; Dynarowicz-Latka, Patrycja/Q-1067-2015 OI Dynarowicz-Latka, Patrycja/0000-0002-9778-6091 FU U.S. Department of Energy Office of Basic Energy Sciences; Los Alamos National Laboratory under Department of Energy [DE-AC52-06NA25396] FX This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, which was funded by the U.S. Department of Energy Office of Basic Energy Sciences and Los Alamos National Laboratory under Department of Energy contract DE-AC52-06NA25396. NR 44 TC 15 Z9 15 U1 2 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 8 PY 2010 VL 99 IS 5 BP 1475 EP 1481 DI 10.1016/j.bpj.2010.06.028 PG 7 WC Biophysics SC Biophysics GA 648VC UT WOS:000281721500017 PM 20816059 ER PT J AU Virtanen, JJ Makowski, L Sosnick, TR Freed, KF AF Virtanen, Jouko J. Makowski, Lee Sosnick, Tobin R. Freed, Karl F. TI Modeling the Hydration Layer around Proteins: HyPred SO BIOPHYSICAL JOURNAL LA English DT Article ID MOLECULAR-DYNAMICS; WATER-MOLECULES; X-RAY; NEUTRON-DIFFRACTION; POTENTIAL FUNCTIONS; CRYSTAL-STRUCTURES; SOLVENT INTERFACE; BINDING SITES; LIQUID WATER; DNA AB Protein hydration plays an integral role in determining protein function and stability. We develop a simple method with atomic level precision for predicting the solvent density near the surface of a protein. A set of proximal radial distribution functions are defined and calculated for a series of different atom types in proteins using all-atom, explicit solvent molecular dynamic simulations for three globular proteins. A major improvement in predicting the hydration layer is found when the protein is held immobile during the simulations. The distribution functions are used to develop a model for predicting the hydration layer with sub-1-Angstrom resolution without the need for additional simulations. The model and the distribution functions for a given protein are tested in their ability to reproduce the hydration layer from the simulations for that protein, as well as those for other proteins and for simulations in which the protein atoms are mobile. Predictions for the density of water in the hydration shells are then compared with high occupancy sites observed in crystal structures. The accuracy of both tests demonstrates that the solvation model provides a basis for quantitatively understanding protein solvation and thereby predicting the hydration layer without additional simulations. C1 [Sosnick, Tobin R.] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Virtanen, Jouko J.; Freed, Karl F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Sosnick, Tobin R.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Sosnick, Tobin R.; Freed, Karl F.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Virtanen, Jouko J.; Freed, Karl F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Makowski, Lee] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sosnick, TR (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA. EM trsosnic@uchicago.edu; freed@uchicago.edu RI ID, BioCAT/D-2459-2012 FU National Institutes of Health Molecular and Cellular Biology [132 GM007183-34]; National Institutes of Health [GM081642, GM085648]; Argonne/University of Chicago Joint Theory Institute FX Funding from the National Institutes of Health Molecular and Cellular Biology training grant No. 132 GM007183-34, National Institutes of Health Grant GM081642, National Institutes of Health grant GM085648, and a grant from the Argonne/University of Chicago Joint Theory Institute are gratefully acknowledged. NR 39 TC 27 Z9 28 U1 0 U2 18 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 8 PY 2010 VL 99 IS 5 BP 1611 EP 1619 DI 10.1016/j.bpj.2010.06.027 PG 9 WC Biophysics SC Biophysics GA 648VC UT WOS:000281721500032 PM 20816074 ER PT J AU Lee, H AF Lee, Hoonkyung TI Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CARBON NANOTUBES; GAS AB We investigate the functionalization of functional groups to graphene nanoribbons with zigzag and armchair edges using first-principles calculations. We find that the formation energy for the configuration of the functional groups functionalized to the zigzag edge is similar to 0.2 eV per functional group lower than that to the armchair edge. The formation energy difference arises from a structural deformation on the armchair edge by the functionalization whereas there is no structural deformation on the zigzag edge. Selective functionalization on the zigzag edge takes place at a condition of the temperature and the pressure of similar to 25 degrees C and 10(-5) atm. Our findings show that selective functionalization can offer the opportunity for an approach to the separation of zigzag graphene nanoribbons with their solubility change. C1 [Lee, Hoonkyung] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Hoonkyung] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hkiee3@civet.berkeley.edu FU NSF [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy [DE-AC02-05CH11231] FX HL was supported by NSF Grant No. DMR07-05941. Numerical simulations were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources were provided by NERSC and TeraGrid. NR 26 TC 6 Z9 6 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 8 PY 2010 VL 22 IS 35 AR 352205 DI 10.1088/0953-8984/22/35/352205 PG 4 WC Physics, Condensed Matter SC Physics GA 645AA UT WOS:000281422100005 PM 21403278 ER PT J AU Nowik, I Felner, I Ni, N Bud'ko, SL Canfield, PC AF Nowik, Israel Felner, Israel Ni, Ni Bud'ko, Sergey L. Canfield, Paul C. TI Mossbauer studies of Ba(Fe1-xNix)(2)As-2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB We present detailed Fe-57 Mossbauer effect spectroscopy (MS) measurements at various temperatures for Ba(Fe1-xNix)(2)As-2. The isomer shift values for all samples are in the range of 0.42 +/- 0.02 mm s(-1), indicating a typical metallic state of divalent Fe ions. The MS spectra of the magnetic samples (up to x = 0.024) are well reproduced by spin density waves subspectra. Both the magnetic ordering temperatures T-M and the average magnetic hyperfine fields H-eff, decrease with x. The H-eff values scale linearly with T-M. For higher x values the samples become superconducting and the MS spectra below and above T-C are almost identical, indicating that the MS technique are not sensitive enough to the superconducting transition. C1 [Nowik, Israel; Felner, Israel] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Ni, Ni; Bud'ko, Sergey L.; Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Ni, Ni; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Felner, I (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RI Canfield, Paul/H-2698-2014 FU Israel Science Foundation (ISF) [Bikura 459/09]; Klachky Foundation for Superconductivity; US Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX The research in Jerusalem is supported by the Israel Science Foundation (ISF, Bikura 459/09), and by the Klachky Foundation for Superconductivity. Work at Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 13 TC 13 Z9 13 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 8 PY 2010 VL 22 IS 35 AR 355701 DI 10.1088/0953-8984/22/35/355701 PG 4 WC Physics, Condensed Matter SC Physics GA 645AA UT WOS:000281422100022 PM 21403295 ER PT J AU Tsao, JY Saunders, HD Creighton, JR Coltrin, ME Simmons, JA AF Tsao, J. Y. Saunders, H. D. Creighton, J. R. Coltrin, M. E. Simmons, J. A. TI Solid-state lighting: an energy-economics perspective SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ILLUMINATION; POPULATION; CENTURIES; FUTURE; PRICE AB Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy. C1 [Tsao, J. Y.; Creighton, J. R.; Coltrin, M. E.; Simmons, J. A.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. [Saunders, H. D.] Decis Proc Inc, Danville, CA 94506 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, Phys Chem & Nano Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov; hsaunders@decisionprocessesinc.com; jrcreig@sandia.gov; mecoltr@sandia.gov; jsimmon@sandia.gov FU US Department of Energy, Office of Basic Energy Sciences; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge helpful input and comments from Eric Shaner, Paul Waide and a very thorough anonymous referee; and permission from Roger Fouquet and Peter Pearson for our adaptation of figure 1 from their monumental work on the consumption of light in the UK. Work at Sandia National Laboratories was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No DE-AC04-94AL85000. NR 65 TC 41 Z9 41 U1 4 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 8 PY 2010 VL 43 IS 35 AR 354001 DI 10.1088/0022-3727/43/35/354001 PG 17 WC Physics, Applied SC Physics GA 641PD UT WOS:000281139600002 ER PT J AU Mao, K Kobayashi, T Wiench, JW Chen, HT Tsai, CH Lin, VSY Pruski, M AF Mao, Kanmi Kobayashi, Takeshi Wiench, Jerzy W. Chen, Hung-Ting Tsai, Chih-Hsiang Lin, Victor S. -Y. Pruski, Marek TI Conformations of Silica-Bound (Pentafluorophenyl)propyl Groups Determined by Solid-State NMR Spectroscopy and Theoretical Calculations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FUNCTIONALIZED MESOPOROUS SILICAS; THIN-FILMS; MCM-41; ACID; SELECTIVITY; NANOSPHERE; CHEMISTRY; FLUORINE; DYNAMICS; CRYSTAL AB The conformations of (pentafluorophenyl)propyl groups (-CH(2)-CH(2)-CH(2)-C(6)F(5), abbreviated as PFP), covalently bound to the surface of mesoporous silica nanoparticles (MSNs), were determined by solid-state NMR spectroscopy and further refined by theoretical modeling. Two types of PFP groups were described, including molecules in the prone position with the perfluorinated aromatic rings located above the siloxane bridges (PFP-p) and the PFP groups denoted as upright (PFP-u), whose aromatic rings do not interact with the silica surface. Two-dimensional (2D) (13)C-(1)H, (13)C-(19)F and (19)F-(29)Si heteronuclear correlation (HETCOR) spectra were obtained with high sensitivity on natural abundance samples using fast magic angle spinning (MAS), indirect detection of low-gamma nuclei and signal enhancement by Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence. 2D double-quantum (DO) (19)F MAS NMR spectra and spin echo measurements provided additional information about the structure and mobility of the pentafluorophenyl rings. Optimization of the PFP geometry, as well as calculations of the interaction energies and (19)F chemical shifts, proved very useful in refining the structural features of PFP-p and PFP-u functional groups on the silica surface. The prospects of using the PFP-functionalized surface to modify its properties (e.g., the interaction with solvents, especially water) and design new types of the heterogeneous catalytic system are discussed. C1 [Mao, Kanmi; Kobayashi, Takeshi; Wiench, Jerzy W.; Chen, Hung-Ting; Lin, Victor S. -Y.; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Chen, Hung-Ting; Tsai, Chih-Hsiang; Lin, Victor S. -Y.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Pruski, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mpruski@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences at the Ames Laboratory [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [FG26-0NT08854] FX This research was supported at the Ames Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. We would also like to thank the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (Grant No. DE-FG26-0NT08854), for financial support. NR 44 TC 22 Z9 22 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 8 PY 2010 VL 132 IS 35 BP 12452 EP 12457 DI 10.1021/ja105007b PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 645LU UT WOS:000281460100057 PM 20707348 ER PT J AU Kaizuka, Y Groves, JT AF Kaizuka, Yoshihisa Groves, Jay T. TI Bending-mediated superstructural organizations in phase-separated lipid membranes SO NEW JOURNAL OF PHYSICS LA English DT Article ID SIGNAL-TRANSDUCTION; PROTEIN NETWORKS; BILAYERS; DOMAINS; MICROSCOPY; CURVATURE; RECEPTOR; TENSION; ACTIN AB Lipid bilayers consisting of natural lipids and cholesterols can phase-separate into two immiscible fluid phases. These phases can further get organized into elaborated patterned superstructures, hexagonal arrays and stripes, of about micron periodicity. These periodic patterns must be maintained by a macroscopic inter-domain repulsion that competes with interfacial tension and they are not predicted for systems with pair-wise molecular interactions. Herein, we present simultaneous topography and fluorescence imaging of two-phase membranes that reveal the role of membrane bending mechanics in superstructural organizations. We observe that two-phase membranes are all curved. Real-time imaging demonstrates that these curved domains repel each other by bending the intervening region to the opposite direction. This type of macroscopic mechanical interaction may contribute to spatial organization in live cell membranes that cannot be explained solely by microscopic intermolecular interactions and phase separations, such as spatial organization of signaling molecules and their coupling to topography observed in endocytotic pits or intercellular junctions. C1 [Kaizuka, Yoshihisa; Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kaizuka, Yoshihisa; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kaizuka, Yoshihisa; Groves, Jay T.] Lawrence Berkeley Lab, Phys Biosci & Mat Sci Div, Berkeley, CA 94720 USA. [Kaizuka, Yoshihisa] Natl Inst Mat Sci, Ctr Biomat, Tsukuba, Ibaraki 3050047, Japan. RP Kaizuka, Y (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM JTGroves@lbl.gov; KAIZUKA.Yoshihisa@nims.go.jp FU US Department of Energy [DE-AC03-76SF00098] FX This work was supported by the US Department of Energy under contract no. DE-AC03-76SF00098. We thank R Parthasarathy for helpful discussions. NR 25 TC 8 Z9 8 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 8 PY 2010 VL 12 AR 095001 DI 10.1088/1367-2630/12/9/095001 PG 11 WC Physics, Multidisciplinary SC Physics GA 651CL UT WOS:000281902100001 ER PT J AU Levchenko, A Micklitz, T Rech, J Matveev, KA AF Levchenko, Alex Micklitz, Tobias Rech, Jerome Matveev, K. A. TI Transport in partially equilibrated inhomogeneous quantum wires SO PHYSICAL REVIEW B LA English DT Article ID DIMENSIONAL ELECTRON-GAS; POINT CONTACTS; SPIN POLARIZATION; CONDUCTANCE; QUANTIZATION; RESISTANCE AB We study transport properties of weakly interacting one-dimensional electron systems including on an equal footing thermal equilibration due to three-particle collisions and the effects of large-scale inhomogeneities. We show that equilibration in an inhomogeneous quantum wire is characterized by the competition of interaction processes which reduce the electrons total momentum and such which change the number of right- and left-moving electrons. We find that the combined effect of interactions and inhomogeneities can dramatically increase the resistance of the wire. In addition, we find that the interactions strongly affect the thermoelectric properties of inhomogeneous wires and calculate their thermal conductance, thermopower, and Peltier coefficient. C1 [Levchenko, Alex; Matveev, K. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rech, Jerome] Ctr Phys Theor, UMR 6207, F-13288 Marseille 9, France. [Micklitz, Tobias] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany. [Micklitz, Tobias] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany. RP Levchenko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX We are grateful to B. L. Altshuler, A. V. Andreev, A. P. Dmitriev, Y. M. Galperin, I. V. Gornyi, D. G. Polyakov, and B. Shklovskii for helpful discussions. This work at ANL was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 43 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 8 PY 2010 VL 82 IS 11 AR 115413 DI 10.1103/PhysRevB.82.115413 PG 14 WC Physics, Condensed Matter SC Physics GA 647WK UT WOS:000281651000006 ER PT J AU Paradela, C Tassan-Got, L Audouin, L Berthier, B Duran, I Ferrant, L Isaev, S Le Naour, C Stephan, C Tarrio, D Trubert, D Abbondanno, U Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Eleftheriadis, C Embid-Segura, M Ferrari, A Ferreira-Marques, R Fujii, K Furman, W Goncalves, I Gonzalez-Romero, E Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kadi, Y Kappeler, F Karadimos, D Karamanis, D Kerveno, M Koehler, P Kossionides, E Krticka, M Lampoudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Oshima, M Pancin, J Papachristodoulou, C Papadopoulos, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Tagliente, G Tain, JL Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wiescher, M Wisshak, K AF Paradela, C. Tassan-Got, L. Audouin, L. Berthier, B. Duran, I. Ferrant, L. Isaev, S. Le Naour, C. Stephan, C. Tarrio, D. Trubert, D. Abbondanno, U. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrari, A. Ferreira-Marques, R. Fujii, K. Furman, W. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kadi, Y. Kappeler, F. Karadimos, D. Karamanis, D. Kerveno, M. Koehler, P. Kossionides, E. Krticka, M. Lampoudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Oshima, M. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wiescher, M. Wisshak, K. CA n TOF Collaboration TI Neutron-induced fission cross section of U-234 and Np-237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; ENERGY-RANGE; ANGULAR-DISTRIBUTION; DEPENDENCE; ANISOTROPY; FRAGMENTS; PU-239 AB A high-resolution measurement of the neutron-induced fission cross section of U-234 and Np-237 has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated U-235 cross section as reference. In these measurements the energy determination for the U-234 resonances could be improved, whereas previous discrepancies for the Np-237 resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of Np-237. C1 [Paradela, C.; Duran, I.; Tarrio, D.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.] CNRS, IPN, IN2P3, F-91405 Orsay, France. [Audouin, L.; Dillmann, I.; Heil, M.; Kappeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Abbondanno, U.; Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.] CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Andriamonje, S.; Berthoumieux, E.; Carrapico, C.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3 IReS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Calviani, M.] Univ Padua, Dipartimento Fis, I-35100 Padua, Italy. [Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain. [Capote, R.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Inst Tecnol & Nucl, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Domingo-Pardo, C.] GSI, Darmstadt, Germany. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haas, B.] CNRS, IN2P3 CENBG, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Massimi, C.; Vannini, G.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fak Phys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Ventura, A.] ENEA, Bologna, Italy. RP Paradela, C (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain. EM carlos.paradela@usc.es RI Paradela, Carlos/J-1492-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Gramegna, Fabiana/B-1377-2012; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014 OI Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Paradela Dobarro, Carlos/0000-0003-0175-8334; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gramegna, Fabiana/0000-0001-6112-0602; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; FU EC [FIKW-CT-2000-00107] FX This work was supported by the EC under Contract No. FIKW-CT-2000-00107. NR 62 TC 50 Z9 50 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 8 PY 2010 VL 82 IS 3 AR 034601 DI 10.1103/PhysRevC.82.034601 PG 11 WC Physics, Nuclear SC Physics GA 647WN UT WOS:000281651400002 ER PT J AU Borovsky, JE AF Borovsky, Joseph E. TI Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; NONLINEAR ALFVEN WAVES; TUBE TECTONICS MODEL; TANGENTIAL DISCONTINUITIES; MAGNETOHYDRODYNAMIC TURBULENCE; HYDROMAGNETIC TURBULENCE; SPACECRAFT OBSERVATIONS; CURRENT-SHEET; 1/F NOISE; FLUCTUATIONS AB Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU NASA Heliospheric SRT Program; NASA Heliospheric Guest-Investigator Program; NSF SHINE Program; LDRD Program at Los Alamos National Laboratory FX The author thanks Mick Denton for his help. This research was supported by the NASA Heliospheric SR&T Program, the NASA Heliospheric Guest-Investigator Program, by the NSF SHINE Program, and by the LDRD Program at Los Alamos National Laboratory. NR 64 TC 32 Z9 33 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 8 PY 2010 VL 105 IS 11 AR 111102 DI 10.1103/PhysRevLett.105.111102 PG 4 WC Physics, Multidisciplinary SC Physics GA 647WZ UT WOS:000281652700002 PM 20867562 ER PT J AU Khoo, KH Zayak, AT Kwak, H Chelikowsky, JR AF Khoo, K. H. Zayak, A. T. Kwak, H. Chelikowsky, James R. TI First-Principles Study of Confinement Effects on the Raman Spectra of Si Nanocrystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICON NANOCRYSTALS; SCATTERING; MICROCRYSTALLINE; SPECTROSCOPY; MODE AB The Raman spectra of Si nanocrystals are studied as a function of nanocrystal diameter using pseudopotential density functional theory and the Placzek approximation. Our calculations reproduce the redshift and broadening of the optical Raman peak with decreasing nanocrystal size, and calculated peak frequencies show good agreement with experimental values. We also find that a surface induced softening of vibrational modes is largely responsible for the Raman redshift, with relaxation of momentum conservation playing only a minor role. C1 [Khoo, K. H.; Chelikowsky, James R.] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. [Zayak, A. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Kwak, H.] Washington State Univ, Inst Shock Phys, Spokane, WA 99202 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Khoo, KH (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. RI Khoo, Khoong Hong/G-3983-2012 OI Khoo, Khoong Hong/0000-0002-4628-1202 FU U.S. Department of Energy [DE-FG02-06ER46286]; National Science Foundation [DMR 09-41645]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-06ER46286. Computational work was supported by the National Science Foundation under Grant No. DMR 09-41645. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Calculations were performed at the National Energy Research Scientific Computing Center (NERSC) and Texas Advanced Computing Center (TACC). NR 23 TC 30 Z9 30 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 8 PY 2010 VL 105 IS 11 AR 115504 DI 10.1103/PhysRevLett.105.115504 PG 4 WC Physics, Multidisciplinary SC Physics GA 647WZ UT WOS:000281652700010 PM 20867585 ER PT J AU Beyerlein, IJ Tome, CN AF Beyerlein, I. J. Tome, C. N. TI A probabilistic twin nucleation model for HCP polycrystalline metals SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE twinning; nucleation; probability; statistics; HCP; size effect ID DEFORMATION TWINS; GRAIN-SIZE; PLASTIC-DEFORMATION; HARDENING EVOLUTION; HEXAGONAL MATERIALS; CONSTITUTIVE LAW; ZINC CRYSTALS; ZIRCONIUM; SLIP; TEMPERATURE AB This article presents a basic probabilistic theory for the nucleation of deformation twins in hexagonal close packed (HCP) metals. Twin nucleation is assumed to rely on the dissociation of grain boundary defects (GBDs) under stress into the required number of twinning partials to create a twin nucleus. The number of successful conversion events is considered to follow a stochastic Poisson process where the rate is assumed to increase with local stress. From this concept, the probability distribution for the critical stress to form a twin nucleus is derived wherein the parameters of the distribution are related to properties of the GBDs. The theory is implemented into a multi-scale constitutive model for HCP metals in order to test its predictive capability against measurements made previously on pure zirconium deformed at 76 and 300 K. C1 [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop B216, Los Alamos, NM 87545 USA. EM irene@lanl.gov RI Tome, Carlos/D-5058-2013; Beyerlein, Irene/A-4676-2011 FU Office of Basic Energy Sciences under U.S. DOE [FWP 06SCPE401, 7405-ENG-36] FX The present work was performed with support from Office of Basic Energy Sciences, Project FWP 06SCPE401, under U.S. DOE Contract no. W-7405-ENG-36. NR 46 TC 87 Z9 88 U1 5 U2 38 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD SEP 8 PY 2010 VL 466 IS 2121 BP 2517 EP 2544 DI 10.1098/rspa.2009.0661 PG 28 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 633SC UT WOS:000280524300002 ER PT J AU Marsh, JA Dancheck, B Ragusa, MJ Allaire, M Forman-Kay, JD Peti, W AF Marsh, Joseph A. Dancheck, Barbara Ragusa, Michael J. Allaire, Marc Forman-Kay, Julie D. Peti, Wolfgang TI Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators SO STRUCTURE LA English DT Article ID MOLECULAR RECOGNITION FEATURES; NATIVELY UNFOLDED PROTEINS; RAY SOLUTION SCATTERING; UNSTRUCTURED PROTEINS; BINDING; INHIBITOR-2; SPINOPHILIN; KINASE; DOMAIN; PHOSPHORYLATION AB Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: 1-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered 1-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex. C1 [Marsh, Joseph A.; Forman-Kay, Julie D.] Hosp Sick Children, Toronto, ON M5G 1X8, Canada. [Marsh, Joseph A.; Forman-Kay, Julie D.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Dancheck, Barbara; Ragusa, Michael J.; Peti, Wolfgang] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Dancheck, Barbara; Ragusa, Michael J.; Peti, Wolfgang] Brown Univ, Dept Mol Pharmacol Physiol & Biotechnol, Providence, RI 02912 USA. [Allaire, Marc] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Forman-Kay, JD (reprint author), Hosp Sick Children, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM forman@sickkids.ca; Wolfgang_Peti@brown.edu RI Marsh, Joseph/F-2142-2010; Peti, Wolfgang/L-3492-2014; OI Marsh, Joseph/0000-0003-4132-0628 FU Natural Sciences and Engineering Research Council of Canada; National Science Foundation; National Institute of Neurological Disorders and Stroke [R01NS056128]; Canadian Institutes of Health Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This material is based upon work supported by a Natural Sciences and Engineering Research Council of Canada fellowship to J.A.M. and a National Science Foundation Graduate Research Fellowship to B.D. We thank Dr. Lin Yang for his support at beamline X9. The project described was supported by Grant R01NS056128 from the National Institute of Neurological Disorders and Stroke to W.P. and funding from the Canadian Institutes of Health Research to J.D.F.-K. 800 MHz NMR data were recorded at Brandeis University (NIH S10-RR017269). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 60 TC 65 Z9 65 U1 1 U2 23 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD SEP 8 PY 2010 VL 18 IS 9 BP 1094 EP 1103 DI 10.1016/j.str.2010.05.015 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 650GE UT WOS:000281836400006 PM 20826336 ER PT J AU Moulaei, T Shenoy, SR Giomarelli, B Thomas, C McMahon, JB Dauter, Z O'Keefe, BR Wlodawer, A AF Moulaei, Tinoush Shenoy, Shilpa R. Giomarelli, Barbara Thomas, Cheryl McMahon, James B. Dauter, Zbigniew O'Keefe, Barry R. Wlodawer, Alexander TI Monomerization of Viral Entry Inhibitor Griffithsin Elucidates the Relationship between Multivalent Binding to Carbohydrates and anti-HIV Activity SO STRUCTURE LA English DT Article ID ANTIVIRAL PROTEIN GRIFFITHSIN; INACTIVATING PROTEIN; CRYSTAL-STRUCTURE; CYANOVIRIN-N; STRUCTURAL BASIS; BANANA LECTIN; SPECIFICITY; MANNOSE; GLYCOPROTEINS; DOMAIN AB Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviral activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer. C1 [Shenoy, Shilpa R.; Giomarelli, Barbara; Thomas, Cheryl; McMahon, James B.; O'Keefe, Barry R.] NCI, Mol Targets Lab, Ctr Canc Res, Frederick, MD 21702 USA. [Moulaei, Tinoush; Wlodawer, Alexander] NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. [Shenoy, Shilpa R.] NCI, SAIC Frederick Inc, Frederick, MD 21702 USA. [Dauter, Zbigniew] Argonne Natl Lab, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Natl Canc Inst, Argonne, IL 60439 USA. RP O'Keefe, BR (reprint author), NCI, Mol Targets Lab, Ctr Canc Res, Frederick, MD 21702 USA. EM okeefeba@mail.nih.gov; wlodawer@nih.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; NIH, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HNSN26120080001E]; National Institutes of Health FX We thank Chi-Huey Wong and Sheng-Kai Wang (Scripps) for the gift of the nonamannoside, Nikolay V. Dokholyan (University of North Carolina) for suggesting several mutations of GRFT, Nicole LaRonde-LeBlanc (University of Maryland) for her assistance with ultracentrifugation experiments and helpful discussions, and David Eisenberg (UCLA) for discussion of the phenomenon of domain swapping. We would also like to thank Jennifer Wilson (MTL, CCR, NCI) for anti-HIV bioassay support, and Marzena Dyba (SBL, SAIC-Frederick, CCR, NCI) and Sergei Tarasov (SBL, CCR, NCI) for their assistance with dynamic light scattering experiments. We acknowledge the use of beamline 22-ID of the Southeast Regional Collaborative Access Team (SER-CAT), located at the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and by the Intramural AIDS Targeted Antiviral Program of the Office of the Director of the National Institutes of Health grant to A.W. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HNSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. NR 36 TC 42 Z9 42 U1 3 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD SEP 8 PY 2010 VL 18 IS 9 BP 1104 EP 1115 DI 10.1016/j.str.2010.05.016 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 650GE UT WOS:000281836400007 PM 20826337 ER PT J AU Greskowiak, J Prommer, H Liu, C Post, VEA Ma, R Zheng, C Zachara, JM AF Greskowiak, J. Prommer, H. Liu, C. Post, V. E. A. Ma, R. Zheng, C. Zachara, J. M. TI Comparison of parameter sensitivities between a laboratory and field-scale model of uranium transport in a dual domain, distributed rate reactive system SO WATER RESOURCES RESEARCH LA English DT Article ID NATURAL ATTENUATION; SUBSURFACE MEDIA; VIRUS TRANSPORT; MASS-TRANSFER; GROUNDWATER; ADSORPTION; PLUME; UNCERTAINTY; DESORPTION; SEDIMENTS AB A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different geochemical complexity to identify the importance of individual processes in controlling the fate of U(VI), as well as to elucidate the characteristic differences between well-defined laboratory and the more complex field-scale conditions. Therefore, a rigorous sensitivity analysis was carried out for the various simulation scenarios. The underlying conceptual and numerical model, originally developed from column experiment data, includes distributed rate surface complexation kinetics of U(VI), aqueous speciation, and physical nonequilibrium transport processes. The field scenarios accounted additionally for highly transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. The results of the sensitivity analysis showed not only similarities but also important differences in parameter sensitivities between the laboratory and field-scale models. It was found that the actual degree of sorption disequilibrium, actual concentration of sorbed U(VI), and the sorption extent (i.e., theoretical concentration of sorbed U(VI) at equilibrium) are the major controls for the magnitude of the calculated parameter sensitivities. These internal model variables depended mainly on (1) the groundwater flow conditions, i.e., the relatively long phases of limited groundwater movement in the field scale (intercepted by short peak flow events) and the long sustained flow phases in the column experiment (intercepted by relatively short stop flow events), and (2) the sampling location in the field-scale model, i.e., plume fringe versus plume center. C1 [Greskowiak, J.; Prommer, H.] CSIRO Land & Water, Wembley, WA 6913, Australia. [Prommer, H.] Univ Western Australia, Sch Earth & Environm, Crawley, WA, Australia. [Liu, C.; Zachara, J. M.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Post, V. E. A.] Flinders Univ S Australia, Sch Environm, Fac Sci & Engn, Adelaide, SA 5001, Australia. [Post, V. E. A.] Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA 5001, Australia. [Ma, R.; Zheng, C.] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA. [Post, V. E. A.] Vrije Univ Amsterdam, Dept Hydrol & Geoenvironm Sci, Fac Earth & Life Sci, Amsterdam, Netherlands. RP Greskowiak, J (reprint author), CSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia. EM janek.greskowiak@csiro.au; vincent.post@flinders.edu.au RI Liu, Chongxuan/C-5580-2009; Prommer, Henning/A-4555-2008; Post, Vincent/E-6054-2011; Zheng, Chunmiao/I-5257-2014; Greskowiak, Janek/F-4198-2012 OI Prommer, Henning/0000-0002-8669-8184; Post, Vincent/0000-0002-9463-3081; Zheng, Chunmiao/0000-0001-5839-1305; FU CSIRO OCE; U.S. Department of Energy; iVEC at Murdoch University, Western Australia FX We very much thank Aaron McDonough for preparing the parallel version of PHT3D, Mike Trefry for constant and insightful discussions, and Jungho Park for valuable comments on earlier versions of the manuscript. We are grateful for the helpful suggestions by Mary Hill, Matthew Tonkin, and two anonymous reviewers. The work was supported by iVEC through the use of advanced high performance computing resources provided by the Australian Resources Research Centre and the Informatics Facility of the Centre for Comparative Genomics located at Murdoch University, Western Australia. This research was also supported by a CSIRO OCE postdoctoral fellowship for J.G., and by the U.S. Department of Energy Environmental Remediation Science Program. NR 39 TC 17 Z9 17 U1 2 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 8 PY 2010 VL 46 AR W09509 DI 10.1029/2009WR008781 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 649HH UT WOS:000281758400002 ER PT J AU Bender, G Stich, TA Yan, LF Britt, RD Cramer, SP Ragsdale, SW AF Bender, Guenes Stich, Troy A. Yan, Lifen Britt, R. David Cramer, Stephen P. Ragsdale, Stephen W. TI Infrared and EPR Spectroscopic Characterization of a Ni(I) Species Formed by Photolysis of a Catalytically Competent Ni(I)-CO Intermediate in the Acetyl-CoA Synthase Reaction SO BIOCHEMISTRY LA English DT Article ID CARBON-MONOXIDE DEHYDROGENASE; COENZYME-A SYNTHASE; CONTAINING SUPEROXIDE-DISMUTASE; VULGARIS MIYAZAKI-F; IRON-SULFUR PROTEIN; CLOSTRIDIUM-THERMOACETICUM; CRYSTAL-STRUCTURE; REDUCTIVE ACTIVATION; ACETATE BIOSYNTHESIS; LIGAND-BINDING AB Acetyl-CoA synthase (ACS) catalyzes the synthesis of acetyl-CoA from CO, coenzyme A (CoA), and a methyl group from the CH(3)-Co(3+) site in the corrinoid iron sulfur protein (CFeSP). These are the key steps in the Wood-Ljungdahl pathway of anaerobic CO and CO(2) fixation. The active site of ACS is the A-cluster, which is an unusual nickel-iron-sulfur cluster. There is significant evidence for the catalytic intermediacy of a CO-bound paramagnetic Ni species, with an electronic configuration of [Fe(4)S(4)](2+)-(Ni(p)(+)-CO)-(Ni(d)(2+)), where Ni(p) and Ni(d) represent the Ni centers in the A-cluster that are proximal and distal to the [Fe(4)S(4)](2+) cluster, respectively. This well-characterized Ni(p)(+)-CO intermediate is often called the NiFeC species. Photolysis of the Ni(p)(+)-CO state generates a novel Ni(p)(+) species (A(red)*) with a rhombic electron paramagnetic resonance spectrum (g values of 2.56, 2.10, and 2.01) and an extremely low (1 kJ/mol) barrier for recombination with CO. We suggest that the photolytically generated A(red)* species is (or is similar to) the Ni(p)(+) species that binds CO (to form the Ni(p)(+)-CO species) and the methyl group (to form Ni(p)-CH(3)) in the ACS catalytic mechanism. The results provide support for a binding site (an "alcove") for CO near Ni(p), indicated by X-ray crystallographic studies of the Xe-incubated enzyme. We propose that, during catalysis, a resting Ni(p)(2+) state predominates over the active Ni(p)(+) species (A(red)*) that is trapped by the coupling of a one-electron transfer step to the binding of CO, which pulls the equilibrium toward Ni(p)(+)-CO formation. C1 [Ragsdale, Stephen W.] Univ Michigan, Dept Biol Chem, Sch Med, Ann Arbor, MI 48109 USA. [Stich, Troy A.; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Yan, Lifen; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ragsdale, SW (reprint author), Univ Michigan, Dept Biol Chem, Sch Med, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM sragsdal@umich.edu RI Stich, Troy/F-1625-2013 OI Stich, Troy/0000-0003-0710-1456 FU National Institutes of Health (NIH) [GM-39451, GM-65440, GM-48242]; National Science Foundation [CHE-0745353]; DOE OBER FX This research was supported by grants to S.W.R. [National Institutes of Health (NIH) Grant GM-39451], S.P.C. (NIH Grant GM-65440, National Science Foundation Grant CHE-0745353, and DOE OBER), and R.D.B. (NIH Grant GM-48242). NR 63 TC 18 Z9 20 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 7 PY 2010 VL 49 IS 35 BP 7516 EP 7523 DI 10.1021/bi1010128 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 643OD UT WOS:000281305200013 PM 20669901 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acerneseac, F Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonuccia, F Aoudiaa, S Arain, MA Araya, M Aronsson, M Arun, KG Aso, Y Aston, S Astonea, P Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Baroneac, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauera, TS Behnke, B Beker, MG Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bigottaab, S Bilenko, IA Billingsley, G Birch, J Birindellia, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bloma, M Blomberg, A Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bork, R Born, M Bose, S Bosi, L Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavagli, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Mottin, EC Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Corda, C Cornish, N Corsi, A Costa, CA Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dari, A Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T De Rosa, R Debra, D Degallaix, J Del Prete, M Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Dragocd, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Gammaitoni, L Garofoli, JA Garufiab, F Gemme, G Genin, E Gennai, A Gholami, I Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greveriea, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzinia, M Lorietteb, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majoranaa, E Mak, C Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietkae, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturoa, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rogstad, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinskag, D Rowan, S Udiger, AR Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuering, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Tseng, K Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Branda, JFJ Van den Broeck, C Van der Puttena, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vineta, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Wasa, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT EWhitcomb, S White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Belczynski, K AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acerneseac, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonuccia, F. Aoudiaa, S. Arain, M. A. Araya, M. Aronsson, M. Arun, K. G. Aso, Y. Aston, S. Astonea, P. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Baroneac, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauera, Th S. Behnke, B. Beker, M. G. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bigottaab, S. Bilenko, I. A. Billingsley, G. Birch, J. Birindellia, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bloma, M. Blomberg, A. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bork, R. Born, M. Bose, S. Bosi, L. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavagli, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Mottin, E. Chassande Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Corda, C. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dari, A. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. Debra, D. Degallaix, J. Del Prete, M. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Dragocd, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Fournier, J. D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gammaitoni, L. Garofoli, J. A. Garufiab, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greveriea, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzinia, M. Lorietteb, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mackowski, J. M. Mageswaran, M. Mailand, K. Majoranaa, E. Mak, C. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietkae, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturoa, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rogstad, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinskag, D. Rowan, S. Udiger, A. R. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Tseng, K. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Branda, J. F. J. Van den Broeck, C. Van der Puttena, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vineta, J-Y Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Wasa, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. EWhitcomb, S. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Belczynski, K. CA LIGO Sci Collaboration & Virgo TI Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors SO CLASSICAL AND QUANTUM GRAVITY LA English DT Review ID GAMMA-RAY BURSTS; MASS BLACK-HOLES; NEUTRON-STAR BINARIES; CONSTRAINING POPULATION; GLOBULAR-CLUSTERS; SYNTHESIS MODELS; SUPERNOVA RATES; MERGERS; COMPANIONS; RADIATION AB We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(-1) per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(-1) MWEG(-1) to 1000 Myr(-1) MWEG(-1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 x 10(-4) and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Bertolini, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Ochsner, E.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; EWhitcomb, S.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nash, T.; Nelson, J.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Acerneseac, F.; Baroneac, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Univ Naples Federico 2, Sez Napolia, I-80126 Naples, Italy. [Acerneseac, F.; Baroneac, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hild, S.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nishizawa, A.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA. [Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonuccia, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majoranaa, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Aoudiaa, S.; Birindellia, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. P.; Fournier, J. D.; Greveriea, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vineta, J-Y] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Wasa, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Boccara, C.; Lorietteb, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA. [Aufmuth, P.; Bizouard, M. A.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Anderson, W. G.; Babak, S.; Behnke, B.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Ingram, D. R.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Newton, G.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, Pi, Italy. [Barnum, S.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Mottin, E. Chassande; Granata, M.; Rabaste, O.] Univ Denis Diderot Paris 7, APC, CNRS, UMR7164 IN2P3,Observ Paris, Paris, France. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauera, Th S.; Beker, M. G.; Bloma, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Branda, J. F. J.; Van der Puttena, S.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Branda, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bigottaab, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bigottaab, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; Del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Blomberg, A.; Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.; Rogstad, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Nawrodt, R.; Punturoa, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Nawrodt, R.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Bertolini, A.; Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Univ Warsaw, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Univ Warsaw, Astron Observ, PL-00681 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietkae, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinskag, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J.; Nocera, F.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzinia, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavagli, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-67100 Laquila, Italy. [Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-67100 Laquila, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dhurandhar, S.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Dorsher, S.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Prodi, G. A.; Re, V.] INFN, Grp Collegato Trento, I-38050 Padua, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Padua, Italy. [Dragocd, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy. [Dragocd, M.] Univ Padua, I-35131 Padua, Italy. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Flaminio, R.; Franc, J.; Mackowski, J. M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avancs, IN2P3, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Greenhalgh, R. J. S.; Nolting, D.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Hayama, K.; Kawamura, S.; Morioka, T.; Neri, I.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Belczynski, K.] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM ilyamandel@chgk.info RI Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Shaddock, Daniel/A-7534-2011; Gammaitoni, Luca/B-5375-2009; Kawabe, Keita/G-9840-2011; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Prato, Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Punturo, Michele/I-3995-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012 OI Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Garufi, Fabio/0000-0003-1391-6168; Piergiovanni, Francesco/0000-0001-8063-828X; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Coccia, Eugenio/0000-0002-6669-5787; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Hallam, Jonathan Mark/0000-0002-7087-0461; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Santamaria, Lucia/0000-0002-5986-0449; Ward, Robert/0000-0001-5503-5241; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Punturo, Michele/0000-0001-8722-4485; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation and the Alfred P Sloan Foundation; European Commission FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation and the Alfred P Sloan Foundation. One of us (CK) would like to acknowledge the European Commission. NR 60 TC 619 Z9 619 U1 21 U2 139 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD SEP 7 PY 2010 VL 27 IS 17 AR 173001 DI 10.1088/0264-9381/27/17/173001 PG 25 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 631AC UT WOS:000280317700001 ER PT J AU Zitney, SE AF Zitney, Stephen E. TI Process/equipment co-simulation for design and analysis of advanced energy systems SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article; Proceedings Paper CT 7th International Conference on the Foundations of Computer-Aided Process Design CY JUN 07-12, 2009 CL Breckenridge, CO DE Process simulation; Computational fluid dynamics; Co-simulation; Virtual engineering; Fossil energy ID PROPER-ORTHOGONAL DECOMPOSITION; COMPUTATIONAL FLUID-DYNAMICS; HYBRID MULTIZONAL/CFD MODELS; REACTOR NETWORK ANALYSIS; REDUCED-ORDER MODEL; GENERAL METHODOLOGY; CFD; OPTIMIZATION; PREDICTION; FRAMEWORK AB The grand challenge facing the power and energy industries is the development of efficient, environmentally friendly, and affordable technologies for next-generation energy systems. To provide solutions for energy and the environment, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and its research partners in industry and academia are relying increasingly on the use of sophisticated computer-aided process design and optimization tools. In this paper, we describe recent progress toward developing an Advanced Process Engineering Co-Simulator (APECS) for the high-fidelity design, analysis, and optimization of energy plants. The APECS software system combines steady-state process simulation with multiphysics-based equipment simulations, such as those based on computational fluid dynamics (CFD). These co-simulation capabilities enable design engineers to optimize overall process performance with respect to complex thermal and fluid flow phenomena arising in key plant equipment items, such as combustors, gasifiers, turbines, and carbon capture devices. In this paper we review several applications of the APECS co-simulation technology to advanced energy systems, including coal-fired energy plants with carbon capture. This paper also discusses ongoing co-simulation R&D activities and challenges in areas such as CFD-based reduced-order modeling, knowledge management, advanced analysis and optimization, and virtual plant co-simulation. Continued progress in co-simulation technology - through improved integration, solution, and deployment - will have profound positive impacts on the design and optimization of high-efficiency, near-zero emission fossil energy systems. Published by Elsevier Ltd. C1 US DOE, Collaboratory Proc & Dynam Syst Res, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Zitney, SE (reprint author), US DOE, Collaboratory Proc & Dynam Syst Res, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Stephen.Zitney@NETL.DOE.GOV NR 71 TC 18 Z9 19 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD SEP 7 PY 2010 VL 34 IS 9 SI SI BP 1532 EP 1542 DI 10.1016/j.compchemeng.2010.02.011 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA 634ZM UT WOS:000280625200024 ER PT J AU Farley, DR AF Farley, David R. TI Calculation of ground state rotational populations for kinetic gas homonuclear diatomic molecules including electron-impact excitation and wall collisions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE Boltzmann equation; electron impact excitation; ground states; molecule-electron collisions; rotational states ID FRANCK-CONDON FACTORS; DISSOCIATIVE ATTACHMENT; HYDROGEN MOLECULES; ASSOCIATIVE DESORPTION; CROSS-SECTIONS; H-2; SCATTERING; DYNAMICS AB A model has been developed to calculate the ground state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with nonequilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N >= 3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3475000] C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Farley, DR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dfarley@pppl.gov FU U.S. Department of Energy [DE-AC02-76-CHO-3073] FX The author wishes to express his thanks and gratitude to Dr. Samuel Cohen for useful discussions. This work was supported, in part, by the U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073. NR 43 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2010 VL 133 IS 9 AR 094303 DI 10.1063/1.3475000 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649BX UT WOS:000281742900009 PM 20831314 ER PT J AU Sheppard, D Henkelman, G von Lilienfeld, OA AF Sheppard, Daniel Henkelman, Graeme von Lilienfeld, O. Anatole TI Alchemical derivatives of reaction energetics (vol 133, 084104, 2010) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Sheppard, Daniel; Henkelman, Graeme] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Sheppard, Daniel; Henkelman, Graeme] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA. [von Lilienfeld, O. Anatole] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. RP Sheppard, D (reprint author), Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. RI Henkelman, Graeme/A-9301-2008 OI Henkelman, Graeme/0000-0002-0336-7153 NR 1 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2010 VL 133 IS 9 AR 099901 DI 10.1063/1.3490336 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649BX UT WOS:000281742900035 ER PT J AU Biener, J Wittstock, A Biener, MM Nowitzki, T Hamza, AV Baeumer, M AF Biener, Juergen Wittstock, Arne Biener, Monika M. Nowitzki, Tobias Hamza, Alex V. Baeumer, Marcus TI Effect of Surface Chemistry on the Stability of Gold Nanostructures SO LANGMUIR LA English DT Article ID THIN-FILM GROWTH; NANOPOROUS GOLD; ION-BOMBARDMENT; LOW-TEMPERATURE; AU(111); AU; OXYGEN; IRRADIATION; NUCLEATION; EVOLUTION AB Understanding the role of surface chemistry in the stability of nanostructured noble-metal materials is important for many technological applications but experimentally difficult to access and thus little understood. To develop a fundamental understanding of the effect of surface chemistry on both the formation and stabilization of self-organized gold nanostructures, we performed a series of controlled-environment annealing experiments on nanoporous gold (np-Au) and ion-bombarded Au(111) single-crystal surfaces. The annealing experiments on np-Au in ambient ozone were carried out to study the effect of adsorbed oxygen under dynamic conditions, whereas the ion-bombarded Au single-crystal surfaces were used as a model system to obtain atomic-scale information. Our results show that adsorbed oxygen stabilizes nanoscale gold structures at low temperatures whereas oxygen-induced mobilization of Au surface atoms seems to accelerate the coarsening under dynamic equilibrium conditions at higher temperatures. C1 [Biener, Juergen; Biener, Monika M.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Wittstock, Arne; Nowitzki, Tobias; Baeumer, Marcus] Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, 700 East Ave, Livermore, CA 94550 USA. EM biener2@llnl.gov; awittstock@uni-bremen.de RI Baumer, Marcus/S-5441-2016 OI Baumer, Marcus/0000-0002-8620-1764 FU U.S. DOE [DE-AC52-07NA27344]; Hanse-Wissenschaftskolleg, Germany FX Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. J.B. gratefully acknowledges financial support from the Hanse-Wissenschaftskolleg, Germany. We gratefully acknowledge the experimental support (SEM) of Ardalan Zargham and Torben Rohbeck (Prof. Falta and Prof. Hommel, Institute for Solid State Physics, University Bremen) and Petra Witte (Prof. Fischer, Crystallography, Geology Department, University Bremen). NR 43 TC 27 Z9 27 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 7 PY 2010 VL 26 IS 17 BP 13736 EP 13740 DI 10.1021/la1019422 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 644DX UT WOS:000281354000003 PM 20669912 ER PT J AU Deacon, AN Smith, JF Freeman, SJ Janssens, RVF Carpenter, MP Hadinia, B Hoffman, CR Kay, BP Lauritsen, T Lister, CJ O'Donnell, D Ollier, J Otsuka, T Seweryniak, D Spohr, KM Steppenbeck, D Tabor, SL Tripathi, V Utsuno, Y Wady, PT Zhu, S AF Deacon, A. N. Smith, J. F. Freeman, S. J. Janssens, R. V. F. Carpenter, M. P. Hadinia, B. Hoffman, C. R. Kay, B. P. Lauritsen, T. Lister, C. J. O'Donnell, D. Ollier, J. Otsuka, T. Seweryniak, D. Spohr, K. -M. Steppenbeck, D. Tabor, S. L. Tripathi, V. Utsuno, Y. Wady, P. T. Zhu, S. TI Cross-shell excitations near the "island of inversion": Structure of Mg-30 SO PHYSICAL REVIEW C LA English DT Article ID RICH SODIUM ISOTOPES; BETA-DECAY; NUCLEI; SPECTROSCOPY AB Excited states in Mg-30 have been populated to similar to 6 (h) over bar and 5MeV excitation energy with the C-14(O-18, 2p) reaction. Firm spin assignments for states with J > 2 (h) over bar h have been made in this nucleus. The level scheme is compared to shell-model calculations using the Universal sd effective interaction and the Monte Carlo shell model method. Calculations employing a full sd model space fail to reproduce the observed levels. The results indicate that excitations across the N = 20 gap are required at relatively low excitation energy to achieve a description of the data. The incorporation of the f(7/2) and p(3/2) orbitals into the model space gives improved results but indicate the need for further refinement of the models to reproduce the observed spectra. C1 [Deacon, A. N.; Freeman, S. J.; Steppenbeck, D.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Smith, J. F.; Hadinia, B.; O'Donnell, D.; Ollier, J.; Spohr, K. -M.; Wady, P. T.] Univ W Scotland, Paisley PA1 2BE, Renfrew, Scotland. [Janssens, R. V. F.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hoffman, C. R.; Tabor, S. L.; Tripathi, V.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Otsuka, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Otsuka, T.] Univ Tokyo, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Utsuno, Y.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Deacon, AN (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM alick.deacon@manchester.ac.uk RI Kay, Benjamin/F-3291-2011; Freeman, Sean/B-1280-2010; O'Donnell, David/J-7786-2013; OTSUKA, TAKAHARU/G-5072-2014; Carpenter, Michael/E-4287-2015 OI Kay, Benjamin/0000-0002-7438-0208; Freeman, Sean/0000-0001-9773-4921; O'Donnell, David/0000-0002-4710-3803; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; UK Science and Technology Facilities Council; US National Science Foundation [PHY-01-01253, PHY-0456463, PHY-07-56474]; Scottish Universities Physics Alliance; RIKEN FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, by the UK Science and Technology Facilities Council, by US National Science Foundation Grants No. PHY-01-01253, No. PHY-0456463, and No. PHY-07-56474, and by the Scottish Universities Physics Alliance. The authors are grateful to the group at Birmingham University for the loan of the 14C target. DS acknowledges financial support from RIKEN. NR 28 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 7 PY 2010 VL 82 IS 3 AR 034305 DI 10.1103/PhysRevC.82.034305 PG 7 WC Physics, Nuclear SC Physics GA 647UC UT WOS:000281643900004 ER PT J AU Randrup, J AF Randrup, Jorgen TI Spinodal phase separation in relativistic nuclear collisions SO PHYSICAL REVIEW C LA English DT Article ID INSTABILITIES; DECOMPOSITION; TRANSITIONS AB The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collision. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Randrup, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. FU Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge helpful discussions with V. Koch, J. Liao, H. C. Song, and D. N. Voskresensky. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 36 Z9 38 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 7 PY 2010 VL 82 IS 3 AR 034902 DI 10.1103/PhysRevC.82.034902 PG 14 WC Physics, Nuclear SC Physics GA 647UC UT WOS:000281643900006 ER PT J AU Parks, HV Faller, JE AF Parks, Harold V. Faller, James E. TI Simple Pendulum Determination of the Gravitational Constant SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUNDAMENTAL PHYSICAL CONSTANTS; TORSION BALANCE AB We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.67234 +/- 0.00014) x 10(-11) m(3) kg(-1) s(-2). This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59 +/- 0.00085) x 10(-11) m(3) kg(-1) s(-2) [Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.67428 +/- 0.00067) x 10(-11) m(3) kg(-1) s(-2) [Rev. Mod. Phys. 80, 633 (2008)]. C1 [Parks, Harold V.; Faller, James E.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Parks, Harold V.; Faller, James E.] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Parks, Harold V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Parks, HV (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM hvparks@sandia.gov FU National Research Council; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Douglas S. Robertson for writing software to provide an independent check of our gravity field calculations as well as Hans Green, Blaine Horner, and Alan Patee for creating the apparatus. We also thank Terry Quinn and Richard Davis for many helpful discussions. H.P. is grateful to the National Research Council for financial support. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 14 TC 35 Z9 37 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 7 PY 2010 VL 105 IS 11 AR 110801 DI 10.1103/PhysRevLett.105.110801 PG 4 WC Physics, Multidisciplinary SC Physics GA 647UO UT WOS:000281645200002 PM 20867560 ER PT J AU Wood, MH Nasseripour, R Paolone, M Djalali, C Weygand, DP Adhikari, KP Anghinolfi, M Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Bellis, M Berman, BL Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Doughty, D Dupre, R Egiyan, H El Alaoui, A El Fassi, L Eugenio, P Fegan, S Gabrielyan, MY On, MG Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gothe, RW Graham, L Guidal, M Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hicks, K Holtrop, M Ilieva, Y Ireland, DG Ishkhanov, BS Jawalkar, SS Jo, HS Joo, K Keller, D Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Konczykowski, P Kubarovsky, V Kuleshov, SV Kuznetsov, V Livingston, K Martinez, D Mayer, M McAndrew, J McCracken, ME McKinnon, B Meyer, CA Mineeva, T Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Munevar, E Nadel-Turonski, P Ni, A Niccolai, S Niculescu, G Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Schott, D Schumacher, RA Seder, E Seraydaryan, H Sharabian, YG Smith, GD Sober, DI Sokhan, D Stepanyan, S Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Taiuti, M Tang, W Taylor, CE Tedeschi, DJ Tkachenko, S Ungaro, M Vernarsky, B Vineyard, MF Voutier, E Watts, DP Weinstein, LB Zhang, J Zhao, B Zhao, ZW AF Wood, M. H. Nasseripour, R. Paolone, M. Djalali, C. Weygand, D. P. Adhikari, K. P. Anghinolfi, M. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Bellis, M. Berman, B. L. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Doughty, D. Dupre, R. Egiyan, H. El Alaoui, A. El Fassi, L. Eugenio, P. Fegan, S. Gabrielyan, M. Y. On, M. Garc Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gothe, R. W. Graham, L. Guidal, M. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Jawalkar, S. S. Jo, H. S. Joo, K. Keller, D. Khandaker, M. Khetarpal, A. Kim, A. Kim, W. Klein, A. Klein, F. J. Konczykowski, P. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Martinez, D. Mayer, M. McAndrew, J. McCracken, M. E. McKinnon, B. Meyer, C. A. Mineeva, T. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Munevar, E. Nadel-Turonski, P. Ni, A. Niccolai, S. Niculescu, G. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Schott, D. Schumacher, R. A. Seder, E. Seraydaryan, H. Sharabian, Y. G. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tang, W. Taylor, C. E. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vernarsky, B. Vineyard, M. F. Voutier, E. Watts, D. P. Weinstein, L. B. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Absorption of the omega and phi Mesons in Nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID RHO-MESON; MATTER; PHOTOPRODUCTION; PROPAGATION; PHOTON; DECAY; MASS AB Because of their long lifetimes, the omega and phi mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from (2)H, C, Ti, Fe, and Pb targets. This Letter reports the first measurement of the ratio of nuclear transparencies for the e(+)e(-) channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels. The absorption of the omega meson is stronger than that reported by the CBELSA-TAPS experiment and cannot be explained by recent theoretical models. C1 [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Nasseripour, R.; Berman, B. L.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Wood, M. H.; Paolone, M.; Djalali, C.; Gothe, R. W.; Graham, L.; Ilieva, Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Tkachenko, S.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Weygand, D. P.; Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Guo, L.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Pasyuk, E.; Raue, B. A.; Sharabian, Y. G.; Stepanyan, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Collins, P.; Morrison, B.; Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Biselli, A. S.; Dey, B.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; On, M. Garc; Girod, F. X.; Konczykowski, P.; Moreno, B.; Procureur, S.; Sabatie, F.; Zhao, B.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Mineeva, T.; Seder, E.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Cole, P. L.; Martinez, D.; Salamanca, J.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Jo, H. S.; Niccolai, S.; Pisano, S.; Sokhan, D.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Khetarpal, A.; Kim, W.; Kuznetsov, V.; Ni, A.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Joseph Fourier, CNRS, IN2P3,INPG, LPSC, Grenoble, France. [Egiyan, H.; Holtrop, M.; Protopopescu, D.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Khandaker, M.; Salgado, C.] Ohio Univ, Athens, OH 45701 USA. [Daniel, A.; Hicks, K.; Keller, D.; Tang, W.] Old Dominion Univ, Norfolk, VA 23529 USA. [Adhikari, K. P.; Careccia, S. L.; Klein, A.; Mayer, M.; Niroula, M. R.; Seraydaryan, H.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Kubarovsky, V.; Stoler, P.; Ungaro, M.] Rensselaer Polytechn Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Ishkhanov, B. S.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Joo, K.; Kuleshov, S. V.] Univ Tecnica Feder Santa Maria, Valparaiso 110V, Chile. [Fegan, S.; Hassall, N.; Ireland, D. G.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Hakobyan, H.; Paremuzyan, R.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Wood, MH (reprint author), Canisius Coll, Buffalo, NY 14208 USA. RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Protopopescu, Dan/D-5645-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010 OI Osipenko, Mikhail/0000-0001-9618-3013; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011 FU U.S. Department of Energy [DE-AC05-84ER40150]; National Science Foundation; Research Corporation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; National Research Foundation of Korea; U.K. Science and Technology Facilities Council (STFC); Deutsche Forschungsgemeinschaft; Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FX We would like to thank the staff of the Accelerator and Physics Divisions at JLab. This work was supported in part by the U.S. Department of Energy, the National Science Foundation, the Research Corporation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the National Research Foundation of Korea, the U.K. Science and Technology Facilities Council (STFC), Deutsche Forschungsgemeinschaft, and the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT). Jefferson Science Associates (JSA) operates JLab for the U.S. Department of Energy under contract DE-AC05-84ER40150. NR 38 TC 39 Z9 39 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 7 PY 2010 VL 105 IS 11 AR 112301 DI 10.1103/PhysRevLett.105.112301 PG 6 WC Physics, Multidisciplinary SC Physics GA 647UO UT WOS:000281645200005 PM 20867566 ER PT J AU Bruce, R Jowett, JM Blaskiewicz, M Fischer, W AF Bruce, R. Jowett, J. M. Blaskiewicz, M. Fischer, W. TI Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We have studied the time evolution of the heavy-ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC) at BNL, and in the Large Hadron Collider (LHC) at CERN. First, we present measurements from a large number of RHIC stores (from run-7), colliding 100 GeV/nucleon Au-197(79+) beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multiparticle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the rf bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb-208(82+) beams in the LHC at injection and collision energy. For this machine, the two methods agree well. C1 [Bruce, R.; Jowett, J. M.] CERN, Geneva, Switzerland. [Blaskiewicz, M.; Fischer, W.] BNL, Upton, NY 11973 USA. RP Bruce, R (reprint author), CERN, Geneva, Switzerland. EM roderik.bruce@cern.ch OI Jowett, John M./0000-0002-9492-3775 NR 46 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 7 PY 2010 VL 13 IS 9 AR 091001 DI 10.1103/PhysRevSTAB.13.091001 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 647UR UT WOS:000281645500001 ER PT J AU de Jonge, MD Holzner, C Baines, SB Twining, BS Ignatyev, K Diaz, J Howard, DL Legnini, D Miceli, A McNulty, I Jacobsen, CJ Vogt, S AF de Jonge, Martin D. Holzner, Christian Baines, Stephen B. Twining, Benjamin S. Ignatyev, Konstantin Diaz, Julia Howard, Daryl L. Legnini, Daniel Miceli, Antonino McNulty, Ian Jacobsen, Chris J. Vogt, Stefan TI Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE diatom; trace element distributions; X-ray fluorescence tomography ID DIATOM THALASSIOSIRA-PSEUDONANA; X-RAY MICROPROBE; FLUORESCENCE DATA; TRACE-ELEMENTS; IRON; OCEAN; ZINC; CELLS; VISUALIZATION; FRUSTULE AB X-ray fluorescence tomography promises to map elemental distributions in unstained and unfixed biological specimens in three dimensions at high resolution and sensitivity, offering unparalleled insight in medical, biological, and environmental sciences. X-ray fluorescence tomography of biological specimens has been viewed as impractical-and perhaps even impossible for routine application- due to the large time required for scanning tomography and significant radiation dose delivered to the specimen during the imaging process. Here, we demonstrate submicron resolution X-ray fluorescence tomography of a whole unstained biological specimen, quantifying three-dimensional distributions of the elements Si, P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn in the freshwater diatom Cyclotella meneghiniana with 400-nm resolution, improving the spatial resolution by over an order of magnitude. The resulting maps faithfully reproduce cellular structure revealing unexpected patterns that may elucidate the role of metals in diatom biology and of diatoms in global element cycles. With anticipated improvements in data acquisition and detector sensitivity, such measurements could become routine in the near future. C1 [de Jonge, Martin D.; Howard, Daryl L.] Australian Synchrotron, Clayton, Vic 3168, Australia. [Holzner, Christian; Jacobsen, Chris J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Baines, Stephen B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA. [Twining, Benjamin S.] Bigelow Lab Ocean Sci, W Boothbay Harbor, ME 04575 USA. [Ignatyev, Konstantin; Legnini, Daniel; Miceli, Antonino; McNulty, Ian; Vogt, Stefan] Argonne Natl Lab, Argonne, IL 60439 USA. [Diaz, Julia] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. EM martin.dejonge@synchrotron.org.au RI de Jonge, Martin/C-3400-2011; Jacobsen, Chris/E-2827-2015; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Ignatyev, Konstantin/0000-0002-8937-5655; Jacobsen, Chris/0000-0001-8562-0353; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 FU International Synchrotron Access Program (ISAP); National Collaborative Research Infrastructure Strategy; ARC [DP0987422]; National Institutes of Health (NIH) [5R21EB006134-02, P41 RR-01081]; National Science Foundation (NSF) [OCE 0527059, OCE 0913080, OCE 0527062]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Many thanks to L. Finney for experimental support and R. Sluiter for controls assistance. M.D.d.J. acknowledges travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron. ISAP is funded by a National Collaborative Research Infrastructure Strategy grant provided by the federal government of Australia. M.D.d.J. was supported under an ARC Discovery Project DP0987422. C.H. was supported by National Institutes of Health (NIH) Grant 5R21EB006134-02. S.B.B. was supported by National Science Foundation (NSF) Grants OCE 0527059 and OCE 0913080. B.S.T. was supported by NSF Grant OCE 0527062. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Molecular graphics images were produced using the UCSF Chimera package (35) from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH Grant P41 RR-01081). We thank the reviewers for their helpful comments. NR 36 TC 62 Z9 65 U1 3 U2 50 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 7 PY 2010 VL 107 IS 36 BP 15676 EP 15680 DI 10.1073/pnas.1001469107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647RY UT WOS:000281637800011 PM 20720164 ER PT J AU Yang, SC Blachowicz, L Makowski, L Roux, B AF Yang, Sichun Blachowicz, Lydia Makowski, Lee Roux, Benoit TI Multidomain assembled states of Hck tyrosine kinase in solution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE coarse-grained model; Bayesian analysis; folding; SAXS; simulation ID X-RAY-SCATTERING; CRYSTAL-STRUCTURE; C-SRC; STRUCTURAL-CHARACTERIZATION; PROTEIN COMPLEXES; SH3 DOMAIN; ACTIVATION; DYNAMICS; PHOSPHORYLATION; TRANSITION AB An approach combining small-angle X-ray solution scattering (SAXS) data with coarse-grained (CG) simulations is developed to characterize the assembly states of Hck, a member of the Src-family kinases, under various conditions in solution. First, a basis set comprising a small number of assembly states is generated from extensive CG simulations. Second, a theoretical SAXS profile for each state in the basis set is computed by using the Fast-SAXS method. Finally, the relative population of the different assembly states is determined via a Bayesian-based Monte Carlo procedure seeking to optimize the theoretical scattering profiles against experimental SAXS data. The study establishes the concept of basis-set supported SAXS (BSS-SAXS) reconstruction combining computational and experimental techniques. Here, BSS-SAXS reconstruction is used to reveal the structural organization of Hck in solution and the different shifts in the equilibrium population of assembly states upon the binding of different signaling peptides. C1 [Yang, Sichun; Blachowicz, Lydia; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Makowski, Lee; Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 929 E 57th St, Chicago, IL 60637 USA. EM roux@uchicago.edu RI Yang, Sichun/B-1608-2008; ID, BioCAT/D-2459-2012 OI Yang, Sichun/0000-0002-1726-0576; FU National Institutes of Health via National Cancer Institute [CA-093577]; Teragrid [MCA01S018]; San Diego Supercomputer Center FX We thank Markus Seeliger and John Kuriyan for providing the pHCK3D and YopH Duet plasmids and Richard Jones for synthesizing p2 and p3 peptides. SAXS experiments were carried out at the BioCAT of the Argonne National Laboratory with the help of Dr. Liang Guo. We thank Alper Dagcan for helping with SAXS experiments. This work was supported by the National Institutes of Health via Grant CA-093577 from the National Cancer Institute. The computations were supported by Teragrid under project MCA01S018 and by the San Diego Supercomputer Center. NR 32 TC 93 Z9 94 U1 1 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 7 PY 2010 VL 107 IS 36 BP 15757 EP 15762 DI 10.1073/pnas.1004569107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647RY UT WOS:000281637800026 PM 20798061 ER PT J AU Nossa, CW Oberdorf, WE Yang, LY Aas, JA Paster, BJ DeSantis, TZ Brodie, EL Malamud, D Poles, MA Pei, ZH AF Nossa, Carlos W. Oberdorf, William E. Yang, Liying Aas, Jorn A. Paster, Bruce J. DeSantis, Todd Z. Brodie, Eoin L. Malamud, Daniel Poles, Michael A. Pei, Zhiheng TI Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome SO WORLD JOURNAL OF GASTROENTEROLOGY LA English DT Article DE Foregut; Microbiome; 16S; 454 sequencing; Primer ID DISTAL ESOPHAGUS; BACTERIAL BIOTA; DNA; DIVERSITY; SEQUENCES; AMPLIFICATION AB AIM: To design and validate broad-range 16S rRNA primers for use in high throughput sequencing to classify bacteria isolated from the human foregut microbiome. METHODS: A foregut microbiome dataset was constructed using 16S rRNA gene sequences obtained from oral, esophageal, and gastric microbiomes produced by Sanger sequencing in previous studies represented by 219 bacterial species. Candidate primers evaluated were from the European rRNA database. To assess the effect of sequence length on accuracy of classification, 16S rRNA genes of various lengths were created by trimming the full length sequences. Sequences spanning various hypervariable regions were selected to simulate the amplicons that would be obtained using possible primer pairs. The sequences were compared with full length 16S rRNA genes for accuracy in taxonomic classification using online software at the Ribosomal Database Project (RDP). The universality of the primer set was evaluated using the RDP 16S rRNA database which is comprised of 433306 16S rRNA genes, represented by 36 phyla. RESULTS: Truncation to 100 nucleotides (nt) downstream from the position corresponding to base 28 in the Escherichia coli 165 rRNA gene caused misclassification of 87 (39.7%) of the 219 sequences, compared with misclassification of only 29 (13.2%) sequences with truncation to 350 nt. Among 350-nt sequence reads within various regions of the 165 rRNA gene, the reverse read of an amplicon generated using the 343F/798R primers had the least (8.2%) effect on classification. In comparison, truncation to 900 nt mimicking single pass Sanger reads misclassified 5.0% of the 219 sequences. The 343F/798R amplicon accurately assigned 91.8% of the 219 sequences at the species level. Weighted by abundance of the species in the esophageal dataset, the 343F/798R amplicon yielded similar classification accuracy without a significant loss in species coverage (92%). Modification of the 343F/798R primers to 347F/803R increased their universality among foregut species. Assuming that a typical polymerase chain reaction can tolerate 2 mismatches between a primer and a template, the modified 347F and 803R primers should be able to anneal 98% and 99.6% of all 16S rRNA genes in the RDP database. CONCLUSION: 347F/803R is the most suitable pair of primers for classification of foregut 16S rRNA genes but also possess universality suitable for analyses of other complex microbionnes. (C) 2010 Baishideng. All rights reserved. C1 [Pei, Zhiheng] Dept Vet Affairs New York Harbor Hlth Syst, New York, NY 10010 USA. [Nossa, Carlos W.; Oberdorf, William E.; Poles, Michael A.] NYU, Sch Med, Dept Med, New York, NY 10016 USA. [Yang, Liying] NYU, Dept Pathol, Sch Med, New York, NY 10016 USA. [Aas, Jorn A.; Paster, Bruce J.] Forsyth Inst, Dept Mol Genet, Boston, MA 02115 USA. [Aas, Jorn A.] Univ Oslo, Fac Dent, N-0316 Oslo, Norway. [Paster, Bruce J.] Harvard Univ, Sch Dent Med, Boston, MA 02115 USA. [DeSantis, Todd Z.; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [Malamud, Daniel] NYU, Coll Dent, New York, NY 10016 USA. [Pei, Zhiheng] NYU, Dept Pathol & Med, Sch Med, New York, NY 10016 USA. RP Pei, ZH (reprint author), Dept Vet Affairs New York Harbor Hlth Syst, 423 E 23rd St, New York, NY 10010 USA. EM zhiheng.pei@nyumc.org RI Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Malamud, Daniel/0000-0002-9094-4122 FU NIH Roadmap Initiative [UH2CA140233]; National Cancer Institute [UH2CA140233]; National Institute of Allergy and Infectious Diseases [R01AI063477]; National Institute of Dental and Craniofacial Research [DE-11443, U19DE018385] FX Supported by (in part) Grants UH2CA140233 from the Human Microbiome Project of the NIH Roadmap Initiative and National Cancer Institute; R01AI063477 from the National Institute of Allergy and Infectious Diseases; DE-11443 from the National Institute of Dental and Craniofacial Research; and U19DE018385 from the National Institute of Dental & Craniofacial Research NR 32 TC 102 Z9 104 U1 1 U2 44 PU BAISHIDENG PUBLISHING GROUP INC PI PLEASANTON PA 8226 REGENCY DR, PLEASANTON, CA 94588 USA SN 1007-9327 EI 2219-2840 J9 WORLD J GASTROENTERO JI World J. Gastroenterol. PD SEP 7 PY 2010 VL 16 IS 33 BP 4135 EP 4144 DI 10.3748/wjg.v16.i33.4135 PG 10 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 647PH UT WOS:000281630300004 PM 20806429 ER PT J AU Bennett, DA Horansky, RD Hoover, AS Hoteling, NJ Rabin, MW Schmidt, DR Swetz, DS Vale, LR Ullom, JN AF Bennett, D. A. Horansky, R. D. Hoover, A. S. Hoteling, N. J. Rabin, M. W. Schmidt, D. R. Swetz, D. S. Vale, L. R. Ullom, J. N. TI An analytical model for pulse shape and electrothermal stability in two-body transition-edge sensor microcalorimeters SO APPLIED PHYSICS LETTERS LA English DT Article AB High-resolution superconducting gamma-ray sensors show potential for the more accurate analysis of nuclear material. These devices are part of a larger class of microcalorimeters and bolometers based on transition edge sensors (TESs) that have two distinct thermal bodies. We derive the time domain behavior of the current and temperature for compound TES devices in the small signal limit and demonstrate the utility of these equations for device design and characterization. In particular, we use the model to fit pulses from our gamma-ray microcalorimeters and demonstrate how critical damping and electrothermal stability can be predicted. [doi :10.1063/1.3486477] C1 [Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Hoover, A. S.; Hoteling, N. J.; Rabin, M. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bennett, DA (reprint author), Natl Inst Stand & Technol, Boulder, CO 80305 USA. EM douglas.bennett@nist.gov RI Bennett, Douglas/B-8001-2012 OI Bennett, Douglas/0000-0003-3011-3690 FU U.S. Department of Energy through the Office of Nonproliferation Research and Verification FX We gratefully acknowledge the support of the U.S. Department of Energy through the Office of Nonproliferation Research and Verification. NR 8 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 6 PY 2010 VL 97 IS 10 AR 102504 DI 10.1063/1.3486477 PG 3 WC Physics, Applied SC Physics GA 658GP UT WOS:000282478800026 ER PT J AU Yu, KM Novikov, SV Broesler, R Liliental-Weber, Z Levander, AX Kao, VM Dubon, OD Wu, J Walukiewicz, W Foxon, CT AF Yu, K. M. Novikov, S. V. Broesler, R. Liliental-Weber, Z. Levander, A. X. Kao, V. M. Dubon, O. D. Wu, J. Walukiewicz, W. Foxon, C. T. TI Low gap amorphous GaN1-xAsx alloys grown on glass substrate SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; BAND; LAYERS; ENERGY AB Amorphous GaN1-xAsx layers with As content in the range of x=0.1 to 0.6 were grown by molecular beam epitaxy on Pyrex glass substrate. These alloys exhibit a wide range of band gap values from 2.2 to 1.3 eV. We found that the density of the amorphous films is similar to 0.8-0.85 of their corresponding crystalline value. These amorphous films have smooth morphology, homogeneous composition, and sharp well defined optical absorption edges. The measured band gap values for the crystalline and amorphous GaN1-xAsx alloys are in excellent agreement with the predictions of the band anticrossing model. The high absorption coefficient of similar to 10(5) cm(-1) for the amorphous GaN1-xAsx films suggests that relatively thin films (on the order of I,am) are necessary for photovoltaic application. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488826] C1 [Yu, K. M.; Broesler, R.; Liliental-Weber, Z.; Levander, A. X.; Kao, V. M.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Broesler, R.; Levander, A. X.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yu, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Wu, Junqiao/G-7840-2011; Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012 OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/G046867/1, EP/G030634/1, EP/I004203/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the University of Nottingham was undertaken with support from the EPSRC (Grant Nos. EP/G046867/1, EP/G030634/1, and EP/I004203/1). NR 13 TC 11 Z9 11 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 6 PY 2010 VL 97 IS 10 AR 101906 DI 10.1063/1.3488826 PG 3 WC Physics, Applied SC Physics GA 658GP UT WOS:000282478800017 ER PT J AU Li, J Kathmann, SM Hu, HS Schenter, GK Autrey, T Gutowski, M AF Li, Jun Kathmann, Shawn M. Hu, Han-Shi Schenter, Gregory K. Autrey, Tom Gutowski, Maciej TI Theoretical Investigations on the Formation and Dehydrogenation Reaction Pathways of H(NH2BH2)(n)H (n=1-4) Oligomers: Importance of Dihydrogen Interactions SO INORGANIC CHEMISTRY LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; CHEMICAL HYDROGEN STORAGE; AMMONIA-BORANE DEHYDROGENATION; INTRINSIC REACTION COORDINATE; DENSITY-FUNCTIONAL THEORY; N-H COMPOUNDS; THERMAL-DECOMPOSITION; AB-INITIO; ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS AB The H(NH2BH2)(n)H oligomers are possible products from dehydrogenation of ammonia borane (NH3BH3) and ammonium borohydride (NH4BH4), which belong to a class of boron-nitrogen-hydrogen (BNHx) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these oligomers and their further dehydrogenation is essential for developing BNHx-based hydrogen storage materials. We have performed computational modeling using density functional theory (DFT), ab initio wave function theory, and Car-Parrinello molecular dynamics (CPMD) simulations on the energetics and formation pathways for the H(NH2BH2)(n)H (n = 1-4) oligomers, polyaminoborane (PAB), from NH3BH3 monomers and the subsequent dehydrogenation steps to form polyiminoborane (PIB). Through computational transition state searches and evaluation of the intrinsic reaction coordinates, we have investigated the B-N bond cleavage, the reactions of NH3BH3 molecule with intermediates, dihydrogen release through infra- and intermolecular hydrogen transfer, dehydrocoupling/cyclization of the oligomers, and the dimerization of NH3BH3 molecules. We find that the formation of H(NH2BH2)(n+1)H oligomers occurs first through reactions of the H(NH2BH2)(n)H oligomers with BH3 followed by reactions with NH3 and the release of H-2, where the BH3 and NH3 intermediates are formed through dissociation of NH3BH3. We also find that the dimerization of the NH3BH3 molecules to form cyclic c-(NH2BH2)(2) is slightly exothermic, with an unexpected transition state that leads to the simultaneous release of two H-2 molecules. The dehydrogenations of the oligomers are also exothermic, typically by less than 10 kcal/(mol of H-2), with the largest exothermicity for n = 3. The transition state search shows that the one-step direct dehydrocoupling cyclization of the oligomers is not a favored pathway because of high activation barriers. The dihydrogen bonding, in which protic (H-N) hydrogens interact with hydridic (H-B) hydrogens, plays a vital role in stabilizing different structures of the reactants, transition states, and products. The dihydrogen interaction (DHI) within the R-BH2(eta(2)-H-2) moiety accounts for both the formation mechanisms of the oligomers and for the dehydrogenation of ammonia borane. C1 [Li, Jun; Hu, Han-Shi] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Li, Jun; Kathmann, Shawn M.; Schenter, Gregory K.; Autrey, Tom; Gutowski, Maciej] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Li, Jun; Kathmann, Shawn M.; Schenter, Gregory K.; Autrey, Tom; Gutowski, Maciej] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Gutowski, Maciej] Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. EM junli.thu@gmail.com RI Li, Jun/E-5334-2011; Schenter, Gregory/I-7655-2014 OI Li, Jun/0000-0002-8456-3980; Schenter, Gregory/0000-0001-5444-5484 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division; DOE EERE Chemical Hydrogen Storage Center of Excellence; NKBRSF [2006CB932300, 2007CB815203]; European Community [MIRG-CT-2007-046477]; U.S. Department of Energy's Office of Biological and Environmental Research at the Pacific Northwest National Laboratory FX We are grateful to Drs. John Linehan and Don Camaioni for helpful discussions. S.K. and G.S. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division. J.L. and T.A. acknowledge support from DOE EERE Chemical Hydrogen Storage Center of Excellence. J.L. is also supported by NKBRSF (2006CB932300, 2007CB815203) and M.G. was supported by a Marie Curie project MIRG-CT-2007-046477 within the 6th European Community Framework Programme. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle. NR 70 TC 20 Z9 20 U1 2 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 6 PY 2010 VL 49 IS 17 BP 7710 EP 7720 DI 10.1021/ic100418a PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 642QT UT WOS:000281231800022 PM 20701247 ER PT J AU Nyman, M Rodriguez, MA Campana, CF AF Nyman, May Rodriguez, Mark A. Campana, Charles F. TI Self-Assembly of Alkali-Uranyl-Peroxide Clusters SO INORGANIC CHEMISTRY LA English DT Article ID BOND-VALENCE PARAMETERS; CRYSTAL-CHEMISTRY; FULLERENE TOPOLOGIES; ELECTRON-TRANSFER; CATION SIZE; ION-PAIRS; COORDINATION; POLYHEDRA; URANIUM; ENERGY AB The hexavalent uranium specie, uranyl triperoxide, UO(2)(O(2))(3)(4-), has been shown recently to behave like high oxidation-state d(0) transition-metals, self-assembling into polyoxometalate-like clusters that contain up to 60 uranyl cations bridged by peroxide ligands. There has been much less focus on synthesis and structural characterization of salts of the monomeric UO(2)(O(2))(3)(4-) building block of these clusters. However, these could serve as water-soluble uranyl precursors for both clusters and materials, and also be used as simple models to study aqueous behavior by experiment and modeling. The countercation is of utmost importance to the assembly of these clusters, and Li(+) has proven useful for the crystallization of many of the known cluster geometries to date. We present in this paper synthesis and structural characterization of two monomeric lithium uranyl-peroxide salts, Li(4)[UO(2)(O(2))(3)] center dot 10H(2)O (1) and [UO(2)(O(2))(3)](12)[(UO(2)(OH)(4))Li(16)(H(2)O)(28)](3) center dot Li(6)[H(2)O](26) (2). They were obtained from aqueous-alcohol solutions rather than the analogous aqueous solutions from which lithium uranyl-peroxide clusters are crystallized. Rapid introduction of the alcohol gives the structure of (1) whereas slow diffusion of alcohol results in crystallization of (2). (2) is an unusual structure featuring uranyl-centered alkali clusters that are linked into ring and spherical arrangements via [UO(2)(O(2))(3)] anions. Furthermore, partial substitution of Rb or Cs into the synthesis results in formation of (2) with substitution of these larger alkalis into the uranyl-centered clusters. We surmise that the slow crystallization allows for direct bonding of alkali metals to the uranyl-peroxide oxygen ligands that is observed in (2), and its Rb and Cs-substituted derivatives. In contrast, the only interaction between UO(2)(O(2))(3)(4-) and Li(+) observed in (1) is through hydrogen bonding of the lithium-bound water. These structures potentially provide some insight to understanding how alkali counterions interact with the UO(2)(O(2))(3)(4-) anions during the self-assembly, crystallization and even redissolution of uranyl-peroxide polyanionic clusters. C1 [Nyman, May; Rodriguez, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Campana, Charles F.] Bruker AXS Inc, Madison, WI 53711 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov OI Campana, Charles/0000-0002-0495-0922 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; United States Department of Energy [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 28 TC 19 Z9 19 U1 5 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 6 PY 2010 VL 49 IS 17 BP 7748 EP 7755 DI 10.1021/ic1005192 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 642QT UT WOS:000281231800027 PM 20701308 ER PT J AU Cohen, BW Polyansky, DE Zong, RF Zhou, H Ouk, T Cabelli, DE Thummel, RP Fujita, E AF Cohen, Brian W. Polyansky, Dmitry E. Zong, Ruifa Zhou, Hui Ouk, Theany Cabelli, Diane E. Thummel, Randolph P. Fujita, Etsuko TI Differences of pH-Dependent Mechanisms on Generation of Hydride Donors using Ru(II) Complexes Containing Geometric Isomers of NAD(+) Model Ligands: NMR and Radiolysis Studies in Aqueous Solution SO INORGANIC CHEMISTRY LA English DT Article ID BOND-DISSOCIATION ENERGIES; ELECTRON-REDUCED FORMS; NADH ANALOGS; RUTHENIUM(II) COMPLEXES; PYRIDINYL RADICALS; EXCITED-STATES; ACID-BASE; ONE-STEP; ELECTROCHEMICAL REDUCTION; 2-ELECTRON REDUCTION AB The pH-dependent mechanism of the reduction of the nicotinamide adenine dinucleotide (NADH) model complex [Ru(bpy)(2)(5)](2+) (5 = 3-(pyrid-2'-yl)-4-azaacridine) was compared to the mechanism of the previously studied geometric isomer [Ru(bpy)(2)(pbn)](2+) (pbn = 2-(pyrid-2'-yl)-1-azaacridine, previously referred to as 2-(pyrid-2'-yl)benzo[b]-1,5-naphthyridine) in aqueous media. The exposure of [Ru(bpy)(2)(5)](2+) to CO2 center dot- leads to the formation of the one-electron reduced species (k = 4.4 x 10(9) M-1 s(-1)). At pH < 11.2, the one-electron reduced species can be protonated, k= 2.6 x 10(4) s(-1) in D2O. Formation of a C-C bonded dimer is observed across the pH range of 5-13 (k = 4.5 X 10(8) M-1 S-1). At pH < 11, two protonated radical species react to form a stable C-C bonded dimer. At pH > 11, dimerization of two one-electron reduced species is followed by disproportionation to one equivalent starting complex [Ru(bpy)(2)(5)](2+) and one equivalent [Ru(bpy)(2)(5HH)](2+). The structural difference between [Ru(bpy)(2)(pbn)](2+) and [Ru(bpy)(2)(5)](2+) dictates the mechanism and product formation in aqueous medium. The exchange of the nitrogen and carbon atoms on the azaacridine ligands alters the accessibility of the dimerization reactive site, thereby changing the mechanism and the product formation for the reduction of the [Ru(bpy)(2)(5)](2+) compound. C1 [Cohen, Brian W.; Polyansky, Dmitry E.; Cabelli, Diane E.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zong, Ruifa; Zhou, Hui; Ouk, Theany; Thummel, Randolph P.] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Cabelli, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM cabelli@bnl.gov; thummel@uh.edu; fujita@bnl.gov RI Fujita, Etsuko/D-8814-2013; Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU University of Houston [DE-FG03-02ER15334]; BNL [DE-AC02-98CH10886]; U.S. Department of Energy; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; U.S. Department of Energy for funding under the BES Solar Energy Utilization Initiative FX Work performed at BNL and University of Houston is funded under contract DE-AC02-98CH10886 and contract no. DE-FG03-02ER15334, respectively, with the U.S. Department of Energy and is supported by its Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences. E.F. and D.E.C. also thank the U.S. Department of Energy for funding under the BES Solar Energy Utilization Initiative. R.P.T. thanks the Robert A. Welch Foundation (E-621). NR 73 TC 23 Z9 23 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 6 PY 2010 VL 49 IS 17 BP 8034 EP 8044 DI 10.1021/ic101098v PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 642QT UT WOS:000281231800059 PM 20687532 ER PT J AU Zhang, GP Qin, ZJ AF Zhang, G. P. Qin, Z. J. TI Crossover of the conductivity of zigzag graphene nanoribbon connected by normal metal contacts SO PHYSICS LETTERS A LA English DT Article ID LOCALIZATION; TRANSPORT; GAS AB The transport property of zigzag graphene nanoribbon (ZGNR) connected by two normal metal contacts is investigated by Landauer-Buttiker formula combined with transfer matrix method. In addition to evenodd parity, we found that the conductivity is completely determined by the width-to-length ratio. For certain wide ZGNR with even number carbon atoms in the width direction, the conductivity dependence on the length changes from linearly to inversely, when the length approaches the thermodynamic limit, as the transport property is quite different for different aspect of ZGNR. (C) 2010 Elsevier By. All rights reserved. C1 [Zhang, G. P.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Zhang, G. P.] US DOE, Ames Lab, Ames, IA 50011 USA. [Zhang, G. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Qin, Z. J.] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Peoples R China. RP Zhang, GP (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. EM zhanggp96@ruc.edu.cn RI Zhang, Guiping/F-4390-2011; 石, 源/D-5929-2012; ruc, phy/E-4170-2012 OI Zhang, Guiping/0000-0001-8697-5711; FU NFSC grants (China) [10425417, 10674142]; US Department of Energy, Basic Energy Sciences; National Energy Research Supercomputing Centre (NERSC) in Berkeley [DE-ACO2-07CH11358] FX G.P. Zhang would like to thank Prof. Wang X.Q. for proposing this interesting issue, and thank Pre. Lu Z.Y. for many pronounced discussion. G.P. Zhang also thank Dr. Hu S.J. for discussing the effect of the structure of quantum wire on the transport property. This work was supported by the NFSC grants (China) under the numbers 10425417 and 10674142. Work at Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-ACO2-07CH11358. NR 15 TC 14 Z9 14 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD SEP 6 PY 2010 VL 374 IS 40 BP 4140 EP 4143 DI 10.1016/j.physleta.2010.08.018 PG 4 WC Physics, Multidisciplinary SC Physics GA 653EF UT WOS:000282070100012 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, J Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieriai, A Barnes, VE Barnett, BA Barria, P Bartos, R Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D d'Ascenzo, N Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Cold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Lori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwals, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, R McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Niesenai, J Nodulman, L Norman, M Aa, ON Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, JJ Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveiiev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, R Ttito-Guzmanam, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, R Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, DU Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, CP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieriai, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, R. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. d'Ascenzo, N. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Cold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Lori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwals, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, R. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Niesenai, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveiiev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, R. Ttito-Guzmanam, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, R. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. U. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, C. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of d sigma/dy of Drell-Yan e(+)e(-) pairs in the Z mass region from p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Z boson; Rapidity d sigma/dy; PDFs ID SILICON VERTEX DETECTOR; PARTON DISTRIBUTIONS; HADRON COLLISIONS; LHC; ENERGIES AB We report on a CDF measurement of the total cross section and rapidity distribution, d sigma/dy, for gamma*/Z -> e(+)e(-) events in the Z boson mass region (66 < M-ee < 116 GeV/c(2)) produced in p (p) over bar collisions at root s = 1.96 TeV with 2.1 fb(-1) of integrated luminosity. The measured cross section of 257 +/- 16 pb and d sigma/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and d sigma/dy measurements with theoretical calculations with the most recent NNLO PDFs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, R.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, R.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, Dubna RU-141980, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwals, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, F1N-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, F1N-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieriai, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Niesenai, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D. U.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzmanam, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Cold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J. J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Compostella, G.; Dorigo, T.; Scribano, A.] Ist Nazl Fis Nucl, Sez Padova Trento, Trento, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveiiev, V.; Savoy-Navarro, A.] Univ Paris 06, IN2P3 CNRS, UMR 7585, LPNHE, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Di Ruzza, B.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Piacentino, G.; Ristori, L.; Sartori, L.; Scuri, F.] Ist Nazl Fis Nucl, Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56100 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Squillacioti, P.; Turini, N.] Univ Siena, I-53100 Siena, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Giagu, S.; Lori, M.] Sapienza Univ Roma, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, R.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, R.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Morello, M. J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, R.] Yale Univ, New Haven, CT 06520 USA. RP Bodek, A (reprint author), Univ Rochester, 601 Elmwood Ave, Rochester, NY 14627 USA. EM bodek@pas.rochester.edu RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; FU US Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; World Class University FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the US Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. We also thank Robert Thorne for valuable discussions. NR 24 TC 44 Z9 44 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 6 PY 2010 VL 692 IS 4 BP 232 EP 239 DI 10.1016/j.physletb.2010.06.043 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 655KR UT WOS:000282249400003 ER PT J AU Qian, XH Johnson, DK Himmel, ME Nimlos, MR AF Qian, Xianghong Johnson, David K. Himmel, Michael E. Nimlos, Mark R. TI The role of hydrogen-bonding interactions in acidic sugar reaction pathways SO CARBOHYDRATE RESEARCH LA English DT Article DE Glucose; Xylose; Reaction pathways; Water effect ID HIGH-TEMPERATURE; MOLECULAR-DYNAMICS; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; DENSITY FUNCTIONALS; D-XYLOSE; WATER; ALDOSES; KETOSES; AUTOHYDROLYSIS AB Previously, theoretical multiple sugar (beta-D-xylose and beta-D-glucose) reaction pathways were discovered that depended on the initial protonation site on the sugar molecules using Car-Parrinello-based molecular dynamics (CPMD) simulations [Qian, X. H.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Carbohydr. Res. 2005, 340, 2319-2327]. In addition, simulation results showed that water molecules could participate in the sugar reactions, thus altering the reaction pathways. In the present study, the temperature and water density effects on the sugar degradation pathways were investigated with CPMD. We found that changes in both temperature and water density could profoundly affect the mechanisms and pathways. We attributed these effects to both the strength of hydrogen bonding and proton affinity of water. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Qian, Xianghong] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Johnson, David K.; Himmel, Michael E.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Qian, XH (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM xhqian@engr.colostate.edu RI Johnson, David/G-4959-2011; Qian, Xianghong/C-4821-2014 OI Johnson, David/0000-0003-4815-8782; FU DOE [ACO-4-33101-01, ZCO-7-77386-01]; NSF [CBET 0844882] FX The authors acknowledge helpful discussions with Melvin Tucker from the National Bioenergy Center at the National Renewable Energy Laboratory in Golden, CO. This work was carried out at the San Diego Supercomputing Center and the Computational Science Center at NREL. This work was funded from the DOE Office of the Biomass Program via subcontracts (Nos. ACO-4-33101-01 and ZCO-7-77386-01) and NSF CAREER Award (CBET 0844882). NR 26 TC 19 Z9 19 U1 2 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0008-6215 J9 CARBOHYD RES JI Carbohydr. Res. PD SEP 3 PY 2010 VL 345 IS 13 BP 1945 EP 1951 DI 10.1016/j.carres.2010.07.008 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 652IV UT WOS:000281998300019 PM 20667524 ER PT J AU Kalashnikova, I Barone, MF AF Kalashnikova, I. Barone, M. F. TI On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE reduced order model (ROM); proper orthogonal decomposition (POD)/Galerkin projection; linearized compressible Euler equations; numerical stability; error estimates; penalty method ID PROPER ORTHOGONAL DECOMPOSITION; NAVIER-STOKES EQUATIONS; POSTERIORI ERROR-BOUNDS; FLUID-DYNAMICS; COHERENT STRUCTURES; PARABOLIC PROBLEMS; PENALTY METHOD; FORMULATION; REDUCTION; SYSTEMS AB A reduced order model (ROM) based on the proper orthogonal decomposition (POD)/Galerkin projection method is proposed as an alternative discretization of the linearized compressible Euler equations. It is shown that the numerical stability of the ROM is intimately tied to the choice of inner product used to define the Galerkin projection. For the linearized compressible Euler equations, a symmetry transformation motivates the construction of a weighted L(2) inner product that guarantees certain stability bounds satisfied by the ROM. Sufficient conditions for well-posedness and stability of the present Galerkin projection method applied to a general linear hyperbolic initial boundary value problem (IBVP) are stated and proven. Well-posed and stable far-field and solid wall boundary conditions are formulated for the linearized compressible Euler ROM using these more general results. A convergence analysis employing a stable penalty-like formulation of the boundary conditions reveals that the ROM solution converges to the exact solution with refinement of both the numerical solution used to generate the ROM and of the POD basis. An a priori error estimate for the computed ROM solution is derived, and examined using a numerical test case. Published in 2010 by John Wiley & Sons, Ltd. C1 [Kalashnikova, I.] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA. [Kalashnikova, I.] Sandia Natl Labs, Aerosci Dept, Albuquerque, NM 87185 USA. [Barone, M. F.] Sandia Natl Labs, Wind & Water Power Technol Dept, Albuquerque, NM 87185 USA. RP Kalashnikova, I (reprint author), Stanford Univ, Inst Computat & Math Engn, 496 Lomita Mall, Stanford, CA 94305 USA. EM irinak@stanford.edu FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Defense; National Physical Science Consortium (NPSC); Engineering Sciences Center at Sandia National Laboratories FX This research was funded by Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The first author acknowledges the support of an NDSEG Fellowship sponsored by the U.S. Department of Defense, and also the support of a National Physical Science Consortium (NPSC) Fellowship, funded by the Engineering Sciences Center at Sandia National Laboratories. NR 40 TC 9 Z9 9 U1 2 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD SEP 3 PY 2010 VL 83 IS 10 BP 1345 EP 1375 DI 10.1002/nme.2867 PG 31 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 654IE UT WOS:000282160900003 ER PT J AU Pereira, JH Ralston, CY Douglas, NR Meyer, D Knee, KM Goulet, DR King, JA Frydman, J Adams, PD AF Pereira, Jose H. Ralston, Corie Y. Douglas, Nicholai R. Meyer, Daniel Knee, Kelly M. Goulet, Daniel R. King, Jonathan A. Frydman, Judith Adams, Paul D. TI Crystal Structures of a Group II Chaperonin Reveal the Open and Closed States Associated with the Protein Folding Cycle SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID TRANSIENT KINETIC-ANALYSIS; 2.8 ANGSTROM RESOLUTION; GROEL-GROES COMPLEXES; EUKARYOTIC CHAPERONIN; SUBSTRATE-BINDING; CYTOSOLIC CHAPERONIN; ARCHAEAL CHAPERONIN; ATP-BINDING; IN-VIVO; MECHANISM AB Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins. C1 [Pereira, Jose H.; Ralston, Corie Y.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Douglas, Nicholai R.; Meyer, Daniel; Frydman, Judith] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. [Douglas, Nicholai R.; Meyer, Daniel; Frydman, Judith] Stanford Univ, BioX Program, Stanford, CA 94305 USA. [Knee, Kelly M.; Goulet, Daniel R.; King, Jonathan A.] MIT, Dept Biol, Cambridge, MA 02139 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Adams, PD (reprint author), 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pdadams@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU Nanomedicine Development Center [2PN2EY016525]; NIGMS, National Institutes of Health; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was performed as part of the Center for Protein Folding Machinery and National Institutes of Health Roadmap-supported Nanomedicine Development Center (Grant 2PN2EY016525). The Berkeley Center for Structural Biology is supported in part by NIGMS, National Institutes of Health, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract DE-AC02-05CH11231. NR 58 TC 39 Z9 39 U1 1 U2 6 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 3 PY 2010 VL 285 IS 36 BP 27958 EP 27966 DI 10.1074/jbc.M110.125344 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 644TL UT WOS:000281404100050 PM 20573955 ER PT J AU Zhang, ZB Platnick, S Yang, P Heidinger, AK Comstock, JM AF Zhang, Zhibo Platnick, Steven Yang, Ping Heidinger, Andrew K. Comstock, Jennifer M. TI Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DROPLET EFFECTIVE RADIUS; BULK SCATTERING PROPERTIES; MU-M WINDOW; CIRRUS CLOUDS; RADIATIVE PROPERTIES; TROPICAL CIRRUS; RESOLUTION; RETRIEVAL; MODIS; PARAMETERIZATION AB The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick, the IRSpW method is relatively insensitive to cloud vertical structure and effective radius retrieval is weighted toward smaller ice particle size, while the weighting function makes the SRBS method more sensitive to the ice particle size in the upper portion of the cloud. As a result, when ice particle size increases monotonically toward cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases toward cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this study suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods. C1 [Zhang, Zhibo] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heidinger, Andrew K.] Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, NOAA, Madison, WI 53706 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Zhang, ZB (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, 5523 Res Pk Dr,Ste 320, Baltimore, MD 21228 USA. EM zzbatmos@umbc.edu RI Yang, Ping/B-4590-2011; Zhang, Zhibo/D-1710-2010; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI Zhang, Zhibo/0000-0001-9491-1654; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU NASA [NNX08AP57G]; DOE FX This work was funded in part by NASA's Radiation Sciences Program. P. Yang acknowledges NASA support (NNX08AP57G). The contribution from J. M. Comstock was supported by the DOE Atmospheric Radiation Measurement Program. The authors thank the two reviewers for their insightful comments, questions, and suggestions, which have helped to improve this manuscript. NR 72 TC 27 Z9 27 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D17203 DI 10.1029/2010JD013835 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000006 ER PT J AU Pornillos, O Ganser-Pornillos, BK Banumathi, S Hua, YZ Yeager, M AF Pornillos, Owen Ganser-Pornillos, Barbie K. Banumathi, Sankaran Hua, Yuanzi Yeager, Mark TI Disulfide Bond Stabilization of the Hexameric Capsomer of Human Immunodeficiency Virus SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE HIV-1 capsid; hexamer; engineered disulfide bonds; electron microscopy; X-ray crystallography ID HIV-1 CAPSID PROTEIN; ROUS-SARCOMA-VIRUS; N-TERMINAL DOMAIN; IN-VITRO; REVERSE-TRANSCRIPTASE; DIMERIZATION DOMAIN; ASSEMBLY PROPERTIES; TYPE-1; CORE; RESOLUTION AB The human immunodeficiency virus type 1 capsid is modeled as a fullerene cone that is composed of similar to 250 hexamers and 12 pentamers of the viral CA protein. Structures of CA hexamers have been difficult to obtain because the hexamer-stabilizing interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Here, we describe a two-step biochemical strategy to obtain soluble CA hexamers for crystallization. First, the hexamer was stabilized by engineering disulfide cross-links (either A14C/E45C or A42C/T54C) between the N-terminal domains of adjacent subunits. Second, the cross-linked hexamers were prevented from polymerizing further into hyperstable capsid-like structures by mutations (W184A and M185A) that interfered with dimeric association between the C-terminal domains that link adjacent hexamers. The structures of two different cross-linked CA hexamers were nearly identical, and we combined the non-mutated portions of the structures to generate an atomic resolution model for the native hexamer. This hybrid approach for structure determination should be applicable to other viral capsomers and protein-protein complexes in general. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Pornillos, Owen; Ganser-Pornillos, Barbie K.; Yeager, Mark] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Pornillos, Owen; Ganser-Pornillos, Barbie K.; Hua, Yuanzi; Yeager, Mark] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. [Banumathi, Sankaran] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Struct Genom, Collaborat Crystallog Program, Berkeley, CA 94720 USA. RP Yeager, M (reprint author), Univ Virginia, Dept Mol Physiol & Biol Phys, POB 800736, Charlottesville, VA 22908 USA. EM yeager@virginia.edu FU National Institutes of Health through the National Center for Research Resources [RR17573]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [R01-GM066087, P50-GM082545] FX We thank W.I. Sundquist (University of Utah) for sharing unpublished data. We also thank Kelly Dryden for help with figure preparation. EM experiments were conducted at the National Resource for Automated Molecular Microscopy, which is supported by the National Institutes of Health through the National Center for Research Resources' P41 program (RR17573). Diffraction data were collected at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This study was funded by National Institutes of Health grants to M.Y. (R01-GM066087 and P50-GM082545). NR 43 TC 47 Z9 47 U1 0 U2 11 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 3 PY 2010 VL 401 IS 5 BP 985 EP 995 DI 10.1016/j.jmb.2010.06.042 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 643NR UT WOS:000281303900024 PM 20600115 ER PT J AU Peshkin, M AF Peshkin, Murray TI Against a proposed alternative explanation of the Aharonov-Bohm effect SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article; Proceedings Paper CT Conference on Aharonov-Bohm Effect and Berry Phase 50/25 Anniversary CY DEC 14-15, 2009 CL Bristol Univ, Bristol, ENGLAND HO Bristol Univ AB The Aharonov-Bohm (AB) effect is understood to demonstrate that the Maxwell fields can act nonlocally in some situations. However it has been suggested from time to time that the AB effect is somehow a consequence of a local classical electromagnetic field phenomenon involving energy that is temporarily stored in the overlap between the external field and the field of which the beam particle is the source. That idea was shown in the past not to work for some models of the source of the external field. Here a more general proof is presented for the magnetic AB effect to show that the overlap energy is always compensated by another contribution to the energy of the magnetic field in such a way that the sum of the two is independent of the external flux. Therefore no such mechanism can underlie the AB effect. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Peshkin, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM peshkin@anl.gov NR 9 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD SEP 3 PY 2010 VL 43 IS 35 AR 354031 DI 10.1088/1751-8113/43/35/354031 PG 5 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 637VS UT WOS:000280847400032 ER PT J AU Hao, F Armiento, R Mattsson, AE AF Hao, Feng Armiento, Rickard Mattsson, Ann E. TI Subsystem functionals and the missing ingredient of confinement physics in density functionals SO PHYSICAL REVIEW B LA English DT Article ID SELF-INTERACTION CORRECTION; ELECTRON-GAS; EXACT EXCHANGE; APPROXIMATIONS; SYSTEMS; ENERGY; NUMBER AB The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The "confinement physics," an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential -> density and the density -> exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases, we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed. C1 [Hao, Feng; Mattsson, Ann E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Armiento, Rickard] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Hao, F (reprint author), Sandia Natl Labs, MS 1322, Albuquerque, NM 87185 USA. EM fhao@sandia.gov; armiento@mit.edu; aematts@sandia.gov RI Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 FU Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank W. Kohn and R. J. Magyar for valuable discussions. This work was supported by the Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 48 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2010 VL 82 IS 11 AR 115103 DI 10.1103/PhysRevB.82.115103 PG 9 WC Physics, Condensed Matter SC Physics GA 646DK UT WOS:000281516300002 ER PT J AU D'Elia, M Mukherjee, S Sanfilippo, F AF D'Elia, Massimo Mukherjee, Swagato Sanfilippo, Francesco TI QCD phase transition in a strong magnetic background SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; ELECTROMAGNETIC-FIELD; SYMMETRY; MOMENTS; MODEL AB We investigate the properties of the deconfining/chiral restoring transition for two flavor QCD in the presence of a uniform background magnetic field. We adopt standard staggered fermions and a lattice spacing of the order of 0.3 fm. We explore different values of the bare quark mass, corresponding to pion masses in the range 200-480 MeV, and magnetic fields up to vertical bar e vertical bar B similar to 0: 75 GeV2. The deconfinement and chiral symmetry restoration temperatures remain compatible with each other and rise very slightly (< 2% for our largest magnetic field) as a function of the magnetic field. On the other hand, the transition seems to become sharper as the magnetic field increases. C1 [D'Elia, Massimo] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [D'Elia, Massimo] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Mukherjee, Swagato] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Sanfilippo, Francesco] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Sanfilippo, Francesco] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. RP D'Elia, M (reprint author), Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. RI Sanfilippo, Francesco/P-9914-2016; OI Sanfilippo, Francesco/0000-0002-1333-745X; Mukherjee, Swagato/0000-0002-3824-1008 FU U.S. Department of Energy [DE-AC02-98CH10886] FX Numerical simulations have been carried out on two computer farms in Genova and Bari and on the apeNEXT facilities in Rome. We thank E. Fraga, K. Fukushima, K. Klimenko, M. Ruggieri, and H. Suganuma for useful discussions. S. M. has been supported under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 33 TC 152 Z9 152 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2010 VL 82 IS 5 AR 051501 DI 10.1103/PhysRevD.82.051501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 646DQ UT WOS:000281517100001 ER PT J AU Gardner, S Latimer, DC AF Gardner, Susan Latimer, David C. TI Dark matter constraints from a cosmic index of refraction SO PHYSICAL REVIEW D LA English DT Article ID LIGHT; SCATTERING; VELOCITY AB The dark matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects in the propagation and attenuation of light. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter and a new possibility for its direct detection. As a first application we use the time delay determined from radio afterglow observations of distant gamma-ray bursts to realize a direct limit on the electric charge-to-mass ratio of dark matter of vertical bar epsilon vertical bar/M < 1 X 10(-5) eV(-1) at 95% C.L. C1 [Gardner, Susan; Latimer, David C.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gardner, Susan] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Gardner, Susan; Latimer, David C.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Gardner, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy [DE-FG02-96ER40989] FX We thank Keith Olive for an inspiring question and Scott Dodelson, Renee Fatemi, Wolfgang Korsch, and Tom Troland for helpful comments. S.G. would also like to thank Stan Brodsky for imparting an appreciation of the low-energy theorems in Compton scattering and the Institute for Nuclear Theory and the Center for Particle Astrophysics and Theoretical Physics at Fermilab for their gracious hospitality. This work is supported, in part, by the U.S. Department of Energy under Contract No. DE-FG02-96ER40989. NR 40 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2010 VL 82 IS 6 AR 063506 DI 10.1103/PhysRevD.82.063506 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 646DS UT WOS:000281517300003 ER PT J AU Perera, UGE Kulik, HJ Iancu, V da Silva, LGGVD Ulloa, SE Marzari, N Hla, SW AF Perera, U. G. E. Kulik, H. J. Iancu, V. da Silva, L. G. G. V. Dias Ulloa, S. E. Marzari, N. Hla, S. -W. TI Spatially Extended Kondo State in Magnetic Molecules Induced by Interfacial Charge Transfer SO PHYSICAL REVIEW LETTERS LA English DT Article ID IMPURITY; INSULATORS; RESONANCE AB An extensive redistribution of spin density in TBrPP-Co molecules adsorbed on a Cu(111) surface is investigated by monitoring Kondo resonances at different locations on single molecules. Remarkably, the width of the Kondo resonance is found to be much larger on the organic ligands than on the central cobalt atom-reflecting enhanced spin-electron interactions on molecular orbitals. This unusual effect is explained by means of first-principles and numerical renormalization-group calculations highlighting the possibility to engineer spin polarization by exploiting interfacial charge transfer. C1 [Perera, U. G. E.; Iancu, V.; da Silva, L. G. G. V. Dias; Ulloa, S. E.; Hla, S. -W.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Kulik, H. J.; Marzari, N.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [da Silva, L. G. G. V. Dias] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [da Silva, L. G. G. V. Dias] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Hla, SW (reprint author), Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. EM hla@ohio.edu RI Iancu, Violeta/B-7657-2008; Ulloa, Sergio/F-4621-2011; Dias da Silva, Luis/D-8381-2013; Marzari, Nicola/D-6681-2016 OI Iancu, Violeta/0000-0003-1146-2959; Ulloa, Sergio/0000-0002-3091-4984; Dias da Silva, Luis/0000-0002-8156-9463; Marzari, Nicola/0000-0002-9764-0199 FU U.S. Department of Energy, BES [DE-FG02-02ER46012]; NSF [0730257, 07010581, 0706020] FX We acknowledge financial support from the U.S. Department of Energy, BES grant DE-FG02-02ER46012, NSF-PIRE-OISE 0730257, NSF-WMN 07010581, NSF-DMR 0706020, and ARO-MURI DAAD-19-03-1-0169 (H. J. K., N. M.). Computational facilities were provided through the PNNL Grant No. EMSL-UP-9597. NR 29 TC 43 Z9 43 U1 5 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2010 VL 105 IS 10 AR 106601 DI 10.1103/PhysRevLett.105.106601 PG 4 WC Physics, Multidisciplinary SC Physics GA 646EE UT WOS:000281518800006 PM 20867535 ER PT J AU Rodriguez, J Aczel, AA Carlo, JP Dunsiger, SR MacDougall, GJ Russo, PL Savici, AT Uemura, YJ Wiebe, CR Luke, GM AF Rodriguez, J. Aczel, A. A. Carlo, J. P. Dunsiger, S. R. MacDougall, G. J. Russo, P. L. Savici, A. T. Uemura, Y. J. Wiebe, C. R. Luke, G. M. TI Study of the Ground State Properties of LiHoxY1-xF4 Using Muon Spin Relaxation SO PHYSICAL REVIEW LETTERS LA English DT Article ID LITHIUM HOLMIUM FLUORIDE; NONLINEAR SUSCEPTIBILITY; GLASS TRANSITION; FERROMAGNETISM; TB2MO2O7; LIHOF4 AB LiHoxY1-xF4 is an insulator where the magnetic Ho3+ ions have an Ising character and interact mainly through magnetic dipolar fields. We used the muon spin relaxation technique to study the nature of its ground state for samples with x <= 0.25. In contrast with some previous works, we did not find canonical spin glass behavior down to approximate to 15 mK. Instead, below approximate to 300 mK we observed temperature-independent dynamic magnetism characterized by a single correlation time. The 300 mK energy scale corresponds to the Ho3+ hyperfine interaction strength, suggesting that this interaction may be involved in the dynamic behavior of the system. C1 [Rodriguez, J.; Aczel, A. A.; Dunsiger, S. R.; MacDougall, G. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rodriguez, J.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Carlo, J. P.; Russo, P. L.; Savici, A. T.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Dunsiger, S. R.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [MacDougall, G. J.; Savici, A. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wiebe, C. R.] Univ Winnipeg, Dept Chem, Winnipeg, MB R3B 2E9, Canada. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Rodriguez, J (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM Jose.Rodriguez@psi.ch RI Savici, Andrei/F-2790-2013; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI Savici, Andrei/0000-0001-5127-8967; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173; MacDougall, Gregory/0000-0002-7490-9650 FU NSERC; CIFAR; NSF at Columbia [DMR-05-02706, DMR-08-06846] FX We would like to thank M. J. P. Gingras and M. Schechter for having very interesting discussions with us and for their useful comments. Research at McMaster and University of Winnipeg is supported by NSERC and CIFAR. We acknowledge financial support from NSF DMR-05-02706 and DMR-08-06846 (Materials World Network program) at Columbia. NR 30 TC 7 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2010 VL 105 IS 10 AR 107203 DI 10.1103/PhysRevLett.105.107203 PG 4 WC Physics, Multidisciplinary SC Physics GA 646EE UT WOS:000281518800008 PM 20867545 ER PT J AU Jeong, JW Cho, JW Jung, IW Solgaard, O AF Jeong, J. W. Cho, J. W. Jung, I. W. Solgaard, O. TI Amplified spontaneous emission rejection with multi-functional MEMS tunable filter SO ELECTRONICS LETTERS LA English DT Article ID OPTICAL FILTER AB A multi-functional microelectromechanical system (MEMS) tunable optical filter as an amplified spontaneous emission (ASE) rejection filter in an optical communication system is presented. The MEMS tunable filter can tune both the centre wavelength and the passband independently and continuously in C-band. This filter was applied to a 10 Gbit/s system and system-performance improvement by adjusting the amount of ASE noise rejection was observed. C1 [Jeong, J. W.; Solgaard, O.] Stanford Univ, Dept Elect Engn, EL Ginzton Lab, Stanford, CA 94305 USA. [Cho, J. W.] ClariPhy Commun Inc, Los Altos, CA 94022 USA. [Jung, I. W.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Jeong, JW (reprint author), Stanford Univ, Dept Elect Engn, EL Ginzton Lab, Stanford, CA 94305 USA. EM jjeong1@stanford.edu NR 5 TC 0 Z9 0 U1 0 U2 5 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD SEP 2 PY 2010 VL 46 IS 18 BP 1275 EP U57 DI 10.1049/el.2010.0957 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 648KY UT WOS:000281693800022 ER PT J AU Scheer, AM Mukarakate, C Robichaud, DJ Ellison, GB Nimlos, MR AF Scheer, Adam M. Mukarakate, Calvin Robichaud, David J. Ellison, G. Barney Nimlos, Mark R. TI Radical Chemistry in the Thermal Decomposition of Anisole and Deuterated Anisoles: An Investigation of Aromatic Growth SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INITIO MO/STATISTICAL THEORY; INFRARED-ABSORPTION SPECTRA; GAS-PHASE PYROLYSIS; PHOTOELECTRON-SPECTROSCOPY; AB-INITIO; HYDROCARBON FORMATION; PROPARGYL RADICALS; RING-EXPANSION; SHOCK-WAVES; UNIMOLECULAR ISOMERIZATION/DECOMPOSITION AB The pyrolyses of anisole (C6H5OCH3), d(3)-anisole (C6HSOCD3), and d(8)-anisole (C6D5OCD3) have been studied using a hyperthermal tubular reactor and photoionization reflectron time-of-flight mass spectrometer. Gas exiting the reactor is subject to an immediate supersonic expansion after a residence time of approximately 65 mu s. This allows the detection of highly reactive radical intermediates. Our results confirm that the first steps in the thermal decomposition of anisole are the loss of a methyl group to form phenoxy radical, followed by ejection of a CO to form cyclopentadienyl radical (c-C5H5); C6H5OCH3 -> C6HSO + CH3; C6HSO -> c-C5H5 + CO. At high temperatures (T-wall = 1200 degrees C - 1300 degrees C) the c-C5H5 decomposes to propargyl radical (CH2CCH) and acetylene; c-C5H5 -> CH2CCH + C2H2. The formation of benzene and naphthalene is demonstrated with 1 + 1 resonance-enhanced multiphoton ionization. Propargyl radical recombination is a significant benzene formation channel. However, we show the majority of benzene is formed by a ring expansion reaction of methylcyclopentadiene (C5H5CH3) resulting from methyl radical addition to cyclopentadienyl radical; CH3 + c-C5H5 -> C5H5CH3 -> C6H6 + 2H. The naphthalene is generated from cyclopentadienyl radical recombination; 2c-C5H5 -> C5H5-C5H5 -> C10H8 + 2H. The respective intermediate amu 79 and 129 species associated with these reactions are detected, confirming the stepwise nature of the decompositions. These reactions are verified by pyrolysis studies of cyclopentadiene (C5H6) and C5H5CH3 obtained from rapid thermal dissociation of the respective dimer compounds, as well as pyrolysis studies of propargyl bromide (BrCH2CCH). C1 [Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Scheer, Adam M.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM mark.nimlos@nrel.gov FU U.S. DOE Office FX The U.S. DOE Office of the Biomass Program provided funding for this work. We thank Donald David, Ken Smith, Mark Jarvis, and An Gayle Vasiliou for technical support and Dr. Anthony Dean and Dr. Hans-Heinrich Carstensen for useful discussions. NR 92 TC 45 Z9 46 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 2 PY 2010 VL 114 IS 34 BP 9043 EP 9056 DI 10.1021/jp102046p PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641LW UT WOS:000281128900015 PM 20695633 ER PT J AU Wang, XB Fu, QA Yang, JL AF Wang, Xue-Bin Fu, Qiang Yang, Jinlong TI Electron Affinities and Electronic Structures of o-, m-, and p-Hydroxyphenoxyl Radicals: A Combined Low-Temperature Photoelectron Spectroscopic and Ab Initio Calculation Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOSYNTHETIC REACTION CENTERS; MULTIPLY-CHARGED ANIONS; GAS-PHASE; RHODOBACTER-SPHAEROIDES; BENZOQUINONE ANIONS; GALACTOSE-OXIDASE; PHOTOSYSTEM-II; ACTIVE-SITE; PHOTODETACHMENT; STATES AB Hydroxyl substituted phenoxides, o-, m-, p-HO(C6H4)O-, and the corresponding neutral radicals are important species; in particular, the p-isomer pair, i.e., p-HO(C6H4)O- and p-HO(C6H4)O center dot, is directly involved in the proton-coupled electron transfer in biological photosynthetic centers. Here we report the first spectroscopic study of these species in the gas phase by means of low-temperature photoelectron spectroscopy (PES) and ab initio calculations. Vibrationally resolved PES spectra were obtained at 70 K and at several photon energies for each anion, directly yielding electron affinity (EA) and electronic structure information for the corresponding hydroxyphenoxyl radical. The EAs are found to vary with OH positions, from 1.990 +/- 0.010 (p) to 2.315 +/- 0.010 (o) and 2.330 +/- 0.010 (m) eV. Theoretical calculations were carried out to identify the optimized molecular structures for both anions and neutral radicals. The electron binding energies and excited state energies were also calculated to compare with experimental data. Excellent agreement is found between calculations and experiments. Molecular orbital analyses indicate a strong OH antibonding interaction with the phenoxide moiety for the o- as well as the p-isomer, whereas such an interaction is largely missing for the m-anion. The variance of EAs among three isomers is interpreted primarily due to the interplay between two competing factors: the OH antibonding interaction and the H-bonding stabilization (existed only in the o-anion). C1 [Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Fu, Qiang; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM xuebin.wang@pnl.gov; jlyang@ustc.edu.cn RI Yang, Jinlong/D-3465-2009; Fu, Qiang/A-2557-2011 OI Yang, Jinlong/0000-0002-5651-5340; Fu, Qiang/0000-0002-6682-8527 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; DOE's Office of Biological and Environmental Research; National Natural Science Foundation of China [50721091, 20803071, 20873129]; National Key Basic Research Program [2006CB922004]; USTC-HP HPC; Shanghai Supercomputer Center FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for the DOE. Computational work was supported by the National Natural Science Foundation of China (Grants 50721091, 20803071, 20873129), the National Key Basic Research Program (2006CB922004), the USTC-HP HPC Project, SCCAS, and the Shanghai Supercomputer Center. NR 54 TC 15 Z9 15 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 2 PY 2010 VL 114 IS 34 BP 9083 EP 9089 DI 10.1021/jp103752t PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641LW UT WOS:000281128900019 PM 20669925 ER PT J AU Mirjanian, D Dickey, AN Hoh, JH Woolf, TB Stevens, MJ AF Mirjanian, Dina Dickey, Allison N. Hoh, Jan H. Woolf, Thomas B. Stevens, Mark J. TI Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing During Liposome Fusion SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ENSEMBLE MOLECULAR-DYNAMICS; COARSE-GRAINED MODEL; MEMBRANE-FUSION; UNILAMELLAR VESICLES; BILAYER-MEMBRANES; SIMULATIONS; MECHANISM; HEMIFUSION; ALGORITHMS; TENSION AB The fusion between two lipid bilayers involves crossing a complicated energy landscape. The limiting barrier in the process appears to be between two closely opposed bilayers and the intermediate state where the outer leaflets are fused. We have performed molecular dynamics simulations to characterize the free energy barrier for the fusion of two liposomes and to examine the molecular details of barrier crossing. To capture the slow dynamics of fusion, a model using coarse-grained representations of lipids was used. The fusion between pairs of liposomes was simulated for four systems: DPPC, DOPC, a 3:1 mixture of DPPC/DPPE, and an asymmetric lipid tail system in which one tail of DPPC was reduced to half the length (ASTail). The weighted histogram method was used to compute the free energy as a function of separation distance. The relative barrier heights for these systems was found to be ASTail DPPC >> DPPC/DPPE > DOPC, in agreement with experimental observations. Further, the free energy curves for all four can be overlaid on a single curve by plotting the free energy versus the surface separation (differing only in the point of fusion). These simulations also confirm that the two main contributions to the free energy barrier are the removal of water between the vesicles and the deformation of the vesicle. The most prominent molecular detail of barrier crossing in all cases examined was the splaying of lipid tails, where initially a single splayed lipid formed a bridge between the two outer leaflets that promotes additional lipid mixing between the vesicles and eventually leads to fusion. The tail splay appears to be closely connected to the energetics of the process. For example, the high barrier for the ASTail is the result of a smaller distance between terminal methyl groups in the splayed molecule. The shortening of this distance requires the liposomes to be closer together, which significantly increases the cost of water removal and bilayer deformation. Before tail splay can initiate fusion, contact must occur between a tail end and the external water. In isolated vesicles, the contact fraction is correlated to the fusogenicity difference between DPPC and DOPC. Moreover, for planar bilayers, the contact fraction is much lower for DPPC, which is consistent with its lack of fusion in giant vesicles. The simulation results show the key roles of lipid tail dynamics in governing the fusion energy landscape. C1 [Mirjanian, Dina; Dickey, Allison N.; Stevens, Mark J.] Sandia Natl Labs, Ctr Integrated Nanotechol, Albuquerque, NM 87185 USA. [Hoh, Jan H.; Woolf, Thomas B.] Johns Hopkins Univ, Sch Med, Baltimore, MD USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechol, POB 5800, Albuquerque, NM 87185 USA. OI Hoh, Jan/0000-0003-3842-9454 FU NIH NIGMS [5R21GM076443]; U S Department of Energy [DE-AC04-94AL85000] FX This work was funded by NIH NIGMS Grant 5R21GM076443 and was performed, in part, at the Center for Integrated Nanotechnologies, a U S Department of Energy, Office of Basic Energy Sciences user facility Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation. a Lockheed-Martin Company, for the U S Department of Energy under Contract No DE-AC04-94AL85000 NR 36 TC 29 Z9 29 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 2 PY 2010 VL 114 IS 34 BP 11061 EP 11068 DI 10.1021/jp1055182 PG 8 WC Chemistry, Physical SC Chemistry GA 641LU UT WOS:000281128700017 PM 20701307 ER PT J AU Catarino, T Pessanha, M De Candia, AG Gouveia, Z Fernandes, AP Pokkuluri, PR Murgida, D Marti, MA Todorovic, S Salgueiro, CA AF Catarino, Teresa Pessanha, Miguel De Candia, Ariel G. Gouveia, Zelia Fernandes, Ana P. Pokkuluri, P. Raj Murgida, Daniel Marti, Marcelo A. Todorovic, Smilja Salgueiro, Carlos A. TI Probing the Chemotaxis Periplasmic Sensor Domains from Geobacter sulfurreducens by Combined Resonance Raman and Molecular Dynamic Approaches: NO and CO Sensing SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SOLUBLE GUANYLATE-CYCLASE; NITRIC-OXIDE BINDING; HEME-PROTEINS; CYTOCHROME C'; LIGAND DISCRIMINATION; SIGNAL-TRANSDUCTION; CARBON-MONOXIDE; MECHANISM; IRON; BOND AB The periplasmic sensor domains encoded by genes gsu0582 and gsu0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens (Gs). The sensor domains of these proteins contain a heme-c prosthetic group and a PAS-like fold as revealed by their crystal structures. Biophysical studies of the two domains showed that nitric oxide (NO) binds to the heme in both the ferric and ferrous forms, whereas carbon monoxide (CO) binds only to the reduced form. In order to address these exogenous molecules as possible physiological ligands, binding studies and resonance Raman (RR) spectroscopic characterization of the respective CO and NO adducts were performed in this work. In the absence of exogenous ligands, typical RR frequencies of five-coordinated (5c) high-spin and six-coordinated (6c) low-spin species were observed in the oxidized form. In the reduced state, only frequencies corresponding to the latter were detected. In both sensors, CO binding yields 6c low-spin adducts by replacing the endogenous distal ligand. The binding of NO by the two proteins causes partial disruption of the proximal Fe-His bond, as revealed by the RR fingerprint features of 5cFe-NO and 6cNO-Fe-His species. The measured CO and NO dissociation constants of ferrous GSU0582 and GSU0935 sensors reveal that both proteins have high and similar affinity toward these molecules (K(d) approximate to 0.04-0.08 mu M). On the contrary, in the ferric form, sensor GSU0582 showed a much higher affinity for NO (K(d) approximate to 0.3 mu M for GSU0582 versus 17 mu M for GSU0935). Molecular dynamics calculations revealed a more open heme pocket in GSU0935, which could account for the different affinities for NO. Taken together, spectroscopic data and MD calculations revealed subtle differences in the binding properties and structural features of formed CO and NO adducts, but also indicated a possibility that a (5c) high-spin/(6c) low-spin redox-linked equilibrium could drive the physiological sensing of Gs cells. C1 [Catarino, Teresa; Pessanha, Miguel; Gouveia, Zelia; Todorovic, Smilja] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2780157 Oeiras, Portugal. [De Candia, Ariel G.; Murgida, Daniel; Marti, Marcelo A.] Univ Buenos Aires, Dept Quim Inorgan Anal & Quim Fis, INQUIMAE CONICET, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina. [Catarino, Teresa; Salgueiro, Carlos A.] Univ Nova Lisboa, Dept Quim, Fac Ciencias & Tecnol, CQFB, P-2829516 Caparica, Portugal. [Pokkuluri, P. Raj] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Todorovic, S (reprint author), Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ EAN, P-2780157 Oeiras, Portugal. RI Todorovic, Smilja/F-7612-2010; Salgueiro, Carlos/A-4522-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013; Fernandes, Ana/B-2940-2014; Catarino, Teresa/A-9267-2012; OI Todorovic, Smilja/0000-0002-0219-6743; Salgueiro, Carlos/0000-0003-1136-809X; Fernandes, Ana/0000-0002-5201-7993; Catarino, Teresa/0000-0003-3782-4014; Marti, Marcelo/0000-0002-7911-9340 FU Fundacio para a Ciencia c a Tecnologia (FCT, Portugal), [PTDC/BIA-PRO/74498/2006, PTDC/QUI/64550/2006]; U.S. Department of Energy's Office of Science, Biological and Environmental Research [PICT06-25667, PICT2006-459, DE-AC02-06CH11357]; FCT, Portugal [BPD/20571/2004]; CONICET; [PICT07-01650]; [UBA (08-X625)] FX This work was supported by Project Grants PTDC/BIA-PRO/74498/2006 to C A.S and PTDC/QUI/64550/2006 to S T. from Fundacio para a Ciencia c a Tecnologia (FCT, Portugal), PICT07-01650 and UBA (08-X625) to M A M PICT06-25667 and PICT2006-459 to D.H.M.: U.S. Department of Energy's Office of Science, Biological and Environmental Research GTI, Program under Contract No DE-AC02-06CH11357 M A M and D M are staff members of CONICET M P and A D C are recipients of postdoctoral grants BPD/20571/2004 (FCT, Portugal) and CONICET, respectively We thank M Schiffer for critical reading of the manuscript and Y Y. Loncler for sensor plasmids and invaluable technical support NR 39 TC 8 Z9 8 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 2 PY 2010 VL 114 IS 34 BP 11251 EP 11260 DI 10.1021/jp1029882 PG 10 WC Chemistry, Physical SC Chemistry GA 641LU UT WOS:000281128700036 PM 20690670 ER PT J AU Storoniak, P Mazurkiewicz, K Haranczyk, M Gutowski, M Rak, J Eustis, SN Ko, YJ Wang, HP Bowen, KH AF Storoniak, Piotr Mazurkiewicz, Kamil Haranczyk, Maciej Gutowski, Maciej Rak, Janusz Eustis, Soren N. Ko, Yeon Jae Wang, Haopeng Bowen, Kit H. TI The Anionic (9-Methyladenine)-(1-Methylthymine) Base Pair Solvated by Formic Acid. A Computational and Photoelectron Spectroscopy Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INTERMOLECULAR PROTON-TRANSFER; EXCESS ELECTRON-ATTACHMENT; DNA-STRAND BREAKS; MOLECULAR-ORBITAL CALCULATIONS; HYDROGEN-BONDED COMPLEXES; THEORETICAL AB-INITIO; LOW-ENERGY ELECTRONS; GAUSSIAN-TYPE BASIS; RADICAL IONS; IONIZATION-POTENTIALS AB The photoelectron spectrum for (1-methylthymine)-(9-methyladenine)center dot center dot center dot(formic acid) (1MT-9MA center dot center dot center dot FA) anions with the maximum at ca. 1.87 eV was recorded with 2.54 eV photons and interpreted through the quantum-chemical modeling carried out at the B3LYP/6-31+G(d,p) level. The relative free energies of the anions and their calculated vertical detachment energies suggest that only seven anionic structures contribute to the observed PES signal. We demonstrate that electron binding to the (1MT-9MA center dot center dot center dot FA) complex can trigger intermolecular proton transfer from formic acid, leading to the strong stabilization of the resulting radical anion. The SOMO distribution indicates that an excess electron may localize not only on the pyrimidine but also on the purine moiety. The biological context of DNA-environment interactions concerning the formation of single-strand breaks induced by excess electrons has been briefly discussed. C1 [Storoniak, Piotr; Mazurkiewicz, Kamil; Rak, Janusz] Univ Gdansk, Dept Chem, PL-80952 Gdansk, Poland. [Haranczyk, Maciej] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Gutowski, Maciej] Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Eustis, Soren N.; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. RP Storoniak, P (reprint author), Univ Gdansk, Dept Chem, Sobieskiego 18, PL-80952 Gdansk, Poland. RI Eustis, Soren/F-1911-2011; Wang, Haopeng/M-4833-2013; Haranczyk, Maciej/A-6380-2014 OI Wang, Haopeng/0000-0002-0398-6405; Haranczyk, Maciej/0000-0001-7146-9568 FU Polish Ministry of Science and Higher Education (MNISW) [N N204 023135, DS/8221-4-0140-10]; U S Department of Energy [DE-AC02-05CH11231]; U S National Science Foundation [CHR-0809258] FX This work was supported by (i) the Polish Ministry of Science and Higher Education (MNISW) under Grant Nos N N204 023135 (J R) and DS/8221-4-0140-10 (B S), (ii) the U S Department of Energy under contract DE-AC02-05CH11231 and through a 2008 Seaborg Fellowship at Lawrence Berkeley National Laboratory (M H), and (iii) the U S National Science Foundation under Grant No CHR-0809258 (K H B). The calculations were performed at the Academic Computer Center in Gdansk (TASK) NR 71 TC 8 Z9 8 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 2 PY 2010 VL 114 IS 34 BP 11353 EP 11362 DI 10.1021/jp104668h PG 10 WC Chemistry, Physical SC Chemistry GA 641LU UT WOS:000281128700045 PM 20701309 ER PT J AU Zhang, ZY Nenoff, TM Leung, K Ferreira, SR Huang, JY Berry, DT Provencio, PP Stumpft, R AF Zhang, Zhenyuan Nenoff, Tina M. Leung, Kevin Ferreira, Summer R. Huang, Jian Yu Berry, Donald T. Provencio, Paula P. Stumpft, Roland TI Room-Temperature Synthesis of Ag-Ni and Pd-Ni Alloy Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID INTERACTION TECHNIQUE; TOTAL-ENERGY CALCULATIONS; SILVER-NICKEL CLUSTERS; ORGANIC FREE-RADICALS; WAVE BASIS-SET; COLLOIDAL SILVER; AQUEOUS-SOLUTION; BIMETALLIC NANOPARTICLES; FEPT NANOPARTICLES; ABSORPTION-SPECTRA AB Ni-based alloy nanoparticles (NPs) are synthesized using room-temperature radiolysis. Density functional theory (DFT) and various nanoscale characterization methods are used to provide a strong basis for understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Two series of nickel alloyed NPs, Ag-Ni and Pd-Ni, are analyzed and characterized via various analytical characterization techniques. Different ratios of Ag(x)-Ni(1-x) alloy NPs and Pd(0.5)-Ni(0.5) alloy NPs are prepared using a high gamma irradiation dose rate. Images from high-angle annular dark-field show that the Ag-Ni NPs are not in a core-shell configuration but, rather, a homogeneous alloy structure. Energy filtered transmission electron microscopy maps further elucidate the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs that have been shown to form core-shell structures in thermodynamically driven reactions. All evidence supports that homogeneous Ag-Ni and Pd-Ni alloy NPs are successfully synthesized by a high dose rate radiolytic methodology. DFT modeling is used to support that nanoparticle alloying proceeds through the less energetically favorable path of formation, achievable via high dose rate radiolysis. C1 [Zhang, Zhenyuan; Nenoff, Tina M.; Leung, Kevin; Ferreira, Summer R.; Stumpft, Roland] Sandia Natl Labs, Dept Surface & Interface Sci, Albuquerque, NM 87185 USA. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Berry, Donald T.] Sandia Natl Labs, Dept Hot Cells & Gamma Facil, Albuquerque, NM 87185 USA. [Provencio, Paula P.] Sandia Natl Labs, Dept Radiat Solid Interact, Albuquerque, NM 87185 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, Dept Surface & Interface Sci, MS-1415, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov RI Huang, Jianyu/C-5183-2008 FU Sandia National Laboratories; Lockheed Martin Company FX This work was supported, in part, by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration. NR 67 TC 46 Z9 46 U1 10 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 2 PY 2010 VL 114 IS 34 BP 14309 EP 14318 DI 10.1021/jp911947v PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 641LY UT WOS:000281129100001 ER PT J AU Kulkarni, AD Wang, LL Johnson, DD Sholl, DS Johnson, JK AF Kulkarni, Anant D. Wang, Lin-Lin Johnson, Duane D. Sholl, David S. Johnson, J. Karl TI First-Principles Characterization of Amorphous Phases of MB12H12, M = Mg, Ca SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; N-H SYSTEM; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; LIBH4; DECOMPOSITION; MG(BH4)(2); ENERGY; LI; DESORPTION AB Complex borohydrides have been studied as candidate materials for vehicular hydrogen storage. In particular, M(BH4)(2), where M = Mg or Ca, has received considerable attention because of its high gravimetric capacity for H-2. Experimental observations indicate an initial decomposition reaction: 6M(BH4)(2) -> 5MH(2) + MB12H12 + 13H(2), where the MB12H12 species are amorphous. We use first-principles density functional theory to study the structural and energetic properties of MB12H12. The purpose of these calculations is to investigate why these materials form amorphous structures. We have identified two possible reasons for MB12H12 adopting apparently amorphous rather than crystalline structures. First, our calculations reveal a large number of structurally distinct polymorphs having near-degenerate energies. We simulate an X-ray diffraction (XRD) pattern for each polymorph and compute the Boltzmann-averaged XRD patterns for MgB12H12, and CaB12H12. These average patterns appear to be amorphous, having very broad peaks. Therefore, we predict that the amorphous MB12H12 materials observed experimentally may be an intimate mixture of a very large number of structurally distinct crystallites. Second, our first-principles molecular dynamics calculations indicate that cations are highly mobile near room temperature; analysis of cation radial distribution functions gives liquid-like rather than solid-like features that could also result in an experimental observation of an amorphous XRD pattern near room temperature. C1 [Kulkarni, Anant D.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Wang, Lin-Lin; Johnson, Duane D.] Univ Illinois, Urbana, IL 61801 USA. [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. EM karki@pitt.edu RI KULKARNI, ANANT/D-3124-2012; Johnson, Karl/E-9733-2013; OI Johnson, Karl/0000-0002-3608-8003; Johnson, Duane/0000-0003-0794-7283 FU DOE [DE-FC36-05G015066, DE-FC36-05GO15064] FX This work was supported by the DOE grant nos. DE-FC36-05G015066 and DE-FC36-05GO15064 and performed in conjunction with the DOE Metal Hydride Center of Excellence. Calculations were performed at the University of Pittsburgh's Center for Simulation and Modeling, and the Materials Computation Center at the University of Illinois. NR 38 TC 21 Z9 21 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 2 PY 2010 VL 114 IS 34 BP 14601 EP 14605 DI 10.1021/jp101326g PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 641LY UT WOS:000281129100039 ER PT J AU Petrik, NG Kimmel, GA AF Petrik, Nikolay G. Kimmel, Greg A. TI Off-Normal CO2 Desorption from the Photooxidation of CO on Reduced TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; RUTILE TIO2(110); OXIDIZED TIO2(110); MOLECULAR-OXYGEN; SURFACE SCIENCE; OXIDATION; DISSOCIATION; CHEMISORPTION; PRINCIPLES; PT(111) AB Photoinduced reactions between O-2 and CO on reduced rutile TiO2(110) are studied at low temperature (similar to 30 K). Photon-stimulated desorption (PSD) of O-2, CO2, and CO is observed with comparable yields. Isotope labeling experiments indicate that O-2 chemisorbed in a vacancy is more active for photooxidation than O-2 chemisorbed on a Ti-5c site. The angular distribution for the desorbing CO2 is peaked at similar to 40 degrees with respect to the surface normal in the [1 (1) over bar0] azimuth (i.e., perpendicular to the bridging oxygen rows), suggesting that CO2 is produced from O-2 occupying an oxygen vacancy and CO adsorbed on a Ti-5c site next to it. The experimental results are consistent with CO2 being produced from a transition state that has been predicted theoretically. The CO PSD from TiO2(110) is enhanced dramatically by the presence of chemisorbed O-2, suggesting that it is a byproduct of the CO photooxidation process. C1 [Petrik, Nikolay G.; Kimmel, Greg A.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Petrik, NG (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM nikolai.petrik@pnl.gov; gregory.kimmel@pnl.gov RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE, Office of Biological and Environmental Research; DOE [DE-AC06-76RLO 1830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE, Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 39 TC 29 Z9 29 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 2 PY 2010 VL 1 IS 17 BP 2508 EP 2513 DI 10.1021/jz100884w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 646UK UT WOS:000281568300003 ER PT J AU Xu, ZC Carlton, CE Allard, LF Shao-Horn, Y Hamad-Schifferli, K AF Xu, Zhichuan Carlton, Christopher E. Allard, Lawrence F. Shao-Horn, Yang Hamad-Schifferli, Kimberly TI Direct Colloidal Route for Pt-Covered AuPt Bimetallic Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID OXYGEN REDUCTION; GOLD NANOPARTICLES; FACILE SYNTHESIS; ALLOY; ELECTROCATALYSTS; NANOCRYSTALS; CATALYSTS; GROWTH AB Pt-covered AuPt bimetallic nanoparticles were synthesized in a polar organic environment using HAuCl(4) and H(2)PtCl(6) as precursors. Electrochemical and UV-vis measurements showed that these AuPt nanoparticles have Pt-rich Surfaces and their effective electrochemical Pt coverage is dependent on the Pt nominal composition. By mixing the two precursors in one pot, the interaction of two precursors lowered the temperature for Pt reduction and further favored the formation of a smooth Pt shell on the particle surface. The synthesis is a,unique approach for controlling the surface electrochemical properties of bimetallic nanoparticles via varying particle nominal compositions. C1 [Xu, Zhichuan; Carlton, Christopher E.; Shao-Horn, Yang; Hamad-Schifferli, Kimberly] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Hamad-Schifferli, Kimberly] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shao-Horn, Y (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM shaohorn@mit.edu; schiffer@mit.edu RI Xu, Zhichuan/D-1661-2013 OI Xu, Zhichuan/0000-0001-7746-5920 FU National Science Foundation [DMR-0819762]; U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This work was supported by the MRSEC Program of the National Science Foundation under Award Number DMR-0819762. The authors thank S. Chen for TEM/EDS, W. Sheng and J. Kim for fruitful discussion, H. A. Gasteiger and J. Suntivich for establishing the electrochemical method to estimate surface Pt coverage of AuPt NPs. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 27 TC 26 Z9 26 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 2 PY 2010 VL 1 IS 17 BP 2514 EP 2518 DI 10.1021/jz100896p PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 646UK UT WOS:000281568300004 ER PT J AU Muller, H Peters, A Chu, S AF Mueller, Holger Peters, Achim Chu, Steven TI Atom gravimeters and gravitational redshift Reply SO NATURE LA English DT Letter C1 [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mueller, Holger; Chu, Steven] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Peters, Achim] Humboldt Univ, Inst Phys, D-10117 Berlin, Germany. [Chu, Steven] US DOE, Washington, DC 20585 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 151 Le Conte Hall,MS 7300, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Peters, Achim/G-3742-2010; Mueller, Holger/E-3194-2015 NR 13 TC 24 Z9 25 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 2 PY 2010 VL 467 IS 7311 BP E2 EP E2 DI 10.1038/nature09341 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 645MB UT WOS:000281461200029 ER PT J AU Abe, E Tyryshkin, AM Tojo, S Morton, JJL Witzel, WM Fujimoto, A Ager, JW Haller, EE Isoya, J Lyon, SA Thewalt, MLW Itoh, KM AF Abe, Eisuke Tyryshkin, Alexei M. Tojo, Shinichi Morton, John J. L. Witzel, Wayne M. Fujimoto, Akira Ager, Joel W. Haller, Eugene E. Isoya, Junichi Lyon, Stephen A. Thewalt, Mike L. W. Itoh, Kohei M. TI Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTORS AB We report electron paramagnetic resonance (EPR) experiments of phosphorus donors in isotopically controlled silicon single crystals. By varying the concentration of the (29)Si isotope, f, from 0.075% to 99.2%, we systematically study the effect of the environmental nuclear spins on the donor-electron spin. We find excellent agreement between experiment and theory for decoherence times due to nuclear-induced spectral diffusion, clarifying that the nuclear-induced decoherence is dominant in the range of f studied. We also observe that the EPR linewidth shows a transition from the square-root dependence to the linear dependence on f, in agreement with theoretical predictions. C1 [Abe, Eisuke; Morton, John J. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Abe, Eisuke; Tojo, Shinichi; Fujimoto, Akira; Itoh, Kohei M.] Keio Univ, Sch Fundamental Sci & Technol, Tokyo 2238522, Japan. [Tyryshkin, Alexei M.; Lyon, Stephen A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Morton, John J. L.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Witzel, Wayne M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ager, Joel W.; Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Isoya, Junichi] Univ Tsukuba, Grad Sch Lib Informat & Media Studies, Tsukuba, Ibaraki 3058550, Japan. [Thewalt, Mike L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. RP Abe, E (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM eisuke.abe@materials.ox.ac.uk RI Abe, Eisuke/C-1113-2009; Morton, John/I-3515-2013; Itoh, Kohei/C-5738-2014; OI Ager, Joel/0000-0001-9334-9751 FU Royal Society; NSF through the Princeton MRSEC [DMR-0213706]; NAS/LPS through LBNL [MOD 713106A]; MEXT; Special Coordination Funds for Promoting Science and Technology; JST-EPSRC; Funding Program for Science and Technology FIRST; Global Center of Excellence at Keio University; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank H.-J. Pohl for the purified 29Si source and A. Takano for SIMS measurements of several samples. J.J.L.M. was supported by the Royal Society. Work at Princeton was supported by the NSF through the Princeton MRSEC under Grant No. DMR-0213706 and by the NAS/LPS through LBNL under Grant No. MOD 713106A. Work at Keio was supported in part by the Grant-in-Aid for Scientific Research by MEXT, in part by Special Coordination Funds for Promoting Science and Technology, in part by JST-EPSRC Strategic International Cooperative Program, in part by the Funding Program for Science and Technology FIRST, and in part by the Global Center of Excellence at Keio University. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 43 Z9 43 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2010 VL 82 IS 12 AR 121201 DI 10.1103/PhysRevB.82.121201 PG 4 WC Physics, Condensed Matter SC Physics GA 645SM UT WOS:000281486400001 ER PT J AU Johnson, CA Kittilstved, KR Kaspar, TC Droubay, TC Chambers, SA Salley, GM Gamelin, DR AF Johnson, Claire A. Kittilstved, Kevin R. Kaspar, Tiffany C. Droubay, Tim C. Chambers, Scott A. Salley, G. Mackay Gamelin, Daniel R. TI Mid-gap electronic states in Zn1-xMnxO SO PHYSICAL REVIEW B LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; MN-DOPED ZNO; QUANTUM DOTS; ZINC-OXIDE; THIN-FILMS; MAGNETOOPTICAL PROPERTIES; PARAMAGNETIC RESONANCE; EXCITED-STATE; NANOCRYSTALS; SPECTRA AB Electronic absorption, magnetic circular dichroism (MCD), photoconductivity, and valence-band x-ray photoelectron (XPS) spectroscopic measurements were performed on epitaxial Zn1-xMnxO films to investigate the origin of the mid-gap band that appears upon introduction of Mn2+ into the ZnO lattice. Absorption and MCD spectroscopies reveal Mn2+-related intensity at energies below the first excitonic transition of ZnO, tailing well into the visible energy region, with an onset at similar to 2.2 eV. Photoconductivity measurements show that excitation into this visible band generates mobile charge carriers, consistent with assignment as a Mn2+/3+ photoionization transition. XPS measurements reveal the presence of occupied Mn2+ levels just above the valence-band edge, supporting this assignment. MCD measurements additionally show a change in sign and large increase in magnitude of the excitonic Zeeman splitting in Zn1-xMnxO relative to ZnO, suggesting that sp-d exchange in Zn1-xMnxO is not as qualitatively different from those in other II-VI diluted magnetic semiconductors as has been suggested. The singular electronic structure feature of Zn1-xMnxO is the presence of this Mn2+/3+ ionization level within the gap, and the influence of this level on other physical properties of Zn1-xMnxO is discussed. C1 [Johnson, Claire A.; Kittilstved, Kevin R.; Salley, G. Mackay; Gamelin, Daniel R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kaspar, Tiffany C.; Droubay, Tim C.; Chambers, Scott A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Salley, G. Mackay] Wofford Coll, Dept Phys, Spartanburg, SC 29303 USA. RP Johnson, CA (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM gamelin@chem.washington.edu RI Droubay, Tim/D-5395-2016; Kittilstved, Kevin/B-8204-2009 OI Droubay, Tim/0000-0002-8821-0322; FU U.S. National Science Foundation [CHE 0628252-CRC]; Sloan Foundation; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics FX This work was supported by the U.S. National Science Foundation (Grant No. CHE 0628252-CRC). Additional support to D. G. from the Sloan Foundation is gratefully acknowledged. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Work performed at EMSL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics. We thank Chongmin Wang (EMSL) for the TEM measurements. NR 67 TC 22 Z9 22 U1 6 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2010 VL 82 IS 11 AR 115202 DI 10.1103/PhysRevB.82.115202 PG 11 WC Physics, Condensed Matter SC Physics GA 645SL UT WOS:000281486200006 ER PT J AU Rondinelli, JM Spaldin, NA AF Rondinelli, James M. Spaldin, Nicola A. TI Substrate coherency driven octahedral rotations in perovskite oxide films SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; SRTIO3 AB We perform first-principles density-functional calculations to explore the role of substrate proximity effects on the octahedral rotation patterns in perovskite oxide superlattices. With cubic perovskite SrFeO(3) as our model film and tetragonal SrTiO(3) as the substrate, we show that in most cases the substrate octahedral rotation patterns propagate into the film across the heterointerface. We also identify elastic boundary conditions for which the enforced structural coherence induces atomic displacement patterns that are not found in the bulk phase diagram of either individual constituent. We suggest that such substrate coherency-induced octahedral texturing of thin film oxides is a promising approach for tuning the electronic structure of functional oxide thin films. C1 [Rondinelli, James M.; Spaldin, Nicola A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Rondinelli, JM (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rondinelli@anl.gov RI Rondinelli, James/A-2071-2009; Spaldin, Nicola/A-1017-2010 OI Rondinelli, James/0000-0003-0508-2175; Spaldin, Nicola/0000-0003-0709-9499 FU NDSEG-DoD; NSF [DMR 0940420] FX This work was supported by NDSEG-DoD (J.M.R.) and the NSF through Grant No. DMR 0940420 (N.A.S.). We thank S. May, C. Adamo, and D. Schlom for useful discussions. NR 29 TC 54 Z9 54 U1 6 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2010 VL 82 IS 11 AR 113402 DI 10.1103/PhysRevB.82.113402 PG 4 WC Physics, Condensed Matter SC Physics GA 645SL UT WOS:000281486200003 ER PT J AU Wang, CH Lawrence, JM Bauer, ED Kothapalli, K Gardner, JS Ronning, F Gofryk, K Thompson, JD Nakotte, H Trouw, F AF Wang, C. H. Lawrence, J. M. Bauer, E. D. Kothapalli, K. Gardner, J. S. Ronning, F. Gofryk, K. Thompson, J. D. Nakotte, H. Trouw, F. TI Unusual signatures of the ferromagnetic transition in the heavy fermion compound UMn2Al20 SO PHYSICAL REVIEW B LA English DT Article ID PR3TL; RESISTIVITY AB Magnetic-susceptibility results for single crystals of the new cubic compounds UT2Al20 (T = Mn, V, and Mo) are reported. Magnetization, specific-heat, resistivity, and neutron-diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn2Al20. For T = V and Mo, temperature-independent Pauli paramagnetism is observed. For UMn2Al20, a ferromagnetic transition is observed in the magnetic susceptibility at T-c = 20 K. The specific-heat anomaly at T-c is very weak while no anomaly in the resistivity is seen at T-c. We discuss two possible origins for this behavior of UMn2Al20: moderately small moment itinerant ferromagnetism or induced local-moment ferromagnetism. C1 [Wang, C. H.; Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Wang, C. H.; Bauer, E. D.; Ronning, F.; Gofryk, K.; Thompson, J. D.; Trouw, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, C. H.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kothapalli, K.; Nakotte, H.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Gardner, J. S.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. RP Wang, CH (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. RI Bauer, Eric/D-7212-2011; Lujan Center, LANL/G-4896-2012; Gardner, Jason/A-1532-2013; Gofryk, Krzysztof/F-8755-2014; OI Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46036]; U.S. DOE/Office of Science; Oak Ridge National Laboratory; National Institute of Standards and Technology, U.S. Department of Commerce; National Science Foundation [DMR 0804032] FX Research at UC Irvine was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46036. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. DOE/Office of Science. Work at ORNL was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. Part of the work was supported by the National Science Foundation under Grant No. DMR 0804032. NR 20 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2010 VL 82 IS 9 AR 094406 DI 10.1103/PhysRevB.82.094406 PG 5 WC Physics, Condensed Matter SC Physics GA 645SJ UT WOS:000281486000005 ER PT J AU Klahn, T Roberts, CD Chang, L Chen, HA Liu, YX AF Klaehn, Thomas Roberts, Craig D. Chang, Lei Chen, Huan Liu, Yu-Xin TI Cold quarks in medium: An equation of state SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; LADDER APPROXIMATION; DENSITY; THEOREM; MATTER; STARS; QCD AB We derive a compact, semialgebraic expression for the cold-quark-matter equation of state (EoS) in a covariant model that exhibits coincident deconfinement and chiral symmetry restoring transitions in medium. In doing so we obtain algebraic expressions for the number- and scalar-density distributions in both the confining Nambu and the deconfined Wigner phases and the vacuum-pressure difference between these phases, which defines a bag constant. Our qualitative study illustrates that a confining interaction can materially alter distribution functions from those of a Fermi gas and impact significantly on a system's thermodynamic properties, possibilities that are apparent in the EoS. C1 [Klaehn, Thomas; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Klaehn, Thomas] Uniwersytet Wroclawski, Inst Fizyki Teoretycznej, PL-50204 Wroclaw, Poland. [Roberts, Craig D.; Liu, Yu-Xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Chang, Lei] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China. [Chen, Huan] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Liu, Yu-Xin] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Liu, Yu-Xin] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. RP Klahn, T (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov OI Roberts, Craig/0000-0002-2937-1361 FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; National Natural Science Foundation of China [10425521, 10675007, 10705002, 10935001]; Major State Basic Research Development Program [G2007CB815000] FX This work was supported by Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357; National Natural Science Foundation of China Contract Nos. 10425521, 10675007, 10705002, and 10935001; and Major State Basic Research Development Program Contract No. G2007CB815000. NR 32 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 2 PY 2010 VL 82 IS 3 AR 035801 DI 10.1103/PhysRevC.82.035801 PG 5 WC Physics, Nuclear SC Physics GA 645SN UT WOS:000281486500002 ER PT J AU Poppitz, E Unsal, M AF Poppitz, Erich Uensal, Mithat TI Anti-de Sitter-space/conformal-field-theory correspondence and large-N volume independence SO PHYSICAL REVIEW D LA English DT Article ID LATTICE GAUGE-THEORY; EGUCHI-KAWAI MODEL; STRING THEORY; TRANSITION; FREEDOM; PHASE; LIMIT AB We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the gravity dual of N = 4 super-Yang-Mills on R(3) x S(1). We show that D-branes geometrize volume independence in the center-symmetric vacuum and give supergravity predictions for the range of validity of reduced large-N models at strong coupling. C1 [Poppitz, Erich] Univ Toronto, Dept Phys, Toronto, ON M4Y 3B6, Canada. [Uensal, Mithat] Stanford Univ, SLAC, Stanford, CA 94025 USA. [Uensal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94025 USA. RP Poppitz, E (reprint author), Univ Toronto, Dept Phys, Toronto, ON M4Y 3B6, Canada. FU U.S. Department of Energy [DE-AC02-76SF00515]; National Science and Engineering Council of Canada (NSERC) FX We are indebted to J. Maldacena, O. Aharony, and L. Yaffe for their crucial help. We also thank B. Burrington, M. Hanada, A. Karch, H. Neuberger, A. Peet, A. Rajaraman, S. Shenker, and E. Witten for useful discussions. M. U. thanks the Weizmann Institute of Science, where portions of this work was done, for hospitality. This work was supported by the U.S. Department of Energy Grant No. DE-AC02-76SF00515 and by the National Science and Engineering Council of Canada (NSERC). NR 33 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 2 PY 2010 VL 82 IS 6 AR 066002 DI 10.1103/PhysRevD.82.066002 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 645SP UT WOS:000281486700004 ER PT J AU Slifer, K Rondon, OA Aghalaryan, A Ahmidouch, A Asaturyan, R Bloch, F Boeglin, W Bosted, P Carasco, C Carlini, R Cha, J Chen, JP Christy, ME Cole, L Coman, L Crabb, D Danagoulian, S Day, D Dunne, J Elaasar, M Ent, R Fenker, H Frlez, E Gaskell, D Gan, L Gomez, J Hu, B Jourdan, J Jones, MK Keith, C Keppel, CE Khandaker, M Klein, A Kramer, L Liang, Y Lichtenstadt, J Lindgren, R Mack, D Mckee, P McNulty, D Meekins, D Mkrtchyan, H Nasseripour, R Niculescu, I Normand, K Norum, B Pocanic, D Prok, Y Raue, B Reinhold, J Roche, J Kiselev, D Savvinov, N Sawatzky, B Seely, M Sick, I Smith, C Smith, G Stepanyan, S Tang, L Tajima, S Testa, G Vulcan, W Wang, K Warren, G Wesselmann, FR Wood, S Yan, C Yuan, L Yun, J Zeier, M Zhu, H AF Slifer, K. Rondon, O. A. Aghalaryan, A. Ahmidouch, A. Asaturyan, R. Bloch, F. Boeglin, W. Bosted, P. Carasco, C. Carlini, R. Cha, J. Chen, J. P. Christy, M. E. Cole, L. Coman, L. Crabb, D. Danagoulian, S. Day, D. Dunne, J. Elaasar, M. Ent, R. Fenker, H. Frlez, E. Gaskell, D. Gan, L. Gomez, J. Hu, B. Jourdan, J. Jones, M. K. Keith, C. Keppel, C. E. Khandaker, M. Klein, A. Kramer, L. Liang, Y. Lichtenstadt, J. Lindgren, R. Mack, D. Mckee, P. McNulty, D. Meekins, D. Mkrtchyan, H. Nasseripour, R. Niculescu, I. Normand, K. Norum, B. Pocanic, D. Prok, Y. Raue, B. Reinhold, J. Roche, J. Kiselev, D. Savvinov, N. Sawatzky, B. Seely, M. Sick, I. Smith, C. Smith, G. Stepanyan, S. Tang, L. Tajima, S. Testa, G. Vulcan, W. Wang, K. Warren, G. Wesselmann, F. R. Wood, S. Yan, C. Yuan, L. Yun, J. Zeier, M. Zhu, H. TI Probing Quark-Gluon Interactions with Transverse Polarized Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC-SCATTERING; SPIN STRUCTURE-FUNCTION; STRUCTURE FUNCTIONS G(1)(P); SUM-RULES; RESONANCE REGION; TARGET; QCD; NEUTRON; ELECTROPRODUCTION; OPERATORS AB We have extracted QCD matrix elements from our data on doubly polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element (d) over tilde (2), which arises strictly from quark-gluon interactions, to be unambiguously nonzero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham sum rule is valid. The fundamental Bjorken sum rule obtained from the a(0) matrix element is satisfied at our low momentum transfer. C1 [Slifer, K.; Rondon, O. A.; Crabb, D.; Day, D.; Frlez, E.; Lindgren, R.; Mckee, P.; McNulty, D.; Norum, B.; Pocanic, D.; Prok, Y.; Sawatzky, B.; Smith, C.; Tajima, S.; Wang, K.; Wesselmann, F. R.; Zeier, M.; Zhu, H.] Univ Virginia, Charlottesville, VA 22903 USA. [Slifer, K.] Univ New Hampshire, Durham, NH 03824 USA. [Aghalaryan, A.; Asaturyan, R.; Mkrtchyan, H.] Yerevan Phys Inst, Yerevan 0036, Armenia. [Ahmidouch, A.; Danagoulian, S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Bloch, F.; Carasco, C.; Jourdan, J.; Normand, K.; Kiselev, D.; Sick, I.; Testa, G.; Warren, G.] Univ Basel, CH-4056 Basel, Switzerland. [Boeglin, W.; Coman, L.; Kramer, L.; Nasseripour, R.; Raue, B.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Bosted, P.; Carlini, R.; Chen, J. P.; Ent, R.; Fenker, H.; Gaskell, D.; Gomez, J.; Jones, M. K.; Keith, C.; Mack, D.; Meekins, D.; Niculescu, I.; Roche, J.; Seely, M.; Smith, G.; Vulcan, W.; Warren, G.; Wood, S.; Yan, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cha, J.; Dunne, J.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Christy, M. E.; Cole, L.; Hu, B.; Keppel, C. E.; Liang, Y.; Tang, L.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Elaasar, M.] So Univ New Orleans, New Orleans, LA 70126 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Khandaker, M.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA 23504 USA. [Klein, A.] Old Dominion Univ, Norfolk, VA 23529 USA. [Lichtenstadt, J.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [McNulty, D.] Univ Massachusetts, Amherst, MA 01003 USA. [Kiselev, D.] Paul Scherrer Inst, Villigen, Switzerland. [Savvinov, N.] Univ Maryland, College Pk, MD 20742 USA. [Stepanyan, S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Yun, J.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Slifer, K (reprint author), Univ Virginia, Charlottesville, VA 22903 USA. RI Rondon Aramayo, Oscar/B-5880-2013; Frlez, Emil/B-6487-2013; carasco, Cedric/H-5463-2013; Day, Donal/C-5020-2015 OI Day, Donal/0000-0001-7126-8934 FU Department of Energy [DE-AC05-84ER40150]; National Science Foundation; Schweizerische Nationalfonds; Institute of Nuclear and Particle Physics of the University of Virginia FX We would like to thank the Hall C technical staff and the accelerator operators for their efforts and dedication. This work was supported by the Department of Energy, the National Science Foundation, the Schweizerische Nationalfonds, and by the Institute of Nuclear and Particle Physics of the University of Virginia. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility for the DOE under Contract No. DE-AC05-84ER40150, mod. # 175. NR 48 TC 11 Z9 11 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2010 VL 105 IS 10 AR 101601 DI 10.1103/PhysRevLett.105.101601 PG 5 WC Physics, Multidisciplinary SC Physics GA 645SQ UT WOS:000281486900006 PM 20867509 ER PT J AU Yin, WG Lee, CC Ku, W AF Yin, Wei-Guo Lee, Chi-Cheng Ku, Wei TI Unified Picture for Magnetic Correlations in Iron-Based Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; BA0.6K0.4FE2AS2; ORDER AB The varying metallic antiferromagnetic correlations observed in iron-based superconductors are unified in a model consisting of both itinerant electrons and localized spins. The decisive factor is found to be the sensitive competition between the superexchange antiferromagnetism and the orbital-degenerate double-exchange ferromagnetism. Our results reveal the crucial role of Hund's rule coupling for the strongly correlated nature of the system and suggest that the iron-based superconductors are closer kin to manganites than cuprates in terms of their diverse magnetism and incoherent normal-state electron transport. This unified picture would be instrumental for exploring other exotic properties and the mechanism of superconductivity in this new class of superconductors. C1 [Yin, Wei-Guo; Lee, Chi-Cheng; Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yin, WG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM wyin@bnl.gov RI Yin, Weiguo/A-9671-2014 OI Yin, Weiguo/0000-0002-4965-5329 FU U.S. Department of Energy (DOE), Office of Basic Energy Science [DE-AC02-98CH10886]; DOE CMSN FX We thank E. Dagotto, G. Gu, J. Hill, C. C. Homes, P. D. Johnson, Q. Li, P. B. Littlewood, C. Petrovic, M. Strongin, J. M. Tranquada, A. M. Tsvelik, G. Xu, and I. Zaliznyak for discussions. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886, and DOE CMSN. NR 33 TC 119 Z9 119 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2010 VL 105 IS 10 AR 107004 DI 10.1103/PhysRevLett.105.107004 PG 4 WC Physics, Multidisciplinary SC Physics GA 645SQ UT WOS:000281486900010 PM 20867542 ER PT J AU Zhang, ZF Khaleel, R AF Zhang, Z. Fred Khaleel, Raziuddin TI Simulating field-scale moisture flow using a combined power-averaging and tensorial connectivity-tortuosity approach SO WATER RESOURCES RESEARCH LA English DT Article ID UNSATURATED HYDRAULIC CONDUCTIVITY; STATE-DEPENDENT ANISOTROPY; HETEROGENEOUS SOILS; STOCHASTIC-ANALYSIS; POROUS-MEDIA; SATURATION; TRANSPORT; SANDS; WATER; INFILTRATION AB Various methods have been developed over the past 3 decades to estimate effective unsaturated hydraulic properties. We developed an alternative practical approach to estimate three-dimensional effective unsaturated hydraulic conductivity via a combined power-averaging and tensorial connectivity-tortuosity (PA-TCT) model. An application of the PA-TCT model to data collected at a field injection site suggests that the model provides a reasonable framework for upscaling core-scale measurements as well as an accurate simulation of moisture flow in a heterogeneous vadose zone. The heterogeneous media at the injection site are composed of multiple geologic units, each of which is represented by an anisotropic equivalent homogeneous medium (EHM). The directional effective hydraulic conductivity for each anisotropic EHM was determined by upscaling the laboratory-measured hydraulic properties with the combined PA-TCT approach. A larger difference between the power values in the horizontal and vertical directions indicates a larger macroscopic anisotropy in unsaturated hydraulic conductivity. A moment analysis was used to quantify the center of mass and the spread of the injected water. Numerical simulations showed that, if the flow domain was treated as being isotropic, the vertical migration was significantly overestimated while the lateral movement was underestimated. To the contrary, if the media were treated as layered, the lateral moisture movement was considerably overestimated while the vertical movement was underestimated. However, when the flow domain was modeled as being mildly anisotropic with the PA-TCT-based parameters, the model could successfully predict the moisture flow and the simulated plume matched best the center of mass and the spread of the injected water of the observed moisture plume. C1 [Zhang, Z. Fred] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Khaleel, Raziuddin] Fluor Govt Grp, Richland, WA 99354 USA. RP Zhang, ZF (reprint author), Pacific NW Natl Lab, Hydrol Grp, MSIN K9-33,POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM fred.zhang@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 FU Fluor Hanford, Inc.; CH2M Hill Plateau Remediation Company FX Funding for this research was provided by Fluor Hanford, Inc., and the CH2M Hill Plateau Remediation Company. Pacific Northwest National Laboratory is operated by Battelle for the U. S. Department of Energy under contract DE-AC05-76RL01830. Many thanks are extended to Ming Ye (University of Florida, Tallahassee) and anonymous reviewers who provided constructive suggestions. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U. S. government or any agency thereof or its contractors or subcontractors. The views and opinions of the authors do not necessarily state or reflect those of the U. S. government or any agency thereof. NR 48 TC 1 Z9 1 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 2 PY 2010 VL 46 AR W09505 DI 10.1029/2009WR008595 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 647QV UT WOS:000281634600003 ER PT J AU Eroglu, A AF Eroglu, Abdullah TI Stepped Impedance Resonators in Triple Band Bandpass Filter Design for Wireless Communication Systems SO INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE LA English DT Article DE Bandpass; Resonators; Sirs; Microstrip; Filter; Communication; Wireless ID WLAN AB Triple band microstrip tri-section bandpass filter using stepped impedance resonators (SIRs) is designed, simulated, built, and measured using hair pin structure. The complete design procedure is given from analytical stage to implementation stage with details The coupling between SIRs is investigated for the first time in detail by studying their effect on the filter characteristics including bandwidth, and attenuation to optimize the filter perfomance. The simulation of the filler is performed using method of moment based 2.5D planar electromagnetic simulator The filter is then implemented on RO4003 material and measured The simulation, and measured results are compared and found to be my close. The effect of coupling on the filter performance is then investigated using electromagnetic simulator It is shown that the coupling effect between SIRs can be used as a design knob to obtain a bandpass Idler with a better performance jar the desired frequency band using the proposed filter topology The results of this work can used in wireless communication systems where multiple frequency bandy are needed Copyright (C) 2010 Praise Worthy Prize S.r.l. - All rights reserved C1 [Eroglu, Abdullah] Indiana Univ Purdue Univ Ft Wayne IPFW, Dept Engn, Ft Wayne, IN USA. Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU PRAISE WORTHY PRIZE SRL PI NAPOLI PA PIAZZA G D ANNUNZIO, NAPOLI, 15-I80125, ITALY SN 1827-6660 J9 INT REV ELECTR ENG-I JI Int. Rev. Electr. Eng.-IREE PD SEP-OCT PY 2010 VL 5 IS 5 BP 2494 EP 2499 PN B PG 6 WC Engineering, Electrical & Electronic SC Engineering GA 701YF UT WOS:000285860400042 ER PT J AU Watrous, MG Delmore, JE Stone, ML AF Watrous, Matthew G. Delmore, James E. Stone, Mark L. TI Porous ion emitters-A new type of thermal ion emitter SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Uranium; TIMS; Porous ion emitter ID IONIZATION MASS-SPECTROMETRY; ISOTOPIC ANALYSIS; PLUTONIUM; URANIUM AB A new type of porous refractory material has been developed as a thermal ionization emitter that is an improvement over both direct filament and resin bead loading. The porous ion emitter is sintered onto the center of a conventional thermal ionization filament and an aqueous solution containing the sample wicked into this emitter. Application of the porous ion emitter to uranium is demonstrated to provide a utilization efficiency ranging between 1% and 2% across a sample size range of 0 2-10 pg. better than that achieved from resin beads and much better than that achieved with direct loading onto a filament. The technique improves sensitivity and reduces the chance of losing a high value sample when manipulating a single resin bead containing an entire sample. (C) 2010 Elsevier B V All rights reserved. C1 [Watrous, Matthew G.; Delmore, James E.; Stone, Mark L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Watrous, MG (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. FU U.S. Government under DOE [DE-AC07-05ID14517] FX The submitted manuscript has been authored by a contractor of the U.S. Government under DOE Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. NR 15 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP-OCT PY 2010 VL 296 IS 1-3 BP 21 EP 24 DI 10.1016/j.ijms.2010.07.015 PG 4 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 673YC UT WOS:000283699100004 ER PT J AU Watson, JP Wets, RJB Woodruff, DL AF Watson, Jean-Paul Wets, Roger J-B Woodruff, David L. TI Scalable Heuristics for a Class of Chance-Constrained Stochastic Programs SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE stochastic programming; chance constraints; scenario-based decomposition; heuristics ID OPTIMIZATION AB We describe computational procedures for solving a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets' progressive hedging algorithm [Rockafellar, R. T., R. J.-B. Wets. 1991. Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1) 119-147]. Experiments demonstrate the ability of the proposed algorithm to quickly find near-optimal solutions-where verifiable-to both difficult and very large chance-constrained stochastic programs, both with and without integer decision variables. The algorithm exhibits strong scalability in terms of both run time required and final solution quality on large-scale instances. C1 [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. [Wets, Roger J-B] Univ Calif Davis, Dept Math, Davis, CA 95616 USA. [Woodruff, David L.] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA. RP Watson, JP (reprint author), Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA. EM jwatson@sandia.gov; rjbwets@ucdavis.edu; dlwoodruff@ucdavis.edu FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. The authors appreciate the detailed comments from the two anonymous reviewers, which significantly improved the final presentation of this paper. NR 16 TC 6 Z9 6 U1 0 U2 4 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 1091-9856 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD FAL PY 2010 VL 22 IS 4 BP 543 EP 554 DI 10.1287/ijoc.1090.0372 PG 12 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 675PH UT WOS:000283842100005 ER PT J AU Marland, G AF Marland, Gregg TI Can geoengineering be green? SO ISSUES IN SCIENCE AND TECHNOLOGY LA English DT Letter C1 Oak Ridge Natl Lab, Carbon Climate Simulat Sci Grp, Oak Ridge, TN 37831 USA. RP Marland, G (reprint author), Oak Ridge Natl Lab, Carbon Climate Simulat Sci Grp, Oak Ridge, TN 37831 USA. EM marlandgh@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0748-5492 J9 ISSUES SCI TECHNOL JI Issues Sci. Technol. PD FAL PY 2010 VL 27 IS 1 BP 13 EP 14 PG 2 WC Engineering, Multidisciplinary; Engineering, Industrial; Multidisciplinary Sciences; Social Issues SC Engineering; Science & Technology - Other Topics; Social Issues GA 676MC UT WOS:000283914700008 ER PT J AU Ollivier-Gooch, C Diachin, L Shephard, MS Tautges, T Kraftcheck, J Leung, V Luo, XJ Miller, M AF Ollivier-Gooch, Carl Diachin, Lori Shephard, Mark S. Tautges, Timothy Kraftcheck, Jason Leung, Vitus Luo, Xiaojuan Miller, Mark TI An Interoperable, Data-Structure-Neutral Component for Mesh Query and Manipulation SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Design; Performance; Data structure independence; mesh-based simulations; mesh modification; software components ID GENERATION; GEOMETRY AB Much of the effort required to create a new simulation code goes into developing infrastructure for mesh data manipulation, adaptive refinement, design optimization, and so forth. This infrastructure is an obvious target for code reuse, except that implementations of these functionalities are typically tied to specific data structures. In this article, we describe a software component-an abstract data model and programming interface-designed to provide low-level mesh query and manipulation support for meshing and solution algorithms. The component's data model provides a data abstraction, completely hiding all details of how mesh data is stored, while its interface defines how applications can interact with that data. Because the component has been carefully designed to be general purpose and efficient, it provides a practical platform for implementing high-level mesh operations independently of the underlying mesh data structures. After describing the data model and interface, we provide several usage examples, each of which has been used successfully with multiple implementations of the interface functionality. The overhead due to accessing mesh data through the interface rather than directly accessing the underlying mesh data is shown to be acceptably small. C1 [Ollivier-Gooch, Carl] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Diachin, Lori; Miller, Mark] Lawrence Livermore Natl Lab, Livermore, CA USA. [Shephard, Mark S.; Luo, Xiaojuan] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Tautges, Timothy] Argonne Natl Lab, Argonne, IL 60439 USA. [Kraftcheck, Jason] Univ Wisconsin, Madison, WI 53706 USA. RP Ollivier-Gooch, C (reprint author), Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. EM cfog@mech.ubc.ca RI Ollivier-Gooch, Carl/E-8934-2011 OI Ollivier-Gooch, Carl/0000-0001-6514-058X FU U.S. Department of Energy; Canadian Natural Sciences and Engineering Research Council FX This work was funded by the U.S. Department of Energy under the Scientific Discovery through Advanced Computing (SciDAC) program and by the Canadian Natural Sciences and Engineering Research Council under a Special Research Opportunities grant. NR 25 TC 4 Z9 4 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD SEP PY 2010 VL 37 IS 3 AR 29 DI 10.1145/1824801.1824807 PG 28 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 661VU UT WOS:000282761200006 ER PT J AU Yamazaki, I Bai, ZJ Simon, H Wang, LW Wu, KS AF Yamazaki, Ichitaro Bai, Zhaojun Simon, Horst Wang, Lin-Wang Wu, Kesheng TI Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Design; Performance; Adaptive subspace dimension; Lanczos; thick-restart; electronic structure calculation ID ELECTRONIC-STRUCTURE CALCULATIONS; EIGENVALUE PROBLEMS; ARNOLDI METHOD; DAVIDSON; SYSTEMS; ENERGY AB The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. The performance of the method strongly depends on the dimension of the projection subspace used at each restart. In this article, we propose an objective function to quantify the effectiveness of the selection of subspace dimension, and then introduce an adaptive scheme to dynamically select the dimension to optimize the performance. We have developed an open-source software package alpha-TRLan to include this adaptive scheme in the TRLan method. When applied to calculate the electronic structure of quantum dots, alpha-TRLan runs up to 2.3x faster than a state-of-the-art preconditioned conjugate gradient eigensolver. C1 [Yamazaki, Ichitaro; Bai, Zhaojun] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Simon, Horst; Wang, Lin-Wang; Wu, Kesheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yamazaki, I (reprint author), Univ Calif Davis, Dept Comp Sci, 1 Shields Ave, Davis, CA 95616 USA. EM yamazaki@cs.ucdavis.edu; bai@cs.ucdavis.edu; hdsimon@lbl.gov; lwwang@lbl.gov; kwu@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FC02-06ER25794]; NSF [DMS-0611548, OCI-0749217] FX This work was supported in part by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Z. Bai was also supported in part by NSF grants DMS-0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794. This research used resources from the National Energy Research Scientific Computing Center, which is supported by the Office of Energy Research of the U.S. Department of Energy. NR 22 TC 7 Z9 7 U1 0 U2 11 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD SEP PY 2010 VL 37 IS 3 AR 27 DI 10.1145/1824801.1824805 PG 18 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 661VU UT WOS:000282761200004 ER PT J AU Vorobeychik, Y AF Vorobeychik, Yevgeniy TI Probabilistic Analysis of Simulation-Based Games SO ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION LA English DT Article DE Game theory; simulation and modeling; simulation; Nash equilibrium AB The field of game theory has proved to be of great importance in modeling interactions between self-interested parties in a variety of settings. Traditionally, game-theoretic analysis relied on highly stylized models to provide interesting insights about problems at hand. The shortcoming of such models is that they often do not capture vital detail. On the other hand, many real strategic settings, such as sponsored search auctions and supply-chains, can be modeled in high resolution using simulations. Recently, a number of approaches have been introduced to perform analysis of game-theoretic scenarios via simulation-based models. The first contribution of this work is the asymptotic analysis of Nash equilibria obtained from simulation-based models. The second contribution is to derive expressions for probabilistic bounds on the quality of Nash equilibrium solutions obtained using simulation data. In this vein, we derive very general distribution-free bounds, as well as bounds which rely on the standard normality assumptions, and extend the bounds to infinite games via Lipschitz continuity. Finally, we introduce a new maximum-a-posteriori estimator of Nash equilibria based on game-theoretic simulation data and show that it is consistent and almost surely unique. C1 Univ Penn, Sandia Natl Labs, Philadelphia, PA 19104 USA. RP Vorobeychik, Y (reprint author), Univ Penn, Sandia Natl Labs, Philadelphia, PA 19104 USA. EM eug.vorobey@gmail.com OI Vorobeychik, Yevgeniy/0000-0003-2471-5345 NR 29 TC 4 Z9 4 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1049-3301 EI 1558-1195 J9 ACM T MODEL COMPUT S JI ACM Trans. Model. Comput. Simul. PD SEP PY 2010 VL 20 IS 3 AR 16 DI 10.1145/1842713.1842719 PG 25 WC Computer Science, Interdisciplinary Applications; Mathematics, Applied SC Computer Science; Mathematics GA 661WV UT WOS:000282764400006 ER PT J AU Hemmert, KS Underwood, KD AF Hemmert, K. Scott Underwood, Keith D. TI Fast, Efficient Floating-Point Adders and Multipliers for FPGAs SO ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS LA English DT Article DE Design; Performance; FPGA; HPC; reconfigurable computing; floating point AB Floating-point applications are a growing trend in the FPGA community. As such, it has become critical to create floating-point units optimized for standard FPGA technology. Unfortunately, the FPGA design space is very different from the VLSI design space; thus, optimizations for FPGAs can differ significantly from optimizations for VLSI. In particular, the FPGA environment constrains the design space such that only limited parallelism can be effectively exploited to reduce latency. Obtaining the right balances between clock speed, latency, and area in FPGAs can be particularly challenging. This article presents implementation details for an IEEE-754 standard floating-point adder and multiplier for FPGAs. The designs presented here enable a Xilinx Virtex4 FPGA (-11 speed grade) to achieve 270 MHz IEEE compliant double precision floating-point performance with a 9-stage adder pipeline and 14-stage multiplier pipeline. The area requirement is approximately 500 slices for the adder and under 750 slices for the multiplier. C1 [Hemmert, K. Scott] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Underwood, Keith D.] Intel Corp, Albuquerque, NM 87185 USA. RP Hemmert, KS (reprint author), Sandia Natl Labs, POB 5800,MS-1319, Albuquerque, NM 87185 USA. EM Kshemme@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 5 Z9 5 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1936-7406 EI 1936-7414 J9 ACM T RECONFIG TECHN JI ACM T. Reconfigurable Technol. Syst. PD SEP PY 2010 VL 3 IS 3 AR 11 DI 10.1145/1839480.1839481 PG 30 WC Computer Science, Hardware & Architecture SC Computer Science GA V20VH UT WOS:000208167000001 ER PT J AU Chin, JC Rao, NSV Yau, DKY Shankar, M Yang, Y Hou, JC Srivathsan, S Iyengar, S AF Chin, Jren-Chit Rao, Nageswara S. V. Yau, David K. Y. Shankar, Mallikarjun Yang, Yong Hou, Jennifer C. Srivathsan, Srinivasagopalan Iyengar, Sitharama TI Identification of Low-Level Point Radioactive Sources Using a Sensor Network SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Algorithms; Design; Experimentation; Performance; Point radioactive source; detection and localization; sequential probability ratio test ID LOCATION; SCHEME AB Identification of a low-level point radioactive source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three or more sensors, a geometric difference triangulation method or an N-sensor localization method is used to estimate the location and strength of the source. Then a sequential probability ratio test based on current measurements and estimated parameters is employed to finally decide: (1) the presence of a source with the estimated parameters, or (2) the absence of the source, or (3) the insufficiency of measurements to make a decision. This method achieves specified levels of false alarm and missed detection probabilities, while ensuring a close-to-minimal number of measurements for reaching a decision. This method minimizes the ghost-source problem of current estimation methods, and achieves a lower false alarm rate compared with current detection methods. This method is tested and demonstrated using: (1) simulations, and (2) a test-bed that utilizes the scaling properties of point radioactive sources to emulate high intensity ones that cannot be easily and safely handled in laboratory experiments. C1 [Chin, Jren-Chit; Yau, David K. Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Rao, Nageswara S. V.; Shankar, Mallikarjun] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yang, Yong; Hou, Jennifer C.] Univ Illinois, Urbana, IL 61801 USA. [Srivathsan, Srinivasagopalan; Iyengar, Sitharama] Louisiana State Univ, Baton Rouge, LA 70803 USA. RP Chin, JC (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM jcchin@cs.purdue.edu RI Shankar, Mallikarjun/N-4400-2015; OI Shankar, Mallikarjun/0000-0001-5289-7460; Rao, Nageswara/0000-0002-3408-5941 FU U.S. Department of Energy [AC05-OOOR22725]; Office of Advanced Computing Research; U.S. National Science Foundation [CNS-0964086] FX Research was supported in part by the U.S. Department of Energy under SensorNet grant no. AC05-OOOR22725 and Mathematics of Complex, Distributed, Interconnected Systems program, Office of Advanced Computing Research, and in part by the U.S. National Science Foundation under grant no. CNS-0964086; work was performed at Purdue University and Oak Ridge National Laboratory managed by UT-Battelle, LLC. NR 42 TC 13 Z9 13 U1 0 U2 3 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD SEP PY 2010 VL 7 IS 3 AR 21 DI 10.1145/1807048.1807050 PG 35 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 699XI UT WOS:000285695800002 ER PT J AU Djidjev, HN AF Djidjev, Hristo N. TI Approximation Algorithms for Computing Minimum Exposure Paths in a Sensor Field SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Algorithms; Performance; Theory; Sensor networks; minimum exposure paths; coverage; approximation algorithms; shortest paths ID NETWORKS; COVERAGE AB The exposure of a path p in a sensor field is a measure of the likelihood that an object traveling along p is detected by at least one sensor from a network of sensors, and is formally defined as an integral over all points x of p of the sensibility (the strength of the signal coming from x) times the element of path length. The minimum exposure path (MEP) problem is, given a pair of points x and y inside a sensor field, to find a path between x and y of minimum exposure. In this article we introduce the first rigorous treatment of the problem, designing an approximation algorithm for the MEP problem with guaranteed performance characteristics. Given a convex polygon P of size n with O(n) sensors inside it and any real number epsilon > 0, our algorithm finds a path in P whose exposure is within an 1 + epsilon factor of the exposure of the MEP, in time O(n/epsilon(2)psi log n), where. is a geometric characteristic of the field. We also describe a framework for a faster implementation of our algorithm, which reduces the time by a factor of approximately Theta(1/epsilon), while keeping the same approximation ratio. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Djidjev, HN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM djidjev@lanl.gov FU Department of Energy [W-705-ENG-36] FX This work has been supported by the Department of Energy under contract W-705-ENG-36. NR 21 TC 2 Z9 2 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD SEP PY 2010 VL 7 IS 3 AR 23 DI 10.1145/1807048.1807052 PG 25 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 699XI UT WOS:000285695800004 ER PT J AU Chen, JJA Chen, TL Kim, B Poulsen, DA Mynar, JL Frechet, JMJ Ma, BW AF Chen, John Jun-An Chen, Teresa L. Kim, BongSoo Poulsen, Daniel A. Mynar, Justin L. Frechet, Jean M. J. Ma, Biwu TI Quinacridone-Based Molecular Donors for Solution Processed Bulk-Heterojunction Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic solar cells; pigments; quinacridones; molecular donors; bulk heterojunction ID LUMINESCENT PROPERTIES; PHOTOVOLTAIC CELLS; EFFICIENCY; FLUORESCENCE; DERIVATIVES; FLUORENE; FILMS; COST; GAP AB New soluble quinacridone-based molecules have been developed as electron donor materials for solution-processed organic solar cells. By functionalizing the pristine pigment core of quinacridone with solubilizing alkyl chains and light absorbing/charge transporting thiophene units, i.e., bithiophene (BT) and thienylbenzo[c][1,2,5]thiadiazolethienyl (BTD), we prepared a series of multifunctional quinacridone-based molecules. These molecular donors show intense absorption in the visible spectral region, and the absorption range and intensity are well-tuned by the interaction between the quinacridone core and the incorporated thiophene units. The thin film absorption edge extends with the expansion of molecular conjugation, i.e., 552 nm for N,N'-di(2-ethylhexyl)quinacridone (QA), 592 nm for 2,9-Bis(5'-hexy1-2,2'-bithiophene)-N,N'-di(2-ethylhexyl)quinacridone (QA-BT), and 637 nm for 4-(5hexylthiophen-2-y1)-7-(thiophen-2-Abenzo[c][1,2,5]chiadiazole (QA-BTD). The change of molecular structure also influences the electrochemical properties. Observed from cyclic voltammetry measurements, the oxidation and reduction potentials (vs ferrocene) are 0.7 and 1.83 V for QA, 0.54 and 1.76 V for QA-BT, and 0.45 and 1.68 V for QA-BTD. Uniform thin films can be generated from both single component molecular solutions and blend solutions of these molecules with [6,61-phenyl C70-butyric acid methyl ester (PC70BM). The blend films exhibit space-charge limited current (SCLC) hole mobilities on the order of 1 x 10(-4) cm(2) V-1 s(-1) Bulk heterojunction (BHJ) solar cells using these soluble molecules as donors and PC70BM as the acceptor were fabricated. Power conversion efficiencies (PCEs) of up to 2.22% under AM 1.5 G simulated 1 sun solar illumination have been achieved and external quantum efficiencies (EQEs) reach as high as similar to 45%. C1 [Kim, BongSoo; Poulsen, Daniel A.; Mynar, Justin L.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Chen, John Jun-An; Chen, Teresa L.; Frechet, Jean M. J.; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu; BWMa@lbl.gov RI Ma, Biwu/B-6943-2012; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, and the Materials Sciences and Engineering Division, U.S. Department of Energy [DE-ACO2-05C1-11 1231] FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, and the Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract DE-ACO2-05C1-11 1231. NR 30 TC 57 Z9 57 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP PY 2010 VL 2 IS 9 BP 2679 EP 2686 DI 10.1021/am100523g PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 652OR UT WOS:000282017700030 PM 20804141 ER PT J AU Coffey, DC Ferguson, AJ Kopidakis, N Rumbles, G AF Coffey, David C. Ferguson, Andrew J. Kopidakis, Nikos Rumbles, Garry TI Photovoltaic Charge Generation in Organic Semiconductors Based on Long-Range Energy Transfer SO ACS NANO LA English DT Article DE solar cell; energy transfer; charge transfer; Forster; FRET; organic semiconductor; photovoltaic; microwave conductivity ID HETEROJUNCTION SOLAR-CELLS; EXCITON DIFFUSION LENGTH; BULK HETEROJUNCTION; EFFICIENCY; POLYMERS; FILMS; PHOTOSYNTHESIS; DISSOCIATION; MORPHOLOGY; BILAYERS AB For efficient charge generation in organic solar cells, photogenerated excitons must migrate to a donor/acceptor interface where they can be dissociated. This migration is traditionally presumed to be based on diffusion through the absorber material. Herein we study an alternative migration route-two-step exciton dissociation-whereby the exciton jumps from the donor to acceptor before charge creation takes place. We study this process in a series of multilayer donor/barrier/acceptor samples, where either poly(3-hexylthiophene) (P3HT) or copper phthalocyanine (CuPc) is the donor, fullerene (C(60)) is the acceptor, and N,N-diphenyl-N,N-bis(3-methylphenyl)[1,1-bisphenyl]-4,4-diamine (TPD) acts as a barrier to energy transfer. By varying the thickness of the barrier layer, we find that energy transfer from P3HT to C(60) proceeds over large distances (similar to 50% probability of transfer across a 11 nm barrier), and that this process is consistent with long-range Forster resonance energy transfer (FRET). Finally, we demonstrate a fundamentally different architecture concept that utilizes the two-step mechanism to enhance performance in a series of P3HT/CuPc/C(60) devices. C1 [Coffey, David C.; Ferguson, Andrew J.; Kopidakis, Nikos; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM garry.rumbles@nrel.gov RI Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; OI Rumbles, Garry/0000-0003-0776-1462; Ferguson, Andrew/0000-0003-2544-1753 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08-GO28308] FX We gratefully acknowledge Ross Larsen and Matthew Lloyd for valuable insight and discussion, and the Gregg lab for assistance making devices. This work was funded by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08-GO28308 to NREL. NR 42 TC 56 Z9 57 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2010 VL 4 IS 9 BP 5437 EP 5445 DI 10.1021/nn101106b PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 653TY UT WOS:000282121000060 PM 20735062 ER PT J AU Ranjan, V Yu, L Nakhmanson, S Bernholc, J Nardelli, MB AF Ranjan, V. Yu, L. Nakhmanson, Serge Bernholc, Jerry Nardelli, M. Buongiorno TI Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES LA English DT Article ID POLY(VINYLIDENE FLUORIDE); MODEL AB Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (<= 12%) undergo a transition from the alpha to the beta phase until a breakdown field of similar to 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy. C1 [Ranjan, V.; Yu, L.; Bernholc, Jerry; Nardelli, M. Buongiorno] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Ranjan, V.; Yu, L.; Bernholc, Jerry; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nakhmanson, Serge] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bernholc, Jerry; Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Nardelli, MB (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM mbnardelli@ncsu.edu RI Yu, Liping/B-4640-2008; Buongiorno Nardelli, Marco/C-9089-2009; Nakhmanson, Serge/A-6329-2014 FU Office of Naval Research; US DOE [DE-AC02-06CH11357]; US DOE at ORNL [DE-FG02-98ER14847, DE-AC05-00OR22725] FX This work was supported by the Office of Naval Research. The calculations were carried out at the NCCS-ORNL. SN was supported by BES, US DOE, under contract No. DE-AC02-06CH11357. MBN acknowledges partial support of BES, US DOE at ORNL (DE-FG02-98ER14847 and DE-AC05-00OR22725 with UT-Batelle, LLC). NR 25 TC 2 Z9 2 U1 2 U2 14 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-2733 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD SEP PY 2010 VL 66 BP 553 EP 557 DI 10.1107/S0108767310026358 PN 5 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 643PM UT WOS:000281310600006 PM 20720320 ER PT J AU Fielden, J Ellern, A Kogerler, P AF Fielden, John Ellern, Arkady Koegerler, Paul TI [Cr-8(PhCO2)(16)O-4]center dot 4CH(3)CN center dot 2H(2)O: structural origin of magnetic anisotropy in a molecular spin cluster SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article ID OCTANUCLEAR; FRAMEWORK AB The Cr4O4 hetero-cubane-centered octachromium(III) cluster [Cr-8(PhCO2)(16)O-4] crystallizes from fluorobenzene-acetonitrile as dodeca-mu(2)-benzoato-tetrabenzoatotetra-mu(4)-oxido-octachromium(III) acetonitrile tetrasolvate dihydrate, [Cr-8(C7H5O2)(16)O-4]center dot 4C(2)H(3)N center dot 2H(2)O, (I). Crystals produced by this method are significantly more stable than the originally published dichloromethane pentasolvate, [Cr-8(PhCO2)(16)O-4]center dot 5CH(2)Cl(2) [Atkinson et al. (1999). Chem. Commun. pp. 285-286], leading to a significantly higher quality structure and allowing the production of large quantities of high-quality nondeuterated and deuterated material suitable for inelastic neutron scattering (INS) measurements. Compound (I) reveals a higher symmetry structure in which the cluster sits on a twofold rotation axis, and is based on an asymmetric unit containing four crystallographically independent Cr positions, two oxide ligands, eight benzoate ligands, two acetonitrile solvent molecules and one disordered water molecule. All the Cr atoms are six-coordinate, with an octahedral geometry for the inner cubane and a more highly distorted coordination environment in the outer positions. Despite the higher symmetry, the coordination geometries observed in (I) are largely similar to the dichloromethane pentasolvate structure, indicating that crystal-packing effects have little influence on the molecular structure of [Cr-8(PhCO2)(16)O-4]. Close structural analysis reveals that the high magnetic anisotropy observed in the INS measurements is a consequence of the distorted coordination geometry of the four outer Cr atoms. C1 [Fielden, John; Koegerler, Paul] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ellern, Arkady] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Kogerler, P (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM kogerler@ameslab.gov RI Kogerler, Paul/H-5866-2013 OI Kogerler, Paul/0000-0001-7831-3953 NR 16 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD SEP PY 2010 VL 66 BP 253 EP 256 DI 10.1107/S0108270110032683 PN 9 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 647RD UT WOS:000281635400008 PM 20814097 ER PT J AU Tomanicek, SJ Hughes, RC Ng, JD Coates, L AF Tomanicek, Stephen J. Hughes, Ronny C. Ng, Joseph D. Coates, Leighton TI Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE apurinic; apyrimidinic endonucleases; endonuclease IV; DNA-repair proteins; Thermotoga maritima ID BASE EXCISION-REPAIR; APURINIC APYRIMIDINIC ENDONUCLEASES; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; DAMAGE RECOGNITION; AP ENDONUCLEASES; DNA-DAMAGE; EXONUCLEASE; EVOLUTION; PROTEINS AB The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5'-phosphodiester bond at an AP site to generate a free 3'-hydroxyl group and a 5'-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. C1 [Tomanicek, Stephen J.; Hughes, Ronny C.; Coates, Leighton] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hughes, Ronny C.; Ng, Joseph D.] Univ Alabama, Dept Biol Sci, Struct Biol Lab, Huntsville, AL 35899 USA. RP Coates, L (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM coatesl@ornl.gov OI Coates, Leighton/0000-0003-2342-049X FU US Department of Energy [DE-AC05-00OR22725]; Office of Biological and Environmental Research FX We thank Dr Jenny P. Glusker for a critical review of the manuscript and valuable comments. This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. The research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) was supported by the Office of Biological and Environmental Research, using facilities supported by the US Department of Energy, managed by UT-Battelle LLC under contract No. DE-AC05-00OR22725. NR 46 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2010 VL 66 BP 1003 EP 1012 DI 10.1107/S1744309110028575 PN 9 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 647RF UT WOS:000281635600007 PM 20823514 ER PT J AU Marapakala, K Ajees, AA Qin, J Sankaran, B Rosen, BP AF Marapakala, Kavitha Ajees, A. Abdul Qin, Jie Sankaran, Banumathi Rosen, Barry P. TI Crystallization and preliminary X-ray diffraction analysis of rat autotaxin SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE autotaxin; (ecto)nucleotide pyrophosphatase; phosphodiesterase 2; lysophosphatidylcholine; lysophosphatidylcholine AB Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 A and belonged to space group P1, with unit-cell parameters a = 53.8, b = 63.3, c = 70.5 A, alpha = 98.8, beta = 106.2, gamma = 99.8 degrees. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%. C1 [Marapakala, Kavitha; Ajees, A. Abdul; Qin, Jie; Rosen, Barry P.] Florida Int Univ, Dept Cellular Biol & Pharmacol, Herbert Wertheim Coll Med, Miami, FL 33199 USA. [Sankaran, Banumathi; Rosen, Barry P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Rosen, BP (reprint author), Florida Int Univ, Dept Cellular Biol & Pharmacol, Herbert Wertheim Coll Med, Miami, FL 33199 USA. EM brosen@fiu.edu OI Abdul Salam, Abdul Ajees/0000-0002-3377-3048 FU US National Institutes of Health [GM55425]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute FX This study was supported in part by US National Institutes of Health Grant GM55425. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 8 TC 11 Z9 11 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2010 VL 66 BP 1050 EP 1052 DI 10.1107/S1744309110027661 PN 9 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 647RF UT WOS:000281635600016 PM 20823523 ER PT J AU Khare, B Samal, A Vengadesan, K Rajashankar, KR Ma, X Huang, IH Ton-That, H Narayana, SVL AF Khare, Baldeep Samal, Alexandra Vengadesan, Krishnan Rajashankar, K. R. Ma, Xin Huang, I-Hsiu Ton-That, Hung Narayana, Sthanam V. L. TI Preliminary crystallographic study of the Streptococcus agalactiae sortases, sortase A and sortase C1 SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE sortases; sortase A; sortase C1; Streptococcus agalactiae ID GROUP-B STREPTOCOCCUS; GRAM-POSITIVE BACTERIA; CELL-WALL; NONPREGNANT ADULTS; SURFACE-PROTEINS; STAPHYLOCOCCUS-AUREUS; DISEASE; PILI; COLONIZATION; PNEUMONIAE AB Sortases are cysteine transpeptidases that are essential for the assembly and anchoring of cell-surface adhesins in Gram-positive bacteria. In Streptococcus agalactiae (GBS), the pilin-specific sortase SrtC1 catalyzes the polymerization of pilins encoded by pilus island 1 (PI-1) and the housekeeping sortase SrtA is necessary for cell-wall anchoring of the resulting pilus polymers. These sortases are known to utilize different substrates for pilus polymerization and cell-wall anchoring; however, the structural correlates that dictate their substrate specificity have not yet been clearly defined. This report presents the expression, purification and crystallization of SrtC1 (SAG0647) and SrtA (SAG0961) from S. agalactiae strain 2603V/R. The GBS SrtC1 has been crystallized in three crystal forms and the GBS SrtA has been crystallized in one crystal form. C1 [Khare, Baldeep; Samal, Alexandra; Vengadesan, Krishnan; Narayana, Sthanam V. L.] Univ Alabama, Ctr Biophys Sci & Engn, Sch Optometry, Birmingham, AL 35294 USA. [Rajashankar, K. R.; Huang, I-Hsiu; Ton-That, Hung] Argonne Natl Lab, NE CAT, Adv Photon Source, Chicago, IL USA. [Ma, Xin] Univ Texas Hlth Sci Ctr, Houston, TX 77030 USA. RP Narayana, SVL (reprint author), Univ Alabama, Ctr Biophys Sci & Engn, Sch Optometry, Birmingham, AL 35294 USA. EM narayana@uab.edu OI Ton-That, Hung/0000-0003-1611-0469 FU NIH FX We are grateful to the staff of the NE-CAT (24-ID) and SER-CAT (22-ID) beamlines of the Advanced Photon Source, Illinois, Chicago for their help with data collection. This work was supported by funding from NIH (SVLN). NR 32 TC 5 Z9 5 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2010 VL 66 BP 1096 EP 1100 DI 10.1107/S1744309110031106 PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 647RF UT WOS:000281635600029 PM 20823536 ER PT J AU Rohrer, GS Holm, EA Rollett, AD Foiles, SM Li, J Olmsted, DL AF Rohrer, Gregory S. Holm, Elizabeth A. Rollett, Anthony D. Foiles, Stephen M. Li, Jia Olmsted, David L. TI Comparing calculated and measured grain boundary energies in nickel SO ACTA MATERIALIA LA English DT Article DE Grain boundary energy; Grain boundary junctions; MD-simulations; EBSD; Serial sectioning ID CRYSTALLITE ROTATION METHOD; 5 MACROSCOPIC PARAMETERS; VECTOR THERMODYNAMICS; ANISOTROPIC SURFACES; INTERFACIAL ENERGIES; TILT BOUNDARIES; COPPER; MISORIENTATION; GROWTH; SIMULATIONS AB Recent experimental and computational studies have produced two large grain boundary energy data sets for Ni. Using these results, we perform the first large-scale comparison between measured and computed grain boundary energies. While the overall correlation between experimental and computed energies is minimal, there is excellent agreement for the data in which we have the most confidence, particularly the experimentally prevalent Sigma 3 and Sigma 9 boundary types. Other CSL boundaries are infrequently observed in the experimental system and show little correlation with computed boundary energies. Because they do not depend on observation frequency, computed grain boundary energies are more reliable than the experimental energies for low population boundary types. Conversely, experiments can characterize high population boundaries that are not included in the computational study. Together the experimental and computational data provide a comprehensive catalog of grain boundary energies in Ni that can be used with confidence by microstructural scientists. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Holm, Elizabeth A.; Foiles, Stephen M.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. [Rohrer, Gregory S.; Rollett, Anthony D.; Li, Jia] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Olmsted, David L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Holm, EA (reprint author), Sandia Natl Labs, Computat Mat Sci & Engn Dept, POB 5800, Albuquerque, NM 87185 USA. EM Eaholm@sandia.gov RI Rollett, Anthony/A-4096-2012; Rohrer, Gregory/A-9420-2008; Holm, Elizabeth/S-2612-2016; OI Rollett, Anthony/0000-0003-4445-2191; Rohrer, Gregory/0000-0002-9671-3034; Holm, Elizabeth/0000-0003-3064-5769; Foiles, Stephen/0000-0002-1907-454X FU US Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000]; Department of Energy, Office of Basic Energy Sciences; National Science Foundation [DMR-0520425] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. We acknowledge support from the Department of Energy, Office of Basic Energy Sciences both through the core program and through the Computational Materials Science Network program. The work at CMU was primarily supported by the MRSEC program of the National Science Foundation under Award Number DMR-0520425. NR 45 TC 45 Z9 45 U1 4 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 15 BP 5063 EP 5069 DI 10.1016/j.actamat.2010.05.042 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 634HD UT WOS:000280570500016 ER PT J AU Lowry, MB Kiener, D LeBlanc, MM Chisholm, C Florando, JN Morris, JW Minor, AM AF Lowry, M. B. Kiener, D. LeBlanc, M. M. Chisholm, C. Florando, J. N. Morris, J. W., Jr. Minor, A. M. TI Achieving the ideal strength in annealed molybdenum nanopillars SO ACTA MATERIALIA LA English DT Article DE In situ compression; Transmission electron microscopy; Ideal strength; Focused ion beam; Defect-free ID MICROPILLARS; DEFORMATION; COMPRESSION; PLASTICITY; NANOWIRES; STABILITY; CRYSTALS; BEHAVIOR; COPPER; SCALE AB The theoretical strength of a material is the stress required to deform an infinite, defect-free crystal. Achieving the theoretical strength of a material experimentally is hindered by the ability to create and mechanically test an absolutely defect-free material. Here we show that through annealing it is possible to employ the versatility of the focused ion beam (FIB) but recover a mechanically pristine limited volume. Starting with FIB-milled molybdenum pillars, we anneal them in situ in a transmission electron microscope (TEM) producing a molybdenum pillar with a spherical cap. This geometry allows for the maximum stress to occur in the interior of the spherical cap and is ideally suited for experimentally achieving the ideal strength. During in situ compression testing in the TEM the annealed pillars show initial elastic loading followed by catastrophic failure at, or very near, the calculated theoretical strength of molybdenum. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Lowry, M. B.; Kiener, D.; Chisholm, C.; Morris, J. W., Jr.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lowry, M. B.; LeBlanc, M. M.; Florando, J. N.] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA. [Kiener, D.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Kiener, Daniel/B-2202-2008; Chisholm, Claire/I-3566-2016 OI Kiener, Daniel/0000-0003-3715-3986; Chisholm, Claire/0000-0002-8114-5994 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; US Department of Energy [AC02-05CH11231]; Austrian Sciences Fund (FWF) [J2834-N20]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors also acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract #DE-AC02-05CH11231. D.K. gratefully acknowledges the financial support of the Austrian Sciences Fund (FWF) through the Erwin Schrodinger scholarship J2834-N20. C.C. was supported by the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 35 TC 57 Z9 57 U1 4 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 15 BP 5160 EP 5167 DI 10.1016/j.actamat.2010.05.052 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 634HD UT WOS:000280570500025 ER PT J AU Knipling, KE Karnesky, RA Lee, CP Dunand, DC Seidman, DN AF Knipling, Keith E. Karnesky, Richard A. Lee, Constance P. Dunand, David C. Seidman, David N. TI Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at.%) alloys during isochronal aging SO ACTA MATERIALIA LA English DT Article DE Aluminum alloys; Precipitation; Scandium; Zirconium; Atom-probe tomography ID AL-SC ALLOYS; ELECTRICAL-RESISTIVITY MEASUREMENTS; ELECTRODE ATOM PROBES; LI SINGLE-CRYSTALS; ZR-TI ALLOYS; ALUMINUM-ALLOYS; AL(SC) ALLOYS; ELEVATED-TEMPERATURES; MECHANICAL-BEHAVIOR; TEMPORAL EVOLUTION AB Precipitation strengthening is investigated in binary Al-0.1Sc, Al-0.1Zr and ternary Al-0.1Sc-0.1Zr (at.%) alloys aged isochronally between 200 and 600 degrees C. Precipitation of Al(3)Sc (L1(2)) commences between 200 and 250 degrees C in Al-0.1Sc, reaching a 670 MPa peak microhardness at 325 degrees C. For Al-0.1Zr, precipitation of Al(3)Zr (L1(2)) initiates between 350 and 375 degrees C, resulting in a 420 MPa peak microhardness at 425-450 degrees C. A pronounced synergistic effect is observed when both Sc and Zr are present. Above 325 degrees C, Zr additions provide a secondary strength increase from the precipitation of Zr-enriched outer shells onto the Al(3)Sc precipitates, leading to a peak microhardness of 780 MPa at 400 degrees C for Al-0.1Sc-0.1Zr. Compositions, radii, volume fractions and number densities of the Al(3)(Sc(1-x)Zr(x)) precipitates are measured directly using atom-probe tomography. This information is used to quantify the observed strengthening increments, attributed to dislocation shearing of the Al(3)(Sc(1-x)Zr(x)) precipitates. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Knipling, Keith E.] USN, Res Lab, Multifunct Mat Branch, Washington, DC 20375 USA. [Knipling, Keith E.; Karnesky, Richard A.; Lee, Constance P.; Dunand, David C.; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Karnesky, Richard A.] Sandia Natl Labs, Livermore, CA 94550 USA. [Seidman, David N.] NUCAPT, Evanston, IL 60208 USA. RP Knipling, KE (reprint author), USN, Res Lab, Multifunct Mat Branch, Washington, DC 20375 USA. EM knipling@anvil.nrl.navy.mil RI Seidman, David/B-6697-2009; Dunand, David/B-7515-2009; Karnesky, Richard/D-1649-2010; OI Karnesky, Richard/0000-0003-4717-457X; Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Basic Sciences Division [DE-FG02-02ER45997, DE-FG02-98ER45721]; NSF [DMR-0420532]; ONR-DURIP [N00014-0400798] FX This research is supported by the US Department of Energy, Basic Sciences Division, under contracts DE-FG02-02ER45997 and DE-FG02-98ER45721. APT measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), using a LEAP tomograph purchased with funding from the NSF-MRI (DMR-0420532, Dr. Charles Bouldin, monitor) and ONR-DURIP (N00014-0400798, Dr. Julie Christodoulou, monitor) programs. We are pleased to acknowledge Profs. Morris Fine and Dieter Isheim (Northwestern University) for useful discussions. NR 96 TC 101 Z9 113 U1 5 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 15 BP 5184 EP 5195 DI 10.1016/j.actamat.2010.05.054 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 634HD UT WOS:000280570500027 ER PT J AU Mullner, P King, AH AF Muellner, P. King, A. H. TI Deformation of hierarchically twinned martensite SO ACTA MATERIALIA LA English DT Article DE Shape-memory alloys (SMA); Disclinations; Twinning; Microstructure; Martensitic phase transformation ID SHAPE-MEMORY ALLOYS; PHASE-TRANSFORMATIONS; DISCLINATION MODELS; DOMAIN PATTERN; MILD-STEEL; YBA2CU3O7-DELTA; INTERFACES; DEFECTS; JUNCTIONS; CRYSTAL AB Shape-memory alloys deform via the reorganization of a hierarchically twinned microstructure. Twin boundaries themselves present obstacles for twin boundary motion. In spite of a high density of obstacles, twinning stresses of Ni-Mn-Ga Heusler alloys are very low. Neither atomistic nor dislocation-based models account for such low yield stresses. Twinning mechanisms are studied here on a mesoscopic length scale making use of the disclination theory. In a first approach, a strictly periodic twin pattern containing periodic disclination walls with optimally screened stress fields is considered. Strict periodicity implies that the twin microstructure reorganizes homogeneously. In a second approach, a discontinuity of the fraction of secondary twins is introduced and modeled as a disclination dipole. The stress required for nucleation of this discontinuity is larger than the stress required for homogeneous reorganization. However, once the dipole is formed, it can move under a much smaller stress in agreement with experimental findings. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Muellner, P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [King, A. H.] US DOE, Ames Lab, Ames, IA 50011 USA. [King, A. H.] Iowa State Univ, Ames, IA 50011 USA. RP Mullner, P (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. EM PeterMullner@BoiseState.edu RI King, Alexander/B-3148-2012; King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-9677-3769; King, Alexander/0000-0001-7101-6585 FU US Department of Energy's Office of Basic Energy Sciences [DEFG-02-07ER46396, DE-AC02-07CH11358]; Materials Sciences Division of the Office of Basic Energy Sciences, in the Office of Science FX The authors wish to thank R.C. Pond, D. Medlin and L. Lejcek for providing content and permission to reprint the content of Figs. 11b, c and 12a. We acknowledge the permission from the publisher to reproduce pictures as follows: Fig. 2 [26]: from Acta Metallurgica 28, T. Saburi, C.M. Wayman, K. Takata, S. Nenno, "The shape memory mechanism in 18R martensite", Fig. 7 on p. 23, copyright 1980 by Elsevier, with permission of Elsevier; Fig. 11a [8]: from Philosophical Magazine Ser. 7, 42, F.C. Frank, "Crystal dislocations - elementary concepts and definitions", Fig. 4 on p. 819, copyright 1951 by Taylor & Francis, with permission of Taylor & Francis; Fig. 11b [10]: from Acta Materialia 44, J.P. Hirth and R.C. Pond, "Steps, dislocations and disconnections as interface defects relating to structure and phase transformations", Fig. 4a on p. 4752, copyright 1996 by Elsevier, reprinted with permission of Elsevier; Fig. 11c [50]: from Advances in Twinning, D. Medlin, "Observation and modeling of 1/3 (1 1 1) twin dislocations in aluminum", edited by S. Ankem and C.S. Pande, Fig. la on p. 30, copyright 1999 by The Minerals, Metals & Materials Society (TMS) - Warrendale, PA, USA, with permission of TMS; Fig. 12 [15,51]: from Konf Cs. Fyzika Olemeuc, F. Kroupa and L. Lefeek, "Disclinations in crystals", Fig. 1 on p. 162, copyright 1974 by Springer, with permission of Springer Science and Business Media. P.M. acknowledges the US Department of Energy's Office of Basic Energy Sciences for supporting the work at Boise State University under contract DEFG-02-07ER46396. A.H.K. acknowledges the support of the Ames Laboratory, which is operated by Iowa State University of Science and Technology for the US Department of Energy under contract No. DE-AC02-07CH11358. The work at Ames Laboratory was supported by the Materials Sciences Division of the Office of Basic Energy Sciences, in the Office of Science. NR 65 TC 33 Z9 33 U1 6 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 16 BP 5242 EP 5261 DI 10.1016/j.actamat.2010.05.048 PG 20 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643SL UT WOS:000281318900003 ER PT J AU Tan, Y Shyam, A Choi, WB Lara-Curzio, E Sampath, S AF Tan, Y. Shyam, A. Choi, W. B. Lara-Curzio, E. Sampath, S. TI Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy SO ACTA MATERIALIA LA English DT Article DE Elastic properties; Thermal spray; Plasma spraying; Thermal barrier coatings; Nickel ID STABILIZED ZIRCONIA COATINGS; BARRIER COATINGS; MECHANICAL-PROPERTIES; SPLAT FORMATION; YOUNGS MODULUS; POISSONS RATIO; MICROSTRUCTURAL CHARACTERIZATION; RESIDUAL-STRESSES; BRITTLE MATERIALS; CERAMIC COATINGS AB It is difficult to determine the elastic properties of thermal-sprayed ceramic and metallic coatings owing to the microstructural complexity, sample size and geometry, heterogeneity and availability of suitable techniques. Furthermore, the splat-based build-up of the coating results in transverse anisotropy in the elastic properties. This work reports on such anisotropic elastic properties of these coatings determined by resonant ultrasound spectroscopy. This approach, along with the analysis presented, enables the elastic properties to be determined for the first time as a function of direction and temperature, essential information for design. Coating systems investigated include plasma-sprayed yttria stabilized zirconia and nickel. An additional nickel coating deposited by the high-velocity oxygen-fuel process was also investigated and compared with the plasma-sprayed coating. Average Young's moduli of the coatings were independently measured by indentation. The elastic properties determined enabled the coating microstructure elastic property relationships to be described. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tan, Y.; Choi, W. B.; Sampath, S.] SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. [Shyam, A.; Lara-Curzio, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Sampath, S.] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. RP Tan, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. EM yangtan@gmail.com OI Shyam, Amit/0000-0002-6722-4709 FU National Science Foundation [CMMI 0605704]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies; Department of Energy [DE-AC05000OR22725] FX This work is supported by the GOALI-FRG program sponsored by National Science Foundation under award CMMI 0605704. The work is in part supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under contract DE-AC05000OR22725. The authors acknowledge Dr. Hsin Wang (ORNL) and Dr. Sebastien Dryepondt (ORNL) for reviewing this manuscript. NR 69 TC 21 Z9 23 U1 1 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 16 BP 5305 EP 5315 DI 10.1016/j.actamat.2010.06.003 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643SL UT WOS:000281318900008 ER PT J AU Anbusathaiah, V Jesse, S Arredondo, MA Kartawidjaja, FC Ovchinnikov, OS Wang, J Kalinin, SV Nagarajan, V AF Anbusathaiah, V. Jesse, S. Arredondo, M. A. Kartawidjaja, F. C. Ovchinnikov, O. S. Wang, J. Kalinin, S. V. Nagarajan, V. TI Ferroelastic domain wall dynamics in ferroelectric bilayers SO ACTA MATERIALIA LA English DT Article DE Ferroelectrics; Piezoelectrics; Switching spectroscopy PFM; Band excitation piezoforce spectroscopy; Ferroelastic domains ID THIN-FILMS; CERAMICS; HYSTERESIS; BEHAVIOR; STRESS AB High-performance piezoelectric devices based on ferroelectric materials rely heavily on ferroelastic domain wall switching. Here we present visual evidence for the local mechanisms that underpin domain wall dynamics in ferroelastic nanodomains. State-of-the-art band excitation switching spectroscopy piezoforce microscopy (PFM) reveals distinct origins for the reversible and irreversible components of ferroelastic domain motion. Extrapolating the PFM images to case for uniform fields, we posit that, while reversible switching is essentially a linear motion of the ferroelastic domains, irreversible switching takes place via domain wall twists. Critically, real-time images of in situ domain dynamics under an external bias reveal that the reversible component leads to reduced coercive voltages. Finally, we show that junctions representing three-domain architecture represent facile interfaces for ferroelastic domain switching, and are likely responsible for irreversible processes in the uniform fields. The results presented here thus provide (hitherto missing) fundamental insight into the correlations between the physical mechanisms that govern ferroelastic domain behavior and the observed functional response in domain-engineered thin film ferroelectric devices. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Anbusathaiah, V.; Arredondo, M. A.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. [Kartawidjaja, F. C.; Wang, J.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore. [Ovchinnikov, O. S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Nagarajan, V (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. EM nagarajan@unsw.edu.au RI valanoor, nagarajan/B-4159-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU ARCNN; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy [CNMS2008-263]; Science and Engineering Research Council - A*Star, Singapore [052 101 0047]; National University of Singapore; division of Scientific User Facilities, US Department of Energy, through CNMS FX The work at UNSW was supported by ARC Discovery and LIEF Grants. V.A. acknowledges the ARCNN overseas travel grant to visit Oak Ridge National Laboratory (ORNL). A portion of this research at the Center for Nanophase Materials Sciences (CNMS), ORNL (under user proposal CNMS2008-263) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work was supported in part (S.J. and S.V.K.) by the division of Scientific User Facilities, US Department of Energy, through CNMS. F.K. and J.W. acknowledge the support of the Science and Engineering Research Council - A*Star, Singapore, under Grant No. 052 101 0047, and the National University of Singapore. NR 35 TC 19 Z9 19 U1 0 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 16 BP 5316 EP 5325 DI 10.1016/j.actamat.2010.06.004 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643SL UT WOS:000281318900009 ER PT J AU Sugar, JD McKeown, JT Radmilovic, V Glaeser, AM Gronsky, R AF Sugar, Joshua D. McKeown, Joseph T. Radmilovic, Velimir Glaeser, Andreas M. Gronsky, Ronald TI Encapsulation-induced stabilization of dimensionally restricted metallic alloy wires SO ACTA MATERIALIA LA English DT Article DE Energy filtered transmission electron microscopy; Wetting; Transmission electron microscopy; Capillary phenomena; Spinodal decomposition ID NI-FE ALLOYS; SURFACE FREE-ENERGY; MORPHOLOGICAL EVOLUTION; THIN-FILMS; RAYLEIGH INSTABILITIES; SPINODAL DECOMPOSITION; EQUILIBRIUM SHAPE; PORE CHANNELS; WULFF SHAPE; SAPPHIRE SURFACES AB Compositionally modulated CuNiFe alloys wires were grown on sapphire substrates in two dimensionally restricted configurations, the first by dewetting thin films on crystallographically faceted free surfaces and the second by enclosure within lithographically sculpted cavities. Samples were annealed at elevated temperature to promote evolution towards chemical and morphological equilibrium. Surface wires of limited length resulted from the break-up of thin films along the long axes of substrate facets. Encapsulated wires oriented along specific crystallographic directions developed stable low energy facets along their lengths and resisted both dewetting and Rayleigh instabilities, enabling fabrication of stable, oriented, modulated (Cu/NiFe) structures. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Sugar, Joshua D.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. [McKeown, Joseph T.] Arizona State Univ, Dept Phys, Tempe, AZ 85282 USA. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Sugar, Joshua D.; McKeown, Joseph T.; Glaeser, Andreas M.; Gronsky, Ronald] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Sugar, JD (reprint author), Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. EM jdsugar@sandia.gov FU US Department of Energy [DE-FG02-02ER460008, DE-FG02-02ER45996, DE-AC02-05CH11231, DE-AC04-94-AL85000] FX The authors would like to thank the reviewer for thoughtful comments and suggestions. This research was supported by the US Department of Energy under contract Nos. DE-FG02-02ER460008 and DE-FG02-02ER45996. The authors acknowledge the support of the staff and facilities at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory, funded by the US Department of Energy under contract No. DE-AC02-05CH11231. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the US Department of Energy under contract no. DE-AC04-94-AL85000. NR 75 TC 1 Z9 1 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 16 BP 5332 EP 5341 DI 10.1016/j.actamat.2010.06.008 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643SL UT WOS:000281318900011 ER PT J AU McCabe, RJ Capolungo, L Marshall, PE Cady, CM Tome, CN AF McCabe, R. J. Capolungo, L. Marshall, P. E. Cady, C. M. Tome, C. N. TI Deformation of wrought uranium: Experiments and modeling SO ACTA MATERIALIA LA English DT Article DE Twinning; Electron backscatter diffraction; Micromechanical modeling; Texture; Optical imaging microscopy ID ELECTRON BACKSCATTER DIFFRACTION; ALPHA-URANIUM; HARDENING EVOLUTION; HEXAGONAL MATERIALS; TWIN STATISTICS; TEMPERATURE; ZIRCONIUM; MAGNESIUM; TEXTURE; POLYCRYSTALS AB The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {1 3 0} < 3 1 0 > twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{1 7 2}'< 3 1 2 > and {1 1 2}'<(3 72 >' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [McCabe, R. J.; Capolungo, L.; Marshall, P. E.; Cady, C. M.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Capolungo, L.] CNRS, UMI Georgia Tech 2958, F-57070 Metz, France. RP McCabe, RJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM rmccabe@lanl.gov RI Tome, Carlos/D-5058-2013 OI McCabe, Rodney /0000-0002-6684-7410; FU US Department of Energy [DE-AC52-06NA25396] FX This work has benefited from the use of the electron microscopy laboratory (EML) at Los Alamos. The authors wish to thank Ann Kelly for metallographic assistance, Mike Lopez for providing the compression specimens and performing some of the mechanical tests, and Donald Brown for providing the tension specimens and performing some of the mechanical tests. This work was performed under contract number DE-AC52-06NA25396 with the US Department of Energy. NR 32 TC 16 Z9 16 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2010 VL 58 IS 16 BP 5447 EP 5459 DI 10.1016/j.actamat.2010.06.021 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643SL UT WOS:000281318900023 ER PT J AU Mottola, E AF Mottola, Emil TI NEW HORIZONS IN GRAVITY: THE TRACE ANOMALY, DARK ENERGY AND CONDENSATE STARS SO ACTA PHYSICA POLONICA B LA English DT Article ID QUANTUM-FIELD-THEORY; BLACK-HOLE ENTROPY; ISOTROPIC COSMOLOGICAL MODELS; CLASSICAL GENERAL-RELATIVITY; CONFORMALLY FLAT SPACETIMES; GRAVITATIONAL BACK-REACTION; STRONG ELECTRIC-FIELD; DE-SITTER SPACE; MOMENTUM-TENSOR; DESITTER SPACE AB General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. These are non-local quantum pair correlated states, not present in the classical theory. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctuations dominate, and the condensate dissolves, the effective cosmological "constant" is a running coupling which has an infrared stable fixed point at zero. By taking a positive value in the interior of a fully collapsed star, the effective cosmological term removes any singularity, replacing it with a smooth dark energy interior. The resulting gravitational condensate star configuration resolves all black hole paradoxes, and provides a testable alternative to black holes as the final state of complete gravitational collapse. The observed dark energy of our universe likewise may be a macroscopic finite size effect whose value depends not on microphysics but on the cosmological horizon scale. The physical arguments and detailed calculations involving the trace anomaly effective action, auxiliary scalar fields and stress tensor in various situations and backgrounds supporting this hypothesis are reviewed. Originally delivered as a series of lectures at the Krakow School, the paper is pedagogical in style, and wide ranging in scope, collecting and presenting a broad spectrum of results on black holes, the trace anomaly, and quantum effects in cosmology. C1 [Mottola, Emil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mottola, Emil] CERN, PH TH, Theoret Phys Grp, CH-1211 Geneva 23, Switzerland. RP Mottola, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM emil@lanl.gov NR 242 TC 29 Z9 29 U1 1 U2 2 PU JAGIELLONIAN UNIV PRESS PI KRAKOW PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD SEP PY 2010 VL 41 IS 9 BP 2031 EP 2162 PG 132 WC Physics, Multidisciplinary SC Physics GA 660TC UT WOS:000282666300003 ER PT J AU Wang, YD Liu, WJ Lu, L Ren, Y Nie, ZH Almer, J Cheng, S Shen, YF Zuo, LA Liaw, PK Lu, K AF Wang, Yan-Dong Liu, Wenjun Lu, Lei Ren, Yang Nie, Zhi-Hua Almer, Jonathan Cheng, Sheng Shen, Yong-Feng Zuo, Liang Liaw, Peter K. Lu, Ke TI Low Temperature Deformation Detwinning-A Reverse Mode of Twinning SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID NANOCRYSTALLINE METALS; ULTRAHIGH-STRENGTH; GRAIN-BOUNDARIES; RATE SENSITIVITY; COPPER; DISLOCATION; PLASTICITY; MICROSCOPY; MAXIMUM; GROWTH AB The origin of the plasticity in bulk nanocrystalline metals have, to date, been attributed to the grain-boundary-mediated process, stress-induced grain coalescence, dislocation plasticity, and/or twinning. Here we report a different mechanism-detwinning, which operates at low temperatures during the tensile deformation of an electrodeposited Cu with a high density of nanosized growth twins. Both three-dimensional XRD microscopy using the Laue method with a submicron-sized polychromatic beam and high-energy XRD technique with a monochromatic beam provide the direct experimental evidences for low temperature detwinning of nanoscale twins. C1 [Wang, Yan-Dong; Nie, Zhi-Hua] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Liu, Wenjun; Ren, Yang; Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lu, Lei; Lu, Ke] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China. [Cheng, Sheng; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Shen, Yong-Feng; Zuo, Liang] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Peoples R China. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@bit.edu.cn; wjliu@anl.gov; pliaw@utk.edu RI Lu, Lei/E-3864-2012; Cheng, Sheng/D-9153-2013; Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 OI Cheng, Sheng/0000-0003-1137-1926; Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50725102]; Ministry of Education of China; National Science Foundation [DMR-0231320]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the National Natural Science Foundation of China (grant no. 50725102) and the Ministry of Education of China. SC and PKL are very grateful to the support of the National Science Foundation International Materials Institutes (IMI) Program (DMR-0231320). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 32 TC 15 Z9 15 U1 7 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD SEP PY 2010 VL 12 IS 9 SI SI BP 906 EP 911 DI 10.1002/adem.201000123 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 677ML UT WOS:000283996400031 ER PT J AU Luther, JM Gao, JB Lloyd, MT Semonin, OE Beard, MC Nozik, AJ AF Luther, Joseph M. Gao, Jianbo Lloyd, Matthew T. Semonin, Octavi E. Beard, Matthew C. Nozik, Arthur J. TI Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell SO ADVANCED MATERIALS LA English DT Article ID PBSE NANOCRYSTAL SOLIDS; ELECTRICAL-PROPERTIES; AIR; PHOTOVOLTAICS; CONFINEMENT; DEVICES; FILMS AB We provide the first NREL-certified efficiency measurement on an all-inorganic, solution-processed, nanocrystal solar cell. The 3% efficient device is composed of ZnO nanocrystals and 1.3 eV PbS quantum dots with gold as the top contact. This configuration yields a stable device, retaining 95% of the starting efficiency after a 1000-hour light soak in air without encapsulation. C1 [Luther, Joseph M.; Gao, Jianbo; Lloyd, Matthew T.; Semonin, Octavi E.; Beard, Matthew C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gao, Jianbo] Univ Toledo, Toledo, OH 43606 USA. [Semonin, Octavi E.; Nozik, Arthur J.] Univ Colorado, Boulder, CO 80309 USA. RP Luther, JM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM joey.luther@nrel.gov RI GAO, JIANBO/A-1633-2014; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; GAO, JIANBO/A-3923-2011 OI Semonin, Octavi Escala/0000-0002-4262-6955; BEARD, MATTHEW/0000-0002-2711-1355; FU Center for Advanced Solar Photophysics; US Department of Energy, Office of Science, Office of Basic Energy Sciences; National Center for Photovoltaics; EERE of the Department of Energy; DOE [DE-AC36-08GO28308] FX We thank Matt Law and Randy Ellingson for helpful suggestions. JML, OES, AJN were supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by US Department of Energy, Office of Science, Office of Basic Energy Sciences. MTL acknowledges funding from the National Center for Photovoltaics. JG and MCB acknowledge funding from the seed program of EERE of the Department of Energy. DOE funding was provided to NREL through contract DE-AC36-08GO28308. NR 32 TC 219 Z9 226 U1 11 U2 137 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 1 PY 2010 VL 22 IS 33 BP 3704 EP + DI 10.1002/adma.201001148 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 654IO UT WOS:000282161900013 PM 20533423 ER PT J AU Wagner, JL Yuceil, KB Clemens, NT AF Wagner, J. L. Yuceil, K. B. Clemens, N. T. TI Velocimetry Measurements of Unstart in an Inlet-Isolator Model in Mach 5 Flow SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 39th Fluid Dynamics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP AIAA ID PARTICLE IMAGE VELOCIMETRY; BOUNDARY-LAYER; SCRAMJET; PERFORMANCE; ENGINES AB The dynamics of unstart in a floor-mounted inlet-isolator model in a Mach 5 flow are investigated experimentally using particle image velocimetry and fast-response wall pressure measurements. The inlet compression is obtained with a 6-deg ramp and the isolator is a rectangular straight duct that is 25.4 nun high by 50.8 min wide by 242.3 nun long. Unstart is initiated from the scramjet mode (fully supersonic in the isolator) by deflecting a motorized flap at the downstream end of the isolator. With the flap fully down, the particle image velocimetry data of the started flow capture the characteristics of the isolator boundary layers and the initial inlet reflected shock system. During unstart. the unstart shock system propagates upstream through the inlet-isolator. The particle image velocimetry (lath reveal a complex, three-dimensional flow structure that is strongly dependent on viscous mechanisms. Particularly., the unstart shock system propagates upstream and induces significant boundary-layer separation. Side-view particle image velocimetry data show that the locations of strongest separation during unstart correlate with the impingement locations of the initial inlet shock as it reflects down the isolator. For example. in the middle of [install, the unstart shock system is associated with massive separation of the ceiling boundary layer that begins where the first inlet shock reflection impinges on the ceiling. The observation that separation increases at the inlet shock reflection impingement locations is likely due to the fact that the boundary layers in these locations are subject to larger adverse pressure gradients. thus making them more susceptible to separation. During the unstart princess, large regions of separated flow form near the floor and ceiling with reverse flow velocities up to about 0.4U(infinity). These regions of separated. subsonic flow appear to extend to the isolator exit, creating a path by which the isolator exit boundary condition can be communicated upstream. Plan-view particle image velocimetry data show the unstart process begins with separation of the isolator sidewall boundary layers. Overall, the unstart flow structure is highly three-dimensional. C1 [Wagner, J. L.; Clemens, N. T.] Univ Texas Austin, Ctr Aeromech Res, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Yuceil, K. B.] Istanbul Tech Univ, Dept Astronaut Engn, Fac Aeronaut & Astronaut, TR-34469 Istanbul, Turkey. RP Wagner, JL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Yuceil, Kemal/A-4767-2015 NR 42 TC 17 Z9 22 U1 1 U2 12 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 1875 EP 1888 DI 10.2514/1.J050037 PG 14 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100003 ER PT J AU Griffith, DT AF Griffith, D. Todd TI Analytical Sensitivities of Principal Components in Time-Series Analysis of Dynamical Systems SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA/ASME/ASCE/AHS/ASC 50th Structures, Structural Dynamics and Materials Conference CY MAY 02-07, 2009 CL Palm Springs, CA SP Amer Inst Aeronaut & Astronaut, ASME, ASCE, AHS, ASC ID SINGULAR-VALUE DECOMPOSITION; PROPER ORTHOGONAL MODES; EIGENVECTOR DERIVATIVES; PHYSICAL INTERPRETATION; 2ND-ORDER AB Principal components analysis, which is also referred to as proper orthogonal decomposition in the literature. is a useful technique in many fields of engineering, science, and mathematics for analysis of time-series data. The benefit of principal components analysis for dynamical systems comes from its ability to detect and rank the dominant coherent spatial structures of dynamic response, such as operating deflection shapes or mode shapes. In this work, an original method for calculating the analytical sensitivities of the principal components of dynamical systems is developed. Methods for analytical sensitivity calculations are developed for both the singular-value decomposition and eigenanalysis-based approaches for principal component calculation. Sensitivities with respect to state initial conditions and system parameters are enabled by state transition matrix calculations for augmented state and parameter differential equations. A novel approach to compute principal component sensitivities with respect to transient forcing-function parameters is introduced by transforming nonhomogenous differential equations (forced system) into homogenous differential equations (unforced system). These new developments are applied to several example problems in dynamics analysis, with an emphasis on structural dynamics analysis. Analytical sensitivities provide the necessary derivatives for gradient-based optimization algorithms and provide an analytical framework for evaluating structural modifications based on principal components analysis. C1 Sandia Natl Labs, Analyt Struct Dynam Dept, Albuquerque, NM 87185 USA. RP Griffith, DT (reprint author), Sandia Natl Labs, Analyt Struct Dynam Dept, Mail Stop 0557, Albuquerque, NM 87185 USA. RI Griffith, Daniel/C-2807-2014 OI Griffith, Daniel/0000-0002-7767-3700 NR 21 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 2099 EP 2110 DI 10.2514/1.J050293 PG 12 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100020 ER PT J AU Galindo, S Galindo, D AF Galindo, Salvador Galindo, Diego TI An 18th century glow discharge experiment to model an aurora SO AMERICAN JOURNAL OF PHYSICS LA English DT Article AB We discuss an experiment first performed in 1789 designed to reproduce the glow of an aurora. The experiment was partially based on ideas of Benjamin Franklin. (C) 2010 American Association of Physics Teachers. [DOI: 10.1119/1.3431563] C1 [Galindo, Salvador] Inst Nacl Invest Nucl, Mexico City 52750, DF, Mexico. [Galindo, Diego] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Galindo, S (reprint author), Inst Nacl Invest Nucl, Km 36 1-2 Carretera Mexico Toluca, Mexico City 52750, DF, Mexico. NR 16 TC 0 Z9 0 U1 1 U2 4 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD SEP PY 2010 VL 78 IS 9 BP 902 EP 904 DI 10.1119/1.3431563 PG 3 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 637OZ UT WOS:000280829100003 ER PT J AU Ditmire, T AF Ditmire, Todd TI High-power Lasers The invention of the laser 50 years ago has led to the latest generation of devices, with power bursts thousands of times that of the nation's entire electrical grid SO AMERICAN SCIENTIST LA English DT Article ID PULSES; RUBY C1 [Ditmire, Todd] Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Austin, TX 78712 USA. [Ditmire, Todd] Univ Texas Austin, Texas Petawatt Project, Austin, TX 78712 USA. [Ditmire, Todd] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Ditmire, T (reprint author), Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Mail Stop C1600, Austin, TX 78712 USA. EM tditmire@physics.utexas.edu NR 11 TC 2 Z9 2 U1 0 U2 2 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD SEP-OCT PY 2010 VL 98 IS 5 BP 394 EP 401 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640IW UT WOS:000281045900020 ER PT J AU Rana, GSJB York, TP Edmiston, JS Zedler, BK Pounds, JG Adkins, JN Varnum, SM Smith, RD Liu, ZG Li, GY Webb, BT Murrelle, EL Flora, JW AF Rana, Gaurav S. J. B. York, Timothy P. Edmiston, Jeffery S. Zedler, Barbara K. Pounds, Joel G. Adkins, Joshua N. Varnum, Susan M. Smith, Richard D. Liu, Zaigang Li, Guoya Webb, Bradley T. Murrelle, Edward L. Flora, Jason W. TI Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD) (vol 397, pg 1809, 2010) SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Correction C1 [Rana, Gaurav S. J. B.; Edmiston, Jeffery S.; Zedler, Barbara K.; Liu, Zaigang; Li, Guoya; Murrelle, Edward L.; Flora, Jason W.] Altria Client Serv, Richmond, VA 23219 USA. [York, Timothy P.; Webb, Bradley T.] Virginia Commonwealth Univ, Sch Med, Dept Human & Mol Genet, Inst Biomarker Discovery & Personalized Med, Richmond, VA 23219 USA. [York, Timothy P.; Webb, Bradley T.] Virginia Commonwealth Univ, Sch Med, Dept Pharm, Inst Biomarker Discovery & Personalized Med, Richmond, VA 23219 USA. [Pounds, Joel G.; Adkins, Joshua N.; Varnum, Susan M.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Flora, JW (reprint author), Altria Client Serv, 601 E Jackson St, Richmond, VA 23219 USA. EM Jason.W.Flora@Altria.com RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 NR 1 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD SEP PY 2010 VL 398 IS 2 BP 1133 EP 1133 DI 10.1007/s00216-010-4002-3 PG 1 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 650IL UT WOS:000281842400050 ER PT J AU Liu, MA Hou, JX Huang, L Huang, X Heibeck, TH Zhao, R Pasa-Tolic, L Smith, RD Li, Y Fu, K Zhang, ZX Hinrichs, SH Ding, SJ AF Liu, Miao Hou, Jinxuan Huang, Lin Huang, Xin Heibeck, Tyler H. Zhao, Rui Pasa-Tolic, Ljiljana Smith, Richard D. Li, Yan Fu, Kai Zhang, Zhixin Hinrichs, Steven H. Ding, Shi-Jian TI Site-Specific Proteomics Approach for Study Protein S-Nitrosylation SO ANALYTICAL CHEMISTRY LA English DT Article ID NITRIC-OXIDE SYNTHASE; TUMOR ANGIOGENESIS; MASS-SPECTROMETRY; BREAST-CANCER; CELL-DEATH; IDENTIFICATION; NO; NITROSOTHIOLS; DECOMPOSITION; INHIBITION AB Here we present a novel and robust method for the identification of protein S-nitrosylation sites in complex protein mixtures. The approach utilizes the cysteinyl affinity resin to selectively enrich S-nitrosylated peptides reduced by ascorbate followed by nanoscale liquid chromatography tandem mass spectrometry. Two alkylation agents with different added masses were employed to differentiate the S-nitrosylation sites from the non-S-nitrosylation sites. We applied this approach to MDA-MB-231 cells treated with Angeli's salt, a nitric oxide donor that has been shown to inhibit breast tumor growth and angiogenesis. A total of 162 S-nitrosylation sites were identified and an S-nitrosylation motif was revealed in our study. The 162 sites are significantly more than the number reported by previous methods, demonstrating the efficiency of our approach. Our approach will further facilitate the functional study of protein S-nitrosylation in cellular processes and may reveal new therapeutic targets. C1 [Liu, Miao; Hou, Jinxuan; Huang, Lin; Huang, Xin; Fu, Kai; Zhang, Zhixin; Hinrichs, Steven H.; Ding, Shi-Jian] Univ Nebraska Med Ctr, Mass Spectrometry & Prote Core Facil, Dept Pathol & Microbiol, Omaha, NE 68198 USA. [Hou, Jinxuan; Li, Yan] Zhongnan Hosp, Dept Oncol, Wuhan 430071, Hubei Province, Peoples R China. [Heibeck, Tyler H.; Zhao, Rui; Pasa-Tolic, Ljiljana; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Div Biol Sci, Richland, WA 99135 USA. RP Ding, SJ (reprint author), Univ Nebraska Med Ctr, Mass Spectrometry & Prote Core Facil, Dept Pathol & Microbiol, Omaha, NE 68198 USA. EM dings@unmc.edu RI Smith, Richard/J-3664-2012; Huang, Xin/P-8103-2014; OI Smith, Richard/0000-0002-2381-2349; Huang, Xin/0000-0001-6778-8849; Heibeck, Tyler/0000-0002-9507-2896 FU Environmental Molecular Sciences Laboratory; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; Department of Pathology and Microbiology at the University of Nebraska Medical Center FX We thank Dr. Lawrence Schopfer for the critical reading of the manuscript and Dr. Jixin Dong for providing the MDA-MB-231 cell line. The MS data was acquired at the Mass Spectrometry and Proteomics Core Facility at the University of Nebraska Medical Center. The construction of a nanoLC system was partially supported by the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This work was financially supported by the Department of Pathology and Microbiology at the University of Nebraska Medical Center. NR 50 TC 34 Z9 37 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2010 VL 82 IS 17 BP 7160 EP 7168 DI 10.1021/ac100569d PG 9 WC Chemistry, Analytical SC Chemistry GA 643OI UT WOS:000281306000018 PM 20687582 ER PT J AU Cao, Q Xu, Y Liu, F Svec, F Frechet, JMJ AF Cao, Qing Xu, Yan Liu, Feng Svec, Frantisek Frechet, Jean M. J. TI Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities SO ANALYTICAL CHEMISTRY LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; IONIZATION MASS-SPECTROMETRY; TUBULAR GAS-CHROMATOGRAPHY; HIGH-FLOW CHARACTERISTICS; DOUBLE-STRANDED DNA; STATIONARY PHASES; POROUS PROPERTIES; SEPARATION MEDIUM; MACROPOROUS POLYMERS; ION CHROMATOGRAPHY AB Newly developed porous polymer monolithic capillary columns modified with gold nanoparticles coated with exchangeable functionalities allow easy switching of separation modes by a simple ligand exchange process. These columns are prepared from a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith through reaction of its epoxide moieties with cysteamine to afford a monolith rich in surface thiol groups. Gold nanoparticles prepared via in situ reduction of chloroauric acid within the column become attached to the surface of the pores of the monolith. Alternatively, a solution of colloidal gold nanoparticles can be pumped through the thiol modified column to achieve their attachment. While the first approach is faster, it affords a lower coverage of nanoparticles than the second method, while both methods preserve the excellent hydrodynamic properties that are typical of the monolithic columns. Functionalization of the surface of the bound gold nanoparticles is then carried out using low molecular weight thiol-containing surface ligands. The dynamic nature of the bond between gold and these surface ligands enables the replacement of one surface ligand by another through a simple solution exchange process. This novel approach expands the application range of monoliths as a single column can now be used in different separations modes. Applications of the columns with exchangeable chemistries are demonstrated with the capillary electrochromatographic separation of peptides and the nano-high-pressure liquid chromatography (HPLC) separation of proteins in both reversed phase and ion exchange modes. C1 [Svec, Frantisek; Frechet, Jean M. J.] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Cao, Qing; Xu, Yan; Svec, Frantisek; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Cao, Qing; Liu, Feng] Peking Univ, Coll Chem, Key Lab Bioorgan Chem & Mol Engn, Beijing Natl Lab Mol Sci,Minist Educ, Beijing 100871, Peoples R China. RP Frechet, JMJ (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU National Institute of Health [GM48364]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; China Scholarship Council (Ministry of Education of China) FX Support of Y.X. and J.M.J.F, by a grant of the National Institute of Health (Grant GM48364) is gratefully acknowledged. F.S. and the experimental work performed at the Molecular Foundry, Lawrence Berkeley National Laboratory were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Financial support of Q.C. by the China Scholarship Council (Ministry of Education of China) is also acknowledged. NR 67 TC 95 Z9 98 U1 11 U2 121 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2010 VL 82 IS 17 BP 7416 EP 7421 DI 10.1021/ac1015613 PG 6 WC Chemistry, Analytical SC Chemistry GA 643OI UT WOS:000281306000050 PM 20681590 ER PT J AU Gasper, GL Takahashi, LK Zhou, J Ahmed, M Moore, JF Hanley, L AF Gasper, Gerald L. Takahashi, Lynelle K. Zhou, Jia Ahmed, Musahid Moore, Jerry F. Hanley, Luke TI Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms Using Tunable Vacuum Ultraviolet Radiation SO ANALYTICAL CHEMISTRY LA English DT Article ID SINGLE-PHOTON IONIZATION; STAPHYLOCOCCUS-EPIDERMIDIS; SECONDARY-ION; PHOTOIONIZATION; ABLATION; PENETRATION; DYNAMICS; MATRIX; LIGHT; WALL AB Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0-12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics and extracellular neutrals that are laser desorbed both from neat and intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms. C1 [Gasper, Gerald L.; Hanley, Luke] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Takahashi, Lynelle K.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Moore, Jerry F.] MassThink, Naperville, IL 60563 USA. RP Hanley, L (reprint author), Univ Illinois, Dept Chem, Chicago, IL 60607 USA. EM lhanley@uic.edu RI Ahmed, Musahid/A-8733-2009 FU National Institute of Biomedical Imaging and Bioengineering [EB006532]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge their ongoing collaboration with Ross Carlson of the Center for Biofilm Engineering at Montana State University (Bozeman, MT), who has freely provided his invaluable expertise on bacterial biofilms. This work is supported by the National Institute of Biomedical Imaging and Bioengineering via Grant EB006532. M.A., L.K.T., and J.Z. and the Advanced Light Source (ALS) are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Biomedical Imaging and Bioengineering or the National Institutes of Health. NR 39 TC 23 Z9 23 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2010 VL 82 IS 17 BP 7472 EP 7478 DI 10.1021/ac101667q PG 7 WC Chemistry, Analytical SC Chemistry GA 643OI UT WOS:000281306000058 PM 20712373 ER PT J AU Sato, H Johnson, R Schultz, R AF Sato, Hiroyuki Johnson, Richard Schultz, Richard TI Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Core bypass flow; Prismatic; VHTR; CFD; FLUENT; Maximum fuel temperature ID HEAT-TRANSFER; TEMPERATURE; VELOCITY AB The core bypass flow in a prismatic very high temperature reactor (VHTR) is an important design consideration and can have considerable impact on the condition of reactor core internals including fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) are affected by bypass flow. In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to better understand bypass flow phenomena and establish an evaluation method for the reactor core using the commercial CFD code FLUENT. Parametric calculations changing several factors in a one-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the resulting flow and temperature distributions in the prismatic core. Factors include inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block and also dramatically increases the variation in coolant channel outlet temperatures for a given block that may have repercussions on the structural integrity of the graphite, the neutronics and the potential for hot streaking and hot spots occurring in the lower plenum. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sato, Hiroyuki] Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. [Sato, Hiroyuki; Johnson, Richard; Schultz, Richard] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sato, H (reprint author), Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. EM sato.hiroyuki09@jaea.go.jp FU US Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors also wish to thank to Prof. Yoichi Fujii-e, former chairman of Atomic Energy Commission of Japan, for assistance under the Fujii-e Research Initiative by the US Department of Energy. NR 23 TC 26 Z9 26 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD SEP PY 2010 VL 37 IS 9 BP 1172 EP 1185 DI 10.1016/j.anucene.2010.04.021 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 627II UT WOS:000280032300005 ER PT J AU Gubankova, E Mannarelli, M Sharma, R AF Gubankova, Elena Mannarelli, Massimo Sharma, Rishi TI Collective modes in asymmetric ultracold Fermi systems SO ANNALS OF PHYSICS LA English DT Article DE Fermi gases; Vortices; BCS-BEC crossover ID FESHBACH RESONANCES; PHASE-SEPARATION; EXCHANGE FIELD; SUPERCONDUCTIVITY; CROSSOVER; BCS; STATE; QCD; CONDENSATION; TEMPERATURE AB We derive the long wavelength effective action for the collective modes in systems of fermions interacting via a short-range s-wave attraction featuring unequal chemical potentials for the two fermionic species (asymmetric systems) As a consequence of the attractive interaction fermions form a condensate that spontaneously breaks the U(1) symmetry associated with total number conservation Therefore at sufficiently small temperatures and asymmetries the system is a superfluid We reproduce previous results for the stability conditions of the system as a function of the four-fermion coupling and asymmetry we obtain these results analyzing the coefficients of the low energy effective Lagrangian of the modes describing fluctuations in the magnitude (Higgs mode) and in the phase (Nambu-Goldstone or Anderson-Bogoliubov mode) of the difermion condensate We find that for certain values of parameters the mass of the Higgs mode decreases with increasing mismatch between the chemical potentials of the two populations if we keep the scattering length and the gap parameter constant Furthermore we find that the energy cost for creating a position dependent fluctuation of the condensate is constant in the gapped region and increases in the gapless region These two features may lead to experimentally detectable effects As an example we argue that if the superfluid is put in rotation the square of the radius of the outer core of a vortex should sharply increase on increasing the asymmetry when we pass through the relevant region in the gapless superfluid phase Finally by gauging the global U(1) symmetry we relate the coefficients of the effective Lagrangian of the Nambu-Goldstone mode with the screening masses of the gauge field Published by Elsevier Inc C1 [Sharma, Rishi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mannarelli, Massimo] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Gubankova, Elena] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Mannarelli, Massimo] Univ Barcelona, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain. [Mannarelli, Massimo] Univ Barcelona, Inst Ciencies Cosmos ICCUB, E-08028 Barcelona, Spain. RP Sharma, R (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU Ministerio de Educacion y Ciencia (MEC); CPAN [FPA2007-66665, 2009SGR502]; DOE [DE-AC52-06NA25396] FX The authors thank Andreas Schmitt and Sanjay Reddy for their valuable comments on the manuscript EG and RS thank Michael Forbes Dam Son Misha Stephanov Eugene Dennler Bertrand Halperin Martin Zwierlein Leonid Levitov and Carlos Sa de Melo for discussions RS acknowledges several discussions with Sanjay Reddy The work of MM has been supported by the Ministerio de Educacion y Ciencia (MEC) and CPAN under grants FPA2007-66665 and 2009SGR502 RS is supported by LANS LLC for the NNSA of the DOE under contract #DE-AC52-06NA25396 NR 92 TC 6 Z9 6 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 J9 ANN PHYS-NEW YORK JI Ann. Phys. PD SEP PY 2010 VL 325 IS 9 BP 1987 EP 2017 DI 10.1016/j.aop.2010.05.001 PG 31 WC Physics, Multidisciplinary SC Physics GA 694BE UT WOS:000285269200006 ER PT J AU Vishnivetskaya, TA Brandt, CC Madden, AS Drake, MM Kostka, JE Akob, DM Kusel, K Palumbo, AV AF Vishnivetskaya, Tatiana A. Brandt, Craig C. Madden, Andrew S. Drake, Meghan M. Kostka, Joel E. Akob, Denise M. Kuesel, Kirsten Palumbo, Anthony V. TI Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID URANIUM-CONTAMINATED AQUIFER; SP-NOV; SUBSURFACE SEDIMENTS; HUMIC SUBSTANCES; GEN. NOV.; ANAEROMYXOBACTER-DEHALOGENANS; TRICHLOROBACTER-THIOGENES; ANAEROBIC RESPIRATION; ACETOGENIC BACTERIUM; SUBMICROMOLAR LEVELS AB Microbial community responses to ethanol, methanol, and methanol plus humics amendments in relationship to U(VI) bioreduction were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, TN. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated that (i) bacterial communities found in ethanol-and methanol-amended samples with U(VI) reduction were similar due to the presence of Deltaproteobacteria and Betaproteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (ii) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2 to 92.8% of the family Methylophilaceae; and (iii) the addition of humics resulted in an increase of phylogenetic diversity of Betaproteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, and unclassified) and Firmicutes (Desulfosporosinus and Clostridium). C1 [Palumbo, Anthony V.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Madden, Andrew S.] Univ Oklahoma, Sch Geol & Geophys, Coll Earth & Energy, Norman, OK 73019 USA. [Kostka, Joel E.; Akob, Denise M.] Florida State Univ, Tallahassee, FL 32306 USA. [Akob, Denise M.; Kuesel, Kirsten] Univ Jena, Inst Ecol, D-07743 Jena, Germany. RP Palumbo, AV (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM palumboav@ornl.gov RI Palumbo, Anthony/A-4764-2011; Drake, Meghan/A-6446-2011; Akob, Denise/D-9478-2013; OI Palumbo, Anthony/0000-0002-1102-3975; Drake, Meghan/0000-0001-7969-4823; Vishnivetskaya, Tatiana/0000-0002-0660-023X; Akob, Denise/0000-0003-1534-3025 FU U.S. Department of Energy's Office of Science Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded by the U.S. Department of Energy's Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. NR 72 TC 12 Z9 12 U1 0 U2 16 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2010 VL 76 IS 17 BP 5728 EP 5735 DI 10.1128/AEM.00308-10 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 643IE UT WOS:000281288000009 PM 20601514 ER PT J AU Samuel, R Pu, YQ Raman, B Ragauskas, AJ AF Samuel, Reichel Pu, Yunqiao Raman, Babu Ragauskas, Arthur J. TI Structural Characterization and Comparison of Switchgrass Ball-milled Lignin Before and After Dilute Acid Pretreatment SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Pretreatment; Switchgrass; Ball-milled lignin; HSQC; (13)C and (31)P NMR spectroscopy ID NUCLEAR-MAGNETIC-RESONANCE; ENZYMATIC SACCHARIFICATION; LIGNOCELLULOSIC MATERIALS; WOOD LIGNINS; WHEAT-STRAW; RICE HULLS; ETHANOL; ENERGY; DELIGNIFICATION; FERMENTATION AB To reduce the recalcitrance and enhance enzymatic activity, dilute H(2)SO(4) pretreatment was carried out on Alamo switchgrass (Panicum virgatum). Ball-milled lignin was isolated from switchgrass before and after pretreatment. Its structure was characterized by (13)C, HSQC, and (31)P NMR spectroscopy. It was confirmed that ball-milled switchgrass lignin is of HGS type with a considerable amount of p-coumarate and felurate esters of lignin. The major ball-milled lignin interunit was the beta-O-4 linkage, and a minor amount of phenylcoumarin, resinol, and spirodienone units were also present. As a result of the acid pretreatment, there was 36% decrease of beta-O-4 linkage observed. In addition to these changes, the S/G ratio decreases from 0.80 to 0.53. C1 [Samuel, Reichel; Pu, Yunqiao; Raman, Babu; Ragauskas, Arthur J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Samuel, Reichel; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [Raman, Babu] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM arthur.ragauskas@ipst.gatech.edu OI Pu, Yunqiao/0000-0003-2554-1447; Ragauskas, Arthur/0000-0002-3536-554X FU DOE Office of Biological and Environmental Research [DE-AC05-00OR22725] FX The BioEnergy Science Center (BESC) is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors would like to gratefully acknowledge the financial support from DOE Office of Biological and Environmental Research through the BioEnergy Science Center (DE-AC05-00OR22725). The authors also would like to thank the valuable discussions of Dr. Sannigrahi and Bassem B. Hallac for this manuscript. NR 54 TC 105 Z9 107 U1 2 U2 55 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD SEP PY 2010 VL 162 IS 1 BP 62 EP 74 DI 10.1007/s12010-009-8749-y PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 577VR UT WOS:000276252600007 PM 19701727 ER PT J AU Huesemann, MH Hausmann, TS Carter, BM Gerschler, JJ Benemann, JR AF Huesemann, Michael H. Hausmann, Tom S. Carter, Blaine M. Gerschler, Jared J. Benemann, John R. TI Hydrogen Generation Through Indirect Biophotolysis in Batch Cultures of the Nonheterocystous Nitrogen-Fixing Cyanobacterium Plectonema boryanum SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Indirect biophotolysis; Cyanobacteria; Glycogen; DCMU ID CHLAMYDOMONAS-REINHARDTII; GREEN-ALGA; EVOLUTION; PHOTOPRODUCTION; OPTIMIZATION; MICROALGAE; GROWTH; H-2 AB The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 A mu mol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 A mu mol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production. C1 [Huesemann, Michael H.; Hausmann, Tom S.; Carter, Blaine M.; Gerschler, Jared J.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Benemann, John R.] Benemann Associates, Walnut Creek, CA 94595 USA. RP Huesemann, MH (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM michael.huesemann@pnl.gov RI James, Gabriel/F-7739-2011 FU Department of Energy National Energy Technology Laboratory; Department of Energy Office of Science FX Funding for this project was provided by the Department of Energy National Energy Technology Laboratory and two SULI stipends from the Department of Energy Office of Science to Blaine Carter and Jared Gerschler, respectively. NR 31 TC 11 Z9 12 U1 2 U2 20 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD SEP PY 2010 VL 162 IS 1 BP 208 EP 220 DI 10.1007/s12010-009-8741-6 PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 577VR UT WOS:000276252600019 PM 19697159 ER PT J AU Wang, EQ Li, SZ Tao, L Geng, X Li, TC AF Wang, Er-Qiang Li, Shi-Zhong Tao, Ling Geng, Xin Li, Tian-Cheng TI Modeling of rotating drum bioreactor for anaerobic solid-state fermentation SO APPLIED ENERGY LA English DT Article DE Mathematical model; Anaerobic; Solid-state fermentation; Rotating drum bioreactor; Ethanol; Sweet sorghum stalk; Biofuel ID SUBSTRATE FERMENTATION; ENGINEERING ASPECTS; HEAT-TRANSFER; SYSTEMS AB Solid-state fermentation (SSF) has received more attention and has been applied to production of different products in recent years, especially biofuel production. The major problems to overcome in large-scale SSF are heat accumulation and heterogeneous distribution in a complex gas-liquid-solid multiphase bioreactor (or fermenter) system. In this work, a mathematical model of a rotating drum bioreactor for anaerobic SSF is developed considering the radial temperature distribution in the substrate bed. Validation experiments were conducted in a 5 m(3) pilot plant fermenter for production of fuel ethanol from milled sweet sorghum stalks. The model that was developed fit well with the experimental data. From these results, it was concluded that this mathematical model is a powerful tool to investigate the design and scale-up of an anaerobic SSF fermenter in the application of bioethanol production using cellulosic materials such as sweet sorghum stalks. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Wang, Er-Qiang; Li, Shi-Zhong; Li, Tian-Cheng] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China. [Tao, Ling] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Geng, Xin] China Agr Univ, Resource & Environm Engn Coll, Beijing 100094, Peoples R China. RP Li, SZ (reprint author), Tsinghua Univ, Inst Nucl & New Energy Technol, 1 Tsinghua Garden Rd, Beijing 100084, Peoples R China. EM szli@tsinghua.edu.cn NR 24 TC 18 Z9 21 U1 6 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD SEP PY 2010 VL 87 IS 9 SI SI BP 2839 EP 2845 DI 10.1016/j.apenergy.2009.05.032 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 623BA UT WOS:000279710500011 ER PT J AU Hollister, EB Forrest, AK Wilkinson, HH Ebbole, DJ Malfatti, SA Tringe, SG Holtzapple, MT Gentry, TJ AF Hollister, Emily B. Forrest, Andrea K. Wilkinson, Heather H. Ebbole, Daniel J. Malfatti, Stephanie A. Tringe, Susannah G. Holtzapple, Mark T. Gentry, Terry J. TI Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Mixed alcohol bioreactor; Lignocellulosic biofuels; Tag-pyrosequencing; Microbial communities; Carboxylate platform ID RIBOSOMAL-RNA ANALYSIS; MIXED-CULTURE; MESOPHILIC MICROORGANISMS; AZOTOBACTER-CHROOCOCCUM; CELLULOSE DEGRADATION; HYDROGEN-PRODUCTION; CLOSTRIDIUM; FERMENTATION; CONVERSION; BACTERIA AB The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 degrees C) and thermophilic (55 degrees C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and gamma-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. C1 [Hollister, Emily B.; Gentry, Terry J.] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA. [Forrest, Andrea K.; Holtzapple, Mark T.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. [Wilkinson, Heather H.; Ebbole, Daniel J.] Texas A&M Univ, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA. [Malfatti, Stephanie A.; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Hollister, EB (reprint author), Texas A&M Univ, Dept Soil & Crop Sci, 370 Olsen Blvd,TAMU 2474, College Stn, TX 77843 USA. EM ehollister@tamu.edu OI Tringe, Susannah/0000-0001-6479-8427 FU Department of Energy's Joint Genome Institute; Texas AgriLife Research Bioenergy Program; Texas AM University; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was supported by grants from the Department of Energy's Joint Genome Institute, the Texas AgriLife Research Bioenergy Program, and the Texas A&M University Office of the Vice President for Research Energy Resources Program. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The authors would like to acknowledge Mukul Sherekar and Heidi Mjelde for their assistance in the lab; Kanwar Singh for library construction and sequencing; the Sorghum Breeding and Genetics Program at Texas A&M University for providing the sorghum that was used as the bioreactor feedstock for this study; and two anonymous reviewers whose comments helped to improve this manuscript. NR 43 TC 17 Z9 17 U1 6 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD SEP PY 2010 VL 88 IS 1 BP 389 EP 399 DI 10.1007/s00253-010-2789-7 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 638RZ UT WOS:000280914900039 PM 20676626 ER PT J AU Young, ML Casadio, F Schnepp, S Pearlstein, E Almer, JD Haeffner, DR AF Young, M. L. Casadio, F. Schnepp, S. Pearlstein, E. Almer, J. D. Haeffner, D. R. TI Non-invasive characterization of manufacturing techniques and corrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID RADIATION; FLUORESCENCE; METALLURGY; ALLOYS; LIGHT AB Three bronze vessels from the ancient Chinese art collection at the Art Institute of Chicago (AIC) were examined-with the advanced non-invasive characterization capabilities of high-energy synchrotron X-ray diffraction performed at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL)-to create a comprehensive overview of each object's manufacture as well as subsequent corrosion processes. Findings were also complemented with traditional non-invasive characterization techniques, including optical imaging, X-ray radiographic imaging, and X-ray fluorescence (XRF) spectrometry. The results-obtained without sampling-allow a clear distinction between genuinely ancient Chinese bronzes from those with modern restorations and from "archaistic" objects made many centuries later, in emulation of ancient styles. C1 [Casadio, F.; Schnepp, S.; Pearlstein, E.] Art Inst Chicago, Chicago, IL 60603 USA. [Young, M. L.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J. D.; Haeffner, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Casadio, F (reprint author), Art Inst Chicago, Chicago, IL 60603 USA. EM fcasadio@artic.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-CH11357]; Andrew W. Mellon Foundation FX The authors thank the supporting staffs at both the Art Institute of Chicago and the Advanced Photon Source. The authors would like to especially thank Hajo Gugel for help on the SEM, and Dr. Pieter Meyers for preliminary examination of the wine vessel and for providing the cross-sectional sample for further study. Use of the Advanced Photon Source at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-CH11357. This research also benefited from the financial support from the Andrew W. Mellon Foundation (A.Z. Rudenstine, program officer). NR 22 TC 6 Z9 6 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD SEP PY 2010 VL 100 IS 3 BP 635 EP 646 DI 10.1007/s00339-010-5646-8 PG 12 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 643SA UT WOS:000281317700008 ER PT J AU Goulay, F Schrader, PE Michelsen, HA AF Goulay, F. Schrader, P. E. Michelsen, H. A. TI Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID TURBULENT-DIFFUSION FLAMES; PRIMARY PARTICLE-SIZE; OPTICAL-PROPERTIES; REFRACTIVE-INDEXES; GENERATED SOOT; LII; ABSORPTION; SCATTERING; DISTRIBUTIONS; EXTINCTION AB Flame-generated soot was heated using a pulsed laser, and temperatures of the irradiated soot were inferred by fitting the Planck function to spectrally resolved laser-induced incandescence with the temperature as an adjustable parameter. The effect of the wavelength dependence of the emissivity on the inferred temperatures of the irradiated soot was studied using selected expressions for the soot emissivity in the fit. Depending upon the choice of the functional form of the emissivity, the maximum temperature reached by the soot during the laser pulse was calculated to span a range of 341 K (3475-3816 K) at a 1064-nm laser fluence of 0.1 J/cm(2) and 456 K (4115-4571 K) at a 1064-nm laser fluence of 0.4 J/cm(2) with a 1 sigma standard deviation about the mean of similar to 25 K. Comparison of the present results with temperature measurements from previous studies suggests that the emissivity may depend on flame conditions and that further investigation on the subject is needed. The use of two-color or spectrally resolved LII to infer the soot temperature during or after laser heating requires a careful characterization of the wavelength dependence of the emissivity. The spread in temperature leads to large uncertainties regarding the physico-chemical processes occurring at the surface of the soot during the laser heating. C1 [Goulay, F.; Schrader, P. E.; Michelsen, H. A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9055, Livermore, CA 94551 USA. EM hamiche@sandia.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy; National Nuclear Security Administration [DE-AC4-94-AL85000] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC4-94-AL85000. NR 60 TC 13 Z9 13 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD SEP PY 2010 VL 100 IS 3 BP 655 EP 663 DI 10.1007/s00340-010-4119-2 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA 637TU UT WOS:000280842400029 ER PT J AU Rao, DV Swapna, M Cesareo, R Brunetti, A Zhong, Z Akatsuka, T Yuasa, T Takeda, T Gigante, GE AF Rao, Donepudi V. Swapna, Medasani Cesareo, Roberto Brunetti, Antonio Zhong, Zhong Akatsuka, Takao Yuasa, Tetsuya Takeda, Tohoru Gigante, Giovanni E. TI Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Diffraction-enhanced imaging; Synchrotron; Invertebrates; Soft tissue ID RADIOGRAPHY; IMPLEMENTATION; REFRACTION; CARTILAGE; CONTRAST; IMAGES; MODEL AB Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 key were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 key is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio] Univ Sassari, Ist Matemat & Fis, I-07100 Sassari, Italy. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Akatsuka, Takao; Yuasa, Tetsuya] Yamagata Univ, Fac Engn, Dept Biosyst Engn, Yonezawa, Yamagata 9928510, Japan. [Takeda, Tohoru] Kitasato Univ, Kanagawa 2288555, Japan. [Gigante, Giovanni E.] Univ Rome, Dipartimento Fis, I-00185 Rome, Italy. RP Rao, DV (reprint author), Sir CRR Autonomous Coll, Dept Phys, Eluru 534007, Andhra Pradesh, India. EM donepudi_venkateswararao@rediffmail.com; medasanisw@gmail.com RI Yuasa, Tetsuya/F-5006-2013; brunetti, antonio/F-3370-2011 OI Gigante, Giovanni Ettore/0000-0001-5943-9366; brunetti, antonio/0000-0002-0116-1899 FU DST, India FX One of the authors (DVR) utilized the available facilities at ICTP (Trieste, Italy), Istituto di Matematica e Fisica, Universita di Sassari. Italy, and Department of Bio-System Engineering of Yamagata University (Yonezawa, Japan). Travel support (DVR) at the time of experiments was supported by DST, India, under the category of utilization of synchrotron and neutron scattering facilities. NR 29 TC 7 Z9 7 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD SEP PY 2010 VL 68 IS 9 BP 1687 EP 1693 DI 10.1016/j.apradiso.2010.04.001 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 619FY UT WOS:000279415800015 PM 20434918 ER PT J AU Saey, PRJ Bowyer, TW Ringbom, A AF Saey, Paul R. J. Bowyer, Theodore W. Ringbom, Anders TI Isotopic noble gas signatures released from medical isotope production facilities-Simulations and measurements SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Uranium target irradiation; Medical isotopes; Low level radioxenon measurement; Environmental monitoring; Treaty verification; CTBTO AB Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which (131m)Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Saey, Paul R. J.] Vienna Univ Technol, Inst Atom, Austrian Univ, A-1020 Vienna, Austria. [Bowyer, Theodore W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ringbom, Anders] Swedish Def Res Agcy FOI, Def & Secur Syst & Technol Div, S-17290 Stockholm, Sweden. RP Saey, PRJ (reprint author), Vienna Univ Technol, Inst Atom, Austrian Univ, Stadionallee 2, A-1020 Vienna, Austria. EM paul.saey@ati.ac.at NR 26 TC 28 Z9 28 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD SEP PY 2010 VL 68 IS 9 BP 1846 EP 1854 DI 10.1016/j.apradiso.2010.04.014 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 619FY UT WOS:000279415800039 PM 20447828 ER PT J AU King, DJ Brodrick, J AF King, Darrell J. Brodrick, James TI Residential DC Power Bus SO ASHRAE JOURNAL LA English DT Article C1 [King, Darrell J.] TIAX LLC, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP King, DJ (reprint author), TIAX LLC, Lexington, MA USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2010 VL 52 IS 9 BP 73 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 651LL UT WOS:000281929100021 ER PT J AU Bersanelli, M Mandolesi, N Butler, RC Mennella, A Villa, F Aja, B Artal, E Artina, E Baccigalupi, C Balasini, M Baldan, G Banday, A Bastia, P Battaglia, P Bernardino, T Blackhurst, E Boschini, L Burigana, C Cafagna, G Cappellini, B Cavaliere, F Colombo, F Crone, G Cuttaia, F D'Arcangelo, O Danese, L Davies, RD Davis, RJ De Angelis, L De Gasperis, GC De La Fuente, L De Rosa, A De Zotti, G Falvella, MC Ferrari, F Ferretti, R Figini, L Fogliani, S Franceschet, C Franceschi, E Gaier, T Garavaglia, S Gomez, F Gorski, K Gregorio, A Guzzi, P Herreros, JM Hildebrandt, SR Hoyland, R Hughes, N Janssen, M Jukkala, P Kettle, D Kilpia, VH Laaninen, M Lapolla, PM Lawrence, CR Lawson, D Leahy, JP Leonardi, R Leutenegger, P Levin, S Lilje, PB Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Mediavilla, A Meinhold, P Miccolis, M Morgante, G Natoli, P Nesti, R Pagan, L Paine, C Partridge, B Pascual, JP Pasian, F Pearson, D Pecora, M Perrotta, F Platania, P Pospieszalski, M Poutanen, T Prina, M Rebolo, R Roddis, N Rubino-Martin, JA Salmon, MJ Sandri, M Seiffert, M Silvestri, R Simonetto, A Sjoman, P Smoot, GF Sozzi, C Stringhetti, L Taddei, E Tauber, J Terenzi, L Tomasi, M Tuovinen, J Valenziano, L Varis, J Vittorio, N Wade, LA Wilkinson, A Winder, F Zacchei, A Zonca, A AF Bersanelli, M. Mandolesi, N. Butler, R. C. Mennella, A. Villa, F. Aja, B. Artal, E. Artina, E. Baccigalupi, C. Balasini, M. Baldan, G. Banday, A. Bastia, P. Battaglia, P. Bernardino, T. Blackhurst, E. Boschini, L. Burigana, C. Cafagna, G. Cappellini, B. Cavaliere, F. Colombo, F. Crone, G. Cuttaia, F. D'Arcangelo, O. Danese, L. Davies, R. D. Davis, R. J. De Angelis, L. De Gasperis, G. C. De La Fuente, L. De Rosa, A. De Zotti, G. Falvella, M. C. Ferrari, F. Ferretti, R. Figini, L. Fogliani, S. Franceschet, C. Franceschi, E. Gaier, T. Garavaglia, S. Gomez, F. Gorski, K. Gregorio, A. Guzzi, P. Herreros, J. M. Hildebrandt, S. R. Hoyland, R. Hughes, N. Janssen, M. Jukkala, P. Kettle, D. Kilpia, V. H. Laaninen, M. Lapolla, P. M. Lawrence, C. R. Lawson, D. Leahy, J. P. Leonardi, R. Leutenegger, P. Levin, S. Lilje, P. B. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Mediavilla, A. Meinhold, P. Miccolis, M. Morgante, G. Natoli, P. Nesti, R. Pagan, L. Paine, C. Partridge, B. Pascual, J. P. Pasian, F. Pearson, D. Pecora, M. Perrotta, F. Platania, P. Pospieszalski, M. Poutanen, T. Prina, M. Rebolo, R. Roddis, N. Rubino-Martin, J. A. Salmon, M. J. Sandri, M. Seiffert, M. Silvestri, R. Simonetto, A. Sjoman, P. Smoot, G. F. Sozzi, C. Stringhetti, L. Taddei, E. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Valenziano, L. Varis, J. Vittorio, N. Wade, L. A. Wilkinson, A. Winder, F. Zacchei, A. Zonca, A. TI Planck pre-launch status: Design and description of the Low Frequency Instrument SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; space vehicles: instruments ID MICROWAVE BACKGROUND ANISOTROPY; 1/F NOISE; LFI INSTRUMENT; RADIOMETERS; FLUCTUATIONS; TEMPERATURE; PERFORMANCE; MISSION AB In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA programme dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art indium phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front end is cooled to 20 K for optimal sensitivity and the reference loads are cooled to 4 K to minimise low-frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements, and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical, and thermal design are discussed, including the stringent requirements on sensitivity, stability, and rejection of systematic effects. Further details on the key instrument units and the results of ground calibration are provided in a set of companion papers. C1 [Bersanelli, M.; Mennella, A.; Cappellini, B.; Cavaliere, F.; Franceschet, C.; Maino, D.; Perrotta, F.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bersanelli, M.; Mennella, A.; Cappellini, B.; Zonca, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Mandolesi, N.; Butler, R. C.; Villa, F.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Franceschi, E.; Malaspina, M.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Artina, E.; Balasini, M.; Baldan, G.; Bastia, P.; Battaglia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Ferretti, R.; Guzzi, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Perrotta, F.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sector, I-34014 Trieste, Italy. [Banday, A.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M. J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Blackhurst, E.; Davies, R. D.; Davis, R. J.; Kettle, D.; Lawson, D.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Crone, G.; Marti-Canales, J.] Sci Projects Dpt ESA, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Figini, L.; Garavaglia, S.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [De Angelis, L.; Falvella, M. C.] ASI, I-00198 Rome, Italy. [De Gasperis, G. C.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Baccigalupi, C.; Fogliani, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gaier, T.; Gorski, K.; Janssen, M.; Lawrence, C. R.; Levin, S.; Paine, C.; Pearson, D.; Prina, M.; Seiffert, M.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gomez, F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Hughes, N.; Jukkala, P.; Kilpia, V. H.; Sjoman, P.] DA Design Oy, Jokioinen 31600, Finland. [Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Nesti, R.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Haverford, PA 19041 USA. [Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201AZ Noordwijk, Netherlands. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Banday, A.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Bersanelli, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM marco.bersanelli@unimi.it RI Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015 OI Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; GARAVAGLIA, SAUL FRANCESCO/0000-0002-8433-1901; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Nesti, Renzo/0000-0003-0303-839X; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Pascual, Juan Pablo/0000-0003-2123-0502; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334 FU Italian Space Agency (ASI); Academy of Finland [205800, 214598, 121703, 121962]; Waldemar von Frenckells Stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; NASA LTSA [NNG04CG90G] FX The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). T.P.'s work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. T. P. thanks the Waldemar von Frenckells Stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. We acknowledge partial support from the NASA LTSA Grant NNG04CG90G. NR 53 TC 97 Z9 97 U1 2 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A4 DI 10.1051/0004-6361/200912853 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200005 ER PT J AU Leahy, JP Bersanelli, M D'Arcangelo, O Ganga, K Leach, SM Moss, A Keihanen, E Keskitalo, R Kurki-Suonio, H Poutanen, T Sandri, M Scott, D Tauber, J Valenziano, L Villa, F Wilkinson, A Zonca, A Baccigalupi, C Borrill, J Butler, RC Cuttaia, F Davis, RJ Frailis, M Francheschi, E Galeotta, S Gregorio, A Leonardi, R Mandolesi, N Maris, M Meinhold, P Mendes, L Mennella, A Morgante, G Prezeau, G Rocha, G Stringhetti, L Terenzi, L Tomasi, M AF Leahy, J. P. Bersanelli, M. D'Arcangelo, O. Ganga, K. Leach, S. M. Moss, A. Keihanen, E. Keskitalo, R. Kurki-Suonio, H. Poutanen, T. Sandri, M. Scott, D. Tauber, J. Valenziano, L. Villa, F. Wilkinson, A. Zonca, A. Baccigalupi, C. Borrill, J. Butler, R. C. Cuttaia, F. Davis, R. J. Frailis, M. Francheschi, E. Galeotta, S. Gregorio, A. Leonardi, R. Mandolesi, N. Maris, M. Meinhold, P. Mendes, L. Mennella, A. Morgante, G. Prezeau, G. Rocha, G. Stringhetti, L. Terenzi, L. Tomasi, M. TI Planck pre-launch status: Expected LFI polarisation capability SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; instrumentation: polarimeters; space vehicles: instruments; techniques: polarimetric; cosmic microwave background ID UNDERSTANDING RADIO POLARIMETRY; PROBE WMAP OBSERVATIONS; MAP-MAKING METHOD; 30 GHZ DATA; POWER SPECTRUM; CRAB-NEBULA; MICROWAVE; ANISOTROPY; DEFINITIONS; CALIBRATION AB We present a system-level description of the Low Frequency Instrument (LFI) considered as a differencing polarimeter, and evaluate its expected performance. The LFI is one of the two instruments on board the ESA Planck mission to study the cosmic microwave background. It consists of a set of 22 radiometers sensitive to linear polarisation, arranged in orthogonally-oriented pairs connected to 11 feed horns operating at 30, 44 and 70 GHz. In our analysis, the generic Jones and Mueller-matrix formulations for polarimetry are adapted to the special case of the LFI. Laboratory measurements of flight components are combined with optical simulations of the telescope to investigate the values and uncertainties in the system parameters affecting polarisation response. Methods of correcting residual systematic errors are also briefly discussed. The LFI has beam-integrated polarisation efficiency >99% for all detectors, with uncertainties below 0.1%. Indirect assessment of polarisation position angles suggests that uncertainties are generally less than 0 degrees.5, and this will be checked in flight using observations of the Crab nebula. Leakage of total intensity into the polarisation signal is generally well below the thermal noise level except for bright Galactic emission, where the dominant effect is likely to be spectral-dependent terms due to bandpass mismatch between the two detectors behind each feed, contributing typically 1-3% leakage of foreground total intensity. Comparable leakage from compact features occurs due to beam mismatch, but this averages to < 5 x 10(-4) for large-scale emission. An inevitable feature of the LFI design is that the two components of the linear polarisation are recovered from elliptical beams which differ substantially in orientation. This distorts the recovered polarisation and its angular power spectrum, and several methods are being developed to correct the effect, both in the power spectrum and in the sky maps. The LFI will return a high-quality measurement of the CMB polarisation, limited mainly by thermal noise. To meet our aspiration of measuring polarisation at the 1% level, further analysis of flight and ground data is required. We are still researching the most effective techniques for correcting subtle artefacts in polarisation; in particular the correction of bandpass mismatch effects is a formidable challenge, as it requires multi-band analysis to estimate the spectral indices that control the leakage. C1 [Leahy, J. P.; Wilkinson, A.; Davis, R. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Leahy, J. P.; Frailis, M.; Galeotta, S.; Maris, M.] Osservatorio Astron Trieste INAF, I-34143 Trieste, Italy. [Bersanelli, M.; Zonca, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Bersanelli, M.; Zonca, A.; Mennella, A.] INAF, IASF Sez Milano, Milan, Italy. [D'Arcangelo, O.] Ist Fis Plasma CNR, I-20125 Milan, Italy. [Ganga, K.] CNRS, Lab APC, F-75205 Paris 13, France. [Leach, S. M.; Baccigalupi, C.] SISSA, ISAS, Astrophys Sect, I-34014 Trieste, Italy. [Leach, S. M.; Baccigalupi, C.] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Sandri, M.; Valenziano, L.; Villa, F.; Butler, R. C.; Cuttaia, F.; Francheschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Terenzi, L.] INAF, Ist Astrofis Spaziale & Fis Cosm, Sez Bologna, Bologna, Italy. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Baccigalupi, C.] INAF Trieste, I-34131 Trieste, Italy. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93110 USA. [Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Prezeau, G.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Leahy, JP (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. EM j.p.leahy@manchester.ac.uk RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; OI Cuttaia, Francesco/0000-0001-6608-5017; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Maris, Michele/0000-0001-9442-2754; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Valenziano, Luca/0000-0002-1170-0104; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Stringhetti, Luca/0000-0002-3961-9068; Scott, Douglas/0000-0002-6878-9840; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375 FU Italian Space Agency (ASI); Science and Technology Facilities Council (STFC); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Canadian Space Agency; NASA LTSA [NNG04CG90G]; ESA FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; J.P.L. thanks Johan Hamaker for a fruitful collaboration (Hamaker & Leahy 2004) which has significantly influenced the presentation in this paper. J.P.L. also thanks the Osservatorio Astronomico di Trieste for hospitality while much of this paper was written. We thank the referee for a perceptive review. The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). The UK contribution is supported by the Science and Technology Facilities Council (STFC). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Canadian contribution is supported by the Canadian Space Agency. We wish to thank people of the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and the LFI Consortium that are involved in activities related to optical simulations and the measurement and modelling of the radiometer performance. We acknowledge the use of the Planck sky model, developed by the Component Separation Working Group (WG2) of the Planck Collaboration. We thank the members of the Planck CTP working group for the preparation and validation of the Trieste simulations. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 1999). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research has made use of NASA's Astrophysics Data System. We acknowledge partial support of the NASA LTSA Grant NNG04CG90G. NR 55 TC 60 Z9 60 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A8 DI 10.1051/0004-6361/200912855 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200009 ER PT J AU Mandolesi, N Bersanelli, M Butler, RC Artal, E Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bennett, K Bhandari, P Bonaldi, A Borrill, J Bremer, M Burigana, C Bowman, RC Cabella, P Cantalupo, C Cappellini, B Courvoisier, T Crone, G Cuttaia, F Danese, L D'Arcangelo, O Davies, RD Davis, RJ De Angelis, L de Gasperis, G De Rosa, A De Troia, G de Zotti, G Dick, J Dickinson, C Diego, JM Donzelli, S Dorl, U Dupac, X Ensslin, TA Eriksen, HK Falvella, MC Finelli, F Frailis, M Franceschi, E Gaier, T Galeotta, S Gasparo, F Giardino, G Gomez, F Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, F Hell, R Herranz, D Herreros, JM Hildebrandt, S Hovest, W Hoyland, R Huffenberger, K Janssen, M Jaffe, T Keihanen, E Keskitalo, R Kisner, T Kurki-Suonio, H Lahteenmaki, A Lawrence, CR Leach, SM Leahy, JP Leonardi, R Levin, S Lilje, PB Lopez-Caniego, M Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Massardi, M Matarrese, S Matthai, F Meinhold, P Melchiorri, A Mendes, L Mennella, A Morgante, G Morigi, G Morisset, N Moss, A Nash, A Natoli, P Nesti, R Paine, C Partridge, B Pasian, F Passvogel, T Pearson, D Perez-Cuevas, L Perrotta, F Polenta, G Popa, LA Poutanen, T Prezeau, G Prina, M Rachen, JP Rebolo, R Reinecke, M Ricciardi, S Riller, T Rocha, G Roddis, N Rohlfs, R Rubino-Martin, JA Salerno, E Sandri, M Scott, D Seiffert, M Silk, J Simonetto, A Smoot, GF Sozzi, C Sternberg, J Stivoli, F Stringhetti, L Tauber, J Terenzi, L Tomasi, M Tuovinen, J Turler, M Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, L White, M White, S Wilkinson, A Zacchei, A Zonca, A AF Mandolesi, N. Bersanelli, M. Butler, R. C. Artal, E. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bennett, K. Bhandari, P. Bonaldi, A. Borrill, J. Bremer, M. Burigana, C. Bowman, R. C. Cabella, P. Cantalupo, C. Cappellini, B. Courvoisier, T. Crone, G. Cuttaia, F. Danese, L. D'Arcangelo, O. Davies, R. D. Davis, R. J. De Angelis, L. de Gasperis, G. De Rosa, A. De Troia, G. de Zotti, G. Dick, J. Dickinson, C. Diego, J. M. Donzelli, S. Doerl, U. Dupac, X. Ensslin, T. A. Eriksen, H. K. Falvella, M. C. Finelli, F. Frailis, M. Franceschi, E. Gaier, T. Galeotta, S. Gasparo, F. Giardino, G. Gomez, F. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. Hell, R. Herranz, D. Herreros, J. M. Hildebrandt, S. Hovest, W. Hoyland, R. Huffenberger, K. Janssen, M. Jaffe, T. Keihanen, E. Keskitalo, R. Kisner, T. Kurki-Suonio, H. Lahteenmaki, A. Lawrence, C. R. Leach, S. M. Leahy, J. P. Leonardi, R. Levin, S. Lilje, P. B. Lopez-Caniego, M. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Massardi, M. Matarrese, S. Matthai, F. Meinhold, P. Melchiorri, A. Mendes, L. Mennella, A. Morgante, G. Morigi, G. Morisset, N. Moss, A. Nash, A. Natoli, P. Nesti, R. Paine, C. Partridge, B. Pasian, F. Passvogel, T. Pearson, D. Perez-Cuevas, L. Perrotta, F. Polenta, G. Popa, L. A. Poutanen, T. Prezeau, G. Prina, M. Rachen, J. P. Rebolo, R. Reinecke, M. Ricciardi, S. Riller, T. Rocha, G. Roddis, N. Rohlfs, R. Rubino-Martin, J. A. Salerno, E. Sandri, M. Scott, D. Seiffert, M. Silk, J. Simonetto, A. Smoot, G. F. Sozzi, C. Sternberg, J. Stivoli, F. Stringhetti, L. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Tuerler, M. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. White, M. White, S. Wilkinson, A. Zacchei, A. Zonca, A. TI Planck pre-launch status: The Planck-LFI programme SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; telescopes ID MICROWAVE BACKGROUND MAPS; LOW-FREQUENCY INSTRUMENT; DATA-PROCESSING CENTERS; ANGULAR POWER SPECTRA; LARGE-AREA TELESCOPE; DMR SKY MAPS; NON-GAUSSIANITY; STRAYLIGHT CONTAMINATION; GALACTIC FOREGROUNDS; COMPONENT SEPARATION AB This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, C1 [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Gruppuso, A.; Malaspina, M.; Morgante, G.; Morigi, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Maino, D.; Mennella, A.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF OAPd, Ist Nazl Astrofis, Osservatorio Astron Padova, I-35122 Padua, Italy. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Baccigalupi, C.; Frailis, M.; Galeotta, S.; Gasparo, F.; Maris, M.; Pasian, F.; Zacchei, A.] INAF OATs, Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Artal, E.] Univ Cantabria, Dep Ing Comunicac DICOM, E-39005 Santander, Spain. [Baccigalupi, C.; Danese, L.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S. M.; Perrotta, F.] SISSA, ISAS, Astrophys Sect, Sez Trieste, I-34014 Trieste, Italy. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Ensslin, T. A.; Hell, R.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. [Bhandari, P.; Bowman, R. C.; Gaier, T.; Gorski, K. M.; Janssen, M.; Lahteenmaki, A.; Levin, S.; Nash, A.; Paine, C.; Pearson, D.; Prezeau, G.; Prina, M.; Rocha, G.; Seiffert, M.; Wade, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Courvoisier, T.; Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Crone, G.; Marti-Canales, J.; Passvogel, T.; Perez-Cuevas, L.] ESA, Sci Projects Dpt, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, Ist Fis Plasma, Consiglio Nazl Ric, I-20125 Milan, Italy. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [De Angelis, L.; Falvella, M. C.] ASI, Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Mendes, L.] ESA ESAC RSSD, European Space Agcy, European Space Astron Ctr, Res & Sci Support Dept, Madrid 28691, Spain. [Nesti, R.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.; Tauber, J.] Estec, ESA, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Popa, L. A.] Inst Space Sci, RO-077125 Bucharest, Romania. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Smoot, G. F.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Silk, J.] Univ Oxford, Oxford OX1 3RH, England. [Smoot, G. F.] Univ Paris 07, APC, Case 7020, F-75205 Paris 13, France. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Finelli, F.] INAF OABo, Ist Nazl Astrofis, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Baccigalupi, C.; Leach, S. M.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Natoli, P.; Vittorio, N.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Borrill, J.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Berkeley Space Sci Lab, Berkeley, CA 94720 USA. [Borrill, J.; Cantalupo, C.; Kisner, T.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Banday, A. J.] CESR, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Dupac, X.] ESA, ESAC, European Space Agcy, European Space Astron Ctr, Madrid 28080, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Lopez-Caniego, M.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Huffenberger, K.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Natoli, P.; Polenta, G.] ASI, Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Italy. [Cabella, P.; Melchiorri, A.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Polenta, G.] INAF OARo, Ist Nazl Astrofis, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Salerno, E.] CNR, Consiglio Nazl Ric, Area Ric Pisa, Ist Scie & Technol Informaz Alessandro Faedo, I-56124 Pisa, Italy. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Mandolesi, N (reprint author), INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM mandolesi@iasfbo.inaf.it RI Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa, lucia/B-4718-2012; Lilje, Per/A-2699-2012; Artal, Eduardo/H-5546-2015; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bartelmann, Matthias/A-5336-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Herranz, Diego/K-9143-2014; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Butler, Reginald/N-4647-2015; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Lopez-Caniego, Marcos/0000-0003-1016-9283; Melchiorri, Alessandro/0000-0001-5326-6003; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Artal, Eduardo/0000-0002-2569-1894; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Vielva, Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Nesti, Renzo/0000-0003-0303-839X; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; Ricciardi, Sara/0000-0002-3807-4043; Huffenberger, Kevin/0000-0001-7109-0099; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713 FU ESA; Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901]; Max-Planck-Gesellschaft (MPG); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Ministerio de Ciencia e Innovacion [ESP2004-07067-C03, AYA2007-68058-C03]; Science and Technology Facilities Council (STFC); NASA LTSA [NNG04CG90G]; NASA Office of Space Science; Canadian Space Agency FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK and USA. The Italian contribution to Planck is supported by the Agenzia Spaziale Italiana (ASI) and INAF. We also wish to thank the many people of the Herschel/Planck Project and RSSD of ESA, ASI, THALES Alenia Space Industries and the LFI Consortium that have contributed to the realization of LFI. We are grateful to our HFI colleagues for such a fruitful collaboration during so many years of common work. The German participation at the Max-Planck-Institut fur Astrophysik is funded by the Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901] and by the Max-Planck-Gesellschaft (MPG). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the project ESP2004-07067-C03 and AYA2007-68058-C03. The UK contribution is supported by the Science and Technology Facilities Council (STFC). C. Baccigalupi and F. Perrotta acknowledge partial support of the NASA LTSA Grant NNG04CG90G. We acknowledge the use of the BCX cluster at CINECA under the agreement INAF/CINECA. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We acknowledge use of the HEALPix (Gorski et al. 2005) software and analysis package for deriving some of the results in this paper. The Canadian participation is supported by the Canadian Space Agency. NR 135 TC 74 Z9 74 U1 1 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A3 DI 10.1051/0004-6361/200912837 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200004 ER PT J AU Tauber, JA Mandolesi, N Puget, JL Banos, T Bersanelli, M Bouchet, FR Butler, RC Charra, J Crone, G Dodsworth, J Efstathiou, G Gispert, R Guyot, G Gregorio, A Juillet, JJ Lamarre, JM Laureijs, RJ Lawrence, CR Norgaard-Nielsen, HU Passvogel, T Reix, JM Texier, D Vibert, L Zacchei, A Ade, PAR Aghanim, N Aja, B Alippi, E Aloy, L Armand, P Arnaud, M Arondel, A Arreola-Villanueva, A Artal, E Artina, E Arts, A Ashdown, M Aumont, J Azzaro, M Bacchetta, A Baccigalupi, C Baker, M Balasini, M Balbi, A Banday, AJ Barbier, G Barreiro, RB Bartelmann, M Battaglia, P Battaner, E Benabed, K Beney, JL Beneyton, R Bennett, K Benoit, A Bernard, JP Bhandari, P Bhatia, R Biggi, M Biggins, R Billig, G Blanc, Y Blavot, H Bock, JJ Bonaldi, A Bond, R Bonis, J Borders, J Borrill, J Boschini, L Boulanger, F Bouvier, J Bouzit, M Bowman, R Breelle, E Bradshaw, T Braghin, M Bremer, M Brienza, D Broszkiewicz, D Burigana, C Burkhalter, M Cabella, P Cafferty, T Cairola, M Caminade, S Camus, P Cantalupo, CM Cappellini, B Cardoso, JF Carr, R Catalano, A Cayon, L Cesa, M Chaigneau, M Challinor, A Chamballu, A Chambelland, JP Charra, M Chiang, LY Chlewicki, G Christensen, PR Church, S Ciancietta, E Cibrario, M Cizeron, R Clements, D Collaudin, B Colley, JM Colombi, S Colombo, A Colombo, F Corre, O Couchot, F Cougrand, B Coulais, A Couzin, P Crane, B Crill, B Crook, M Crumb, D Cuttaia, F Dorl, U da Silva, P Daddato, R Damasio, C Danese, L d'Aquino, G D'Arcangelo, O Dassas, K Davies, RD Davies, W Davis, RJ De Bernardis, P de Chambure, D de Gasperis, G De la Fuente, ML De Paco, P De Rosa, A De Troia, G De Zotti, G Dehamme, M Delabrouille, J Delouis, JM Desert, FX di Girolamo, G Dickinson, C Doelling, E Dolag, K Domken, I Douspis, M Doyle, D Du, S Dubruel, D Dufour, C Dumesnil, C Dupac, X Duret, P Eder, C Elfving, A Ensslin, TA Eng, P English, K Eriksen, HK Estaria, P Falvella, MC Ferrari, F Finelli, F Fishman, A Fogliani, S Foley, S Fonseca, A Forma, G Forni, O Fosalba, P Fourmond, JJ Frailis, M Franceschet, C Franceschi, E Francois, S Frerking, M Gomez-Renasco, MF Gorski, KM Gaier, TC Galeotta, S Ganga, K Lazaro, JG Gavila, E Giard, M Giardino, G Gienger, G Giraud-Heraud, Y Glorian, JM Griffin, M Gruppuso, A Guglielmi, L Guichon, D Guillaume, B Guillouet, P Haissinski, J Hansen, FK Hardy, J Harrison, D Hazell, A Hechler, M Heckenauer, V Heinzer, D Hell, R Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Herreros, JM Hervier, V Heske, A Heurtel, A Hildebrandt, SR Hills, R Hivon, E Hobson, M Hollert, D Holmes, W Hornstrup, A Hovest, W Hoyland, RJ Huey, G Huffenberger, KM Hughes, N Israelsson, U Jackson, B Jaffe, A Jaffe, TR Jagemann, T Jessen, NC Jewell, J Jones, W Juvela, M Kaplan, J Karlman, P Keck, F Keihanen, E King, M Kisner, TS Kletzkine, P Kneissl, R Knoche, J Knox, L Koch, T Krassenburg, M Kurki-Suonio, H Lahteenmaki, A Lagache, G Lagorio, E Lami, P Lande, J Lange, A Langlet, F Lapini, R Lapolla, M Lasenby, A Le Jeune, M Leahy, JP Lefebvre, M Legrand, F Le Meur, G Leonardi, R Leriche, B Leroy, C Leutenegger, P Levin, SM Lilje, PB Lindensmith, C Linden-Vornle, M Loc, A Longval, Y Lubin, PM Luchik, T Luthold, I Macias-Perez, JF Maciaszek, T MacTavish, C Madden, S Maffei, B Magneville, C Maino, D Mambretti, A Mansoux, B Marchioro, D Maris, M Marliani, F Marrucho, JC Marti-Canales, J Martinez-Gonzalez, E Martin-Polegre, A Martin, P Marty, C Marty, W Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P McDonald, A McGrath, P Mediavilla, A Meinhold, R Melin, JB Melot, F Mendes, L Mennella, A Mervier, C Meslier, L Miccolis, M Miville-Deschenes, MA Moneti, A Montet, D Montier, L Mora, J Morgante, G Morigi, G Morinaud, G Morisset, N Mortlock, D Mottet, S Mulder, J Munshi, D Murphy, A Murphy, P Musi, P Narbonne, J Naselsky, P Nash, A Nati, F Natoli, P Netterfield, B Newell, J Nexon, M Nicolas, C Nielsen, PH Ninane, N Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Oldeman, P Olivier, P Ouchet, L Oxborrow, CA Perez-Cuevas, L Pagan, L Paine, C Pajot, F Paladini, R Pancher, F Panh, J Parks, G Parnaudeau, P Partridge, B Parvin, B Pascual, JP Pasian, F Pearson, DP Pearson, T Pecora, M Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piersanti, O Plaige, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poulleau, G Poutanen, T Prezeau, G Pradell, L Prina, M Prunet, S Rachen, JP Rambaud, D Rame, F Rasmussen, I Rautakoski, J Reach, WT Rebolo, R Reinecke, M Reiter, J Renault, C Ricciardi, S Rideau, P Riller, T Ristorcelli, I Riti, JB Rocha, G Roche, Y Pons, R Rohlfs, R Romero, D Roose, S Rosset, C Rouberol, S Rowan-Robinson, M Rubino-Martin, JA Rusconi, P Rusholme, B Salama, M Salerno, E Sandri, M Santos, D Sanz, JL Sauter, L Sauvage, F Savini, G Schmelzel, M Schnorhk, A Schwarz, W Scott, D Seiffert, MD Shellard, P Shih, C Sias, M Silk, JI Silvestri, R Sippel, R Smoot, GF Starck, JL Stassi, P Sternberg, J Stivoli, F Stolyarov, V Stompor, R Stringhetti, L Strommen, D Stute, T Sudiwala, R Sugimura, R Sunyaev, R Sygnet, JF Turler, M Taddei, E Tallon, J Tamiatto, C Taurigna, M Taylor, D Terenzi, L Thuerey, S Tillis, J Tofani, G Toffolatti, L Tommasi, E Tomasi, M Tonazzini, E Torre, JP Tosti, S Touze, F Tristram, M Tuovinen, J Tuttlebee, M Umana, G Valenziano, L Vallee, D van der Vlis, M Van Leeuwen, F Vanel, JC Van-Tent, B Varis, J Vassallo, E Vescovi, C Vezzu, F Vibert, D Vielva, P Vierra, J Villa, F Vittorio, N Vuerli, C Wade, LA Walker, AR Wandelt, BD Watson, C Werner, D White, M White, SDM Wilkinson, A Wilson, P Woodcraft, A Yoffo, B Yun, M Yurchenko, V Yvon, D Zhang, B Zimmermann, O Zonca, A Zorita, D AF Tauber, J. A. Mandolesi, N. Puget, J. -L. Banos, T. Bersanelli, M. Bouchet, F. R. Butler, R. C. Charra, J. Crone, G. Dodsworth, J. Efstathiou, G. Gispert, R. Guyot, G. Gregorio, A. Juillet, J. J. Lamarre, J. -M. Laureijs, R. J. Lawrence, C. R. Norgaard-Nielsen, H. U. Passvogel, T. Reix, J. M. Texier, D. Vibert, L. Zacchei, A. Ade, P. A. R. Aghanim, N. Aja, B. Alippi, E. Aloy, L. Armand, P. Arnaud, M. Arondel, A. Arreola-Villanueva, A. Artal, E. Artina, E. Arts, A. Ashdown, M. Aumont, J. Azzaro, M. Bacchetta, A. Baccigalupi, C. Baker, M. Balasini, M. Balbi, A. Banday, A. J. Barbier, G. Barreiro, R. B. Bartelmann, M. Battaglia, P. Battaner, E. Benabed, K. Beney, J. -L. Beneyton, R. Bennett, K. Benoit, A. Bernard, J. -P. Bhandari, P. Bhatia, R. Biggi, M. Biggins, R. Billig, G. Blanc, Y. Blavot, H. Bock, J. J. Bonaldi, A. Bond, R. Bonis, J. Borders, J. Borrill, J. Boschini, L. Boulanger, F. Bouvier, J. Bouzit, M. Bowman, R. Breelle, E. Bradshaw, T. Braghin, M. Bremer, M. Brienza, D. Broszkiewicz, D. Burigana, C. Burkhalter, M. Cabella, P. Cafferty, T. Cairola, M. Caminade, S. Camus, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Carr, R. Catalano, A. Cayon, L. Cesa, M. Chaigneau, M. Challinor, A. Chamballu, A. Chambelland, J. P. Charra, M. Chiang, L. -Y. Chlewicki, G. Christensen, P. R. Church, S. Ciancietta, E. Cibrario, M. Cizeron, R. Clements, D. Collaudin, B. Colley, J. -M. Colombi, S. Colombo, A. Colombo, F. Corre, O. Couchot, F. Cougrand, B. Coulais, A. Couzin, P. Crane, B. Crill, B. Crook, M. Crumb, D. Cuttaia, F. Doerl, U. da Silva, P. Daddato, R. Damasio, C. Danese, L. d'Aquino, G. D'Arcangelo, O. Dassas, K. Davies, R. D. Davies, W. Davis, R. J. De Bernardis, P. de Chambure, D. de Gasperis, G. De la Fuente, M. L. De Paco, P. De Rosa, A. De Troia, G. De Zotti, G. Dehamme, M. Delabrouille, J. Delouis, J. -M. Desert, F. -X. di Girolamo, G. Dickinson, C. Doelling, E. Dolag, K. Domken, I. Douspis, M. Doyle, D. Du, S. Dubruel, D. Dufour, C. Dumesnil, C. Dupac, X. Duret, P. Eder, C. Elfving, A. Ensslin, T. A. Eng, P. English, K. Eriksen, H. K. Estaria, P. Falvella, M. C. Ferrari, F. Finelli, F. Fishman, A. Fogliani, S. Foley, S. Fonseca, A. Forma, G. Forni, O. Fosalba, P. Fourmond, J. -J. Frailis, M. Franceschet, C. Franceschi, E. Francois, S. Frerking, M. Gomez-Renasco, M. F. Gorski, K. M. Gaier, T. C. Galeotta, S. Ganga, K. Lazaro, J. Garcia Gavila, E. Giard, M. Giardino, G. Gienger, G. Giraud-Heraud, Y. Glorian, J. -M. Griffin, M. Gruppuso, A. Guglielmi, L. Guichon, D. Guillaume, B. Guillouet, P. Haissinski, J. Hansen, F. K. Hardy, J. Harrison, D. Hazell, A. Hechler, M. Heckenauer, V. Heinzer, D. Hell, R. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Herreros, J. M. Hervier, V. Heske, A. Heurtel, A. Hildebrandt, S. R. Hills, R. Hivon, E. Hobson, M. Hollert, D. Holmes, W. Hornstrup, A. Hovest, W. Hoyland, R. J. Huey, G. Huffenberger, K. M. Hughes, N. Israelsson, U. Jackson, B. Jaffe, A. Jaffe, T. R. Jagemann, T. Jessen, N. C. Jewell, J. Jones, W. Juvela, M. Kaplan, J. Karlman, P. Keck, F. Keihanen, E. King, M. Kisner, T. S. Kletzkine, P. Kneissl, R. Knoche, J. Knox, L. Koch, T. Krassenburg, M. Kurki-Suonio, H. Lahteenmaki, A. Lagache, G. Lagorio, E. Lami, P. Lande, J. Lange, A. Langlet, F. Lapini, R. Lapolla, M. Lasenby, A. Le Jeune, M. Leahy, J. P. Lefebvre, M. Legrand, F. Le Meur, G. Leonardi, R. Leriche, B. Leroy, C. Leutenegger, P. Levin, S. M. Lilje, P. B. Lindensmith, C. Linden-Vornle, M. Loc, A. Longval, Y. Lubin, P. M. Luchik, T. Luthold, I. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. Madden, S. Maffei, B. Magneville, C. Maino, D. Mambretti, A. Mansoux, B. Marchioro, D. Maris, M. Marliani, F. Marrucho, J. -C. Marti-Canales, J. Martinez-Gonzalez, E. Martin-Polegre, A. Martin, P. Marty, C. Marty, W. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. McDonald, A. McGrath, P. Mediavilla, A. Meinhold, R. Melin, J. -B. Melot, F. Mendes, L. Mennella, A. Mervier, C. Meslier, L. Miccolis, M. Miville-Deschenes, M. -A. Moneti, A. Montet, D. Montier, L. Mora, J. Morgante, G. Morigi, G. Morinaud, G. Morisset, N. Mortlock, D. Mottet, S. Mulder, J. Munshi, D. Murphy, A. Murphy, P. Musi, P. Narbonne, J. Naselsky, P. Nash, A. Nati, F. Natoli, P. Netterfield, B. Newell, J. Nexon, M. Nicolas, C. Nielsen, P. H. Ninane, N. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Oldeman, P. Olivier, P. Ouchet, L. Oxborrow, C. A. Perez-Cuevas, L. Pagan, L. Paine, C. Pajot, F. Paladini, R. Pancher, F. Panh, J. Parks, G. Parnaudeau, P. Partridge, B. Parvin, B. Pascual, J. P. Pasian, F. Pearson, D. P. Pearson, T. Pecora, M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piersanti, O. Plaige, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poulleau, G. Poutanen, T. Prezeau, G. Pradell, L. Prina, M. Prunet, S. Rachen, J. P. Rambaud, D. Rame, F. Rasmussen, I. Rautakoski, J. Reach, W. T. Rebolo, R. Reinecke, M. Reiter, J. Renault, C. Ricciardi, S. Rideau, P. Riller, T. Ristorcelli, I. Riti, J. B. Rocha, G. Roche, Y. Pons, R. Rohlfs, R. Romero, D. Roose, S. Rosset, C. Rouberol, S. Rowan-Robinson, M. Rubino-Martin, J. A. Rusconi, P. Rusholme, B. Salama, M. Salerno, E. Sandri, M. Santos, D. Sanz, J. L. Sauter, L. Sauvage, F. Savini, G. Schmelzel, M. Schnorhk, A. Schwarz, W. Scott, D. Seiffert, M. D. Shellard, P. Shih, C. Sias, M. Silk, J. I. Silvestri, R. Sippel, R. Smoot, G. F. Starck, J. -L. Stassi, P. Sternberg, J. Stivoli, F. Stolyarov, V. Stompor, R. Stringhetti, L. Strommen, D. Stute, T. Sudiwala, R. Sugimura, R. Sunyaev, R. Sygnet, J. -F. Tuerler, M. Taddei, E. Tallon, J. Tamiatto, C. Taurigna, M. Taylor, D. Terenzi, L. Thuerey, S. Tillis, J. Tofani, G. Toffolatti, L. Tommasi, E. Tomasi, M. Tonazzini, E. Torre, J. -P. Tosti, S. Touze, F. Tristram, M. Tuovinen, J. Tuttlebee, M. Umana, G. Valenziano, L. Vallee, D. van der Vlis, M. Van Leeuwen, F. Vanel, J. -C. Van-Tent, B. Varis, J. Vassallo, E. Vescovi, C. Vezzu, F. Vibert, D. Vielva, P. Vierra, J. Villa, F. Vittorio, N. Vuerli, C. Wade, L. A. Walker, A. R. Wandelt, B. D. Watson, C. Werner, D. White, M. White, S. D. M. Wilkinson, A. Wilson, P. Woodcraft, A. Yoffo, B. Yun, M. Yurchenko, V. Yvon, D. Zhang, B. Zimmermann, O. Zonca, A. Zorita, D. TI Planck pre-launch status: The Planck mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; radio continuum: general ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPY; CMB EXPERIMENTS; CALIBRATION; POLARIZATION; SPACE; HFI; PERFORMANCE; DESIGN; SYSTEM AB The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity (Delta T/T similar to 2 x 10(-6)) and angular resolution (similar to 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis. C1 [Tauber, J. A.; Laureijs, R. J.; Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.] ESTEC, European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Polenta, G.] ESRIN, Agenzia Spaziale Italiana, Sci Data Ctr, Frascati, Italy. [Falvella, M. C.; Tommasi, E.] Agenzia Spaziale Italiana, Rome, Italy. [Sippel, R.; Stute, T.] Astrium GmbH, Friedrichshafen, Germany. [Broszkiewicz, D.; Cardoso, J. -F.; Catalano, A.; Colley, J. -M.; Delabrouille, J.; Dufour, C.; Ganga, K.; Giraud-Heraud, Y.; Guglielmi, L.; Guillouet, P.; Kaplan, J.; Le Jeune, M.; Piat, M.; Stompor, R.; Vallee, D.; Vanel, J. -C.; Yoffo, B.] Univ Denis Diderot Paris 7, CNRS, UMR7164, Paris, France. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sect, Trieste, Italy. [Ade, P. A. R.; Griffin, M.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Dept Phys & Astron, Cardiff, Wales. [Arnaud, M.] IrfU SAp, CEA Saclay, Gif Sur Yvette, France. [Magneville, C.; Melin, J. -B.; Starck, J. -L.; Yvon, D.] IrfU SPP, CEA Saclay, Gif Sur Yvette, France. [Aumont, J.] Ctr Etud Spatiale Rayonnements, UMR 5187, Toulouse, France. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Domken, I.; Ninane, N.; Roose, S.] Ctr Spatial Liege, Angleur, Belgium. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Glorian, J. -M.; Lande, J.; Marty, C.; Marty, W.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Rambaud, D.; Ristorcelli, I.; Pons, R.] CNRS Univ Toulouse, CESR, Toulouse, France. [Bond, R.; Netterfield, B.] Univ Toronto, CITA, Toronto, ON, Canada. [Blanc, Y.; Maciaszek, T.; Panh, J.; Pradell, L.] Ctr Spatial Toulouse, CNES, Toulouse, France. [Salerno, E.; Tonazzini, E.] CNR ISTI, Area Ric, Pisa, Italy. Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Aja, B.; Artal, E.; De la Fuente, M. L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Scott, D.; Walker, A. R.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Church, S.] Standford Univ, Dept Phys, Stanford, CA USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford, England. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, Padua, Italy. [Bersanelli, M.; Cappellini, B.; Franceschet, C.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Mazzotta, P.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Brienza, D.; De Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Norgaard-Nielsen, H. U.; Hornstrup, A.; Jessen, N. C.; Oxborrow, C. A.] DTU Space, Natl Space Inst, Copenhagen, Denmark. [Crone, G.; Passvogel, T.; Aloy, L.; Arts, A.; Baker, M.; Braghin, M.; Colombo, A.; Daddato, R.; Damasio, C.; d'Aquino, G.; de Chambure, D.; Doyle, D.; Elfving, A.; Estaria, P.; Guillaume, B.; Heske, A.; Jackson, B.; Kletzkine, P.; Krassenburg, M.; Luthold, I.; Madden, S.; Marliani, F.; Marti-Canales, J.; Martin-Polegre, A.; Oldeman, P.; Olivier, P.; Perez-Cuevas, L.; Piersanti, O.; Rasmussen, I.; Rautakoski, J.; Schnorhk, A.; Thuerey, S.; van der Vlis, M.] Estec, European Space Agcy, Herschel Planck Project, NL-2201 AZ Noordwijk, Netherlands. [Dodsworth, J.; Biggins, R.; Billig, G.; di Girolamo, G.; Doelling, E.; Foley, S.; Gienger, G.; Hechler, M.; Heinzer, D.; Keck, F.; Tuttlebee, M.; Vassallo, E.; Watson, C.; Werner, D.] ESOC, European Space Agcy, Herschel Planck Project, Darmstadt, Germany. [Texier, D.; Carr, R.; Dupac, X.; Lazaro, J. Garcia; Jagemann, T.; Mendes, L.; Taylor, D.] Planck Sci Off ESAC, European Space Agcy, Madrid, Spain. [Azzaro, M.] Univ Granada, Granada, Spain. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Chamballu, A.; Clements, D.; Jaffe, A.; MacTavish, C.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London, England. [Tofani, G.] INAF Arcetri Astrophys Observ, Florence, Italy. [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Morigi, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, Bologna, Italy. [Zacchei, A.; Fogliani, S.; Frailis, M.; Maris, M.; Pasian, F.; Vuerli, C.] INAF Osservatorio Astronom Trieste, Trieste, Italy. [Umana, G.] INAF, Osservatorio Astrofis Catania, Catania, Italy. [Galeotta, S.; Zonca, A.] INAF IASF Milano, Milan, Italy. [Bonaldi, A.; De Zotti, G.; Massardi, M.] INAF Osservatorio Astronom Padova, Padua, Italy. [Reach, W. T.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, CNRS, Inst Astrophys Paris, Paris, France. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, UPMC, Paris, France. [Puget, J. -L.; Charra, J.; Gispert, R.; Guyot, G.; Vibert, L.; Aghanim, N.; Arondel, A.; Blavot, H.; Boulanger, F.; Bouzit, M.; Caminade, S.; Chaigneau, M.; Charra, M.; Cougrand, B.; Crane, B.; Dassas, K.; Douspis, M.; Dumesnil, C.; Duret, P.; Eng, P.; Fourmond, J. -J.; Francois, S.; Heckenauer, V.; Hervier, V.; Lagache, G.; Lami, P.; Langlet, F.; Lefebvre, M.; Leriche, B.; Leroy, C.; Longval, Y.; Mervier, C.; Meslier, L.; Miville-Deschenes, M. -A.; Morinaud, G.; Nicolas, C.; Noviello, F.; Pajot, F.; Ponthieu, N.; Poulleau, G.; Tamiatto, C.; Torre, J. -P.; Tosti, S.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Gomez-Renasco, M. F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Martinez-Gonzalez, E.; Sanz, J. L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [D'Arcangelo, O.; Platania, P.] CNR, Ist Fis Plasma, I-20133 Milan, Italy. [Lawrence, C. R.; Arreola-Villanueva, A.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Borders, J.; Bowman, R.; Cafferty, T.; Crill, B.; Crumb, D.; English, K.; Fishman, A.; Fonseca, A.; Frerking, M.; Gorski, K. M.; Gaier, T. C.; Hardy, J.; Hollert, D.; Holmes, W.; Huey, G.; Israelsson, U.; Jewell, J.; Karlman, P.; King, M.; Koch, T.; Lange, A.; Levin, S. M.; Lindensmith, C.; Loc, A.; Luchik, T.; McGrath, P.; Mora, J.; Mulder, J.; Murphy, P.; Nash, A.; Newell, J.; O'Dwyer, I. J.; Paine, C.; Parks, G.; Parvin, B.; Pearson, D. P.; Pearson, T.; Prezeau, G.; Prina, M.; Reiter, J.; Rocha, G.; Romero, D.; Salama, M.; Schmelzel, M.; Schwarz, W.; Seiffert, M. D.; Shih, C.; Strommen, D.; Sugimura, R.; Tallon, J.; Tillis, J.; Vierra, J.; Wade, L. A.; Wilson, P.; Yun, M.; Zhang, B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T. R.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England. [Beney, J. -L.; Cizeron, R.; Couchot, F.; Dehamme, M.; Du, S.; Eder, C.; Haissinski, J.; Henrot-Versille, S.; Heurtel, A.; Le Meur, G.; Mansoux, B.; Marrucho, J. -C.; Perdereau, O.; Plaige, E.; Plaszczynski, S.; Rosset, C.; Taurigna, M.; Touze, F.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. [Barbier, G.; Benoit, A.; Bouvier, J.; Desert, F. -X.; Lagorio, E.; Pancher, F.; Vescovi, C.; Vezzu, F.; Zimmermann, O.] CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Cantalupo, C. M.; Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lamarre, J. -M.; Coulais, A.] CNRS, LERMA, Observ Paris, Paris, France. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Dolag, K.; Ensslin, T. A.; Hell, R.; Hernandez-Monteagudo, C.; Hovest, W.; Kneissl, R.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Lahteenmaki, A.; McDonald, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala, Finland. [Tuovinen, J.; Varis, J.] VTT Informat Technol, MilliLab, Espoo, Finland. [Murphy, A.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Dublin, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Juvela, M.] Univ Helsinki, Observ Tahtitorninmaki, Helsinki, Finland. [Burkhalter, M.; Davies, W.] Oerlikon Space, Zurich, Switzerland. [Biggi, M.; Lapini, R.] Officine Pasquali, Florence, Italy. [Savini, G.] UCL, Opt Sci Lab, London, England. [Hazell, A.] Estec, Res & Sci Support Dept, ESA, NL-2201 AZ Noordwijk, Netherlands. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Zorita, D.] Sener Ingn Sistemas SA, C Severo Ochoa, Tres Cantos, Spain. [Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [De Paco, P.] Univ Autonoma Barcelona, Telecommun & Syst Engn Dept, E-08193 Barcelona, Spain. [Banos, T.; Juillet, J. J.; Reix, J. M.; Armand, P.; Chambelland, J. P.; Collaudin, B.; Corre, O.; Couzin, P.; Dubruel, D.; Forma, G.; Gavila, E.; Guichon, D.; Martin, P.; Montet, D.; Ouchet, L.; Rideau, P.; Riti, J. B.; Roche, Y.; Sauvage, F.] Thales Alenia Space France, Cannes La Bocca, France. [Bacchetta, A.; Cairola, M.; Cesa, M.; Chlewicki, G.; Ciancietta, E.; Cibrario, M.; Musi, P.; Rame, F.; Sias, M.] Thales Alenia Space Italia, Turin, Italy. [Alippi, E.; Artina, E.; Balasini, M.; Battaglia, P.; Boschini, L.; Colombo, F.; Ferrari, F.; Lapolla, M.; Leutenegger, P.; Mambretti, A.; Marchioro, D.; Miccolis, M.; Pagan, L.; Pecora, M.; Rusconi, P.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia, Milan, Italy. [Nielsen, P. H.] TICRA, Copenhagen, Denmark. [Linden-Vornle, M.] Tycho Brahe Planetarium, Copenhagen, Denmark. [Fosalba, P.] Univ Barcelona, ICE CSIC, Cerdanyola Del Valles, Barcelona, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Dept, Berkeley, CA 94720 USA. [Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Shellard, P.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Efstathiou, G.; Challinor, A.; Harrison, D.; Mortlock, D.; Munshi, D.; Stolyarov, V.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gregorio, A.; Bonis, J.] Univ Trieste, Dept Phys, Trieste, Italy. [Hughes, N.] Ylinen Elect Ltd, Kauniainen, Finland. [Bartelmann, M.] Univ Heidelberg, Inst Theoret Astrophys, Zentrum Astronom, D-6900 Heidelberg, Germany. [Macias-Perez, J. F.; Melot, F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, IN2P3, CNRS, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. RP Tauber, JA (reprint author), ESTEC, European Space Agcy, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int RI Butler, Reginald/N-4647-2015; Collaudin, Bernard/H-7149-2015; Fosalba Vela, Pablo/I-5515-2016; Aja, Beatriz/H-5573-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; van Leeuwen, Floor/D-4586-2011; Starck, Jean-Luc/D-9467-2011; Juvela, Mika/H-6131-2011; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Pradell, Lluis/F-8150-2013; Bartelmann, Matthias/A-5336-2014; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Pascual, Juan Pablo/K-5066-2014; Toffolatti, Luigi/K-5070-2014 OI Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; Huffenberger, Kevin/0000-0001-7109-0099; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; de Paco, Pedro/0000-0002-7628-7189; Bouchet, Francois/0000-0002-8051-2924; Collaudin, Bernard/0000-0003-0114-3014; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Fonseca, Ana/0000-0001-9900-7015; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Vuerli, Claudio/0000-0002-9640-8785; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Aja, Beatriz/0000-0002-4229-2334; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Polenta, Gianluca/0000-0003-4067-9196; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Starck, Jean-Luc/0000-0003-2177-7794; Juvela, Mika/0000-0002-5809-4834; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Pradell, Lluis/0000-0003-4026-226X; Vielva, Patricio/0000-0003-0051-272X; Pascual, Juan Pablo/0000-0003-2123-0502; Toffolatti, Luigi/0000-0003-2645-7386 FU NASA; Danish National Research Council; European Space Agency - ESA FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission are as follows. The European Space Agency (ESA) manages the project and funds the development of the satellite, its launch, and operations. ESA's prime industrial contractor for Planck is Thales Alenia Space (Cannes, France). Industry from all over Europe has contributed to the development of Planck. Specially notable contributions to the development are due to Thales Alenia Spazio (Italy) for the Service Module, Astrium (Friedrichshafen, Germany) for the Planck reflectors, and Oerlikon Space (Zurich, Switzerland) for the payload structures. Much of the most challenging cryogenic and optical testing has been carried out at the Centre Spatial de Liege in Belgium and on the premises of Thales Alenia Space in Cannes. Two Consortia, comprising around 50 scientific institutes within Europe and the US, and funded by agencies from the participating countries, have developed the scientific instruments LFI and HFI, and delivered them to ESA (see also Appendix A). The Consortia are also responsible for scientific operation of their respective instruments and processing the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France of HFI (funded principally via CNES) and N. Mandolesi in Italy of LFI (funded principally via ASI). NASA has funded the US Planck Project, based at JPL and involving scientists at many US institutions, which has contributed very significantly to the efforts of these two Consortia. A Consortium of Danish institutes (DK-Planck), funded by the Danish National Research Council, has participated with ESA in a joint development of the two reflectors for the Planck telescope. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions.; Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 44 TC 196 Z9 197 U1 0 U2 40 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A1 DI 10.1051/0004-6361/200912983 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200002 ER PT J AU Basu, K Zhang, YY Sommer, MW Bender, AN Bertoldi, F Dobbs, M Eckmiller, H Halverson, NW Holzapfel, WL Horellou, C Jaritz, V Johansson, D Johnson, B Kennedy, J Kneissl, R Lanting, T Lee, AT Mehl, J Menten, KM Navarrete, FP Pacaud, F Reichardt, CL Reiprich, TH Richards, PL Schwan, D Westbrook, B AF Basu, K. Zhang, Y. -Y. Sommer, M. W. Bender, A. N. Bertoldi, F. Dobbs, M. Eckmiller, H. Halverson, N. W. Holzapfel, W. L. Horellou, C. Jaritz, V. Johansson, D. Johnson, B. Kennedy, J. Kneissl, R. Lanting, T. Lee, A. T. Mehl, J. Menten, K. M. Navarrete, F. P. Pacaud, F. Reichardt, C. L. Reiprich, T. H. Richards, P. L. Schwan, D. Westbrook, B. TI Non-parametric modeling of the intra-cluster gas using APEX-SZ bolometer imaging data SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: Abell 2204; cosmology: observations; cosmic microwave background; intergalactic medium; X-rays: galaxies: clusters ID X-RAY-CLUSTERS; ZELDOVICH EFFECT OBSERVATIONS; MASS-TEMPERATURE RELATION; RELAXED GALAXY CLUSTERS; SUNYAEV-ZELDOVICH; INTRACLUSTER MEDIUM; XMM-NEWTON; 3-DIMENSIONAL STRUCTURE; ENTROPY PROFILES; HUBBLE CONSTANT AB Aims. We aim to demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r(500) and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. Methods. We use publicly available X-ray spectroscopic-imaging data in the 0.7-2 keV energy band from the XMM-Newton observatory and our Sunyaev-Zel'dovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for a well-studied relaxed cluster, Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of recent Chandra observation is done with the latest calibration updates. We compare the results with that from an unrelaxed cluster, Abell 2163, to illustrate some differences between relaxed and merging systems. Results. Using the non-parametric modeling, we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure gas entropy profiles, both of which are done for the first time independently of X-ray spectroscopy using the SZE and X-ray imaging data. The gas entropy measurement in the central 100 kpc shows the usability of APEX-SZ data for inferring cluster dynamical states with this method. The contribution of the SZE systematic uncertainties in measuring T(e) at large radii is shown to be small compared to XMM-Newton and Chandra systematic spectroscopic errors. The total mass profile obtained using the hydrostatic equilibrium assumption is in agreement with the published X-ray and weak lensing results; the upper limit on M(200) derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis. C1 [Basu, K.; Sommer, M. W.; Menten, K. M.; Navarrete, F. P.] Max Planck Inst Radio Astron, D-53121 Bonn, Germany. [Basu, K.; Zhang, Y. -Y.; Sommer, M. W.; Bertoldi, F.; Eckmiller, H.; Jaritz, V.; Pacaud, F.; Reiprich, T. H.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Bender, A. N.; Halverson, N. W.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Dobbs, M.; Kennedy, J.] McGill Univ, Dept Phys, Montreal, PQ H2T 2Y8, Canada. [Holzapfel, W. L.; Johnson, B.; Lee, A. T.; Reichardt, C. L.; Richards, P. L.; Schwan, D.; Westbrook, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Horellou, C.; Johansson, D.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Kneissl, R.] Joint ALMA Observ, Santiago, Chile. [Lanting, T.] Cardiff Univ, Cardiff CF24 3YB, S Glam, Wales. [Lee, A. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mehl, J.] Univ Chicago, Chicago, IL 60637 USA. RP Basu, K (reprint author), Max Planck Inst Radio Astron, D-53121 Bonn, Germany. EM kbasu@mpifr-bonn.mpg.de RI Holzapfel, William/I-4836-2015; OI Reichardt, Christian/0000-0003-2226-9169 FU DFG [1177, RE 1462/2, TR33]; Transregio Programme [TR33]; National Science Foundation [AST-0138348]; ESA Member States; ESA Member States and the USA (NASA); Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR) [FKZ 50 OX 0001]; Max-Planck Society; BMBF/DLR [50OR0601]; Max Planck Research School (IMPRS) for Radio and Infrared Astronomy at the Universities of Bonn and Cologne FX We appreciate the comments from the anonymous referee which has improved the discussion on the future applicability of this method. We thank the APEX staff for their assistance during APEX-SZ observations. This work has been partially supported by the DFG Priority Programme 1177 and Transregio Programme TR33. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. APEX-SZ is funded by the National Science Foundation under Grant No. AST-0138348. The XMM-Newton project is an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The XMM-Newton project is supported by the Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR, FKZ 50 OX 0001) and the Max-Planck Society. K. B. acknowledges Hans Bohringer for discussion and reading the manuscript. Y.Y.Z. and T. H. R. acknowledges support by the DFG through Emmy Noether Research Grant RE 1462/2 and by the BMBF/DLR grant No. 50OR0601. M.N. and F.P.N. acknowledges support for this research through the International Max Planck Research School (IMPRS) for Radio and Infrared Astronomy at the Universities of Bonn and Cologne. NR 68 TC 20 Z9 20 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A29 DI 10.1051/0004-6361/200913334 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300029 ER PT J AU Jackson, AP Calder, AC Townsley, DM Chamulak, DA Brown, EF Timmes, FX AF Jackson, Aaron P. Calder, Alan C. Townsley, Dean M. Chamulak, David A. Brown, Edward F. Timmes, F. X. TI EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF DEFLAGRATION TO DETONATION DENSITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; WHITE-DWARF SUPERNOVAE; LIGHT CURVES; THERMONUCLEAR SUPERNOVAE; DELAYED DETONATION; EXPLOSION MODELS; TURBULENT FLAMES; LUMINOSITY; METALLICITY; SIMULATIONS AB We explore the effects of the deflagration to detonation transition (DDT) density on the production of (56)Ni in thermonuclear supernova (SN) explosions (Type la supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of 56Ni masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of (56)Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x 10(7) g cm(-3). We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 +/- 0.004 M(circle dot) for a 1 Z(circle dot) increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 +/- 0.004 M(circle dot) decrease in the (56)Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies. C1 [Jackson, Aaron P.; Calder, Alan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Calder, Alan C.] SUNY Stony Brook, New York Ctr Computat Sci, Stony Brook, NY 11794 USA. [Townsley, Dean M.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Chamulak, David A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chamulak, David A.; Brown, Edward F.; Timmes, F. X.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Brown, Edward F.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. RP Jackson, AP (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Calder, Alan/E-5348-2011; Brown, Edward/F-1721-2011; OI Brown, Edward/0000-0003-3806-5339 FU Department of Energy [DE-FG02-07ER41516, DE-FG02-08ER41570, DE-FG02-08ER41565, DE-FG02-87ER40317]; NASA [NNX09AD19G]; University of Arizona; NSF [PHY05-51164]; ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-98CH10886]; State of New York FX This work was supported by the Department of Energy through grants DE-FG02-07ER41516, DE-FG02-08ER41570, and DE-FG02-08ER41565, and by NASA through grant NNX09AD19G. A.C.C. also acknowledges support from the Department of Energy under grant DE-FG02-87ER40317. D.M.T. received support from the Bart J. Bok fellowship at the University of Arizona for part of this work. The authors acknowledge the hospitality of the Kavli Institute for Theoretical Physics, which is supported by the NSF under grant PHY05-51164, during the programs "Accretion and Explosion: the Astrophysics of Degenerate Stars" and "Stellar Death and Supernovae." The software used in this work was in part developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We thank Nathan Hearn for making his QuickFlash analysis tools publicly available at http://quickflash.sourceforge.net. We also thank the anonymous referee for a careful reading of the manuscript and constructive comments that improved this work. This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357 and utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. NR 65 TC 37 Z9 37 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 99 EP 113 DI 10.1088/0004-637X/720/1/99 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000009 ER PT J AU Leggett, SK Saumon, D Burningham, B Cushing, MC Marley, MS Pinfield, DJ AF Leggett, S. K. Saumon, D. Burningham, Ben Cushing, Michael C. Marley, M. S. Pinfield, D. J. TI PROPERTIES OF THE T8.5 DWARF WOLF 940 B SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: fundamental parameters; stars: individual (Wolf 940B) ID SPITZER-SPACE-TELESCOPE; STAR SPECTROSCOPIC SURVEY; EXOPLANET HOST STAR; DIGITAL SKY SURVEY; COOL BROWN DWARF; MID-T DWARFS; CHEMICAL-EQUILIBRIUM; PHYSICAL-PROPERTIES; BINARY-SYSTEM; GLIESE 570D AB We present 7.5-14.2 mu m low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry to produce the spectral energy distribution for the very low temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/L(circle dot) = -6.01 +/- 0.05 (the observed spectra make up 47% of the total flux). Evolutionary models are used with the luminosity to constrain the values of effective temperature (T(eff)) and surface gravity and hence mass and age for the T dwarf. We ensure that the spectral models used to determine the bolometric correction have T(eff) and gravity values consistent with the luminosity-implied values. We further restrict the allowed range of T(eff) and gravity using age constraints implied by the M dwarf primary and refine the physical properties of the T dwarf by comparison of the observed and modeled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within similar to 0.2 dex of solar, as more extreme values give poor fits to the data-lower metallicity produces a poor fit at lambda > 2 mu m, while higher metallicity produces a poor fit at lambda < 2 mu m. This is consistent with the independently derived value of [m/H] = +0.24 +/- 0.09 for the primary star, using the Johnson & Apps M(K): V - K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K(zz) of 10(4) to 10(6) cm(2) s(-1). We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s(-2)), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and Ha properties of the M dwarf primary. Gravity and temperature are correlated such that the lower gravity corresponds to the lower temperature and younger age for the system and the higher values to the higher temperature and older age. The mass of the T dwarf is 24 M(Jupiter) to 45 M(Jupiter) for the younger to older age limit. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burningham, Ben; Pinfield, D. J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Dept Astrophys, Pasadena, CA 91109 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627; Leggett, Sandy/0000-0002-3681-2989 FU NASA; Gemini Observatory FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Support for this work was also provided by the Spitzer Space Telescope Theoretical Research Program, through NASA. S.K.L.'s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. NR 55 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 252 EP 258 DI 10.1088/0004-637X/720/1/252 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000022 ER PT J AU Slane, P Castro, D Funk, S Uchiyama, Y Lemiere, A Gelfand, JD Lemoine-Goumard, M AF Slane, P. Castro, D. Funk, S. Uchiyama, Y. Lemiere, A. Gelfand, J. D. Lemoine-Goumard, M. TI FERMI DETECTION OF THE PULSAR WIND NEBULA HESS J1640-465 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (HESS J1640-465, FGL J1640.8-4634, 3EG J1639-4702, G338.3-0.0); ISM: supernova remnants; pulsars: general ID LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; SUPERNOVA REMNANT; RX J1713.7-3946; X-RAY; EVOLUTION; ACCELERATION; SPECTRUM; CATALOG; GALAXY AB We present observations of HESS J1640-465 with the Fermi-Large Area Telescope. The source is detected with high confidence as an emitter of high-energy gamma-rays. The spectrum lacks any evidence for the characteristic cutoff associated with emission from pulsars, indicating that the emission arises primarily from the pulsar wind nebula (PWN). Broadband modeling implies an evolved nebula with a low magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi emission exceeds predictions of the broadband model, and has a steeper spectrum, possibly resulting from a distinct excess of low energy electrons similar to what is inferred for both the Vela X and Crab PWNe. C1 [Slane, P.; Castro, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Castro, D.] Univ Simon Bolivar, Dept Fis, Valle De Sartenejas, Venezuela. [Funk, S.; Uchiyama, Y.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94025 USA. [Lemiere, A.] CNRS, IN2P3, Inst Phys Nucl, F-91400 Orsay, France. [Gelfand, J. D.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Lemoine-Goumard, M.] Univ Bordeaux, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan,UMR 5797, F-33175 Gradignan, France. RP Slane, P (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM slane@cfa.harvard.edu; dcastro@head.cfa.harvard.edu; funk@slac.stanford.edu; uchiyama@slac.stanford.edu RI Funk, Stefan/B-7629-2015; Gelfand, Joseph/F-1110-2015 OI Funk, Stefan/0000-0002-2012-0080; Gelfand, Joseph/0000-0003-4679-1058 FU NASA [NAS8-39073]; Fermi [NNX09AT68G]; NSF [AST-0702957]; INAF in Italy; CNES in France FX The work presented here was supported in part by NASA Contract NAS8-39073 (P.O.S.) and Fermi Grant NNX09AT68G. J.D.G. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0702957. P.O.S., S.F., and Y.U. are grateful to the KITP in Santa Barbara, where elements of the work presented here were first discussed during a KITP program. The authors thank Don Ellison, Luke Drury, Felix Aharonian, and David Smith for helpful discussions during the preparation of this paper.; The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 35 TC 33 Z9 33 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 266 EP 271 DI 10.1088/0004-637X/720/1/266 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000024 ER PT J AU Mancone, CL Gonzalez, AH Brodwin, M Stanford, SA Eisenhardt, PRM Stern, D Jones, C AF Mancone, Conor L. Gonzalez, Anthony H. Brodwin, Mark Stanford, Spencer A. Eisenhardt, Peter R. M. Stern, Daniel Jones, Christine TI THE FORMATION OF MASSIVE CLUSTER GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution galaxies: formation; galaxies: luminosity function, mass function ID IRAC SHALLOW SURVEY; STELLAR POPULATION SYNTHESIS; NEAR-INFRARED PROPERTIES; LUMINOSITY FUNCTION; RED SEQUENCE; STAR-FORMATION; EVOLUTION; SPITZER; 1ST; UNCERTAINTIES AB We present composite 3.6 and 4.5 mu m luminosity functions (LFs) for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey for 0.3 < z < 2. We compare the evolution of m* for these LFs to models for passively evolving stellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z less than or similar to 1.3), our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift z(f) = 2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainties of Delta z(f) = (+0.16)(-0.18) (model normalization), Delta z(f) = (+0.40)(-0.05) (a), and Delta z(f) = (+0.30)(-0.45) (choice of stellar population model). For a Salpeter-type IMF, the typical formation epoch is thus strongly constrained to be z similar to 2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum. At high redshifts (z greater than or similar to 1.3), we also witness a statistically significant (>5 sigma) disagreement between the measured LF and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch. C1 [Mancone, Conor L.; Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Brodwin, Mark; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, Spencer A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mancone, CL (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. EM cmaneone@astro.ufl.edu; anthony@astro.ufl.edu FU National Science Foundation [AST-0708490]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; NASA FX This paper is based upon work supported by the National Science Foundation under grant AST-0708490. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The work of P.R.M.E. and D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 40 TC 46 Z9 46 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 284 EP 298 DI 10.1088/0004-637X/720/1/284 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000026 ER PT J AU Chatterjee, S Ho, S Newman, JA Kosowsky, A AF Chatterjee, Suchetana Ho, Shirley Newman, Jeffrey A. Kosowsky, Arthur TI TENTATIVE DETECTION OF QUASAR FEEDBACK FROM WMAP AND SDSS CROSS-CORRELATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: active; submillimeter: general ID SLOAN-DIGITAL-SKY; MICROWAVE BACKGROUND ANISOTROPIES; X-RAY CAVITIES; GALAXY GROUPS; GALACTIC WINDS; AGN FEEDBACK; ZELDOVICH; CLUSTERS; PROBE; MAPS AB We perform a cross-correlation analysis of microwave data from the Wilkinson Microwave Anisotropy Probe and photometric quasars from the Sloan Digital Sky Survey, testing for the Sunyaev-Zeldovich (SZ) effect from quasars. A statistically significant (2.5 sigma) temperature decrement exists in the 41 GHz microwave band. A two-component fit to the cross-correlation spectrum incorporating both dust emission and SZ yields a best-fit y parameter of (7.0 +/- 3.4) x 10(-7). A similar cross-correlation analysis with the luminous red galaxy sample from Sloan gives a best-fit y parameter of (5.3 +/- 2.5) x 10(-7). We discuss the possible physical origin of these signals, which is likely a combination of SZ effects from quasars and galaxy clusters. Both the Planck Surveyor satellite and the current ground-based arcminute-resolution microwave experiments will detect this signal with a higher statistical significance. C1 [Chatterjee, Suchetana; Newman, Jeffrey A.; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Ho, Shirley] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ho, Shirley] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chatterjee, Suchetana] Yale Univ, Dept Astron, New Haven, CT 06520 USA. RP Chatterjee, S (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. FU National Science Foundation at University of Pittsburgh [AST-0408698, AST-0546035, AST-0807790]; Zaccheus Daniel Fellowship at University of Pittsburgh; Alfred P. Sloan Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; Andrew Mellon Fellowship at University of Pittsburgh; National Science Foundation; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX S.C. thanks David Spergel for thoughtful suggestions throughout this work, Neelima Sehgal and Zheng Zheng for helpful discussions, Grant Wilson for insights about the observed spectrum, and Valery Rashkov for providing his undergraduate thesis from Princeton University which contains a useful derivation of the Weiner filter. S.C. also thanks the Department of Astrophysical Sciences at Princeton University for hosting her visits to Princeton and Adam Solomon for helping with some of the analysis codes. We also thank the referee for providing valuable feedback of our work which helped in significant improvement of the draft. We acknowledge Craig Markwardt for usage of the MPFIT package, and the Legacy Archive for Microwave Background Data Analysis (LAMBDA) for providing the data products from the WMAP Science Team. This work was supported at the University of Pittsburgh by the National Science Foundation through grant AST-0408698 to the ACT project, and by grants AST-0546035 and AST-0807790. S.C. was partly funded by the Zaccheus Daniel Fellowship and the Andrew Mellon Fellowship at the University of Pittsburgh. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 72 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 299 EP 305 DI 10.1088/0004-637X/720/1/299 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000027 ER PT J AU Nordhaus, J Burrows, A Almgren, A Bell, J AF Nordhaus, J. Burrows, A. Almgren, A. Bell, J. TI DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; neutrinos; stars: interiors; supernovae: general ID ACCRETION-SHOCK INSTABILITY; EQUATION-OF-STATE; NUCLEAR-MATTER; RADIATION HYDRODYNAMICS; POSTBOUNCE EVOLUTION; DRIVEN CONVECTION; PROGENITOR STARS; MASSIVE STARS; SIMULATIONS; TRANSPORT AB We explore the dependence on spatial dimension of the viability of the neutrino heating mechanism of core-collapse supernova explosions. We find that the tendency to explode is a monotonically increasing function of dimension, with three dimensions (3D) requiring similar to 40%-50% lower driving neutrino luminosity than one dimension and similar to 15%-25% lower driving neutrino luminosity than two dimensions (2D). Moreover, we find that the delay to explosion for a given neutrino luminosity is always shorter in 3D than 2D, sometimes by many hundreds of milliseconds. The magnitude of this dimensional effect is much larger than the purported magnitude of a variety of other effects, such as nuclear burning, inelastic scattering, or general relativity, which are sometimes invoked to bridge the gap between the current ambiguous and uncertain theoretical situation and the fact of robust supernova explosions. Since real supernovae occur in three dimensions, our finding may be an important step toward unraveling one of the most problematic puzzles in stellar astrophysics. In addition, even though in 3D, we do see pre-explosion instabilities and blast asymmetries, unlike the situation in 2D, we do not see an obvious axially symmetric dipolar shock oscillation. Rather, the free energy available to power instabilities seems to be shared by more and more degrees of freedom as the dimension increases. Hence, the strong dipolar axisymmetry seen in 2D and previously identified as a fundamental characteristic of the shock hydrodynamics may not survive in 3D as a prominent feature. C1 [Nordhaus, J.; Burrows, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Almgren, A.; Bell, J.] Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Nordhaus, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM nordhaus@astro.princeton.edu; burrows@astro.princeton.edu; ASAlmgren@lbl.gov; JBBell@lbl.gov FU DOE [DE-FG02-08ER41544]; NSF [ND201387, PHY-0822648, OCI-0905046]; Louisiana State University [44592]; SciDAC program [DE-FC02-06ER41438]; Princeton Institute for Computational Science and Engineering (PICSciE); Princeton University Office of Information Technology; Office of Science of the US Department of Energy [DE-AC03-76SF00098] FX The authors acknowledge fruitful past collaborations with, conversations with, or input from Jeremiah Murphy, Christian Ott, Louis Howell, Rodrigo Fernandez, Manou Rantsiou, Tim Brandt, Dave Spiegel, Eli Livne, Luc Dessart, Todd Thompson, Rolf Walder, Stan Woosley, and Thomas Janka. They also thank Hank Childs and the VACET/VisIt Visualization team(s) for help with graphics and with developing multidimensional analysis tools. J.N. and A.B. are supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the DOE, under grant DE-FG02-08ER41544, the NSF under the subaward ND201387 to the Joint Institute for Nuclear Astrophysics (JINA, NSF PHY-0822648), and the NSF PetaApps program, under award OCI-0905046 via a subaward 44592 from Louisiana State University to Princeton University. Work at LBNL was supported in part by the SciDAC program under contract DE-FC02-06ER41438. The authors thank the members of the Center for Computational Sciences and Engineering (CCSE) at LBNL for their invaluable support for CASTRO. J.N. and A.B. employed computational resources provided by the TIGRESS high performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology; by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098; on the Kraken and Ranger supercomputers, hosted at NICS and TACC and provided by the NR 68 TC 148 Z9 149 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 694 EP 703 DI 10.1088/0004-637X/720/1/694 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000060 ER PT J AU McClelland, CM Garnavich, PM Galbany, L Miquel, R Foley, RJ Filippenko, AV Bassett, B Wheeler, JC Goobar, A Jha, SW Sako, M Frieman, JA Sollerman, J Vinko, J Schneider, DP AF McClelland, Colin M. Garnavich, Peter M. Galbany, Lluis Miquel, Ramon Foley, Ryan J. Filippenko, Alexei V. Bassett, Bruce Wheeler, J. Craig Goobar, Ariel Jha, Saurabh W. Sako, Masao Frieman, Joshua A. Sollerman, Jesper Vinko, Jozsef Schneider, Donald P. TI THE SUBLUMINOUS SUPERNOVA 2007qd: A MISSING LINK IN A FAMILY OF LOW-LUMINOSITY TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (SDSS J020932.73-005959.8); supernovae: general; supernovae: individual (SN 2007qd, SN 2008ha, SN 2002cx, SN 2005hk) ID DIGITAL SKY SURVEY; LIGHT-CURVE SHAPES; HUBBLE-SPACE-TELESCOPE; SN 2008HA; MODELS; CONSTANT; CONSTRAINTS; PROGENITOR; DISTANCE; SPECTRA AB We present multi-band photometry and multi-epoch spectroscopy of the peculiar Type Ia supernova (SN la) 2007qd, discovered by the SDSS-II Supernova Survey. It possesses physical properties intermediate to those of the peculiar SN 2002cx and the extremely low-luminosity SN 2008ha. Optical photometry indicates that it had an extraordinarily fast rise time of less than or similar to 10 days and a peak absolute B magnitude of -15.4 +/- 0.2 at most, making it one of the most subluminous SN la ever observed. Follow-up spectroscopy of SN 2007qd near maximum brightness unambiguously shows the presence of intermediate-mass elements which are likely caused by carbon/oxygen nuclear burning. Near maximum brightness, SN 2007qd had a photospheric velocity of only 2800 km s(-1), similar to that of SN 2008ha but about 4000 and 7000 km s(-1) less than that of SN 2002cx and normal SN la, respectively. We show that the peak luminosities of SN 2002cx like objects are highly correlated with both their light-curve stretch and photospheric velocities. Its strong apparent connection to other SN 2002cx like events suggests that SN 2007qd is also a pure deflagration of a white dwarf, although other mechanisms cannot be ruled out. It may be a critical link between SN 2008ha and the other members of the SN 2002cx like class of objects. C1 [McClelland, Colin M.; Garnavich, Peter M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Galbany, Lluis; Miquel, Ramon] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Miquel, Ramon] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Bassett, Bruce] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, McDonald Observ, Austin, TX 78712 USA. [Goobar, Ariel] Stockholm Univ, Dept Phys, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden. [Goobar, Ariel] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sollerman, Jesper] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Vinko, Jozsef] Univ Szeged, Dept Opt & Quantum Elect, Szeged, Hungary. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP McClelland, CM (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RI Galbany, Lluis/A-8963-2017; OI Galbany, Lluis/0000-0002-1296-6887; Bassett, Bruce/0000-0001-7700-1069; Sollerman, Jesper/0000-0003-1546-6615; Vinko, Jozsef/0000-0001-8764-7832; Miquel, Ramon/0000-0002-6610-4836 FU Alfred P. Sloan Foundation; National Science Foundation (NSF) [AST-0908886, AST-0847157]; U.S. Department of Energy (DOE); National Aeronautics and Space Administration (NASA); Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences; Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; W. M. Keck Foundation; University of Notre Dame; NASA/STScI [HST-GO-10893.01-A]; DOE [DE-FG02-08ER41563, DE-FG02-08ER41562] FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation (NSF), the U.S. Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England.; The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; it was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. We thank the Keck staff for their assistance.; We are grateful for the financial support of the University of Notre Dame, NASA/STScI Grant HST-GO-10893.01-A to C.M.M., the NSF, and the DOE, specifically NSF grant AST-0908886 and DOE grant DE-FG02-08ER41563 to A.V.F. Support for this research at Rutgers University was provided by DOE grant DE-FG02-08ER41562 and NSF award AST-0847157 to S.W.J. We thank Brian Hayden, Joe Gallagher, and Weidong Li for discussions and their help in the production of this paper, Jerod Parrent and the Online Supernova Spectrum Archive (SUSPECT), and David Jeffery along with the SUSPEND database. NR 97 TC 33 Z9 33 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 704 EP 716 DI 10.1088/0004-637X/720/1/704 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000061 ER PT J AU Li, ZY Wang, P Abel, T Nakamura, F AF Li, Zhi-Yun Wang, Peng Abel, Tom Nakamura, Fumitaka TI LOWERING THE CHARACTERISTIC MASS OF CLUSTER STARS BY MAGNETIC FIELDS AND OUTFLOW FEEDBACK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; ISM: magnetic fields; magnetohydrodynamics (MHD) ID MOLECULAR CLOUDS; SINK PARTICLES; FRAGMENTATION; CORES; TURBULENCE; SPECTRUM; CLUMPS; SIMULATIONS; EVOLUTION; COLLAPSE AB Magnetic fields are generally expected to increase the characteristic mass of stars formed in stellar clusters, because they tend to increase the effective Jeans mass. We test this expectation using adaptive mesh refinement magnetohydrodynamical simulations of cluster formation in turbulent magnetized clumps of molecular clouds, treating stars as accreting sink particles. We find that, contrary to the common expectation, a magnetic field of the strength in the observed range decreases, rather than increases, the characteristic stellar mass. It (1) reduces the number of intermediate-mass stars that are formed through direct turbulent compression, because sub-regions of the clump with masses comparable to those of stars are typically magnetically subcritical and cannot be compressed directly into collapse, and (2) increases the number of low-mass stars that are produced from the fragmentation of dense filaments. The filaments result from mass accumulation along the field lines. In order to become magnetically supercritical and fragment, the filament must accumulate a large enough column density (proportional to the field strength), which yields a high volume density (and thus a small thermal Jeans mass) that is conducive to forming low-mass stars. We find, in addition, that the characteristic stellar mass is reduced further by outflow feedback. The conclusion is that both magnetic fields and outflow feedback are important in shaping the stellar initial mass function. C1 [Li, Zhi-Yun] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Wang, Peng; Abel, Tom] Stanford Univ, SLAC, KIPAC, Menlo Pk, CA 94025 USA. [Wang, Peng; Abel, Tom] Stanford Univ, Dept Phys, Menlo Pk, CA 94025 USA. [Nakamura, Fumitaka] Natl Astron Observ, Tokyo 1818588, Japan. RP Li, ZY (reprint author), Univ Virginia, Dept Astron, POB 400325, Charlottesville, VA 22904 USA. EM zl4h@virginia.edu FU NASA [NNG06GJ33G, NNX10AH30G]; [20540228] FX This work was supported in part by NASA grants (NNG06GJ33G and NNX10AH30G) and a Grant-in-Aid for Scientific Research of Japan (20540228). NR 38 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 1 PY 2010 VL 720 IS 1 BP L26 EP L30 DI 10.1088/2041-8205/720/1/L26 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HW UT WOS:000281610100006 ER PT J AU Liu, LJS Phuleria, HC Webber, W Davey, M Lawson, DR Ireson, RG Zielinska, B Ondov, JM Weaver, CS Lapin, CA Easter, M Hesterberg, TW Larson, T AF Liu, L. -J. Sally Phuleria, Harish C. Webber, Whitney Davey, Mark Lawson, Douglas R. Ireson, Robert G. Zielinska, Barbara Ondov, John M. Weaver, Christopher S. Lapin, Charles A. Easter, Michael Hesterberg, Thomas W. Larson, Timothy TI Quantification of self pollution from two diesel school buses using three independent methods SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE School bus; Self pollution; PM(2.5); Dual tracers; Tailpipe; Crankcase emissions; Cabin air; Exposure ID PARTICULATE MATTER; EXPOSURE; TRACER; AETHALOMETER; COMMUTES AB We monitored two Seattle school buses to quantify the buses' self pollution using the dual tracers (DT), lead vehicle (LV), and chemical mass balance (CMB) methods. Each bus drove along a residential route simulating stops, with windows closed or open. Particulate matter (PM) and its constituents were monitored in the bus and from a LV. We collected source samples from the tailpipe and crankcase emissions using an on-board dilution tunnel. Concentrations of PM(1), ultrafine particle counts, elemental and organic carbon (EC/OC) were higher on the bus than the LV. The DT method estimated that the tailpipe and the crankcase emissions contributed 1.1 and 6.8 mu g m(-3) of PM(2.5) inside the bus, respectively, with significantly higher crankcase self pollution (SP) when windows were closed. Approximately two-thirds of in-cabin PM(2.5) originated from background sources. Using the LV approach, SP estimates from the EC and the active personal DataRAM (pDR) measurements correlated well with the DT estimates for tailpipe and crankcase emissions, respectively, although both measurements need further calibration for accurate quantification. CMB results overestimated SP from the DT method but confirmed crankcase emissions as the major SP source. We confirmed buses' SP using three independent methods and quantified crankcase emissions as the dominant contributor. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liu, L. -J. Sally; Phuleria, Harish C.] Swiss Trop & Publ Hlth Inst, Basel, Switzerland. [Liu, L. -J. Sally; Phuleria, Harish C.] Univ Basel, Basel, Switzerland. [Liu, L. -J. Sally; Webber, Whitney; Davey, Mark] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA. [Lawson, Douglas R.] Natl Renewable Energy Lab, Golden, CO USA. [Ireson, Robert G.] Air Qual Management Consulting, Greenbrae, CA USA. [Zielinska, Barbara] Univ Nevada, Desert Res Inst, Div Atmospher Sci, Reno, NV 89506 USA. [Ondov, John M.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Weaver, Christopher S.] Engine Fuel & Emiss Engn Inc, Rancho Cordova, CA USA. [Lapin, Charles A.] Lapin & Associates, Glendale, CA USA. [Easter, Michael] Calif EnSIGHT, Walnut Creek, CA USA. [Hesterberg, Thomas W.] Int Truck & Engine Corp, Warrenville, IL USA. [Larson, Timothy] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. RP Liu, LJS (reprint author), Swiss Trop & Publ Hlth Inst, Socinstr 57, Basel, Switzerland. EM sally.liu@unibas.ch FU National Institute of Environmental Health Sciences; International Truck and Engine Corporation with the University of Washington; U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies through the National Renewable Energy Laboratory FX This study was partially sponsored by the National Institute of Environmental Health Sciences, a gift fund from the International Truck and Engine Corporation with the University of Washington, and the U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies through the National Renewable Energy Laboratory. We thank the technical supports from David Anderson of the Seattle School District Transportation Department, First Student, Inc., the Puget Sound Clean Air Agency, and Bruce Hill of Clean Air task Force. NR 29 TC 9 Z9 9 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2010 VL 44 IS 28 BP 3422 EP 3431 DI 10.1016/j.atmosenv.2010.06.005 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 638JX UT WOS:000280891800010 PM 20694046 ER PT J AU Wang, LT Jang, C Zhang, Y Wang, K Zhang, QA Streets, D Fu, J Lei, Y Schreifels, J He, KB Hao, JM Lam, YF Lin, J Meskhidze, N Voorhees, S Evarts, D Phillips, S AF Wang, Litao Jang, Carey Zhang, Yang Wang, Kai Zhang, Qiang Streets, David Fu, Joshua Lei, Yu Schreifels, Jeremy He, Kebin Hao, Jiming Lam, Yun-Fat Lin, Jerry Meskhidze, Nicholas Voorhees, Scott Evarts, Dale Phillips, Sharon TI Assessment of air quality benefits from national air pollution control policies in China. Part I: Background, emission scenarios and evaluation of meteorological predictions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air pollution in China; Air quality modeling; Emission control; MM5/CMAQ; 11th FYP ID RIVER DELTA REGION; CMAQ MODELING SYSTEM; MM5 MESOSCALE MODEL; TROPOSPHERIC NO2; EAST-ASIA; TRACE-P; RESOLUTION; INVENTORY; MM5-CMAQ; EPISODE AB Under the 11th Five Year Plan (FYP, 2006-2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011-2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios - the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario-were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Litao; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Wang, Litao] Hebei Univ Engn, Dept Environm Engn, Handan 056038, Hebei, Peoples R China. [Jang, Carey; Voorhees, Scott; Evarts, Dale; Phillips, Sharon] US EPA, Res Triangle Pk, NC 27711 USA. [Zhang, Yang; Wang, Kai; Meskhidze, Nicholas] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. [Zhang, Qiang; Streets, David] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Fu, Joshua; Lam, Yun-Fat] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Schreifels, Jeremy] US EPA, Washington, DC 20460 USA. [Lin, Jerry] Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. RP Hao, JM (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM hjm-den@tsinghua.edu.cn RI Schreifels, Jeremy/F-6505-2011; Zhang, Qiang/D-9034-2012; Lei, Yu/G-6247-2013; LAM, Yun Fat/K-7287-2015; lei, yu/D-3274-2016; Wang, Kai/D-4262-2013; Lin, Che-Jen/K-1808-2013; OI Schreifels, Jeremy/0000-0002-5830-3755; LAM, Yun Fat/0000-0002-5917-0907; Wang, Kai/0000-0002-2375-5989; Lin, Che-Jen/0000-0001-5990-3093; Streets, David/0000-0002-0223-1350 FU U.S. EPA/Office of Air Quality Planning & Standards at North Carolina State University [4-321-0210288]; MEP at Tsinghua University, China FX This study was sponsored by U.S. EPA/Office of Air Quality Planning & Standards via contract #4-321-0210288 at North Carolina State University and by MEP at Tsinghua University, China. Thanks are due to the U.S. EPA for its technical support in CMAQ modeling. NR 65 TC 28 Z9 31 U1 3 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2010 VL 44 IS 28 BP 3442 EP 3448 DI 10.1016/j.atmosenv.2010.05.051 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 638JX UT WOS:000280891800012 ER PT J AU Wang, LT Jang, C Zhang, Y Wang, K Zhang, QA Streets, D Fu, J Lei, Y Schreifels, J He, KB Hao, JM Lam, YF Lin, J Meskhidze, N Voorhees, S Evarts, D Phillips, S AF Wang, Litao Jang, Carey Zhang, Yang Wang, Kai Zhang, Qiang Streets, David Fu, Joshua Lei, Yu Schreifels, Jeremy He, Kebin Hao, Jiming Lam, Yun-Fat Lin, Jerry Meskhidze, Nicholas Voorhees, Scott Evarts, Dale Phillips, Sharon TI Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air pollution in China; Air quality modeling; Emission control; MM5/CMAQ; 11th FYP ID AEROSOL OPTICAL DEPTH; EASTERN CHINA; OZONE; MODIS; PM2.5; SUMMERTIME; PRODUCTS; NOX AB Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 mu m) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3-15 mu g m(-3) (4-25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2-14 mu g m(-3) (3-12%). In addition, the number of ozone (O-3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O-3 concentrations in the summer reduced by 8-30 ppb. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Litao; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Wang, Litao] Hebei Univ Engn, Dept Environm Engn, Handan 056038, Hebei, Peoples R China. [Jang, Carey; Voorhees, Scott; Evarts, Dale; Phillips, Sharon] US EPA, Res Triangle Pk, NC 27711 USA. [Zhang, Yang; Wang, Kai; Meskhidze, Nicholas] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. [Zhang, Qiang; Streets, David] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Fu, Joshua; Lam, Yun-Fat] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Schreifels, Jeremy] US EPA, Washington, DC 20460 USA. [Lin, Jerry] Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. RP Hao, JM (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM hjm-den@tsinghua.edu.cn RI Schreifels, Jeremy/F-6505-2011; Zhang, Qiang/D-9034-2012; Lei, Yu/G-6247-2013; LAM, Yun Fat/K-7287-2015; lei, yu/D-3274-2016; Wang, Kai/D-4262-2013; Lin, Che-Jen/K-1808-2013; OI Schreifels, Jeremy/0000-0002-5830-3755; LAM, Yun Fat/0000-0002-5917-0907; Wang, Kai/0000-0002-2375-5989; Lin, Che-Jen/0000-0001-5990-3093; Streets, David/0000-0002-0223-1350 FU U.S. EPA/Office of Air Quality Planning & Standards at North Carolina State University [4-321-0210288]; MEP at Tsinghua University, China FX This study was sponsored by U.S. EPA/Office of Air Quality Planning & Standards via contract #4-321-0210288 at North Carolina State University and by MEP at Tsinghua University, China. Thanks are due to the U.S. EPA for its technical support in CMAQ modeling. NR 23 TC 35 Z9 45 U1 2 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2010 VL 44 IS 28 BP 3449 EP 3457 DI 10.1016/j.atmosenv.2010.05.058 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 638JX UT WOS:000280891800013 ER PT J AU Liu, XH Zhang, Y Xing, J Zhang, QA Wang, K Streets, DG Jang, C Wang, WX Hao, JM AF Liu, Xiao-Huan Zhang, Yang Xing, Jia Zhang, Qiang Wang, Kai Streets, David G. Jang, Carey Wang, Wen-Xing Hao, Ji-Ming TI Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE CMAQ; Process analysis; Indicators for O(3) and PM(2.5) chemistry; China ID RADICAL PROPAGATION EFFICIENCY; INDICATORS; HYDROCARBONS; IMPACTS; MODEL; AREA AB Following model evaluation in part I, this part II paper focuses on the process analysis and chemical regime analysis for the formation of ozone (O(3)) and particulate matter with aerodynamic diameter less than or equal to 10 mu m (PM(10)) in China. The process analysis results show that horizontal transport is the main contributor to the accumulation of O(3) in Jan., Apr., and Oct., and gas-phase chemistry and vertical transport contribute to the production and accumulation of O(3) in Jul. Removal pathways of O(3) include vertical and horizontal transport, gas-phase chemistry, and cloud processes, depending on locations and seasons. PM(10) is mainly produced by primary emissions and aerosol processes and removed by horizontal transport. Cloud processes could either decrease or increase PM(10) concentrations, depending on locations and seasons. Among all indicators examined, the ratio of P(HNO3)/P(H2O2) provides the most robust indicator for O(3) chemistry, indicating a VOC-limited O(3) chemistry over most of the eastern China in Jan., NO(x)-limited in Jul., and either VOC- or NO(x)-limited in Apr. and Oct. O(3) chemistry is NO(x)-limited in most central and western China and VOC-limited in major cities throughout the year. The adjusted gas ratio. AdjGR, indicates that PM formation in the eastern China is most sensitive to the emissions of SO(2) and may be more sensitive to emission reductions in NO(x) than in NH(3). These results are fairly consistent with the responses of O(3) and PM(2.5) to the reductions of their precursor emissions predicted from sensitivity simulations. A 50% reduction of NO(x) or AVOC emissions leads to a reduction of O(3) over the eastern China. Unlike the reduction of emissions of SO(2), NO(x), and NH(3) that leads to a decrease in PM(10), a 50% reduction of AVOC emissions increases PM(10) levels. Such results indicate the complexity of O(3) and PM chemistry and a need for an integrated, region-specific emission control strategy with seasonal variations to effectively control both O(3) and PM(2.5) pollution in China. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Yang] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. [Liu, Xiao-Huan; Zhang, Yang; Wang, Wen-Xing] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Xing, Jia; Hao, Ji-Ming] Tsinghua Univ, Beijing 100084, Peoples R China. [Zhang, Qiang; Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Jang, Carey] US EPA, Res Triangle Pk, NC 27711 USA. RP Zhang, Y (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Campus Box 8208, Raleigh, NC 27695 USA. EM yang_zhang@ncsu.edu RI Zhang, Qiang/D-9034-2012; xing, jia/O-1784-2014; Wang, Kai/D-4262-2013; OI Wang, Kai/0000-0002-2375-5989; Streets, David/0000-0002-0223-1350 FU U. S. NSF [Atm-0348819]; Shandong University in China; China Scholarship Council at Shandong University in China; U.S. EPA at ANL FX The authors thank Ping Liu at North Carolina State University, U. S. for her help in setting up process analysis based on the CB05 mechanism in CMAQ. This work was funded by the U. S. NSF Career Award, No. Atm-0348819 and Shandong University in China. The meteorological simulations were funded by China Scholarship Council at Shandong University in China and the U.S. NSF Career Award No. Atm-0348819 at NCSU. The emissions used for model simulations were funded by the U.S. EPA at ANL. NR 27 TC 48 Z9 56 U1 10 U2 87 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2010 VL 44 IS 30 BP 3719 EP 3727 DI 10.1016/j.atmosenv.2010.03.036 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 662YU UT WOS:000282851000013 ER PT J AU Romer, B Enkel, T Kronenberg, G Henn, FA Gass, P Kempermann, G Vollmayr, B AF Roemer, B. Enkel, T. Kronenberg, G. Henn, F. A. Gass, P. Kempermann, G. Vollmayr, B. TI INCREASED ADULT HIPPOCAMPAL NEUROGENESIS AND PERSISTENT HIPPOCAMPUS DEPENDENT FEAR MEMORY IN A GENETIC ANIMAL MODEL FOR DEPRESSION SO BEHAVIOURAL PHARMACOLOGY LA English DT Meeting Abstract CT Meeting on Drugs, Psychiatric Disorders and Neurogenesis CY SEP 03-05, 2010 CL Tours, FRANCE C1 [Roemer, B.; Enkel, T.; Gass, P.; Vollmayr, B.] Univ Heidelberg, Dept Psychiat & Psychotherapy, Cent Inst Mental Hlth Mannheim, D-6800 Mannheim, Germany. [Enkel, T.] Univ Heidelberg, Dept Mol Biol, D-6800 Mannheim, Germany. [Kronenberg, G.] Charite, Dept Psychiat, D-13353 Berlin, Germany. [Kempermann, G.] CRTD Ctr Regenerat Therapies Dresden, Dresden, Germany. [Kempermann, G.] German Ctr Neurodegenerat Disorders DZNE Dresden, Dresden, Germany. [Henn, F. A.] Brookhaven Natl Lab, Long Isl City, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0955-8810 J9 BEHAV PHARMACOL JI Behav. Pharmacol. PD SEP PY 2010 VL 21 IS 5-6 BP 588 EP 588 PG 1 WC Behavioral Sciences; Neurosciences; Pharmacology & Pharmacy SC Behavioral Sciences; Neurosciences & Neurology; Pharmacology & Pharmacy GA 641IS UT WOS:000281119000054 ER PT J AU Ponomarenko, NS Poluektov, OG Bylina, EJ Norris, JR AF Ponomarenko, N. S. Poluektov, O. G. Bylina, E. J. Norris, J. R. TI Electronic structure of the primary electron donor of Blastochloris viridis heterodimer mutants: High-field EPR study SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Blastochloris viridis; Heterodimer mutant; High-field EPR; Triplet state; Heterodimer; Photosynthetic reaction center; Cytochrome; Electron transfer ID PHOTOSYNTHETIC REACTION-CENTER; PRIMARY CHARGE SEPARATION; RHODOBACTER-SPHAEROIDES R-26; BACTERIOCHLOROPHYLL-BACTERIOPHEOPHYTIN DIMER; BACTERIUM RHODOPSEUDOMONAS-VIRIDIS; REACTION CENTERS; PARAMAGNETIC-RESONANCE; CYTOCHROME SUBUNIT; SPECIAL PAIR; TETRAHEME CYTOCHROME AB High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed triplet state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D(+) couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors. Published by Elsevier B.V. C1 [Poluektov, O. G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ponomarenko, N. S.; Bylina, E. J.; Norris, J. R.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Poluektov, OG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Oleg@anl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DEFG02-96ER14675, DE-AC02-06CH11357] FX N.S.P. would like to thank Dr. Richard Baxter for expert assistance in employing molecular structure visualization. The help of Dr. S. V. Pachtchenko in the simulation of HF EPR spectra is greatly appreciated. We gratefully acknowledge L M. Rantala and L M. Utschig for editing the manuscript. Work at University of Chicago was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEFG02-96ER14675. Work at ANL was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357. NR 89 TC 6 Z9 6 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD SEP PY 2010 VL 1797 IS 8 BP 1617 EP 1626 DI 10.1016/j.bbabio.2010.06.002 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 636OX UT WOS:000280748600005 PM 20542012 ER PT J AU Buchko, GW Tarasevich, BJ Roberts, J Snead, ML Shaw, WJ AF Buchko, Garry W. Tarasevich, Barbara J. Roberts, Jacky Snead, Malcolm L. Shaw, Wendy J. TI A solution NMR investigation into the murine amelogenin splice-variant LRAP (Leucine-Rich Amelogenin Protein) SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Article DE LRAP; Intrinsic disorder; Nanosphere self-assembly; Amelogenesis; Enamel; NMR spectroscopy; Dynamic light scattering; Biomineralization; Cell signaling ID DYNAMIC LIGHT-SCATTERING; ATOMIC-FORCE MICROSCOPY; RECOMBINANT AMELOGENIN; RESONANCE ASSIGNMENTS; PORCINE AMELOGENIN; ESCHERICHIA-COLI; ENAMEL FORMATION; MATRIX PROTEINS; SECRETORY-STAGE; STATE NMR AB Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H) M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp (H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12* and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein. (C) 2010 Elsevier By. All rights reserved. C1 [Tarasevich, Barbara J.; Roberts, Jacky; Shaw, Wendy J.] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Snead, Malcolm L.] Univ So Calif, Ctr Craniofacial Mol Biol, Los Angeles, CA 90033 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM Wendy.shaw@pnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIH-NIDCR [DE-015347, DE06988]; Laboratory Directed Research Development (LDRD); U.S. DOE FX This research was supported by NIH-NIDCR Grant DE-015347, DE06988 (MIS) and internal Laboratory Directed Research Development (LDRD) funds. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy, and at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE Biological and Environmental Research program. NR 51 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD SEP PY 2010 VL 1804 IS 9 BP 1768 EP 1774 DI 10.1016/j.bbapap.2010.03.006 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 639LR UT WOS:000280976800009 PM 20304108 ER PT J AU Zeng, YN Saar, BG Friedrich, MG Chen, F Liu, YS Dixon, RA Himmel, ME Xie, XS Ding, SY AF Zeng, Yining Saar, Brian G. Friedrich, Marcel G. Chen, Fang Liu, Yu-San Dixon, Richard A. Himmel, Michael E. Xie, X. Sunney Ding, Shi-You TI Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy SO BIOENERGY RESEARCH LA English DT Article DE Lignin; Chemical image; Coherent anti-Stokes Raman scattering (CARS); Lignin-downregulated alfalfa ID HIGH-SENSITIVITY; CELL-WALLS; BIOMASS; LIGNIFICATION; PLANTS AB Targeted lignin modification in bioenergy crops could potentially improve conversion efficiency of lignocellulosic biomass to biofuels. To better assess the impact of lignin modification on overall cell wall structure, wild-type and lignin-downregulated alfalfa lines were imaged using coherent anti-Stokes Raman scattering (CARS) microscopy. The 1,600-cm(-1) Raman mode was used in CARS imaging to specifically represent the lignin signal in the plant cell walls. The intensities of the CARS signal follow the general trend of lignin contents in cell walls from both wild-type and lignin-downregulated plants. In the downregulated lines, the overall reduction of lignin content agreed with the previously reported chemical composition. However, greater reduction of lignin content in cell corners was observed by CARS imaging, which could account for the enhanced susceptibility to chemical and enzymatic hydrolysis observed previously. C1 [Zeng, Yining; Liu, Yu-San; Himmel, Michael E.; Ding, Shi-You] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Saar, Brian G.; Friedrich, Marcel G.; Xie, X. Sunney] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Zeng, Yining; Chen, Fang; Liu, Yu-San; Dixon, Richard A.; Himmel, Michael E.; Ding, Shi-You] Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN USA. RP Ding, SY (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM xie@chemistry.harvard.edu; Shi.you.Ding@nrel.gov RI Ding, Shi-You/O-1209-2013 FU [DE-FG02-07ER64500] FX The authors thank Gary R. Holtom from Harvard University for his help and valuable discussion on CARS setup. The authors gratefully acknowledge the US Department of Energy, the Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center, for the work on CARS imaging and analysis, and grant DE-FG02-07ER64500 for support to develop the CARS microscope. NR 19 TC 30 Z9 31 U1 1 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2010 VL 3 IS 3 BP 272 EP 277 DI 10.1007/s12155-010-9079-1 PG 6 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 637HJ UT WOS:000280807800006 ER PT J AU Srivastava, AC Palanichelvam, K Ma, JY Steele, J Blancaflor, EB Tang, YH AF Srivastava, Avinash C. Palanichelvam, Karuppaiah Ma, Junying Steele, Jarrod Blancaflor, Elison B. Tang, Yuhong TI Collection and Analysis of Expressed Sequence Tags Derived from Laser Capture Microdissected Switchgrass (Panicum virgatum L. Alamo) Vascular Tissues SO BIOENERGY RESEARCH LA English DT Article DE Expressed sequence tags; Laser-capture microdissection; Lignin; Secondary cell wall; Switchgrass; Vascular tissue ID TRANSCRIPTION FACTORS; LIGNIN BIOSYNTHESIS; CELLULOSIC ETHANOL; BIOFUEL PRODUCTION; GENE-EXPRESSION; DIRIGENT SITES; CELL-WALLS; ARABIDOPSIS; PEROXIDASE; IDENTIFICATION AB Switchgrass is a perennial C4 grass that thrives in a wide range of North American habitats and is an emerging crop for the production of lignocellulosic biofuels. Lignin is an integral component of secondary plant cell walls that provides structural rigidity to the cell wall but it interferes with the conversion of cellulose to fermentable sugars by preventing chemical access to cellulose. Thus, one strategy for improving production of cellulosic ethanol is the down-regulation of lignin in plants. To achieve this goal, it is important to understand the molecular processes involved in vascular tissue development, lignification and secondary wall synthesis. Since active lignification occurs in the vascular system of the plant, we refined a protocol for isolating vascular tissues using laser-capture microdissection (LCM) in an effort to identify transcripts of switchgrass involved in lignification and secondary cell wall synthesis. ESTs (5,734) were sequenced from the cDNA libraries derived from laser microdissected vascular tissues. These Sanger sequences converged into 2,766 unigenes with an average length of 652 bp. Gene ontology of the unigenes indicated that 11% of the sequences were lignin and cell wall related. Several transcription factors involved in lignin and secondary cell wall synthesis and sugar- or vesicle-mediated transporters were also present in this EST data set. In situ hybridization of seven representative genes confirmed the preferential expression of five genes in the vascular tissues. Comparison of our switchgrass vascular tissue derived ESTs with that of other plant species validated our LCM approach. Furthermore, our switchgrass vascular tissue ESTs revealed additional lignin and cell wall related genes that were not present in other existing switchgrass EST collections. Inventory of the switchgrass vascular tissue ESTs presented here provides an important genomic resource for mining genes to reduce recalcitrance in this important bioenergy crop. C1 [Srivastava, Avinash C.; Palanichelvam, Karuppaiah; Ma, Junying; Steele, Jarrod; Blancaflor, Elison B.; Tang, Yuhong] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Srivastava, Avinash C.; Ma, Junying; Blancaflor, Elison B.; Tang, Yuhong] US DOE, BioEnergy Sci Ctr BESC, Ardmore, OK USA. RP Tang, YH (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM ytang@noble.org FU Samuel Roberts Noble Foundation; Office of Biological and Environmental Research in the DOE Office of Science US Department of Energy FX We thank Drs Zengyu Wang and Jiyi Zhang for critical reading of the manuscript, and Dr. Ji He, for assistance with the EST data analysis. The research described in this paper was carried out as part of the BESC (The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science US Department of Energy) and also funded by the Samuel Roberts Noble Foundation. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily reflect those of the United States Government or any agency thereof. NR 39 TC 11 Z9 11 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2010 VL 3 IS 3 BP 278 EP 294 DI 10.1007/s12155-010-9080-8 PG 17 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 637HJ UT WOS:000280807800007 ER PT J AU Volkow, ND Wang, GJ Fowler, JS Tomasi, D Telang, F Baler, R AF Volkow, Nora D. Wang, Gene-Jack Fowler, Joanna S. Tomasi, Dardo Telang, Frank Baler, Ruben TI Addiction: Decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit SO BIOESSAYS LA English DT Review DE addiction; brain disease; dopamine; reward circuit ID STRIATAL DOPAMINE RELEASE; NUCLEUS-ACCUMBENS; COCAINE ABUSERS; DRUG-ADDICTION; METHYLPHENIDATE; HUMANS; RECEPTORS; OCCUPANCY; SYSTEMS; RATS AB Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction. C1 [Volkow, Nora D.; Baler, Ruben] Natl Inst Drug Abuse, NIH, Bethesda, MD USA. [Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo; Telang, Frank] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, NIH, Bethesda, MD USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015 FU Intramural NIH HHS [ZIA AA000550-06] NR 54 TC 127 Z9 131 U1 3 U2 27 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0265-9247 J9 BIOESSAYS JI Bioessays PD SEP PY 2010 VL 32 IS 9 BP 748 EP 755 DI 10.1002/bies.201000042 PG 8 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 647NK UT WOS:000281625000005 PM 20730946 ER PT J AU Inman, D Nagle, N Jacobson, J Searcy, E Ray, AE AF Inman, Daniel Nagle, Nick Jacobson, Jacob Searcy, Erin Ray, Allison E. TI Feedstock handling and processing effects on biochemical conversion to biofuels SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE biochemical conversion; pre-processing; biomass composition; feedstock logistics ID CORN STOVER FRACTIONS; CROP RESIDUES; ENZYMATIC-HYDROLYSIS; LIME PRETREATMENT; SWITCHGRASS; BIOMASS; HARVEST; STORAGE; ENERGY; CARBON AB Abating the dependence of the United States on foreign oil by reducing oil consumption and increasing biofuels usage will have far-reaching global effects. These include reduced greenhouse gas emissions and an increased demand for biofuel feedstocks. To support this increased demand, cellulosic feedstock production and conversion to biofuels (e. g. ethanol, butanol) is being aggressively researched. Thus far, research has primarily focused on optimizing feedstock production and ethanol conversion, with less attention given to the feedstock supply chain required to meet cost, quality, and quantity goals. This supply chain comprises a series of unit operations from feedstock harvest to feeding the conversion process. Our objectives in this review are (i) to summarize the peer-reviewed literature on harvest-to-reactor throat variables affecting feedstock composition and conversion to ethanol; (ii) to identify knowledge gaps; and (iii) to recommend future steps. (C) 2010 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Inman, Daniel] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Jacobson, Jacob; Searcy, Erin; Ray, Allison E.] Idaho Natl Lab, Idaho Falls, ID USA. RP Inman, D (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM Daniel.Inman@nrel.gov NR 62 TC 8 Z9 8 U1 1 U2 19 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2010 VL 4 IS 5 BP 562 EP 573 DI 10.1002/bbb.241 PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 660TH UT WOS:000282667100016 ER PT J AU Wang, XJ Messman, J Mays, JW Baskaran, D AF Wang, Xiaojun Messman, Jamie Mays, Jimmy W. Baskaran, Durairaj TI Polypeptide Grafted Hyaluronan: Synthesis and Characterization SO BIOMACROMOLECULES LA English DT Article ID MICHAEL ADDITION POLYMERIZATIONS; ATOMIC-FORCE MICROSCOPY; CHEMICAL-MODIFICATION; CIRCULAR-DICHROISM; ACID HYDROGELS; BIOMATERIALS; CONFORMATION; DIACRYLATES; DERIVATIVES; SCAFFOLDS AB Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. (1)H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael addition at high [PLeu-NH(2)]/[acrylate](TBAHA) ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, (1)H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a beta-sheet conformation for aggregates of poly(L-leucine). C1 [Wang, Xiaojun; Mays, Jimmy W.; Baskaran, Durairaj] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Messman, Jamie; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mays, JW (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM jimmymays@utk.edu; baskaran@utk.edu RI Wang, Xiaojun/E-5510-2012; Durairaj, Baskaran/C-3692-2009 OI Durairaj, Baskaran/0000-0002-6886-5604 FU National Institutes of Health [5R21EB4947]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was partially supported by a grant from the National Institutes of Health (grant number 5R21EB4947). The work at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We appreciate characterization help from Tom Malmgren in the Polymer Characterization Laboratory at the University of Tennessee, Knoxville. We thank Professor N. Hadjichristidis for the end-functionalized poly(L-leucine). NR 51 TC 7 Z9 7 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD SEP PY 2010 VL 11 IS 9 BP 2313 EP 2320 DI 10.1021/bm1004146 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 647PB UT WOS:000281629600017 PM 20690642 ER PT J AU Pingali, SV Urban, VS Heller, WT McGaughey, J O'Neill, H Foston, M Myles, DA Ragauskas, A Evans, BR AF Pingali, Sai Venkatesh Urban, Volker S. Heller, William T. McGaughey, Joseph O'Neill, Hugh Foston, Marcus Myles, Dean A. Ragauskas, Arthur Evans, Barbara R. TI Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass SO BIOMACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; NATIVE CELLULOSE; CORN STOVER; ENZYMATIC SACCHARIFICATION; CRYSTAL-STRUCTURE; HIGH-TEMPERATURES; LIGNIN AB The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to submicrometer length scales resulting from the industrially relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of R-g similar to 135 angstrom lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 angstrom, and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the breakdown process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion. C1 [Pingali, Sai Venkatesh; Urban, Volker S.; Heller, William T.; O'Neill, Hugh; Myles, Dean A.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [McGaughey, Joseph; Evans, Barbara R.] Oak Ridge Natl Lab, Mol Biosci & Biotechnol Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. [Foston, Marcus; Ragauskas, Arthur] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. RP Pingali, SV (reprint author), Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. EM pingalis@ornl.gov; urbanvs@ornl.gov; evansb@ornl.gov RI Urban, Volker/N-5361-2015; myles, dean/D-5860-2016; OI Urban, Volker/0000-0002-7962-3408; myles, dean/0000-0002-7693-4964; Pingali, Sai Venkatesh/0000-0001-7961-4176; O'Neill, Hugh/0000-0003-2966-5527; Ragauskas, Arthur/0000-0002-3536-554X FU Office of Biological and Environmental Research, U.S. Department of Energy [FWP ERKP752, DE-AC05-00OR22725]; Oak Ridge National Laboratory [S07-019] FX Switchgrass samples were obtained through a collaborative agreement with the Bioenergy Science Center (BESC) located at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Paul A. Menchhofer and Kimberly Shawn Reeves are acknowledged for their assistance with generating SEM images. This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, U.S. Department of Energy, under FWP ERKP752. Preliminary research was funded by an award (S07-019) from the Seed Money Fund of the Laboratory Directed Research and Development Fund, Oak Ridge National Laboratory. This research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) was supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725, NR 63 TC 73 Z9 73 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD SEP PY 2010 VL 11 IS 9 BP 2329 EP 2335 DI 10.1021/bm100455h PG 7 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 647PB UT WOS:000281629600019 PM 20726544 ER PT J AU Humbird, D Mohagheghi, A Dowe, N Schell, DJ AF Humbird, David Mohagheghi, Ali Dowe, Nancy Schell, Daniel J. TI Economic Impact of Total Solids Loading on Enzymatic Hydrolysis of Dilute Acid Pretreated Corn Stover SO BIOTECHNOLOGY PROGRESS LA English DT Article DE ethanol; enzymatic hydrolysis; cost; fermentation ID LIGNOCELLULOSE; FERMENTATION; BIOMASS; ETHANOL AB In process integration studies of the biomass-to-ethanol conversion process. it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1245-1251, 2010 C1 [Humbird, David; Mohagheghi, Ali; Dowe, Nancy; Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Humbird, D (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM david.humbird@nrel.gov FU Department of Energy's Office the Biomass Program FX The work was funded by the Department of Energy's Office the Biomass Program. The authors wish to thank Jody Farmer, Bob Lyons, Wes Hjelm and Bill Bray of NREL for producing the pretreated corn stover. NR 16 TC 38 Z9 38 U1 5 U2 28 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD SEP-OCT PY 2010 VL 26 IS 5 BP 1245 EP 1251 DI 10.1002/btpr.441 PG 7 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 671EC UT WOS:000283482100006 PM 20945482 ER PT J AU Ritchie, RO Koester, KJ Ionova, S Yao, W Lane, NE Ager, JW AF Ritchie, R. O. Koester, K. J. Ionova, S. Yao, W. Lane, N. E. Ager, J. W., III TI Measurement of the toughness of bone: A tutorial with special reference to small animal studies (vol 43, pg 798, 2008) SO BONE LA English DT Correction C1 [Ritchie, R. O.; Koester, K. J.; Ionova, S.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ritchie, R. O.; Koester, K. J.; Ionova, S.; Ager, J. W., III] Lawrence Berkley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Yao, W.; Lane, N. E.] UC Davis Med Ctr, Dept Med, Ctr Aging, Sacramento, CA USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 NR 2 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD SEP PY 2010 VL 47 IS 3 BP 706 EP 706 DI 10.1016/j.bone.2010.06.012 PG 1 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 645MO UT WOS:000281464200033 ER PT J AU Gottschalck, J Wheeler, M Weickmann, K Vitart, F Savage, N Lin, H Hendon, H Waliser, D Sperber, K Nakagawa, M Prestrelo, C Flatau, M Higgins, W AF Gottschalck, J. Wheeler, M. Weickmann, K. Vitart, F. Savage, N. Lin, H. Hendon, H. Waliser, D. Sperber, K. Nakagawa, M. Prestrelo, C. Flatau, M. Higgins, W. TI A FRAMEWORK FOR ASSESSING OPERATIONAL MADDEN-JULIAN OSCILLATION FORECASTS A CLIVAR MJO Working Group Project SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID TROPICAL INTRASEASONAL OSCILLATION; EXTREME PRECIPITATION EVENTS; ENSEMBLE PREDICTION SYSTEM; COUPLED EQUATORIAL WAVES; AMERICAN-MONSOON-SYSTEM; 1997-98 EL-NINO; CIRCULATION ANOMALIES; SUMMER MONSOON; SIMULATION DIAGNOSTICS; BREAK PHASES C1 [Gottschalck, J.] NOAA NCEP Climate Predict Ctr, Camp Springs, MD 20746 USA. [Wheeler, M.; Hendon, H.] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Weickmann, K.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Vitart, F.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Savage, N.] Met Off, Exeter, Devon, England. [Lin, H.] Environm Canada, Montreal, PQ, Canada. [Waliser, D.] NASA, Jet Prop Lab, Pasadena, CA USA. [Sperber, K.] Lawrence Livermore Natl Lab, Dept Energy, Livermore, CA USA. [Nakagawa, M.] Japan Meteorol Agcy, Tokyo, Japan. [Flatau, M.] USN, Res Lab, Monterey, CA USA. [Prestrelo, C.] Ctr Weather Forecasting & Climate Studies, Sao Paulo, Brazil. RP Gottschalck, J (reprint author), NOAA NCEP Climate Predict Ctr, 5200 Auth Rd, Camp Springs, MD 20746 USA. EM jon.gottschalck@noaa.gov RI Wheeler, Matthew/C-9038-2011; Prestrelo, Cristiano/I-5139-2015; Sperber, Kenneth/H-2333-2012; OI Wheeler, Matthew/0000-0002-9769-1973; Savage, Nicholas/0000-0001-9391-5100; Lin, Hai/0000-0003-4353-0426 FU U.S. CLIVAR, International CLIVAR; U.S. CLIVAR Office; U. S. Department of Energy, Office of Science [DE-AC52-07NA27344] FX The authors would like to thank the entire MJOWG (in alphabetical order)-Maria Flatau, Jon Gottschalck, Harry Hendon, Wayne Higgins, In-Sik Kang, Daehyun Kim, Hai Lin, Eric Maloney, Mitch Moncrief, Kathy Pegion, Nicholas Savage, Siegfried Schubert, Ken Sperber (cochair), Bill Stern, Augustin Vintzileos, Frederic Vitart, Duane Waliser (cochair), Bin Wang, Wanqui Wang, Klaus Weickmann, Matt Wheeler, and Chidong Zhang. The MJOWG wishes to acknowledge and thank U.S. CLIVAR, International CLIVAR, and the U.S. CLIVAR Office (specifically David Legler and Cathy Stephens) for supporting this working group and its activities. JG wishes to acknowledge and thank Kyong-Hwan Seo and Qin Zhang from Pusan National University Korea and NOAA/CPC respectively for their contributions to code development. KS was supported under the auspices of the U. S. Department of Energy, Office of Science, Climate Change Prediction Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. DW's contribution to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 71 TC 86 Z9 86 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2010 VL 91 IS 9 BP 1247 EP 1258 DI 10.1175/2010BAMS2816.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 660XC UT WOS:000282678800006 ER PT J AU Hu, RX Gao, MC Dogan, ON King, P Widom, M AF Hu, Rongxiang Gao, Michael C. Dogan, Oemer N. King, Paul Widom, Michael TI Thermodynamic modeling of the Pd-S system supported by first-principles calculations SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article DE CALPHAD; Pd-S; Phase diagram; Sulfur poisoning; Hydrogen separation ID GENERALIZED GRADIENT APPROXIMATION; CRYSTAL-STRUCTURE; HYDROGEN-SULFIDE; CU MEMBRANES; PALLADIUM; SULFUR; ENERGETICS; STABILITY; LATTICE; METALS AB Sulfur poisoning of PdCu membrane alloys has promoted new alloy development that requires quantitative understanding of the thermodynamics of the Pd-Cu-S system. This study attempts to develop a self-consistent thermodynamic description of the Pd-rich Pd-S binary system using the CALPHAD approach, based on available phase equilibrium information and thermochemistry data. The optimized phase diagram and enthalpies of formation agree well with the experimental values and first-principles calculations. The phase stability of this system is further investigated using first-principles calculations, confirming that the five intermetallic compounds reported are stable phases. The present density functional theory (DFT) calculations using various exchange-correlation functionals, pseudo-potentials and settings demonstrate that using the PBEsol functional reproduces the experimental enthalpies and phase stability of S, Pd and Pd-S compounds acceptably, and is able to reproduce the lattice parameters nearly perfectly. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hu, Rongxiang; Gao, Michael C.; Dogan, Oemer N.; King, Paul] Natl Energy Technol Lab, Albany, OR 97321 USA. [Hu, Rongxiang] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Gao, Michael C.] URS, Albany, OR 97321 USA. [Widom, Michael] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Gao, MC (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM michael.gao@netl.doe.gov RI Widom, Michael/P-2531-2014 OI Widom, Michael/0000-0001-5972-5696 FU NETL's Strategic Center for Coal; Pittsburgh Supercomputing Center [DMR080005] FX This research was performed with the support of the Syngas and Hydrogen Program of the NETL's Strategic Center for Coal. This research was supported in part by an appointment (of R.H.) to the US Department of Energy (DOE) Postgraduate Research Program at the NETL administrated by the Oak Ridge Institute for Science and Education. Computational time was partially supported by Pittsburgh Supercomputing Center with Grant No. DMR080005. NR 57 TC 6 Z9 6 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD SEP PY 2010 VL 34 IS 3 BP 324 EP 331 DI 10.1016/j.calphad.2010.07.002 PG 8 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 663CE UT WOS:000282859800010 ER PT J AU Patton, KM Almes, KM de Lahunta, A AF Patton, Kristin M. Almes, Kelli M. de Lahunta, Alexander TI Absence of the dens in a 9.5-year-old rottweiler with non-progressive clinical signs SO CANADIAN VETERINARY JOURNAL-REVUE VETERINAIRE CANADIENNE LA English DT Article ID ATLANTO-AXIAL MALFORMATION; SURGICAL-TREATMENT; SUBLUXATION; DOG AB Absence of the dens is rarely described in large breed dogs. In this rottweiler, mild neurological deficits seen at 6 mo of age did not progress for the 9.5 y of the dog's life despite lack of surgical intervention. This finding underscores the marked differences between small and large breeds. C1 [Patton, Kristin M.] Oregon State Univ, Coll Vet Med, Dept Biomed Sci, Corvallis, OR 97331 USA. [Almes, Kelli M.] Kansas State Univ, Coll Vet Med, Dept Diagnost Med Pathobiol, Manhattan, KS 66506 USA. RP Patton, KM (reprint author), Battelle Toxicol NW, 900 Battelle Blvd, Richland, WA 99354 USA. EM pattonk@battelle.org NR 16 TC 2 Z9 2 U1 1 U2 1 PU CANADIAN VET MED ASSOC PI OTTAWA PA 339 BOOTH ST ATTN: KIMBERLY ALLEN-MCGILL, OTTAWA, ONTARIO K1R 7K1, CANADA SN 0008-5286 J9 CAN VET J JI Can. Vet. J.-Rev. Vet. Can. PD SEP PY 2010 VL 51 IS 9 BP 1007 EP 1010 PG 4 WC Veterinary Sciences SC Veterinary Sciences GA 650CO UT WOS:000281825900010 PM 21119869 ER PT J AU Vukovic, GD Tomic, SZ Marinkovic, AD Radmilovic, V Uskokovic, PS Colic, M AF Vukovic, Goran D. Tomic, Sergej Z. Marinkovic, Aleksandar D. Radmilovic, Velimir Uskokovic, Petar S. Colic, Miodrag TI The response of peritoneal macrophages to dapsone covalently attached on the surface of carbon nanotubes SO CARBON LA English DT Article ID MYCOBACTERIUM-TUBERCULOSIS; CELLS; APOPTOSIS; INFECTIONS; DELIVERY; OXIDE; FUNCTIONALIZATION; BIOCOMPATIBILITY; NANOMATERIALS; ANTIOXIDANT AB Dapsone is an anti-microbial and anti-inflammatory drug. Water-dispersible dapsone-modified multi-wall carbon nanotubes (dap-MWCNTs) were prepared by chemical modification of the carboxyl groups introduced on the surface of the nanotubes using O-(7-aza-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA). The modification was confirmed by Fourier-transform infrared spectroscopy, transmission election microscopy and thermogravimetric analysis. The biological effect of dap-MWCNTs was tested using rat peritoneal macrophages (PMempty set). By confocal laser microscopy and flow cytometry, it was shown that the dap-MWCNTs were rapidly ingested by PMempty set as were the control, oxidized o-MWCNTs. Neither dap-MWCNTs at lower concentrations (up to 50 mu g/ml), nor o-MWCNTs, at equivalent concentrations, respectively affected the viability of PMempty set, while higher concentrations triggered apoptosis. Apoptosis of PMempty set induced by the control, o-MWCNTs, was higher than that induced by dap-MWCNTs and it correlated with the induction of oxidative stress. In contrast, dap-MWCNTs did not trigger oxidative stress but caused apoptosis of PMempty set predominantly after prolonged cultivation (3 days). Although equivalent concentrations of soluble dapsone induced oxidative stress, they were anti-apoptotic. Cumulatively, the obtained results show the complexity of dap-MWCNT/PMempty set interactions and suggest that this complex could be investigated for the treatment of dapsone-sensitive intracellular microorganisms or inflammatory diseases responding to dapsone therapy. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tomic, Sergej Z.; Colic, Miodrag] Mil Med Acad, Inst Med Res, Belgrade 11002, Serbia. [Vukovic, Goran D.; Marinkovic, Aleksandar D.; Uskokovic, Petar S.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Colic, M (reprint author), Mil Med Acad, Inst Med Res, Crnotravska 17, Belgrade 11002, Serbia. EM vmaimi@eunet.rs OI Tomic, Sergej/0000-0003-2570-1295 FU Ministry of Science and Technological Development of The Republic of Serbia [142006]; Millitary Medical Academy, Belgrade Serbia [VMA/06-10/A5]; US Department of Energy [DE-ACO2-05CH11231] FX This work was financially supported by The Ministry of Science and Technological Development of The Republic of Serbia, Contract No. 142006 and by a Grant of The Millitary Medical Academy, Belgrade Serbia, No. VMA/06-10/A5. Electron microscopy characterization of MWCNTs was performed at the National Centre for Electron Microscopy, Lawrence Berkeley National Laboratory, supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-ACO2-05CH11231. The authors gratefully thank to Professor Vojin Savic from the Institute for Biomedical Research, Medical Faculty University of Nis, Serbia for electron microscopy characterization of PMempty set. NR 46 TC 22 Z9 23 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD SEP PY 2010 VL 48 IS 11 BP 3066 EP 3078 DI 10.1016/j.carbon.2010.04.043 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 626RM UT WOS:000279984600008 ER PT J AU Pappano, PJ Burchell, TD AF Pappano, Peter J. Burchell, Timothy D. TI Preliminary data on processing and characterization of recycled irradiated graphite SO CARBON LA English DT Article AB Neutron irradiated graphite was recycled as the "filler" material in reconstituted graphite. The work, performed in a radiological facility at the Oak Ridge National Laboratory, is believed to be the first ever demonstration of the feasibility of recycling irradiated graphite. The recycled graphite was lower in selected properties than commercially available nuclear graphite, but it is believed that similar property values could have been achieved with an impregnation step and a refined particle size distribution. The irradiation temperature and fluence of the graphites that were recycled had no discernable impact on the properties of the graphites made from them. Published by Elsevier Ltd. C1 [Pappano, Peter J.; Burchell, Timothy D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Burchell, TD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM burchelltd@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 FU US Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725, AC05-00OR22725] FX This work was carried out for the Deep Burn Project of the US Department of Energy, Office of Nuclear Energy Science and Technology under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. Use of the High Flux Isotope Reactor at the Oak Ridge National Laboratory was supported by the US Department of Energy. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The authors wish to acknowledge the assistance of Marie Williams, Ashli Clark and Kazumi Ozawa with the physical property determinations. NR 2 TC 4 Z9 4 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD SEP PY 2010 VL 48 IS 11 BP 3303 EP 3305 DI 10.1016/j.carbon.2010.05.012 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 626RM UT WOS:000279984600038 ER PT J AU Dar, RD Karig, DK Cooke, JF Cox, CD Simpson, ML AF Dar, R. D. Karig, D. K. Cooke, J. F. Cox, C. D. Simpson, M. L. TI Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae SO CHAOS LA English DT Article DE cellular biophysics; fluctuations; genetics; microorganisms; molecular biophysics; stochastic processes ID EUKARYOTIC GENE-EXPRESSION; SINGLE-CELL; FLUCTUATING ENVIRONMENTS; TRANSCRIPTIONAL REGULATION; TATA BOX; NOISE; YEAST; NETWORKS; PROMOTER; IDENTIFICATION AB Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g., a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offs between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty two-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression. (C) 2010 American Institute of Physics. [doi:10.1063/1.3486800] C1 [Dar, R. D.; Karig, D. K.; Simpson, M. L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dar, R. D.; Cooke, J. F.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Cox, C. D.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Cox, C. D.; Simpson, M. L.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Simpson, M. L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Simpson, ML (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM simpsonml1@ornl.gov RI Simpson, Michael/A-8410-2011; Karig, David/G-5703-2011; Cox, Chris/A-9451-2013 OI Simpson, Michael/0000-0002-3933-3457; Karig, David/0000-0002-9508-6411; Cox, Chris/0000-0001-9818-5477 FU Scientific User Facilities Division, U.S. Department of Energy FX We gratefully acknowledge fruitful discussions with our colleagues L. S. Weinberger, J. M. McCollum, and G. S. Sayler. This research was supported by the in-house research program of the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. NR 42 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1054-1500 J9 CHAOS JI Chaos PD SEP PY 2010 VL 20 IS 3 AR 037106 DI 10.1063/1.3486800 PG 8 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 657TY UT WOS:000282438500032 PM 20887072 ER PT J AU Tsouris, C Aaron, D AF Tsouris, Costas Aaron, Douglas TI Do we really need carbon capture and storage? SO CHEMISTRY WORLD LA English DT Editorial Material C1 [Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN USA. Georgia Inst Technol, Atlanta, GA 30332 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. RI Tsouris, Costas/C-2544-2016 OI Tsouris, Costas/0000-0002-0522-1027 NR 4 TC 1 Z9 1 U1 0 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-7604 J9 CHEM WORLD-UK JI Chem. World PD SEP PY 2010 VL 7 IS 9 BP 40 EP 40 PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 653GO UT WOS:000282077400038 ER PT J AU Zhai, MY Kuzuma, H Rector, JW AF Zhai Ming-Yue Kuzuma, Heidi Rector, James W. TI A new fractal algorithm to model discrete sequences SO CHINESE PHYSICS B LA English DT Article DE fractal interpolation; the vertical scaling factors; iterative function system; seismic data ID ITERATED FUNCTION SYSTEMS; INTERPOLATION FUNCTIONS; SELF-SIMILARITY; RECONSTRUCTION; SPLINES; SIGNALS AB Employing the properties of the affine mappings, a very novel fractal model scheme based on the iterative function system is proposed. We obtain the vertical scaling factors by a set of the middle points in each affine transform, solving the difficulty in determining the vertical scaling factors, one of the most difficult challenges faced by the fractal interpolation. The proposed method is carried out by interpolating the known attractor and the real discrete sequences from seismic data. The results show that a great accuracy in reconstruction of the known attractor and seismic profile is found, leading to a significant improvement over other fractal interpolation schemes. C1 [Zhai Ming-Yue] N China Elect Power Univ, Sch EE Engn, Beijing 102206, Peoples R China. [Kuzuma, Heidi; Rector, James W.] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94530 USA. [Rector, James W.] Lawrence Berkeley Lab, Berkeley, CA 94530 USA. RP Zhai, MY (reprint author), N China Elect Power Univ, Sch EE Engn, Beijing 102206, Peoples R China. EM mingyue.zhai@gmail.com OI zhai, ming-yue/0000-0003-3425-6111 FU National Natural Science Foundation of China [60972004, 60402004] FX Project supported by the National Natural Science Foundation of China (Grant Nos. 60972004 and 60402004). NR 17 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 J9 CHINESE PHYS B JI Chin. Phys. B PD SEP PY 2010 VL 19 IS 9 AR 090509 PG 5 WC Physics, Multidisciplinary SC Physics GA 654RT UT WOS:000282186400044 ER PT J AU Jackson, HE AF Jackson, H. E. CA HERMES Collaboration TI Recent results from the HERMES experiment SO CHINESE PHYSICS C LA English DT Article; Proceedings Paper CT 5th International Conference on Quarks and Nuclear Physics (QNP09) CY SEP 21-25, 2009 CL Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA HO Inst High Energy Phys Chinese Acad Sci DE lepton-nucleon scattering; spin asymmetries; strange quarks; parton distributions AB Results are presented from the HERMES experiment which uses semi-inclusive deep inelastic lepton scattering to study the flavor structure of the nucleon Data have been accumulated for pion and kaon double spin asymmetries, single-spin azimuthal asymmetries for meson electroproduction, deep virtual Compton scattering (DVCS); and meson multiplicities These results provide information on the properties of the strange sea in the proton; constraints on transverse momentum dependent quark parton distributions; and demonstrate the promise of DVCS for isolating the total angular momentum carried by the quarks in the proton C1 [Jackson, H. E.; HERMES Collaboration] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Jackson, HE (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 17 TC 0 Z9 0 U1 0 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2010 VL 34 IS 9 BP 1247 EP 1253 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 646KW UT WOS:000281540100019 ER PT J AU Richards, DG AF Richards, D. G. TI Latest lattice results for baryon spectroscopy SO CHINESE PHYSICS C LA English DT Article; Proceedings Paper CT 5th International Conference on Quarks and Nuclear Physics (QNP09) CY SEP 21-25, 2009 CL Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA HO Inst High Energy Phys Chinese Acad Sci DE Lattice QCD; spectroscopy; hadronic physics ID GAUGE-THEORY; RESONANCE; QCD AB Theoretical and computational advances have enabled not only the masses of the ground states, but also some of the low-lying excited states to be calculated using Lattice Gauge Theory In this talk, I look at recent progress aimed at understanding the spectrum of baryon excited states, including both baryons composed of the light u and d quarks, and of the heavier quarks I then describe recent work aimed at understanding the radiative transitions between baryons, and in particular the N-Roper transition I conclude with the prospects for future calculations C1 Jefferson Lab, Newport News, VA 23606 USA. RP Richards, DG (reprint author), Jefferson Lab, 12000 Jefferson Ave,Suite 1, Newport News, VA 23606 USA. NR 23 TC 0 Z9 0 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2010 VL 34 IS 9 BP 1281 EP 1285 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 646KW UT WOS:000281540100025 ER PT J AU Wang, F Chen, XS Lu, XF Sun, WM Goldman, T AF Wang Fan Chen Xiang-Song Lu Xiao-Fu Sun Wei-Min Goldman, T. TI Gauge invariance and quantization applied to atom and nucleon internal structure SO CHINESE PHYSICS C LA English DT Article; Proceedings Paper CT 5th International Conference on Quarks and Nuclear Physics (QNP09) CY SEP 21-25, 2009 CL Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA HO Inst High Energy Phys Chinese Acad Sci DE nucleon internal structure; quark-gluon momentum and angular momentum; canonical commutation relation; gauge invariance ID SPIN AB The prevailing theoretical quark and gluon momentum, orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin The conflicts between gauge invariance and the canonical quantization requirement, of these operators are discussed A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner The impacts of this new decomposition to the nucleon internal structure are discussed C1 [Wang Fan; Sun Wei-Min] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Wang Fan; Sun Wei-Min] Chinese Acad Sci, Purple Mt Observ, Nanjing 210093, Peoples R China. [Wang Fan; Sun Wei-Min] Nanjing Univ, Joint Inst Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China. [Chen Xiang-Song; Lu Xiao-Fu] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China. [Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, F (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. NR 10 TC 0 Z9 0 U1 0 U2 2 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2010 VL 34 IS 9 BP 1312 EP 1319 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 646KW UT WOS:000281540100032 ER PT J AU Girlanda, L Pastore, S Schiavilla, R Viviani, M AF Girlanda, L. Pastore, S. Schiavilla, R. Viviani, M. TI Electromagnetic processes in a chi EFT framework SO CHINESE PHYSICS C LA English DT Article; Proceedings Paper CT 5th International Conference on Quarks and Nuclear Physics (QNP09) CY SEP 21-25, 2009 CL Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA HO Inst High Energy Phys Chinese Acad Sci DE chiral effective field theory; nuclear electromagnetic currents ID EFFECTIVE-FIELD THEORY; THERMAL-NEUTRON CAPTURE; FEW-NUCLEON SYSTEMS; CROSS-SECTION; CURRENTS; FORCES; LAGRANGIANS; DEUTERIUM; DYNAMICS AB Recently, we have derived a two nucleon potential and consistent nuclear electromagnetic currents in chiral effective field theory with pions and nucleons as explicit degrees of freedom The calculation of the currents has been carried out to include (NLO)-L-3 corrections, consisting of two-pion exchange and contact contributions The latter involve unknown low-energy constants (LECs), some of which have been fixed by fitting the up S- and P-wave phase shifts up to 100 MeV lab energies The remaining LECs entering the current operator are determined so as to reproduce the experimental deuteron and trinucleon magnetic moments, as well as the rip cross section This electromagnetic current operator is utilized to study the mid and n(3)He radiative captures at thermal neutron energies Here we discuss our results stressing on the important role played by the LECs in reproducing the experimental data C1 [Girlanda, L.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Girlanda, L.; Viviani, M.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Pastore, S.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. RP Girlanda, L (reprint author), Univ Pisa, Dept Phys, I-56127 Pisa, Italy. OI Girlanda, Luca/0000-0002-5560-005X NR 23 TC 0 Z9 0 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2010 VL 34 IS 9 BP 1368 EP 1371 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 646KW UT WOS:000281540100045 ER PT J AU Thomas, CE AF Thomas, Christopher E. CA Hadron Spectrum Collaboration TI Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD SO CHINESE PHYSICS C LA English DT Article; Proceedings Paper CT 5th International Conference on Quarks and Nuclear Physics (QNP09) CY SEP 21-25, 2009 CL Inst High Energy Phys Chinese Acad Sci, Beijing, PEOPLES R CHINA HO Inst High Energy Phys Chinese Acad Sci DE lattice QCD; exotics; mesons; spectroscopy AB We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors from lattice QCD We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states; highlighting results for high spin and exotic states We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin This spectrum includes the first spin-four state extracted from lattice QCD We conclude with some comments on future prospects C1 [Thomas, Christopher E.; Hadron Spectrum Collaboration] Jefferson Lab, Newport News, VA 23606 USA. RP Thomas, CE (reprint author), Jefferson Lab, 12000 Jefferson Ave,Suite 1, Newport News, VA 23606 USA. NR 13 TC 2 Z9 2 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2010 VL 34 IS 9 BP 1512 EP 1515 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 646KW UT WOS:000281540100088 ER PT J AU Salathe, EP Leung, LR Qian, Y Zhang, YX AF Salathe, Eric P., Jr. Leung, L. Ruby Qian, Yun Zhang, Yongxin TI Regional climate model projections for the State of Washington SO CLIMATIC CHANGE LA English DT Article ID WESTERN UNITED-STATES; US PACIFIC-NORTHWEST; PART I; PRECIPITATION; SIMULATIONS; SNOWPACK; HYDROCLIMATE; SENSITIVITY; RESOLUTION; CASCADES AB Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional climate of the State of Washington. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year regional climate simulations using the Weather Research and Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid twenty-first century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations. C1 [Salathe, Eric P., Jr.] Univ Washington, JISAO CSES Climate Impacts Grp, Seattle, WA 98195 USA. [Leung, L. Ruby; Qian, Yun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Zhang, Yongxin] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA. RP Salathe, EP (reprint author), Univ Washington, JISAO CSES Climate Impacts Grp, Seattle, WA 98195 USA. EM salathe@washington.edu RI qian, yun/E-1845-2011 FU Washington State Legislature; NOAA [NA17RJ1232]; EPA [RD-R833369]; National Science Foundation [ATM0709856] FX This publication is part of the Washington Climate Change Impacts Assessment, funded by the 2007 Washington State Legislature through House Bill 1303. This publication is partially funded by the NOAA Regional Integrated Sciences and Assessments program and the NOAA Climate Dynamics and Experimental Prediction/Applied Research Centers program under NOAA Cooperative Agreement No. NA17RJ1232 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO). This is JISAO Contribution no. 1787. This work was funded in part by an EPA Science to Achieve Results (STAR) Program (Agreement Number: RD-R833369, EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA) and by the National Science Foundation (ATM0709856). Computing resources for the WRF simulations were provided by the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory through the Climate-Science Computational End Station Development and Grand Challenge Team. PNNL is operated for the US DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. NR 33 TC 66 Z9 69 U1 1 U2 33 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD SEP PY 2010 VL 102 IS 1-2 BP 51 EP 75 DI 10.1007/s10584-010-9849-y PG 25 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 652CL UT WOS:000281978500004 ER PT J AU Vano, JA Scott, MJ Voisin, N Stockle, CO Hamlet, AF Mickelson, KEB Elsner, MM Lettenmaier, DP AF Vano, Julie A. Scott, Michael J. Voisin, Nathalie Stoeckle, Claudio O. Hamlet, Alan F. Mickelson, Kristian E. B. Elsner, Marketa McGuire Lettenmaier, Dennis P. TI Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA SO CLIMATIC CHANGE LA English DT Article ID SNOWPACK; MODEL AB The Yakima River Reservoir system supplies water to similar to 180,000 irrigated hectares through the operation of five reservoirs with cumulative storage of similar to 30% mean annual river flow. Runoff is derived mostly from winter precipitation in the Cascade Mountains, much of which is stored as snowpack. Climate change is expected to result in earlier snowmelt runoff and reduced summer flows. Effects of these changes on irrigated agriculture were simulated using a reservoir system model coupled to a hydrological model driven by downscaled scenarios from 20 climate models archived by the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. We find earlier snowmelt results in increased water delivery curtailments. Historically, the basin experienced substantial water shortages in 14% of years. Without adaptations, for IPCC A1B global emission scenarios, water shortages increase to 27% (13% to 49% range) in the 2020s, to 33% in the 2040s, and 68% in the 2080s. For IPCC B1 emissions scenarios, shortages occur in 24% (7% to 54%) of years in the 2020s, 31% in the 2040s and 43% in the 2080s. Historically unprecedented conditions where senior water rights holders suffer shortfalls occur with increasing frequency in both A1B and B1 scenarios. Economic losses include expected annual production declines of 5%-16%, with greater probabilities of operating losses for junior water rights holders. C1 [Vano, Julie A.; Voisin, Nathalie; Hamlet, Alan F.; Mickelson, Kristian E. B.; Lettenmaier, Dennis P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Scott, Michael J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stoeckle, Claudio O.] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Hamlet, Alan F.; Elsner, Marketa McGuire; Lettenmaier, Dennis P.] Univ Washington, JISAO CSES Climate Impacts Grp, Seattle, WA 98195 USA. [Mickelson, Kristian E. B.] USA, Corps Engineers Seattle Dist, Seattle, WA 98134 USA. RP Vano, JA (reprint author), Univ Washington, Dept Civil & Environm Engn, Box 352700, Seattle, WA 98195 USA. EM jvano@u.washington.edu RI lettenmaier, dennis/F-8780-2011; Voisin, Nathalie/D-8845-2014; OI lettenmaier, dennis/0000-0003-3317-1327; Voisin, Nathalie/0000-0002-6848-449X FU Washington State Legislature; NOAA [NA17RJ1232] FX The authors thank Chris Lynch at the USBR for his insights into system operating procedures for the USBR Yakima Project and Lance Vail and Andre Coleman at Pacific Northwest National Laboratory for their assistance with the water management model simulations. Five anonymous reviewers also provided helpful feedback on earlier drafts of this paper. This publication is part of the Washington Climate Change Impacts Assessment, funded by the 2007 Washington State Legislature through House Bill 1303. This publication is partially funded by the NOAA Regional Integrated Sciences and Assessments program and the NOAA Climate Dynamics and Experimental Prediction/Applied Research Centers program under NOAA Cooperative Agreement No. NA17RJ1232 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO). This is JISAO Contribution # 1790. NR 32 TC 39 Z9 40 U1 2 U2 40 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD SEP PY 2010 VL 102 IS 1-2 BP 287 EP 317 DI 10.1007/s10584-010-9856-z PG 31 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 652CL UT WOS:000281978500012 ER PT J AU Abbasi, H Wolf, M Eisenhauer, G Klasky, S Schwan, K Zheng, F AF Abbasi, Hasan Wolf, Matthew Eisenhauer, Greg Klasky, Scott Schwan, Karsten Zheng, Fang TI DataStager: scalable data staging services for petascale applications SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS LA English DT Article DE I/O; WARP; GTC; XT3; Datatap; XT4; Staging; Data services AB Known challenges for petascale machines are that (1) the costs of I/O for high performance applications can be substantial, especially for output tasks like checkpointing, and (2) noise from I/O actions can inject undesirable delays into the runtimes of such codes on individual compute nodes. This paper introduces the flexible 'DataStager' framework for data staging and alternative services within that jointly address (1) and (2). Data staging services moving output data from compute nodes to staging or I/O nodes prior to storage are used to reduce I/O overheads on applications' total processing times, and explicit management of data staging offers reduced perturbation when extracting output data from a petascale machine's compute partition. Experimental evaluations of DataStager on the Cray XT machine at Oak Ridge National Laboratory establish both the necessity of intelligent data staging and the high performance of our approach, using the GTC fusion modeling code and benchmarks running on 1000+ processors. C1 [Abbasi, Hasan; Wolf, Matthew; Eisenhauer, Greg; Schwan, Karsten; Zheng, Fang] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Klasky, Scott] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Abbasi, H (reprint author), Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. EM habbasi@cc.gatech.edu; mwolf@cc.gatech.edu; eisen@cc.gatech.edu; klasky@ornl.gov; schwan@cc.gatech.edu; fzheng@cc.gatech.edu NR 37 TC 19 Z9 20 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1386-7857 EI 1573-7543 J9 CLUSTER COMPUT JI Cluster Comput. PD SEP PY 2010 VL 13 IS 3 BP 277 EP 290 DI 10.1007/s10586-010-0135-6 PG 14 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 634BC UT WOS:000280552800004 ER PT J AU Raicu, I Foster, I Wilde, M Zhang, Z Iskra, K Beckman, P Zhao, Y Szalay, A Choudhary, A Little, P Moretti, C Chaudhary, A Thain, D AF Raicu, Ioan Foster, Ian Wilde, Mike Zhang, Zhao Iskra, Kamil Beckman, Peter Zhao, Yong Szalay, Alex Choudhary, Alok Little, Philip Moretti, Christopher Chaudhary, Amitabh Thain, Douglas TI Middleware support for many-task computing SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS LA English DT Article DE Many-task computing; High-throughput; Computing; High-performance computing; Petascale; Loosely-coupled applications; Data-intensive distributed computing; Falkon; Swift C1 [Raicu, Ioan; Choudhary, Alok] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Foster, Ian; Wilde, Mike; Zhang, Zhao; Iskra, Kamil; Beckman, Peter] Univ Chicago, Chicago, IL 60637 USA. [Foster, Ian; Wilde, Mike; Iskra, Kamil; Beckman, Peter] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhao, Yong] Microsoft Corp, Redmond, WA 98052 USA. [Szalay, Alex] Johns Hopkins Univ, Baltimore, MD USA. [Little, Philip; Moretti, Christopher; Chaudhary, Amitabh; Thain, Douglas] Univ Notre Dame, Notre Dame, IN 46556 USA. RP Raicu, I (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. EM iraicu@eecs.northwestern.edu; foster@anl.gov; wilde@mcs.anl.gov; zhaozhang@uchicago.edu; iskra@mcs.anl.gov; beckman@mcs.anl.gov; yozha@microsoft.com; szalay@jhu.edu; achaudha@cse.nd.edu; plittle1@nd.edu; cmoretti@cse.nd.edu; choudhar@eecs.northwestern.edu; dthain@nd.edu RI Choudhary, Alok/C-5486-2009; Thain, Douglas/I-4666-2014 OI Thain, Douglas/0000-0001-5218-1956 FU NASA Ames Research Center GSRP [NNA06CB89H]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy [DE-AC02-06CH11357]; National Science Foundation FX This work was supported in part by the NASA Ames Research Center GSRP Grant Number NNA06CB89H and by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. This research was also supported in part by the National Science Foundation through TeraGrid resources provided by UC/ANL. NR 69 TC 10 Z9 10 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1386-7857 EI 1573-7543 J9 CLUSTER COMPUT JI Cluster Comput. PD SEP PY 2010 VL 13 IS 3 BP 291 EP 314 DI 10.1007/s10586-010-0132-9 PG 24 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 634BC UT WOS:000280552800005 ER PT J AU Pettway, JS Schmidt, JH Stagg, AK AF Pettway, Jackie S. Schmidt, Joseph H. Stagg, Alan K. TI Adaptive meshing in a mixed regime hydrologic simulation model SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Adaptive meshing; Parallel; Load balance; Hash tables ID QUALITY LOCAL REFINEMENT; FREE-BOUNDARY PROBLEMS; GRID REFINEMENT; POROUS-MEDIA; MESHES; ALGORITHM; BISECTION; FLOW; TRIANGULATIONS AB Problems in hydrology frequently have moving fronts and dynamic driving mechanisms such as wells. Since the location of important features changes during a simulation, accurate modeling requires uniformly fine resolution or the ability to change resolution during the simulation. We will describe an algorithm for refinement and unrefinement of tetrahedral/triangular meshes that has been implemented in the adaptive hydrology (ADH) code. The codes including the refinement/unrefinement algorithms are implemented in parallel to accommodate problems with large run time and memory requirements. In this paper, we describe the parallel, adaptive grid algorithm used in ADH and show the resulting grids from some example problems. C1 [Pettway, Jackie S.] Engn Res & Dev Ctr, Coastal & Hydraul Lab, Vicksburg, MS 39180 USA. [Schmidt, Joseph H.] Los Alamos Natl Lab, Computat Anal & Simulat XCP 1, Los Alamos, NM 87545 USA. [Stagg, Alan K.] Los Alamos Natl Lab, Computat Anal & Simulat XCP 4, Los Alamos, NM 87545 USA. RP Pettway, JS (reprint author), Engn Res & Dev Ctr, Coastal & Hydraul Lab, Vicksburg, MS 39180 USA. EM Jackie.S.Pettway@usace.army.mil; joe_schmidt@lanl.gov; stagg@lanl.gov FU United States Army Corps of Engineers (USACE) FX This work was funded by the United States Army Corps of Engineers (USACE). Permission was granted by the Chief of Engineers, USACE to publish this information. We would like to thank Lisa C. Roig, Charlie Berger, and Jennifer Tate. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. NR 32 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD SEP PY 2010 VL 14 IS 4 BP 665 EP 674 DI 10.1007/s10596-010-9179-1 PG 10 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 641XL UT WOS:000281165800011 ER PT J AU Robinson, BA Dash, ZV Srinivasan, G AF Robinson, Bruce A. Dash, Zora V. Srinivasan, Gowri TI A particle tracking transport method for the simulation of resident and flux-averaged concentration of solute plumes in groundwater models SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Particle tracking; Solute transport; Convolution; Groundwater ID HETEROGENEOUS POROUS-MEDIA; RADIONUCLIDE TRANSPORT; CONTAMINANT TRANSPORT; NUMERICAL-SIMULATION; FINITE-ELEMENTS; YUCCA MOUNTAIN; PATH LINES; EFFICIENT; IMPLEMENTATION; CONTINUUM AB A new numerical technique called the convolution-based particle tracking (CBPT) method is developed to simulate resident or flux-averaged solute concentrations in groundwater models. The method is valid for steady-state flow and linear transport processes such as sorption with a linear sorption isotherm and first-order decay. The CBPT method uses particle tracking to take advantage of the ability of particle-based approaches to maintain sharp fronts for advection-dominated transport problems common in groundwater modeling and because of the flexibility of the random walk method to simulate a wide range of possible forms of the dispersion tensor. Furthermore, the algorithm for carrying out the convolution and superposition calculation from particle tracking results is very efficient. We show that from a single particle tracking run, source term variability, sorption, and decay can all be simulated rapidly without rerunning the underlying transport model unless the flow field or dispersion parameters are changed. A series of verification simulations are presented to demonstrate the accuracy and efficiency of the CBPT method compared to more conventional particle tracking approaches. C1 [Srinivasan, Gowri] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Robinson, Bruce A.; Dash, Zora V.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Srinivasan, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM gowri@lanl.gov RI Robinson, Bruce/F-6031-2010 NR 30 TC 12 Z9 12 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD SEP PY 2010 VL 14 IS 4 BP 779 EP 792 DI 10.1007/s10596-010-9190-6 PG 14 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 641XL UT WOS:000281165800019 ER PT J AU Hao, SG Wang, CZ Li, MZ Napolitano, RE Mendelev, MI Ho, KM AF Hao, S. G. Wang, C. Z. Li, Maozhi Napolitano, R. E. Mendelev, M. I. Ho, K. M. TI Prediction of cooling rate dependent ordering in metallic glass transition using a two-state model SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Two-state model; Metallic glass transition; Local order; Cooling rate ID LOCAL ATOMIC ARRANGEMENTS; POLYTETRAHEDRAL MATERIALS; SUPERCOOLED LIQUIDS; ALLOYS AB A two-state theoretical model is proposed to study the evolution of local order when a good metallic glass former is cooled down from the liquid state. We find that the development of order depends strongly on the cooling rate and that the ordered fraction converges to an upper limit at low cooling rates. We compare our model predictions with molecular dynamics (MD) simulation results for the Zr35.5Cu64.5 binary system, revealing good agreement for the fast cooling rates accessible through MD. The analytical model proposed here, however, can be extended to much lower rates which correspond to experimentally accessible processing routes. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hao, S. G.; Wang, C. Z.; Li, Maozhi; Napolitano, R. E.; Mendelev, M. I.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Li, Maozhi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Hao, SG (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM sghao@ameslab.gov RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012 FU US Department; National Energy Research Supercomputing Centre (NERSC) in Berkeley [DE-AC02-07CH11358] FX Work at Ames Laboratory was supported by the US Department rates. of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. NR 24 TC 5 Z9 5 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD SEP PY 2010 VL 49 IS 3 BP 615 EP 618 DI 10.1016/j.commatsci.2010.06.002 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 647LD UT WOS:000281619100024 ER PT J AU Sheldon, FT Vishik, C AF Sheldon, Frederick T. Vishik, Claire TI MOVING TOWARD TRUSTWORTHY SYSTEMS: R&D ESSENTIALS SO COMPUTER LA English DT Article C1 [Sheldon, Frederick T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Vishik, Claire] Intel Corp, Santa Clara, CA 95051 USA. RP Sheldon, FT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM sheldonft@ornl.gov; claire.vishik@intel.com OI Sheldon, Frederick/0000-0003-1241-2750 FU US Government (USG) [DE-AC05-00OR22725] FX The submitted manuscript was authored by a contractor of the US Government (USG) under contract DE-AC05-00OR22725. Accordingly, the USG retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for USG purposes. The authors thank Susan Alexander, currently at ODNI, and Tomas Vagoun from the National Coordination Office for NITRD. NR 20 TC 5 Z9 5 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD SEP PY 2010 VL 43 IS 9 BP 31 EP 40 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 648NY UT WOS:000281702400013 ER PT J AU Tan, W Zhang, J Foster, I AF Tan, Wei Zhang, Jia Foster, Ian TI Network Analysis of Scientific Workflows: A Gateway to Reuse SO COMPUTER LA English DT Article C1 [Tan, Wei] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Tan, Wei; Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhang, Jia] No Illinois Univ, Dept Comp Sci, De Kalb, IL 60115 USA. [Foster, Ian] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. RP Tan, W (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wtan@mcs.anl.gov; jiazhang@cs.niu.edu; foster@mcs.anl.gov RI Tan, Wei/A-8144-2009 FU National Cancer Institute; National Institutes of Health [N01-CO-12400]; National Science Foundation [IIS-0959215]; National Cancer Institute, the National Institutes of Health FX We thank the caBIG (Cancer Biomedical Informatics Grid) community, sponsored by the National Cancer Institute, for various application scenarios motivating our network analysis and CASE framework. We thank Carole Goble and David De Roure for supporting our assessment of Taverna, myExperiment, and BioCatalogue. We also thank Ravi Madduri for constructive discussions on workflow reuse in caBIG. The work described in this article is partially supported by the National Cancer Institute, the National Institutes of Health under contract N01-CO-12400, and the National Science Foundation under grant IIS-0959215. NR 9 TC 24 Z9 27 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD SEP PY 2010 VL 43 IS 9 BP 54 EP 61 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 648NY UT WOS:000281702400016 ER PT J AU Valiev, M Bylaska, EJ Govind, N Kowalski, K Straatsma, TP Van Dam, HJJ Wang, D Nieplocha, J Apra, E Windus, TL de Jong, W AF Valiev, M. Bylaska, E. J. Govind, N. Kowalski, K. Straatsma, T. P. Van Dam, H. J. J. Wang, D. Nieplocha, J. Apra, E. Windus, T. L. de Jong, Wa. TI NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE NWChem; DFT; Coupled cluster; QMMM; Plane wave methods ID DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER METHODS; GENERALIZED GRADIENT APPROXIMATION; EXCITED ELECTRONIC STATES; PLANE-WAVE METHOD; FULL CCSDT MODEL; PARALLEL IMPLEMENTATION; EXCITATION-ENERGIES; QUANTUM-CHEMISTRY; DOUBLES METHOD AB The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summary Program title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers. Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial OFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms. (C) 2010 Elsevier B.V. All rights reserved. C1 [Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; de Jong, Wa.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Apra, E.] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37831 USA. [Windus, T. L.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Valiev, M (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM marat.valiev@pnl.gov RI Apra, Edoardo/F-2135-2010; DE JONG, WIBE/A-5443-2008; Govind, Niranjan/D-1368-2011; OI Apra, Edoardo/0000-0001-5955-0734; DE JONG, WIBE/0000-0002-7114-8315; van Dam, Hubertus Johannes Jacobus/0000-0002-0876-3294 FU division of Chemical Sciences; Office of Basic Energy Sciences, Mathematical, Information, and Computational Sciences; U.S. DOE High Performance Computing and Communications Initiative; Environmental and Molecular Sciences Laboratory; Construction Project [D-384]; Department of Energy's Office of Biological and Environmental Research; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF; U.S. Government [DE-AC05-000R22725] FX The funding sources for the development of NWChem and the parallel software tools over the lifetime of the project include the division of Chemical Sciences, the Office of Basic Energy Sciences, Mathematical, Information, and Computational Sciences division of the Office of Advanced Scientific Computing Research, the Office of Naval Research, the U.S. DOE High Performance Computing and Communications Initiative, the Environmental and Molecular Sciences Laboratory, the Construction Project, D-384 and Operations, the Office of Biological and Environmental Research. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. T.L.W. acknowledges funding from an NSF PetaApps grant. The submitted manuscript has been authored by a contractor (E.A.) of the U.S. Government under Contract No. DE-AC05-000R22725. NR 132 TC 1332 Z9 1339 U1 29 U2 256 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2010 VL 181 IS 9 BP 1477 EP 1489 DI 10.1016/j.cpc.2010.04.018 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 638DX UT WOS:000280873500001 ER PT J AU Binoth, T Boudjema, F Dissertori, G Lazopoulos, A Denner, A Dittmaier, S Frederix, R Greiner, N Hoche, S Giele, W Skands, P Winter, J Gleisberg, T Archibald, J Heinrich, G Krauss, F Maitre, D Huber, M Huston, J Kauer, N Maltoni, F Oleari, C Passarino, G Pittau, R Pozzorini, S Reiter, T Schumann, S Zanderighi, G AF Binoth, T. Boudjema, F. Dissertori, G. Lazopoulos, A. Denner, A. Dittmaier, S. Frederix, R. Greiner, N. Hoeche, S. Giele, W. Skands, P. Winter, J. Gleisberg, T. Archibald, J. Heinrich, G. Krauss, F. Maitre, D. Huber, M. Huston, J. Kauer, N. Maltoni, F. Oleari, C. Passarino, G. Pittau, R. Pozzorini, S. Reiter, T. Schumann, S. Zanderighi, G. TI A proposal for a standard interface between Monte Carlo tools and one-loop programs SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Monte Carlo tools; One-loop computations; Les Houches Accord ID TO-LEADING ORDER; JET CROSS-SECTIONS; DIMENSIONAL REDUCTION; AUTOMATIC-GENERATION; HELICITY AMPLITUDES; DIPOLE SUBTRACTION; NLO-QCD; PHYSICS; REGULARIZATION; OBSERVABLES AB Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs. Dedicated to the memory of and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009. Thomas led the discussions, set up the subgroups, collected the contributions, and wrote and edited this paper. He made a promise that the paper would be on the arXiv the first week of January, and we are faithfully fulfilling his promise. In his honour, we would like to call this the Binoth Les Houches Accord. (C) 2010 Elsevier B.V. All rights reserved. C1 [Boudjema, F.] Univ Savoie, CNRS, LAPTH, F-74941 Annecy Le Vieux, France. [Binoth, T.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Dissertori, G.; Lazopoulos, A.] ETH, Dept Phys, CH-5232 Zurich, Switzerland. [Denner, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Dittmaier, S.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Frederix, R.; Greiner, N.; Hoeche, S.] Univ Zurich, CH-8057 Zurich, Switzerland. [Giele, W.; Skands, P.; Winter, J.] FNAL, Batavia, IL 60510 USA. [Gleisberg, T.] Stanford Univ, SLAC, Stanford, CA 94309 USA. [Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.] Univ Durham, IPPP, Durham DH1 3LE, England. [Huber, M.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Huston, J.] Michigan State Univ, E Lansing, MI 48840 USA. [Kauer, N.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Maltoni, F.] Catholic Univ Louvain, CP3, B-1348 Louvain, Belgium. [Oleari, C.] Univ Milano Bicocca, I-20126 Milan, Italy. [Passarino, G.] Univ Turin, INFN, Sez Torino, Turin, Italy. [Passarino, G.] Univ Turin, Dip Fis Teor, Turin, Italy. [Pozzorini, S.] CERN PH, CH-1211 Geneva 23, Switzerland. [Pittau, R.] Univ Granada, Dept Fis Teor & Cosmos CAFPE, E-18071 Granada, Spain. [Schumann, S.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Zanderighi, G.] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PN, England. RP Boudjema, F (reprint author), Univ Savoie, CNRS, LAPTH, 9 Chemin Bellevue,BP 110, F-74941 Annecy Le Vieux, France. EM boudjema@lapp.in2p3.fr RI Pittau, Roberto/E-7953-2016; OI Pittau, Roberto/0000-0003-1365-2959; Oleari, Carlo/0000-0003-3526-9280; Krauss, Frank/0000-0001-5043-3099; Hoeche, Stefan/0000-0002-1370-6059; Passarino, Giampiero/0000-0001-6379-4686; Skands, Peter/0000-0003-0024-3822; Denner, Ansgar/0000-0002-7179-1132 NR 77 TC 58 Z9 58 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2010 VL 181 IS 9 BP 1612 EP 1622 DI 10.1016/j.cpc.2010.05.016 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 638DX UT WOS:000280873500015 ER PT J AU Tang, GP Mayes, MA Parker, JC Jardine, PM AF Tang, Guoping Mayes, Melanie A. Parker, Jack C. Jardine, Philip M. TI CXTFIT/Excel-A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments SO COMPUTERS & GEOSCIENCES LA English DT Article DE Equilibrium/nonequilibrium convection dispersion equation; Weighted nonlinear least squares; Penalty function; Monte Carlo analysis; Response surface AB We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) could be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material. Published by Elsevier Ltd. C1 [Tang, Guoping; Mayes, Melanie A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Jardine, Philip M.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. RP Tang, GP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM tangg@ornl.gov RI Tang, Guoping/A-5141-2010 OI Tang, Guoping/0000-0003-1090-3564 FU U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research; US DOE [DE-AC05-00OR22725] FX We appreciate the review comments provided by Dr. Philip Meyer and another anonymous reviewer, which significantly helped improve this paper. This research was funded by the U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle, LLC, under contract DE-AC05-00OR22725 with the US DOE. NR 14 TC 25 Z9 27 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD SEP PY 2010 VL 36 IS 9 BP 1200 EP 1209 DI 10.1016/j.cageo.2010.01.013 PG 10 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 654XL UT WOS:000282204300012 ER PT J AU De Chant, LJ AF De Chant, Lawrence J. TI A semi-infinite domain eigenvalue problem describing turbulent velocity fluctuations SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Eigenvalue problem; Turbulent velocity fluctuations AB This paper discusses the formulation and approximate solution of an eigenvalue problem that provides estimates for fully turbulent velocity fluctuations. The fluctuating velocity model is derived by splitting the Reynolds decomposed (but not averaged) Navier-Stokes equations into mean and fluctuating expressions. The linear fluctuating portion of the equations (normally lost to averaging) poses a semi-infinite domain eigenvalue problem. Approximate analytical solutions are derived that suggest a qualitatively physically plausible solution. The derivation and use of these expressions are not known in the literature implying that a qualitative scoping study of this nature is appropriate. This type of analysis provides support for the practical application of these equations to estimate structural loadings due to the presence of turbulent velocity and pressure fluctuations. (C) 2010 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP De Chant, LJ (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM ljdecha@sandia.gov NR 17 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD SEP PY 2010 VL 60 IS 5 BP 1177 EP 1183 DI 10.1016/j.camwa.2010.05.041 PG 7 WC Mathematics, Applied SC Mathematics GA 643ZQ UT WOS:000281340600005 ER PT J AU Lance, SL Jones, KL Hagen, C Jordaens, K Backeljau, T Prevot, V AF Lance, Stacey L. Jones, Kenneth L. Hagen, Cris Jordaens, Kurt Backeljau, Thierry Prevot, Vanya TI Fifteen microsatellite loci for the decollate snail, Rumina decollata SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Rumina; Land snail; Microsatellite; PCR primers; SSR; STR AB We characterized 15 microsatellite loci from the decollate snail, Rumina decollata. Loci were screened in 21 individuals and several individuals of the congener Rumina saharica. There was ample allelic diversity (6-12 alleles per locus) but observed heterozygosity values were extremely low (0-0.421). This was expected given the high self-fertilization rate in this species. Ten of the 15 loci were successfully amplified in R. saharica. These loci provide tools for examining the population genetics and taxomomic boundaries in R. decollata and its allies. C1 [Backeljau, Thierry; Prevot, Vanya] Royal Belgian Inst Nat Sci, B-1000 Brussels, Belgium. [Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Jordaens, Kurt] Royal Museum Cent Africa, B-3080 Tervuren, Belgium. [Jordaens, Kurt; Backeljau, Thierry] Univ Antwerp, Evolutionary Ecol Grp, B-2020 Antwerp, Belgium. [Prevot, Vanya] Univ Libre Bruxelles, B-1050 Brussels, Belgium. RP Prevot, V (reprint author), Royal Belgian Inst Nat Sci, Vautierstr 29, B-1000 Brussels, Belgium. EM vanya.prevot@naturalsciences.be RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Fonds National de la Recherche Scientifique, Belgium; Department of Energy [DE-FC09-07SR22506] FX Vanya Prevot was funded by the "Fonds National de la Recherche Scientifique", Belgium. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 10 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD SEP PY 2010 VL 2 SU 1 BP 287 EP 289 DI 10.1007/s12686-010-9193-6 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761QP UT WOS:000290413000068 ER PT J AU Davidovich, RL Stavila, V Whitmire, KH AF Davidovich, Ruven L. Stavila, Vitalie Whitmire, Kenton H. TI Stereochemistry of lead(II) complexes containing sulfur and selenium donor atom ligands SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE Lead; Sulfur; Selenium; VSEPR; Stereochemically active; Lone pair ID THIOUREA COORDINATION-COMPLEXES; GROUP METAL-CATIONS; SINGLE-SOURCE PRECURSORS; RAY CRYSTAL-STRUCTURE; MOLECULAR-STRUCTURE; PB(II) SALTS; SUPRAMOLECULAR ASSOCIATIONS; STRUCTURAL-CHARACTERIZATION; CHEMISTRY; PB AB The stereochemistry of lead(II) complexes with S- and Se-donor atom ligands, including mixed ligand complexes is reviewed with respect to the geometry of the first coordination sphere of the Pb(II) atom in these compounds and rationalized in terms of the valence shell electron-pair repulsion (VSEPR) model. The most comprehensively structurally characterized classes of lead(II) thio and seleno complexes are discussed, including monothio-, dithio(seleno)-, trithio- and tetrathio-complexes, as well as Pb(II) dialkyldithio(seleno)carbamates, alkylxanthates and dialkyl(aryl) phosphorodithio(seleno)lates. Data about the polyhedral shape of the primary coordination sphere, coordination number (CN), bond lengths (primary and secondary) and bond angles of the Pb(II) atom in the compounds under investigation are systematized in comprehensive tables. The particularities of the stereochemistry of Pb(II) complexes with S(Se)-donor atom ligands are comparatively discussed with the stereochemistry of lead(II) complexes with oxygen donor ligands. (c) 2010 Elsevier B.V. All rights reserved. C1 [Davidovich, Ruven L.] Russian Acad Sci, Inst Chem, Far E Div, Vladivostok 690022, Russia. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94550 USA. [Whitmire, Kenton H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Davidovich, RL (reprint author), Russian Acad Sci, Inst Chem, Far E Div, Pr T 100 Letiya Vladivostoka 159, Vladivostok 690022, Russia. EM davidovich@ich.dvo.ru; whitmir@rice.edu RI Stavila, Vitalie/F-4188-2010; Stavila, Vitalie/B-6464-2008; OI Stavila, Vitalie/0000-0003-0981-0432; Whitmire, Kenton/0000-0001-7362-535X FU Robert A. Welch Foundation [C-0976]; National Science Foundation [CHE-0719396, DGE-0411679, EEC-0647452]; U.S. Civilian Research and Development Foundation [MTFP-1015] FX R.L.D. acknowledges Prof. F.H. Herbstein (Technion - Israel Institute of Technology, Haifa, Israel) for providing reprints of the publications on crystal structures of Pb(II) thiourea complexes, Dr. R.F. Klevtsova (A.V. Nikolaev Institute of Inorganic Chemistry SD RAS, Novosibirsk) for providing CIF-files of some lead(II) mixed-ligand thiophosphinate complexes and Dr. E.I. Voit (Institute of Chemistry, F.E. Division RAS, Vladivostok) for DFT analyzis of Pb(II) thiolate complexes. KHW thanks the Robert A. Welch Foundation (C-0976), the National Science Foundation (CHE-0719396, DGE-0411679, EEC-0647452) and the U.S. Civilian Research and Development Foundation (MTFP-1015) for financial support. NR 122 TC 51 Z9 52 U1 2 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD SEP PY 2010 VL 254 IS 17-18 BP 2193 EP 2226 DI 10.1016/j.ccr.2010.05.013 PG 34 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 631VV UT WOS:000280379500012 ER PT J AU Tian, JA Motkuri, RK Thallapally, PK AF Tian, Jian Motkuri, Radha Kishan Thallapally, Praveen K. TI Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block SO CRYSTAL GROWTH & DESIGN LA English DT Article ID METAL-ORGANIC FRAMEWORKS; GAS-ADSORPTION; DESIGN; NETWORKS; HYDROGEN; SOLIDS; SITES AB The self-assembly of the flexible tetrahedral linker tetrakis[4-(carboxyphenyl)oxamethyl]methane acid with various transition metals (Cu, Co, and Mg) results in a 2D layered structure and 3D frameworks with PtS and adamantanoid topology. The PtS net exhibits permanent porosity, as confirmed by BET and gas adsorption experiments. C1 [Tian, Jian; Motkuri, Radha Kishan; Thallapally, Praveen K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.Thallapally@pnl.gov RI Tian, Jian/I-8637-2012; Motkuri, Radha/F-1041-2014; thallapally, praveen/I-5026-2014 OI Motkuri, Radha/0000-0002-2079-4798; thallapally, praveen/0000-0001-7814-4467 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; U.S. Department of Energy [DE-AC05-76RL01830] FX P.K.T. thanks the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152, for the synthesis and characterization part and the Office of Fossil Energy for CO2 uptake measurments. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 36 TC 14 Z9 14 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2010 VL 10 IS 9 BP 3843 EP 3846 DI 10.1021/cg1005677 PG 4 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 644DW UT WOS:000281353900003 ER PT J AU Fernandez, CA Thallapally, PK Liu, J Peden, CHF AF Fernandez, Carlos A. Thallapally, Praveen K. Liu, Jun Peden, Charles H. F. TI Effect of Produced HCl during the Catalysis on Micro- and Mesoporous MOFs SO CRYSTAL GROWTH & DESIGN LA English DT Article ID METAL-ORGANIC FRAMEWORKS; COORDINATION-FRAMEWORK; SHAPE-SELECTIVITY; H-2 ADSORPTION; DESIGN; FUNCTIONALITY; HYDROGEN; STORAGE; CO2 AB This paper reports the influence of alkylation reaction byproducts, particularly HCl, on MOF-5. Reaction between tert-butyl chloride and toluene or biphenyl in the presence of MOF-5 as a catalyst generates an unusual structural transformation which was proved to be due to the formation of byproduct HCl by means of powder X-ray diffraction analysis. Despite this, the highly desirable catalytic performance in terms of high conversions ( > 99%) and selectivity ( > 98%) toward the less bulky para-oriented products is maintained. C1 [Fernandez, Carlos A.; Thallapally, Praveen K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Liu, Jun; Peden, Charles H. F.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.thallapally@pnl.gov RI thallapally, praveen/I-5026-2014; OI thallapally, praveen/0000-0001-7814-4467; Peden, Charles/0000-0001-6754-9928 FU DOE/Office of Science, Division of Chemical Sciences Geosciences, and Biosciences; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE [DE-AC05-76RL01830] FX This work was initially started under Laboratory Directed Research Development funding. P.K. T. and J.L. acknowledge the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152 for developing and characterizing the materials. C.H.F.P. acknowledges support from the DOE/Office of Science, Division of Chemical Sciences Geosciences, and Biosciences, for analyzing the catalytic reactions. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 26 TC 14 Z9 14 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2010 VL 10 IS 9 BP 4118 EP 4122 DI 10.1021/cg100796e PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 644DW UT WOS:000281353900041 ER PT J AU Meng, XD Ji, YQ Jiang, H AF Meng, Xiandong Ji, Yanqing Jiang, Hai TI Advanced Acceleration Technologies for Biological Sequence Analyses SO CURRENT BIOINFORMATICS LA English DT Article DE Smith-waterman algorithm; SIMD; FPGA; GPU; DSP; heterogeneous computing; biological sequence analysis ID AMINO-ACID-COMPOSITION; SUBCELLULAR LOCATION PREDICTION; STRUCTURAL CLASS PREDICTION; PROTEASE CLEAVAGE SITES; SMITH-WATERMAN; WEB-SERVER; EVOLUTION INFORMATION; SIGNAL PEPTIDES; PROTEINS; ALIGNMENT AB There has been substantial evidence that functional and structural analyses of genes and proteins can help develop new drugs, diagnose medical conditions and find cures for diseases. However, these biological sequence analyses require large-scale computational power due to the exponential growth of genomic information. During the past two decades considerable efforts have been expended in trying to accelerate the biological sequence database search process which is the fundamental step for further analyses. Various software approaches including SIMD (Single Instruction Multiple Data) instruction, multithreading, message passing programming paradigm and I/O optimization have been employed to speed up the process on different computing platforms at different levels. Hardware techniques such as FPGA (Field Programmable Gate Arrays), GPU (Graphics Processing Unit), IBM CELL BE, DSP (Digital Signal Processors) and ASIC (Applications Specific Integrated Circuit) have also been widely used. This paper reviews relevant computing platforms, various software and hardware approaches as well as the performances they achieved in high throughput sequence database search. It demonstrates that parallelism can be exploited at different phases, granularity levels, types, software/hardware levels and scopes. This would help researchers understand current development strategies and possible future trends such as aggregate heterogeneous systems in high performance biological sequence analysis. C1 [Meng, Xiandong] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Ji, Yanqing] Gonzaga Univ, Dept Elect & Comp Engn, Spokane, WA 99258 USA. [Jiang, Hai] Arkansas State Univ, Dept Comp Sci, Jonesboro, AR 72467 USA. RP Meng, XD (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM xiandongmeng@lbl.gov NR 85 TC 0 Z9 0 U1 1 U2 4 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1574-8936 J9 CURR BIOINFORM JI Curr. Bioinform. PD SEP PY 2010 VL 5 IS 3 BP 176 EP 194 PG 19 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 661XK UT WOS:000282766500003 ER PT J AU Weier, JF Ferlatte, C Weier, HUG AF Weier, Jingly F. Ferlatte, Christy Weier, Heinz-Ulli G. TI Somatic Genomic Variations in Extra-Embryonic Tissues SO CURRENT GENOMICS LA English DT Article DE Gestation; placenta; uterine invasion; cytotrophoblast; aneuploidy; fluorescence in situ hybridization ID CONFINED PLACENTAL MOSAICISM; PREIMPLANTATION GENETIC DIAGNOSIS; ANEUPLOIDY INVOLVING CHROMOSOME-1; IN-SITU HYBRIDIZATION; SATELLITE DNA PROBES; SPONTANEOUS-ABORTIONS; CYTOTROPHOBLAST DIFFERENTIATION; UNIPARENTAL DISOMY; HUMAN TROPHOBLASTS; INTERPHASE CELLS AB In the mature chorion, one of the membranes that exist during pregnancy between the developing fetus and mother, human placental cells form highly specialized tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes; however, chromosome losses were detected infrequently. With chromosomes gained in what appeared to be a chromosome-specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on gestational age, but were strongly associated with the extraembryonic compartment at the fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we conclude that aneuploidy is a part of the normal process of placentation potentially limiting the proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect on the organism. C1 [Weier, Jingly F.; Ferlatte, Christy] Univ Calif San Francisco, San Francisco, CA 94143 USA. [Weier, Jingly F.; Ferlatte, Christy; Weier, Heinz-Ulli G.] UC LBNL, Div Life Sci, Dept Canc & DNA Damage Responses, Berkeley, CA USA. RP Weier, HUG (reprint author), EO Lawrence Berkeley Natl Lab, Div Life Sci, Dept Canc & DNA Damage Responses, 1 Cyclotron Rd,MS 977-250, Berkeley, CA 94720 USA. EM ugweier@lbl.gov FU Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231]; NIH [CA88258, HD41425, HD45736, CA123370, CA136685] FX This work was supported in parts by a grant from the Director, Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231 and NIH grants CA88258, HD41425, HD45736, CA123370 and CA136685. Ideograms were kindly provided by D. Adler, Ph.D., Dept. of Pathology, Univ. Washington. We acknowledge the support from researchers and staff at UCSF providing metaphase spreads and placental tissues. We wish to thank Drs. M. McMaster and S. Fisher for continued support and many helpful discussions. NR 65 TC 5 Z9 7 U1 0 U2 1 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1389-2029 J9 CURR GENOMICS JI Curr. Genomics PD SEP PY 2010 VL 11 IS 6 BP 402 EP 408 DI 10.2174/138920210793175994 PG 7 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 645FO UT WOS:000281436800005 PM 21358984 ER PT J AU Houston, JP Naivar, MA Freyer, JP AF Houston, Jessica P. Naivar, Mark A. Freyer, James P. TI Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry SO CYTOMETRY PART A LA English DT Article DE fluorescence lifetime; digital flow cytometry; phase-sensitive flow cytometry ID FLUOROCHROME-LABELED CELLS; DEUTERIUM-OXIDE; DNA; PARTICLES; BINDING; SIGNALS AB Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 mu s, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 is and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to similar to 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will allow both better dissemination of this technology and better exploitation of the traditionally underutilized parameter of fluorescence lifetime. Published 2010 Wiley-Liss, Inc.(dagger) C1 [Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Freyer, JP (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM freyer@lanl.gov FU National Institutes of Health [RR001315]; Laboratory Directed Research; National Flow Cytometry and Sorting Research Resource; Laboratory Directed Research and Development; Los Alamos National Laboratory FX Grant sponsor: National Institutes of Health; Grant number: RR001315 (National Flow Cytometry and Sorting Research Resource); Grant sponsor: Laboratory Directed Research and Grant sponsor: National Flow Cytometry and Sorting Research Resource; Laboratory Directed Research and Development (Director's Office Postdoctoral Fellow funding from the Los Alamos National Laboratory); NR 18 TC 23 Z9 23 U1 1 U2 22 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4922 J9 CYTOM PART A JI Cytom. Part A PD SEP PY 2010 VL 77A IS 9 BP 861 EP 872 DI 10.1002/cyto.a.20930 PG 12 WC Biochemical Research Methods; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 646AU UT WOS:000281508100009 PM 20662090 ER PT J AU Carvalho, EA Ushizima, DM Medeiros, FNS Martins, CIO Marques, RCP Oliveira, INS AF Carvalho, E. A. Ushizima, D. M. Medeiros, F. N. S. Martins, C. I. O. Marques, R. C. P. Oliveira, I. N. S. TI SAR imagery segmentation by statistical region growing and hierarchical merging SO DIGITAL SIGNAL PROCESSING LA English DT Article DE SAR image segmentation; Region growing; Hierarchical merging; Hypothesis testing; Speckle noise ID SPECKLE; NOISE; EDGE; MODEL; ENHANCEMENT; ALGORITHMS; DETECTOR AB This paper presents an algorithm to segment synthetic aperture radar (SAR) images, corrupted by speckle noise. Most standard segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, i.e. without any preprocessing step. The algorithm includes a statistical region growing procedure combined with hierarchical region merging. The region growing step oversegments the input radar image, thus enabling region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for performance improvement. We have tested and assessed the proposed technique on artificially speckled image and real SAR data. (C) 2009 Elsevier Inc. All rights reserved. C1 [Carvalho, E. A.; Medeiros, F. N. S.; Martins, C. I. O.; Marques, R. C. P.] Univ Fed Ceara, Grp Proc Imagens, Dept Teleinformat DETI, Fortaleza, Ceara, Brazil. [Ushizima, D. M.] Lawrence Berkeley Natl Lab, Math Grp, Berkeley, CA USA. [Ushizima, D. M.] Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA USA. [Oliveira, I. N. S.] Univ Fed Ceara, Dept Elect Engn, Fortaleza, Ceara, Brazil. RP Medeiros, FNS (reprint author), Campus Pici,Bloco 725, BR-60455970 Fortaleza, Ceara, Brazil. EM eduardo@deti.ufc.br; daniela@hpcrd.lbl.gov; fsombra@ufc.br; charlesiury@vision.ime.usp.br; regismarques@cefet-ce.br; isombra@ufc.br RI Medeiros, Fatima/E-1168-2011; Marques, Regis/D-2039-2013 OI Medeiros, Fatima/0000-0002-4143-1486; FU CNPq, Brazil; Office of Energy Research, U.S. Department of Energy [DE-AC03-76SF00098] FX This work was developed with partial financial support from CNPq, Brazil and from Applied Mathematical Science sub-program of the Office of Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098. The authors also gratefully acknowledge the valuable contributions of the referees. NR 39 TC 18 Z9 21 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1051-2004 J9 DIGIT SIGNAL PROCESS JI Digit. Signal Prog. PD SEP PY 2010 VL 20 IS 5 BP 1365 EP 1378 DI 10.1016/j.dsp.2009.10.014 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA 613IY UT WOS:000278973800006 ER PT J AU Dubinsky, EA Silver, WL Firestone, MK AF Dubinsky, Eric A. Silver, Whendee L. Firestone, Mary K. TI Tropical forest soil microbial communities couple iron and carbon biogeochemistry SO ECOLOGY LA English DT Article DE bacteria; carbon cycling; iron reduction; Luquillo Mountains; methanogenisis; microbial ecology; Puerto Rico; tropical forest soils ID FE(III) OXIDE REDUCTION; FRESH-WATER SEDIMENT; SALT-MARSH SEDIMENTS; PROCESS-BASED MODEL; FERRIC IRON; OXIDIZING BACTERIA; ORGANIC-CARBON; FE(III)-REDUCING BACTERIA; PHOSPHORUS SOLUBILIZATION; IRON(III) REDUCTION AB We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500-5000 mm/yr) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10(9) cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44% of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron reducers. The coexistence of large populations of iron-reducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH(4) production in these upland tropical forests. C1 [Dubinsky, Eric A.; Silver, Whendee L.; Firestone, Mary K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Ecosyst Sci Div, Berkeley, CA 94720 USA. RP Dubinsky, EA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM eric.dubinsky@gmail.com RI Silver, Whendee/H-1118-2012; Dubinsky, Eric/D-3787-2015 OI Dubinsky, Eric/0000-0002-9420-6661 FU National Science Foundation (NSF) [DEB-0543558, DEB-0218039]; NASA [NGT5-30463]; Mellon Foundation; USDA- IITF FX We thank Jeff Bird, Paul Brooks, Julian Fortney, Don Herman, and Forest Kaser for laboratory assistance. The USDA International Institute for Tropical Forestry (IITF) provided logistical and infrastructural support for field research. A National Science Foundation (NSF) Graduate Research Fellowship and NASA Earth System Science Fellowship NGT5-30463 supported E. A. Dubinsky. NSF grant DEB-0543558 and a grant from the Mellon Foundation to M. K. Firestone and W. L. Silver funded this work. Support was also provided by NSF grant DEB-0218039 to the Institute of Tropical Ecosystem Studies, UPR, and USDA- IITF as part of the Long-Term Ecological Research Program in the Luquillo Experimental Forest. NR 62 TC 49 Z9 51 U1 7 U2 91 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD SEP PY 2010 VL 91 IS 9 BP 2604 EP 2612 DI 10.1890/09-1365.1 PG 9 WC Ecology SC Environmental Sciences & Ecology GA 648MO UT WOS:000281698400017 PM 20957955 ER PT J AU Kreitzer, JD Belk, MC Gonzalez, DB Tuckfield, RC Shiozawa, DK Rasmussen, JE AF Kreitzer, J. D. Belk, M. C. Gonzalez, D. B. Tuckfield, R. C. Shiozawa, D. K. Rasmussen, J. E. TI Ontogenetic diet shift in the June sucker Chasmistes liorus (Cypriniformes, Catostomidae) in the early juvenile stage SO ECOLOGY OF FRESHWATER FISH LA English DT Article DE zooplankton; Copepoda; Brachionus; size-structured interactions; foraging; development ID CONNECTED WATERBODIES; FEEDING RELATIONSHIPS; LOWLAND RIVERS; GREEN RIVER; LARVAL; UTAH; COMMUNITIES; FISHES; FOOD; LAKE AB Ontogenetic diet shifts are common in fishes and often occur during early life stages. The larval and early juvenile period is critical in the life cycle of the endangered June sucker, Chasmistes liorus (Teleostei: Catostomidae). High larval and juvenile mortality leads to low recruitment to the breeding population and hence a declining natural population. To understand diet composition and dynamics in June sucker at early life stages, diet was quantified and compared to available food items in the natural environment during the early juvenile stage. Rotifers (Brachionus sp.) were the primary diet item at week 10, but by week 12 a small cyclopoid copepod (Microcyclops rubellus) became predominant. Availability of diet items varied little across the experimental period. The increase in size of young suckers may explain this rapid dietary shift, but there are some inconsistencies with the size selection argument. This diet shift represents an important nutritional change that should be considered in development of diets for young June sucker and in assessing suitability of nursery habitats. C1 [Kreitzer, J. D.; Belk, M. C.; Gonzalez, D. B.; Shiozawa, D. K.; Rasmussen, J. E.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. [Tuckfield, R. C.] Ecostatys, Aiken, SC USA. [Tuckfield, R. C.] Savannah River Ecol Lab, Aiken, SC USA. RP Kreitzer, JD (reprint author), Brigham Young Univ, Dept Biol, 401 WIDB, Provo, UT 84602 USA. EM joshkreitzer@gmail.com FU Utah Division of Wildlife Resources FX We thank J. B. Johnson, E. J. Billman and L. S. Belk for helpful comments on the manuscript. We also thank D. Markle and an anonymous reviewer for their suggestions which have greatly improved this article. Our thanks also go to the many undergraduate students who were involved in identifying and enumerating zooplankton from stomach contents and availability samples. This research was funded by a grant from the June Sucker Recovery Implementation Program through the Utah Division of Wildlife Resources. Permits for experimental work on endangered species were provided by the Utah Division of Wildlife Resources and the U.S. Fish and Wildlife Service. Research was approved through the Institutional Animal Care and Use Committee at Brigham Young University. NR 28 TC 5 Z9 5 U1 3 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0906-6691 J9 ECOL FRESHW FISH JI Ecol. Freshw. Fish PD SEP PY 2010 VL 19 IS 3 BP 433 EP 438 DI 10.1111/j.1600-0633.2010.00427.x PG 6 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 639SQ UT WOS:000280995200012 ER PT J AU Hu, SC Xu, TF Chaung, T Chan, DYL AF Hu, Shih-Cheng Xu, Tengfang Chaung, Tony Chan, David Y. -L. TI Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan SO ENERGY LA English DT Article DE Energy utilization; Capacity utilization; DRAM; Energy efficiency AB Driven by technology advances and demand for enhanced productivity, migration of wafer fabrication for DRAM (Dynamic Random Access Memory) toward increased wafer size has become the fast-growing trend in semiconductor industry. Taiwan accounts for about 18% of the total DRAM wafer production in the world. The energy use required for operating wafer fabrication plants (fabs) is intensive and has become one of the major concerns to production power reliability in the island. This paper characterizes the energy use in four 300 mm DRAM wafer fabs in Taiwan through performing surveys and on-site measurements. Specifically, the objectives of this study are to characterize the electric energy consumption and production of 300 mm DRAM fabs by using various performance metrics, including PEI ((production efficiency index), annual electric power consumption normalized by annual produced wafer area) and EUI ((electrical utilization index), annual electric power consumption normalized by UOP (units of production), which is defined as the product of annual produced wafer area and the average number of mask layers of a wafer). The results show that the PEI and EUI values are 0.743 kWh/cm(2) and 0.0272 kWh/UOP, respectively. Using EUI in assessing energy efficiency of the fab production provides more consistent comparisons than using PEI alone. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hu, Shih-Cheng; Chaung, Tony] Natl Taipei Univ Technol, Dept Energy & Refrigerating Airconditioning Engn, Taipei 106, Taiwan. [Xu, Tengfang] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Int Energy Studies Grp, Berkeley, CA USA. [Chan, David Y. -L.] Ind Technol Res Inst, Energy & Environm Res Labs, Hsinchu, Taiwan. RP Hu, SC (reprint author), Natl Taipei Univ Technol, Dept Energy & Refrigerating Airconditioning Engn, 1 Sect 3,Chung Hsiao E Rd, Taipei 106, Taiwan. EM schu.ntut@gmail.com FU Energy Bureau, Ministry of Economic Affairs, Taiwan; Industrial Technology Research Institute (ITRI) in Taiwan FX The authors would like to acknowledge the financial supports from the Energy Bureau, Ministry of Economic Affairs, Taiwan and Industrial Technology Research Institute (ITRI) in Taiwan. NR 12 TC 3 Z9 3 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD SEP PY 2010 VL 35 IS 9 BP 3788 EP 3792 DI 10.1016/j.energy.2010.05.030 PG 5 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 642BM UT WOS:000281178000032 ER PT J AU Kramer, KJ Meier, WR Latkowski, JF Abbott, RP AF Kramer, K. J. Meier, W. R. Latkowski, J. F. Abbott, R. P. TI Parameter study of the LIFE engine nuclear design SO ENERGY CONVERSION AND MANAGEMENT LA English DT Article; Proceedings Paper CT 14th International Conference on Emerging Nuclear Energy Systems CY JUN 29-JUL 03, 2009 CL Ericeira, PORTUGAL DE LIFE; Fusion-fission; Hybrid; Nuclear; Inertial; Fusion ID FISSION ENERGY LIFE; IGNITION; POWER AB LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at similar to 13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power is held at 2000 MW by continuously varying the (6)Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp-down and the overall balance of plant utilization. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kramer, K. J.; Meier, W. R.; Latkowski, J. F.; Abbott, R. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kramer, K. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Kramer, KJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM kramer12@llnl.gov; meier5@llnl.gov NR 27 TC 5 Z9 6 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0196-8904 J9 ENERG CONVERS MANAGE JI Energy Conv. Manag. PD SEP PY 2010 VL 51 IS 9 SI SI BP 1744 EP 1750 DI 10.1016/j.enconman.2009.12.041 PG 7 WC Thermodynamics; Energy & Fuels; Mechanics SC Thermodynamics; Energy & Fuels; Mechanics GA 607NP UT WOS:000278511100002 ER PT J AU Botterud, A Kristiansen, T Ilic, MD AF Botterud, Audun Kristiansen, Tarjei Ilic, Marija D. TI The relationship between spot and futures prices in the Nord Pool electricity market SO ENERGY ECONOMICS LA English DT Article DE Electricity; Spot markets; Futures prices; Convenience yield; Risk premium ID NATURAL-GAS; RISK; PREMIUMS; STORAGE; POWER; COST AB We analyze 11 years of historical spot- and futures prices from the hydro-dominated Nord Pool electricity market. We find that futures prices tend to be higher than spot prices. The average convenience yield is therefore negative, but varies by season and depends on the storage levels in hydro reservoirs. The average realized return on holding a long position in the futures market is also negative. The negative convenience yield and risk premium contrast empirical findings in most other commodity markets. We argue that differences between the supply and demand sides in terms of risk preferences and the ability to take advantage of short-term price variations can contribute to explain the observed relationship between spot-and futures prices. In addition, our analysis shows that the relationship between spot and futures prices is clearly linked to the physical state of the system, such as hydro inflow, reservoir levels, and demand. (C) 2009 Elsevier B.V. All rights reserved. C1 [Botterud, Audun] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Kristiansen, Tarjei] RBS Sempra Commod, London, England. [Ilic, Marija D.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Botterud, A (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abotterud@anl.gov; tarjeikr@yahoo.com; milic@ece.cmu.edu NR 28 TC 34 Z9 34 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD SEP PY 2010 VL 32 IS 5 BP 967 EP 978 DI 10.1016/j.eneco.2009.11.009 PG 12 WC Economics SC Business & Economics GA 670VE UT WOS:000283454600003 ER PT J AU Lekov, AB Franco, VH Wong-Parodi, G McMahon, JE Chan, P AF Lekov, Alex B. Franco, Victor H. Wong-Parodi, Gabrielle McMahon, James E. Chan, Peter TI Economics of residential gas furnaces and water heaters in US new construction market SO ENERGY EFFICIENCY LA English DT Article DE Residential; Gas appliances; Venting; New construction; Life-cycle cost analysis; Water heating; Space heating AB New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces. C1 [Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lekov, AB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ABLekov@lbl.gov; VHFranco@lbl.gov; GWong-Parodi@lbl.gov; JEMcMahon@lbl.gov; PTChan@lbl.gov NR 22 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD SEP PY 2010 VL 3 IS 3 BP 203 EP 222 DI 10.1007/s12053-009-9061-y PG 20 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 796QT UT WOS:000293067400003 ER PT J AU Vine, E Prahl, R Meyers, S Turiel, I AF Vine, Edward Prahl, Ralph Meyers, Steve Turiel, Isaac TI An approach for evaluating the market effects of energy efficiency programs SO ENERGY EFFICIENCY LA English DT Article DE Energy efficiency; Market effects; Market transformation; Evaluation; Attribution AB This paper presents work currently being carried out in California on evaluating market effects. We first outline an approach for conducting market effect studies that includes the six key steps that were developed in study plans: (1) a scoping study that characterizes a particular market, reviews relevant market effects studies, develops integrated market and program theories, and identifies market indicators; (2) analysis of market evolution, using existing data sources; (3) analysis of market effects, based on sales data and interviews with key market actors; (4) analysis of attribution; (5) estimation of energy savings; and (6) assessment of sustainability (i.e., the extent to which any observed market effects are likely to persist in the absence or reduction of public intervention, and thus has helped to transform the market). We describe the challenges in conducting this type of analysis (1) selecting a comparison state(s) to California for a baseline, (2) availability and quality of data (limiting analyses), (3) inconsistent patterns of results, and (4) conducting market effects evaluations at one point in time, without the benefit of years of accumulated research findings, and then provide some suggestions for future research on the evaluation of market effects. With the promulgation of market transformation programs, the evaluation of market effects will be critical. We envision that these market effects studies will help lay the foundation for the refinement of techniques for measuring the impacts of programs that seek to transform markets for energy efficiency products and practices. C1 [Vine, Edward] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Vine, Edward] Calif Inst Energy & Environm, Berkeley, CA USA. [Prahl, Ralph] Panopt Energy Consulting, Madison, WI USA. [Turiel, Isaac] Northgate Energy Consulting, Berkeley, CA USA. RP Vine, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Bldg 90-4000, Berkeley, CA 94720 USA. EM elvine@lbl.gov FU CPUC FX We want to thank the CPUC for providing support for our work on market effects, including the following CPUC staff: Tim Drew, Kay Hardy, Mikhail Haramati, and Ayat Osman. This paper does not necessarily represent the views of the CPUC or any of its employees. We also want to acknowledge the following people for their review of an earlier draft: Harley Barnes, Ryan Barry, Scott Dimetrosky, Kay Hardy, Lynn Hoefgen, Ken Keating, Lori Medgal, Tim Pettit, Mitch Rosenberg, Ellen Rubinstein, Bill Steigelmann, and John Stoops. Finally, we thank the anonymous reviewers for their thoughtful and constructive comments on an earlier version of this paper. NR 9 TC 5 Z9 5 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD SEP PY 2010 VL 3 IS 3 BP 257 EP 266 DI 10.1007/s12053-009-9070-x PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 796QT UT WOS:000293067400006 ER PT J AU Salazar, JM Diwekar, UM Zitney, SE AF Salazar, Juan M. Diwekar, Urmila M. Zitney, Stephen E. TI Stochastic Simulation of Pulverized Coal (PC) Processes SO ENERGY & FUELS LA English DT Article AB An increasing population and electricity demand in the U.S. require capacity expansion of power systems. The National Energy Technology Laboratory (NETL), U.S. Department of Energy (DOE), has invested considerable efforts on research and development to improve the design and simulation of these power plants. Incorporation of novel process synthesis techniques and realistic simulation methodologies yield optimal flowsheet configurations and accurate estimation of their performance parameters. To provide a better estimation of such performance indicators, simulation models should predict the process behavior based on not only deterministic values of well-known input parameters but also uncertain variables associated with simulation assumptions. In this work, the stochastic simulation of a load-following pulverized coal (PC) power plant takes into account the variation of three input variables, namely, atmospheric air temperature, atmospheric air humidity, and generation load. These uncertain variables are characterized with probability density functions (pdfs) obtained from available atmospheric and electrical energy generation data. The stochastic simulation is carried out by obtaining a sample of values from the pdfs that generates a set of scenarios under which the model is run. An efficient sampling technique [Hammersley sequence sampling (HSS)] guarantees a set of scenarios uniformly distributed throughout the uncertain variable range. Then, each model run generates results on performance parameters as cycle efficiency, carbon emissions, sulfur emissions, and water consumption that are statistically analyzed after all runs are completed. Among these parameters, water consumption is of importance because an increasing demand has been observed mostly in arid regions of the country and, therefore, constrains the operability of the processes. This water consumption is significantly affected by atmospheric uncertainties. The original deterministic process model simulation was designed in Aspen Plus, and a CAPE-OPEN compliant stochastic simulation capability is employed to run the uncertainty analysis. Initially, the influences of atmospheric conditions and load change on the performance parameters are analyzed separately to understand their individual influences on the process, and then their simultaneous variation is analyzed to generate more realistic estimations of the process performance. C1 [Salazar, Juan M.; Diwekar, Urmila M.] VRI, Ctr Uncertain Syst Tools Optimizat & Management, Clarendon Hills, IL 60514 USA. [Zitney, Stephen E.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Diwekar, UM (reprint author), VRI, Ctr Uncertain Syst Tools Optimizat & Management, Clarendon Hills, IL 60514 USA. EM urmila@vri-custom.org NR 18 TC 3 Z9 3 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2010 VL 24 BP 4961 EP 4970 DI 10.1021/ef100164z PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 666JM UT WOS:000283111000045 ER PT J AU Ranjan, S Sridhar, S Fruehan, RJ AF Ranjan, S. Sridhar, S. Fruehan, R. J. TI Reaction of FeS with Simulated Slag and Atmosphere SO ENERGY & FUELS LA English DT Article ID SYSTEM; PYRITE; IRON AB Dependent upon the size and density of coal particles used in gasifiers, the resulting ash may contain significant quantities of FeS. It is desirable to have these ash particles react and dissolve in the slag. The rate and rate-controlling reaction of FeS droplets with simplified reactor gas and slags were determined using a confocal scanning laser microscope (CSLM) and a thermogravimetric analyzer (TGA). The shrinking FeS droplets were found to remain at the slag/gas interface for a period and conformed to a lens shape, and size change was attributed to both the reaction and submersion into the slag. Whereas the exact rate could not be determined using the CSLM, the rate increased with increasing CO(2), decreasing FeO in the slag, and was slow in argon. The change in the rate with experimental values is consistent with the hypothesis that the rate is controlled by mass transfer of the product gases, COS and SO(2), away from the particles. TGA results indicated that the measured rate was consistent with the rate computed from the relevant mass-transfer equations and the experimentally determined mass-transfer coefficient. The results indicate that FeS should react, thereby forming FeO, which dissolves in the gasifier slag in a coal gasifier. C1 [Ranjan, S.; Sridhar, S.; Fruehan, R. J.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Ranjan, S.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Sridhar, S.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Ranjan, S (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM sranjan@andrew.cmu.edu FU National Energy Technology Laboratory (NETL) [41817.606.07.02] FX This work was carried out through the RDS site support contract for Multiphase Flow Collaboratory Contract 41817.606.07.02 funded by the Gasification Technology Program at the National Energy Technology Laboratory (NETL). NR 12 TC 3 Z9 3 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2010 VL 24 BP 5002 EP 5007 DI 10.1021/ef100541c PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 666JM UT WOS:000283111000049 ER PT J AU Fisher, BT Knothe, G Mueller, CJ AF Fisher, Brian T. Knothe, Gerhard Mueller, Charles J. TI Liquid-Phase Penetration under Unsteady In-Cylinder Conditions: Soy- and Cuphea-Derived Biodiesel Fuels Versus Conventional Diesel SO ENERGY & FUELS LA English DT Article ID DISTILLATION CURVE METHOD; CONTINUOUS THERMODYNAMICS; DROPLET VAPORIZATION; IMPROVEMENTS; MODEL; OIL; MIXTURES; GASOLINE; ENGINE; TEMPERATURE AB Accelerated dilution of engine lubrication oil with unburned fuel is a significant potential issue when utilizing fuels that contain biodiesel. Biodiesel produced from some feedstocks is less volatile than conventional diesel, which makes wall impingement of liquid fuel more likely and reduces the ability of the fuel to evaporate out of engine oil once dilution has occurred. These are growing concerns, particularly with the emergence of strategies that involve injection of fuel into relatively cool, low-density, in-cylinder gases. Examples of these strategies include early direct-injection and late-cycle post-injection, which facilitate partially premixed low-temperature combustion and aftertreatment system regeneration, respectively. A quantitative understanding of liquid-phase penetration for biodiesel fuels is needed to help mitigate these potential issues. This work reports liquid penetration lengths measured in an optical engine under time-varying in-cylinder conditions for soy- and cuphea-derived biodiesel fuels (soy methyl esters = SME and cuphea methyl esters = CuME, respectively) and a commercial ultralow-sulfur diesel (ULSD). Experiments included laser light scattering for measurement of the liquid length and cylinder-pressure data acquisition for heat-release analysis. Data were acquired for multiple injection pressures, intake-manifold pressures, and injection timings for each fuel. SME and CuME both were found to have similar to 20-30% longer liquid lengths than U LSD, despite a large concentration of higher-volatility components in CuME. Compared to ULSD and SME, however, CuME liquid lengths were more dependent on injection timing. Results suggest that early direct-injection and late-cycle post-injection strategies may benefit from the use of CuME vs SME. C1 [Fisher, Brian T.; Mueller, Charles J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Knothe, Gerhard] ARS, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. RP Fisher, BT (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM btfishe@sandia.gov FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Funding for this research was provided by the U.S. Department of Energy, Office of Vehicle Technologies. We thank program manager Kevin Stork for supporting this study. The research was conducted at the Combustion Research Facility, Sandia National Laboratories (Livermore, California). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also gratefully acknowledge Kevin R. Steidley (USDA/ARS/NCAUR) for skillfully synthesizing the cuphea methylesters. NR 85 TC 28 Z9 28 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2010 VL 24 BP 5163 EP 5180 DI 10.1021/ef100594p PG 18 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 666JM UT WOS:000283111000067 ER PT J AU Smith, EA Lee, YJ AF Smith, Erica A. Lee, Young Jin TI Petroleomic Analysis of Bio-oils from the Fast Pyrolysis of Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap Mass Spectrometry Approach SO ENERGY & FUELS LA English DT Article ID WATER-INSOLUBLE FRACTION; LIGNIN; RESONANCE; BIOFUEL; MS AB Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O(4) compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a +/- 2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin. C1 [Lee, Young Jin] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Lee, YJ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM yjlee@iastate.edu RI Lee, Young Jin/F-2317-2011 OI Lee, Young Jin/0000-0002-2533-5371 FU Iowa State University and Ames Laboratory, U.S. DOE; ConocoPhillips; U.S. Department of Education FX This work was supported by grants from Iowa State University and Ames Laboratory, U.S. DOE, and partially supported by ConocoPhillips. The authors thank Robert C. Brown, Center for Sustainable Environmental Technology at Iowa State University, for bio-oil samples and valuable discussions and Christopher J. Thompson at Bruker for LDI-FT ICR analysis of bio-oils. E.A.S. acknowledges a Graduate Assistance in Areas of National Need (GAANN) fellowship from the U.S. Department of Education. NR 29 TC 32 Z9 33 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2010 VL 24 BP 5190 EP 5198 DI 10.1021/ef100629a PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 666JM UT WOS:000283111000069 ER PT J AU Jones, RW Reinot, T McClelland, JF AF Jones, Roger W. Reinot, Tonu McClelland, John F. TI Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass SO ENERGY & FUELS LA English DT Article ID 2-DIMENSIONAL GAS-CHROMATOGRAPHY; WOOD; LIGNIN; COMPONENTS; OIL; IDENTIFICATION; SPECTROSCOPY; DEGRADATION; TEMPERATURE; CELLULOSE AB Pyrolysis of biomass produces both pyrolysis oil and solid char. In this study, poplar has been pyrolyzed in a stepwise fashion over a series of temperatures from 200 to 500 degrees C, and both the primary products contributing to pyrolysis oil and the changes in the pyrolyzing poplar surface leading toward char have been characterized at each step. The primary products were identified by direct analysis in real time (DART) mass spectrometry, and the changes in the poplar surface were monitored using Fourier transform infrared (FTIR) photoacoustic spectroscopy, with a sampling depth of a few micrometers. The primary products from pyrolyzing cellulose, xylan, and lignin under similar conditions were also characterized to identify the sources of the poplar products. C1 [Jones, Roger W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Ctr Sustainable Environm Technol, Ames, IA 50011 USA. RP Jones, RW (reprint author), Iowa State Univ, Ames Lab, US DOE, 109 Spedding Hall, Ames, IA 50011 USA. EM jonesrw@ameslab.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-07CH11358]; U.S. Department of Energy; ConocoPhillips Company FX This work was performed at Ames Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract DE-AC02-07CH11358 with the U.S. Department of Energy. This work was funded in part by the ConocoPhillips Company. We thank Dr. Monlin Kuo of Iowa State University for supplying the powdered and slab poplar used in this study. NR 32 TC 8 Z9 10 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2010 VL 24 BP 5199 EP 5209 DI 10.1021/ef100655n PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 666JM UT WOS:000283111000070 ER PT J AU Raugei, M Fthenakis, V AF Raugei, Marco Fthenakis, Vasilis TI Cadmium flows and emissions from CdTe PV: future expectations SO ENERGY POLICY LA English DT Article DE Cadmium telluride photovoltaics; Cadmium; Prospective analysis AB Cadmium telluride photovoltaic (CdTe PV) technology is growing rapidly, and already represents the largest contributor to non-silicon based photovoltaics worldwide. We assessed the extent to which CdTe PV will play a notable role in the Cd use and emission flows in the future, and whether it will be environmentally beneficial or detrimental. Our results show that while CdTe PV may account for a large percentage of future global Cd demand, its role in terms of Cd sequestration may be beneficial. We calculated that its potential contribution to yearly global Cd emissions to air and water may well be orders-of-magnitude lower than the respective current Cd emissions rates in Europe. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Raugei, Marco] Pompeu Fabra Univ, Int Trade Business Sch ESCI, Environm Management Res Grp GiGa, Barcelona 08003, Spain. [Fthenakis, Vasilis] Columbia Univ, New York, NY 10027 USA. [Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Raugei, M (reprint author), Pompeu Fabra Univ, Int Trade Business Sch ESCI, Environm Management Res Grp GiGa, Barcelona 08003, Spain. EM marco.raugei@esci.es RI Raugei, Marco/N-4737-2015 OI Raugei, Marco/0000-0001-5026-8556 NR 24 TC 14 Z9 14 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2010 VL 38 IS 9 BP 5223 EP 5228 DI 10.1016/j.enpol.2010.05.007 PG 6 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 623MD UT WOS:000279743500044 ER PT J AU Kaufman, AS Meier, PJ Sinistore, JC Reinemann, DJ AF Kaufman, Andrew S. Meier, Paul J. Sinistore, Julie C. Reinemann, Douglas J. TI Applying life-cycle assessment to low carbon fuel standards-How allocation choices influence carbon intensity for renewable transportation fuels SO ENERGY POLICY LA English DT Article DE LCA; Ethanol; Bioenergy ID ETHANOL; ENERGY; CORN; LCA; AGRICULTURE; EMISSIONS; SYSTEM AB The Energy Independence and Security Act (EISA) of 2007 requires life-cycle assessment (LCA) for quantifying greenhouse gas emissions (GHGs) from expanded U.S. biofuel production. To qualify under the Renewable Fuel Standard, cellulosic ethanol and new corn ethanol must demonstrate 60% and 20% lower emissions than petroleum fuels, respectively. A combined corn-grain and corn-stover ethanol system could potentially satisfy a major portion of renewable fuel production goals. This work examines multiple LCA allocation procedures for a hypothetical system producing ethanol from both corn grain and corn stover. Allocation choice is known to strongly influence GHG emission results for corn-ethanol. Stover-derived ethanol production further complicates allocation practices because additional products result from the same corn production system. This study measures the carbon intensity of ethanol fuels against EISA limits using multiple allocation approaches. Allocation decisions are shown to be paramount. Under varying approaches, carbon intensity for corn ethanol was 36-79% that of gasoline, while carbon intensity for stover-derived ethanol was -10% to 44% that of gasoline. Producing corn-stover ethanol dramatically reduced carbon intensity for corn-grain ethanol, because substantially more ethanol is produced with only minor increases in emissions. Regulatory considerations for applying LCA are discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kaufman, Andrew S.; Meier, Paul J.; Sinistore, Julie C.; Reinemann, Douglas J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Meier, Paul J.] Univ Wisconsin, Energy Inst, Madison, WI 53706 USA. RP Meier, PJ (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, 3529 Microbial Sci,1550 Linden Dr, Madison, WI 53706 USA. EM pmeier@wisc.edu FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494] FX This work was part of the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and the U.S. Department of Energy. We thank R. Cesar Izaurralde, Joint Global Change Research Institute, for the biogeochemical modeling of feedstock production which provides valuable input to this work. NR 46 TC 37 Z9 37 U1 2 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2010 VL 38 IS 9 BP 5229 EP 5241 DI 10.1016/j.enpol.2010.05.008 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 623MD UT WOS:000279743500045 ER PT J AU Wang, Z Jin, YF Wang, M Wu, W AF Wang, Zhao Jin, Yuefu Wang, Michael Wu, Wei TI New fuel consumption standards for Chinese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chinese passenger vehicle fleet SO ENERGY POLICY LA English DT Article DE Passenger vehicle; Fuel economy; Oil savings AB A new fuel consumption standard for passenger vehicles in China, the so-called Phase 3 standard, was approved technically in 2009 and will take effect in 2012. This standard aims to introduce advanced energy-saving technologies into passenger vehicles and to reduce the average fuel consumption rate of Chinese new passenger vehicle fleet in 2015 to 7 L/100 km. The Phase 3 standard follows the evaluating system by specifying fuel consumption targets for sixteen individual mass-based classes. Different from compliance with the Phases 1 and 2 fuel consumption standards, compliance of the Phase 3 standard is based on corporate average fuel consumption (CAFC) rates for individual automobile companies. A transition period from 2012 to 2014 is designed for manufacturers to gradually adjust their production plans and introduce fuel-efficient technologies. In this paper, we, the designers of the Phase 3 standard, present the design of the overall fuel consumption reduction target, technical feasibility, and policy implications of the Phase 3 standard. We also explore several enforcement approaches for the Phase 3 standard with financial penalties of non-compliance as a priority. Finally, we estimate the overall effect of the Phase 3 standard on oil savings and CO2 emission reductions. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, Zhao; Jin, Yuefu; Wu, Wei] CATARC, Tianjin 300162, Peoples R China. [Wang, Michael] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Wang, Z (reprint author), CATARC, 218 Chenglin Rd, Tianjin 300162, Peoples R China. EM wangzhao_sd@126.com FU Energy Foundation FX We thank Mr. Huiming Gong of the China Sustainable Energy Program of the Energy Foundation for his support of this study and the Drafting Group of the New Chinese Fuel Consumption Standard for Passenger vehicles for their inputs during development of the Phase 3 standard. We are also grateful to the two anonymous reviewers for their helpful comments. NR 13 TC 33 Z9 33 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2010 VL 38 IS 9 BP 5242 EP 5250 DI 10.1016/j.enpol.2010.05.012 PG 9 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 623MD UT WOS:000279743500046 ER PT J AU Marzouk, OA Huckaby, ED AF Marzouk, Osama A. Huckaby, E. David TI A COMPARATIVE STUDY OF EIGHT FINITE-RATE CHEMISTRY KINETICS FOR CO/H-2 COMBUSTION SO ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS LA English DT Article DE chemistry kinetics; reaction mechanisms; syngas; nonpremixed flame; ODE solver; CFD ID CARBON MONOXIDE/HYDROGEN MIXTURES; SYNGAS COMBUSTION; FLAME STRUCTURE; JET FLAMES; TURBULENT; SIMULATION; IGNITION; MODEL; FLOW AB We compare the performance and computational cost of 8 kinetic models (3 global and 5 elementary) that describe the finite-rate chemistry of syngas combustion. We apply them in simulating a turbulent jet flame with syngas diluted by 30% nitrogen. We model the turbulence by a modified k-epsilon model and the turbulence-chemistry interaction by the partially stirred reactor approach. To integrate the chemistry equations, we nominally use explicit fifth-order embedded Runge-Kutta ODE solver. But semi-implicit Bulirsch-Stoer and implicit Euler were also used. The computational time depends on the number of reaction steps and the ODE solver. Five models overpredict the maximum flame temperature (by 200 K-320 K). Two models underpredict it by 240 K and 580 K. The global model that is based on the Westbrook-Dryer (1981) model for hydrocarbon fuels gives the best agreement with measurements, and also has low computational demand. Therefore, it is recommended for modeling turbulent syngas flames. C1 [Marzouk, Osama A.; Huckaby, E. David] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Marzouk, OA (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM omarzouk@vt.edu FU U.S. DOE FX The support of this work by U.S. DOE Existing Plants Emissions and Capture program is gratefully acknowledged. The first author was supported in part by an appointment to the U.S. Department of Energy (DOE) Postgraduate Research Program at the National Energy Technology Laboratory administered by the Oak Ridge Institute for Science and Education. NR 50 TC 21 Z9 22 U1 1 U2 13 PU HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG PI HONG KONG PA HUNG HOM, KOWLOON, HONG KONG, 00000, PEOPLES R CHINA SN 1994-2060 J9 ENG APPL COMP FLUID JI Eng. Appl. Comp. Fluid Mech. PD SEP PY 2010 VL 4 IS 3 BP 331 EP 356 PG 26 WC Engineering, Multidisciplinary; Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 649DH UT WOS:000281747100001 ER PT J AU Quinn, NWT Ortega, R Rahilly, PJA Royer, CW AF Quinn, Nigel W. T. Ortega, Ricardo Rahilly, Patrick J. A. Royer, Caleb W. TI Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Salt management; Sensors; Sensor networks; Water quality; Forecasting; Environmental decision support ID SOIL ELECTRICAL-CONDUCTIVITY; SPATIAL VARIABILITY; DECISION-SUPPORT; CALIFORNIA; SALT; TOOL AB Management of river salt loads in a complex and highly regulated river basin such as the San Joaquin River Basin of California presents significant challenges for current Information Technology. Computer-based numerical models are used as a means of simulating hydrologic processes and water quality within the basin and can be useful tools for organizing Basin data in a structured and readily accessible manner. These models can also be used to extend information derived from environmental sensors within existing monitoring networks to areas outside these systems based on similarity factors - since it would be cost prohibitive to collect data for every channel or pollutant source within the Basin. A common feature of all hydrologic and water quality models is the ability to perform mass balances. This paper describes the use of a number of state-of-the-art sensor technologies that have been deployed to obtain water and salinity mass balances for a 60,000 ha tract of seasonally managed wetlands in the San Joaquin River Basin of California. These sensor technologies are being combined with more traditional environmental monitoring techniques to support real-time salinity management (RTSM) in the River Basin. Two of these new technology applications: YSI-Econet (which supports continuous flow and salinity monitoring of surface water deliveries and seasonal wetland drainage); and electromagnetic salinity mapping (a remote sensing technology for mapping soil salinity in the surface soils) - have not previously been reported in the literature. Continuous sensor deployments that experience more widespread use include: weather station sensor arrays - used to estimate wetland pond evaporation and moist soil plant evapotranspiration; high resolution multi-spectral imagery - used to discriminate between and estimate the area of wetland moist soil plant vegetation: and groundwater level sensors - used primarily to estimate seepage losses beneath a wetland pond during flood-up. Important issues associated with quality assurance of continuous data are discussed and the application of a state-of-the-art software product AQUARIUS, which streamlines the process of data error correction and dissemination, is described as an essential element of ensuring successful RTSM implementation in the San Joaquin River Basin. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Quinn, Nigel W. T.; Royer, Caleb W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ortega, Ricardo] Dept Fish & Game, Los Banos, CA USA. [Quinn, Nigel W. T.] US Bur Reclamat, Washington, DC 20240 USA. RP Quinn, NWT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM nwquinn@lbl.gov RI Quinn, Nigel/G-2407-2015 OI Quinn, Nigel/0000-0003-3333-4763 FU California State Water Resources Control Board; U.S. Bureau of Reclamation Science and Technology Program; California Department of Water Resources; Grassland Water District; California Department of Fish and Game; US Bureau of Reclamation, California Department of Water Resources; California Regional Water Quality Control Board FX This work was supported by the California State Water Resources Control Board, the U.S. Bureau of Reclamation Science and Technology Program and the California Department of Water Resources. The authors would like to thank the US Bureau of Reclamation, California Department of Water Resources and California Regional Water Quality Control Board who have funded associated research projects over the past decade directed at implementing RTSM in the San Joaquin Basin of California. Thanks also to the Grassland Water District and the California Department of Fish and Game who provide in-kind support to current projects within the GEA. YSI Inc. has provided valuable technical support for deployment of the YSI-ECONET technology in California. NR 39 TC 16 Z9 19 U1 5 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD SEP PY 2010 VL 25 IS 9 BP 1045 EP 1058 DI 10.1016/j.envsoft.2009.10.011 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 613OM UT WOS:000278988600008 ER PT J AU Hesbach, PA Kim, AG Abel, ASP Lamey, SC AF Hesbach, Peter A. Kim, Ann G. Abel, Alexander S. P. Lamey, Steven C. TI Serial batch leaching procedure for characterization of coal fly ash SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Ash characterization; Fly ash; Leaching method ID TRACE-ELEMENTS; ENVIRONMENTAL-IMPACT; WASTE MATERIALS; METAL RELEASE; BOTTOM ASH; LEACHABILITY; COMBUSTION; TESTS; AVAILABILITY; MANAGEMENT AB Although many leaching methods have been used for various purposes by research groups, industries, and regulators, there is still a need for a simple but comprehensive approach to leaching coal utilization by-products and other granular materials in order to estimate potential release of heavy metals when these materials are exposed to natural fluids. A serial batch characterization method has been developed at the National Energy Technology Laboratory that can be completed in 2-3 days to serve as a screening tool. The procedure provides an estimate of cumulative metals release under varying pH conditions, and leaching the sample at increasing liquid/solid ratios can indicate the rate at which this process will occur. This method was applied to eight fly ashes, adapted to the acidic or alkaline nature of the ash. The leachates were analyzed for 30 elements. The test was run in quadruplicate, and the relative standard deviation (RSD) was used as a measure of method reproducibility. RSD values are between 0.02 and 0.70, with the majority of the RSD values less than 0.3. The serial batch leaching procedure was developed as a simple, relatively quick, yet comprehensive method of estimating the risk of heavy metal release from fly ash when it is exposed to natural fluids, such as acid rain or groundwater. Tests on a random selection of coal fly ashes have shown it to be a reasonably precise method for estimating the availability and long-term release of cations from fly ash. C1 [Hesbach, Peter A.; Lamey, Steven C.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Kim, Ann G.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Abel, Alexander S. P.] LLC, NETL Res & Dev Solut, Morgantown, WV USA. RP Hesbach, PA (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM peter.hesbach@netl.doe.gov FU Electric Power Research Institute FX The authors would like to extend their appreciation to the Electric Power Research Institute for partial financial support for this work and to Robert Thompson (NETL, RDS/Parsons) for performing the metals analyses. NR 40 TC 5 Z9 5 U1 1 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD SEP PY 2010 VL 168 IS 1-4 BP 523 EP 545 DI 10.1007/s10661-009-1132-1 PG 23 WC Environmental Sciences SC Environmental Sciences & Ecology GA 635FH UT WOS:000280640500046 PM 19690972 ER PT J AU Weyens, N Truyens, S Dupae, J Newman, L Taghavi, S van der Lelie, D Carleer, R Vangronsveld, J AF Weyens, Nele Truyens, Sascha Dupae, Joke Newman, Lee Taghavi, Safiyh van der Lelie, Daniel Carleer, Robert Vangronsveld, Jaco TI Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings SO ENVIRONMENTAL POLLUTION LA English DT Article DE Pseudomonas putida W619-TCE; Endophyte; Trichloroethylene; Phytoremediation; Poplar ID PHYTOREMEDIATION; BACTERIA; RHIZOBACTERIA; L. AB The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to ICE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and ICE phytotoxicity, but resulted in strongly reduced amounts of ICE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Weyens, Nele; Truyens, Sascha; Dupae, Joke; Carleer, Robert; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium. [Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Vangronsveld, J (reprint author), Hasselt Univ, Ctr Environm Sci, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. EM jaco.vangronsveld@uhasselt.be FU Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen); UHasselt Methusalem [08M03VGRJ]; U.S. Department of Energy at the Brookhaven National Laboratory [LDRD05-063, LDRD09-005] FX This research was funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for N.W. and for J.D. This work was also supported by the UHasselt Methusalem project 08M03VGRJ. Work by D.v.d.L. and L.N. was funded by Laboratory Directed Research and Development funds (LDRD05-063 and LDRD09-005) at the Brookhaven National Laboratory under contract with the U.S. Department of Energy. NR 16 TC 38 Z9 40 U1 2 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD SEP PY 2010 VL 158 IS 9 BP 2915 EP 2919 DI 10.1016/j.envpol.2010.06.004 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA 643OL UT WOS:000281306400016 PM 20598789 ER PT J AU Martin, I Panagopoulos, C AF Martin, Ivar Panagopoulos, C. TI Nernst effect and diamagnetic response in a stripe model of superconducting cuprates SO EPL LA English DT Article ID PHASE; FLUCTUATIONS; BI2SR2CACU2O8+DELTA; PSEUDOGAP; MAGNETISM AB We examine the possibility that the experimentally observed enhancement of superconducting (SC) fluctuations above the SC transition temperature in the underdoped cuprates is caused by stripes -an intrinsic electronic inhomogeneity, common to hole-doped cuprates. By evaluating the strengths of the diamagnetic response and the Nernst effect within a striped SC model, we find results that are qualitatively consistent with the experimental observations (WANG YAYU et al., Phys. Rev. B, 73 (2006) 024510). We make a prediction for anisotropic thermopower in detwinned samples that can be used to further test the proposed scenario. Copyright (C) EPLA, 2010 C1 [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Panagopoulos, C.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Panagopoulos, C.] FORTH, Iraklion 71003, Greece. [Panagopoulos, C.] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 6373616, Singapore. RP Martin, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM i-martin@lanl.gov RI PANAGOPOULOS, CHRISTOS/G-8754-2011 FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; LANL/LDRD; EURYI; National Research Foundation, Singapore; [MEXT-CT-2006-039047] FX We acknowledge useful discussions with C. KALLIN, D. VAN DER MAREL, and D. PODOLSKY, and thank Aspen Center for Physics, where this work was initiated, for hospitality. The work of IM was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and supported by the LANL/LDRD Program. CP acknowledges financial support from MEXT-CT-2006-039047, EURYI and the National Research Foundation, Singapore. NR 33 TC 7 Z9 7 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2010 VL 91 IS 6 AR 67001 DI 10.1209/0295-5075/91/67001 PG 5 WC Physics, Multidisciplinary SC Physics GA 674BO UT WOS:000283708700021 ER PT J AU Wang, SK Mamontov, E Bai, M Hansen, FY Taub, H Copley, JRD Sakai, VG Gasparovic, G Jenkins, T Tyagi, M Herwig, KW Neumann, DA Montfrooij, W Volkmann, UG AF Wang, S. -K. Mamontov, E. Bai, M. Hansen, F. Y. Taub, H. Copley, J. R. D. Sakai, V. Garcia Gasparovic, G. Jenkins, T. Tyagi, M. Herwig, K. W. Neumann, D. A. Montfrooij, W. Volkmann, U. G. TI Localized diffusive motion on two different time scales in solid alkane nanoparticles SO EPL LA English DT Article ID ELASTIC NEUTRON-SCATTERING; X-RAY-SCATTERING; MOLECULAR-MOTION; SIO2 SURFACE; FILMS; TRITRIACONTANE; SPECTROMETER; PARAFFINS; N-C33H68; PHASES AB High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase. Copyright (C) EPLA, 2010 C1 [Wang, S. -K.; Bai, M.; Hansen, F. Y.; Taub, H.; Montfrooij, W.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Wang, S. -K.; Bai, M.; Hansen, F. Y.; Taub, H.; Montfrooij, W.] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [Mamontov, E.; Herwig, K. W.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Copley, J. R. D.; Sakai, V. Garcia; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Neumann, D. A.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Sakai, V. Garcia; Tyagi, M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Volkmann, U. G.] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile. [Wang, S. -K.] Ctr Comprehens Canc, Palm Springs, CA 92263 USA. [Hansen, F. Y.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. RP Wang, SK (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. EM taubh@missouri.edu RI Herwig, Kenneth/F-4787-2011; Volkmann, Ulrich/H-1802-2014; Tyagi, Madhu Sudan/M-4693-2014; Mamontov, Eugene/Q-1003-2015 OI Tyagi, Madhu Sudan/0000-0002-4364-7176; Mamontov, Eugene/0000-0002-5684-2675 FU U.S. National Science Foundation [DMR-0705974]; NSF [DMR-0454672]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. National Science Foundation under Grant No. DMR-0705974 and utilized facilities supported in part by the NSF under agreement No. DMR-0454672. A portion of this research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank C. M. Brown for useful discussions. NR 22 TC 7 Z9 7 U1 0 U2 5 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2010 VL 91 IS 6 AR 66007 DI 10.1209/0295-5075/91/66007 PG 6 WC Physics, Multidisciplinary SC Physics GA 674BO UT WOS:000283708700018 ER PT J AU Wille, HC Hermann, RP Sergueev, I Pelzer, U Mochel, A Claudio, T Persson, J Ruffer, R Said, A Shvyd'ko, YV AF Wille, H. -C. Hermann, R. P. Sergueev, I. Pelzer, U. Moechel, A. Claudio, T. Persson, J. Rueffer, R. Said, A. Shvyd'ko, Yu. V. TI Nuclear forward and inelastic spectroscopy on Te-125 and (Sb2Te3)-Te-125 SO EPL LA English DT Article ID RESONANT SCATTERING EXPERIMENTS; DENSITY-OF-STATES; SYNCHROTRON-RADIATION; PHONON DENSITY; X-RAYS; MOSSBAUER; ABSORPTION; OPTICS; TE125 AB We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by Te-125 and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12) ns and 35493.12(30) eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials. Copyright (C) EPLA, 2010 C1 [Wille, H. -C.] DESY, D-22607 Hamburg, Germany. [Hermann, R. P.; Moechel, A.; Claudio, T.; Persson, J.] Forschungszentrum Julich, Inst Festkorperforsch, JCNS, D-52425 Julich, Germany. [Hermann, R. P.; Moechel, A.; Claudio, T.; Persson, J.] Forschungszentrum Julich, JARA FIT, D-52425 Julich, Germany. [Hermann, R. P.; Moechel, A.; Claudio, T.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Sergueev, I.; Pelzer, U.; Rueffer, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Said, A.; Shvyd'ko, Yu. V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wille, HC (reprint author), DESY, D-22607 Hamburg, Germany. EM hans.christian.wille@desy.de RI Wille, Hans-Christian/C-3881-2013; Hermann, Raphael/F-6257-2013 OI Hermann, Raphael/0000-0002-6138-5624 FU Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz-University Young Investigator Group FX The authors acknowledge the European Synchrotron Radiation Facility for provision of the synchrotron radiation facilities at beamline ID22N, TH. DESCHEAUX-BEAUME DANG for the developement of the forward detector electronics and A. I. CHUMAKOV for helpful discussions. RH acknowledges support from the Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz-University Young Investigator Group "Lattice Dynamic in Emerging Functional Materials". NR 43 TC 13 Z9 13 U1 2 U2 12 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2010 VL 91 IS 6 AR 62001 DI 10.1209/0295-5075/91/62001 PG 5 WC Physics, Multidisciplinary SC Physics GA 674BO UT WOS:000283708700007 ER PT J AU Bell, JB Garcia, AL Williams, SA AF Bell, John B. Garcia, Alejandro L. Williams, Sarah A. TI COMPUTATIONAL FLUCTUATING FLUID DYNAMICS SO ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE LA English DT Article DE Fluctuating hydrodynamics; Landau-Lifshitz-Navier-Stokes equations; stochastic partial differential equations; finite difference methods; binary gas mixtures ID RAYLEIGH-TAYLOR INSTABILITY; HYDRODYNAMIC FLUCTUATIONS; KOLMOGOROV FLOW; THERMOCHEMICAL SYSTEM; PHASE-SEPARATION; DILUTE GAS; SIMULATION; THERMODYNAMICS; EQUILIBRIUM; DIFFUSION AB This paper describes the extension of a recently developed numerical solver for the Landau-Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g., Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate good agreement with theoretical results and molecular simulation. C1 [Bell, John B.] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Garcia, Alejandro L.] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA. [Williams, Sarah A.] Univ N Carolina, Dept Math, Carolina Ctr Interdisciplinary Appl Math, Chapel Hill, NC 27599 USA. RP Bell, JB (reprint author), Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. EM algarcia@algarcia.org FU DOE Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank B. Alder, M. Browne, A. Donev, A. de la Fuente, and P. Relich for helpful discussions. The work of J. Bell and A. Garcia was supported by the Applied Mathematics Program of the DOE Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 59 TC 20 Z9 20 U1 2 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0764-583X J9 ESAIM-MATH MODEL NUM JI ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. PD SEP-OCT PY 2010 VL 44 IS 5 BP 1085 EP 1105 DI 10.1051/m2an/2010053 PG 21 WC Mathematics, Applied SC Mathematics GA 644GP UT WOS:000281362200012 ER PT J AU Romanelli, P Bravin, A Barbarisi, M Carnevale, D Brauer-Krisch, E Prezado, Y Le Duc, G Requardt, H Serduc, R Mascio, G Anschel, DJ Lembo, G AF Romanelli, P. Bravin, A. Barbarisi, M. Carnevale, D. Brauer-Krisch, E. Prezado, Y. Le Duc, G. Requardt, H. Serduc, R. Mascio, G. Anschel, D. J. Lembo, G. TI Modulation of epileptogenic activity using microradiosurgical cortical transsection in an animal model of focal epilepsy SO EUROPEAN JOURNAL OF NEUROLOGY LA English DT Meeting Abstract CT 14th Congress of European-Federation-of-Neurological-Societies CY SEP, 2010 CL Geneva, SWITZERLAND SP European Federat Neurol Soc C1 [Romanelli, P.; Barbarisi, M.; Mascio, G.] Neurosci Dept Neuromed, Pozzilli, Italy. [Bravin, A.; Brauer-Krisch, E.; Prezado, Y.; Le Duc, G.; Requardt, H.; Serduc, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Carnevale, D.] Univ Roma La Sapienza, Pozzilli, Italy. [Anschel, D. J.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RI prezado, yolanda/B-8455-2009; prezado, yolanda/O-7376-2014; Bravin, Alberto/R-8633-2016 OI prezado, yolanda/0000-0001-5957-2327; Bravin, Alberto/0000-0001-6868-2755 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1351-5101 J9 EUR J NEUROL JI Eur. J. Neurol. PD SEP PY 2010 VL 17 SU 3 SI SI BP 62 EP 62 PG 1 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 800BD UT WOS:000293331100125 ER PT J AU Jackson, JD AF Jackson, J. D. TI Comment on 'Maxwell equations and the redundant gauge degree of freedom' SO EUROPEAN JOURNAL OF PHYSICS LA English DT Editorial Material AB In the paper Wong (2009 Eur. J. Phys. 30 1401), the author makes the claim that in classical electromagnetic theory the longitudinal electric field is instantaneous, corresponding to action at a distance, contrary to popular and correct belief. We point out that the determination of the speed of propagation of electromagnetic fields requires specification of the initial condition of the sources or equivalent. The Coulomb field of a stationary point charge proves nothing. We discuss the limitations of the Helmholtz decomposition in determining the physically significant longitudinal (and transverse) part(s) of the electric field. That decomposition does yield a longitudinal electric field that is the negative gradient of the instantaneous scalar potential of the Coulomb gauge (del . A(C) = 0). However, a necessary contribution from the negative time derivative of the Coulomb-gauge vector potential exactly cancels the Helmholtz contribution. The result is a fully causal and gauge-invariant electric field. We describe in detail a simple example to illustrate the above features and the universal onset of the static 'instantaneous' regime throughout a region of space that expands with the speed of light, with the induction and radiation fields only on its boundary surface. C1 [Jackson, J. D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jackson, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Jackson, JD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jdjackson@lbl.gov NR 5 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 J9 EUR J PHYS JI Eur. J. Phys. PD SEP PY 2010 VL 31 IS 5 BP L79 EP L84 DI 10.1088/0143-0807/31/5/L02 PG 6 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 644WY UT WOS:000281414000030 ER PT J AU Sibirtsev, A Haidenbauer, J Hammer, HW Krewald, S Meissner, UG AF Sibirtsev, A. Haidenbauer, J. Hammer, H. -W. Krewald, S. Meissner, U. -G. TI Proton-proton scattering above 3 GeV/c SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID NUCLEON-NUCLEON-SCATTERING; P ELASTIC-SCATTERING; RELATIVISTIC OPTICAL-MODEL; MESON-EXCHANGE MODEL; LARGE ANGULAR REGION; TOTAL CROSS-SECTIONS; GEV-C; ANALYZING POWER; POLARIZATION PARAMETER; HIGH-ENERGIES AB A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A(NN) is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the p, omega, f(2), and a(2) trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model. C1 [Sibirtsev, A.; Hammer, H. -W.; Meissner, U. -G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Sibirtsev, A.; Hammer, H. -W.; Meissner, U. -G.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Sibirtsev, A.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Sibirtsev, A.; Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Sibirtsev, A.; Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. [Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. RP Sibirtsev, A (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. EM j.haidenbauer@fz-juelich.de OI Krewald, Siegfried/0000-0002-8596-8429 FU Helmholtz Association [VH-VI-231]; EU; DFG [SFB/TR 16]; U.S. DOE [DE-AC05-06OR23177]; JLab [SURA-06-C0452]; COSY FFE [41760632 (COSY-085)] FX We are indebted to N.N. Nikolaev for instructive discussions. This work is partially supported by the Helmholtz Association through funds provided to the virtual institute "Spin and strong QCD" (VH-VI-231), by the EU Integrated Infrastructure Initiative HadronPhysics2 Project (WP4 QCDnet) and by DFG (SFB/TR 16, "Subnuclear Structure of Matter"). This work was also supported in part by U.S. DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. A.S. acknowledges support by the JLab grant SURA-06-C0452 and the COSY FFE grant No. 41760632 (COSY-085). NR 94 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD SEP PY 2010 VL 45 IS 3 BP 357 EP 372 DI 10.1140/epja/i2010-11014-1 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 652AS UT WOS:000281972900009 ER PT J AU Boyce, BL AF Boyce, B. L. TI A Sequential Tensile Method for Rapid Characterization of Extreme-value Behavior in Microfabricated Materials SO EXPERIMENTAL MECHANICS LA English DT Article DE Silicon; MEMS; Fracture; Strength; Weibull ID SELF-ASSEMBLED MONOLAYERS; MECHANICAL CHARACTERIZATION; POLYCRYSTALLINE SILICON; FRACTURE-TOUGHNESS; POLYSILICON FILMS; STRENGTH; MEMS AB A high-throughput sequential tensile test method has been developed to characterize the fracture strength distribution of microfabricated polycrystalline silicon, the primary structural material used in microelectromechanical systems (MEMS). The resulting dataset of over 1,000 microtensile tests reveals subtle extreme-value behavior in the tails of the distribution, demonstrating that the common two-parameter Weibull distribution is inferior to a three-parameter Weibull model. The results suggest the existence of a cut-off or threshold stress (1.446 GPa for this particular material) below which tensile failure will not occur. The existence of a cut-off stress suggests that the material's flaw size distribution and toughness distribution are both also bounded. From an application perspective, the cut-off stress provides a statistically-sound basis for reliable design. While the sequential method is demonstrated here for tensile strength distributions in polycrystalline silicon MEMS, the technique could be extended to a wide range of mechanical tests (bending strength, elastic modulus, fracture toughness, creep, etc.) for both microsystem and conventional materials. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800,MS0889, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov RI Boyce, Brad/H-5045-2012 OI Boyce, Brad/0000-0001-5994-1743 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author would like to thank T. Crenshaw for laboratory support, Dr. J.R. Michael, B. McKenzie, R. Grant for SEM imaging, and Drs. J.W. Foulk, M. P de Boer, and E. D. Reedy, Jr. for useful discussions on this topic. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 15 Z9 15 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD SEP PY 2010 VL 50 IS 7 BP 993 EP 997 DI 10.1007/s11340-009-9286-x PG 5 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 641WT UT WOS:000281162800013 ER PT J AU Liu, C AF Liu, C. TI Elastic Constants Determination and Deformation Observation Using Brazilian Disk Geometry SO EXPERIMENTAL MECHANICS LA English DT Article DE Brazilian disk; Elastic constants; Failure; Digital image correlation; Optical technique ID DIGITAL-IMAGE-CORRELATION; DIAMETRAL COMPRESSION; TENSILE-STRENGTH AB Brazilian disk compression has been proposed as an alternative for measuring elastic constants of brittle solids with very low tensile strength (Hondros, Aust J Appl Sci 10:243-268, 1959). Subsequently however, the Brazilian disk geometry was mainly used for measuring fracture toughness and tensile strength of brittle materials, like rocks and concretes. In this study, we revisit the Brazilian disk specimen as a tool for determining elastic constants and for observing the deformation process up to failure. We used the optical digital image correlation (DIC) technique to obtain the displacement field on the specimen surface and proposed a scheme for determining the elastic constants from the measured displacement field and the applied load. Details of the elastic constant determination of a homogeneous material, epoxy resin, were presented. Comparison of the elastic constant measured using Brazilian disk with those obtained through more conventional means was carried out. We also present observations of the deformation evolution of the epoxy resin disk subjected to large nonlinear deformation up to failure and subjected to compressive loading and unloading. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Liu, C (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM cliu@lanl.gov FU Joint DoD/DOE; Enhanced Surveillance Campaign FX This study was supported by the Joint DoD/DOE Munitions Program and by the Enhanced Surveillance Campaign. The author also wants to thank Drs. Matthew W. Lewis and Philip Rae of Los Alamos National Laboratory for the valuable comments. NR 12 TC 11 Z9 11 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD SEP PY 2010 VL 50 IS 7 BP 1025 EP 1039 DI 10.1007/s11340-009-9281-2 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 641WT UT WOS:000281162800017 ER PT J AU Beresh, SJ Henfling, JF Spillers, RW AF Beresh, Steven J. Henfling, John F. Spillers, Russell W. TI Meander of a fin trailing vortex and the origin of its turbulence SO EXPERIMENTS IN FLUIDS LA English DT Article ID PARTICLE IMAGE VELOCIMETRY; WING-TIP VORTEX; LEADING-EDGE VORTICES; NEAR-FIELD; BOUNDARY-LAYER; UNSTEADY-FLOW; GENERATORS; SIMULATION; WATER AB The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude, while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core. C1 [Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; United States Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Justin A. Smith and Walter P. Wolfe of Sandia National Laboratories for numerous fruitful discussions regarding fin aerodynamics and trailing vortices, and Thomas W. Grasser of Sandia for his contributions to the hardware design and fabrication. This work was supported by Sandia National Laboratories and the United States Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 37 TC 13 Z9 13 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD SEP PY 2010 VL 49 IS 3 BP 599 EP 611 DI 10.1007/s00348-010-0825-0 PG 13 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 636BK UT WOS:000280702600004 ER PT J AU Prach, L Kirby, J Keasling, JD Alber, T AF Prach, Lisa Kirby, James Keasling, Jay D. Alber, Tom TI Diterpene production in Mycobacterium tuberculosis SO FEBS JOURNAL LA English DT Article DE cyclase; edaxadiene; Rv3377c; Rv3378c; tuberculosinol ID ISOPRENOID BIOSYNTHESIS; CYCLASE; TERPENTECIN; CHEMISTRY; GENES AB Diterpenes are a structurally diverse class of molecules common in plants, although they are very rarely found in bacteria. We report the identification in Mycobacterium tuberculosis (Mtb) of three diterpenes proposed to promote phagolysosome maturation arrest. MS analysis reveals that these diterpenes are novel compounds not previously identified in other organisms. The diterpene with highest abundance in Mtb has a mass fragmentation pattern identical to edaxadiene, which is produced in vitro from geranylgeranyl diphosphate by the enzymes Rv3377c and Rv3378c. A second diterpene found in Mtb has a similar mass spectrum, and is always observed in the same proportion relative to edaxadiene, indicating that it is a side product of the Rv3378c reaction in vivo. We name this second diterpene olefin edaxadiene B. The least abundant of the three diterpenes in Mtb extracts is tuberculosinol, a dephosphorylated side-product of the edaxadiene pathway intermediate produced by Rv3377c. A frameshift in Rv3377c in Mtb completely eliminates diterpene production, whereas expression of Rv3377c and Rv3378c in the nonpathogenic M. smegmatis is sufficient to produce edaxadiene and edaxadiene B. These studies define the pathway of edaxadiene and edaxadiene B biosynthesis in vivo. Rv3377c and Rv3378c are unique to Mtb and M. bovis, making them candidates for selective therapeutics and diagnostics. C1 [Prach, Lisa; Alber, Tom] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kirby, James; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Alber, T (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM tom@ucxray.berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU NIH [P01AI68135] FX We thank C. Sassetti (Univerisity of Massachusetts) for the gift of pTETGW; M. Schelle (University of California, Berkeley) for Mtb strains; and the TB Vaccine Testing and Research Materials Facility at Colorado State University for providing the gamma-irradiated H37Rv cells and Mtb genomic DNA. This work was supported by NIH grant P01AI68135 to T.A. NR 18 TC 10 Z9 10 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1742-464X J9 FEBS J JI FEBS J. PD SEP PY 2010 VL 277 IS 17 BP 3588 EP 3595 DI 10.1111/j.1742-4658.2010.07767.x PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 639TB UT WOS:000280996300013 PM 20670276 ER PT J AU Elifantz, H N'Guessan, LA Mouser, PJ Williams, KH Wilkins, MJ Risso, C Holmes, DE Long, PE Lovley, DR AF Elifantz, Hila N'Guessan, Lucie A. Mouser, Paula J. Williams, Kenneth H. Wilkins, Michael J. Risso, Carla Holmes, Dawn E. Long, Philip E. Lovley, Derek R. TI Expression of acetate permease-like (apl ) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE geobacter; apl genes; acetate; expression ID URANIUM-CONTAMINATED AQUIFER; DISSIMILATORY METAL REDUCTION; QUANTIFYING EXPRESSION; HARVESTING ELECTRODES; SP-NOV.; BIOREMEDIATION; GROUNDWATER; LIMITATION; DIVERSITY; SEDIMENTS AB The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone. C1 [Elifantz, Hila; N'Guessan, Lucie A.; Mouser, Paula J.; Risso, Carla; Holmes, Dawn E.; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Wilkins, Michael J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Holmes, Dawn E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Elifantz, H (reprint author), Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Microbial Ecol & Plant Sci, IL-91904 Jerusalem, Israel. EM helifantz@gmail.com RI Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155 FU Office of Science (BER), U.S. Department of Energy [DE-FC02-02ER63446, DE-FG02-07ER64377] FX We thank Joy Ward and Betsy Blunt for the technical support. We thank our collaborators at the Integrated Field Challenge program in Old Rifle, CO. This research was supported by the Office of Science (BER), U.S. Department of Energy, cooperative agreement no. DE-FC02-02ER63446 and grant no. DE-FG02-07ER64377. NR 38 TC 11 Z9 11 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD SEP PY 2010 VL 73 IS 3 BP 441 EP 449 DI 10.1111/j.1574-6941.2010.00907.x PG 9 WC Microbiology SC Microbiology GA 635CK UT WOS:000280633000003 PM 20533942 ER PT J AU Cohen, A Miller, M AF Cohen, Avner Miller, Marvin TI Bringing Israel's Bomb Out of the Basement Has Nuclear Ambiguity Outlived Its Shelf Life? SO FOREIGN AFFAIRS LA English DT Article AB For decades, Israel has maintained an "opaque" nuclear posture neither confirming nor denying that it possesses nuclear weapons. As pressure for Israel to join the Nuclear Nonproliferation Treaty grows and Israel's tensions with Iran mount, the time has come to reconsider this policy of nuclear ambiguity. Israel can loosen its policy of opacity without jeopardizing its security, and doing so would burnish its credentials as a responsible nuclear power. C1 [Cohen, Avner] Monterey Inst Int Studies, James Martin Ctr Nonproliferat Studies, Monterey, CA USA. [Miller, Marvin] MIT, Sci Technol & Soc Program, Cambridge, MA 02139 USA. [Miller, Marvin] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA. [Miller, Marvin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Miller, Marvin] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Cohen, A (reprint author), Monterey Inst Int Studies, James Martin Ctr Nonproliferat Studies, Monterey, CA USA. NR 0 TC 4 Z9 4 U1 1 U2 7 PU COUNC FOREIGN RELAT INC PI NEW YORK PA 58 E 68TH ST, NEW YORK, NY 10021 USA SN 0015-7120 J9 FOREIGN AFF JI Foreign Aff. PD SEP-OCT PY 2010 VL 89 IS 5 BP 30 EP + PG 16 WC International Relations SC International Relations GA 643YF UT WOS:000281336200004 ER PT J AU Bernot, MJ Sobota, DJ Hall, RO Mulholland, PJ Dodds, WK Webster, JR Tank, JL Ashkenas, LR Cooper, LW Dahm, CN Gregory, SV Grimm, NB Hamilton, SK Johnson, SL Mcdowell, WH Meyer, JL Peterson, B Poole, GC Valett, HM Arango, C Beaulieu, JJ Burgin, AJ Crenshaw, C Helton, AM Johnson, L Merriam, J Niederlehner, BR O'Brien, JM Potter, JD Sheibley, RW Thomas, SM Wilson, K AF Bernot, Melody J. Sobota, Daniel J. Hall, Robert O., Jr. Mulholland, Patrick J. Dodds, Walter K. Webster, Jackson R. Tank, Jennifer L. Ashkenas, Linda R. Cooper, Lee W. Dahm, Clifford N. Gregory, Stanley V. Grimm, Nancy B. Hamilton, Stephen K. Johnson, Sherri L. Mcdowell, William H. Meyer, Judith L. Peterson, Bruce Poole, Geoffrey C. Valett, H. Maurice Arango, Clay Beaulieu, Jake J. Burgin, Amy J. Crenshaw, Chelsea Helton, Ashley M. Johnson, Laura Merriam, Jeff Niederlehner, B. R. O'Brien, Jonathan M. Potter, Jody D. Sheibley, Richard W. Thomas, Suzanne M. Wilson, Kym TI Inter-regional comparison of land-use effects on stream metabolism SO FRESHWATER BIOLOGY LA English DT Article DE ecosystem respiration; land use; metabolism; primary production; stream ID MEDITERRANEAN STREAM; ECOSYSTEM METABOLISM; BIOFILM METABOLISM; NITRATE REMOVAL; TROPHIC STATE; RESPIRATION; PATTERNS; RIVER; FLOW; DENITRIFICATION AB P>1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions. 2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input. 3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams. 4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike's information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land-use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land-use categories in the catchment as regulators of ER. 5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER. 6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism. C1 [Bernot, Melody J.] Ball State Univ, Dept Biol, Muncie, IN 47306 USA. [Sobota, Daniel J.; Ashkenas, Linda R.; Gregory, Stanley V.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. [Sobota, Daniel J.] Washington State Univ, Sch Earth & Environm Sci, Vancouver, WA 98686 USA. [Hall, Robert O., Jr.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Dodds, Walter K.; Wilson, Kym] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Webster, Jackson R.; Valett, H. Maurice; Niederlehner, B. R.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. [Tank, Jennifer L.; Arango, Clay; Beaulieu, Jake J.; Johnson, Laura] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Cooper, Lee W.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. [Dahm, Clifford N.; Crenshaw, Chelsea; Sheibley, Richard W.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Grimm, Nancy B.; Sheibley, Richard W.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Hamilton, Stephen K.; Burgin, Amy J.; O'Brien, Jonathan M.] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Johnson, Sherri L.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA. [Mcdowell, William H.; Merriam, Jeff; Potter, Jody D.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Meyer, Judith L.; Helton, Ashley M.] Univ Georgia, Inst Ecol, Athens, GA 30602 USA. [Peterson, Bruce; Thomas, Suzanne M.] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [Poole, Geoffrey C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Sheibley, Richard W.] USGS Washington Water Sci Ctr, Tacoma, WA 98402 USA. RP Bernot, MJ (reprint author), Ball State Univ, Dept Biol, Muncie, IN 47306 USA. EM mjbernot@bsu.edu RI Mulholland, Patrick/C-3142-2012; Cooper, Lee/E-5251-2012; O'Brien, Jonathan/G-6786-2012; Grimm, Nancy/D-2840-2009; Burgin, Amy/G-7444-2014; McDowell, William/E-9767-2010; Hamilton, Stephen/N-2979-2014; Burgin, Amy/C-1528-2010; OI Cooper, Lee/0000-0001-7734-8388; Grimm, Nancy/0000-0001-9374-660X; Burgin, Amy/0000-0001-8489-4002; McDowell, William/0000-0002-8739-9047; Hamilton, Stephen/0000-0002-4702-9017; Burgin, Amy/0000-0001-8489-4002; Sheibley, Richard/0000-0003-1627-8536; Poole, Geoffrey/0000-0002-8458-0203 FU U.S. National Science Foundation [DEB-0111410]; University of Tennessee; NSF LTER FX This work was supported by a U.S. National Science Foundation grant (DEB-0111410) to PJM, University of Tennessee and additional NSF LTER support at many of the sites. We thank all LINX II site crews for research assistance, private and public landowners and community participants for access to sites and site information, D Gudder and two anonymous reviewers for comments on the manuscript, and BJ Roberts and RJ Bernot for helpful discussions. NR 64 TC 117 Z9 119 U1 10 U2 184 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0046-5070 EI 1365-2427 J9 FRESHWATER BIOL JI Freshw. Biol. PD SEP PY 2010 VL 55 IS 9 BP 1874 EP 1890 DI 10.1111/j.1365-2427.2010.02422.x PG 17 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 639TL UT WOS:000280997300006 ER PT J AU Kerisit, S Liu, CX AF Kerisit, Sebastien Liu, Chongxuan TI Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-DIFFRACTION; INTERATOMIC POTENTIAL MODEL; LIGAND-EXCHANGE REACTIONS; HYDRATED MAGNESIUM-ION; DYNAMICS SIMULATIONS; WATER-EXCHANGE; AB-INITIO; LIQUID WATER; VADOSE ZONE; ABSORPTION SPECTROSCOPY AB Potential-based molecular dynamics simulations of aqueous uranyl carbonate species (M(x)UO(2)(CO(3))(y)(2+2x-2y) with M = Mg, Ca, or Sr) were carried out to gain molecular-level insight into the hydration properties of these species. The simulation results were used to estimate the self-diffusion coefficients of these uranyl carbonate species, which often dominate uranyl speciation in groundwater systems. The diffusion coefficients obtained for the monoatomic alkaline-earth cations and polyatomic ions (uranyl, carbonate, and uranyl tri-carbonate) were compared with those calculated from the Stokes-Einstein (SE) equation and its variant formulation by Impey et al. (1983). Our results show that the equation of Impey et al. (1983), originally formulated for monovalent monoatomic ions, can be extended to divalent monoatomic ions, with some success in reproducing the absolute values and the overall trend determined from the molecular dynamics simulations, but not to polyatomic ions, for which the hydration shell is not spherically symmetrical. Despite the quantitative failure of both SE formulations, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed that a general linear dependence is observed for these complexes as expected from the SE equation. The nature of the alkaline-earth cation in the uranyl carbonate complexes was not found to have a significant effect on the ion's diffusion coefficient, which suggests that the use of a single diffusion coefficient for different alkaline-earth uranyl carbonate complexes in microscopic diffusion models is appropriate. The potential model reproduced well published quantum mechanical and experimental data of Ca(x)UO(2)(CO(3))(3)(2x-4) and of the individual constituent ions, and therefore is expected to offer reliable predictions of the structure of magnesium and strontium uranyl carbonate aqueous species, for which there is no structural data available to date. In addition, the interatomic distances reported for Ca(x)UO(2)(CO(3))(3)(2x-4) could help with the refinement of the interpretation of EXAFS data of these species, which is made difficult by the similar uranium-distant carbonate oxygen and uranium-calcium distances. An analysis of the dynamics of water exchange around the alkaline-earth cations revealed that the presence of the uranyl tri-carbonate molecule has a strong influence on the geometry of the cation's first hydration shell, which, in turn, can considerably affect the water exchange kinetics depending on whether the imposed geometry matches that around the isolated alkaline-earth cation. This result shows that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which may lead to different reactivities. Finally, significant changes in water residence time were also predicted when replacing carbonate for water ligands in the uranyl coordination shell. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kerisit, Sebastien; Liu, Chongxuan] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov RI Liu, Chongxuan/C-5580-2009 FU US Department of Energy (DOE), Office of Biological and Environmental Research (BER); US DOE's Office of Biological and Environmental Research (OBER) FX This research was supported by the US Department of Energy (DOE) through the Environmental Remediation Science Program (ERSP) of the Office of Biological and Environmental Research (BER). The computer simulations were performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US DOE's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-ACO5-76RLOI 830. NR 163 TC 56 Z9 57 U1 7 U2 68 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2010 VL 74 IS 17 BP 4937 EP 4952 DI 10.1016/j.gca.2010.06.007 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 636PT UT WOS:000280751400004 ER PT J AU Behr, WM Rood, DH Fletcher, KE Guzman, N Finkel, R Hanks, TC Hudnut, KW Kendrick, KJ Platt, JP Sharp, WD Weldon, RJ Yule, JD AF Behr, W. M. Rood, D. H. Fletcher, K. E. Guzman, N. Finkel, R. Hanks, T. C. Hudnut, K. W. Kendrick, K. J. Platt, J. P. Sharp, W. D. Weldon, R. J. Yule, J. D. TI Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID GLOBAL POSITIONING SYSTEM; EASTERN CALIFORNIA; SHEAR ZONE; COACHELLA VALLEY; EARTHQUAKE; ACCUMULATION; CONSTRAINTS; VELOCITY; MODELS; SOILS AB This study focuses on uncertainties in estimates of the geologic slip rate along the Mission Creek strand of the southern San Andreas fault where it offsets an alluvial fan (T2) at Biskra Palms Oasis in southern California. We provide new estimates of the amount of fault offset of the T2 fan based on trench excavations and new cosmogenic Be-10 age determinations from the tops of 12 boulders on the fan surface. We present three alternative fan offset models: a minimum, a maximum, and a preferred offset of 660 m, 980 m, and 770 m, respectively. We assign an age of between 45 and 54 ka to the T2 fan from the 10Be data, which is significantly older than previously reported but is consistent with both the degree of soil development associated with this surface, and with ages from U-series geochronology on pedogenic carbonate from T2, described in a companion paper by Fletcher et al. (this volume). These new constraints suggest a range of slip rates between similar to 12 and 22 mm/yr with a preferred estimate of similar to 14-17 mm/yr for the Mission Creek strand of the southern San Andreas fault. Previous studies suggested that the geologic and geodetic slip-rate estimates at Biskra Palms differed. We find, however, that considerable uncertainty affects both the geologic and geodetic slip-rate estimates, such that if a real discrepancy between these rates exists for the southern San Andreas fault at Biskra Palms, it cannot be demonstrated with available data. C1 [Behr, W. M.; Platt, J. P.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Rood, D. H.; Finkel, R.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Fletcher, K. E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Guzman, N.; Yule, J. D.] Calif State Univ Northridge, Dept Earth Sci, Northridge, CA 91330 USA. [Hanks, T. C.] US Geol Survey, Menlo Pk, CA 94025 USA. [Hudnut, K. W.; Kendrick, K. J.] US Geol Survey, Pasadena, CA 91106 USA. [Sharp, W. D.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [Weldon, R. J.] 1272 Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. RP Behr, WM (reprint author), Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. EM behr@usc.edu RI Hudnut, Kenneth/G-5713-2010; Behr, Whitney/G-1127-2011; Hudnut, Kenneth/B-1945-2009 OI Hudnut, Kenneth/0000-0002-3168-4797 FU National Science Foundation [EAR-0106924]; USGS [02HQAG0008] FX We thank Becky Dorsey, Mike Oskin, and Kurt Frankel for several very helpful discussions. We also thank numerous other Southern California Earthquake Center (SCEC) community researchers who participated in discussions and review during field trips to Biskra Palms, especially on January 31, 2008. Jonathan Matti, Doug Morton, and Patricia McCrory provided preliminary internal U.S. Geological Survey (USGS) reviews that greatly improved this paper prior to submission. Kurt Frankel, Eric Kirby, and an anonymous reviewer also provided formal reviews that led to significant improvements to this paper. We would also like to thank the employees at Granite Construction Company, Indio, California, particularly Sterling Wainscott for providing us with nearly unlimited access to the gravel quarry in which the Biskra Palms fan is located. This research was supported by the SCEC, which is funded by National Science Foundation cooperative agreement EAR-0106924 and USGS cooperative agreement 02HQAG0008. The SCEC contribution number for this paper is 1292. NR 55 TC 50 Z9 50 U1 0 U2 11 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 EI 1943-2674 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD SEP PY 2010 VL 122 IS 9-10 BP 1360 EP 1377 DI 10.1130/B30020.1 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 621EV UT WOS:000279558900002 ER PT J AU Johnson, LR AF Johnson, Lane R. TI An earthquake model with interacting asperities SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Earthquake dynamics; Seismicity and tectonics; Fractures and faults ID SMALL REPEATING EARTHQUAKES; 2004 PARKFIELD EARTHQUAKE; LOMA-PRIETA EARTHQUAKE; CRITICAL SLIP DISTANCE; STRONG-MOTION; INTERPLATE EARTHQUAKES; CALIFORNIA EARTHQUAKE; SEISMIC RADIATION; GREENS-FUNCTION; RUPTURE PROCESS AB P>A model is presented that treats an earthquake as the failure of asperities in a manner consistent with modern concepts of sliding friction. The mathematical description of the model includes results for elliptical and circular asperities, oblique tectonic slip, static and dynamic solutions for slip on the fault, stress intensity factors, strain energy and second-order moment tensor. The equations that control interaction of asperities are derived and solved both in a quasi-static tectonic mode when none of the asperities are in the process of failing and a dynamic failure mode when asperities are failing and sending out slip pulses that can trigger failure of additional asperities. The model produces moment rate functions for each asperity failure so that, given an appropriate Green function, the radiation of elastic waves is a straightforward calculation. The model explains an observed scaling relationship between repeat time and seismic moment for repeating seismic events and is consistent with the properties of pseudo-tachylites treated as fossil asperities. Properties of the model are explored with simulations of seismic activity that results when a section of the fault containing a spatial distribution of asperities is subjected to tectonic slip. The simulations show that the failure of a group of strongly interacting asperities satisfies the same scaling relationship as the failure of individual asperities, and that realistic distributions of asperities on a fault plane lead to seismic activity consistent with probability estimates for the interaction of asperities and predicted values of the Gutenberg-Richter a and b values. General features of the model are the exterior crack solution as a theoretical foundation, a heterogeneous state of stress and strength on the fault, dynamic effects controlled by propagating slip pulses and radiated elastic waves with a broad frequency band. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Seismol, Berkeley, CA 94720 USA. RP Johnson, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Seismol, Berkeley, CA 94720 USA. EM LRJohnson@lbl.gov FU US Department of Energy [DE-AC02-05CH11231]; DOE Office of Basic Energy Sciences FX The earthquake data in Fig. 2 are based on original observations by Bob Nadeau and the pseudo-tachylite data are based on original observations by Rudy Wenk. Calculations were performed at the Center for Computational Seismology (CCS) at LBNL, which is operated by the University of California for the US Department of Energy under contract No. DE-AC02-05CH11231, and the research is supported by the DOE Office of Basic Energy Sciences. NR 66 TC 9 Z9 9 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD SEP PY 2010 VL 182 IS 3 BP 1339 EP 1373 DI 10.1111/j.1365-246X.2010.04680.x PG 35 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 639TP UT WOS:000280997700018 ER PT J AU Harris, DB Kvaerna, T AF Harris, David B. Kvaerna, Tormod TI Superresolution with seismic arrays using empirical matched field processing SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time series analysis; Persistence; memory; correlations; clustering; Seismic monitoring and test-ban treaty verification; Body waves; Statistical seismology; Wave scattering and diffraction ID FORM CROSS-CORRELATION; TIME FOURIER-ANALYSIS; CALIFORNIA; EVENTS; COMMUNICATION AB P>Scattering and refraction of seismic waves can be exploited with empirical-matched field processing of array observations to distinguish sources separated by much less than the classical resolution limit. To describe this effect, we use the term 'superresolution', a term widely used in the optics and signal processing literature to denote systems that break the diffraction limit. We illustrate superresolution with Pn signals recorded by the ARCES array in northern Norway, using them to identify the origins with 98.2 per cent accuracy of 549 explosions conducted by closely spaced mines in northwest Russia. The mines are observed at 340-410 km range and are separated by as little as 3 km. When viewed from ARCES many are separated by just tenths of a degree in azimuth. This classification performance results from an adaptation to transient seismic signals of techniques developed in underwater acoustics for localization of continuous sound sources. Matched field processing is a potential competitor to frequency-wavenumber (FK) and waveform correlation methods currently used for event detection, classification and location. It operates by capturing the spatial structure of wavefields incident from a particular source in a series of narrow frequency bands. In the rich seismic scattering environment, closely spaced sources far from the observing array nonetheless produce distinct wavefield amplitude and phase patterns across the small array aperture. With observations of repeating events, these patterns can be calibrated over a wide band of frequencies (e.g. 2.5-12.5 Hz) for use in a power estimation technique similar to frequency-wavenumber analysis. The calibrations enable coherent processing at high frequencies at which wavefields normally are considered incoherent under a plane-wave model. C1 [Harris, David B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kvaerna, Tormod] NORSAR, N-2027 Kjeller, Norway. RP Harris, DB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM oregondsp@gmail.com OI Kvaerna, Tormod/0000-0003-4435-257X FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NORSAR [DE-FC52-05NA26604] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and NORSAR under contract DE-FC52-05NA26604. The authors thank Steve Myers, Bill Walter and Frode Ringdal for their help and suggestions, and Jerry Sweeney for his careful review of the manuscript. The authors also thank three anonymous reviewers for their careful reviews and comments, which significantly improved the manuscript. NR 27 TC 15 Z9 15 U1 1 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD SEP PY 2010 VL 182 IS 3 BP 1455 EP 1477 DI 10.1111/j.1365-246X.2010.04684.x PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 639TP UT WOS:000280997700025 ER PT J AU Maxwell, SC Rutledge, J Jones, R Fehler, M AF Maxwell, S. C. Rutledge, J. Jones, R. Fehler, M. TI Petroleum reservoir characterization using downhole microseismic monitoring SO GEOPHYSICS LA English DT Article ID VALLEY GAS-FIELD; HYDRAULIC STIMULATION; INDUCED SEISMICITY; GRANITIC-ROCKS; MICROEARTHQUAKES; CALIFORNIA; INVERSION; MIGRATION; LOCATION; PATTERNS AB Imaging of microseismic data is the process by which we use information about the source locations, timing, and mechanisms of the induced seismic events to make inferences about the structure of a petroleum reservoir or the changes that accompany injections into or production from the reservoir. A few key projects were instrumental in the development of downhole microseismic imaging.. Most recent microseismic projects involve imaging hydraulic-fracture stimulations, which has grown into a widespread fracture diagnostic technology. This growth in the application of the technology is attributed to the success of imaging the fracture complexity of the Barnett Shale in the Fort Worth basin, Texas, and the commercial value of the information obtained to improve completions and ultimately production in the field. The use of commercial imaging in the Barnett is traced back to earlier investigations to prove the technology with the Cotton Valley imaging project and earlier experiments at the M-Site in the Piceance basin, Colorado. Perhaps the earliest example of microseismic imaging using data from downhole recording was a hydraulic fracture monitored in 1974, also in the Piceance basin. However, early work is also documented where investigators focused on identifying microseismic trace characteristics without attempting to locate the microseismic sources. Applications of microseismic reservoir monitoring can be tracked from current steam-injection imaging, deformation associated with reservoir compaction in the Yibal field in Oman and the Ekofisk and Valhall fields in the North Sea, and production-induced activity in Kentucky, U.S.A. C1 [Maxwell, S. C.] Schlumberger, Hydraul Fracture Monitoring, Calgary, AB, Canada. [Rutledge, J.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. [Jones, R.] Schlumberger Cambridge Res Ltd, Cambridge CB3 0HG, England. [Fehler, M.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Maxwell, SC (reprint author), Schlumberger, Hydraul Fracture Monitoring, Calgary, AB, Canada. EM smaxwell@slb.com; jrutledge@lanl.gov; rjones23@s1b.com; fehler@mit.edu NR 66 TC 66 Z9 75 U1 6 U2 50 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2010 VL 75 IS 5 BP A129 EP A137 DI 10.1190/1.3477966 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680SJ UT WOS:000284254400009 ER PT J AU Pham, ND Igel, H de la Puente, J Kaser, M Schoenberg, MA AF Pham, Nguyen Dinh Igel, Heiner de la Puente, Josep Kaeser, Martin Schoenberg, Michael A. TI Rotational motions in homogeneous anisotropic elastic media SO GEOPHYSICS LA English DT Article ID TRANSVERSELY ISOTROPIC MEDIA; DISCONTINUOUS GALERKIN METHOD; RING LASER MEASUREMENTS; UNSTRUCTURED MESHES; SEISMIC ANISOTROPY; GROUND MOTIONS; WAVES; POLARIZATION; PARAMETERS; VELOCITY AB Rotational motions in homogeneous anisotropic elastic media are studied under the assumption of plane wave propagation. The main goal is to investigate the influences of anisotropy in the behavior of the rotational wavefield. The focus is on P-waves that theoretically do not generate rotational motion in isotropic media. By using the Kelvin-Christoffel equation, expressions are obtained of the rotational motions of body waves as a function of the propagation direction and the coefficients of the elastic modulus matrix. As a result, the amplitudes of the rotation rates and their radiation patterns are quantified and it is concluded that (1) for strong local earthquakes and typical reservoir situations quasi P-rotation rates induced by anisotropy are significant, recordable, and can be used for inverse problems; and (2) for teleseismic wavefields, anisotropic effects are unlikely to be responsible for the observed rotational energy in the P coda. C1 [Pham, Nguyen Dinh; Igel, Heiner; Kaeser, Martin] Univ Munich, Dept Earth & Environm Sci, Geophys Sect, Munich, Germany. [de la Puente, Josep] Inst Ciencias Mar, Barcelona Ctr Subsurface Imaging, Dept Marine Geol, E-08039 Barcelona, Spain. [Schoenberg, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Pham, ND (reprint author), Vietnam Acad Sci & Technol, Inst Geophys, Hanoi, Vietnam. EM nguyendp@igp-vast.vn RI Igel, Heiner/E-9580-2010; de la Puente, Josep/G-3165-2015 OI de la Puente, Josep/0000-0003-2608-1526 FU Geophysics Section of Ludwig-Maximilians-Universitat Munich; Vietnamese government, Vietnam's National Foundation for Science and Technology Development [322]; German Academic Exchange Service (DAAD); Repsol-YPF FX This research was supported by the Geophysics Section of Ludwig-Maximilians-Universitat Munich, the Vietnamese government (project 322 and Vietnam's National Foundation for Science and Technology Development), and the German Academic Exchange Service (DAAD). We thank the KONWIHR project and the Munich Leibniz Supercomputing Centre for computational resources and the European Human Resources Mobility Program (SPICE Project). We thank Mirko van der Baan and four anonymous reviewers for their suggestions and comments that helped to improve the manuscript. J. de la Puente acknowledges the funding of the Kaleidoscope project, supported by Repsol-YPF. H. Igel thanks Mike Schoenberg, who passed away in 2008, for his early thoughts on the problem, the discussions they had a few days before his death, and above all for his friendship and support. NR 40 TC 3 Z9 3 U1 0 U2 1 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2010 VL 75 IS 5 BP D47 EP D56 DI 10.1190/1.3479489 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680SJ UT WOS:000284254400022 ER PT J AU Cusack, DF Torn, MS McDowell, WH Silver, WL AF Cusack, Daniela F. Torn, Margaret S. McDowell, William H. Silver, Whendee L. TI The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils SO GLOBAL CHANGE BIOLOGY LA English DT Review DE C turnover; microbial enzymes; oxidative activity; Q(10); radiocarbon; roots; soil respiration ID DISSOLVED ORGANIC-CARBON; BELOW-GROUND CARBON; HARVARD FOREST USA; TEMPERATURE SENSITIVITY; CLIMATE-CHANGE; ELEVATED CO2; PUERTO-RICO; MATTER DECOMPOSITION; LITTER DECOMPOSITION; ECOSYSTEM RESPONSES AB Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long-term N fertilization experiment to explore the sensitivity of soil C to increased N in two N-rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P < 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher delta 14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N-rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long-term stability of this added C will likely depend on future changes in temperature. C1 [Cusack, Daniela F.; Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McDowell, William H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. RP Cusack, DF (reprint author), Univ Calif Santa Barbara, Dept Geog, 1832 Ellison Hall, Santa Barbara, CA 93106 USA. EM dcusack@geog.ucsb.edu RI yang, lixia/D-7815-2011; Silver, Whendee/H-1118-2012; McDowell, William/E-9767-2010; Torn, Margaret/D-2305-2015 OI McDowell, William/0000-0002-8739-9047; FU NSF; University of California - Berkeley Atmospheric Sciences Center; Luquillo LTER NSF [DEB 0543558]; USDA [9900975]; NSF [DEB 0620910]; Climate Change Research Division of the U.S. Department of Energy [DE-AC02-05CH11231]; International Institute of Tropical Forestry, USDA Forest Service FX We thank C. Castanha, J. Merriam, A. Thompson, and S. Weintraub for assistance in the field and laboratory. Funding was provided by an NSF Graduate Student Research Fellowship, an NSF Doctoral Dissertation Improvement Grant, and a University of California - Berkeley Atmospheric Sciences Center grant to D.F. Cusack. This research was also supported by the Luquillo LTER NSF grant DEB 0543558 to W.L. Silver, USDA grant 9900975 to W.H. McDowell, and NSF grant DEB 0620910 to the Institute for Tropical Ecosystem Studies, University of Puerto Rico, and the International Institute of Tropical Forestry USDA Forest Service. Partial support was provided by the Climate Change Research Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to M.S. Torn, by Agricultural Experiment Station funds to W.L. Silver, and by the International Institute of Tropical Forestry, USDA Forest Service. R. Rhew and two anonymous reviewers provided insightful editorial comments. NR 102 TC 59 Z9 67 U1 35 U2 240 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD SEP PY 2010 VL 16 IS 9 BP 2555 EP 2572 DI 10.1111/j.1365-2486.2009.02131.x PG 18 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 635CR UT WOS:000280633700013 ER PT J AU O'Brien, SL Jastrow, JD Grimley, DA Gonzalez-Meler, MA AF O'Brien, Sarah L. Jastrow, Julie D. Grimley, David A. Gonzalez-Meler, Miquel A. TI Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands SO GLOBAL CHANGE BIOLOGY LA English DT Review DE Bromus inermis; C(4); carbon sequestration; drainage; magnetic susceptibility; restored prairie; soil organic carbon; total nitrogen ID CONSERVATION RESERVE PROGRAM; NORTH-AMERICAN GRASSLANDS; LONG-TERM; MAGNETIC-SUSCEPTIBILITY; TALLGRASS PRAIRIE; SPECIES-DIVERSITY; PLANT DIVERSITY; GLOBAL PATTERNS; C-13 ABUNDANCE; CLIMATE-CHANGE AB Revitalization of degraded landscapes may provide sinks for rising atmospheric CO(2), especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C(4)- and C(3)-derived C. We found that higher long-term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C(3)-only grassland, and C(4)-derived C accrual correlated strongly to total SOC accrual but C(3)-C did not. High SOC accumulation at the surface (0-10 cm) combined with losses at depth (10-20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C-sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C(4) and C(3) plants. C1 [O'Brien, Sarah L.; Gonzalez-Meler, Miquel A.] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA. [O'Brien, Sarah L.; Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Grimley, David A.] Univ Illinois, Illinois State Geol Survey, Inst Nat Resource Sustainabil, Champaign, IL 61820 USA. RP O'Brien, SL (reprint author), Univ Illinois, Dept Biol Sci, 845 W Taylor St M-C 066, Chicago, IL 60607 USA. EM sobrie1@uic.edu RI O'Brien, Sarah/C-5596-2011; OI Gonzalez-Meler, Miquel/0000-0001-5388-7969 FU Department of Energy; University of Illinois at Chicago; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division [DE-AC02-06CH11357] FX S. L. O. was supported by a Department of Energy Global Change Education Program Graduate Research Environmental Fellowship and a University of Illinois at Chicago Graduate Fellowship. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division under contract DE-AC02-06CH11357 to Argonne National Laboratory. We wish to thank Fermilab NERP coordinator Rod Walton and Fermilab personnel who worked with Bob Betz to establish and maintain the prairies, especially Mike Becker, Bob Lootens, and Dave Schemanske. We also thank the Gonzalez-Meler lab group, Colleen Iversen, Roser Matamala, Larry Tieszen, and two anonymous reviewers for helpful comments on earlier drafts of this manuscript. We are grateful to Mike Miller, Kelly Moran, Susan Kirt, and Tim Vugteveen for helpful discussions and assistance in the field and lab and to Sergey Olyenik and Rebecca Trueman for help with IRMS analyses at UIC. Lastly, we are indebted to the numerous student and teacher research participants whose field and laboratory work with the Terrestrial Ecology Group at Argonne National Laboratory created the 1985-1999 archived samples and datasets that enabled this study. NR 105 TC 22 Z9 32 U1 7 U2 69 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD SEP PY 2010 VL 16 IS 9 BP 2573 EP 2588 DI 10.1111/j.1365-2486.2009.02114.x PG 16 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 635CR UT WOS:000280633700014 ER PT J AU Newcomer, DR Bjornstad, BN Vermeul, VR AF Newcomer, D. R. Bjornstad, B. N. Vermeul, V. R. TI Vertical Wellbore Flow Monitoring for Assessing Spatial and Temporal Flow Relationships with a Dynamic River Boundary SO GROUND WATER MONITORING AND REMEDIATION LA English DT Article ID ELECTROMAGNETIC BOREHOLE FLOWMETER; LONG-SCREEN WELLS; AQUIFER RESPONSE; BIAS; PENETRATION; HYDRAULICS; SHALLOW; STREAM; STAGE AB A useful tool for identifying the temporal and spatial ambient wellbore flow relationships near a dynamic river boundary is to monitor ambient vertical wellbore flow with an electromagnetic borehole flowmeter. This is important because the presence of the wellbore can result in significant mixing or exchange of groundwater vertically across the aquifer. Mixing or exchanging groundwater within the well-screen section can have significant impacts on the distribution of contaminants within the aquifer and adverse effects on the representativeness of groundwater samples collected from the monitoring well. Ambient monitoring data, collected from long screened wells at Hanford's 300-Area Integrated Field Research Challenge site, located approximately 260 m from the Columbia River, demonstrate that vertical wellbore flow exhibits both a positive and inverse temporal relationship with periodic river-stage fluctuations that can change over short distances between wells. The spatial distribution of these vertical flows across the well field indicates two general regions of ambient wellbore flow behavior. The western region of the site is characterized by vertical flows that are positively related to river-stage fluctuations. In contrast, the eastern region of the site exhibits vertical flows that are inversely related to river-stage fluctuations. The cause of this opposite relationship is not completely understood; however, the positive relationships appear to be associated with high-energy Hanford formation flood deposits. These flood deposits have a well-defined northwest-southeast trend and are believed to coincide with a local paleochannel. The inverse relationships are attributed to an erosional, subsurface high in the Hanford/Ringold Formation contact between the site and the Columbia River. Under these complex hydrogeologic and hydrodynamic conditions, the behavior of ambient vertical wellbore flow in monitoring wells near a dynamic river boundary can have important implications for collecting groundwater-quality samples, for contributing to contaminant distribution within an aquifer system, and for implementing effective remediation strategies. C1 [Newcomer, D. R.; Bjornstad, B. N.; Vermeul, V. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Newcomer, DR (reprint author), Pacific NW Natl Lab, POB 999,MS K6-96, Richland, WA 99352 USA. EM Darrell.newcomer@pnl.gov FU U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division; U.S. Department of Energy [DE-AC05-76RL01830] FX Funding for this study and paper presentation was provided by the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division. The authors would like to acknowledge Frank Spane for providing review comments, Wayne Cosby for editorial support, Dave Lanigan and Mark Rockhold for graphics, and Kyle Parker, Rob Mackley, and Robert Edrington for field data collection activities. Finally, Bill Waldrop of Quantum Engineering Corporation is acknowledged for providing EBF technical support. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 27 TC 7 Z9 7 U1 1 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1069-3629 J9 GROUND WATER MONIT R JI Ground Water Monit. Remediat. PD FAL PY 2010 VL 30 IS 4 BP 123 EP 135 DI 10.1111/j.1745-6592.2010.01304.x PG 13 WC Water Resources SC Water Resources GA 678XS UT WOS:000284117400011 ER PT J AU Fisher, DR Weller, RE AF Fisher, Darrell R. Weller, Richard E. TI CARCINOGENESIS FROM INHALED (PuO2)-Pu-239 IN BEAGLES: EVIDENCE FOR RADIATION HOMEOSTASIS AT LOW DOSES? SO HEALTH PHYSICS LA English DT Article; Proceedings Paper CT 10th International Conference on Health Effects of Incorporated Radionuclides CY MAY, 2009 CL Santa Fe, NM DE alpha particles; analysis, risk; dogs; Pu-239 ID PLUTONIUM WORKERS; LUNG-CANCER; DOGS; HORMESIS AB From the early 1970's to the late 1980's, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium ((PuO2)-Pu-238, (PuO2)-Pu-239, and Pu-239[NO3](4)) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study was to reassess the dose-response relationship for lung cancer in the (PuO2)-Pu-239 dogs compared to controls-with particular focus on the dose-response at relatively low lung doses. A (PuO2)-Pu-239 aerosol (2.3 mu m activity-median aerodynamic diameter, 1.9 mu m geometric standard deviation) was administered to six groups of 20 young (18-mo-old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 +/- 48 Bq (3.5 +/- 1.3 nCi), corresponding to 1 Bq g(-1) lung tissue (0.029 +/- 0.001 nCi g(-1)). Groups 2 through 6 received initial lung depositions (mean values) of 760, 2,724, 10,345, 37,900, and 200,000 Bq (22, 79, 300, 1,100, and 5,800 nCi) (PuO2)-Pu-239, respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, and epidermoid carcinoma) and radiation pneumonitis (in the highest exposure group) were observed in dogs exposed to (PuO2)-Pu-239. Calculated lung doses ranged from a few cGy (lowest exposure level) to 7,764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. The lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 +/- 7.6 cGy), and only one lung tumor was observed in the next 10 dogs with lung doses ranging from 27 to 48 cGy (mean 37.5 +/- 10.9 cGy). By least-squares analysis, a pure-quadratic function represented the overall dose-response (n = 137, r = 0.96) with no apparent dose-related threshold. Reducing this function to three linear dose-response components, we calculated risk coefficients for each. However, the incidence of lung tumors at zero dose was significantly greater than the incidence at low dose ( at the p <= 0.053 confidence level), suggesting a protective effect ( radiation homeostasis) of alpha-particle radiation from (PuO2)-Pu-239. If a threshold for lung cancer incidence exists, it will be observed in the range 15 to 40 cGy. Health Phys. 99(3):357-362; 2010 C1 [Fisher, Darrell R.] Pacific NW Natl Lab, Isotope Sci Program, Richland, WA 99352 USA. RP Fisher, DR (reprint author), Pacific NW Natl Lab, Isotope Sci Program, 902 Battelle Blvd, Richland, WA 99352 USA. EM dr.fisher@pnl.gov NR 23 TC 5 Z9 6 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2010 VL 99 IS 3 BP 357 EP 362 DI 10.1097/HP.0b013e3181bfa16b PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 637RO UT WOS:000280836600011 PM 20699697 ER PT J AU Levitskaia, TG Creim, JA Curry, TL Luders, T Morris, JE Peterson, JM Thrall, KD AF Levitskaia, Tatiana G. Creim, Jeffrey A. Curry, Terry L. Luders, Teresa Morris, James E. Peterson, James M. Thrall, Karla D. TI BIOMATERIALS FOR THE DECORPORATION OF Sr-85 IN THE RAT SO HEALTH PHYSICS LA English DT Article; Proceedings Paper CT 10th International Conference on Health Effects of Incorporated Radionuclides CY MAY, 2009 CL Santa Fe, NM DE chelation; fallout; radiation, medical; Sr-90 ID INTESTINAL CALCIUM-ABSORPTION; SODIUM ALGINATE; STRONTIUM ABSORPTION; RADIOSTRONTIUM; INHIBITION; SR-90; BODY; VIVO AB Although four stable isotopes of strontium occur naturally, Sr-90 is produced by nuclear fission and is present in surface soil around the world as a result of fallout from atmospheric nuclear weapons tests. It can easily transfer to humans in the event of a nuclear/radiological emergency or through the plant-animal-human food chain causing long-term exposures. Strontium is chemically and biologically similar to calcium, and is incorporated primarily into bone following internal deposition. Alginic acid (alginate) obtained from seaweed (kelp) extract selectively binds ingested strontium in the gastrointestinal tract blocking its systemic uptake and reducing distribution to bone in rats, while other natural polysaccharides including chitosan and hyaluronic acid had little in vivo affinity for strontium. Alginate exhibits the unique ability to discriminate between strontium and calcium and has been previously shown to reduce intestinal absorption and skeletal retention of strontium without changing calcium metabolism. In our studies, the effect of commercially available alginate on intestinal absorption of strontium was examined. One problem associated with alginate treatment is its limited solubility and gel formation in water. The aqueous solubility of sodium alginate was improved in a sodium chloride/sodium bicarbonate electrolyte solution containing low molecular weight polyethylene glycol (PEG). Furthermore, oral administration of the combined alginate/electrolyte/PEG solution accelerated removal of internal strontium in rats when compared to treatment with individual sodium alginate/electrolyte or electrolyte/PEG solutions. Importantly, both alginate and PEG are nontoxic, readily available materials that can be easily administered orally in case of a national emergency when potentially large numbers of the population may require medical treatment for internal depositions. Our results suggest further studies to optimize in vivo decorporation performance of engineered alginate material via modification of its chemical and physicochemical properties are warranted. Health Phys. 99(3):394-400; 2010 C1 [Levitskaia, Tatiana G.; Thrall, Karla D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Levitskaia, TG (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-22, Richland, WA 99352 USA. EM Tatiana.levitskaia@pnl.gov FU NIAID NIH HHS [1R01AI074067-01] NR 25 TC 3 Z9 3 U1 1 U2 11 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2010 VL 99 IS 3 BP 394 EP 400 DI 10.1097/HP.0b013e3181c4717d PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 637RO UT WOS:000280836600017 PM 20699703 ER PT J AU Abergel, RJ Durbin, PW Kullgren, B Ebbe, SN Xu, JD Chang, PY Bunin, DI Blakely, EA Bjornstad, KA Rosen, CJ Shuh, DK Raymond, KN AF Abergel, Rebecca J. Durbin, Patricia W. Kullgren, Birgitta Ebbe, Shirley N. Xu, Jide Chang, Polly Y. Bunin, Deborah I. Blakely, Eleanor A. Bjornstad, Kathleen A. Rosen, Chris J. Shuh, David K. Raymond, Kenneth N. TI BIOMIMETIC ACTINIDE CHELATORS: AN UPDATE ON THE PRECLINICAL DEVELOPMENT OF THE ORALLY ACTIVE HYDROXYPYRIDONATE DECORPORATION AGENTS 3,4,3-LI(1,2-HOPO) AND 5-LIO(ME-3,2-HOPO) SO HEALTH PHYSICS LA English DT Article; Proceedings Paper CT 10th International Conference on Health Effects of Incorporated Radionuclides CY MAY, 2009 CL Santa Fe, NM DE actinides; chelation; contamination, internal; toxicology ID SEQUESTERING AGENTS; IN-VIVO; LIGANDS; CATECHOLATE; MICE AB The threat of a dirty bomb or other major radiological contamination presents a danger of large-scale radiation exposure of the population. Because major components of such contamination are likely to be actinides, actinide decorporation treatments that will reduce radiation exposure must be a priority. Current therapies for the treatment of radionuclide contamination are limited and extensive efforts must be dedicated to the development of therapeutic, orally bioavailable, actinide chelators for emergency medical use. Using a biomimetic approach based on the similar biochemical properties of plutonium(IV) and iron(III), siderophore-inspired multidentate hydroxypyridonate ligands have been designed and are unrivaled in terms of actinide-affinity, selectivity, and efficiency. A perspective on the preclinical development of two hydroxypyridonate actinide decorporation agents, 3,4,3-LI( 1,2-HOPO) and 5-LIO(Me-3,2-HOPO), is presented. The chemical syntheses of both candidate compounds have been optimized for scale-up. Baseline preparation and analytical methods suitable for manufacturing large amounts have been established. Both ligands show much higher actinide-removal efficacy than the currently approved agent, diethylenetriaminepentaacetic acid (DTPA), with different selectivity for the tested isotopes of plutonium, americium, uranium and neptunium. No toxicity is observed in cells derived from three different human tissue sources treated in vitro up to ligand concentrations of 1 mM, and both ligands were well tolerated in rats when orally administered daily at high doses (>100 mu mol kg(-1) d(-1)) over 28 d under good laboratory practice guidelines. Both compounds are on an accelerated development pathway towards clinical use. Health Phys. 99(3):401-407; 2010 C1 [Abergel, Rebecca J.; Durbin, Patricia W.; Kullgren, Birgitta; Ebbe, Shirley N.; Shuh, David K.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. [Xu, Jide; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Polly Y.; Bunin, Deborah I.] SRI Int, Menlo Pk, CA 94025 USA. [Chang, Polly Y.; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Rosen, Chris J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov FU NIAID NIH HHS [R01 AI074065, R01 AI074065-01] NR 17 TC 32 Z9 35 U1 4 U2 27 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2010 VL 99 IS 3 BP 401 EP 407 DI 10.1097/HP.0b013e3181c21273 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 637RO UT WOS:000280836600018 PM 20699704 ER PT J AU Yantasee, W Sangvanich, T Creim, JA Pattamakomsan, K Wiacek, RJ Fryxell, GE Addleman, RS Timchalk, C AF Yantasee, Wassana Sangvanich, Thanapon Creim, Jeffery A. Pattamakomsan, Kanda Wiacek, Robert J. Fryxell, Glen E. Addleman, R. Shane Timchalk, Charles TI FUNCTIONAL SORBENTS FOR SELECTIVE CAPTURE OF PLUTONIUM, AMERICIUM, URANIUM, AND THORIUM IN BLOOD SO HEALTH PHYSICS LA English DT Article; Proceedings Paper CT 10th International Conference on Health Effects of Incorporated Radionuclides CY MAY, 2009 CL Santa Fe, NM DE actinides; adsorption; radiological terrorism; uranium ID SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS; ACTINIDE SEQUESTRATION; SILICA; RAT; 3,4,3-LIHOPO; GADOLINIUM; DESIGN; TISSUE; DTPA AB Self-assembled monolayer on mesoporous supports (SAMMS (TM)) are hybrid materials created from attachment of organic moieties onto very high surface area mesoporous silica. SAMMS with surface chemistries including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate ( DTPA) analog were evaluated for chelation of actinides (Pu-239, Am-241, uranium, thorium) from blood. Direct blood decorporation using sorbents does not have the toxicity or renal challenges associated with traditional chelation therapy and may have potential applications for critical exposure cases, reduction of nonspecific dose during actinide radiotherapy, and for sorbent hemoperfusion in renal insufficient patients, whose kidneys clear radionuclides at a very slow rate. Sorption affinity (K-d), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for all four actinides from blood and plasma and greatly outperformed the DTPA analog on SAMMS and commercial resins. In batch contact, a fifty percent reduction of actinides in blood was achieved within minutes, and there was no evidence of protein fouling or material leaching in blood after 24 h. The engineered form of SAMMS ( bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 h. A 0.2 g quantity of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in 18 min and that of 500 dpm mL(-1) in 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 y, indicating its feasibility for stockpiling in preparedness for an emergency. The excellent efficacy and stability of SAMMS materials in complex biological matrices suggest that SAMMS can also be used as orally administered drugs and for wound decontamination. By changing the organic groups of SAMMS, they can be used not only for actinides but also for other radionuclides. By using the mixture of these SAMMS materials, broad spectrum decorporation of radionuclides is very feasible. Health Phys. 99(3):413-419; 2010 C1 [Yantasee, Wassana] Oregon Hlth & Sci Univ, Portland, OR 97239 USA. [Sangvanich, Thanapon; Creim, Jeffery A.; Pattamakomsan, Kanda; Wiacek, Robert J.; Fryxell, Glen E.; Addleman, R. Shane; Timchalk, Charles] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yantasee, W (reprint author), Oregon Hlth & Sci Univ, Portland, OR 97239 USA. EM yantasee@ohsu.edu FU NIAID NIH HHS [R01 AI074064, R01 AI074064-01, R01 AI080502, R01 AI074064-01S1]; NIEHS NIH HHS [R21 ES015620-01A1, R21 ES015620, R21 ES015620-02]; NIGMS NIH HHS [R01 GM089918, R01 GM089918-01] NR 26 TC 9 Z9 12 U1 1 U2 33 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2010 VL 99 IS 3 BP 413 EP 419 DI 10.1097/HP.0b013e3181ce5f3e PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 637RO UT WOS:000280836600020 PM 20699706 ER PT J AU Timchalk, C Creim, JA Sukwarotwat, V Wiacek, R Addleman, RS Fryxell, GE Yantasee, W AF Timchalk, Charles Creim, Jeffrey A. Sukwarotwat, Vichaya Wiacek, Robert Addleman, R. Shane Fryxell, Glen E. Yantasee, Wassana TI IN VITRO AND IN VIVO EVALUATION OF A NOVEL FERROCYANIDE FUNCTIONALIZED NANOPOUROUS SILICA DECORPORATION AGENT FOR CESIUM IN RATS SO HEALTH PHYSICS LA English DT Article; Proceedings Paper CT 10th International Conference on Health Effects of Incorporated Radionuclides CY MAY, 2009 CL Santa Fe, NM DE absorption; cesium; chelation; pharmacokinetics ID SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS SAMMS; PRUSSIAN-BLUE; QUANTITATIVE-DETERMINATION; FERRIC HEXACYANOFERRATE; ACTINIDE SEQUESTRATION; HEAVY-METALS; HUMAN-BODY; RETENTION; CS-137 AB Novel decorporation agents are being developed to protect against radiological terrorist attacks. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMS (TM)), are hybrid materials where differing organic moieties are grafted onto mesoporous silica (SiO2). In vitro experiments focused on the evaluation and optimization of SAMMS for capturing radiocesium (Cs-137); therefore, based on these studies, a ferrocyanide copper (FC-Cu-EDA)-SAMMS was advanced for in vivo evaluation. In vivo experiments were conducted comparing the performance of the SAMMS vs. insoluble Prussian blue. Groups of jugular cannulated rats (4/treatment) were evaluated. Animals in Group I were administered Cs-137 chloride (similar to 40 mu g kg(-1)) by intravenous (i.v.) injection or oral gavage; Group II animals were administered pre-bound Cs-137-SAMMS or sequential Cs-137 chloride + SAMMS (similar to 61 ng kg(-1)) by oral gavage; and Group III was orally administered Cs-137 chloride (similar to 61 ng kg(-1)) followed by either 0.1 g of SAMMS or Prussian blue. Following dosing, the rats were maintained in metabolism cages for 72 h and blood, urine, and fecal samples were collected for Cs-137 analysis (gamma counting). Rats were then humanely euthanized, and selected tissues analyzed. Orally administered Cs-137 chloride was rapidly and well absorbed (similar to 100% relative to i.v. dose), and the pharmacokinetics (blood, urine, feces, and tissues) were very comparable to the i.v. dose group. For both exposures the urine and feces accounted for 20 and 3% of the dose, respectively. The prebound Cs-137-SAMMS was retained primarily within the feces (72% of the dose), with similar to 1.4% detected in the urine, suggesting that the Cs-137 remained tightly bound to SAMMS. SAMMS and Prussian blue both effectively captured available Cs-137 in the gut with feces accounting for 80-88% of the administered dose, while less than 2% was detected in the urine. This study suggests that the functionalized SAMMS outperforms Prussian blue in vitro at low pH, but demonstrates comparable in vivo sequestration efficacy at low exposure concentrations. The comparable response may be the result of the low Cs-137 chloride dose and high sorbent dosage that was utilized. Future studies are planned to optimize the performance of SAMMS in vivo over a broader range of doses and conditions. Health Phys. 99(3):420-429; 2010 C1 [Timchalk, Charles; Creim, Jeffrey A.; Sukwarotwat, Vichaya; Wiacek, Robert; Addleman, R. Shane; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yantasee, Wassana] OHSU Sch Med, Dept Biomed Engn, Portland, OR 97239 USA. RP Timchalk, C (reprint author), Pacific NW Natl Lab, MSIN P7-59,902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM charles.timchalk@pnl.gov FU NIAID NIH HHS [R01 AI074064, R01 AI074064-01S1] NR 38 TC 13 Z9 13 U1 0 U2 14 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2010 VL 99 IS 3 BP 420 EP 429 DI 10.1097/HP.0b013e3181bca9b0 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 637RO UT WOS:000280836600021 PM 20699707 ER PT J AU Colgan, J Abdallah, J Fontes, CJ Kilcrease, DP Dunn, J Purvis, M Lee, RW AF Colgan, J. Abdallah, J., Jr. Fontes, C. J. Kilcrease, D. P. Dunn, J. Purvis, M. Lee, R. W. TI Non-LTE and gradient effects in K-shell oxygen emission laser-produced plasma SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Non-LTE; Atomic physics; Gradients ID SPECTRA; ATOMS AB A recent effort [1] to develop a high-resolution spectroscopy capability for He-like and H-like ions to study far wing shapes from a laser-produced plasma experiment at the Lawrence Livermore National Laboratory found unexpected structure in the observed emission from a Mylar target. In this paper we propose that the observed features are due to exotic inner-shell transitions in mid-ionized oxygen, suggesting that the observed emission arises from two plasma regions: a hotter, less dense outer region gives rise to the observed He-like and H-like resonance lines, while a cooler, more dense plasma region closer to the target surface and in a region surrounding the laser spot generates the dielectronic satellites and the exotic inner-shell lines. Calculations using the Los Alamos suite of atomic physics codes and the plasma kinetics code ATOMIC are used to support this assertion. (C) 2010 Elsevier B.V. All rights reserved. C1 [Colgan, J.; Abdallah, J., Jr.; Kilcrease, D. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fontes, C. J.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Dunn, J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Purvis, M.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcolgan@lanl.gov OI Colgan, James/0000-0003-1045-3858; Kilcrease, David/0000-0002-2319-5934 FU U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank S. Hansen for initial atomic kinetic calculations. Thanks go to E. Magee, K. Cone, L Elberson, J. Emig, J. Hunter, for experimental, technical and laser support as well as C. Cadwalader and R. Van Maren for target fabrication. The help of the Jupiter Laser Facility staff is appreciated. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. A portion of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 22 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2010 VL 6 IS 3 BP 295 EP 300 DI 10.1016/j.hedp.2010.01.015 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 660PC UT WOS:000282654500001 ER PT J AU Schwarz, V Holst, B Bornath, T Fortmann, C Kraeft, WD Thiele, R Redmer, R Gregori, G Lee, HJ Doppner, T Glenzer, SH AF Schwarz, Volker Holst, Bastian Bornath, Thomas Fortmann, Carsten Kraeft, Wolf-Dietrich Thiele, Robert Redmer, Ronald Gregori, Gianluca Lee, Hae Ja Doeppner, Tilo Glenzer, Siegfried H. TI Static ion structure factor for dense plasmas: Semi-classical and ab initio calculations SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Structure factor; Dense plasma; Integral equation methods; Quantum potential; ab initio simulations ID NUCLEUS-ELECTRON MODEL; X-RAY-SCATTERING; HIGH-TEMPERATURE PLASMA; EQUATION-OF-STATE; MOLECULAR-DYNAMICS; TRANSPORT-PROPERTIES; THOMSON SCATTERING; HYDROGEN PLASMAS; LIQUID-METAL; SIMULATION AB We calculate the static structure factor of dense multi-component plasmas. Large scale ab initio finite-temperature DFT molecular dynamics simulations are performed in order to cover the region where a consistent quantum treatment for the electrons is inevitable. Especially, the behavior at small wave numbers k can be inferred from the relation to the isothermal compressibility. Alternatively, the static structure factor is obtained by solving the integral equations for the pair correlation functions within the hypernetted chain (HNC) scheme. For this purpose we derive new effective two-particle quantum potentials for the interactions between the charge carriers from the full two-particle Slater sum by accounting for bound states. Comparison to the ab initio molecular dynamics simulations enables us to determine the short-range behavior of the effective electron-ion quantum potentials. Results for the static structure factor are presented for beryllium plasmas at solid density and at threefold compression. (C) 2009 Elsevier B.V. All rights reserved. C1 [Schwarz, Volker; Holst, Bastian; Bornath, Thomas; Fortmann, Carsten; Kraeft, Wolf-Dietrich; Thiele, Robert; Redmer, Ronald] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Gregori, Gianluca] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Gregori, Gianluca] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Lee, Hae Ja] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Doeppner, Tilo; Glenzer, Siegfried H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bornath, T (reprint author), Univ Rostock, Inst Phys, Univ Pl 3, D-18051 Rostock, Germany. EM thomas.bornath@uni-rostock.de RI Holst, Bastian/D-2217-2011; Redmer, Ronald/F-3046-2013; OI Holst, Bastian/0000-0002-2369-3730; Bornath, Thomas/0000-0003-2831-2586; Thiele, Robert/0000-0001-8350-9942 FU Deutsche Forschungsgemeinschaft (DFG) [SFB 652]; Bundesministerium fur Bildung und Forschung (BMBF) [FSP 301-FLASH, KS7HRA]; EPSRC [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Laboratory User Facility, Laboratory Directed Research and Development [08-ERI-002, 08-LW-004] FX We thank D.O. Gericke, J. Vorberger, and K. Wunsch for valuable discussions and M. French for supporting the simulations. VS, BH, TB, CF, WDK, RT, and RR acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) within the SFB 652 "Strong correlations and collective phenomena in radiation fields: Coulomb systems, clusters, and particles", and from the Bundesministerium fur Bildung und Forschung (BMBF) under grant FSP 301-FLASH, project No. KS7HRA. The work of GG was supported by the EPSRC Grant No. EP/G007187/1 and by the Science and Technology Facilities Council of the United Kingdom. The work of TD and SHG was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and also supported by the National Laboratory User Facility, Laboratory Directed Research and Development grants 08-ERI-002 and 08-LW-004. NR 54 TC 7 Z9 7 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2010 VL 6 IS 3 BP 305 EP 310 DI 10.1016/j.hedp.2009.11.005 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 660PC UT WOS:000282654500003 ER PT J AU Iglesias, CA AF Iglesias, Carlos A. TI XUV absorption by solid-density aluminum SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Warm dense matter; Inverse bremsstrahlung; Opacity ID HARD SPHERES; PLASMA; CONDUCTIVITY; PHOTOABSORPTION; TRANSMISSION; SCATTERING; EQUATION AB An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold. solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. (C) 2010 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM iglesias1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Thanks are due to Sam M. Vinko for providing their calculations in tabular form. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2010 VL 6 IS 3 BP 311 EP 317 DI 10.1016/j.hedp.2010.01.004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 660PC UT WOS:000282654500004 ER PT J AU Iglesias, CA AF Iglesias, Carlos A. TI Excited spectator electron effects on spectral line shapes SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Line shapes; Opacity ID DIELECTRONIC SATELLITE LINES; MULTIELECTRON IONS; TRANSITION-ARRAYS; DENSE-PLASMAS; OPACITIES; MODEL; HOT AB Excited spectator electron effects on Stark broadened spectral line shapes of transitions involving tightly bound electrons are investigated. It is shown that the interference terms in the electron impact broadening are essential to describe the overlapping lines generated by these configurations (e.g.; dielectronic satellite lines). The main impact is narrower spectral features and reduced far wing intensities compared to calculations neglecting the interference terms. (C) 2010 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM iglesias1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX It is a pleasure to recognize valuable discussions with John I. Castor and Richard W. Lee. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 41 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2010 VL 6 IS 3 BP 318 EP 331 DI 10.1016/j.hedp.2010.01.007 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 660PC UT WOS:000282654500005 ER PT J AU Chinchor, NA Thomas, JJ Wong, PC Christel, MG Ribarsky, W AF Chinchor, Nancy A. Thomas, James J. Wong, Pak Chung Christel, Michael G. Ribarsky, William TI Multimedia Analysis plus Visual Analytics = Multimedia Analytics SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article ID OF-THE-ART; RETRIEVAL; IMAGES C1 [Thomas, James J.; Wong, Pak Chung] Pacific NW Natl Lab, Richland, WA 99352 USA. [Christel, Michael G.] Carnegie Mellon Univ, Entertainment Technol Ctr, Pittsburgh, PA 15213 USA. [Ribarsky, William] Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA. EM chinchoreclectic@gmail.com; jim.thomas@pnl.gov; pak.wong@pnl.gov; christel@cmu.edu; ribarsky@uncc.edu FU US National Science Foundation [IIS-0705491]; US National Visualization and Analytics Center at the Pacific Northwest National Laboratory; US Department of Energy [DE-AC06-76RL01830] FX The US National Science Foundation has supported the Informedia research reported here under grant IIS-0705491. The US National Visualization and Analytics Center at the Pacific Northwest National Laboratory has also supported some of the described research. The Battelle Memorial Institute manages the laboratory for the US Department of Energy under contract DE-AC06-76RL01830. NR 20 TC 6 Z9 6 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD SEP-OCT PY 2010 VL 30 IS 5 BP 52 EP 60 PG 9 WC Computer Science, Software Engineering SC Computer Science GA 640FY UT WOS:000281035500009 PM 24807414 ER PT J AU Smith, JC Beuning, S Durrwachter, H Ela, E Hawkins, D Kirby, B Lasher, W Lowell, J Porter, K Schuyler, K Sotkiewicz, P AF Smith, J. Charles Beuning, Stephen Durrwachter, Henry Ela, Erik Hawkins, David Kirby, Brendan Lasher, Warren Lowell, Jonathan Porter, Kevin Schuyler, Ken Sotkiewicz, Paul TI The Wind at Our Backs SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Smith, J. Charles] Util Wind Integrat Grp, Reston, VA USA. [Beuning, Stephen] Xcel Energy, Denver, CO USA. [Durrwachter, Henry] Luminant Energy Co LLC, Dallas, TX USA. [Ela, Erik] Natl Renewable Energy Lab, Golden, CO USA. [Hawkins, David] CAISO, Folsom, CA USA. [Lasher, Warren] ERCOT, Taylor, TX USA. [Porter, Kevin] Exeter Associates, Columbia, MD USA. [Schuyler, Ken; Sotkiewicz, Paul] PJM Interconnect LLC, Valley Forge, PA USA. RP Smith, JC (reprint author), Util Wind Integrat Grp, Reston, VA USA. NR 4 TC 9 Z9 9 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD SEP-OCT PY 2010 VL 8 IS 5 BP 63 EP 71 DI 10.1109/MPE.2010.937598 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 668SQ UT WOS:000283290500007 ER PT J AU Porter, R Fraser, AM Hush, D AF Porter, Reid Fraser, Andrew M. Hush, Don TI Wide-Area Motion Imagery [Narrowing the semantic gap] SO IEEE SIGNAL PROCESSING MAGAZINE LA English DT Article ID RETRIEVAL; TRACKING; VIDEO; MODEL C1 [Porter, Reid; Fraser, Andrew M.; Hush, Don] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Porter, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM rporter@lanl.gov; afraser@lanl.gov; dhush@lanl.gov RI Magazine, Signal Processing/E-9947-2015 FU U.S. Department of Energy FX We would like to thank Ed Rosten for Figure 4 and Rohan Loveland for Figure 6. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work. NR 37 TC 21 Z9 21 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1053-5888 EI 1558-0792 J9 IEEE SIGNAL PROC MAG JI IEEE Signal Process. Mag. PD SEP PY 2010 VL 27 IS 5 BP 56 EP 65 DI 10.1109/MSP.2010.937396 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 668BF UT WOS:000283242900008 ER PT J AU Gaj, K Kwon, S Baier, P Kohlbrenner, P Le, H Khaleeluddin, M Bachimanchi, R Rogawski, M AF Gaj, Kris Kwon, Soonhak Baier, Patrick Kohlbrenner, Paul Le, Hoang Khaleeluddin, Mohammed Bachimanchi, Ramakrishna Rogawski, Marcin TI Area-Time Efficient Implementation of the Elliptic Curve Method of Factoring in Reconfigurable Hardware for Application in the Number Field Sieve SO IEEE TRANSACTIONS ON COMPUTERS LA English DT Article DE Cipher-breaking; factoring; ECM; FPGA; NFS AB A novel portable hardware architecture of the Elliptic Curve Method of factoring, designed and optimized for application in the relation collection step of the Number Field Sieve, is described and analyzed. A comparison with an earlier proof-of-concept design by Pelzl et al. has been performed, and a substantial improvement has been demonstrated in terms of both the execution time and the area-time product. The ECM architecture has been ported across five different families of FPGA devices in order to select the family with the best performance to cost ratio. A timing comparison with the highly optimized software implementation, GMP-ECM, has been performed. Our results indicate that low-cost families of FPGAs, such as Spartan-3 and Spartan-3E, offer at least an order of magnitude improvement over the same generation of microprocessors in terms of the performance to cost ratio, without the use of embedded FPGA resources, such as embedded multipliers. C1 [Gaj, Kris; Kohlbrenner, Paul; Rogawski, Marcin] George Mason Univ, ECE Dept, Fairfax, VA 22030 USA. [Kwon, Soonhak] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea. [Baier, Patrick] Siemens PLM Software, Alexandria, VA 22308 USA. [Le, Hoang] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Khaleeluddin, Mohammed] Hughes Network Syst, Germantown, MD 20876 USA. [Bachimanchi, Ramakrishna] Jefferson Lab, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Gaj, K (reprint author), George Mason Univ, ECE Dept, 4400 Univ Dr, Fairfax, VA 22030 USA. EM kgaj@gmu.edu; shkwon7@gmail.com; districtline@gmx.net; pkohlbr1@gmu.edu; hoangle@usc.edu; mdkhaleel@gmail.com; bachiman@jlab.org; mrogawsk@gmu.edu NR 29 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9340 EI 1557-9956 J9 IEEE T COMPUT JI IEEE Trans. Comput. PD SEP PY 2010 VL 59 IS 9 BP 1264 EP 1280 DI 10.1109/TC.2009.191 PG 17 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 628QE UT WOS:000280134600010 ER PT J AU Kroposki, B Pink, C DeBlasio, R Thomas, H Simoes, M Sen, PK AF Kroposki, Benjamin Pink, Christopher DeBlasio, Richard Thomas, Holly Simoes, Marcelo Sen, Pankaj K. TI Benefits of Power Electronic Interfaces for Distributed Energy Systems SO IEEE TRANSACTIONS ON ENERGY CONVERSION LA English DT Article DE Distributed energy (DE); distributed generation (DG); fault current; interconnection; interface; inverter; microgrid; power electronics (PE); power quality ID GENERATION AB With the increasing use of distributed energy (DE) systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for DE applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/volt-ampere reactive (VAR) support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper will examine the system integration issues associated with DE systems and show the benefits of using PE interfaces for such applications. C1 [Kroposki, Benjamin; Pink, Christopher; DeBlasio, Richard; Thomas, Holly] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Simoes, Marcelo; Sen, Pankaj K.] Colorado Sch Mines, Golden, CO 80401 USA. RP Kroposki, B (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM benjamin_kroposki@nrel.gov; christopher_pink@nrel.gov; richard_deblasio@nrel.gov; holly_thomas@nrel.gov; msimoes@mines.edu; psen@mines.edu RI Simoes, Marcelo/J-9600-2012 OI Simoes, Marcelo/0000-0003-4124-061X FU Department of Energy under Midwest Research Institute (MRI) [DE-AC36-99GO10337]; California Energy Commission [500-03-011]; National Science Foundation Power Systems Engineering Research Center FX Manuscript received September 25, 2006; revised November 16, 2007; accepted December 30, 2007. Date of publication August 3, 2010; date of current version August 20, 2010. This work was supported at National Renewable Energy Laboratory by the Department of Energy under Midwest Research Institute (MRI) Contract DE-AC36-99GO10337 and by the California Energy Commission under Technology Partnership Agreement 500-03-011. The work of Dr. Simoes and Dr. Sen was supported by the National Science Foundation Power Systems Engineering Research Center. Paper no. TEC-00461-2006. NR 31 TC 85 Z9 89 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8969 J9 IEEE T ENERGY CONVER JI IEEE Trans. Energy Convers. PD SEP PY 2010 VL 25 IS 3 BP 901 EP 908 DI 10.1109/TEC.2010.2053975 PG 8 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA 666XI UT WOS:000283155600036 ER PT J AU Wang, S Maillet, YY Wang, F Lai, RX Luo, F Boroyevich, D AF Wang, Shuo Maillet, Yoann Yorrick Wang, Fei Lai, Rixin Luo, Fang Boroyevich, Dushan TI Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Electromagnetic-interference (EMI) filter; grounding; inductive coupling; motor drive; mutual inductance; parasitic ID PARAMETERS AB High-frequency common-mode (CM) electromagnetic- interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis. C1 [Wang, Shuo] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA. [Maillet, Yoann Yorrick] Converteam Inc, Pittsburgh, PA 15238 USA. [Wang, Fei] Univ Tennessee, Knoxville, TN 37996 USA. [Wang, Fei] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Lai, Rixin] GE Co, GE Global Res Ctr, Niskayuna, NY 12309 USA. [Luo, Fang] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China. [Boroyevich, Dushan] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. [Boroyevich, Dushan] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. RP Wang, S (reprint author), Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA. EM shuowang@ieee.org; yoayo@vt.edu; fred.wang@utk.edu; lairixin@vt.edu; kkhust@gmail.com; dushan@vt.edu RI Luo, Fang/A-9337-2010 FU SAFRAN Group; National Science Foundation (NSF) [EEC-9731677]; Industry Partnership Program FX Manuscript received May 12, 2009; revised August 14, 2009 and October 7, 2009; accepted November 8, 2009. Date of publication December 4, 2009; date of current version August 11, 2010. This work was supported by the SAFRAN Group.; This work made use of the Engineering Research Center Shared Facilities supported by the National Science Foundation (NSF) under NSF Award EEC-9731677 and the Industry Partnership Program. NR 19 TC 23 Z9 23 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD SEP PY 2010 VL 57 IS 9 BP 3050 EP 3059 DI 10.1109/TIE.2009.2037643 PG 10 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA 664OB UT WOS:000282970300017 ER PT J AU Baisden, AC Boroyevich, D Wang, F AF Baisden, Andrew Carson Boroyevich, Dushan Wang, Fei TI Generalized Terminal Modeling of Electromagnetic Interference SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT 43rd Annual Meeting of the IEEE-Industry-Applications-Society CY OCT 05-09, 2008 CL Edmonton, CANADA SP IEEE Ind Applicat Soc DE Electromagnetic interference (EMI); equivalent circuit; Norton; terminals ID NOISE SOURCE IMPEDANCE; CONVERTER SYSTEMS; MOTOR DRIVE; IDENTIFICATION; EMISSIONS AB Terminal models have been used for various applications. In this paper, a three-terminal model is proposed for electromagnetic-interference (EMI) characterization. The model starts with a power electronic system at a particular operating condition and creates a unique linearized equivalent circuit. Impedances and current/voltage sources define the noise throughout the entire EMI frequency spectrum. All parameters needed to create the model are clearly defined to ensure convergence and maximize accuracy. In addition, the accuracy of the model is confirmed up to 100 MHz for a dc-dc boost converter using both simulation and experimental validation. C1 [Baisden, Andrew Carson; Boroyevich, Dushan] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. [Wang, Fei] Univ Tennessee, Knoxville, TN 37996 USA. [Wang, Fei] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Baisden, AC (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM cbaisden@vt.edu; dushan@vt.edu; f.wang@ieee.org NR 31 TC 15 Z9 15 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD SEP-OCT PY 2010 VL 46 IS 5 BP 2068 EP 2079 DI 10.1109/TIA.2010.2058836 PG 12 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 684WC UT WOS:000284584900045 ER PT J AU Wright, JC Lee, J Valeo, E Bonoli, P Phillips, CK Jaeger, EF Harvey, RW AF Wright, John C. Lee, Jungpyo Valeo, Ernest Bonoli, Paul Phillips, Cynthia K. Jaeger, E. F. Harvey, Robert W. TI Challenges in Self-Consistent Full-Wave Simulations of Lower Hybrid Waves SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Simulation; vector wave equation; waves; X-ray measurements ID ION-CYCLOTRON WAVES; TOKAMAK PLASMAS; PROPAGATION; DIFFUSION; FIELD AB Analysis of wave propagation in the lower hybrid range of frequencies (LHRF) in the past was done using ray tracing and the Wentzel-Kramers-Brillouin approximation taking advantage of the very small scale of those waves. To include the effects of wave diffraction and focusing in this regime, full-wave simulation is necessary but requires significantly more computational power. In both ray tracing and full-wave simulations in the LHRF, it is also essential to include the self-consistent evolution of the electron distribution in response to the waves. This adds a considerable computational burden in constructing the stiffness matrix for the system [Valeo et al., "Full-wave Simulations of LH wave propagation in toroidal plasma with non-Maxwellian electron distributions," 18th Topical Conference on Radio Frequency Power in Plasmas, AIP Conference Proceedings (2007)]. Advances in algorithms and the availability of massively parallel computer architectures have permitted the solving of the Maxwell-Vlasov system for wave propagation directly [Wright et al., Phys. Plasmas (2009), 16, July]. We will discuss the various modeling advances that have led to this capability, including various memory-management approaches, physics-motivated algorithm adaptions appropriate to the LHRF, and improvements in the matrix solver to minimize communication overhead when using thousands of cores on leadership-class computer platforms. Of particular importance have been the use of verification and validation techniques and the analytic approximations to the imaginary (pole residue) contribution to the plasma dielectric response. C1 [Wright, John C.; Lee, Jungpyo; Bonoli, Paul] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02169 USA. [Valeo, Ernest; Phillips, Cynthia K.] Princeton Plasma Phys Lab, Plainsboro, NJ 08536 USA. [Jaeger, E. F.] Xcel Engn, Oak Ridge, TN 37830 USA. [Harvey, Robert W.] CompX, Del Mar, CA 92014 USA. RP Wright, JC (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02169 USA. EM jcwright@mit.edu; jungpyo@mit.edu; valeo@pppl.gov; bonoli@psfc.mit.edu; ckphilli@pppl.gov; jaegeref@ornl.gov; bobh@compxco.com FU U.S. Department of Energy [DE-FC02-01ER54648]; Office of Science, U.S. Department of Energy, through the National Energy Research Scientific Computing Center [DE-AC02-05CH11231] FX This work was supported in part by the U.S. Department of Energy SciDAC Program under Contract DE-FC02-01ER54648 and in part by the Office of Science, U.S. Department of Energy, through the National Energy Research Scientific Computing Center, under Contract DE-AC02-05CH11231. NR 29 TC 12 Z9 12 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2010 VL 38 IS 9 BP 2136 EP 2143 DI 10.1109/TPS.2010.2055167 PN 1 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 668EX UT WOS:000283252500008 ER PT J AU Banks, JW Hittinger, JAF AF Banks, Jeffrey William Hittinger, Jeffrey Alan Furst TI A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Finite-volume methods; plasma simulation; Vlasov equation ID FLUX-CORRECTED TRANSPORT; PHASE-SPACE; EQUATION; SCHEME; INTEGRATION; SOLVERS; GAS; PPM AB Methods for the numerical discretization of the Vlasov equation should efficiently use the phase-space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order nonlinear finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth order in space and time in well-resolved regions but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the piecewise parabolic method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches. C1 [Banks, Jeffrey William; Hittinger, Jeffrey Alan Furst] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Banks, JW (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM banks20@llnl.gov; hittinger1@llnl.gov RI Banks, Jeffrey/A-9718-2012 FU LLNL [08-ERD-031 (LLNL-JRNL-420843)]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the Laboratory Directed Research and Development Program at LLNL under Project Tracking Code 08-ERD-031 (LLNL-JRNL-420843).; The authors would like to thank Dr. B. Cohen for his many helpful comments and suggestions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 23 Z9 23 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2010 VL 38 IS 9 BP 2198 EP 2207 DI 10.1109/TPS.2010.2056937 PN 1 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 668EX UT WOS:000283252500016 ER PT J AU Cohen, BI Dimits, AM Friedman, A Caflisch, RE AF Cohen, Bruce I. Dimits, Andris M. Friedman, Alex Caflisch, Russel E. TI Time-Step Considerations in Particle Simulation Algorithms for Coulomb Collisions in Plasmas SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Algorithms; collision processes; computer applications; numerical analysis; particle collisions; plasmas ID MODEL AB The accuracy of first-order Euler and higher-order time-integration algorithms for grid-based Langevin equations collision models in a specific relaxation test problem is assessed. We show that statistical noise errors can overshadow time-step errors and argue that statistical noise errors can be conflated with time-step effects. Using a higher-order integration scheme may not achieve any benefit in accuracy for examples of practical interest. We also investigate the collisional relaxation of an initial electron-ion relative drift and the collisional relaxation to a resistive steady-state in which a quasi-steady current is driven by a constant applied electric field, as functions of the time step used to resolve the collision processes using binary and grid-based, test-particle Langevin equations models. We compare results from two grid-based Langevin equations collision algorithms to results from a binary collision algorithm for modeling electron-ion collisions. Some guidance is provided on how large a time step can be used compared to the inverse of the characteristic collision frequency for specific relaxation processes. C1 [Cohen, Bruce I.; Dimits, Andris M.; Friedman, Alex] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Caflisch, Russel E.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM cohen1@llnl.gov; dimits1@llnl.gov; afriedman@lbl.gov; caflisch@math.ucla.edu FU U.S. Department of Energy at University of California at Los Angesles [DE-AC52-07NA27344, DE-FG02-05ER-25710] FX Manuscript received November 13, 2009; revised March 29, 2010; accepted April 14, 2010. Date of publication June 1, 2010; date of current version September 10, 2010. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under Grant DE-FG02-05ER-25710 at University of California at Los Angesles under the Multiscale Initiative program supported by the DOE Office of Scientific Computing Research. NR 21 TC 10 Z9 10 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2010 VL 38 IS 9 BP 2394 EP 2406 DI 10.1109/TPS.2010.2049589 PN 1 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 668EX UT WOS:000283252500042 ER PT J AU Li, FX Qiao, W Sun, HB Wan, H Wang, JH Xia, Y Xu, Z Zhang, P AF Li, Fangxing Qiao, Wei Sun, Hongbin Wan, Hui Wang, Jianhui Xia, Yan Xu, Zhao Zhang, Pei TI Smart Transmission Grid: Vision and Framework SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Smart control center; smart substation; smart transmission network; smart transmission system AB A modern power grid needs to become smarter in order to provide an affordable, reliable, and sustainable supply of electricity. For these reasons, considerable activity has been carried out in the United States and Europe to formulate and promote a vision for the development of future smart power grids. However, the majority of these activities emphasized only the distribution grid and demand side leaving the big picture of the transmission grid in the context of smart grids unclear. This paper presents a unique vision for the future of smart transmission grids in which their major features are identified. In this vision, each smart transmission grid is regarded as an integrated system that functionally consists of three interactive, smart components, i.e., smart control centers, smart transmission networks, and smart substations. The features and functions of each of the three functional components, as well as the enabling technologies to achieve these features and functions, are discussed in detail in the paper. C1 [Li, Fangxing] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Qiao, Wei] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA. [Sun, Hongbin] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. [Wan, Hui] W Virginia Univ, Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Xia, Yan] British Columbia Transmission Corp, Vancouver, BC V7X 1M8, Canada. [Xu, Zhao] Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China. [Zhang, Pei] Elect Power Res Inst, Palo Alto, CA 94304 USA. RP Li, FX (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM fli6@utk.edu; wqiao@engr.unl.edu; shb@tsinghua.edu.cn; hui.wan@mail.wvu.edu; jianhui.wang@anl.gov; yan.xia@bctc.com; eezhaoxu@polyu.edu.hk; pzhang@epri.com RI Wan, Hui/I-2553-2014; Li, Fangxing/E-6023-2013 OI Li, Fangxing/0000-0003-1060-7618 FU National Science Foundation (NSF) [CNS-0831466] FX The work of F. Li was supported in part by the National Science Foundation (NSF) under Grant CNS-0831466. Paper no. TSG-00007-2010. NR 52 TC 263 Z9 282 U1 10 U2 60 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2010 VL 1 IS 2 BP 168 EP 177 DI 10.1109/TSG.2010.2053726 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA V29ZV UT WOS:000208787200006 ER PT J AU Wan, Y Roy, S Lesieutre, B AF Wan, Yan Roy, Sandip Lesieutre, Bernard TI Uncertainty Evaluation Through Mapping Identification in Intensive Dynamic Simulations SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Dynamical simulation; parameter identification; uncertainty analysis ID AIR-TRAFFIC FLOW; MANAGEMENT; SYSTEMS; MODELS AB We study how the dependence of a simulation output on an uncertain parameter can be determined when simulations are computationally expensive and so can only be run for very few parameter values. Specifically, the methodology that is developed-known as the probabilistic collocation method (PCM)-permits selection of these few parameter values, so that the mapping between the parameter and the output can be approximated well over the likely parameter values, using a low-order polynomial. Several new analyses are developed concerning the ability of PCM to predict the mapping structure, as well as output statistics. A holistic methodology is also developed for the typical case where the uncertain parameter's probability distribution is unknown, and instead, only depictive moments or sample data (which possibly depend on known regressors) are available. Finally, the application of PCM to weather-uncertainty evaluation in air traffic flow management is discussed. C1 [Wan, Yan] Univ N Texas, Dept Elect Engn, Denton, TX 76207 USA. [Roy, Sandip] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. [Lesieutre, Bernard] Univ Wisconsin Madison, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Lesieutre, Bernard] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wan, Y (reprint author), Univ N Texas, Dept Elect Engn, Denton, TX 76207 USA. EM yan.wan@unt.edu; sroy@eecs.wsu.edu; lesieutre@engr.wisc.edu FU National Aeronautics and Space Administration [NNA06CN26A]; National Science Foundation [ECS-0528882, ECS-0725589] FX Manuscript received May 14, 2008. Date of publication April 5, 2010; date of current version August 18, 2010. This work was supported in part by the National Aeronautics and Space Administration under Grant NNA06CN26A and in part by the National Science Foundation under Grants ECS-0528882 and ECS-0725589. This paper was recommended by Associate Editor L. Gunderson. NR 31 TC 7 Z9 8 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD SEP PY 2010 VL 40 IS 5 SI SI BP 1094 EP 1104 DI 10.1109/TSMCA.2010.2044172 PG 11 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 666OW UT WOS:000283126300017 ER PT J AU Anderson, JC Garth, C Duchaineau, MA Joy, KI AF Anderson, John C. Garth, Christoph Duchaineau, Mark A. Joy, Kenneth I. TI Smooth, Volume-Accurate Material Interface Reconstruction SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Material interface reconstruction; volume fractions; embedded boundary; active interfaces; segmentation ID ACTIVE CONTOUR MODELS; LEVEL SET; MOTION; ALGORITHMS; JUNCTIONS; SURFACES; BALLOONS; TRACKING; FRONTS AB A new material interface reconstruction method for volume fraction data is presented. Our method is comprised of two components: first, we generate initial interface topology; then, using a combination of smoothing and volumetric forces within an active interface model, we iteratively transform the initial material interfaces into high-quality surfaces that accurately approximate the problem's volume fractions. Unlike all previous work, our new method produces material interfaces that are smooth, continuous across cell boundaries, and segment cells into regions with proper volume. These properties are critical during visualization and analysis. Generating high-quality mesh representations of material interfaces is required for accurate calculations of interface statistics, and dramatically increases the utility of material boundary visualizations. C1 [Anderson, John C.] Makai Ocean Engn Inc, Kailua, HI 96734 USA. [Garth, Christoph; Joy, Kenneth I.] Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. [Duchaineau, Mark A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Anderson, JC (reprint author), Makai Ocean Engn Inc, POB 1206, Kailua, HI 96734 USA. EM John.Anderson@makai.com; cgarth@ucdavis.edu; duchaineau1@llnl.gov; kijoy@ucdavis.edu OI Garth, Christoph/0000-0003-1669-8549 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Scholar Program; Office of Science, US Department of Energy [Contract DE-AC02-05CH11231] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by the Lawrence Scholar Program. This work was also supported by the Office of Science, US Department of Energy, under Contract DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) Program's Visualization and Analytics Center for Enabling Technologies (VACET). The swirler data set was graciously provided by Terry J. Ligocki and Phillip Colella at Lawrence Berkeley National Laboratory; http://eetd.lbl.gov/aet/combustion/LSC-info/. The bubble data set was generated using the open-source fluid solver Gerris [46], available at: http://gfs.sf.net. We have also used VisIt [12] ( http://www.llnl.gov/visit), a free interactive parallel visualization and graphical analysis tool, to produce certain visualizations. The authors would additionally like to thank Jeremey Meredith from Oak Ridge National Laboratory, and colleagues in the Institute for Data Analysis and Visualization ( IDAV) at UC Davis. NR 46 TC 12 Z9 12 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD SEP-OCT PY 2010 VL 16 IS 5 BP 802 EP 814 DI 10.1109/TVCG.2010.17 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 621ET UT WOS:000279558200010 PM 20616395 ER PT J AU Huang, R Biegler, LT Patwardhan, SC AF Huang, Rui Biegler, Lorenz T. Patwardhan, Sachin C. TI Fast Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID IMPLEMENTATION; OPTIMIZATION; ALGORITHM; SYSTEMS AB To deal with plant model mismatches in control practice, this paper proposes two variations of an offset-free framework which integrates nonlinear model predictive control (NMPC) and moving horizon estimation (MHE). We prove that the proposed method achieves offset-free regulatory behavior, even in the presence of plant model mismatches. If the plant uncertainty structure is known, the MHE can be tuned to estimate uncertainty parameters, to remove the plant model mismatch online. In addition, we incorporate the advanced step NMPC (as-NMPC) and the advanced step MHE (as-MHE) strategies into the proposed method to reduce online computational delay. Finally, the proposed method is applied on a large scale air separation unit, and the steady state offset-free behavior is observed. C1 [Huang, Rui; Biegler, Lorenz T.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Huang, Rui; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Patwardhan, Sachin C.] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India. RP Biegler, LT (reprint author), Natl Energy Technol Lab, POB 880, Morgantown, WV 26507 USA. EM biegler@cmu.edu FU National Energy Technology Laboratory under the RDS [DE-AC26-04NT41817] FX Partial support of this work was provided by the National Energy Technology Laboratory's ongoing research in Process and Dynamic Systems Research under the RDS Contract No. DE-AC26-04NT41817. NR 18 TC 22 Z9 22 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 1 PY 2010 VL 49 IS 17 BP 7882 EP 7890 DI 10.1021/ie901945y PG 9 WC Engineering, Chemical SC Engineering GA 641EO UT WOS:000281107800018 ER PT J AU Wong, PC Park, J Hao, MC AF Wong, Pak Chung Park, Jinah Hao, Ming C. TI Special issue of selected papers from visualization and data analysis 2010 SO INFORMATION VISUALIZATION LA English DT Editorial Material C1 [Wong, Pak Chung] Pacific NW Natl Lab, Richlan, WA 99352 USA. [Park, Jinah] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Hao, Ming C.] Hewlett Packard Corp, Intelligent Informat Management Lab, Palo Alto, CA 94304 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, POB 999,K7-28, Richlan, WA 99352 USA. EM pak.wong@pnl.gov; jinahpark@kaist.ac.kr; Ming.hao@hp.com RI Park, Jinah/I-6949-2016 OI Park, Jinah/0000-0003-4676-9862 NR 0 TC 0 Z9 0 U1 0 U2 2 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD FAL PY 2010 VL 9 IS 3 SI SI BP 165 EP 166 DI 10.1057/ivs.2010.7 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 648YZ UT WOS:000281732800001 ER PT J AU Erbacher, RF Frincke, DA Wong, PC Moody, S Fink, G AF Erbacher, Robert F. Frincke, Deborah A. Wong, Pak Chung Moody, Sarah Fink, Glenn TI A multi-phase network situational awareness cognitive task analysis SO INFORMATION VISUALIZATION LA English DT Article DE cognitive task analysis; cyber security visualization; security analyst feedback; task-flow diagram AB The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into making certain that we had feedback from network analysts and managers and understand what their genuine needs are. This article discusses the cognitive task-analysis methodology that we followed to acquire feedback from the analysts. This article also provides the details we acquired from the analysts on their processes, goals, concerns, the data and metadata that they analyze. Finally, we describe the generation of a novel task-flow diagram representing the activities of the target user base. Information Visualization (2010) 9, 204-219. doi:10.1057/ivs.2010.5 C1 [Erbacher, Robert F.; Moody, Sarah] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA. [Frincke, Deborah A.; Wong, Pak Chung; Fink, Glenn] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Erbacher, RF (reprint author), Utah State Univ, Dept Comp Sci, UMC 4205, Logan, UT 84322 USA. EM Robert.Erbacher@usu.edu; Deborah.Frincke@pnl.gov; Pak.Wong@pnl.gov; s.j.m@aggiemail.usu.edu; Glenn.Fink@pnl.gov OI Fink, Glenn/0000-0001-5731-6514 FU AFRL [FA8750-07-C-0163] FX This research was funded in part by AFRL under project FA8750-07-C-0163. Many students played significant roles in the performance of the project, including Anupama Biswas, Anusha Davuluri, Chris Harris, Srinidhi Kakani, Stephen Miller, Steena Montiero, Sarah Moody, Rian Shelley and RB Whitaker. We also appreciate the time and effort of the participants from PNNL who provided input during the cognitive task analysis. We also appreciate the valuable assistance and comments from Sharon Eaton, Lorie Layne and Lee Ann Dudney, from Pacific Northwest National Laboratory, in developing this article. NR 18 TC 14 Z9 15 U1 1 U2 15 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD FAL PY 2010 VL 9 IS 3 SI SI BP 204 EP 219 DI 10.1057/ivs.2010.5 PG 16 WC Computer Science, Software Engineering SC Computer Science GA 648YZ UT WOS:000281732800005 ER PT J AU Abhishek, K Leyffer, S Linderoth, J AF Abhishek, Kumar Leyffer, Sven Linderoth, Jeff TI FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE mixed-integer nonlinear programming; outer approximation; LP/NLP-based branch and bound ID CUTTING-PLANE METHOD; SEARCH ALGORITHM; MINLP PROBLEMS; OPTIMIZATION; BRANCH; PERFORMANCE; SOFTWARE AB We describe a new solver for convex mixed-integer nonlinear programs (MINLPs) that implements a linearization-based algorithm. The solver is based on an algorithm of Quesada and Grossmann [Quesada, I., I. E. Grossmann. 1992. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chemical Engrg. 16(10-11) 937-947] that avoids the complete re-solution of a master mixed-integer linear program (MILP) by adding new linearizations at open nodes of the branch-and-bound tree whenever an integer solution is found. The new solver, FilMINT, combines the MINTO branch-and-cut framework for MILP with filterSQP to solve the nonlinear programs that arise as subproblems in the algorithm. The MINTO framework allows us to easily employ cutting planes, primal heuristics, and other well-known MILP enhancements for MINLPs. We present detailed computational experiments that show the benefit of such advanced MILP techniques. We offer new suggestions for generating and managing linearizations that are shown to be efficient on a wide range of MINLPs. By carefully incorporating and tuning all these enhancements, an effective solver for convex MINLPs is constructed. C1 [Abhishek, Kumar] United Airlines, Enterprise Optimizat, Elk Grove Village, IL 60007 USA. [Leyffer, Sven] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Linderoth, Jeff] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI 53706 USA. RP Abhishek, K (reprint author), United Airlines, Enterprise Optimizat, Elk Grove Village, IL 60007 USA. EM kumar.abhishek@united.com; leyffer@mcs.anl.gov; linderoth@wisc.edu RI Linderoth, Jeffrey/B-4995-2013 OI Linderoth, Jeffrey/0000-0003-4442-3059 FU Mathematical, Information, and Computational Sciences Division of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [W-31-109-ENG-38]; National Science Foundation (NSF) [CMMI-0522796, CCF-0830153]; U.S. Department of Energy [DE-FG02-08ER25861, DE-FG02-09ER25869]; IBM FX The second author is supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38. Support from the National Science Foundation (NSF) under Grants CMMI-0522796 and CCF-0830153, by the U.S. Department of Energy under Grants DE-FG02-08ER25861 and DE-FG02-09ER25869, and by IBM, through the Faculty Partnership Program, is gratefully acknowledged. The insightful commentary of two anonymous referees contributed significantly to the final quality of the publication. The authors thank Mustafa Kilinc for his continuing work on FilMINT. NR 37 TC 31 Z9 32 U1 0 U2 5 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 1091-9856 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD FAL PY 2010 VL 22 IS 4 BP 555 EP 567 DI 10.1287/ijoc.1090.0373 PG 13 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 675PH UT WOS:000283842100006 ER PT J AU Weber, JKR AF Weber, J. K. Richard TI The Containerless Synthesis of Glass SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID HIGH-TEMPERATURE LIQUIDS; ELECTROSTATIC LEVITATOR; AERODYNAMIC LEVITATION; SYNCHROTRON-RADIATION; VIBRATIONAL-SPECTRA; METALLIC-GLASS; ALUMINA; DYNAMICS; EARTH; CRYSTALLIZATION AB Glasses are commonly synthesized by cooling melts at a rate sufficient to prevent the nucleation of substantial amounts of crystalline phases. In the limit, high cooling rates no longer prevent crystallization. In some of these cases, elimination of container-melt-induced nucleation by using containerless processing (also called levitation) significantly extends the glass-forming composition range. Containerless methods also eliminate contamination allowing the preparation of high-purity materials that can be used to benchmark properties and structure. This article briefly reviews the application of containerless methods to several types of glass. Some examples of glasses formed using containerless techniques are presented and discussed in the context of developing materials. A short commentary on specific issues that relate to the use of containerless processing is presented. This review is intended to provide an introduction to the use of containerless methods in glass research. C1 [Weber, J. K. Richard] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Weber, J. K. Richard] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Weber, J. K. Richard] Univ Tennessee, Dept Mat Sci & Engn Adjunct, Knoxville, TN 37996 USA. RP Weber, JKR (reprint author), Mat Dev Inc, Arlington Hts, IL 60004 USA. EM info@matsdev.com NR 74 TC 8 Z9 8 U1 5 U2 29 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD SEP PY 2010 VL 1 IS 3 SI SI BP 248 EP 256 DI 10.1111/j.2041-1294.2010.00026.x PG 9 WC Materials Science, Ceramics SC Materials Science GA V26BJ UT WOS:000208520800005 ER PT J AU Vienna, JD AF Vienna, John D. TI Nuclear Waste Vitrification in the United States: Recent Developments and Future Options SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article AB Nuclear power plays a key role in maintaining current worldwide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is to recycle UNF and immobilize the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the U.S. nuclear fuel cycle in an efficient fashion. This article summarizes the recent trends, developments, and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the United States. C1 [Vienna, John D.] Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.vienna@pnl.gov NR 120 TC 35 Z9 36 U1 0 U2 25 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD SEP PY 2010 VL 1 IS 3 SI SI BP 309 EP 321 DI 10.1111/j.20411294.2010.00023.x PG 13 WC Materials Science, Ceramics SC Materials Science GA V26BJ UT WOS:000208520800009 ER PT J AU Mathias, SA Gluyas, JG Oldenburg, CM Tsang, CF AF Mathias, Simon A. Gluyas, Jon G. Oldenburg, Curtis M. Tsang, Chin-Fu TI Analytical solution for Joule-Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Joule-Thomson cooling; Geologic carbon sequestration; Depleted gas reservoirs ID INJECTION AB Mathematical tools are needed to screen out sites where Joule-Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoicing steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s(-1) (0.1 MT yr(-1)) into moderately warm (>40 degrees C) and permeable formations (>10(-14) m(2) (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Mathias, Simon A.; Gluyas, Jon G.] Univ Durham, Dept Earth Sci, Durham, England. [Oldenburg, Curtis M.; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mathias, SA (reprint author), Univ Durham, Dept Earth Sci, Durham, England. EM s.a.mathias@durham.ac.uk RI Mathias, Simon/B-6038-2008; Oldenburg, Curtis/L-6219-2013; Gluyas, Jon/B-8808-2014 OI Mathias, Simon/0000-0003-3054-9056; Oldenburg, Curtis/0000-0002-0132-6016; Gluyas, Jon/0000-0002-9386-7206 FU LBNL under US DOE [DE-AC02-05CH11231] FX We thank internal LBNL reviewer, Andrea Cortis for his constructive comments. Partial support for this work was provided by LBNL under US DOE Contract No. DE-AC02-05CH11231. NR 12 TC 24 Z9 26 U1 2 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2010 VL 4 IS 5 BP 806 EP 810 DI 10.1016/j.ijggc.2010.05.008 PG 5 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 644BK UT WOS:000281345200011 ER PT J AU Person, M Banerjee, A Rupp, J Medina, C Lichtner, P Gable, C Pawar, R Celia, M McIntosh, J Bense, V AF Person, Mark Banerjee, Amlan Rupp, John Medina, Cristian Lichtner, Peter Gable, Carl Pawar, Rajesh Celia, Michael McIntosh, Jennifer Bense, Victor TI Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Mount Simon; Illinois basin; CO2; Earthquakes; Pressure; Brine transport ID PETROLEUM MIGRATION; INDUCED SEISMICITY; SALINE AQUIFERS; UNITED-STATES; MODELS; EARTHQUAKE; CHEMISTRY; RESERVOIR; RECHARGE; SYSTEMS AB Idealized, basin-scale sharp-interface models of CO2 injection were constructed for the Illinois basin. Porosity and permeability were decreased with depth within the Mount Simon Formation. Eau Claire confining unit porosity and permeability were kept fixed. We used 726 injection wells located near 42 power plants to deliver 80 million metric tons of CO2/year. After 100 years of continuous injection, deviatoric fluid pressures varied between 5.6 and 18 MPa across central and southern part of the Illinois basin. Maximum deviatoric pressure reached about 50% of lithostatic levels to the south. The pressure disturbance (>0.03 MPa) propagated 10-25 km away from the injection wells resulting in significant well-well pressure interference. These findings are consistent with single-phase analytical solutions of injection. The radial footprint of the CO2 plume at each well was only 0.5-2 km after 100 years of injection. Net lateral brine displacement was insignificant due to increasing radial distance from injection well and leakage across the Eau Claire confining unit. On geologic time scales CO2 would migrate northward at a rate of about 6 m/1000 years. Because of paleo-seismic events in this region (M5.5-M7.5), care should be taken to avoid high pore pressures in the southern Illinois basin. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Person, Mark; Banerjee, Amlan] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Rupp, John; Medina, Cristian] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA. [Lichtner, Peter; Gable, Carl; Pawar, Rajesh] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Celia, Michael] Princeton Univ, Dept Civil Engn, Princeton, NJ 08544 USA. [McIntosh, Jennifer] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Bense, Victor] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. RP Person, M (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA. EM mperson@nmt.edu RI Bense, Victor/C-9933-2011; Gable, Carl/B-4689-2011; Banerjee, Amlan/P-9658-2016; OI Banerjee, Amlan/0000-0002-2065-1391; Gable, Carl/0000-0001-7063-0815; Bense, Victor/0000-0002-3675-5232 FU Department of Energy [DE-FE0001161] FX This work was supported by a Department of Energy grant to Mark Person, John Rupp, and Michael Celia under DE-FE0001161. We also wish to acknowledge the comments of two anonymous reviewers and Dr. Chris Neuzil of the US Geological Survey. NR 79 TC 46 Z9 47 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2010 VL 4 IS 5 BP 840 EP 854 DI 10.1016/j.ijggc.2010.04.004 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 644BK UT WOS:000281345200015 ER PT J AU Luckow, P Wise, MA Dooley, JJ Kim, SH AF Luckow, P. Wise, M. A. Dooley, J. J. Kim, S. H. TI Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Bioenergy; Carbon dioxide capture and storage; Climate change; Greenhouse gas emissions mitigation; Electricity generation sector; Transportation sector; Biomass energy production ID MUNICIPAL SOLID-WASTE; CLIMATE-CHANGE; LAND-USE; EMISSIONS; COST; COAL; TECHNOLOGIES; RECOVERY; SYSTEM; FUELS AB Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints: we find that at carbon prices above $150/tCO(2), over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO(2) has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Luckow, P.; Wise, M. A.; Dooley, J. J.; Kim, S. H.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Luckow, P (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM patrick.luckow@pnl.gov OI Dooley, James/0000-0002-2824-4344 NR 62 TC 57 Z9 57 U1 2 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2010 VL 4 IS 5 BP 865 EP 877 DI 10.1016/j.ijggc.2010.06.002 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 644BK UT WOS:000281345200018 ER PT J AU Chen, RH Phuoc, TX Martello, D AF Chen, Ruey-Hung Phuoc, Tran X. Martello, Donald TI Effects of nanoparticles on nanofluid droplet evaporation SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Nanofluids; Evaporation; Latent heat of vaporization; D(2)-law ID THERMAL-CONDUCTIVITY ENHANCEMENT; HEAT-TRANSFER; WATER; MICROLAYER; STABILITY AB Laponite, Fe(2)O(3) and Ag nanoparticles were added to deionized water to study their effect of evaporation rates. The results show that these nanofluid droplets evaporate at different rates (as indicated by the evaporation rate constant K in the well known D(2)-law) from the base fluid. Different particles lead to different values of K. As the particle concentration increases due to evaporation. K values of various Ag and Fe(2)O(3) nanofluids go through a transition from one value to another, further demonstrating the effect of increasing nanoparticle concentration. The implication for the heat of vaporization (h(fg)) is discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Chen, Ruey-Hung] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Phuoc, Tran X.; Martello, Donald] Natl Energy Technol Lab, Dept Energy, Pittsburgh, PA 15261 USA. RP Chen, RH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM chenrh@mail.ucf.edu NR 30 TC 34 Z9 35 U1 7 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD SEP PY 2010 VL 53 IS 19-20 BP 3677 EP 3682 DI 10.1016/j.ijheatmasstransfer.2010.04.006 PG 6 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 633FF UT WOS:000280484400008 ER PT J AU Marchi, CS Michler, T Nibur, KA Somerday, BP AF Marchi, C. San Michler, T. Nibur, K. A. Somerday, B. P. TI On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Austenitic stainless steel; Hydrogen environment; embrittlement; Internal hydrogen embrittlement ID DUCTILE FRACTURE TOPOGRAPHY; IRON-BASED SUPERALLOY; ENVIRONMENT EMBRITTLEMENT; LOW-TEMPERATURES; CRACK-GROWTH; DEFORMATION; THRESHOLDS; PRESSURE; GAS AB Seventeen metastable austenitic stainless steels (type 304 and 316 alloys) were tested in tension both with internal hydrogen and in external hydrogen. Hydrogen-assisted fracture in both environments is a competition between hydrogen-affected ductile overload and hydrogen-assisted crack propagation. In general, hydrogen localizes the fracture process, which results in crack propagation of particularly susceptible materials at an apparent engineering stress that is less than the tensile strength of the material. Hydrogen-assisted crack propagation in this class of alloys becomes more prevalent at lower nickel content and lower temperature. In addition, for the tests in this study, external hydrogen reduces tensile ductility more than internal hydrogen. External hydrogen promotes crack initiation and propagation at the surface, while with internal hydrogen surface cracking is largely absent, thus preempting hydrogen-assisted crack propagation from the surface. This is not a general result, however, because the reduction of ductility with internal and external hydrogen depends on the specifics of the testing conditions that are compared (e.g., hydrogen gas pressure); in addition, internal hydrogen can promote the formation of internal cracks, which can propagate similar to surface cracks. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Marchi, C. San; Nibur, K. A.; Somerday, B. P.] Sandia Natl Labs, Livermore, CA USA. [Michler, T.] Adam Opel GmbH, Russelsheim, Germany. RP Marchi, CS (reprint author), Sandia Natl Labs, Livermore, CA USA. EM cwsanma@sandia.gov FU German Bundesministerium fur Wirtschaft und Technologie [0327802A]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Ken Lee and Roger Watson for their assistance with testing at Sandia National Laboratories, and Jeff Campbell for performing the hydrogen precharging, also at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was partly funded by the German Bundesministerium fur Wirtschaft und Technologie under contract No. 0327802A. NR 34 TC 50 Z9 50 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD SEP PY 2010 VL 35 IS 18 SI SI BP 9736 EP 9745 DI 10.1016/j.ijhydene.2010.06.018 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 656PA UT WOS:000282347500026 ER PT J AU Ewing, RG Waltman, MJ AF Ewing, Robert G. Waltman, Melanie J. TI Production and utilization of CO3- produced by a corona discharge in air for atmospheric pressure chemical ionization SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE APCI; IMS; CO3-; Corona discharge; Explosives ID ION MOBILITY SPECTROMETRY; NEGATIVE-IONS AB Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement, It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 180 labeled oxygen. Further confirmation was provided through MS/MS studies The ionization of nitroglycerine (NC) with CO3- produced the adduct NC CO3- This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NC. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate. (C) 2010 Published by Elsevier B.V C1 [Ewing, Robert G.; Waltman, Melanie J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Waltman, Melanie J.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. RP Ewing, RG (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. NR 17 TC 12 Z9 12 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP-OCT PY 2010 VL 296 IS 1-3 BP 53 EP 58 DI 10.1016/j.ijms.2010.08.024 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 673YC UT WOS:000283699100010 ER PT J AU Zhang, S Chen, JH Ma, YG Tang, ZB Xu, ZB AF Zhang, Song Chen, J. H. Ma, Y. G. Tang, Z. B. Xu, Z. B. TI HYPERNUCLEUS PRODUCTION AT RHIC AND HIRFL-CSR ENERGY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energy (IWND2009) CY AUG 23-25, 2009 CL Shanghai, PEOPLES R CHINA ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; PION SPECTRA; MODEL; PARTON; FLOW; COALESCENCE; COLLABORATION; STRANGENESS AB We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S-3 = H-3(Lambda)/(H-3(e) x Lambda/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR. C1 [Zhang, Song; Chen, J. H.; Ma, Y. G.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Tang, Z. B.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Z. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhang, S (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM zhangsong@sinap.ac.cn; chenjh@sinap.ac.cn; ygma@sinap.ac.cn RI Tang, Zebo/A-9939-2014; Ma, Yu-Gang/M-8122-2013 OI Tang, Zebo/0000-0002-4247-0081; Ma, Yu-Gang/0000-0002-0233-9900 NR 60 TC 0 Z9 0 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD SEP PY 2010 VL 19 IS 8-9 BP 1829 EP 1836 DI 10.1142/S0218301310016260 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 652PQ UT WOS:000282021700037 ER PT J AU Nesterov, AI Berman, GP Bishop, AR AF Nesterov, Alexander I. Berman, Gennady P. Bishop, Alan R. TI NON-HERMITIAN DESCRIPTION OF A SUPERCONDUCTING PHASE QUBIT MEASUREMENT SO INTERNATIONAL JOURNAL OF QUANTUM INFORMATION LA English DT Article DE Superconducting phase qubit; Josephson junction ID JOSEPHSON-JUNCTION; DIFFERENCE; CONTINUUM; STATE AB We present an approach based on a non-Hermitian Hamiltonian to describe the process of measurement by tunneling of superconducting phase qubit states. We derive simple analytical expressions which describe the dynamics of measurement, and compare our results with those experimentally available. In particular, we show that even for a single qubit, the analytical expressions simplify the analysis of the dynamics in comparison with the density matrix approach. We also demonstrate that the effect of the interference of tunneling channels can be easily described by using the approach based on the non-Hermitian Hamiltonian. C1 [Nesterov, Alexander I.] Univ Guadalajara, Dept Fis, CUCEI, Guadalajara 44420, Jalisco, Mexico. [Berman, Gennady P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Bishop, Alan R.] Los Alamos Natl Lab, ADTSC, Los Alamos, NM 87544 USA. RP Nesterov, AI (reprint author), Univ Guadalajara, Dept Fis, CUCEI, Av Revoluc 1500, Guadalajara 44420, Jalisco, Mexico. EM nesterov@cencar.udg.mx; gpb@lanl.gov; arb@lanl.gov OI Nesterov, Alexander/0000-0002-4801-4570 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA). NR 27 TC 2 Z9 2 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-7499 J9 INT J QUANTUM INF JI Int. J. Quantum Inf. PD SEP PY 2010 VL 8 IS 6 BP 895 EP 904 DI 10.1142/S0219749910006630 PG 10 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 694PT UT WOS:000285310800001 ER PT J AU Fransson, A Tsang, CF Rutqvist, J Gustafson, G AF Fransson, A. Tsang, C. -F. Rutqvist, J. Gustafson, G. TI Estimation of deformation and stiffness of fractures close to tunnels using data from single-hole hydraulic testing and grouting SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Hydromechanical coupling; Fractured rock; Fracture normalstiffness; Stress; Hydraulic testing; Grouting ID COUPLED HYDROMECHANICAL BEHAVIOR; HARD-ROCK; FIELD; PRESSURE AB Sealing of tunnel sin fractured rocks is commonly performed by pre- or post-excavation grouting. The grouting boreholes are frequently drilled close to the tunnel wall, an area where rock stresses can be low and fractures can more easily open up during grout pressurization. In this paper we suggest that data from hydraulic testing and grouting can be used to identify grout-induced fracture opening, to estimate fracture stiffness of such fractures, and to evaluate its impact on the grout performance. A conceptual model and a method are presented for estimating fracture stiffness. The method is demonstrated using grouting data from four pre-excavation grouting boreholes at a shallow tunnel (50 m) in Nygard, Sweden, and two post-excavation grouting boreholes at a deep tunnel (450 m) in Aspo HRL, Sweden. The estimated stiffness of intersecting fractures for the boreholes at the shallow Nygard tunnel are low (2-5 GPa/m) and in agreement with literature data from field experiments at other fractured rock sites. Higher stifness was obtained for the deeper tunnel boreholes at Aspo which is reasonable considering that generally higher rock stresses are expected at greater depths. Our method of identifying and evaluating the properties and impact of deforming fractures might be most applicable when grouting takes place in boreholes adjacent to the tunnel wall, where local stresses might be low and where deforming (opening) fractures may take most of the grout. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fransson, A.; Gustafson, G.] Chalmers, S-41296 Gothenburg, Sweden. [Tsang, C. -F.; Rutqvist, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tsang, C. -F.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RP Fransson, A (reprint author), Chalmers, S-41296 Gothenburg, Sweden. EM asa.fransson@chalmers.se RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas); US Department of Energy [DE-AC02-05CH11231] FX The first author thanks the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) for financial support. Further, thanks go to PhD student christian Butron for the collaborative work when analyzing flow dimensionality for the Nygard tunnel. Funding for contributions from the Berkeley Lab authors was provided by the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 24 TC 9 Z9 10 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2010 VL 47 IS 6 BP 887 EP 893 DI 10.1016/j.ijrmms.2010.05.007 PG 7 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 634UD UT WOS:000280610200002 ER PT J AU Yang, SJ Kataeva, I Wiegel, J Yin, YB Dam, P Xu, Y Westpheling, J Adams, MWW AF Yang, Sung-Jae Kataeva, Irina Wiegel, Juergen Yin, Yanbin Dam, Phuongan Xu, Ying Westpheling, Janet Adams, Michael W. W. TI Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID CELLULOLYTIC BACTERIUM; ANAEROBIC BACTERIUM; GEN-NOV; SACCHAROLYTICUS; SPRINGS AB The thermophilic, cellulolytic, anaerobic bacterium 'Anaerocellum thermophilum' strain Z-1320 was isolated from a hot spring almost two decades ago and deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ) as DSM 6725. The organism was classified as representing a new genus, 'Anaerocellum', primarily on its growth physiology, cell-wall type and morphology. The results of recent physiological studies and of phylogenetic and genome sequence analyses of strain DSM 6725 of 'A. thermophilum' obtained from the DSMZ showed that its properties differed from those originally described for strain Z-1320. In particular, when compared with strain Z-1320, strain DSM 6725 grew at higher temperatures and had an expanded range of growth substrates. Moreover, the 16S rRNA gene sequence of strain DSM 6725 fell within the Caldicellulosiruptor clade. It is therefore suggested that 'Anaerocellum thermophilum' should be classified as a member of the genus Caldicellulosiruptor, for which the name Caldicellulosiruptor bescii sp. nov. is proposed (type strain DSM 6725(T)=ATCC BAA-1888(T)). C. bescii sp. nov. DSM 6725(T) is the most thermophilic cellulose-degrading organism known. The strain was able to grow up to 90 degrees C (pH 7.2) and degraded crystalline cellulose and xylan as well as untreated plant biomass, including potential bioenergy plants such as poplar and switchgrass. C1 [Yang, Sung-Jae; Kataeva, Irina; Wiegel, Juergen; Yin, Yanbin; Dam, Phuongan; Xu, Ying; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Wiegel, Juergen; Adams, Michael W. W.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Yin, Yanbin; Dam, Phuongan; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. [Yang, Sung-Jae; Kataeva, Irina; Yin, Yanbin; Dam, Phuongan; Xu, Ying; Westpheling, Janet; Adams, Michael W. W.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Biosci Div, Oak Ridge, TN 37831 USA. RP Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM adams@bmb.uga.edu RI Yin, Yanbin/C-9788-2010; OI Yin, Yanbin/0000-0001-7667-881X; Wiegel, Juergen/0000-0002-6343-6464 FU Office of Biological and Environmental Research in the DOE Office of Science [DE-PS02-06ER64304] FX This work was supported by grant (DE-PS02-06ER64304) from the Bioenergy Science Center (BESC), Oak Ridge National Laboratory, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We thank Professor J. P. Euzeby with help in correctly naming the bacterium. NR 13 TC 45 Z9 47 U1 1 U2 12 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD SEP PY 2010 VL 60 BP 2011 EP 2015 DI 10.1099/ijs.0.017731-0 PN 9 PG 5 WC Microbiology SC Microbiology GA 659CC UT WOS:000282543600004 PM 19801388 ER PT J AU Laurie, M Magallon, D Rempe, J Wilkins, C Pierre, J Marquie, C Eymery, S Morice, R AF Laurie, M. Magallon, D. Rempe, J. Wilkins, C. Pierre, J. Marquie, C. Eymery, S. Morice, R. TI Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use SO INTERNATIONAL JOURNAL OF THERMOPHYSICS LA English DT Article; Proceedings Paper CT 1st TEMPMEKO and ISHM Joint International Symposium on Temperature, Humidity, Moisture, and Thermal Measurements CY MAY 31-JUN 04, 2010 CL Portoroz, SLOVENIA SP ISHM, Int Measurement Confederat (IMEKO) DE Fixed-point cells; Fuel testing; Harsh environment; High-temperature irradiation; Severe accident experiment; Ultrasonic Thermometer AB Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed. C1 [Laurie, M.; Magallon, D.] European Commiss, Joint Res Ctr, Inst Energy, Petten, Netherlands. [Rempe, J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Pierre, J.; Marquie, C.; Eymery, S.] Inst Radioprotect & Surete Nucl, Cadarache, France. [Morice, R.] Lab Natl Metrol & Essais, F-75724 Paris, France. RP Laurie, M (reprint author), European Commiss, Joint Res Ctr, Inst Energy, Petten, Netherlands. EM mathias.laurie@ec.europa.eu OI Rempe, Joy/0000-0001-5527-3549 NR 10 TC 7 Z9 8 U1 0 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-928X J9 INT J THERMOPHYS JI Int. J. Thermophys. PD SEP PY 2010 VL 31 IS 8-9 SI SI BP 1417 EP 1427 DI 10.1007/s10765-010-0791-z PG 11 WC Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied SC Thermodynamics; Chemistry; Mechanics; Physics GA 683OV UT WOS:000284486000003 ER PT J AU Jansson, JK Fredrickson, JK AF Jansson, J. K. Fredrickson, J. K. TI Stewards of a changing planet: commentaries from ISME13 Plenary Lecturers SO ISME JOURNAL LA English DT Editorial Material C1 [Jansson, J. K.] Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA USA. [Fredrickson, J. K.] Pacific NW Natl Lab, Div Biol Sci, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Jansson, JK (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA USA. EM jim.fredrickson@pnl.gov RI Jansson, Janet/F-9951-2012 NR 0 TC 0 Z9 0 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2010 VL 4 IS 9 BP 1079 EP 1080 DI 10.1038/ismej.2010.114 PG 2 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 648AV UT WOS:000281663700001 PM 20733576 ER PT J AU Remis, JP Costerton, JW Auer, M AF Remis, Jonathan P. Costerton, J. William Auer, Manfred TI Biofilms: structures that may facilitate cell-cell interactions SO ISME JOURNAL LA English DT Editorial Material ID MEMBRANE-VESICLES; MYXOCOCCUS-XANTHUS; TOMOGRAPHY; BIOLOGY; SIGNALS C1 [Remis, Jonathan P.] Univ Calif Berkeley, Grad Grp Comparat Biochem, Berkeley, CA 94720 USA. [Remis, Jonathan P.; Auer, Manfred] Lawrence Berkeley Labs, Div Life Sci, Berkeley, CA USA. [Costerton, J. William] Allegheny Singer Res Inst, Ctr Genom Sci, Pittsburgh, PA 15212 USA. RP Remis, JP (reprint author), Univ Calif Berkeley, Grad Grp Comparat Biochem, Berkeley, CA 94720 USA. EM MAuer@lbl.gov NR 10 TC 21 Z9 21 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2010 VL 4 IS 9 BP 1085 EP 1087 DI 10.1038/ismej.2010.105 PG 3 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 648AV UT WOS:000281663700004 PM 20631806 ER PT J AU Reeve, JR Schadt, CW Carpenter-Boggs, L Kang, S Zhou, JZ Reganold, JP AF Reeve, Jennifer R. Schadt, Christopher W. Carpenter-Boggs, Lynne Kang, Sanghoon Zhou, Jizhong Reganold, John P. TI Effects of soil type and farm management on soil ecological functional genes and microbial activities SO ISME JOURNAL LA English DT Article DE GeoChip microarray; soil functions; organic farming ID ECOSYSTEM FUNCTION RELATIONSHIP; GRADIENT GEL-ELECTROPHORESIS; METHYL-BROMIDE ALTERNATIVES; MICROARRAY-BASED ANALYSIS; CHLOROFORM FUMIGATION; COMMUNITY STRUCTURE; ENZYME-ACTIVITIES; ORGANIC-MATTER; BIODIVERSITY; DIVERSITY AB Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes. The ISME Journal (2010) 4, 1099-1107; doi: 10.1038/ismej.2010.42; published online 8 April 2010 C1 [Reeve, Jennifer R.] Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. [Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci & Environm Sci Div, Oak Ridge, TN USA. [Carpenter-Boggs, Lynne] Washington State Univ, Ctr Sustaining Agr & Nat Resources, Pullman, WA 99164 USA. [Kang, Sanghoon; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Kang, Sanghoon; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Reganold, John P.] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA. RP Reeve, JR (reprint author), Utah State Univ, Dept Plants Soils & Climate, 4820 Old Main Hill, Logan, UT 84322 USA. EM jennifer.reeve@usu.edu RI Reeve, Jennifer /G-7148-2011; Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; Kang, Sanghoon/0000-0002-3504-7955 FU Organic Center; United States Department of Energy FX This work was funded by The Organic Center (http://www.organic-center.org). Microarray analysis and the participation of Dr's Schadt and Zhou was supported by The United States Department of Energy under the Environmental Remediation Science Program, and Genomics: GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov), Office of Biological and Environmental Research, Office of Science, and by the United States Department of Agriculture through NSF-USDA Microbial Observatories Program. We thank Tom Sjulin of Driscoll's Strawberry Associates and Larry Eddings of Pacific Gold Farms for assistance with farm selection. A special thanks to Drs Jan Dasgupta and Stuart Higgins for help and advice on statistical analysis. Additional thanks to Debbi Bikfasy, Margaret Davies, Mary Fauci and Emily Hollister for training and advice in lab protocols. NR 46 TC 45 Z9 48 U1 8 U2 66 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2010 VL 4 IS 9 BP 1099 EP 1107 DI 10.1038/ismej.2010.42 PG 9 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 648AV UT WOS:000281663700009 PM 20376100 ER PT J AU He, ZL Deng, Y Van Nostrand, JD Tu, QC Xu, MY Hemme, CL Li, XY Wu, LY Gentry, TJ Yin, YF Liebich, J Hazen, TC Zhou, JZ AF He, Zhili Deng, Ye Van Nostrand, Joy D. Tu, Qichao Xu, Meiying Hemme, Christopher L. Li, Xingyuan Wu, Liyou Gentry, Terry J. Yin, Yifeng Liebich, Jost Hazen, Terry C. Zhou, Jizhong TI GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity SO ISME JOURNAL LA English DT Article DE microarray; functional genes; microbial community; plant diversity ID PSEUDOMONAS-PUTIDA STRAINS; MICROARRAY-BASED ANALYSIS; PROBE DESIGN CRITERIA; OLIGONUCLEOTIDE MICROARRAY; GENE DIVERSITY; ELEVATED CO2; PROKARYOTIC DIVERSITY; NITROGEN DEPOSITION; ENVIRONMENT; SEQUENCES AB A new generation of functional gene arrays (FGAs; GeoChip 3.0) has been developed, with similar to 28 000 probes covering approximately 57 000 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance and organic contaminant degradation. GeoChip 3.0 also has several other distinct features, such as a common oligo reference standard (CORS) for data normalization and comparison, a software package for data management and future updating and the gyrB gene for phylogenetic analysis. Computational evaluation of probe specificity indicated that all designed probes would have a high specificity to their corresponding targets. Experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036-0.025% false-positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which showed that the structure, composition and potential activity of soil microbial communities significantly changed with the plant species diversity. As expected, GeoChip 3.0 is a high-throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning. The ISME Journal (2010) 4, 1167-1179; doi: 10.1038/ismej.2010.46; published online 29 April 2010 C1 [He, Zhili; Deng, Ye; Van Nostrand, Joy D.; Tu, Qichao; Xu, Meiying; Hemme, Christopher L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [He, Zhili; Deng, Ye; Van Nostrand, Joy D.; Tu, Qichao; Xu, Meiying; Hemme, Christopher L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Xu, Meiying] Guangdong Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect, Guangzhou, Guangdong, Peoples R China. [Li, Xingyuan] BioinformaticsPro, Newton, MA USA. [Gentry, Terry J.] Texas A&M Univ, Dept Crop & Soil Sci, College Stn, TX USA. [Yin, Yifeng] Trinity Biosyst Inc, Menlo Pk, CA USA. [Liebich, Jost] Forschungszentrum Julich, Inst Chem & Dynam Geosphere Agrosphere 4, D-52425 Julich, Germany. [Hazen, Terry C.; Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, 101 David L Boren Blvd, Norman, OK 73019 USA. EM jzhou@ou.edu RI Deng, Ye/A-2571-2013; He, Zhili/C-2879-2012; Van Nostrand, Joy/F-1740-2016; Hazen, Terry/C-1076-2012; OI Van Nostrand, Joy/0000-0001-9548-6450; Hazen, Terry/0000-0002-2536-9993; ?, ?/0000-0002-7584-0632 FU Virtual Institute of Microbial Stress and Survival (VIMSS) [DE-AC02-05CH11231]; US Department of Energy; Lawrence Berkeley National Laboratory; United States Department of Agriculture [2007-35319-18305]; Environmental Remediation Science Program; Oklahoma Bioengery Center (OBC) of State of Oklahoma; Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma FX This work is supported by the Genomics: GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov) as part of contract no. DE-AC02-05CH11231 between the US Department of Energy and Lawrence Berkeley National Laboratory, the United States Department of Agriculture (Project 2007-35319-18305) through NSF-USDA Microbial Observatories Program, the Environmental Remediation Science Program, the Oklahoma Bioengery Center (OBC) of State of Oklahoma, and the Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma. NR 59 TC 169 Z9 185 U1 17 U2 137 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2010 VL 4 IS 9 BP 1167 EP 1179 DI 10.1038/ismej.2010.46 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 648AV UT WOS:000281663700015 PM 20428223 ER PT J AU Yang, ZG AF Yang, Zheyriguo (Gary) TI Status and Challenges in Electrochemical Energy Storage Technologies for Stationary Applications SO JOM LA English DT Editorial Material C1 [Yang, Zheyriguo (Gary)] Pacific NW Natl Lab, Elect Magnet & Photon Mat Div, Energy Convers & Storage Comm, Richland, WA 99354 USA. [Yang, Zheyriguo (Gary)] TMS, Elect Magnet & Photon Mat Div, Energy Convers & Storage Comm, JOM, Richland, WA 99354 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Elect Magnet & Photon Mat Div, Energy Convers & Storage Comm, 902 Battelle Blvd, Richland, WA 99354 USA. EM Zgary.yang@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 13 EP 13 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200003 ER PT J AU Yang, ZG Liu, J Baskaran, S Imhoff, CH Holladay, JD AF Yang, Zhenguo Liu, Jun Baskaran, Suresh Imhoff, Carl H. Holladay, Jamie D. TI Enabling Renewable Energy-and the Future Grid-with Advanced Electricity Storage SO JOM LA English DT Article ID LITHIUM-ION BATTERIES; REDOX FLOW BATTERY; INSERTION MATERIAL; MATERIALS CHALLENGES; NAFION MEMBRANE; CELL; CARBON; CONVERSION; ELECTRODE; LIFEPO4 C1 [Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamie D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM zgary.yang@pnl.gov FU U.S. Department of Energy's ARPA-E, Office of Electricity Delivery and Reliability, and Energy Efficiency & Renewable Energy (EERE) [DE-AC05-76RL01830]; Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC05-76RL01830] FX The authors acknowledge financial support from the U.S. Department of Energy's ARPA-E, Office of Electricity Delivery and Reliability, and Energy Efficiency & Renewable Energy (EERE), along with support by the Laboratory-Directed Research and Development Program of the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 63 TC 30 Z9 30 U1 3 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 14 EP 23 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200004 ER PT J AU Xu, T Wang, W Gordin, ML Wang, DH Choi, DW AF Xu, Terrence Wang, Wei Gordin, Mikhail L. Wang, Donghai Choi, Daiwon TI Lithium-ion Batteries for Stationary Energy Storage SO JOM LA English DT Article ID ANATASE TIO2 NANOTUBES; LIFEPO4; INTERCALATION; INSERTION; SPINEL; OXIDES; ANODE; NANOSTRUCTURES; PERFORMANCE; REACTIVITY AB The use of Li-ion batteries for stationary energy storage systems to complement the renewable energy sources such as solar and wind power has recently attracted great interest. Currently available Li-ion battery electrode materials suitable for such stationary applications have been discussed, along with optimum cathode and anode combinations, limitations, and future research directions. C1 [Xu, Terrence; Gordin, Mikhail L.; Wang, Donghai] Penn State Univ, Dept Mech & Nucl Engn, State Coll, PA USA. [Wang, Wei; Choi, Daiwon] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Xu, T (reprint author), Penn State Univ, Dept Mech & Nucl Engn, State Coll, PA USA. EM dwang@psu.edu; daiwon.choi@pnl.gov RI Wang, Wei/F-4196-2010; Choi, Daiwon/B-6593-2008; Wang, Donghai/L-1150-2013; Xu, Terrence/M-8741-2014 OI Wang, Wei/0000-0002-5453-4695; Wang, Donghai/0000-0001-7261-8510; Xu, Terrence/0000-0002-9385-6881 FU Office of Electricity Delivery, & Energy Reliability (OE), Energy Efficiency & Renewable Energy (EERE) of U.S. Department of Energy (DOE) [57558, 59808]; Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL0183]; Penn State New Faculty FX The authors would like to acknowledge financial support by the Office of Electricity Delivery, & Energy Reliability (OE), Energy Efficiency & Renewable Energy (EERE) of U.S. Department of Energy (DOE) (under contracts #57558 and #59808, respectively), as well as by Laboratory-Directed Research and Development Program of the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL0183. D. W. acknowledges support from the Penn State New Faculty Startup Fund. NR 34 TC 25 Z9 25 U1 2 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 24 EP 30 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200005 ER PT J AU Lu, XC Lemmon, JP Sprenkle, V Yang, ZG AF Lu, Xiaochuan Lemmon, John P. Sprenkle, Vincent Yang, Zhenguo TI Sodium-beta Alumina Batteries: Status and Challenges SO JOM LA English DT Article ID LITHIA-STABILIZED BETA''-ALUMINA; SINGLE-CRYSTAL; BETA''-AL2O3/ZRO2 COMPOSITES; ELECTRICAL-PROPERTIES; IONIC-CONDUCTIVITY; RESISTANCE RISE; SULFUR CELLS; GRAIN-SIZE; POLYCRYSTALLINE; MICROSTRUCTURE AB This paper provides a review of materials and designs for sodium-beta alumina battery technology and discusses the challenges ahead for further technology improvement. Sodium-beta alumina batteries have been extensively developed in recent years and encouraging progress in performance and cycle life has been achieved. The battery is composed of an anode, typically molten sodium, and a cathode that can be molten sulfur (Na-S battery) or a transition metal halide incorporated with a liquid phase secondary electrolyte (e.g.. ZEBRA battery). In most cases the electrolyte is a dense solid beta ''-Al(2)O(3), sodium ion-conducting membrane. The issues' prohibiting widespread commercialization of sodium-beta alumina technology are rekited to the materials and methods of manufacturing that impact cost, safety, and performance characteristics. C1 [Lu, Xiaochuan; Lemmon, John P.; Sprenkle, Vincent; Yang, Zhenguo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, XC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM John.Lemmon@pnl.gov FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC05-76RL0183]; ARPA-E of the U.S. Department of Energy FX The authors would like to acknowledge financial support by ARPA-E of the U.S. Department of Energy and by the Laboratory-Directed Research and Development Program of the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL0183. NR 67 TC 20 Z9 22 U1 8 U2 95 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 31 EP 36 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200006 ER PT J AU Petti, D Maki, J Hunn, J Pappano, P Barnes, C Saurwein, J Nagley, S Kendall, J Hobbins, R AF Petti, David Maki, John Hunn, John Pappano, Pete Barnes, Charles Saurwein, John Nagley, Scott Kendall, Jim Hobbins, Richard TI The DOE Advanced Gas Reactor Fuel Development and Qualification Program SO JOM LA English DT Article AB The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with nonelectricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes' that require temperatures between 300 C and 900 C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristrucrural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented. C1 [Petti, David; Maki, John; Barnes, Charles] INL, Idaho Falls, ID 83415 USA. [Saurwein, John] Gen Atom Co, San Diego, CA USA. [Nagley, Scott] Babcock & Wilcox Nucl Operat Grp, Lynchburg, VA USA. [Kendall, Jim] Global Virtual LLC, Prescott, AZ USA. [Hobbins, Richard] RRH Consulting, Wilson, WY USA. RP Petti, D (reprint author), INL, POB 1625, Idaho Falls, ID 83415 USA. EM david.petti@inl.gov NR 5 TC 21 Z9 21 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 62 EP 66 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200014 ER PT J AU Odette, GR Hoelzer, DT AF Odette, G. R. Hoelzer, D. T. TI Irradiation-tolerant Nanostructured Ferritic Alloys: Transforming Helium from a Liability to an Asset SO JOM LA English DT Article ID MICROSTRUCTURAL EVOLUTION; MECHANICAL-PROPERTIES; ODS-EUROFER; STEELS; STRENGTH; METALS; 14YWT AB Nanostructured ferritic alloys (ATMs) have the potential to make transformational contributions to developing advanced sources of fission and fusion energy. NFAs are Fe-Cr based ferritic stainless steels that contain an ultrahigh density of Y-Ti-O nanofeatures (NFs). The NFs provide both outstanding high temperature properties and remarkable tolerance to irradiation induced displacement damage as well as the degrading effects of transmutation product helium. Indeed, NFs can transform helium from a liability to an asset by forming a high density of nm-scale bubbles that act as sinks for point defects and helium may provide near immunity to radiation damage. This article outlines recent progress on engaging the challenges facing NFA development. C1 [Odette, G. R.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Hoelzer, D. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Odette, GR (reprint author), Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. EM odette@engineering.ucsb.edu RI Hoelzer, David/L-1558-2016 FU Department of Energy Office of Fusion Energy Sciences; Office of Nuclear Energy FX The University of California Santa Barbara (UCSB) and Oak Ridge National Laboratory (ORNL) research described in this article was supported by the Department of Energy Office of Fusion Energy Sciences and the Office of Nuclear Energy. Support at ORNL was also provided by the Laboratory Directed Research and Development Program. The excellent facilities for the transmission electron microscopy studies carried out at UCSBs National Science Foundation MRSEC Microstructure and Microanalysis Facility and the SANS' measurements conducted by UCSB researchers at the NIST acknowledged. Both authors thank our UCSB and ORNL colleagues as well as our national and international collaborators and colleagues for their many contributions to the development of high performance, irradiation tolerant alloys. NR 33 TC 111 Z9 112 U1 6 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 84 EP 92 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200017 ER PT J AU Burchell, TD Murty, KL Eapen, J AF Burchell, T. D. Murty, K. L. Eapen, J. TI Irradiation Induced Creep of Graphite SO JOM LA English DT Article ID FAST-NEUTRON IRRADIATION; REACTOR GRAPHITE; DIMENSIONAL CHANGES; MODEL AB The status of graphite irradiation induced creep strain prediction is reviewed and major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multiscales is highlighted. C1 [Burchell, T. D.] Oak Ridge Natl Lab, Mat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Murty, K. L.; Eapen, J.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Burchell, TD (reprint author), Oak Ridge Natl Lab, Mat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM burchelltd@ornl.gov; murty@ncsu.edu; jacob.eapen@ncsu.edu RI Eapen, Jacob/A-2777-2011; Burchell, Tim/E-6566-2017 OI Eapen, Jacob/0000-0001-6796-4013; Burchell, Tim/0000-0003-1436-1192 FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology with Oak Ridge National Laboratory [DE-AC05-00OR22725]; DOE/NEUP [00042959 00024] FX This work is sponsored by the U.S. Department of Energy, Office of Nuclear Energy Science and Technology under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory managed by UT-Battelle, LLC. Drs. Eapen and Murty acknowledge informative discussions with Dr. Louis Mansur and financial support from DOE/NEUP contract #00042959 00024. NR 34 TC 4 Z9 4 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2010 VL 62 IS 9 BP 93 EP 99 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 647GD UT WOS:000281605200018 ER PT J AU Cheng, RH Carvell, J Fradin, FY AF Cheng, Ruihua Carvell, Jeffery Fradin, F. Y. TI Room temperature electron transport properties of single C-60 studied using scanning tunneling microscope and break junctions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSISTOR AB We report the measurements of the electron transport of an individual C-60 molecule through the combination of two experimental efforts. The nanometer-sized junctions were fabricated using electromigration combined with electron beam lithography and shadow effect evaporation. We performed the scanning tunneling microscopy/spectroscopy measurements of dispersed C-60 molecules which were deposited on a highly ordered pyrolytic graphite substrate. The single electron tunneling through a single C-60 molecule due to the Coulomb blockage effect is observed at room temperature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3481027] C1 [Cheng, Ruihua; Carvell, Jeffery] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Fradin, F. Y.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Fradin, F. Y.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Cheng, RH (reprint author), Indiana Univ Purdue Univ, Dept Phys, 402 N Blackford St, Indianapolis, IN 46202 USA. EM rucheng@iupui.edu NR 19 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 053720 DI 10.1063/1.3481027 PG 4 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900053 ER PT J AU Du, MH AF Du, Mao-Hua TI First-principles study of native defects in TlBr: Carrier trapping, compensation, and polarization phemomenon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THALLOUS HALIDES; DETECTOR; PERFORMANCE; CRYSTALS; BROMIDE; TLCL AB First-principles calculations are carried out to study the native defect properties in TlBr. Three important results emerge: (1) the native defects are benign in terms of electron trapping because the low-energy defects do not induce electron traps; (2) the dominant defects in nearly stoichiometric TlBr are Schottky defects that pin the Fermi level near the midgap, leading to high resistivity; and (3) the calculated low diffusion barriers for several native defects show that ionic conductivity can occur at room temperature. The important impacts of these material properties on the room-temperature radiation detection using TlBr are discussed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3476564] C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mhdu@ornl.gov RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU U.S. DOE Office of Nonproliferation Research and Development [NA22] FX The author is grateful for the useful discussion with D. J. Singh. This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 23 TC 30 Z9 30 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 053506 DI 10.1063/1.3476564 PG 4 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900019 ER PT J AU Fu, H Zou, M Mudryk, Y Pecharsky, VK Gschneidner, KA AF Fu, H. Zou, M. Mudryk, Ya. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Enhancement of the glass-forming ability by Zr microalloying and its influence on the magnetocaloric properties of bulk amorphous Gd-Co-Al SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METALLIC GLASSES; ADDITIONS; ALLOYS; TB; HO; DY AB Microalloying with 1 at. % zirconium dramatically increases the critical size from 3 to 8 mm for Gd-based bulk metallic glasses (BMGs). The enhancement of glass-forming ability originates from the increase in the packing efficiency and high compound forming tendency between Zr and major constituent elements. The maximum magnetic entropy change (-Delta S(Mmax)) and relative cooling power (RCP) of Gd(52.5)Co(18.5)Al(29-x)Zr(x) (x=1) BMG are 9.6 J/kg K and 8.9 x 10(2) J/kg, respectively. Heat capacity data demonstrate that the broad magnetic transition arising from topological disorder is responsible for the high RCP of Gd-based amorphous magnetocaloric materials. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3481923] C1 [Fu, H.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Fu, H.; Zou, M.; Mudryk, Ya.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ Sci & Technol, Ames Lab, US DOE, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Fu, H (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM fuhao@uestc.edu.cn FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science; China Scholarship Council; National Natural Science Foundation of China [50901013] FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U.S. Department of Energy under contract No. DE-AC02-07CH11358. Work at Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. H. Fu.'s work at the Ames Laboratory was also supported by the China Scholarship Council and the National Natural Science Foundation of China (Grant No. 50901013). NR 23 TC 7 Z9 8 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 053916 DI 10.1063/1.3481923 PG 4 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900070 ER PT J AU Kim, HS Christen, HM Biegalski, MD Singh, DJ AF Kim, H. S. Christen, H. M. Biegalski, M. D. Singh, D. J. TI Proximity to a ferroelectric instability in Ba1-xCaxZrO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LEAD-FREE PIEZOCERAMICS; GROUND-STATE; MULTIFERROICS; DEPENDENCE AB Ferroelectricity in ABO(3) perovskites driven by A-site disorder is seen as a powerful approach toward lead-free piezoelectrics and ferroelectrics as well as to forming multiferroic compounds. Here we investigate the Ba1-xCaxZrO3 solid solution by structural and dielectric measurements on pulsed laser deposition grown films and by first principles calculations. Films on SrRuO3-coated SrTiO3 substrates are studied for x between 0 and 0.44. Despite the expectation that the Ca-ions assume off-center positions in the perovskite lattice, dielectric measurements show no evidence for ferroelectricity. This behavior is explained by first principles supercell calculations that show ferroelectricity at expanded volume but a rapid suppression thereof as the volume is reduced, thus indicating that our paraelectric Ba1-xCaxZrO3 films are close to a ferroelectric instability. These results demonstrate the important interplay between unit cell volume and ferroelectricity arising from off-centered ions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3476287] C1 [Kim, H. S.; Christen, H. M.; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Christen, H. M.; Biegalski, M. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kim, HS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Singh, David/I-2416-2012; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU Department of Energy, Division of Materials Sciences and Engineering; Division of Scientific User Facilities; Office of Naval Research FX This work was supported by the Department of Energy, Division of Materials Sciences and Engineering (H.K., H.C., and D.S.) and the Division of Scientific User Facilities (M.B.), and by the Office of Naval Research (D.S.). NR 24 TC 2 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 054105 DI 10.1063/1.3476287 PG 5 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900077 ER PT J AU Morozovska, AN Eliseev, EA Balke, N Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Balke, N. Kalinin, S. V. TI Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; IN-SITU AFM; INTERCALATION-INDUCED STRESS; LITHIUM-ION; THIN-FILMS; DYNAMIC-BEHAVIOR; SURFACE; LI; BATTERIES; LICOO2 AB Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection. (C) 2010 American Institute of Physics. [doi :10.1063/1.3460637] C1 [Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Balke, N.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Balke, Nina/Q-2505-2015 OI Kalinin, Sergei/0000-0001-5354-6152; Balke, Nina/0000-0001-5865-5892 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61] FX This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. ERKCC61 (N.B. and S.V.K.). Research at the ORNL's Center for Nanophase Materials Sciences in the project under Project Nos. CNMS2010-098 and CNMS2010-099 was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (N.B.). N.B. acknowledges the Alexander von Humboldt foundation for financial support. A.N.M. and E.A.E. gratefully acknowledge financial support from National Academy of Science of Ukraine, Ministry of Science and Education of Ukraine (Grant No. UU30/ 004) and National Science Foundation (Grant No. DMR0908718). S.V.K. and N.B. gratefully acknowledge S. J. Pennycook and R. E. Garcia for valuable discussions. NR 78 TC 63 Z9 63 U1 4 U2 75 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 053712 DI 10.1063/1.3460637 PG 21 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900045 ER PT J AU Stevens, LL Hooks, DE Migliori, A AF Stevens, Lewis L. Hooks, Daniel E. Migliori, Albert TI A comparative evaluation of elasticity in pentaerythritol tetranitrate using Brillouin scattering and resonant ultrasound spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STIMULATED LIGHT-SCATTERING; SINGLE-CRYSTALS; MOLECULAR-SOLIDS; CONSTANTS; EXPLOSIVES AB Elastic tensors for organic molecular crystals vary significantly among different measurements. To understand better the origin of these differences, Brillouin scattering and resonant ultrasound spectroscopy measurements were made on the same specimen for single crystal pentaerythritol tetranitrate. The results differ significantly despite mitigation of sample-dependent contributions to errors. The frequency dependence and vibrational modes probed for both measurements are discussed in relation to the observed tensor variance. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3467523] C1 [Stevens, Lewis L.; Hooks, Daniel E.; Migliori, Albert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stevens, LL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dhooks@lanl.gov FU National Nuclear Security Administration Science Campaign 2; Office of Naval Research [N0001402F0128] FX This work was supported by the National Nuclear Security Administration Science Campaign 2 and the Office of Naval Research (Grant No. N0001402F0128). We thank Kyle Ramos, Frank Abeyta, and Tim Pierce for their assistance in sample preparation, Brian Patterson for performing X-ray tomography, and Kyle Ramos and David Black for performing X-ray topography. NR 34 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 053512 DI 10.1063/1.3467523 PG 4 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900025 ER PT J AU Ye, J Li, YH Averback, R Zuo, JM Bellon, P AF Ye, Jia Li, Youhong Averback, Robert Zuo, Jian-Min Bellon, Pascal TI Atomistic modeling of nanoscale patterning of L1(2) order induced by ion irradiation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSMISSION-ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS-SIMULATION; ENERGETIC DISPLACEMENT CASCADES; MONTE-CARLO SIMULATIONS; DEFECT PRODUCTION; DAMAGE; METALS; CU3AU; ALLOYS; KINETICS AB Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni3Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiation flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474668] C1 [Ye, Jia; Averback, Robert; Zuo, Jian-Min; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Li, Youhong; Averback, Robert; Zuo, Jian-Min] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Ye, Jia] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Li, Youhong] Zodiac Aerosp, Engn Mat Arresting Syst, Logan Township, NJ 08085 USA. RP Ye, J (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM bellon@uiuc.edu FU National Science Foundation [DMR 04-07958, DMR 08-04615]; Materials Computation Center at the University of Illinois [NSF-DMR 99-76550, NSF-DMR 03-25939] FX This material is based upon work supported by National Science Foundation under Grant Nos. DMR 04-07958 and DMR 08-04615, and by the Materials Computation Center at the University of Illinois, under Grant Nos. NSF-DMR 99-76550 and NSF-DMR 03-25939. We also thank Intel for its generous donation and the Frederick Seitz Materials Research Laboratory Center for Computation for its technical assistance. NR 45 TC 1 Z9 1 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2010 VL 108 IS 5 AR 054302 DI 10.1063/1.3474668 PG 7 WC Physics, Applied SC Physics GA 658GQ UT WOS:000282478900082 ER EF