FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Nie, ZH Ren, Y Wang, YD Liu, DM Brown, DE Wang, G Zuo, L AF Nie, Z. H. Ren, Y. Wang, Y. D. Liu, D. M. Brown, D. E. Wang, G. Zuo, L. TI Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2MnGa SO APPLIED PHYSICS LETTERS LA English DT Article ID UNIAXIAL-STRESS DEPENDENCE; SHAPE-MEMORY ALLOYS; MN-GA ALLOYS; SINGLE-CRYSTALS; TRANSFORMATION; DIFFRACTION; TRANSITION; BEHAVIOR AB The in situ high-energy x-ray diffraction was used for revealing an atomic mechanism on the two-step pseudoelastic behavior found in the premartensitic phase of Ni2MnGa magnetic shape memory alloy. The applied stress first suppresses the three-dimensional modulated structure of the premartensitic phase to a two-dimensional modulated one, which is accompanied by a change in the modulation wave vector and accommodates a large lattice strain reaching similar to 1%. With further increasing stress, the two-dimensional modulated premartensite transforms to the five-layered modulated martensite. The observation of the stress-induced dimensionality crossover of atomic modulation has broad impacts in understanding not only the mechanical properties of advanced shape memory alloys but also the physical properties of condensed matter with heterogeneous structures. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506508] C1 [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Nie, Z. H.; Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Nie, Z. H.; Liu, D. M.; Wang, G.; Zuo, L.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Ren, Y (reprint author), Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. EM yren@anl.gov; ydwang@bit.edu.cn RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50971031, 50725102, 50820135101]; Ministry of Education of China [707017]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 50971031, 50725102, and 50820135101) and by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 707017). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 7 Z9 7 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 171905 DI 10.1063/1.3506508 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600014 ER PT J AU Pookpanratana, S Liu, X Paudel, NR Weinhardt, L Bar, M Zhang, Y Ranasinghe, A Khan, F Blum, M Yang, W Compaan, AD Heske, C AF Pookpanratana, S. Liu, X. Paudel, N. R. Weinhardt, L. Baer, M. Zhang, Y. Ranasinghe, A. Khan, F. Blum, M. Yang, W. Compaan, A. D. Heske, C. TI Effects of postdeposition treatments on surfaces of CdTe/CdS solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID FILM; HETEROJUNCTION; CONTACT AB Soft x-ray spectroscopy has been used to follow the effects of postdeposition steps (CdCl(2) activation and back contact treatment) on surfaces and interfaces in CdTe-based superstrate solar cells. We find that the CdCl(2) activation drives sulfur atoms from the CdS layer toward the back contact but not to its surface. Using atomic force microscopy, we find that both treatments strongly influence the morphology of the Au/Cu back contact. The spectroscopic results, in contrast, suggest that CdCl(2) activation exhibits a larger impact on the surface composition and chemical structure of the interfaces involved in CdTe solar cells. (C) 2010 American Institute of Physics. [doi:10.1063/1.3505155] C1 [Pookpanratana, S.; Zhang, Y.; Ranasinghe, A.; Khan, F.; Blum, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Liu, X.; Paudel, N. R.; Compaan, A. D.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Weinhardt, L.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source ALS, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; heske@unlv.nevada.edu RI Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU DOE-SAI University; Department of Energy, Basic Energy Sciences [DE-AC02-05CH11231] FX We gratefully acknowledge funding by the DOE-SAI University Photovoltaic Process and Product Development program. The ALS is supported by the Department of Energy, Basic Energy Sciences, Contract No. DE-AC02-05CH11231. NR 23 TC 13 Z9 13 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 172109 DI 10.1063/1.3505155 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600030 ER PT J AU Qiao, JW Huang, EW Jiang, F Ungar, T Csiszar, G Li, L Ren, Y Liaw, PK Zhang, Y AF Qiao, J. W. Huang, E. W. Jiang, F. Ungar, T. Csiszar, G. Li, L. Ren, Y. Liaw, P. K. Zhang, Y. TI Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID TENSILE DUCTILITY; DISLOCATIONS; CRYSTALS; ALLOY AB The microstructural characterization of the Zr(60.0)Ti(14.7)Nb(5.3)Cu(5.6)Ni(4.4)Be(10.0) bulk-metallic-glass-matrix composites is investigated using high-energy synchrotron x-ray diffraction. The convoluted diffraction-intensity distribution in the azimuthal direction is naturally yielded from the spatial arrangements of the crystalline dendrites and their amorphous matrix. We facilitate the area selection and the intensity integration of the diffraction collected from a two-dimensional detector to characterize the diffraction intensity of the amorphous matrix. The results enable us to apply the modified Williamson-Hall plots for using the peak width to study the microstrain and micromechanism of the deformation of the crystalline phase. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506694] C1 [Qiao, J. W.; Zhang, Y.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Qiao, J. W.; Jiang, F.; Li, L.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Huang, E. W.] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 32001, Taiwan. [Ungar, T.; Csiszar, G.] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Hungary. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Qiao, JW (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM ewhuang@cc.ncu.edu.tw RI Huang, E-Wen/A-5717-2015; ZHANG, Yong/B-7928-2009 OI Huang, E-Wen/0000-0003-4986-0661; ZHANG, Yong/0000-0002-6355-9923 FU National Basic Research Program of China [2007CB613903]; National Science Council [NSC99-2218-E-008-009]; National Science Foundation [DMR-0231320, DMR-0421219, DMR-0909037, CMMI-0900271]; Hungarian National Science Foundation (OTKA) [67692, 71594, 83793] FX Y.Z. would like to acknowledge the support by the National Basic Research Program of China (the 973 Program) under the Contract No. of 2007CB613903. E. W. H appreciates the financial support from the National Science Council Program (Grant No. NSC99-2218-E-008-009). P. K. L. is very grateful to the support by the National Science Foundation Program (Grant Nos. DMR-0231320, DMR-0421219, DMR-0909037, and CMMI-0900271). T. U. is grateful to the Hungarian National Science Foundation (OTKA) Grant Nos. 67692, 71594, and 83793 for supporting this work. NR 17 TC 4 Z9 4 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 25 PY 2010 VL 97 IS 17 AR 171910 DI 10.1063/1.3506694 PG 3 WC Physics, Applied SC Physics GA 680LO UT WOS:000284233600019 ER PT J AU Deegan, JI Dimmer, EC Mungall, CJ AF Deegan (nee Clark), Jennifer I. Dimmer, Emily C. Mungall, Christopher J. TI Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development SO BMC BIOINFORMATICS LA English DT Article ID GENE ONTOLOGY; INTERPRO; GO AB Background: The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation. Results: We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology. Conclusions: Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at https://sourceforge.net/tracker/?atid=605890&group_id=36855. C1 [Deegan (nee Clark), Jennifer I.; Dimmer, Emily C.] European Bioinformat Inst, Cambridge CB10 1SD, England. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Deegan, JI (reprint author), European Bioinformat Inst, Trust Genome Campus, Cambridge CB10 1SD, England. EM jdeegan@ebi.ac.uk; cjm@berkeleybop.org FU NIH NHGRI [HG002273]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX All members of the GO Consortium contributed to the development of this system through lively and helpful analytical discussion in the development phase. Many also contributed invaluable information regarding taxon specificity of GO classes and in this regard we would particularly like to thank Jane Lomax, David Hill, Tanya Berardini, Doug Howe, Ranjana Kishore, Kimberly van Auken, Midori Harris, Susan Tweedie, Becky Foulger, Simon Twiggger, Fiona McCarthy, Jim Hu, Donghui Li, Rama Balakrishnan, Julie Park, Stan Lauderkindand, Michelle Gwinn- Giglio, Alex Diehl and Valerie Wood. Waclaw Kusnierczyk provided useful discussion at the inception of the project, following on from his publication of relationships to link GO classes to taxonomic groups. David Hill provided valuable thoughts on the implications of the system for electronic annotation pipelines. We would like to thank Emily Dimmer and the GOA group for carrying the work forward after this implementation phase, in conjunction with the GO Editorial Office. Funding for our work was provided by NIH NHGRI grant HG002273 to the GO Principle Investigators Michael Ashburner, Judith Blake, Mike Cherry and Suzanna Lewis. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 11 Z9 11 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 25 PY 2010 VL 11 AR 530 DI 10.1186/1471-2105-11-530 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 684ER UT WOS:000284533000001 PM 20973947 ER PT J AU Giorgi, EE Funkhouser, B Athreya, G Perelson, AS Korber, BT Bhattacharya, T AF Giorgi, Elena E. Funkhouser, Bob Athreya, Gayathri Perelson, Alan S. Korber, Bette T. Bhattacharya, Tanmoy TI Estimating time since infection in early homogeneous HIV-1 samples using a poisson model SO BMC BIOINFORMATICS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; MUTATION AB Background: The occurrence of a genetic bottleneck in HIV sexual or mother-to-infant transmission has been well documented. This results in a majority of new infections being homogeneous, i.e., initiated by a single genetic strain. Early after infection, prior to the onset of the host immune response, the viral population grows exponentially. In this simple setting, an approach for estimating evolutionary and demographic parameters based on comparison of diversity measures is a feasible alternative to the existing Bayesian methods (e.g., BEAST), which are instead based on the simulation of genealogies. Results: We have devised a web tool that analyzes genetic diversity in acutely infected HIV-1 patients by comparing it to a model of neutral growth. More specifically, we consider a homogeneous infection (i.e., initiated by a unique genetic strain) prior to the onset of host-induced selection, where we can assume a random accumulation of mutations. Previously, we have shown that such a model successfully describes about 80% of sexual HIV-1 transmissions provided the samples are drawn early enough in the infection. Violation of the model is an indicator of either heterogeneous infections or the initiation of selection. Conclusions: When the underlying assumptions of our model (homogeneous infection prior to selection and fast exponential growth) are met, we are under a very particular scenario for which we can use a forward approach (instead of backwards in time as provided by coalescent methods). This allows for more computationally efficient methods to derive the time since the most recent common ancestor. Furthermore, the tool performs statistical tests on the Hamming distance frequency distribution, and outputs summary statistics (mean of the best fitting Poisson distribution, goodness of fit p-value, etc). The tool runs within minutes and can readily accommodate the tens of thousands of sequences generated through new ultradeep pyrosequencing technologies. The tool is available on the LANL website. C1 [Giorgi, Elena E.; Funkhouser, Bob; Athreya, Gayathri; Perelson, Alan S.; Korber, Bette T.; Bhattacharya, Tanmoy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Giorgi, Elena E.] Univ Massachusetts, Amherst, MA 01002 USA. [Athreya, Gayathri] Univ Arizona, Tucson, AZ 85721 USA. [Korber, Bette T.; Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Giorgi, EE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM egiorgi@lanl.gov; tanmoy@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU Center for HIV/AIDS Vaccine Immunology, NIH [U19-AI067854-05, AI28433-19, RR06555-18]; NIAID via NIH-DOE [Y1-AI-1500-01] FX This work was supported by the Los Alamos National Laboratory Directed Research and Development program, the Center for HIV/AIDS Vaccine Immunology, NIH grants U19-AI067854-05, AI28433-19, RR06555-18, and by NIAID via NIH-DOE interagency agreement (Y1-AI-1500-01). We wish to thank Brian Gaschen for technical support. NR 21 TC 29 Z9 30 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 25 PY 2010 VL 11 AR 532 DI 10.1186/1471-2105-11-532 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 676UG UT WOS:000283943500001 PM 20973976 ER PT J AU Tyler, L Bragg, JN Wu, JJ Yang, XH Tuskan, GA Vogel, JP AF Tyler, Ludmila Bragg, Jennifer N. Wu, Jiajie Yang, Xiaohan Tuskan, Gerald A. Vogel, John P. TI Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon SO BMC GENOMICS LA English DT Article ID ALPHA-L-ARABINOFURANOSIDASE; AGROBACTERIUM-MEDIATED TRANSFORMATION; CARBOHYDRATE-ACTIVE ENZYMES; CELL-SEPARATION PROCESSES; ARABIDOPSIS-THALIANA; CHITINOLYTIC ENZYMES; STARCH BIOSYNTHESIS; TRANSGENIC TOMATOES; MOLECULAR-STRUCTURE; FLOWERING PLANTS AB Background: Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results: We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51), we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions: This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a grass model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses. C1 [Tyler, Ludmila; Bragg, Jennifer N.; Wu, Jiajie; Vogel, John P.] ARS, USDA, Western Reg Res Ctr, Albany, CA 94710 USA. [Tyler, Ludmila] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Wu, Jiajie] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Yang, Xiaohan; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Xiaohan; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Vogel, JP (reprint author), ARS, USDA, Western Reg Res Ctr, Albany, CA 94710 USA. EM john.vogel@ars.usda.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; Vogel, John/0000-0003-1786-2689 FU USDA CRIS [5325-21000-017-00]; Office of Science (BER), U.S. Department of Energy, Interagency [DE-AI02-07ER64452] FX The authors thank James Thomson of the Western Regional Research Center, USDA, for assistance checking Brachypodium gene models. This work was supported by USDA CRIS project 5325-21000-017-00 and by the Office of Science (BER), U.S. Department of Energy, Interagency Agreement No. DE-AI02-07ER64452. NR 103 TC 20 Z9 24 U1 2 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 25 PY 2010 VL 11 AR 600 DI 10.1186/1471-2164-11-600 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 679PI UT WOS:000284172900001 PM 20973991 ER PT J AU Wang, Y Gaffney, A AF Wang, Yong Gaffney, Anne TI Renewable Alternatives to Petroleum and the Key Role of Catalysis Preface SO CATALYSIS TODAY LA English DT Editorial Material C1 [Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Yong] AMC Chem & Catalysis Consulting, W Chester, PA 19380 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 902 Battelle Blvd,POB 999,MSIN K2-12, Richland, WA 99352 USA. EM yong.wang@pnl.gov; annemgaffney@comcast.net RI Wang, Yong/C-2344-2013 NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 25 PY 2010 VL 156 IS 1-2 SI SI BP 1 EP 1 DI 10.1016/j.cattod.2010.07.002 PG 1 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 671SZ UT WOS:000283532100001 ER PT J AU Sithambaram, S Wen, W Njagi, E Shen, XF Hanson, JC Suib, SL AF Sithambaram, Shanthakumar Wen, Wen Njagi, Eric Shen, Xiong-Fei Hanson, Jonathan C. Suib, Steven L. TI H-2 production through the water-gas shift reaction: An in situ time-resolved X-ray diffraction investigation of manganese OMS-2 catalyst SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT ACS Fall Meeting on Renewable Alternatives to Petroleum and the Key Role of Catalysis CY AUG, 2009 CL Washington, DC DE Water-gas shift reaction; In situ characterization; Manganese; Octahedral molecular sieves; Hydrogen generation ID OCTAHEDRAL MOLECULAR-SIEVES; OXIDE; OXIDATION; REDUCTION; MICROWAVE; CERIA; XRD AB Manganese oxide octahedral molecular sieve (OMS-2) catalyst prepared by the reflux method was investigated for hydrogen generation via the water-gas shift reaction. Catalysts were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), The Brunauer-Emmett-Teller (BET) surface area and determination of average oxidation state (AOS). The OMS-2 catalyst showed very good catalytic activity for the water-gas shift reaction to generate hydrogen under laboratory conditions. An in situ study was conducted to monitor the structural changes in the catalyst during the water-gas shift reaction using synchrotron radiation-based time-resolved X-ray diffraction (TR-XRD). During the water-gas shift reaction, the mixed valent OMS-2 catalyst undergoes a structural transformation to form Mn2O3 and finally to form MnO. The study showed that OMS-2 catalysts can be used as inexpensive catalysts for hydrogen generation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sithambaram, Shanthakumar; Njagi, Eric; Suib, Steven L.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Shen, Xiong-Fei; Suib, Steven L.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Wen, Wen; Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Suib, SL (reprint author), Univ Connecticut, Dept Chem, U-3060,55 N Eagleville Rd, Storrs, CT 06269 USA. EM Steven.Suib@uconn.edu NR 26 TC 2 Z9 2 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 25 PY 2010 VL 156 IS 1-2 SI SI BP 2 EP 7 DI 10.1016/j.cattod.2010.06.013 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 671SZ UT WOS:000283532100002 ER PT J AU Wang, ZG Li, JB Gao, F Weber, WJ AF Wang, Zhiguo Li, Jingbo Gao, Fei Weber, William J. TI Charge Separation in Wurtzite/Zinc-Blende Heterojunction GaN Nanowires SO CHEMPHYSCHEM LA English DT Article DE ab initio; charge separation; heterojunctions; nanowires ID SILICON NANOWIRES; CATALYTIC GROWTH; BAND OFFSETS; SOLAR-CELLS; SEMICONDUCTORS; SUPERLATTICES; EFFICIENCY AB The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes. C1 [Wang, Zhiguo] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; National Science Fund for Distinguished Young Scholar; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76L01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientists Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li was financially supported by the "One-Hundred Talents Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar. F. Goo and W J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76L01830. NR 37 TC 3 Z9 3 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD OCT 25 PY 2010 VL 11 IS 15 BP 3329 EP 3332 DI 10.1002/cphc.201000244 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 680MN UT WOS:000284237300020 PM 20803600 ER PT J AU Kewish, CM Guizar-Sicairos, M Liu, CA Qian, J Shi, B Benson, C Khounsary, AM Vila-Comamala, J Bunk, O Fienup, JR Macrander, AT Assoufid, L AF Kewish, Cameron M. Guizar-Sicairos, Manuel Liu, Chian Qian, Jun Shi, Bing Benson, Christa Khounsary, Ali M. Vila-Comamala, Joan Bunk, Oliver Fienup, James R. Macrander, Albert T. Assoufid, Lahsen TI Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data SO OPTICS EXPRESS LA English DT Article ID TRANSVERSE TRANSLATION DIVERSITY; PHASE RETRIEVAL; ELLIPTIC MIRRORS; OPTICS; MICROSCOPY; SIMULATION; RESOLUTION; DETECTOR; FIELD AB We have used coherent X-ray diffraction experiments to characterize both the 1-D and 2-D foci produced by nanofocusing Kirkpatrick-Baez (K-B) mirrors, and we find agreement. Algorithms related to ptychography were used to obtain a 3-D reconstruction of a focused hard X-ray beam waist, using data measured when the mirrors were not optimally aligned. Considerable astigmatism was evident in the reconstructed complex wavefield. Comparing the reconstructed wavefield for a single mirror with a geometrical projection of the wavefront errors expected from optical metrology data allowed us to diagnose a 40 mu rad misalignment in the incident angle of the first mirror, which had occurred during the experiment. Good agreement between the reconstructed wavefront obtained from the Xray data and off-line metrology data obtained with visible light demonstrates the usefulness of the technique as a metrology and alignment tool for nanofocusing X-ray optics. (C) 2010 Optical Society of America C1 [Kewish, Cameron M.; Vila-Comamala, Joan; Bunk, Oliver] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Guizar-Sicairos, Manuel; Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Liu, Chian; Qian, Jun; Shi, Bing; Macrander, Albert T.; Assoufid, Lahsen] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Benson, Christa; Khounsary, Ali M.] Argonne Natl Lab, APS Engn Support Div, Argonne, IL 60439 USA. RP Kewish, CM (reprint author), Synchrotron SOLEIL, St Aubin BP 48, F-91192 Gif Sur Yvette, France. EM Cameron.Kewish@synchrotron-soleil.fr RI Kewish, Cameron/H-5103-2011; Guizar-Sicairos, Manuel/I-4899-2013; Bunk, Oliver/B-7602-2013; Fienup, James/B-2715-2016; Vila-Comamala, Joan/E-2106-2017 OI Kewish, Cameron/0000-0001-6242-7059; Bunk, Oliver/0000-0001-6563-4053; Fienup, James/0000-0001-5147-9435; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge Peter Jemian, Joseph Xu, Kurt Goetze, and David Kline from Argonne National Laboratory for their assistance with the positioning system and control software, Andreas Menzel from Swiss Light Source for stimulating discussions regarding the K-B mirror design, and Xavier Donath for technical support at the cSAXS beamline. We acknowledge the efforts of Pierre Thibault, Martin Dierolf, Franz Pfeiffer, and Andreas Menzel in developing reconstruction software. M. Guizar-Sicairos thanks Argonne National Laboratory for travel support to perform the experiment. Synchrotron experiments were performed on the cSAXS beamline X12SA at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. Work performed at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 58 Z9 58 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 25 PY 2010 VL 18 IS 22 BP 23420 EP 23427 DI 10.1364/OE.18.023420 PG 8 WC Optics SC Optics GA 672CK UT WOS:000283560400084 PM 21164684 ER PT J AU Chipps, KA Bardayan, DW Chae, KY Cizewski, JA Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Peters, WA Pittman, ST Schmitt, KT Smith, MS AF Chipps, K. A. Bardayan, D. W. Chae, K. Y. Cizewski, J. A. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Peters, W. A. Pittman, S. T. Schmitt, K. T. Smith, M. S. TI The Si-28(p,t)Si-26*(p) reaction and implications for the astrophysical Al-25(p,gamma)Si-26 reaction rate SO PHYSICAL REVIEW C LA English DT Article ID AL-26 AB Several resonances in Al-25(p,gamma)Si-26 have been studied via the Si-28(p,t)Si-26 reaction. Triton energies and angular distributions were measured using a segmented annular detector array. An additional silicon detector array was used to simultaneously detect the coincident protons emitted from the decay of states in Si-26 above the proton threshold in order to determine branching ratios. A resonance at 5927 +/- 4 keV has been experimentally confirmed as the first l = 0 state above the proton threshold, with a proton branching ratio consistent with one. C1 [Chipps, K. A.; Cizewski, J. A.; O'Malley, P. D.; Peters, W. A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Bardayan, D. W.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chae, K. Y.; Moazen, B. H.; Pain, S. D.; Pittman, S. T.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Chipps, KA (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RI Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; Matei, Catalin/B-2586-2008; OI Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Matei, Catalin/0000-0002-2254-3853; Chipps, Kelly/0000-0003-3050-1298; Nesaraja, Caroline/0000-0001-5571-8341 FU National Nuclear Security Administration through the US DOE [DE-FG52-08NA28552]; Rutgers University; Oak Ridge Associated Universities; US DOE [DE-FG02-96ER40955]; Tennessee Technological University [DE-FG02-96ER40983]; University of Tennessee Knoxville; National Science Foundation; Office of Nuclear Physics, US Department of Energy FX The authors wish to thank Dr. Carl Brune for his assistance with the decay angular correlation calculations. This research was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the US DOE Cooperative Agreement DE-FG52-08NA28552 with Rutgers University and Oak Ridge Associated Universities. This work was also supported in part by the US DOE under contract DE-FG02-96ER40955, with Tennessee Technological University under contract DE-FG02-96ER40983, with the University of Tennessee Knoxville, and by the National Science Foundation. Research sponsored by the Office of Nuclear Physics, US Department of Energy. NR 25 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 045803 DI 10.1103/PhysRevC.82.045803 PG 5 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400007 ER PT J AU Michel, N Nazarewicz, W Ploszajczak, M AF Michel, N. Nazarewicz, W. Ploszajczak, M. TI Isospin mixing and the continuum coupling in weakly bound nuclei SO PHYSICAL REVIEW C LA English DT Article ID ORBITAL SHELL-MODEL; RESONANT STATES; COULOMB ENERGY; HE-ISOTOPES; SYMMETRY; FORCES AB The isospin-breaking effects due to the Coulomb interaction in weakly bound nuclei are studied using the Gamow shell model, a complex-energy configuration-interaction approach which simultaneously takes into account many-body correlations between valence nucleons and continuum effects. We investigate the near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an isomultiplet. Illustrative calculations are carried out for the T = 1 isobaric triplet. By using a shell-model Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly bound or unbound systems the structure of isobaric analog states varies within the isotriplet and impacts the energy dependence of spectroscopic factors. We discuss the partial dynamical isospin symmetry present in isospin-stretched systems, despite the Coulomb interaction that gives rise to large mirror symmetry-breaking effects. C1 [Michel, N.] CEA DSM IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Michel, N.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Nazarewicz, W.] Univ W Scotland, Sch Sci & Engn, Paisley PA1 2BE, Renfrew, Scotland. [Ploszajczak, M.] CEA DSM CNRS IN2P3, F-14076 Caen, France. RP Michel, N (reprint author), CEA DSM IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. FU Office of Nuclear Physics, US Department of Energy [DE-FG02-96ER40963]; CICYT-IN2P3; Academy of Finland; University of Jyvaskyla FX This work was supported in part by the Office of Nuclear Physics, US Department of Energy under Contract No. DE-FG02-96ER40963 (University of Tennessee); by the CICYT-IN2P3 cooperation; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO programme. WN acknowledges support from the Carnegie Trust and the Scottish Universities Physics Alliance during his stays in Scotland. NR 52 TC 23 Z9 24 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044315 DI 10.1103/PhysRevC.82.044315 PG 9 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400002 ER PT J AU Orce, JN Holt, JD Linnemann, A McKay, CJ Fransen, C Jolie, J Kuo, TTS Lesher, SR McEllistrem, MT Pietralla, N Warr, N Werner, V Yates, SW AF Orce, J. N. Holt, J. D. Linnemann, A. McKay, C. J. Fransen, C. Jolie, J. Kuo, T. T. S. Lesher, S. R. McEllistrem, M. T. Pietralla, N. Warr, N. Werner, V. Yates, S. W. TI Fermionic-bosonic couplings in a weakly deformed odd-mass nucleus, Nb-93(41) SO PHYSICAL REVIEW C LA English DT Article ID INELASTIC NEUTRON-SCATTERING; DOPPLER-SHIFT ATTENUATION; SCISSORS MODE STRENGTH; MIXED-SYMMETRY STATES; COULOMB-EXCITATION; ANGULAR-DISTRIBUTIONS; GAMMA; ENERGY; MO-94 AB A comprehensive level scheme of Nb-93 below 2 MeV has been constructed from information obtained with the Nb-93(n,n'gamma) and the Zr-94(p,2n gamma gamma)Nb-93 reactions. Branching ratios, lifetimes, transition multipolarities, and spin assignments have been determined. From M1 and E2 strengths, fermionic-bosonic excitations of isoscalar and isovector characters have been identified from the weak couplings of the pi 1g(9/2) circle times Zr-92(40) and pi 2p(1/2)(-1) circle times Mo-94(42) configurations. A microscopic interpretation of such excitations is obtained from shell-model calculations, which use low-momentum effective interactions. C1 [Orce, J. N.; McKay, C. J.; Lesher, S. R.; McEllistrem, M. T.; Yates, S. W.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Orce, J. N.; Holt, J. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Holt, J. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Holt, J. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Linnemann, A.; Fransen, C.; Jolie, J.; Pietralla, N.; Warr, N.; Werner, V.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Kuo, T. T. S.] SUNY Stony Brook, Dept Phys & Astron, Nucl Struct Lab, Stony Brook, NY 11794 USA. [Lesher, S. R.] Univ Wisconsin, Dept Phys, La Crosse, WI 54601 USA. [Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Werner, V.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Yates, S. W.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. RP Orce, JN (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM jnorce@triumf.ca RI Werner, Volker/C-1181-2017; OI Werner, Volker/0000-0003-4001-0150; Holt, Jason/0000-0003-4833-7959 FU US National Science Foundation [PHY-0652415]; Deutsche Forschungsgemeinschaft [Jo 391/3-1, SFB 634]; Natural Sciences and Engineering Research Council (NSERC); US Department of Energy [DE-FG02-91ER40609, DE-FC02-07ER41457]; National Research Council of Canada FX This work was supported by the US National Science Foundation under Grant No. PHY-0652415, the Deutsche Forschungsgemeinschaft, Grants No. Jo 391/3-1 and No. SFB 634, the Natural Sciences and Engineering Research Council (NSERC), and by the US Department of Energy under Grant No. DE-FG02-91ER40609 and DE-FC02-07ER41457 (UNEDF SciDAC Collaboration). TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. NR 58 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044317 DI 10.1103/PhysRevC.82.044317 PG 11 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400004 ER PT J AU Viviani, M Schiavilla, R Girlanda, L Kievsky, A Marcucci, LE AF Viviani, M. Schiavilla, R. Girlanda, L. Kievsky, A. Marcucci, L. E. TI Parity-violating asymmetry in the He-3((n)over-right-arrow, p)H-3 reaction SO PHYSICAL REVIEW C LA English DT Article ID THERMAL-NEUTRON CAPTURE; EFFECTIVE-FIELD THEORY; CROSS-SECTION; SCATTERING; NUCLEI; NONCONSERVATION; DEUTERIUM; HE-3 AB The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction He-3((n) over right arrow, p)H-3 at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the L-2S+1(J) = S-1(0) and S-3(1) states in the incoming n-He-3 channel to states with J = 0 and 1 in the outgoing p-H-3 channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two-and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10(-8), depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions and is of course sensitive to the assumed values for the PV coupling constants. C1 [Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. [Girlanda, L.; Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. RP Viviani, M (reprint author), Ist Nazl Fis Nucl, I-56127 Pisa, Italy. RI kievsky, alejandro/A-7123-2011 FU Physics Department of the University of Pisa; INFN Pisa branch; Pisa group; US Department of Energy, Office of Nuclear Physics [DE-AC05-06OR23177] FX The authors thank J. D. Bowman, C. B. Crawford, and M. T. Gericke for their continued interest in the present work and for correspondence in reference to various aspects of the calculations. One of the authors (R. S.) also thanks the Physics Department of the University of Pisa, the INFN Pisa branch, and especially the Pisa group for the support and warm hospitality extended to him on several occasions. The work of R. S. is supported by the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC05-06OR23177. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 59 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT 25 PY 2010 VL 82 IS 4 AR 044001 DI 10.1103/PhysRevC.82.044001 PG 16 WC Physics, Nuclear SC Physics GA 670ME UT WOS:000283425400001 ER PT J AU Shintani, E Aoki, S Fukaya, H Hashimoto, S Kaneko, T Onogi, T Yamada, N AF Shintani, E. Aoki, S. Fukaya, H. Hashimoto, S. Kaneko, T. Onogi, T. Yamada, N. CA JLQCD Collaboration TI Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions SO PHYSICAL REVIEW D LA English DT Article ID EXACTLY MASSLESS QUARKS; PERTURBATIVE QCD; BETA-FUNCTION; 4-LOOP; PHYSICS; LEVEL AB We determine the strong coupling constant alpha s from a lattice calculation of vacuum polarization functions (VPF) in three-flavor QCD with dynamical overlap fermions. Fitting lattice data of VPF to the continuum perturbative formula including the operator product expansion, we extract the QCD scale parameter Lambda (3)/MS. At the Z boson mass scale, we obtain alpha((5))(s) (MZ) = 0.1181(3)((+14)(-12) ), where the first error is statistical and the second is our estimate of various systematic uncertainties. C1 [Shintani, E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Fukaya, H.; Onogi, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, KEK Theory Ctr, Ibaraki 3058081, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Ibaraki 3058081, Japan. RP Shintani, E (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM shintani@riken.jp RI Shintani, Eigo/C-8623-2016 FU IBM System Blue Gene Solution; Hitachi at the High Energy Accelerator Research Organization (KEK) [SR11000, 07-16]; Japanese Ministry of Education [18740167, 19540286, 19740121, 20105005, 20340047, 20105001, 20105002, 20105003, 20025010, 21105508, 21674002, 21684013] FX E. S. thanks Y. Kikukawa for correspondence and discussion. Numerical calculations were performed on IBM System Blue Gene Solution and Hitachi SR11000 at the High Energy Accelerator Research Organization (KEK) under the support of its Large Scale Simulation Program (Grant No. 07-16). This work is supported by the Grant-in-Aid of the Japanese Ministry of Education (Grants No. 18740167, No. 19540286, No. 19740121, No. 20105005, No. 20340047, No. 20105001, No. 20105002, No. 20105003, No. 20025010, No. 21105508, No. 21674002, No. 21684013). NR 31 TC 29 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 25 PY 2010 VL 82 IS 7 AR 074505 DI 10.1103/PhysRevD.82.074505 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 670MU UT WOS:000283428300001 ER PT J AU Martin-Solis, JR Sanchez, R Esposito, B AF Martin-Solis, J. R. Sanchez, R. Esposito, B. TI Experimental Observation of Increased Threshold Electric Field for Runaway Generation due to Synchrotron Radiation Losses in the FTU Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS; UPGRADE; FLUCTUATIONS; ITER AB The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, E(R) = n(e)e(3) ln Lambda/4 pi epsilon(2)(0)m(e)c(2). These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER. C1 [Martin-Solis, J. R.; Sanchez, R.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Esposito, B.] Assoc Euratom ENEA Fus, CR Frascati, I-00044 Rome, Italy. RP Martin-Solis, JR (reprint author), Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EM solis@fis.uc3m.es FU Direccion General de Investigacion [ENE2006-15244-C03-01/FTN, ENE2009-12213-C03-03/FTN]; U.S. DOE [DE-AC05-00OR22725] FX The authors wish to thank Dr. G. Granucci for helpful comments on the manuscript. Research supported by Direccion General de Investigacion Projects No. ENE2006-15244-C03-01/FTN and No. ENE2009-12213-C03-03/FTN. Research carried out in part at ORNL, managed by UT-Battelle LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. NR 15 TC 14 Z9 14 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 185002 DI 10.1103/PhysRevLett.105.185002 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200009 PM 21231111 ER PT J AU Matsuda, M Azuma, M Tokunaga, M Shimakawa, Y Kumada, N AF Matsuda, M. Azuma, M. Tokunaga, M. Shimakawa, Y. Kumada, N. TI Disordered Ground State and Magnetic Field-Induced Long-Range Order in an S=3/2 Antiferromagnetic Honeycomb Lattice Compound Bi3Mn4O12(NO3) SO PHYSICAL REVIEW LETTERS LA English DT Article AB Bi3Mn4O12(NO3), in which the Mn4+ ions carry S = 3/2, is the first honeycomb lattice system that shows no long-range magnetic order. Using neutron scattering, we have determined that short-range antiferromagnetic correlations develop at low temperatures. Applied magnetic fields induce a magnetic transition, in which the short-range order abruptly expands into a long-range order. C1 [Matsuda, M.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Azuma, M.; Shimakawa, Y.] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Tokunaga, M.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Kumada, N.] Univ Yamanashi, Grad Sch Med & Engn, Dept Res Interdisciplinary, Kofu, Yamanashi 4008511, Japan. RP Matsuda, M (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Azuma, Masaki/C-2945-2009; Tokunaga, Masashi/C-6821-2014; Matsuda, Masaaki/A-6902-2016 OI Azuma, Masaki/0000-0002-8378-321X; Tokunaga, Masashi/0000-0002-1401-9381; Matsuda, Masaaki/0000-0003-2209-9526 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [19052008, 451] FX We would like to thank Y. Motome, S. Okumura, and H. Kawamura for stimulating discussions. This work was partially supported by Grant-in-Aid for Scientific Research on Priority Areas "Novel States of Matter Induced by Frustration'' (No. 19052008) and "High Field Spin Science in 100T'' (No. 451) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. NR 13 TC 37 Z9 37 U1 6 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 187201 DI 10.1103/PhysRevLett.105.187201 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200011 PM 21231130 ER PT J AU Sinars, DB Slutz, SA Herrmann, MC McBride, RD Cuneo, ME Peterson, KJ Vesey, RA Nakhleh, C Blue, BE Killebrew, K Schroen, D Tomlinson, K Edens, AD Lopez, MR Smith, IC Shores, J Bigman, V Bennett, GR Atherton, BW Savage, M Stygar, WA Leifeste, GT Porter, JL AF Sinars, D. B. Slutz, S. A. Herrmann, M. C. McBride, R. D. Cuneo, M. E. Peterson, K. J. Vesey, R. A. Nakhleh, C. Blue, B. E. Killebrew, K. Schroen, D. Tomlinson, K. Edens, A. D. Lopez, M. R. Smith, I. C. Shores, J. Bigman, V. Bennett, G. R. Atherton, B. W. Savage, M. Stygar, W. A. Leifeste, G. T. Porter, J. L. TI Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-PINCH IMPLOSIONS; SIMULATIONS AB The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (similar to 100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 mu m were used to seed the instability. Radiographs with 15 mu m resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 mu m wavelengths. C1 [Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.; McBride, R. D.; Cuneo, M. E.; Peterson, K. J.; Vesey, R. A.; Nakhleh, C.; Tomlinson, K.; Edens, A. D.; Lopez, M. R.; Smith, I. C.; Shores, J.; Bigman, V.; Bennett, G. R.; Atherton, B. W.; Savage, M.; Stygar, W. A.; Leifeste, G. T.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Blue, B. E.; Killebrew, K.; Schroen, D.] Gen Atom Co, San Diego, CA 92121 USA. RP Sinars, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Laboratory Directed Research and Development at Sandia FX We thank the Z, Z-Beamlet, diagnostics, target, and hardware teams for their support of this work, which was partially funded by Laboratory Directed Research and Development funds at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000. NR 18 TC 58 Z9 61 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 25 PY 2010 VL 105 IS 18 AR 185001 DI 10.1103/PhysRevLett.105.185001 PG 4 WC Physics, Multidisciplinary SC Physics GA 670OC UT WOS:000283434200008 PM 21231110 ER PT J AU Breault, RW AF Breault, Ronald W. TI SPECIAL ISSUE: SELECTED PAPERS FROM THE 2009 NETL MULTIPHASE FLOW WORKSHOP Preface SO POWDER TECHNOLOGY LA English DT Editorial Material C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.Breault@NETLDOE.GOV OI Breault, Ronald/0000-0002-5552-4050 NR 2 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 1 EP 2 DI 10.1016/j.powtec.2010.03.022 PG 2 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700001 ER PT J AU Cocco, R Shaffer, F Hays, R Karri, SBR Knowlton, T AF Cocco, Ray Shaffer, Frank Hays, Roy Karri, S. B. Reddy Knowlton, Ted TI Particle clusters in and above fluidized beds SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Fluidization; Entrainment; Elutriation; Particle clusters; High-speed video ID FINE PARTICLES; VISCOUS FLUID; 2 SPHERES; ELUTRIATION; MOTION; FLOWS; POWDERS; WALL AB High-speed video imaging of particle clusters in and above a fluidized bed suggests that clustering is significant for FCC catalyst and polyethylene powders. Based on fluidized bed experiments at varying fines concentration, bed heights and bed internals location, the dominant mechanism for clusters in the freeboard appears to be cluster formation in the bed. Some of these clusters are then subsequently ejected into the freeboard region. Hydrodynamics does not appear to be solely responsible for cluster formation. Cohesive forces such as electrostatics, capillary and van der Waals forces, appear to play a significant role in particle cluster formation. The proposed mechanism suggests that particle shear produces collisional cooling that allows the granular temperature to decay to where these cohesive forces can dominate. The decrease in the granular temperature appears to be dependent on the particle properties and surface morphology. Collisions that only redirect the particle or increase particle rotation, limits this reduction in the granular temperature such that cohesive forces are less of an impact. In the case of risers, where large shear streams are prevalent, these clusters and the corresponding drag forces may result in the formation of larger clusters or streamers. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cocco, Ray; Hays, Roy; Karri, S. B. Reddy; Knowlton, Ted] Particulate Solid Res Inc, Chicago, IL 60632 USA. [Shaffer, Frank] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Cocco, R (reprint author), Particulate Solid Res Inc, 4201 W 36th St,Suite 200, Chicago, IL 60632 USA. EM ray.cocco@psrichicago.com NR 36 TC 46 Z9 47 U1 4 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 3 EP 11 DI 10.1016/j.powtec.2010.03.023 PG 9 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700002 ER PT J AU Breault, RW Guenther, C AF Breault, Ronald W. Guenther, Chris TI Mass transfer coefficient prediction method for CFD modeling of riser reactors SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Circulating fluidized beds; Mass transfer; Local hydrodynamics ID FLUIDIZED-BEDS; GAS; PARTICLES; LIQUID; HEAT; WALL AB In gas-solid reactors, particularly circulating fluidized beds (CFB) and riser it is becoming increasingly more important to be able to predict the conversion and yield of reactant species given the ever rising cost of the reactants and the ever decreasing acceptable level of effluent contaminants. As such, the development and use of predictive models for the reactors are necessary for most processes today. These models need to take into account the interphase mass transfer. Unless equipped with specific experimentally based empirical correlations for the reactor system under consideration, the modeler is required to go to the open literature to obtain correlations for the mass transfer coefficient between the solid and gas phases. This is a difficult task at present since these literature values differ by up to 7 orders of magnitude as found in the literature dating back to 1949. The wide variation in the prediction of mass transfer coefficients in the existing literature is credited to flow regime differences that can be identified in the cited literature upon careful inspection. Applying a new theory developed by Breault and Guenther 11 that takes into account the local hydrodynamics, a predictive methodology is presented that allows the local mass transfer coefficient to be calculated based upon local properties in a CFD simulation. A sample calculation is presented and compared with the data used in developing the theory as well as correlation for the literature. Published by Elsevier B.V. C1 [Breault, Ronald W.; Guenther, Chris] US DOE, NETL, Morgantown, WV USA. RP Breault, RW (reprint author), US DOE, NETL, Morgantown, WV USA. EM Ronald.Breault@NETL.DOE.GOV OI Breault, Ronald/0000-0002-5552-4050 NR 23 TC 7 Z9 8 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 33 EP 39 DI 10.1016/j.powtec.2010.03.024 PG 7 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700005 ER PT J AU Brenner, TA Fontenot, RL Cizmas, PGA O'Brien, TJ Breault, RW AF Brenner, Thomas A. Fontenot, Raymond L. Cizmas, Paul G. A. O'Brien, Thomas J. Breault, Ronald W. TI Augmented proper orthogonal decomposition for problems with moving discontinuities SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Proper orthogonal decomposition; Reduced-order model; Multiphase flow; Morphology ID REDUCED-ORDER MODELS AB A method is proposed to augment the proper orthogonal decomposition basis functions with discontinuity modes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brenner, Thomas A.; Fontenot, Raymond L.; Cizmas, Paul G. A.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. [O'Brien, Thomas J.; Breault, Ronald W.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Brenner, TA (reprint author), Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. EM thomasbrenner@neo.tamu.edu OI Breault, Ronald/0000-0002-5552-4050 NR 24 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 78 EP 85 DI 10.1016/j.powtec.2010.03.032 PG 8 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700009 ER PT J AU Spenik, JL Ludlow, JC AF Spenik, James L. Ludlow, J. Christopher TI Use of piezoelectric pressure transducers to determine local solids mass flux in the riser of a cold flow circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Solids distribution; Circulating fluidized bed; Piezoelectric pressure transducer ID PROFILES AB A method to determine local mass flux measurements within the riser of a circulating fluidized bed using the rate of impingement of particles on the surface of a piezoelectric pressure transducer is described. Statistically designed experiments with various solids circulation rates and riser gas velocities were conducted in the riser of a cold flow circulating fluidized bed to verify the accuracy of the method. Also, various techniques to relate the impingement rate to mass flux were employed. It is believed that this method delivers results in situations where more standard methods, such as isokinetic sampling, fail. (C) 2010 Elsevier B.V. All rights reserved. C1 [Spenik, James L.] REM Engn Serv PLLC, Morgantown, WV 26505 USA. [Ludlow, J. Christopher] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Spenik, JL (reprint author), REM Engn Serv PLLC, 3537 Collins Ferry Rd, Morgantown, WV 26505 USA. EM SPENIK@netl.doe.gov NR 5 TC 2 Z9 2 U1 2 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 86 EP 90 DI 10.1016/j.powtec.2010.03.031 PG 5 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700010 ER PT J AU Monazam, ER Panday, R Shadle, LJ AF Monazam, Esmail R. Panday, Rupen Shadle, Lawrence J. TI Estimate of solid flow rate from pressure measurement in circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Circulating fluid bed; Solid flow rate; Mass flow rate; Differential-pressure drop; Theoretical model; Correlation AB A method is described to estimate solid mass flow rate based on measurement of pressure drop in horizontal section of circulating fluid bed (CFB). A theoretical model was derived based on momentum balance equation and used to predict the solids flow rate. Several approaches for formulating such models are compared and contrasted. A correlation was developed that predicts the solids flow rate as a function of pressure drop measured in the horizontal section of piping leading from the top of the riser to the cyclone, often referred to as the cross-over. Model validation data was taken from literature data and from steady state, cold flow, CFB tests results of five granular materials with various sizes and densities in which the riser was operated in core-annular and dilute flow regimes. Experimental data were taken from a 0.20 m ID crossover piping and compared to literature data generated in a 0.10 m ID cross-over pipe. The solids mass flow rate data were taken from statistically designed experiments over a wide range of Froude number (U(g)(2)/gD, 25-200), load ratio (G(s)/rho(g)U(g), 0.2-23), Euler number (2 Delta P(Horiz)/rho(g)U(g)(2), 2-50), density ratio (rho(p)-rho(g)/rho(g)), 60-2000), Reynolds number (rho(g)U(g)d(p)/mu(g), 60-1600), and Archimedes number ((rho(s)-rho(g))rho(g)d(p)(3)/mu(2)(g), 29-9500). Several correlations were developed and tested to predict the solids mass flux based on measuring pressure drop in the horizontal section of CFB. It was found that load ratio (G(s)/rho(g)U(g)) is a linear function of the Euler number (2 Delta P(Horiz)/rho(g)U(g)(2)) and that each of these expressions all worked quite well (R(2)>95%) for the data within the range of conditions from which the coefficients were estimated. Published by Elsevier B.V. C1 [Monazam, Esmail R.; Panday, Rupen; Shadle, Lawrence J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.; Panday, Rupen] REM Engn Serv PLLC, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 NR 14 TC 2 Z9 2 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 91 EP 97 DI 10.1016/j.powtec.2010.03.030 PG 7 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700011 ER PT J AU Slezak, A Kuhlman, JM Shadle, LJ Spenik, J Shi, SP AF Slezak, Andrew Kuhlman, John M. Shadle, Lawrence J. Spenik, James Shi, Shaoping TI CFD simulation of entrained-flow coal gasification: Coal particle density/size fraction effects SO POWDER TECHNOLOGY LA English DT Article; Proceedings Paper CT NETL Workshop on Multiphase Flow Science CY APR 22-23, 2009 CL Morgantown, WV SP US DOE, Natl Energy Technol Lab DE Coal gasification; Entrained-flow reactor; CFD; Discrete Phase Method; DPM; Particle-wall interactions; Coal size/density fractions ID NUMERICAL-SIMULATION; OPERATING-CONDITIONS; GASIFIER; COMBUSTION; MODEL AB Computational Fluid Dynamics (CFD) simulation of commercial-scale two-stage upflow and single-stage downflow entrained-flow gasifiers was conducted to study effects of simulating both the coal particle density and size variations. A previously-developed gasification CFD model was modified to account for coal particle density and size distributions as produced from a typical rod mill. Postprocessing tools were developed for analysis of particle-wall impact properties. For the two-stage upflow gasifier, three different simulations are presented: two (Case 1 and Case 2) used the same devolatilization and char conversion models from the literature, while Case 3 used a different devolatilization model. The Case 1 and Case 3 solutions used average properties of a Pittsburgh #8 seam coal (d = 108 mu m, SG = 1.373), while Case 2 was obtained by injecting and tracking all of the series of 28 different coal particle density and size mass fractions obtained by colleagues at PSU as a part of the current work, for this same coal. Simulations using the two devolatilization models (Case 1 and Case 3) were generally in reasonable agreement. Differences were observed between the single-density solution and the density/size partitioned solution (Case 1 and Case 2). The density/size partitioned solution predicted nominally 10% less CO and over 5% more H(2) by volume in the product gas stream. Particle residence times and trajectories differed between these two solutions for the larger density/size fractions. Fixed carbon conversion was 4.3% higher for the partitioned solution. Particle-wall impact velocities did not vary greatly. Grid independence studies for the two-stage upflow gasifier geometry showed that the grid used in the comparison studies was adequate for predicting exit gas composition and wall impact velocities. Validation studies using experimental data for the Pittsburgh #8 coal from the SRI International pressurized coal flow reactor (PCFR) at 30 atmospheres indicated adequate agreement for gasification and combustion cases, but poor agreement for a pyrolysis case. Simulation of a single-stage downflow gasifier yielded an exit gas composition that was in reasonable agreement with published data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Slezak, Andrew; Kuhlman, John M.; Shadle, Lawrence J.; Spenik, James; Shi, Shaoping] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Slezak, Andrew; Kuhlman, John M.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Spenik, James] REM Engn Serv, Morgantown, WV 26505 USA. [Shi, Shaoping] Ansys Inc, Morgantown, WV 26505 USA. RP Kuhlman, JM (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM john.kuhlman@mail.wvu.edu OI Shadle, Lawrence/0000-0002-6283-3628 NR 30 TC 48 Z9 51 U1 3 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD OCT 25 PY 2010 VL 203 IS 1 SI SI BP 98 EP 108 DI 10.1016/j.powtec.2010.03.029 PG 11 WC Engineering, Chemical SC Engineering GA 638MJ UT WOS:000280898700012 ER PT J AU Bacciochini, A Ben-Ettouil, F Brousse, E Ilavsky, J Montavon, G Denoirjean, A Valette, S Fauchais, P AF Bacciochini, Antoine Ben-Ettouil, Fadhel Brousse, Elodie Ilavsky, Jan Montavon, Ghislain Denoirjean, Alain Valette, Stephane Fauchais, Pierre TI Quantification of void networks of as-sprayed and annealed nanostructured yttria-stabilized zirconia (YSZ) deposits manufactured by suspension plasma spraying SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Suspension plasma spraying; YSZ; Void network; Nanovoid; Annealing; USAXS ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; MICROSTRUCTURAL CHARACTERIZATION; COATINGS; POROSITY; OXIDE AB Suspension plasma spraying (SPS) allows processing a stabilized suspension of nanometer-sized feedstock particles to form thick (from 20 to 100 pm, average values) deposits. The void content and porous network of such deposits are difficult to quantify (in terms of void and size distributions, anisotropy, etc.) using conventional techniques due to their low resolution. The combination of ultra-small-angle X-ray scattering (USAXS) and helium pycnometry permits to address some of the characteristics of this void network. Deposits of yttria-partially stabilized zirconia (YSZ) were manufactured by plasma spraying a suspension made of solid sub-micrometer-sized particles (50 and 400 nm) with several sets of spray operating parameters. Results indicate that the average void size exhibits the same scale as the solid structure; i.e., nanometer sizes and multimodal size distribution which varies with spray operating parameters. About 90% of voids (by number) exhibit characteristic dimensions smaller than 40 nm. The cumulative void volume fraction of such as-sprayed deposits varies between about 13 and 20%, depending upon operating parameters. The void network architecture evolves also with annealing conditions: the void size distribution evolves toward higher void characteristic dimensions as a result of sintering of smallest voids but the cumulative void content does not decrease significantly. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bacciochini, Antoine; Ben-Ettouil, Fadhel; Brousse, Elodie; Montavon, Ghislain; Denoirjean, Alain; Valette, Stephane; Fauchais, Pierre] Univ Limoges, CNRS, SPCTS, Fac Sci & Tech,UMR 6638, F-87060 Limoges, France. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bacciochini, A (reprint author), Univ Limoges, CNRS, SPCTS, Fac Sci & Tech,UMR 6638, 123 Ave Albert Thomas, F-87060 Limoges, France. EM antoine.bacciochini@orange.fr; ghislain.montavon@utbm.fr RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 39 TC 23 Z9 23 U1 2 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD OCT 25 PY 2010 VL 205 IS 3 BP 683 EP 689 DI 10.1016/j.surfcoat.2010.06.013 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 664XN UT WOS:000282997400001 ER PT J AU Karol, KG Arumuganathan, K Boore, JL Duffy, AM Everett, KDE Hall, JD Hansen, SK Kuehl, JV Mandoli, DF Mishler, BD Olmstead, RG Renzaglia, KS Wolf, PG AF Karol, Kenneth G. Arumuganathan, Kathiravetpillai Boore, Jeffrey L. Duffy, Aaron M. Everett, Karin D. E. Hall, John D. Hansen, S. Kellon Kuehl, Jennifer V. Mandoli, Dina F. Mishler, Brent D. Olmstead, Richard G. Renzaglia, Karen S. Wolf, Paul G. TI Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages SO BMC EVOLUTIONARY BIOLOGY LA English DT Article ID COMPLETE NUCLEOTIDE-SEQUENCE; ADIANTUM-CAPILLUS-VENERIS; CHLOROPLAST TUFA GENE; BASAL ANGIOSPERM; NUCLEAR GENES; GREEN-ALGAE; CODON USAGE; SEED PLANTS; DNA; ORGANIZATION AB Background: Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results: We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions: Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae. C1 [Karol, Kenneth G.; Hall, John D.] New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA. [Arumuganathan, Kathiravetpillai] Benaroya Res Inst Virginia Mason, Seattle, WA 98101 USA. [Boore, Jeffrey L.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Duffy, Aaron M.; Hansen, S. Kellon; Wolf, Paul G.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA. [Duffy, Aaron M.; Hansen, S. Kellon; Wolf, Paul G.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Everett, Karin D. E.; Mandoli, Dina F.; Olmstead, Richard G.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Kuehl, Jennifer V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mishler, Brent D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Renzaglia, Karen S.] So Illinois Univ, Plant Biol SIUC, Carbondale, IL 62901 USA. RP Karol, KG (reprint author), New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA. EM kkarol@nybg.org RI Wolf, Paul/F-7664-2010; OI Wolf, Paul/0000-0002-4317-6976; Hall, John/0000-0002-7670-5459 FU U.S. National Science Foundation [DEB-0228660, DEB-0228432, DEB-0228679, DEB-0228729]; U.S. National Institutes of Health [T32-HG00035]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Jo Ann Banks, Robert Jansen, James Leebens-Mack and Linda Raubeson for access to unpublished data. We also thank Andrew G. Murdock and Melvin J. Oliver for invaluable assistance in various aspects of this project and anonymous reviewers for helpful suggestions to improve the manuscript. This research was supported in part by the U.S. National Science Foundation grant DEB-0228660 to RGO, DEB-0228432 to PGW, DEB-0228679 to KSR, DEB-0228729 to BDM and JLB and by the U.S. National Institutes of Health Interdisciplinary Training in Genomic Sciences Grant T32-HG00035 to KGK. This work was also partly conducted by the U.S. Department of Energy Joint Genome Institute supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 85 TC 46 Z9 49 U1 6 U2 42 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD OCT 23 PY 2010 VL 10 AR 321 DI 10.1186/1471-2148-10-321 PG 16 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA 694YW UT WOS:000285338800002 PM 20969798 ER PT J AU Balke, N Gajek, M Tagantsev, AK Martin, LW Chu, YH Ramesh, R Kalinin, SV AF Balke, Nina Gajek, Martin Tagantsev, Alexander K. Martin, Lane W. Chu, Ying-Hao Ramesh, Ramamoorthy Kalinin, Sergei V. TI Direct Observation of Capacitor Switching Using Planar Electrodes SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILM CAPACITORS; FERROELECTRIC CAPACITORS; FORCE MICROSCOPY; POLARIZATION; PB(ZR,TI)O-3; INTERFACE; IMPRINT; BATIO3; NANOSTRUCTURES; DEPENDENCE AB Ferroelectric polarization switching in epitaxial (110) BiFeO3 films is studied using piezoresponse force microscopy of a model in-plane capacitor structure. The electrode orientation is chosen such that only two active domain variants exist. Studies of the kinetics of domain evolution allows clear visualization of nucleation sites, as well as forward and lateral growth stages of domain formation. It is found that the location of the reverse-domain nucleation is correlated with the direction of switching in a way that the polarization in the domains nucleated at an electrode is always directed away from it. The role of interface charge injection and surface screening charge on switching mechanisms is explored, and the nucleation is shown to be controllable by the bias history of the sample. Finally, the manipulation of domain nucleation through domain structure engineering is illustrated. These studies pave the way for the engineering and design of the ferroelectric device structures through control of individual steps of the switching process. C1 [Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gajek, Martin; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Tagantsev, Alexander K.] Ecole Polytech Fed Lausanne, Ceram Lab, CH-1015 Lausanne, Switzerland. [Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Tagantsev, Alexander/E-3707-2010; Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Kalinin, Sergei/I-9096-2012; Balke, Nina/Q-2505-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Kalinin, Sergei/0000-0001-5354-6152; Balke, Nina/0000-0001-5865-5892 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council, R.O.C. [NSC-98-2119-M-009-016]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH1123] FX Research sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy (SVK). N.B. acknowledges Alexander von Humboldt foundation. Y.H.C. would also like to acknowledge the support of the National Science Council, R.O.C., under contract NO. NSC-98-2119-M-009-016. The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract No. DE-AC02-05CH1123. Correspondence should be addressed to balken@ornl.gov NR 54 TC 46 Z9 46 U1 1 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3466 EP 3475 DI 10.1002/adfm.201000475 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200006 ER PT J AU Reese, MO Nardes, AM Rupert, BL Larsen, RE Olson, DC Lloyd, MT Shaheen, SE Ginley, DS Rumbles, G Kopidakis, N AF Reese, Matthew O. Nardes, Alexandre M. Rupert, Benjamin L. Larsen, Ross E. Olson, Dana C. Lloyd, Matthew T. Shaheen, Sean E. Ginley, David S. Rumbles, Garry Kopidakis, Nikos TI Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; POLY(3-HEXYLTHIOPHENE); STABILITY; FILMS; TIME; EFFICIENCY; MECHANISM; KINETICS; DEVICES; BLENDS AB As organic photovoltaic efficiencies steadily improve, understanding degradation pathways becomes increasingly important. In this paper, the stability under prolonged illumination of a prototypical polymer: fullerene active layer is studied without the complications introduced by additional layers and interfaces in complete devices. Combining contactless photoconductivity with spectroscopy, structural characterization at the molecular and film level, and quantum chemical calculations, the mechanism of photoinduced degradation in bulk heterojunctions of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is studied. Bare films are subjected to four conditions for 1000 h with either constant illumination or dark and either ambient or inert atmosphere. All samples are found to be intrinsically stable for 1000+ h under inert conditions, in contrast to complete devices. While PCBM stabilizes P3HT films exposed to air, its fullerene cage is found to undergo a series of oxidations that are responsible for the deterioration of the photoconductivity of the material. Quantum chemical calculations show that PCBM oxides have deeper LUMO levels than pristine PCBM and therefore act as traps for electrons in the PCBM domains. C1 [Reese, Matthew O.; Nardes, Alexandre M.; Rupert, Benjamin L.; Larsen, Ross E.; Olson, Dana C.; Lloyd, Matthew T.; Ginley, David S.; Rumbles, Garry; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shaheen, Sean E.] Univ Denver, Denver, CO 80208 USA. RP Reese, MO (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew.reese@nrel.gov; nikos.kopidakis@nrel.gov RI Larsen, Ross/E-4225-2010; Shaheen, Sean/M-7893-2013; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015; Rupert, Benjamin/E-1694-2011; Nardes, Alexandre/C-8556-2012 OI Larsen, Ross/0000-0002-2928-9835; Rumbles, Garry/0000-0003-0776-1462; FU Plextronics, Inc through a Collaborative Research and Development Agreement; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX The authors would like to thank Robert Brown and Shuji Kato at the University of Colorado for help in the MALDI-TOF-MS measurements. We also acknowledge Peter A. Graf for writing the code to generate random oxidized PCBM structures and for useful discussions as well as useful discussions with Andrew J. Ferguson and Brian A. Gregg. This work was supported by Plextronics, Inc through a Collaborative Research and Development Agreement and by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 43 TC 145 Z9 146 U1 7 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3476 EP 3483 DI 10.1002/adfm.201001079 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200007 ER PT J AU Paleari, A Brovelli, S Lorenzi, R Giussani, M Lauria, A Mochenova, N Chiodini, N AF Paleari, Alberto Brovelli, Sergio Lorenzi, Roberto Giussani, Marco Lauria, Alessandro Mochenova, Natalia Chiodini, Norberto TI Tunable Dielectric Function in Electric-Responsive Glass with Tree-Like Percolating Pathways of Chargeable Conductive Nanoparticles SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SNO2 NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SILICA; FILMS; NANOWIRES; RESONANCE; BEHAVIOR; SURFACE AB The design of nanostructured materials with specific physical properties is generally pursued by tuning nanoparticle size, concentration, or surface passivation. An important step forward is to realize "active" systems where nanoparticles are vehicles for controlling, in situ, some specific, tuneable features of a responsive functional material. In this perspective, this work focuses on the rational design of a nanostructured glass with electrically tuneable dielectric function obtained by injection and accumulation of charge on embedded conductive nanocrystals. This enables electrically controlled switching of semiconducting nanophases to charged polarisable states to be achieved, which could lead to smart, field-enhancement applications in nanophotonics and plasmonics. Here, it is shown that such response switching can be obtained if a percolating charge-transport mechanism is activated through a disordered tree-like network, as is demonstrated to be possible in SiO2 films where suitable dispersions of SnO2 nanocrystals, with conductive interfaces, are obtained as a result of a new synthesis strategy. C1 [Paleari, Alberto; Lorenzi, Roberto; Giussani, Marco; Lauria, Alessandro; Mochenova, Natalia; Chiodini, Norberto] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy. [Brovelli, Sergio] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Paleari, A (reprint author), Univ Milano Bicocca, Dept Mat Sci, Via R Cozzi 53, I-20125 Milan, Italy. EM alberto.paleari@mater.unimib.it; brovelli@lanl.gov RI Lorenzi, Roberto/D-1916-2014; Lauria, Alessandro/C-5041-2016 OI Lorenzi, Roberto/0000-0002-6199-0971; Brovelli, Sergio/0000-0002-5993-855X; Lauria, Alessandro/0000-0002-7978-2687 FU Cariplo Foundation, Italy [20060656] FX The authors acknowledge the financial support of Cariplo Foundation, Italy, under Project 20060656. NR 42 TC 3 Z9 3 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 22 PY 2010 VL 20 IS 20 BP 3511 EP 3518 DI 10.1002/adfm.201000449 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NX UT WOS:000284000200012 ER PT J AU Hwang, JH Ellingson, SR Roberts, DM AF Hwang, Jin Ha Ellingson, Sally R. Roberts, Daniel M. TI Ammonia permeability of the soybean nodulin 26 channel SO FEBS LETTERS LA English DT Article DE Nitrogen fixation; Aquaporin; Symbiosis; Legume ID SYMBIOSOME MEMBRANE-PROTEINS; PERIBACTEROID MEMBRANE; SYMBIOTIC MEMBRANES; AQUAPORIN HOMOLOGS; PICHIA-PASTORIS; LEGUME NODULES; ROOT-NODULES; TRANSPORT; WATER; PHOSPHORYLATION AB Soybean nodulin 26 (nod26), a member of the aquaporin superfamily, is the major protein component of the symbiosome membrane that encloses nitrogen-fixing bacteroids in root nodules. Previous work has demonstrated that nod26 facilitates the transport of water and glycerol, although a potential additional role as a channel for fixed ammonia efflux has been hypothesized. In the present study it is shown that recombinant nod26 reconstituted into proteoliposomes facilitates NH(3) transport in an Hg(2+)-sensitive manner with a reduced activation energy, hallmarks of protein-facilitated transport characteristic of aquaporins. Comparison of the predicted single-channel transport rates of nod26 suggests a 4.9-fold preference for ammonia compared to water. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [Roberts, Daniel M.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Hwang, Jin Ha; Ellingson, Sally R.; Roberts, Daniel M.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA. RP Roberts, DM (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM drobert2@utk.edu FU National Science Foundation [MCB-0618075] FX Supported by National Science Foundation Grant MCB-0618075 to DMR. NR 25 TC 22 Z9 22 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD OCT 22 PY 2010 VL 584 IS 20 BP 4339 EP 4343 DI 10.1016/j.febslet.2010.09.033 PG 5 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 665UD UT WOS:000283060100012 PM 20875821 ER PT J AU Lin, PT Shadid, JN Tuminaro, RS Sala, M AF Lin, Paul T. Shadid, John N. Tuminaro, Ray S. Sala, Marzio TI Performance of a Petrov-Galerkin algebraic multilevel preconditioner for finite element modeling of the semiconductor device drift-diffusion equations SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE multilevel preconditioners; multigrid; smoothed aggregation; Newton-Krylov; Schwarz domain decomposition; graph partitioning; drift-diffusion; semiconductor devices; finite element ID DOMAIN DECOMPOSITION PRECONDITIONERS; BOUNDARY-VALUE-PROBLEMS; INEXACT NEWTON METHODS; SMOOTHED AGGREGATION; LINEAR-SYSTEMS; KRYLOV METHODS; CONVERGENCE; ALGORITHMS AB This study compares the performance of a relatively new Petrov-Galerkin smoothed aggregation (PGSA) multilevel preconditioner with a nonsmoothed aggregation (NSA) multilevel preconditioner to accelerate the convergence of Krylov solvers on systems arising from a drift-diffusion model for semiconductor devices. PGSA is designed for nonsymmetric linear systems, Ax = b, and has two main differences with smoothed aggregation. Damping parameters for smoothing interpolation basis functions are now calculated locally and restriction is no longer the transpose of interpolation but instead corresponds to applying the interpolation algorithm to AT and then transposing the result. The drift-diffusion system consists of a Poisson equation for the electrostatic potential and two convection-diffusion-reaction-type equations for the electron and hole concentration. This system is discretized in space with a stabilized finite element method and the discrete solution is obtained by using a fully coupled preconditioned Newton-Krylov solver. The results demonstrate that the PGSA preconditioner scales significantly better than the NSA preconditioner, and can reduce the solution time by more than a factor of two for a problem with 110 million unknowns on 4000 processors. The solution of a 1B unknown problem on 24 000 processor cores of a Cray XT3/4 machine was obtained using the PGSA preconditioner. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Lin, Paul T.; Shadid, John N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tuminaro, Ray S.] Sandia Natl Labs, Livermore, CA 94551 USA. [Sala, Marzio] BMW Sauber, Hinwil, Switzerland. RP Lin, PT (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM ptlin@sandia.gov FU Sandia Corporation [DE-AC04-94AL85000]; ASC; DOE Office of Science at Sandia National Laboratory; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Contract/grant sponsor: Sandia Corporation; contract/grant number: DE-AC04-94AL85000; The authors would like to thank Gary Hennigan, Robert Hoekstra, Roger Pawlowski, Joseph Castro, Eric Phipps, Deborah Fixel, and Eric Keiter for their collaborative effort in developing the Charon code. The authors thank Jonathan Hu for his contributions to the ML software package, Richard Drake for his support of the Nevada framework and tools, and Gary and Kenneth Kambour for their contributions in generating the test cases. The first author is grateful to the Sandia Red Storm team, especially Suzanne Kelly and Robert Ballance. This paper is supported by ASC program and the DOE Office of Science MICS program at Sandia National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 60 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD OCT 22 PY 2010 VL 84 IS 4 BP 448 EP 469 DI 10.1002/nme.2902 PG 22 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 671BL UT WOS:000283474600003 ER PT J AU Aksoy, F Akgul, G Ufuktepe, Y Nordlund, D AF Aksoy, F. Akgul, G. Ufuktepe, Y. Nordlund, D. TI Thickness dependence of the L-2,L-3 branching ratio of Cr thin films SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE XANES; Cr; Transmission yield; 3d Transition metals; Branching ratio; Electron Escape depth ID 3D TRANSITION-METALS; RAY-ABSORPTION-SPECTROSCOPY; WHITE-LINE RATIOS; MAGNETIC-MOMENT; ELECTRON-YIELD; 2P ABSORPTION; SPECTRA; FE; DICHROISM; EMISSION AB We report the electronic structure of chromium (Cr) thin films depending on its thickness using two measures, total electron yield (TEY) and transmission yield mode. The Cr L edge X-ray absorption spectroscopy (XAS) spectrum shows strong thickness dependence with broader line widths observed for L-2,L-3 edge peaks for thinner films. The white line ratio (L-3/L-2) was found to be 1.25 from the integrated area under each L-3 and L-2 peak and 1.36 from the ratio of the amplitudes of each L-3 and L-2 peak after the deconvolution. Additionally, we show that full-width at half-maximum (FWHM) at the L-2 and L-3 edges and the branching ratio of Cr change as a function of film thickness and these are discussed in detail. Using L-2,L-3 resonance intensity variation as a function of film thickness we calculated the electron escape depth and X-ray attenuation length in Cr. Comparing our results with the literature, there was good agreement for the L-3-L-2 ratio although the detailed shape can show additional solid state and atomic effects. (c) 2010 Elsevier B.V. All rights reserved. C1 [Aksoy, F.; Akgul, G.; Ufuktepe, Y.] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Aksoy, F.] Nigde Univ, Dept Phys, TR-51100 Nigde, Turkey. [Nordlund, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ufuktepe, Y (reprint author), Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. EM ufuk@cu.edu.tr RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU Department of Energy (DOE), Office of Basic Energy Science; University of Cukurova; DOE FX The authors thank Professor Piero Pianetta, Professor Herman Winick and the staff at the Stanford Synchrotron Radiation Laboratory (SSRL) for their excellent support, where the XANES experiments were carried out. SSRL is supported by the Department of Energy (DOE), Office of Basic Energy Science. Y.U. acknowledges financial support by the University of Cukurova and the DOE Cooperative Research Program for the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) project. The authors also thank Fred Johnson for editorial assistance with this manuscript. NR 27 TC 2 Z9 2 U1 0 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 22 PY 2010 VL 508 IS 2 BP 233 EP 237 DI 10.1016/j.jallcom.2010.07.100 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 676XY UT WOS:000283954000008 ER PT J AU Minch, R Seoung, DH Ehm, L Winkler, B Knorr, K Peters, L Borkowski, LA Parise, JB Lee, Y Dubrovinsky, L Depmeier, W AF Minch, R. Seoung, D. H. Ehm, L. Winkler, B. Knorr, K. Peters, L. Borkowski, L. A. Parise, J. B. Lee, Y. Dubrovinsky, L. Depmeier, W. TI High-pressure behavior of otavite (CdCO3) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Inorganic materials; Crystal structure and equation-of-state; High-pressure; X-ray diffraction; Optical spectroscopy ID X-RAY-DIFFRACTION; PHASE-TRANSITION; CRYSTAL-STRUCTURE; CALCITE-STRUCTURE; SINGLE-CRYSTAL; LOWER MANTLE; CARBONATES; TEMPERATURE; COMPRESSION; REFINEMENT AB The high-pressure, room temperature behavior of otavite (CdCO3) was investigated by angle-dispersive synchrotron radiation powder diffraction up to 40 GPa, Raman spectroscopy up to 23 GPa and quantum mechanical calculations based on density functional theory. The calcite-type structure of CdCO3 is stable up to at least 19 GPa as shown by Raman spectroscopy. The compression mechanism was obtained from structure refinements against the diffraction data. The quantum mechanical calculations propose a calcite-aragonite phase transition to occur at about 30 GPa. The existence of a pressure-induced phase transition is supported by the Raman and diffraction experiments. Evidence for the transformation is given by broadening of X-ray reflections and external Raman bands starting from about 19 GPa in both experiments. (c) 2010 Elsevier B.V. All rights reserved. C1 [Minch, R.; Peters, L.; Depmeier, W.] Univ Kiel, Inst Geowissensch, D-24118 Kiel, Germany. [Seoung, D. H.; Lee, Y.] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Ehm, L.; Borkowski, L. A.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Ehm, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Winkler, B.] Goethe Univ Frankfurt, Inst Geowissensch, Abt Kristallog, D-60438 Frankfurt, Germany. [Knorr, K.] BrukerAXS GmbH, D-76187 Karlsruhe, Germany. [Parise, J. B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Dubrovinsky, L.] Univ Bayreuth, Bayer Geoinst, D-95447 Bayreuth, Germany. RP Minch, R (reprint author), Inst Mat & Surface Technol, D-24149 Kiel, Germany. EM robert.minch@fh-kiel.de RI Lee, Yongjae/K-6566-2016 FU Deutsche Forschungsgemeinschaft [KN 507/5-1]; NSF [EAR 06-49658]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; BK21 program; Ministry of Education, Science and Technology (MEST) of the Korean Government; BMBF [03G0717B] FX This research was supported by the Deutsche Forschungsgemeinschaft under project number KN 507/5-1 in the framework of the priority program: "Synthesis, 'in situ' characterization and quantum mechanical modelling of Earth Materials, oxides, carbides, and nitrides at extremely high pressures and temperatures". The use of the beamline X17C was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would like to thank C. Tarabrella, Q. Guo and J. Hu for help during the measurements. Y. Lee and D.H. Seoung thank the support from the BK21 program to the Institute of Earth, Atmosphere, and Astronomy at Yonsei University and the Global Research Lab Program of the Ministry of Education, Science and Technology (MEST) of the Korean Government. Bjoern Winkler is grateful for funding from the BMBF in the framework of the Geotechnologienprogramm 03G0717B. NR 45 TC 12 Z9 13 U1 1 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD OCT 22 PY 2010 VL 508 IS 2 BP 251 EP 257 DI 10.1016/j.jallcom.2010.08.090 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 676XY UT WOS:000283954000011 ER PT J AU Casteel, DE Smith-Nguyen, EV Sankaran, B Roh, SH Pilz, RB Kim, C AF Casteel, Darren E. Smith-Nguyen, Eric V. Sankaran, Banumathi Roh, Sung H. Pilz, Renate B. Kim, Choel TI A Crystal Structure of the Cyclic GMP-dependent Protein Kinase I beta Dimerization/Docking Domain Reveals Molecular Details of Isoform-specific Anchoring SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GCN4 LEUCINE-ZIPPER; TFII-I; CIRCULAR-DICHROISM; TERMINAL DOMAIN; BLOOD-PRESSURE; COILED-COIL; CGMP KINASE; IRAG; RELAXATION; REGULATOR AB Cyclic GMP-dependent protein kinase (PKG) is a key mediator of the nitric oxide/cGMP signaling pathway and plays a central role in regulating cardiovascular and neuronal functions. The N-terminal similar to 50 amino acids of the kinase are required for homodimerization and association with isoform-specific PKG-anchoring proteins (GKAPs), which target the kinase to specific substrates. To understand the molecular details of PKG dimerization and gain insight into its association with GKAPs, we solved a crystal structure of the PKG I beta dimerization/docking domain. Our structure provides molecular details of this unique leucine/isoleucine zipper, revealing specific hydrophobic and ionic interactions that mediate dimerization and demonstrating the topology of the GKAP interaction surface. C1 [Roh, Sung H.; Kim, Choel] Baylor Coll Med, Dept Pharmacol, Houston, TX 77030 USA. [Casteel, Darren E.; Pilz, Renate B.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. [Casteel, Darren E.; Pilz, Renate B.] Univ Calif San Diego, Ctr Canc, La Jolla, CA 92093 USA. [Smith-Nguyen, Eric V.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Kim, C (reprint author), Baylor Coll Med, Dept Pharmacol, 1 Baylor Plaza, Houston, TX 77030 USA. EM ckim@bcm.edu FU National Institutes of Health [R01-AR051300, K22-CA124517]; American Heart Grant [09SDG2150143]; National Institutes of Health (NIGMS); Howard Hughes Medical Institute FX This work was supported, in whole or in part, by National Institutes of Health Grants R01-AR051300 (to R. B. P.) and K22-CA124517 (to D. E. C.). This work was also supported by American Heart Grant 09SDG2150143 (to C. K.).; We thank Susan. S. Taylor, Jens Schlossmann, and I. V. Khavrutskii for insights and helpful discussions; T. Koller for verifying Se-Met substitution by mass spectrometry; S. Lesley for technical support; E. Larson at Bio-Rad Laboratories for supplying the Profinia protein purification system; and P. D. Stewart for in-depth discussion on optimizing crystallization conditions using the Oryx 8 crystallization robot. Portions of this research were conducted at the Advanced Light Source operated by Lawrence Berkeley National Laboratory (on behalf of the United States Department of Energy, Office of Basic Energy Sciences). The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health (NIGMS) and the Howard Hughes Medical Institute. NR 25 TC 21 Z9 22 U1 0 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 22 PY 2010 VL 285 IS 43 BP 32684 EP 32688 DI 10.1074/jbc.C110.161430 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 665PP UT WOS:000283048200002 PM 20826808 ER PT J AU Xing, L Li, TC Mayazaki, N Simon, MN Wall, JS Moore, M Wang, CY Takeda, N Wakita, T Miyamura, T Cheng, RH AF Xing, Li Li, Tian-Cheng Mayazaki, Naoyuki Simon, Martha N. Wall, Joseph S. Moore, Mary Wang, Che-Yen Takeda, Naokazu Wakita, Takaji Miyamura, Tatsuo Cheng, R. Holland TI Structure of Hepatitis E Virion-sized Particle Reveals an RNA-dependent Viral Assembly Pathway SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID VIRUS-LIKE PARTICLES; CAPSID PROTEIN; MONOCLONAL-ANTIBODIES; RECEPTOR-BINDING; HEV; EPITOPES; VACCINE; DIFFRACTION; CALICIVIRUS; MICROSCOPY AB Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T= 1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids. C1 [Cheng, R. Holland] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Xing, Li; Mayazaki, Naoyuki] Huddinge Univ Hosp, Karolinska Inst, Struct Virol Sect, SE-14186 Stockholm, Sweden. [Li, Tian-Cheng; Takeda, Naokazu; Wakita, Takaji; Miyamura, Tatsuo] Natl Inst Infect Dis, Dept Virol 2, Tokyo 2080011, Japan. [Simon, Martha N.; Wall, Joseph S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Cheng, RH (reprint author), Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. EM rhch@ucdavis.edu RI Cheng, Holland/A-8973-2008; Miyazaki, Naoyuki/D-7435-2012 FU National Institutes of Health; U.S. Department of Agriculture; STINT Foundation; Strategic Research Foundation; Swedish Research Council; Ministry of Health, Labor, and Welfare, Japan FX This work was supported, in whole or in part, by a grant from the National Institutes of Health Roadmap Project on Nanomedicine (to R. H. C.). This work was also supported by grants from the U.S. Department of Agriculture Hatch Fund, STINT Foundation, and Strategic Research Foundation (to R. H. C.). This study was also partly funded by a grant from the Swedish Research Council (to L. X.) and grants for Research on Emerging and Re-emerging Infectious Diseases, Research on Hepatitis, and Research on Food Safety from the Ministry of Health, Labor, and Welfare, Japan (to T.- C. L.). NR 39 TC 62 Z9 65 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 22 PY 2010 VL 285 IS 43 BP 33175 EP 33183 DI 10.1074/jbc.M110.106336 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 665PP UT WOS:000283048200055 PM 20720013 ER PT J AU Kwak, JH Tonkyn, RG Kim, DH Szanyi, J Peden, CHF AF Kwak, Ja Hun Tonkyn, Russell G. Kim, Do Heui Szanyi, Janos Peden, Charles H. F. TI Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3 SO JOURNAL OF CATALYSIS LA English DT Article DE Cu-SSZ-13; Zeolites; Ammonia SCR; N-2 selectivity ID EXCHANGED ZSM-5 ZEOLITES; NITRIC-OXIDE; AMMONIA; DECOMPOSITION; DEACTIVATION; OXIDATION; STATE AB Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison with Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 degrees C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N-2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources. (C) 2010 Elsevier Inc. All rights reserved. C1 [Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM chuck.peden@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of FreedomCar and Vehicle Technologies; US DOE, Office of Biological and Environmental Research; US Department of Energy [DE-AC06-76RLO 1830] FX Financial support was provided by the US Department of Energy (DOE), Office of FreedomCar and Vehicle Technologies. Portions of this work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 13 TC 208 Z9 226 U1 30 U2 279 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT 22 PY 2010 VL 275 IS 2 BP 187 EP 190 DI 10.1016/j.jcat.2010.07.031 PG 4 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 673TY UT WOS:000283687300001 ER PT J AU Hui, YW Cravens, TE Ozak, N Schultz, DR AF Hui, Yawei Cravens, Thomas E. Ozak, Nataly Schultz, David R. TI What can be learned from the absence of auroral X-ray emission from Saturn? SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID XMM-NEWTON; ENERGETIC PARTICLES; HOT PLASMA; MAGNETOSPHERE; JUPITER; PRECIPITATION; URANUS; FIELD; IONS AB To understand the origin and magnitude of the present upper limit observations of Saturn's auroral X-ray emission, we use simple models based on the mechanism that leads to analogous emission at Jupiter, charge transfer between ion precipitation and atmospheric gas. Several putative sources and characteristics of the precipitation are considered, namely, (1) highly charged solar wind ions with additional acceleration and (2) ambient, thermal ion population originating, for example, from Saturn's satellites, and then accelerated to high energies. Estimates obtained for each of these sources show the need for acceleration, either to focus the highly charged solar wind ions into the atmosphere or to enable stripping of the initially low-charge state ambient ions to higher charges. The former yields a constraint on the existing accelerating potentials present at Saturn but can only account for about a tenth of the observed upper limit to the auroral luminosity, while the latter requires extremely low limits on the area (i.e., less than 100 km(2)) over which field-aligned potentials are active and needed to produce the acceleration to generate the observational upper limit on the X-ray luminosity. We therefore narrow the range of possible ion sources, the accelerating potentials required that are consistent with the present understanding of the magnetosphere, and model upper limit of X-ray emission from ion precipitation. C1 [Hui, Yawei; Schultz, David R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cravens, Thomas E.; Ozak, Nataly] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP Hui, YW (reprint author), Oak Ridge Natl Lab, Div Phys, Bldg 6010, Oak Ridge, TN 37831 USA. EM huiy@ornl.gov; cravens@ku.edu; nojager@ku.edu; schultzd@ornl.gov FU NASA at ORNL [NNH07AF12I]; NASA at KU [NNX07AF47G] FX We thank Graziella Branduardi-Raymont for useful information on the observational upper limits to the Saturnian X-ray luminosity. This work has been supported by NASA Planetary Atmospheres Program grant NNH07AF12I at ORNL and NASA Planetary Atmospheres Program grant NNX07AF47G at KU. NR 46 TC 5 Z9 5 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 22 PY 2010 VL 115 AR A10239 DI 10.1029/2010JA015639 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YJ UT WOS:000283549900006 ER PT J AU Cai, Q Todorovic, A Andaya, A Gao, JY Leary, JA Cate, JHD AF Cai, Qi Todorovic, Aleksandar Andaya, Armann Gao, Jingyun Leary, Julie A. Cate, Jamie H. D. TI Distinct Regions of Human eIF3 Are Sufficient for Binding to the HCV IRES and the 40S Ribosomal Subunit SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE translation initiation; hepatitis C virus; internal ribosome entry site; eukaryotic initiation factor 3; mass spectrometry ID HEPATITIS-C-VIRUS; TRANSLATION INITIATION-COMPLEXES; SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; MESSENGER-RNA; RECRUITMENT; REVEALS; PATHWAY; NIP1/C; CODON AB Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5 ' untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF31. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cai, Qi; Todorovic, Aleksandar; Cate, Jamie H. D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Andaya, Armann; Leary, Julie A.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Gao, Jingyun; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU National Institutes of Health [P01GM073732, 1S10RR022393-01] FX We would like to thank R. Tjian for HeLa cell cytoplasmic extracts, C. Sun for purified eIF3j, J. Doudna for plasmids encoding variants of the HCV IRES, A. Iavarone for help with MS data acquisition and interpretation, and J. Doudna, C. Fraser, and J. Hershey for helpful comments on the manuscript. We also acknowledge the Proteomics Core at UC Davis for Fourier transform ion cyclotron resonance MS analysis. This work was funded by the National Institutes of Health (grant P01GM073732 to J.H.D.C. and J.A.L., and grant 1S10RR022393-01 to the QB3/Department of Chemistry Mass Spectrometry facility). NR 30 TC 20 Z9 22 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 22 PY 2010 VL 403 IS 2 BP 185 EP 196 DI 10.1016/j.jmb.2010.07.054 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 671RA UT WOS:000283525300003 PM 20816988 ER PT J AU Balatsky, AV Basov, DN Zhu, JX AF Balatsky, A. V. Basov, D. N. Zhu, Jian-Xin TI Induction of charge density waves by spin density waves in iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID BI2SR2CACU2O8+DELTA AB We argue that spin density wave (SDW) phase in ferrous superconductors contains charge density wave (CDW) with the modulation momentum that is a double of characteristic momenta of SDW. We discuss symmetry constraints on allowed momenta of CDW generated by coupling to spin modulations. To be specific, we considered the CDW that could be realized in Fe-11 (e.g., FeTe) and Fe-122 (e.g., BaFe(2)As(2)) compounds. In case of commensurate SDW, the CDW modulation vector is at the Bragg-peak positions and could be revealed by local scanned probes. In case of incommensurate SDW, the CDW is incommensurate and can be seen also by x-ray and elastic neutron scattering. We also discuss observable charge modulation due to CDW formation near defects and twin boundaries. C1 [Balatsky, A. V.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Zhu, Jianxin/0000-0001-7991-3918 FU U.S. Department of Energy; National Science Foundation [PHY05-51164]; [UCOP-09-027] FX We are grateful to S. Kivelson, J. Lorenzana, V. Madhavan, and I. Mazin for useful discussion and for sharing the preliminary STM data. The hospitality of the Aspen Center for Physics (A.V.B.) and the Kavli Institute for Theoretical Physics (A.V.B. and J.-X.Z.) are gratefully acknowledged. This work was supported by U.S. Department of Energy through LDRD and BES funds, the National Science Foundation under Grant No. PHY05-51164, and the UCOP-09-027. NR 24 TC 12 Z9 12 U1 4 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 14 AR 144522 DI 10.1103/PhysRevB.82.144522 PG 6 WC Physics, Condensed Matter SC Physics GA 669LA UT WOS:000283349900005 ER PT J AU Lucas, MS Munoz, JA Delaire, O Markovskiy, ND Stone, MB Abernathy, DL Halevy, I Mauger, L Keith, JB Winterrose, ML Xiao, YM Lerche, M Fultz, B AF Lucas, M. S. Munoz, J. A. Delaire, O. Markovskiy, N. D. Stone, M. B. Abernathy, D. L. Halevy, I. Mauger, L. Keith, J. B. Winterrose, M. L. Xiao, Yuming Lerche, M. Fultz, B. TI Effects of composition, temperature, and magnetism on phonons in bcc Fe-V alloys SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR RESONANT SCATTERING; DENSITY-OF-STATES; IRON-VANADIUM ALLOYS; TRANSITION ELEMENTS; BINARY-ALLOYS; ORDER; MOMENTS; FERROMAGNETISM; DEPENDENCE; PARAMETER AB The phonon densities of states of body-centered-cubic Fe-V alloys across the full composition range were studied by inelastic neutron scattering, nuclear resonant inelastic x-ray scattering, and ab initio calculations. The average phonon energy followed the inverse of the electronic heat capacity and the inverse of the electronic density of states at the Fermi level, showing how the interatomic forces depend on electronic screening. These quantities, including phonon energy, changed rapidly near the composition of the paramagnetic-ferromagnetic transition. For Fe-and V-rich alloys, the thermal phonon softening deviated from quasiharmonic behavior but better agreement was found for intermediate compositions. The Fe partial phonon density of states has a distinctly different shape than V for alloys with less than 50 at. % Fe. C1 [Lucas, M. S.; Delaire, O.; Stone, M. B.; Abernathy, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lucas, M. S.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Munoz, J. A.; Markovskiy, N. D.; Halevy, I.; Mauger, L.; Keith, J. B.; Winterrose, M. L.; Fultz, B.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Xiao, Yuming] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Lerche, M.] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL 60439 USA. RP Lucas, MS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Munoz, Jorge/C-8427-2011; BL18, ARCS/A-3000-2012; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X FU Scientific User Facilities Division; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE; Department of Energy through the Basic Energy Sciences [DE-FG02-03ER46055]; BES-MS [W-31-109-ENG-38]; DOE-NNSA; DOE-BES [DE-AC02-06CH11357]; NSF [DMR-0520547] FX The portions of this work conducted at Oak Ridge National Laboratory were supported by the Scientific User Facilities Division and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. This work was supported by the Department of Energy through the Basic Energy Sciences under Grant No. DE-FG02-03ER46055 and BES-MS under Grant No. W-31-109-ENG-38. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. Use of the APS was supported by DOE-BES under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF under Grant No. DMR-0520547. NR 52 TC 11 Z9 11 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 14 AR 144306 DI 10.1103/PhysRevB.82.144306 PG 9 WC Physics, Condensed Matter SC Physics GA 669LA UT WOS:000283349900003 ER PT J AU Schelkacheva, TI Tareyeva, EE Chtchelkatchev, NM AF Schelkacheva, T. I. Tareyeva, E. E. Chtchelkatchev, N. M. TI Full versus first-stage replica symmetry breaking in spin glasses SO PHYSICAL REVIEW B LA English DT Article ID REFLECTION SYMMETRY; QUADRUPOLAR GLASS; SOLVABLE MODEL; CLUSTER MODEL; TRANSITION; POTTS AB A short survey is presented on spin-glass-like states characteristics in complex nonmagnetic systems. We discuss the interplay of the interaction structure and symmetry with the classification of scenarios of the replica symmetry breaking. It is shown that the kind of the transition to the nonergodic state depends not only on the presence or absence of the reflection symmetry but on the number of interacting operators and their individual characteristics. C1 [Schelkacheva, T. I.; Tareyeva, E. E.; Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Tareyeva, E. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Inst Theoret Phys, Moscow 117940, Russia. RP Schelkacheva, TI (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU Russian Foundation for Basic Research [08-02-00781]; Dynasty Foundation; Presidium of the Russian Academy of Sciences; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The authors thank V. N. Ryzhov and N. Gribova for useful discussions; N. C. thanks V. Vinokur for reading the manuscript and useful remarks. This work was supported in part by the Russian Foundation for Basic Research (Grant No. 08-02-00781), the Dynasty Foundation, the Programs of the Presidium of the Russian Academy of Sciences and the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. NR 33 TC 6 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 13 AR 134208 DI 10.1103/PhysRevB.82.134208 PG 5 WC Physics, Condensed Matter SC Physics GA 669KV UT WOS:000283349000003 ER PT J AU Wei, HX Qin, QH Ma, QL Zhang, XG Han, XF AF Wei, H. -X. Qin, Q. -H. Ma, Q. -L. Zhang, X. -G. Han, X. -F. TI Inelastic electron tunneling spectrum from surface magnon and magnetic impurity scatterings in magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; EXCHANGE MODEL; MAGNETORESISTANCE; ANOMALIES AB Analytic expressions for contributions to the inelastic electron tunneling spectrum (IETS) from surface magnon scattering and magnetic impurity scattering are obtained. It is shown that surface magnon scattering alone does not lead to peaks in the IETS. The peaks at small bias often observed in the IETS of magnetic junctions are due to magnetic impurity scattering, in agreement with the traditional model for zero-bias anomaly. These impurity resonance peaks can sometimes split due to the impurities' magnetic coupling to the electrodes. Measurements of AlO and MgO barrier junctions yield excellent agreement to the theory. The experiment further shows that the magnetic impurities in MgO barriers are strongly coupled to the electrodes but those in AlO barriers are not magnetically coupled to the electrodes. C1 [Wei, H. -X.; Qin, Q. -H.; Ma, Q. -L.; Han, X. -F.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Wei, HX (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. RI Qin, Qihang/E-7266-2012; Ma, Qinli/H-2508-2011 FU Ministry of Sciences and Technology (MOST) [2006CB932200, 2010CB934400]; National Natural Sciences Foundation (NSFC) [10904167, 50928101, 10934099]; Beijing Municipal Commission of Education; K. C. Wong Education Foundation, Hong Kong; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This project was supported by the State Key Project of Fundamental Research of Ministry of Sciences and Technology (MOST) under Grants No. 2006CB932200 and No. 2010CB934400 and National Natural Sciences Foundation (NSFC) under Grants No. 10904167, No. 50928101, and No. 10934099, and the partial support of Graduate Education Project of Beijing Municipal Commission of Education and K. C. Wong Education Foundation, Hong Kong. A Portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 20 TC 15 Z9 16 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 22 PY 2010 VL 82 IS 13 AR 134436 DI 10.1103/PhysRevB.82.134436 PG 6 WC Physics, Condensed Matter SC Physics GA 669KV UT WOS:000283349000005 ER PT J AU Suzuki, N Sato, T Lee, TSH AF Suzuki, N. Sato, T. Lee, T. -S. H. TI Extraction of electromagnetic transition form factors for nucleon resonances within a dynamical coupled-channels model SO PHYSICAL REVIEW C LA English DT Article ID PARTIAL-WAVE ANALYSIS; MESON-EXCHANGE MODEL; CLOUDY BAG MODEL; PI-N SCATTERING; PARTICLE PHYSICS; GAMMA-ASTERISK; PHOTOPRODUCTION; AMPLITUDES; UNITARY; MATRIX AB We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances (N*) within a dynamical coupled-channel model of meson-baryon reactions. Illustrative results of the obtained N*-> gamma N transition form factors, defined at the resonance pole positions on the complex energy plane, for the well-isolated P(33) and D(13) and the complicated P(11) resonances are presented. A formula was developed to give a unified representation of the effects due to the first two P(11) poles, which are near the pi Delta threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of the pi N -> pi N and gamma N -> pi N amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We discuss the important differences between our approach, which is consistent with the earlier formulations of resonances, and the phenomenological approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data. C1 [Suzuki, N.; Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Suzuki, N.; Sato, T.; Lee, T. -S. H.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Suzuki, N (reprint author), Osaka Univ, Dept Phys, Osaka 5600043, Japan. FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357, DE-AC05-06OR23177]; Japan Society for the Promotion of Science [20540270] FX This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357 and Contract No. DE-AC05-06OR23177 under which the Jefferson Science Associates operate Jefferson Lab, and by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research(C) 20540270. NR 51 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 22 PY 2010 VL 82 IS 4 AR 045206 DI 10.1103/PhysRevC.82.045206 PG 12 WC Physics, Nuclear SC Physics GA 669MB UT WOS:000283353800003 ER PT J AU Reichhardt, CJO Reichhardt, C Bishop, AR AF Reichhardt, C. J. Olson Reichhardt, C. Bishop, A. R. TI Structural transitions, melting, and intermediate phases for stripe- and clump-forming systems SO PHYSICAL REVIEW E LA English DT Article ID LONG-RANGE INTERACTIONS; QUENCHED DISORDER; STATE; PARTICLES; ALGORITHM; SUMMATION; CLUSTERS; CRYSTALS; DYNAMICS; PATTERNS AB We numerically examine the properties of a two-dimensional system of particles which have competing long-range repulsive and short-range attractive interactions as a function of density and temperature. For increasing density, there are well-defined transitions between a low-density clump phase, an intermediate stripe phase, an anticlump phase, and a high-density uniform phase. To characterize the transitions between these phases we propose several measures which take into account the different length scales in the system. For increasing temperature, we find an intermediate phase that is liquidlike on the short length scale of interparticle spacing but solidlike on the larger length scale of the clump, stripe, or anticlump pattern. This intermediate phase persists over the widest temperature range in the stripe phase when the local particle lattice within an individual stripe melts well below the temperature at which the entire stripe structure breaks down, and is characterized by intrastripe diffusion of particles without interstripe diffusion. This is followed at higher temperatures by the onset of interstripe diffusion in an anisotropic diffusion phase and then by breakup of the stripe structure. We identify the transitions between these regimes through diffusion, heat capacity, and energy fluctuation measurements and find that within the intrastripe liquid regime, the excess entropy goes into disordering the particle arrangements within the stripe rather than affecting the stripe structure itself. The clump and anticlump phases also show multiple temperature-induced diffusive regimes which are not as pronounced as those of the stripe phase. C1 [Reichhardt, C. J. Olson; Reichhardt, C.; Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 38 TC 29 Z9 29 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT 22 PY 2010 VL 82 IS 4 AR 041502 DI 10.1103/PhysRevE.82.041502 PN 1 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 669MS UT WOS:000283355500002 PM 21230277 ER PT J AU Park, HS Lorenz, KT Cavallo, RM Pollaine, SM Prisbrey, ST Rudd, RE Becker, RC Bernier, JV Remington, BA AF Park, Hye-Sook Lorenz, K. T. Cavallo, R. M. Pollaine, S. M. Prisbrey, S. T. Rudd, R. E. Becker, R. C. Bernier, J. V. Remington, B. A. TI Comment on "Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate" Reply SO PHYSICAL REVIEW LETTERS LA English DT Letter C1 [Park, Hye-Sook; Lorenz, K. T.; Cavallo, R. M.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Becker, R. C.; Bernier, J. V.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 7 TC 0 Z9 0 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 22 PY 2010 VL 105 IS 17 AR 179602 DI 10.1103/PhysRevLett.105.179602 PG 1 WC Physics, Multidisciplinary SC Physics GA 669NF UT WOS:000283356800013 ER PT J AU Xu, XQ Dudson, B Snyder, PB Umansky, MV Wilson, H AF Xu, X. Q. Dudson, B. Snyder, P. B. Umansky, M. V. Wilson, H. TI Nonlinear Simulations of Peeling-Ballooning Modes with Anomalous Electron Viscosity and their Role in Edge Localized Mode Crashes SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOKAMAKS; PLASMA AB A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E x B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realistic high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5%-10% of the pedestal stored energy. This is consistent with many observations of large ELMs. C1 [Xu, X. Q.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dudson, B.; Wilson, H.] Univ York, York YO10 5DD, N Yorkshire, England. [Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Dudson, Benjamin/0000-0002-0094-4867 FU LLNL [DE-AC52-07NA27344, DE-FG03-95ER54309]; UK Engineering and Physical Sciences Research Council [EP/H012605/1]; Euro. Commun. under Association between EURATOM and CCFE FX This work was performed for U.S. DOE by LLNL under Contract DE-AC52-07NA27344, grants DE-FG03-95ER54309 at general Atomics, and by the UK Engineering and Physical Sciences Research Council under grant EP/H012605/1 and the Euro. Commun. under the contract of Association between EURATOM and CCFE. The authors wish to acknowledge P. H. Diamond for pointing out the role of the hyper-resistivity in the Ohm's law. NR 12 TC 50 Z9 50 U1 5 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 22 PY 2010 VL 105 IS 17 AR 175005 DI 10.1103/PhysRevLett.105.175005 PG 4 WC Physics, Multidisciplinary SC Physics GA 669NF UT WOS:000283356800005 PM 21231055 ER PT J AU Wang, YW Devkota, S Musch, MW Jabri, B Nagler, C Antonopoulos, DA Chervonsky, A Chang, EB AF Wang, Yunwei Devkota, Suzanne Musch, Mark W. Jabri, Bana Nagler, Cathryn Antonopoulos, Dionysios A. Chervonsky, Alexander Chang, Eugene B. TI Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon SO PLOS ONE LA English DT Article ID TOLL-LIKE RECEPTORS; VITAMIN-D-RECEPTOR; INNATE IMMUNITY; DISTAL COLON; GUT; INTESTINE; FLORA; DIVERSITY; COLONIZATION; BACTERIA AB Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis. C1 [Wang, Yunwei; Devkota, Suzanne; Musch, Mark W.; Jabri, Bana; Antonopoulos, Dionysios A.; Chang, Eugene B.] Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL 60637 USA. [Nagler, Cathryn; Chervonsky, Alexander] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Antonopoulos, Dionysios A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. RP Wang, YW (reprint author), Univ Chicago, Knapp Ctr Biomed Discovery, Dept Med, Chicago, IL 60637 USA. EM echang@medicine.bsd.uchicago.edu OI Chervonsky, Alexander/0000-0001-7547-871X FU Human Microbiome Project [DK083993, HG004858]; Digestive Disease Research Core Center of the University of Chicago [DK-42086]; Crohns and Colitis Foundation of America; [R37 DK47722]; [F31 AT006073-01] FX This work was supported by grants from the Human Microbiome Project (DK083993, HG004858), R37 DK47722 (EBC), the Digestive Disease Research Core Center DK-42086 of the University of Chicago, F31 AT006073-01 (SD), and Research Fellowship Award (YW) from the Crohns and Colitis Foundation of America. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 39 Z9 39 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 22 PY 2010 VL 5 IS 10 AR e13607 DI 10.1371/journal.pone.0013607 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 670KA UT WOS:000283419100025 ER PT J AU Hamilton, L Scowcroft, B AF Hamilton, Lee Scowcroft, Brent TI Nuclear Waste: Progress with Public Engagement SO SCIENCE LA English DT Letter C1 [Hamilton, Lee; Scowcroft, Brent] US DOE, Blue Ribbon Commiss Amer Nucl Future, Washington, DC 20585 USA. RP Hamilton, L (reprint author), US DOE, Blue Ribbon Commiss Amer Nucl Future, 1000 Independence Ave SW, Washington, DC 20585 USA. EM brc@nuclear.energy.gov NR 1 TC 0 Z9 1 U1 2 U2 4 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 448 EP 448 DI 10.1126/science.330.6003.448-a PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100014 PM 20966234 ER PT J AU Oh, SH Chisholm, MF Kauffmann, Y Kaplan, WD Luo, WD Ruhle, M Scheu, C AF Oh, Sang Ho Chisholm, Matthew F. Kauffmann, Yaron Kaplan, Wayne D. Luo, Weidong Ruehle, Manfred Scheu, Christina TI Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires SO SCIENCE LA English DT Article ID SURFACE-DIFFUSION; ALUMINUM; INTERFACES; TEMPERATURE; DYNAMICS AB In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions. C1 [Oh, Sang Ho] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. [Oh, Sang Ho] Pohang Univ Sci & Technol, Natl Ctr Nanomat Technol, Pohang 790784, South Korea. [Chisholm, Matthew F.; Luo, Weidong] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kauffmann, Yaron; Kaplan, Wayne D.] Technion Israel Inst Technol, Dept Mat Engn, IL-32000 Haifa, Israel. [Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ruehle, Manfred] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Scheu, Christina] Univ Munich, Dept Chem, D-81377 Munich, Germany. [Scheu, Christina] Univ Munich, Ctr NanoSci, D-81377 Munich, Germany. RP Oh, SH (reprint author), Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. EM shoh@postech.ac.kr RI Kaplan, Wayne/C-9100-2011; Kauffmann, Yaron/B-7301-2013; Luo, Weidong/A-8418-2009 OI Kaplan, Wayne/0000-0001-9202-391X; Luo, Weidong/0000-0003-3829-1547 FU German Science Foundation via the Graduiertenkolleg Innere Grenzflachen [GRK 285/3]; German-Israel Fund [I-779-42.10/2003]; POSCO; Basic Science Research Institute [2.0006028]; Ministry of Education, Science and Technology [2010-0005834]; Excellence cluster Nanosystems Initiative Munich; Materials Sciences and Engineering Division of the U.S. Department of Energy FX The in situ TEM experiments were carried out using the Stuttgart high-voltage microscope (JEM-ARM 1250) at the Max-Planck-Institut fur Metallforschung. We thank F. Phillipp, R. Hoschen, and U. Salzberger for technical support, and D. Chatain and the participants of the 3 Phase, Interface, Component Systems (PICS3) meeting for stimulating discussions. Supported by the German Science Foundation via the Graduiertenkolleg Innere Grenzflachen (GRK 285/3), the German-Israel Fund (grant I-779-42.10/2003), the Nano and Steel Fusion Research Program funded by the POSCO (S.H.O.) Basic Science Research Institute grant 2.0006028 (S.H.O.), the Basic Science Research Program through the National Research Foundation funded by the Ministry of Education, Science and Technology (grant 2010-0005834) (S.H.O.), the excellence cluster Nanosystems Initiative Munich (C.S. and S.H.O.), and the Materials Sciences and Engineering Division of the U.S. Department of Energy (M.F.C. and W.L.). NR 25 TC 93 Z9 94 U1 7 U2 85 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 22 PY 2010 VL 330 IS 6003 BP 489 EP 493 DI 10.1126/science.1190596 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 669EL UT WOS:000283329100035 PM 20966248 ER PT J AU Halas, S Durakiewicz, T AF Halas, Stanislaw Durakiewicz, Tomasz TI Is work function a surface or a bulk property? SO VACUUM LA English DT Article; Proceedings Paper CT 5th Symposium on Vacuum based Science and Technology CY SEP 28-30, 2010 CL GERMANY SP Vacuum Soc Germany DE Alloys; Bulk; Desorption; Hydrogen; Metals; Oxygen; Sorption; Surface; Work function ID FUNCTION SHIFTS AB We discuss whether the electronic work function (WF) can be considered as a surface property of a given conductor or a bulk property as we have demonstrated in the past that WF is a fundamental surface property which can be derived solely from bulk properties like the Wigner-Seitz radius and Fermi energy. The term "bulk" applies already to a very thin layer at the surface, where several monolayers (ML) is usually a sufficient thickness to go beyond the quantum size effects and into the bulk properties regime. In the case of large-size atoms like K. Ba, Ca, Th, etc. even 1 ML shows WF of the bulk material. At the same time, WF is an environment-sensitive property subject to large variations due to the sorption-desorption phenomena in the vacuum atmosphere. Our considerations are supported by a number of experimental results. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Halas, Stanislaw] Marie Curie Sklodowska Univ, Mass Spectrometry Lab, Inst Phys, PL-2031 Lublin, Poland. [Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. RP Halas, S (reprint author), Marie Curie Sklodowska Univ, Mass Spectrometry Lab, Inst Phys, PL-2031 Lublin, Poland. EM stanislaw.halas@poczta.umcs.lublin.pl OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 11 TC 3 Z9 4 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD OCT 21 PY 2010 VL 85 IS 4 SI SI BP 486 EP 488 DI 10.1016/j.vacuum.2010.01.017 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 702PP UT WOS:000285906900003 ER PT J AU Feibelman, PJ Bartelt, NC Nie, S Thurmer, K AF Feibelman, Peter J. Bartelt, N. C. Nie, S. Thuermer, K. TI Interpretation of high-resolution images of the best-bound wetting layers on Pt(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; ICE; WATER; ADSORPTION; SURFACES; GROWTH; METALS AB Two interpretations have been proposed of dark triangles observed in scanning tunneling microscopy (STM) images of the best bound, root 37 X root 37-R25.3 degrees, and root 39 X root 39-R16.1 degrees periodic water monolayers on Pt(111). In one, a "Y"-shaped tetramer of water molecules is removed, leaving a vacancy island behind; the other assumes the Y is replaced by a hexagon of H(2)O molecules, amounting to a di-interstitial. Consistent only with the di-interstitial model are thermal desorption and CO coadsorption data, STM line scans, and total energies obtained from density functional theory calculations. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3488803] C1 [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bartelt, N. C.; Nie, S.; Thuermer, K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjfeibe@sandia.gov RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia is operated by the Lockheed Martin Co. for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. VASP was developed at T. U. Wien's Institut fur Theoretische Physik. NR 27 TC 26 Z9 26 U1 2 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154703 DI 10.1063/1.3488803 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300057 PM 20969415 ER PT J AU Lu, DY Nguyen, HV Galli, G AF Lu, Deyu Nguyen, Huy-Viet Galli, Giulia TI Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; ELECTRON-GAS; DENSITY; ACCURATE; SURFACE; CRYSTAL; BENZENE; FORCES AB We derive a power expansion of the correlation energy of weakly bound systems within the random phase approximation (RPA), in terms of the Coulomb interaction operator, and we show that the asymptotic limit of the second- and third-order terms yields the van der Waals (vdW) dispersion energy terms derived by Zaremba-Kohn and Axilrod-Teller within perturbation theory. We then show that the use of the second-order expansion of the RPA correlation energy results in rather inaccurate binding energy curves for weakly bonded systems, and discuss the implications of our findings for the development of approximate vdW density functionals. We also assess the accuracy of different exchange energy functionals used in the derivation of vdW density functionals. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494541] C1 [Lu, Deyu; Nguyen, Huy-Viet; Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Galli, Giulia] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Lu, DY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dlu@bnl.gov RI Nguyen, Huy-Viet/F-3374-2010; Lu, Deyu/O-4418-2016; OI Lu, Deyu/0000-0003-4351-6085; Nguyen, Huy-Viet/0000-0002-5509-0061 FU DOE SciDAC [DE-FC02-06ER25794]; Teragrid [TG-MCA06N063, TGDMR090109] FX This work was supported by DOE SciDAC (Grant No. DE-FC02-06ER25794), and the computational resource is provided by Teragrid (Grant Nos. TG-MCA06N063 and TGDMR090109). We thank David Langreth and Elsebeth Schroder for useful discussions. NR 69 TC 25 Z9 25 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154110 DI 10.1063/1.3494541 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300015 PM 20969373 ER PT J AU Srivastava, S Chandran, S Kandar, AK Sarika, CK Basu, JK Narayanan, S Sandy, A AF Srivastava, S. Chandran, Sivasurender Kandar, A. K. Sarika, C. K. Basu, J. K. Narayanan, S. Sandy, A. TI Communication: Unusual dynamics of hybrid nanoparticles and their binary mixtures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SPHERICAL POLYMER BRUSHES; PARTICLES; MELTS; TRANSITIONS; SURFACES; MODEL AB We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495480] C1 [Srivastava, S.; Chandran, Sivasurender; Kandar, A. K.; Sarika, C. K.; Basu, J. K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Narayanan, S.; Sandy, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Srivastava, S (reprint author), Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. EM basu@physics.iisc.ernet.in RI KANDAR, AJOY KUMAR/N-1047-2016 FU CSIR; DST, India; U.S. DOE (BES) [W-31-109-Eng-38] FX A.K.K. acknowledges CSIR for the financial support. The assistance of M. K. Mukhopadhyay and Haridas M during XPCS measurements is acknowledged. The financial support for logistics of the synchrotron experiments from DST, India, is acknowledged. This work benefited by the use of facilities at APS, which was supported by U.S. DOE (BES) under Contract No. W-31-109-Eng-38 to the University of Chicago. NR 34 TC 7 Z9 7 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 151105 DI 10.1063/1.3495480 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300005 PM 20969363 ER PT J AU Taube, AG AF Taube, Andrew G. TI Communication: Constrained search formulation of the ground state energy as a functional of an idempotent one-matrix SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NATURAL SPIN-ORBITALS; MANY-PARTICLE SYSTEMS; DENSITY-MATRICES; QUANTUM THEORY; ELECTRON; APPROXIMATION; EXPANSIONS; POTENTIALS; EXCHANGE AB Despite the fact that idempotent one- particle reduced density matrices are pervasive in quantum chemistry, the understanding of a general energy functional of such idempotent density matrices for the ground state energy has been lacking. By a constrained search, we show the structure of the general functional, illuminating the contributions from various terms. For the examples of the "best idempotent density matrix" and Kohn- Sham idempotent density matrices, we contrast the functional forms and suggest how the best idempotent density matrix approach may be a good starting point for further development. (C) 2010 American Institute of Physics. [doi:10.1063/1.3505036] C1 [Taube, Andrew G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Taube, AG (reprint author), DE Shaw Res, New York, NY 10036 USA. EM andrew.taube@deshawresearch.com FU Computational Science at Sandia; Sandia Corporation, Lockheed Martin company [DE-AC04-94AL85000] FX A.G.T. would like to thank the support through John von Neumann Post- Doctoral Research Fellowship in Computational Science at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 40 TC 0 Z9 0 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 151102 DI 10.1063/1.3505036 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300002 PM 20969360 ER PT J AU Young, RM Yandell, MA Niemeyer, M Neumark, DM AF Young, Ryan M. Yandell, Margaret A. Niemeyer, Markus Neumark, Daniel M. TI Photoelectron imaging of tetrahydrofuran cluster anions (THF)n(-) (1 <= n <= 100) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDRATED ELECTRON CLUSTERS; SOLVATED ELECTRONS; LIQUID-CHROMATOGRAPHY; ULTRAFAST DYNAMICS; EXCESS ELECTRONS; SPECTROSCOPY; WATER; ENERGY; ABSORPTION; ENERGETICS AB Anionic tetrahydrofuran clusters (THF)(n)(-) (1 <= n <= 100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n)(-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n)(-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489686] C1 [Young, Ryan M.; Yandell, Margaret A.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Niemeyer, Markus] Tech Univ Berlin, IOAP, D-10623 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Young, Ryan/0000-0002-5108-0261 FU National Science Foundation [0649647]; DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) [32 CFR 168a] FX This work was supported by the National Science Foundation (CHE-0649647). R.M.Y. is grateful to the Samuel Ruben/Irv Fatt Fellowship, and M.A.Y. was supported by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors are also grateful to Tara Yacovitch for her help with the ab initio calculations, and to Dr. Oli Ehrler for his advice and assistance in building our new data acquisition program. NR 80 TC 7 Z9 7 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2010 VL 133 IS 15 AR 154312 DI 10.1063/1.3489686 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 669OE UT WOS:000283359300033 PM 20969391 ER PT J AU Tinnacher, RM Honeyman, BD AF Tinnacher, Ruth M. Honeyman, Bruce D. TI Theoretical analysis of kinetic effects on the quantitative comparison of K-d values and contaminant retardation factors SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Sorption; Kinetics; Contaminant transport; K-d value; Distribution coefficient; Retardation factor ID SORPTION; TRANSPORT; EQUILIBRIUM; PARTICLES; PHOSPHATE; SEAWATER AB Distribution coefficients (K-d values) describe contaminant partitioning between liquids and solids for linear sorption at equilibrium conditions. If experimentally-determined K-d values do not represent sorption equilibria, errors are introduced in contaminant transport models. These errors may be further propagated when K-d values are used to compare contaminant mobility under different chemical solution conditions. Our theoretical analysis based on pseudo-first order sorption kinetics shows that, independent if two systems have the same or different sorption kinetics, relative comparisons of K-d values and retardation factors are always affected by sorption times under non-equilibrium conditions. The time-frames required for attaining constant K-d values are not only dependent on kinetic sorption characteristics, but also the equilibrium K-d values approached. The type of kinetic errors introduced is affected by the specific differences in sorption kinetics and equilibrium K-d values between the two systems. For systems with the same sorption kinetics, relative increases or decreases in contaminant velocities are always underestimated. In case of different kinetics, either an under- or overestimation of relative differences seems possible. Experimental sorption times should aim to equilibrate the system with the highest K-d value for systems with comparable kinetics, and the system with the slowest sorption kinetics for different kinetics. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tinnacher, Ruth M.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Honeyman, Bruce D.] Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. RP Tinnacher, RM (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, POB 808, Livermore, CA 94550 USA. EM tinnacher1@llnl.gov RI Tinnacher, Ruth/I-4845-2015 FU Lawrence Livermore National Laboratory; U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank A. Pitois (European Commission, Joint Research Center, The Netherlands) and N. J. Barrow (Mt. Claremont, Australia) for providing published data describing metal sorption kinetics under various chemical solution conditions in tabular form: M. Geier (Sandia National Laboratory, USA) for numerous stimulating and helpful discussions: and A. B. Kersting, M. Zavarin (both Lawrence Livermore National Laboratory, USA) as well as B. A. Powell (Clemson University, USA) for valuable comments on earlier versions of this article. Funding was provided by Lawrence Livermore National Laboratory. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 26 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD OCT 21 PY 2010 VL 118 IS 1-2 BP 1 EP 12 DI 10.1016/j.jconhyd.2010.08.006 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 686CQ UT WOS:000284674800001 PM 20864208 ER PT J AU Chakrabarty, D Sekar, R Sastri, JH Pathan, BM Reeves, GD Yumoto, K Kikuchi, T AF Chakrabarty, D. Sekar, R. Sastri, J. H. Pathan, B. M. Reeves, G. D. Yumoto, K. Kikuchi, T. TI Evidence for OI 630.0 nm dayglow variations over low latitudes during onset of a substorm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL SPREAD-F; ELECTRIC-FIELD; MAGNETOSPHERIC SUBSTORMS; PENETRATION; IONOSPHERE; AIRGLOW; REGION; DYNAMO AB Observations of OI 630.0 nm dayglow intensity from Mt. Abu (magnetic latitude (MLAT): 16.2 degrees N; magnetic longitude (MLONG): 148 degrees E) at two different directions corresponding to two different magnetic latitudes (MLAT(Zenith): 16.2 degrees N and MLAT(20 degrees Elevation): 22.2 degrees N) revealed nearly simultaneous intensity enhancements on 2 February 2002 (Ap = 19) during 0554-0635 universal time (UT) (1124-1205 Indian Standard Time (IST); IST = UT + 5.5 h). This feature is found to be absent on a typical control day (3 February 2002; Ap = 4). The dayglow enhancements were concomitant with enhancements in the E-region zonal electric field inferred from deviations of the northward component of magnetic field (Delta H) obtained from a meridional chain of magnetometers encompassing the dip equatorial and low-latitude regions. Simultaneous positive bay signatures in Delta H were also recorded at all stations along the 210 degrees magnetic meridian (MM) in the afternoon sector (similar to 1454-1535 magnetic local time). The changes in the solar wind parameters including the dawn-to-dusk component of IEF and ram pressure are found negligible during 0554-0635 UT. However, the variations in the auroral electrojet and ring current indices indicate the presence of a substorm during 0554-0635 UT. Sudden enhancements in the energetic particle fluxes measured by the Los Alamos National Laboratory (LANL) 1991-080 satellite at geosynchronous altitude provide evidence for the onset of the expansion phase of a magnetospheric substorm. Therefore, the present investigation adduces the response of 630.0 nm dayglow intensities over low latitudes corresponding to the onset of the expansion phase of an auroral/magnetospheric substorm. C1 [Chakrabarty, D.; Sekar, R.] Phys Res Lab, Space & Atmospher Sci Div, Ahmadabad 380009, Gujarat, India. [Sastri, J. H.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Pathan, B. M.] Indian Inst Geomagnetism, Navi Mumbai 410218, India. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yumoto, K.] Kyushu Univ, Space Environm Res Ctr, Fukuoka 8128581, Japan. [Kikuchi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. RP Chakrabarty, D (reprint author), Phys Res Lab, Space & Atmospher Sci Div, Ahmadabad 380009, Gujarat, India. EM dipu@prl.res.in; rsekar@prl.res.in RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU Department of Space, Government of India FX The authors thank NASA GSFC CDAweb for the solar wind data and WDC-C2 for the magnetic data. Data from the 210 MM magnetometer network and LANL geosynchronous satellite are duly acknowledged. D. C. thanks R. Sridharan for the critical comments. This work is supported by Department of Space, Government of India. NR 49 TC 4 Z9 4 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 21 PY 2010 VL 115 AR A10316 DI 10.1029/2010JA015643 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 671YI UT WOS:000283549800005 ER PT J AU Elam, JW Libera, JA Huynh, TH Feng, H Pellin, MJ AF Elam, Jeffrey W. Libera, Joseph A. Huynh, Trang H. Feng, Hao Pellin, Michael J. TI Atomic Layer Deposition or Aluminum Oxide in Mesoporous Silica Gel SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; THIN-FILM GROWTH; CATALYTIC MEMBRANES; SURFACE-REACTIONS; TRIMETHYLALUMINUM; AL2O3; CHEMISORPTION; SPECTROMETRY; AMMONIA; WATER AB Silica gel is a mesoporous, granular material with a high specific surface area that is widely used as a support for heterogeneous catalysts. This study explores the atomic layer deposition (ALD) of aluminum oxide (Al(2)O(3)) in silica gel. The coated materials were analyzed using weight-gain measurements, nitrogen adsorption surfacearea analysis, energy dispersive X-ray analysis, and scanning electron microscopy. In addition, the individual ALD surface reactions on the silica gel powder were monitored in situ using quadrupole mass spectrometry. This study confirmed that the silica gel could be conformally coated using reactant exposure times of similar to 90 s, and the surface area remained relatively unchanged even after 20 Al(2)O(3) ALD cycles. MAX measurements performed on silica gel specimens prepared using subsaturating trimethyl aluminum (TMA) exposures demonstrated that the spherical particles become infiltrated with the Al(2)O(3) ALD progressively from the outside of the particles to the core, and the kinetics of this process are dictated by the rapid consumption of TMA by the high surface area silica gel. The Al(2)O(3) ALD is inhibited on the silica gel surface for the first similar to 5 ALD cycles, and this leads to a lower initial weight gain as well as a reduced proportion of methane released during the initial TMA exposures. This study provides useful insights into ALI) processes on high surface area supports that will be valuable for the future development of nanostructured catalysts using ALD. C1 [Elam, Jeffrey W.; Libera, Joseph A.; Huynh, Trang H.; Feng, Hao; Pellin, Michael J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU U.S. Department of Energy; EERE [FWP-49055]; BES-Materials Sciences [W-31-109-ENG-38]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, EERE-Industrial Technologies Program under FWP-49055, and the BES-Materials Sciences under Contract W-31-109-ENG-38. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No, DE-AC02-06CH11357 by UChicago Argonne, LLC. The authors are grateful to Or. Angel Yanguas-Gil for helpful discussions concerning the infiltration kinetics. NR 31 TC 31 Z9 32 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17286 EP 17292 DI 10.1021/jp1030587 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400005 ER PT J AU Dorman, JA Mao, YB Bargar, JR Chang, JP AF Dorman, James A. Mao, Yuanbing Bargar, John R. Chang, Jane P. TI In Situ X-ray Diffraction and Absorption Studies of the Growth and Phase Transformation of Yttrium Hydroxide Nanotubes to Their Oxide Counterparts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROTHERMAL SYNTHESIS; SILICA/SURFACTANT COMPOSITES; LUMINESCENCE PROPERTIES; WHITE-LIGHT; NANOCRYSTALS; CRYSTALLIZATION; NANOMATERIALS; KINETICS; FILMS; CONVERSION AB The hydrothermal growth of yttrium hydroxide [Y(OH)(3)] nanotubes (NTs) and the subsequent transformation into yttrium oxide (Y(2)O(3)) NTs by thermal annealing were probed by in situ characterization techniques, mainly with synchrotron radiation, to elucidate its reaction mechanism. Upon heating the precursors to 120 degrees C. the formation of wnl h (OH)(3) was immediately observed, as evident by the diffraction peaks related to the hexagonal phase of Y(OH)(3). However, on the basis of X-ray absorption spectroscopic data, the local bonding and ordering began to resemble those of a stable Y(Oh)3 crystal after a reaction time of 7 h. Upon annealing of the as-prepared Y(OH)(3) NTs, a stable reaction intermediate. YO(OH), with a monoclinic crystal structure is formed at 250 degrees C. Hence, the dehydration process follows a two-step reaction: Y(OH)(3) -> YO(OH) i.e. the elimination of the hydroxyl groups takes two sequential steps, which leads to the formation of Y(2)O(3), NTs. C1 [Dorman, James A.; Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Bargar, John R.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM jpchang@seas.ucla.edu FU U.S. Department of Energy, Office of Energy Sciences, Division of Materials Sciences and Engineering at UCLA [ER46658] FX The authors acknowledge the financial and program support from U.S. Department of Energy, Office of Energy Sciences, Division of Materials Sciences and Engineering, under Award # ER46658 at UCLA. This work was carried out in part at the Stanford Synchrotron Radiation NR 43 TC 9 Z9 10 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17422 EP 17427 DI 10.1021/jp105389a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400024 ER PT J AU Midgett, AG Hillhouse, HW Hughes, BK Nozik, AJ Beard, MC AF Midgett, Aaron G. Hillhouse, Hugh W. Hughes, Barbara K. Nozik, Arthur J. Beard, Matthew C. TI Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; COLLOIDAL PBSE; OPTICAL GAIN; EFFICIENCY; EMISSION; BLINKING; FILMS; PHOTOLUMINESCENCE; INTERMITTENCY AB Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar How conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, ind accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Et-g. independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of hv > 3 E-g, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 E-g and for 4.6 HMI PbSe QDs we find a QY of 1.2 +/- 0.1 and at 4.5 E-g the QY is 1.55 +/- 0.05. With 6.6 nm QDs excited it 4.7 E-g we observe no difference between static and flowing conditions and find a QY of 1.61 +/- 0.05. We also find that by treating the surface of QDs. we can decrease the charging probability (P-g approximate to 5 x 10(-5)) be a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to lie creation of long-lived states. C1 [Hillhouse, Hugh W.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Midgett, Aaron G.; Hughes, Barbara K.; Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Midgett, Aaron G.; Hughes, Barbara K.; Nozik, Arthur J.; Beard, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hillhouse, HW (reprint author), Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. EM h2@uw.edu; arthur.nozik@nrel.gov; Matt.beard@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI BEARD, MATTHEW/0000-0002-2711-1355 FU Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences of the Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; DOH [DE-AC36-086038308] FX We acknowledge helpful comments and discussion with Octavi Semonin and Justin Johnson and Joseph Luther. M.C.B. and A.G.M. gratefully acknowledge funding from the Solar Photochemistry program within the Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences of the Department of Energy. B.K.H. and A.J.N. were supported as part of the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. DOH funding was provided to NREL, through Contract DE-AC36-086038308. NR 47 TC 63 Z9 64 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17486 EP 17500 DI 10.1021/jp1057786 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400033 ER PT J AU Renzas, JR Somorjai, GA AF Renzas, James Russell Somorjai, Gabor A. TI Rh Thin-Film Nanocatalysts as Chemical Sensors - The Flot Electron Effect SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PT/GAN CATALYTIC NANODIODES; HOLE PAIR CREATION; METAL-SURFACES; SCHOTTKY DIODES; HOT-ELECTRONS; CO OXIDATION; ADSORPTION; NO; CHEMILUMINESCENCE; CHEMISORPTION AB Ultra-thin-film 5 rot Rh/TiOx, and Rh/GaN catalytic metal-semiconductor Schottky nanodiodes were fabricated using dc magnetron reactive sputtering, rapid thermal annealing, and electron beam evaporation. 'file diode barrier heights were characterized in different gas mixtures using current-voltage measurements. Harrier heights were found to vary with the local gas composition for Rh/TO4 nanodiodes but did not vary with gas composition for Rh/GaN nanodiodes. The nanodiodes were also studied during the oxidation of CO by O-2 and during the oxidation of CO by NO using chemicurrent measurements and gas chromatography. The hot electron cheoticurrent was determined from the current in situ during reaction and the thermoelectric current measured in oxidizing conditions. Similar activation energies were measured from both the chemicurrent and gas chromatography, which indicates a correlation between hot electron chemicurrent and catalytic: activity. C1 [Renzas, James Russell; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Renzas, James Russell] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU U.S. Department of Energy [DE-ACO2-050-11231] FX This work was supported by the Director, Office of Science, Office of basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-ACO2-050-11231. NR 31 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17660 EP 17664 DI 10.1021/jp104793p PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400055 ER PT J AU Chang, CL Engelhard, MH Ramanathan, S AF Chang, Chia-Lin Engelhard, Mark H. Ramanathan, Shriram TI Mechanistic Studies on Room Temperature Photoexcitation Effects on Passivity Breakdown of Ultrathin Surface Oxide Films Formed on Ternary Al-5%Cu-5%Ni Alloys SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY PHOTOELECTRON-SPECTRA; POINT-DEFECT MODEL; STAINLESS-STEELS; CORROSION BEHAVIOR; PITTING CORROSION; COPPER OXIDATION; ALUMINUM-ALLOY; PIT INITIATION; CHLORIDE MEDIA; NICKEL-OXIDE AB I low the composition of nanoscale surface oxides formed on complex metal alloys affects their passive state is a problem of great interest in physical chemistry as well as in technological applications. In this work, we report on experimental studies regarding the problem concerning the role of room-temperature photoexcitation on altering composition of ultrathin oxides formed on ternary Al-Cu-Ni thin film alloy surface and its influence in passivity breakdown in aqueous media. Extensive studies have been carried out on pure copper, Al-5%Cu, and Al-5%Cu-5%Ni alloy thin films to investigate the mechanistic role of alloying elements as well as their oxide formation characteristics on the passive state. The differences in nanoscale oxide composition formed have a remarkable influence on the passivity breakdown of the oxide films as verified from electrochemical measurements. and possible mechanisms leading to the observations are discussed in detail. C1 [Chang, Chia-Lin; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ramanathan, S (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM shriram@deas.harvard.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU Office of Naval Research; Department of Energy's Office of Biological and Environmental Research FX We thank the Office of Naval Research for providing financial support for this work. PS portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. NR 67 TC 1 Z9 1 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17788 EP 17795 DI 10.1021/jp106297c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400070 ER PT J AU Xie, Y Joshi, P Darling, SB Chen, QL Zhang, T Galipeau, D Qiao, QQ AF Xie, Yu Joshi, Prakash Darling, Seth B. Chen, Qiliang Zhang, Ting Galipeau, David Qiao, Qiquan TI Electrolyte Effects On Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; TERPYRIDYL COMPLEX PHOTOSENSITIZER; NANOCRYSTALLINE TIO2; PHOTOVOLTAIC PERFORMANCE; PHOTOELECTROCHEMICAL PERFORMANCE; CHARGE RECOMBINATION; LIQUID ELECTROLYTES; MOLTEN-SALTS; THIN-FILMS; TEMPERATURE AB Electrolyte effects on electron transport and recombination at ZnO nanorods (nd-ZnO) were studied by electrochemical impedance spectroscopy (EIS) in dye-sensitized solar cells (DSSCs). Different electrolyte systems were prepared by gradually tickling tert-butylpyridine (TBP) and guanidinium thiocyanate (GuSCN) and replacing Oil with 1-butyl-3-methylimidazolium iodide (BMII). The introduction of TOP;and GuSCN, and the replacement of Lil with BMII suppressed charge recombination at the nd-ZnO/electrolyte interface, increased electron lifetime (tau(n)), improved electron transport, and reduced collection time (tau(d)) on nd-ZnO. In addition. they improved the electron diffusion coefficient (D(n)) and elongated the effective diffusion length (L(n)). The electron transfer coefficient (beta) at the ZnO/eleetrolyte interlace was increased from 0.34 to 0.44, which was a good sign of improvement in fill factor (FF). In addition, the ohmic series resistance was reduced from 17.35 to 4.99 Omega.cm(2) and the charge transfer resistance was decreased from 18.49 to 7.09 Omega.cm(2) at the electrolyte/Pt interface. Nd-ZnO DSSCs using different electrolytes were tested and the improvement of open circuit voltage (V(oc)), short circuit current density (J(sc)), fill factor (FF), and incident photon to electron conversion efficiency (IPCE) was in good agreement with the findings from the EIS data. C1 [Xie, Yu; Joshi, Prakash; Chen, Qiliang; Galipeau, David; Qiao, Qiquan] S Dakota State Univ, Ctr Adv Photovolta, Dept Elect Engn, Brookings, SD 57006 USA. [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zhang, Ting] Beijing Inst Technol, Dept Optoelect, Beijing 100081, Peoples R China. RP Qiao, QQ (reprint author), S Dakota State Univ, Ctr Adv Photovolta, Dept Elect Engn, Brookings, SD 57006 USA. EM Qiquan.Qiao@sdstate.edu RI Xie, Yu/C-6740-2015 OI Xie, Yu/0000-0002-8862-4541 FU NSF [ECCS-095073]; NASA EPSCoR [NNX09AP67A]; DNI [48733DNI10]; South Dakota NSF EPSCoR/PANS program; U.S. II:Taro-nem or Energy; Office of Science, Office of Basic Energy Sciences [DE-ACO2-06C1111357] FX We appreciate the partial financial support from the NSF CAREER (ECCS-095073), NASA EPSCoR (NNX09AP67A), ACS PRF; DNI (48733DNI10), and South Dakota NSF EPSCoR/PANS program. We also thank Dr. Mandi F. Baroughi. Department of Electrical Engineering & Computer Science, South Dakota State University, for his great help ill setting up the j-v V and IPCE measurement systems. Use of the Center for Nanoscale Materials at the Argonne National Laboratory was supported by the U.S. II:Taro-nem or Energy. Office of Science, Office of Basic Energy Sciences, under Contract DE-ACO2-06C1111357. NR 60 TC 47 Z9 50 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 17880 EP 17888 DI 10.1021/jp106302m PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400083 ER PT J AU Feng, GA Qiao, R Huang, JS Sumpter, BG Meunier, V AF Feng, Guang Qiao, Rui Huang, Jingsong Sumpter, Bobby G. Meunier, Vincent TI Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL CAPACITORS; MOLECULAR-DYNAMICS; CARBON; ELECTROLYTES; SIMULATIONS; SELECTIVITY; NANOPORES; MODEL AB Electrodes featuring subnanometer pores are favorable to the capacitance and energy density of supercapacitors. However, there is an energy penalty to enter subnanometer pores as ions have to shed part of their salvation shell. The magnitude of such an energy penalty plays a key role in determining the accessibility and charging/discharging of these subnanometer pores. Here, we report on the atomistic simulation of Na(+) and Cl(-) ions entering a polarizable slit pore with a center-to-center width of 0.82 tun We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na(+) and Cl(-) ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ions and pore walls, the image charge effects, the moderate (19-26%) dehydration of the ions inside the pore and the strengthened interactions between ions and their hydration water molecules in the subnanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring subnanometer pores. C1 [Feng, Guang; Qiao, Rui] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Qiao, R (reprint author), Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. EM rqiao@clemson.edu RI Meunier, Vincent/F-9391-2010; Huang, Jingsong/A-2789-2008; Qiao, Rui/B-2350-2009; Feng, Guang/D-8989-2011; Sumpter, Bobby/C-9459-2013; OI Meunier, Vincent/0000-0002-7013-179X; Huang, Jingsong/0000-0001-8993-2506; Qiao, Rui/0000-0001-5219-5530; Sumpter, Bobby/0000-0001-6341-0355; Feng, Guang/0000-0001-6659-9181 FU NSF [0967175]; Oak Ridge National Laboratory (ORNL); Division of Scientific User Facilities, U.S. Department of Energy FX The authors thank the Clemson-CCIT office for providing computer time on the Palmetto cluster, gratefully acknowledges the support from the NSF under Grant No. 0967175 and the support by the HERE program at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL gratefully acknowledge the support from time Laboratory Directed Research and Development Program of ORNL, the Division of Science and Engineering. Basic Energy Sciences, U.S. Department of Energy and the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. NR 30 TC 34 Z9 34 U1 7 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 21 PY 2010 VL 114 IS 41 BP 18012 EP 18016 DI 10.1021/jp107125m PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 663AM UT WOS:000282855400102 ER PT J AU Harding, LB Klippenstein, SJ AF Harding, Lawrence B. Klippenstein, Stephen J. TI Roaming Radical Pathways for the Decomposition of Alkanes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CONCERTED CYCLOADDITION REACTIONS; VALENCE BOND DESCRIPTION; AB-INITIO; ORBITAL SYMMETRIES; SELECTION-RULES; WAVE-FUNCTIONS; ACETALDEHYDE; MECHANISM; PHOTODISSOCIATION; DISSOCIATION AB CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie similar to 1 kcal/mol below the corresponding radical asymptotes. C1 [Harding, Lawrence B.; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Harding, LB (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S Department of Energy, Office of Basic Energy Sciences. Division of Chemical Sciences, Geosciences, and Biosciences [DE-ACO2-06CH11357] FX This work was supported by the U.S Department of Energy, Office of Basic Energy Sciences. Division of Chemical Sciences, Geosciences, and Biosciences. under Contract No. DE-ACO2-06CH11357. NR 25 TC 45 Z9 45 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 21 PY 2010 VL 1 IS 20 BP 3016 EP 3020 DI 10.1021/jz101160u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 670XN UT WOS:000283463500005 ER PT J AU Yoo, S Apra, E Zeng, XC Xantheas, SS AF Yoo, Soohaeng Apra, Edoardo Zeng, Xiao Cheng Xantheas, Sotiris S. TI High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)(16) and (H2O)(17): A New Global Minimum for (H2O)(16) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FRAGMENT POTENTIAL METHOD; TRANSFERABLE INTERACTION MODELS; VIBRATIONAL-SPECTRA; MOLECULAR-SYSTEMS; ENERGY STRUCTURES; BINDING-ENERGIES; 1ST PRINCIPLES; LIQUID WATER; BASIS-SETS; CHEMISTRY AB The lowest-energy structures of water clusters (H2O)(16) and (H2O)(17) were revisited at the MP2 and CCSD(T) levels of theory. A new global minimum structure for;(H2O)(16) was found at both the MP2 and CCSD(T) levels of theory and the effect of zero-point energy corrections on the relative stability of the low-lying minimum energy structures was assessed. For (H2O)(17) the CCSD(T) calculations confirm the previously found at the MP2 level of theory "interior" arrangement (fully coordinated water molecule inside a spherical cluster) as the global minimum. C1 [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Apra, Edoardo] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xczeng@phase2.unl.edu; sotiris.xantheas@pnl.gov RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy; Nebraska Research Initiative. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX Part of this work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy, and by the Nebraska Research Initiative. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. Additional computer resources were provided at the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 60 TC 77 Z9 79 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 21 PY 2010 VL 1 IS 20 BP 3122 EP 3127 DI 10.1021/jz101245s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 670XN UT WOS:000283463500023 ER PT J AU Bettencourt, L West, G AF Bettencourt, Luis West, Geoffrey TI A unified theory of urban living SO NATURE LA English DT Editorial Material ID GENERAL-MODEL; CITIES; GROWTH C1 [Bettencourt, Luis; West, Geoffrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bettencourt, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 10 TC 139 Z9 140 U1 10 U2 86 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 21 PY 2010 VL 467 IS 7318 BP 912 EP 913 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 668FT UT WOS:000283254700015 PM 20962823 ER PT J AU Bei, M Borland, M Cai, Y Elleaume, P Gerig, R Harkay, K Emery, L Hutton, A Hettel, R Nagaoka, R Robin, D Steier, C AF Bei, M. Borland, M. Cai, Y. Elleaume, P. Gerig, R. Harkay, K. Emery, L. Hutton, A. Hettel, R. Nagaoka, R. Robin, D. Steier, C. TI The Potential of an Ultimate Storage Ring for Future Light Sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Storage ring; Synchrotron light source; Facility design; Research and development plan ID X-RAY PULSES; SYNCHROTRON-RADIATION; GENERATION AB This paper is the report of the working group on Ultimate Storage Rings at the Department of Energy's Basic Energy Sciences Workshop on Physics of Future Light Sources, which took place in Gaithersburg, Maryland on September 15-17, 2009. In this report we address the accelerator design issues related to the next generation of storage ring light sources, deemed "ultimate" storage rings. In our estimation, storage rings have the potential to provide an increase in photon brightness and coherent flux that is two orders of magnitude above that projected for rings currently under construction. In addition to photon brightness and coherent flux, we discuss other directions, such as shorter pulses, tailored bunches, and partial lasing, in which rings could evolve. For the most part we envision ultimate storage rings as an evolutionary advance from existing rings that faces no fundamental technological obstacles. Nevertheless we identify several important areas of R&D that should be pursued to enable the realization of the full potential of ultimate ring light sources. (C) 2010 Elsevier B.V. All rights reserved. C1 [Robin, D.; Steier, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bei, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Borland, M.; Gerig, R.; Harkay, K.; Emery, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cai, Y.; Hettel, R.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hutton, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Elleaume, P.] European Synchrotron Radiat Facil, F-38000 Grenoble, France. [Nagaoka, R.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. RP Robin, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DSRobin@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC02-76SF00515] FX We wish to acknowledge the contribution from Tom Rabedeau from SLAC on high heat load photon optics. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract nos. DE-AC02-05CH11231 (LBNL), DE-AC02-06CH11357 (ANL) and DE-AC02-76SF00515 (SLAC). NR 64 TC 22 Z9 23 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 518 EP 535 DI 10.1016/j.nima.2010.01.045 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700006 ER PT J AU Gehman, VM Doe, PJ Robertson, RGH Will, DI Ejiri, H Hazama, R AF Gehman, V. M. Doe, P. J. Robertson, R. G. H. Will, D. I. Ejiri, H. Hazama, R. TI Solubility, light output and energy resolution studies of molybdenum-loaded liquid scintillators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino; Neutrinoless double-beta decay; Molybdenum; Liquid scintillator; Organo-metallic chemistry; Particle detectors ID DOUBLE-BETA-DECAY; MAJORANA NEUTRINOS; MO-100; DETECTOR AB The search for neutrinoless double-beta decay is an important part of the global neutrino physics program. One double-beta decay isotope currently under investigation is (100)Mo. In this article, we discuss the results of a feasibility study investigating the use of molybdenum-loaded liquid scintillator. A large, molybdenum-loaded liquid scintillator detector is one potential design for a low-background, internal-source 0 nu beta beta search with (100)Mo. The program outlined in this article included the selection of a solute containing molybdenum, a scintillating solvent and the evaluation of the mixture's performance as a radiation detector. Published by Elsevier B.V. C1 [Gehman, V. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gehman, V. M.; Doe, P. J.; Robertson, R. G. H.; Will, D. I.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Gehman, V. M.; Doe, P. J.; Robertson, R. G. H.; Will, D. I.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ejiri, H.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Ejiri, H.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Hazama, R.] Hiroshima Univ, Hiroshima 7398527, Japan. RP Gehman, VM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM vmg@lanl.gov FU Department of Energy [DE-FG02-97ER41020]; Los Alamos National Laboratory FX The authors would like to thank Steve Elliott, Andrew Hime, Masaharu Nomachi and Mark Greenfield for their support in the preparation of this article. This work was performed under Department of Energy Contract number DE-FG02-97ER41020 and Los Alamos National Laboratory's Laboratory-Directed Research and Development Program. This article is released under Report number LA-UR 09-04230. NR 25 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 602 EP 607 DI 10.1016/j.nima.2010.07.054 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700015 ER PT J AU Kim, H Frisch, H Chen, CT Genat, JF Tang, F Moses, WW Choong, WS Kao, CM AF Kim, H. Frisch, H. Chen, C-T Genat, J-F Tang, F. Moses, W. W. Choong, W. S. Kao, C-M TI A design of a PET detector using micro-channel plate photomultipliers with transmission-line readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Positron emission tomography; Micro-channel plate photomultiplier; Transmission-line readout; Time resolution ID SCINTILLATORS AB A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) readout and waveform sampling. The detector unit consisted of a 24 x 24 array of pixelated LSO crystals, each of which was 4 x 4 x 25 mm(3) in size, and two 102 x 102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 key gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of similar to 11% at 511 key. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of similar to 323 ps FWHM and a coincidence detection efficiency of similar to 40% for normally incident 511 keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be similar to 2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator array also show differences that are correlated with the depth of interaction of the event. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kim, H.; Chen, C-T; Kao, C-M] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. [Frisch, H.; Genat, J-F; Tang, F.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Moses, W. W.; Choong, W. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kim, H (reprint author), Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. EM heejongkim@uchicago.edu FU NCI NIH HHS [R21 CA131639, R21 CA131639-01A2, R21 CA131639-02]; NIBIB NIH HHS [R01 EB006085, R01 EB006085-01A2, R01 EB006085-02, R01 EB006085-03, R01 EB006085-04, T32 EB002103, T32 EB002103-18] NR 16 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 628 EP 636 DI 10.1016/j.nima.2010.07.083 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700019 PM 21048886 ER PT J AU Carlsten, BE Colby, ER Esarey, EH Hogan, M Kartner, FX Graves, WS Leemans, WP Rao, T Rosenzweig, JB Schroeder, CB Sutter, D White, WE AF Carlsten, B. E. Colby, E. R. Esarey, E. H. Hogan, M. Kaertner, F. X. Graves, W. S. Leemans, W. P. Rao, T. Rosenzweig, J. B. Schroeder, C. B. Sutter, D. White, W. E. TI New source technologies and their impact on future light sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Free-electron laser; Laser-plasma acceleration; Plasma-wakefield acceleration; Inverse-Compton scatting; High-harmonic generation; Direct-laser acceleration ID FREE-ELECTRON LASER; WAKEFIELD ACCELERATOR; HARMONIC-GENERATION; PLASMA; DRIVEN; FIELD; EMISSION; BEAMS AB Emerging technologies are critically evaluated for their feasibility in future light sources. We consider both new technologies for electron beam generation and acceleration suitable for X-ray free-electron lasers (FELs), as well as alternative photon generation technologies including the relatively mature inverse Compton scattering and laser high-harmonic generation. Laser-driven plasma wakefield acceleration is the most advanced of the novel acceleration technologies, and may be suitable to generate electron beams for X-ray FELs in a decade. We provide research recommendations to achieve the needed parameters for driving future light sources, including necessary advances in laser technology. (C) 2010 Published by Elsevier B.V. C1 [Carlsten, B. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Colby, E. R.; Hogan, M.; White, W. E.] SLAC Natl Accelerator Ctr, Menlo Pk, CA 94025 USA. [Esarey, E. H.; Leemans, W. P.; Schroeder, C. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kaertner, F. X.; Graves, W. S.] MIT, Cambridge, MA 02142 USA. [Rao, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rosenzweig, J. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Sutter, D.] Univ Maryland, College Pk, MD 20742 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bcarlsten@lanl.gov OI Carlsten, Bruce/0000-0001-5619-907X; Schroeder, Carl/0000-0002-9610-0166 FU DOE BES FX The authors benefited from discussions and contributions from W.J. Brown. The authors wish to acknowledge the participants at the Accelerator Physics of Future Light Sources workshop sponsored by DOE BES September 15-17, 2009: B.E.C.. E.H.E., F.X.K., W.S.G., W.P.L., T.R., J.B.R., C.B.S., D.S., and W.E.W. NR 62 TC 15 Z9 15 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 657 EP 668 DI 10.1016/j.nima.2010.06.100 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700023 ER PT J AU Battaglia, M Contarato, D Denes, P Doering, D Duden, T Krieger, B Giubilato, P Gnani, D Radmilovic, V AF Battaglia, Marco Contarato, Devis Denes, Peter Doering, Dionisio Duden, Thomas Krieger, Brad Giubilato, Piero Gnani, Dario Radmilovic, Velimir TI Characterisation of a CMOS active pixel sensor for use in the TEAM microscope SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensor; Transmission electron microscopy; Point spread function; Detection quantum efficiency ID ELECTRON-MICROSCOPY; SIMULATION; EFFICIENCY; DETECTOR; ILC AB A 1M- and a 4M-pixel monolithic CMOS active pixel sensor with 9.5 x 9.5 mu m(2) pixels have been developed for direct imaging in transmission electron microscopy as part of the TEAM project. We present the design and a full characterisation of the detector. Data collected with electron beams at various energies of interest in electron microscopy are used to determine the detector response. Data are compared to predictions of simulation. The line spread function measured with 80 and 300 keV electrons is (12.1 +/- 0.7) and (7.4 +/- 0.6) mu m, respectively, in good agreement with our simulation. We measure the detection quantum efficiency to be 0.78 +/- 0.04 at 80 keV and 0.74 +/- 0.03 at 300 keV. Using a new imaging technique, based on single electron reconstruction, the line spread function for 80 and 300 key electrons becomes (6.7 +/- 0.3) and (2.4 +/- 0.2) mu m, respectively. The radiation tolerance of the pixels has been tested up to 5 Mrad and the detector is still functional with a decrease of dynamic range by similar or equal to 30%, corresponding to a reduction in full-well depth from similar to 39 to similar to 27 primary 300 keV electrons, due to leakage current increase, but identical line spread function performance. Published by Elsevier B.V. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Doering, Dionisio; Duden, Thomas; Krieger, Brad; Giubilato, Piero; Gnani, Dario; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Giubilato, Piero] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov RI Gnani, Dario/J-6426-2012; OI Gnani, Dario/0000-0003-0464-9176; Giubilato, Piero/0000-0003-4358-5355 FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of Science, Basic Energy Sciences FX We wish to thank N. Andresen and R. Erni who contributed to the detector installation on the electron microscope. We are grateful to the INFN Group of Padova, Italy, for their support with the DAQ system, in particular to D. Bisello, D. Pantano and M. Tessaro. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. The TEAM Project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. NR 26 TC 26 Z9 26 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 669 EP 677 DI 10.1016/j.nima.2010.07.066 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700024 ER PT J AU Dowell, DH Bazarov, I Dunham, B Harkay, K Hernandez-Garcia, C Legg, R Padmore, H Rao, T Smedley, J Wan, W AF Dowell, D. H. Bazarov, I. Dunham, B. Harkay, K. Hernandez-Garcia, C. Legg, R. Padmore, H. Rao, T. Smedley, J. Wan, W. TI Cathode R&D for future light sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Cathode research; Electron source; Photocathodes; Quantum efficiency; Thermal emittance; High average current; Energy recovery linacs ID ELECTRON-AFFINITY PHOTOCATHODES; SURFACE; PHOTOEMISSION; EMISSION; FILMS AB This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications. Published by Elsevier B.V. C1 [Dowell, D. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bazarov, I.; Dunham, B.] Cornell Univ, Cornell Lab Accelerator Based Sci & Educ CLASSE, Wilson Lab, Ithaca, NY 14853 USA. [Harkay, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hernandez-Garcia, C.] Thomas Jefferson Lab, Newport News, VA 23606 USA. [Legg, R.] Univ Wisconsin, SRC, Stoughton, WI 53589 USA. [Padmore, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rao, T.; Smedley, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Dowell, DH (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM dowell@slac.stanford.edu FU Department of Energy [DE-AC03-76SF00515, DE-AC02-05CH11231, DE AC02-98CH1-886]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Authors gratefully acknowledge valuable discussion and constructive comments of Karoly Nemeth (ANL/Northern Illinois U.) and Klaus Attenkofer (ANL). We also recognize the contributions of Emanuele Pedersoli, Mike Greaves and Weishi Wan (LBNL). D. Dowell is supported by Department of Energy Contract DE-AC03-76SF00515 and a private contribution. K. Harkay's work supported by US Department of Energy, Office of Basic Energy Sciences under Contract no. DE-AC02-06CH11357. H. Padmore is supported by Department of Energy Contract # DE-AC02-05CH11231. T. Rao and J. Smedley's work are supported by Department of Energy Contract # DE AC02-98CH1-886. NR 70 TC 110 Z9 110 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 685 EP 697 DI 10.1016/j.nima.2010.03.104 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700026 ER PT J AU Paramonov, AA Canelli, F D'Onofrio, M Frisch, HJ Mrenna, S AF Paramonov, A. A. Canelli, F. D'Onofrio, M. Frisch, H. J. Mrenna, S. TI Present limits on the precision of SM predictions for jet energies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Jet energy scale; JES; Collider detector at fermilab; CDF; Fermilab; Parton shower; Final state radiation; FSR ID ELECTROMAGNETIC CALORIMETER; P(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; CDF; DETECTOR; UPGRADE; SCALE AB We investigate the impact of theoretical uncertainties on the accuracy of measurements involving hadronic jets. The analysis is performed using events with a Z boson and a single jet observed in p (p) over bar collisions at root s = 1.96 TeV in 4.6 fb(-1) of data from the Collider Detector at Fermilab (CDF). The transverse momenta (p(T)) of the jet and the boson should balance each other due to momentum conservation in the plane transverse to the direction of the p and (p) over bar beams. We evaluate the dependence of the measured p(T)-balance on theoretical uncertainties associated with initial and final state radiation, choice of renormalization and factorization scales, parton distribution functions, jet-parton matching, calculations of matrix elements, and parton showering. We find that the uncertainty caused by parton showering at large angles is the largest amongst the listed uncertainties. The proposed method can be re-applied at the LHC experiments to investigate and evaluate the uncertainties on the predicted jet energies. The distributions produced at the CDF environment are intended for comparison to those from modern event generators and new tunes of parton showering. Published by Elsevier B.V. C1 [Paramonov, A. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Canelli, F.; Frisch, H. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [D'Onofrio, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Mrenna, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Paramonov, AA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM paramon@hep.uchicago.edu RI Canelli, Florencia/O-9693-2016; OI Canelli, Florencia/0000-0001-6361-2117; Mrenna, Stephen/0000-0001-8731-160X FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Argonne National Laboratory FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China: the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK: the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. This work has also been supported by the Maria Goeppert Meyer Fellowship of Argonne National Laboratory, the National Science Foundation, and the US Department of Energy. NR 40 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2010 VL 622 IS 3 BP 698 EP 710 DI 10.1016/j.nima.2010.07.039 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 659JL UT WOS:000282562700027 ER PT J AU Tanatar, MA Ni, N Thaler, A Bud'ko, SL Canfield, PC Prozorov, R AF Tanatar, M. A. Ni, N. Thaler, A. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI Pseudogap and its critical point in the heavily doped Ba(Fe1-xCox)(2)As-2 from c-axis resistivity measurements SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; SPIN DYNAMICS; SUPERCONDUCTIVITY; OXIDES; STATE AB Temperature-dependent interplane resistivity, rho(c)(T), was used to characterize the normal state of the iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 over a broad doping range 0 <= x <= 0.50. The data were compared with in-plane resistivity, rho(a)(T), and magnetic susceptibility, chi(T), taken in H perpendicular to c, as well as Co NMR Knight shift, K-59, and spin-relaxation rate, 1/T1T. The interplane resistivity data show a clear correlation with the NMR Knight shift, assigned to the formation of the pseudogap. Evolution of rho(c)(T) with doping reveals two characteristic energy scales. The temperature of the crossover from nonmetallic, increasing on cooling, behavior of rho(c)(T) at high temperatures to metallic behavior at low temperatures, T*, correlates well with an anomaly in all three magnetic measurements. This characteristic temperature, equal to approximately 200 K in the parent compound, x = 0, decreases with doping and vanishes near x* approximate to 0.25. For doping levels x >= 0.166, an additional feature appears above T* with metallic behavior of rho(c)(T) found above the low-temperature resistivity increase. The characteristic temperature of this charge-gap formation, T-CG, vanishes at x(CG) similar or equal to 0.30, paving the way to metallic, T linear, rho(c)(T) close to x(CG) and superlinear T dependence for x > x(CG). None of these features are evident in the in-plane resistivity rho(c)(T). For doping levels x < x(CG), chi(T) shows a known, anomalous, T-linear dependence, which disappears for x > x(CG). These features are consistent with the existence of a charge gap, accompanying formation of the magnetic pseudogap, and its critical suppression with doping. The inferred c-axis charge gap reflects the three-dimensional character of the electronic structure and of the magnetism in the iron arsenides. C1 [Tanatar, M. A.; Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM tanatar@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; Thaler, Alexander/0000-0001-5066-8904 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank A. Kaminski and A. Kreyssig for useful discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 68 TC 42 Z9 42 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 21 PY 2010 VL 82 IS 13 AR 134528 DI 10.1103/PhysRevB.82.134528 PG 10 WC Physics, Condensed Matter SC Physics GA 668SW UT WOS:000283291200004 ER PT J AU Brambilla, N Ghiglieri, J Petreczky, P Vairo, A AF Brambilla, Nora Ghiglieri, Jacopo Petreczky, Peter Vairo, Antonio TI Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order SO PHYSICAL REVIEW D LA English DT Article ID 3-LOOP FREE-ENERGY; SU(2) GAUGE-THEORY; FINITE TEMPERATURE; HEAVY QUARKONIUM; POTENTIAL NRQCD; MONTE-CARLO; QCD; BEHAVIOR; MASS AB We study the Polyakov loop and the correlator of two Polyakov loops at finite temperature in the weak-coupling regime. We calculate the Polyakov loop at order g(4). The calculation of the correlator of two Polyakov loops is performed at distances shorter than the inverse of the temperature and for electric screening masses larger than the Coulomb potential. In this regime, it is accurate up to order g(6). We also evaluate the Polyakov-loop correlator in an effective field theory framework that takes advantage of the hierarchy of energy scales in the problem and makes explicit the bound-state dynamics. In the effective field theory framework, we show that the Polyakov-loop correlator is at leading order in the multipole expansion the sum of a color-singlet and a color-octet quark-antiquark correlator, which are gauge invariant, and compute the corresponding color-singlet and color-octet free energies. C1 [Brambilla, Nora; Ghiglieri, Jacopo; Vairo, Antonio] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Brambilla, N (reprint author), Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany. RI Brambilla, Nora/O-9943-2015 FU Department of Energy; U.S. Department of Energy [DE-AC02-98CH10886]; RTN Flavianet (EU) [MRTN-CT2006-035482]; DFG FX We thank Mikko Laine for correspondence and the authors of Ref. [31] for acknowledging some of the results presented here prior to publication. N. B., J. G., and A. V. thank Owe Philipsen for discussions. A part of this work was done at the Kavli Institute for Theoretical Physics China (KITPC), CAS, Beijing. P. P. and J. G. thank the KITPC for hospitality and support. Part of this work was also carried out during the CATHIE-INT mini program "Quarkonia in hot matter: from QCD to experiment'' held at the Institute for Nuclear Theory (INT). N. B., P. P., and A. V. thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support. J. G. thanks for hospitality Brookhaven National Laboratory, where this work was started. The work of P. P. was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886. N. B., J. G., and A. V. acknowledge financial support from the RTN Flavianet MRTN-CT2006-035482 (EU) and from the DFG cluster of excellence "Origin and structure of the universe'' (http://www.universe-cluster.de). NR 58 TC 45 Z9 45 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 21 PY 2010 VL 82 IS 7 AR 074019 DI 10.1103/PhysRevD.82.074019 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 668TW UT WOS:000283294700001 ER PT J AU Leitner, O Dedonder, JP Loiseau, B El-Bennich, B AF Leitner, O. Dedonder, J. -P. Loiseau, B. El-Bennich, B. TI Scalar resonance effects on the B-s-(B)over-bar(s) mixing angle SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; DECAYS; PHYSICS AB The B-s(0) -> J/psi phi and B-s(0) -> J/psi f(0)(980) decays are analyzed within generalized QCD factorization including all leading-order corrections in alpha(s): We point out that the ratio of our calculated widths, Gamma(B-s(0) -> J/psi f(0)(980), f(0)(980) -> pi(+)pi(-))/Gamma(B-s(0) -> J/psi phi, phi -> K+K-), strongly indicates that S-wave effects in the f(0)(980)'s daughter pions or kaons cannot be ignored in the extraction of the B-s - (B) over bar (s) mixing angle, -2 beta(s), from the B-s(0) -> phi J/psi decay amplitudes. C1 [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Grp Theorie, F-75252 Paris, France. [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] Univ Paris Diderot, IN2P3, F-75252 Paris, France. [Leitner, O.; Dedonder, J. -P.; Loiseau, B.] CNRS, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Leitner, O (reprint author), Univ Paris 06, Lab Phys Nucl & Hautes Energies, Grp Theorie, 4 Pl Jussieu, F-75252 Paris, France. EM leitner@lpnhe.in2p3.fr; dedonder@univ-paris-diderot.fr; loiseau@lpnhe.in2p3.fr; bennich@anl.gov FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors are obliged to Sheldon Stone for pointing out the likely S-wave effects on the mixing angle which stimulated this work and critical remarks on the manuscript. We thank Martin Beneke for useful comments on mass corrections in transition form factors between two mesons. We are very grateful to Ying Li for drawing our attention to the particular quark topology of the annihilation diagrams. B. E. wishes to acknowledge the hospitality of the Laboratoire de Physique Nucleaire et Hautes Energies in Paris and of Joao Pacheco, B.C. de Melo, and Victo dos Santos Filho at Universidade Cruzeiro do Sul, Sao Paulo, during the final stage of the writing. This work was partially funded by the Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 38 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 21 PY 2010 VL 82 IS 7 AR 076006 DI 10.1103/PhysRevD.82.076006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 668TW UT WOS:000283294700005 ER PT J AU Banerjee, A Gore, RA Andrews, MJ AF Banerjee, Arindam Gore, Robert A. Andrews, Malcolm J. TI Development and validation of a turbulent-mix model for variable-density and compressible flows SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITIES; NUMERICAL-SIMULATION; DRIVEN; LAYERS; ACCELERATION; BUOYANCY; SHEAR AB The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows. C1 [Banerjee, Arindam] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. [Gore, Robert A.; Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Banerjee, A (reprint author), Missouri S&T, 292E Toomey Hall, Rolla, MO 65409 USA. EM banerjeea@mst.edu OI Banerjee, Arindam/0000-0002-1212-9704 NR 53 TC 41 Z9 41 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT 21 PY 2010 VL 82 IS 4 AR 046309 DI 10.1103/PhysRevE.82.046309 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 668UM UT WOS:000283296800005 PM 21230392 ER PT J AU Luo, JW Zunger, A AF Luo, Jun-Wei Zunger, Alex TI Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator HgTe/CdTe SO PHYSICAL REVIEW LETTERS LA English DT Article ID HGTE-CDTE SUPERLATTICES; INTERFACE STATES; SUPERSYMMETRY; BI2SE3; PHASE AB We present atomistic band structure calculations revealing a different mechanism than recently surmised via k . p calculations about the evolution of the topological state (TS) in HgTe/CdTe. We show that 2D interface (not 1D edge) TSs are possible. We find that the transitions from a topological insulator at critical HgTe thickness of n = 23 ML (62.5 angstrom) to a normal insulator at smaller n is due to the crossing between two interface-localized states: one derived from the S-like Gamma(6c) and one derived from the P-like Gamma(8v) light hole, not because of the crossing of an interface state and an extended quantum well state. These atomistic calculations suggest that a 2D TS can exist in a 2D system, even without truncating its symmetry to 1D, thus explaining the otherwise surprising similarity between the 2D dispersion curves of the TS in HgTe/CdTe with those of the TS in 3D bulk materials such as Bi(2)Se(3). C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering [DE-AC36-08GO28308] FX We acknowledge helpful discussions with O. A. Pankratov, J. Kubler, S. C. Zhang, X. L. Qi, and S. H. Wei. This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering, under Contract No. DE-AC36-08GO28308 to NREL. NR 25 TC 18 Z9 18 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2010 VL 105 IS 17 AR 176805 DI 10.1103/PhysRevLett.105.176805 PG 4 WC Physics, Multidisciplinary SC Physics GA 668UW UT WOS:000283298000008 PM 21231069 ER PT J AU Gullberg, GT Reutter, BW Sitek, A Maltz, JS Budinger, TF AF Gullberg, Grant T. Reutter, Bryan W. Sitek, Arkadiusz Maltz, Jonathan S. Budinger, Thomas F. TI Dynamic single photon emission computed tomography-basic principles and cardiac applications SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Review ID MYOCARDIAL BLOOD-FLOW; KINETIC-PARAMETER ESTIMATION; CORONARY-ARTERY DISEASE; COMPARTMENTAL MODEL PARAMETERS; ITERATIVE SPECT RECONSTRUCTION; SUBACUTE CEREBRAL INFARCTION; A-POSTERIORI RECONSTRUCTION; LEFT-VENTRICULAR FUNCTION; BRAIN TRANSFER CONSTANTS; OF-INTEREST EVALUATION AB The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements. C1 [Gullberg, Grant T.; Reutter, Bryan W.; Maltz, Jonathan S.; Budinger, Thomas F.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sitek, Arkadiusz] Brigham & Womens Hosp, Boston, MA 02115 USA. [Sitek, Arkadiusz] Harvard Univ, Sch Med, Boston, MA USA. [Maltz, Jonathan S.] Siemens Med Solut Inc, Concord, CA USA. RP Gullberg, GT (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gtgullberg@lbl.gov OI Sitek, Arkadiusz/0000-0002-0677-4002 FU National Institute of Biomedical Imaging and Bioengineering; National Heart, Lung, and Blood Institute of the National Institutes of Health [R01EB007219, R01HL50663]; Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX We want to thank the reviewers for their very helpful comments and suggestions, which helped make this a much more readable review. We also thank Sean Webb for editing the manuscript. We also want to thank Kathleen Gullberg for her helpful comments and edits. This work was supported by the National Institute of Biomedical Imaging and Bioengineering and the National Heart, Lung, and Blood Institute of the National Institutes of Health under grants R01EB007219 and R01HL50663, and by the Director, Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy under contract DE-AC02-05CH11231. NR 304 TC 42 Z9 42 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD OCT 21 PY 2010 VL 55 IS 20 BP R111 EP R191 DI 10.1088/0031-9155/55/20/R01 PG 81 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 659WW UT WOS:000282599000018 PM 20858925 ER PT J AU Slater, LD Ntarlagiannis, D Day-Lewis, FD Mwakanyamale, K Versteeg, RJ Ward, A Strickland, C Johnson, CD Lane, JW AF Slater, Lee D. Ntarlagiannis, Dimitrios Day-Lewis, Frederick D. Mwakanyamale, Kisa Versteeg, Roelof J. Ward, Andy Strickland, Christopher Johnson, Carole D. Lane, John W., Jr. TI Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington SO WATER RESOURCES RESEARCH LA English DT Article ID CONDUCTIVITY AB We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high-permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along similar to 3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (S-por). The FO-DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water-groundwater exchange. The FO-DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO-DTS technologies can characterize surface water-groundwater exchange in a complex, coupled river-aquifer system. C1 [Slater, Lee D.; Ntarlagiannis, Dimitrios; Mwakanyamale, Kisa] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Day-Lewis, Frederick D.; Johnson, Carole D.; Lane, John W., Jr.] US Geol Survey, Off Groundwater, Branch Geophys, Storrs, CT 06269 USA. [Versteeg, Roelof J.] Idaho Natl Lab, IRC, Idaho Falls, ID 83415 USA. [Ward, Andy; Strickland, Christopher] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Slater, LD (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. EM lslater@andromeda.rutgers.edu OI Day-Lewis, Frederick/0000-0003-3526-886X FU Office of Science (BER), U.S. Department of Energy [DE-AI02-08ER64565]; U.S. Geological Survey FX This research was supported by the Office of Science (BER), U.S. Department of Energy, under the Environmental Remediation Sciences Program grant DE-AI02-08ER64565. Additional funding was provided by the U.S. Geological Survey Toxic Substances Hydrology Program. We thank Eric White (USGS), Chris Curran (USGS), and Jay Nolan (Rutgers-Newark) for valuable assistance in the collection of field data sets. We thank Rory Henderson (USGS) and Brad Fritz (Pacific Northwest National Laboratory) for reviews of our draft manuscript. We are also grateful to Brad Fritz, Bob Peterson, and John Zachara (all at Pacific Northwest National Laboratory) for their insights into the hydrogeologic framework of the Hanford 300 Area. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. government. NR 30 TC 33 Z9 33 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 21 PY 2010 VL 46 AR W10533 DI 10.1029/2010WR009110 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YY UT WOS:000283551400003 ER PT J AU Lai, DK Bolte, M Johnson, JA Lucatello, S Heger, A Woosley, SE AF Lai, David K. Bolte, Michael Johnson, Jennifer A. Lucatello, Sara Heger, Alexander Woosley, S. E. TI DETAILED ABUNDANCES FOR 28 METAL-POOR STARS: STELLAR RELICS IN THE MILKY WAY (vol 681, 1524, 2008) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Lai, David K.; Bolte, Michael; Heger, Alexander; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Lucatello, Sara] Osserv Astron Padova, I-35122 Padua, Italy. [Heger, Alexander] Los Alamos Natl Lab, Theoret Astrophys Grp, Los Alamos, NM 87545 USA. RP Lai, DK (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM david@ucolick.org; bolte@ucolick.org; jaj@astronomy.ohio-state.edu; sara.lucatello@oapd.inaf.it; alex@ucolick.org; woosley@ucolick.org NR 2 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1984 EP 1984 DI 10.1088/0004-637X/722/2/1984 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400081 ER PT J AU Fowler, JW Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jimenez, R Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reid, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Verde, L Warne, R Wilson, G Wollack, E Zhao, Y AF Fowler, J. W. Acquaviva, V. Ade, P. A. R. Aguirre, P. Amiri, M. Appel, J. W. Barrientos, L. F. Battistelli, E. S. Bond, J. R. Brown, B. Burger, B. Chervenak, J. Das, S. Devlin, M. J. Dicker, S. R. Doriese, W. B. Dunkley, J. Duenner, R. Essinger-Hileman, T. Fisher, R. P. Hajian, A. Halpern, M. Hasselfield, M. Hernandez-Monteagudo, C. Hilton, G. C. Hilton, M. Hincks, A. D. Hlozek, R. Huffenberger, K. M. Hughes, D. H. Hughes, J. P. Infante, L. Irwin, K. D. Jimenez, R. Juin, J. B. Kaul, M. Klein, J. Kosowsky, A. Lau, J. M. Limon, M. Lin, Y. -T. Lupton, R. H. Marriage, T. A. Marsden, D. Martocci, K. Mauskopf, P. Menanteau, F. Moodley, K. Moseley, H. Netterfield, C. B. Niemack, M. D. Nolta, M. R. Page, L. A. Parker, L. Partridge, B. Quintana, H. Reid, B. Sehgal, N. Sievers, J. Spergel, D. N. Staggs, S. T. Swetz, D. S. Switzer, E. R. Thornton, R. Trac, H. Tucker, C. Verde, L. Warne, R. Wilson, G. Wollack, E. Zhao, Y. TI THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < l < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations ID 1200-MU-M MAMBO SURVEY; STAR-FORMING GALAXIES; SOUTH-POLE TELESCOPE; GOODS-N FIELD; SOURCE CATALOG; EXTRAGALACTIC SOURCES; ANISOTROPY POWER; PLANCK SURVEYOR; DUST EMISSION; PROBE AB We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1'.4 angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(2) of the southern sky, in a 4 degrees.2 wide strip centered on declination 53 degrees south. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < l < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < l < 1150. The power beyond the Silk damping tail of the CMB (l similar to 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma(8) = 0.8. We constrain the model's amplitude A(SZ) < 1.63 (95% CL). If interpreted as a measurement of sigma(8), this implies sigma(SZ)(8) < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a six-parameter Lambda CDM model plus point sources and the SZ effect is consistent with these results. C1 [Fowler, J. W.; Appel, J. W.; Das, S.; Dunkley, J.; Essinger-Hileman, T.; Fisher, R. P.; Hajian, A.; Hincks, A. D.; Lau, J. M.; Limon, M.; Martocci, K.; Niemack, M. D.; Page, L. A.; Parker, L.; Reid, B.; Staggs, S. T.; Switzer, E. R.; Zhao, Y.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Acquaviva, V.; Das, S.; Dunkley, J.; Hajian, A.; Lin, Y. -T.; Lupton, R. H.; Marriage, T. A.; Spergel, D. N.; Trac, H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, V.; Hughes, J. P.; Menanteau, F.; Sehgal, N.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, P. A. R.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, P.; Barrientos, L. F.; Duenner, R.; Infante, L.; Juin, J. B.; Lin, Y. -T.; Quintana, H.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Battistelli, E. S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. R.; Nolta, M. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, B.; Kosowsky, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, J.; Moseley, H.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, S.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, M. J.; Dicker, S. R.; Kaul, M.; Klein, J.; Limon, M.; Marsden, D.; Swetz, D. S.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Swetz, D. S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, J.; Hlozek, R.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, C.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, M.; Moodley, K.; Warne, R.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, M.; Moodley, K.] CSIR Campus, Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, D. H.] INAOE, Puebla, Mexico. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, R.; Reid, B.; Verde, L.] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Lau, J. M.; Sehgal, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, J. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Martocci, K.; Switzer, E. R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, B.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Thornton, R.] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, H.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, G.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Fowler, JW (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. RI Moseley, Harvey/D-5069-2012; Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Verde, Licia/0000-0003-2601-8770 FU ACT; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; CONICYT; MECESUP; Fundacion Andes; NSF Physics Frontier Center [PHY-0114422]; South African National Research Foundation (NRF); Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC); South African Square Kilometer Array (SKA) Project; RCUK; Rhodes Trust; Berkeley Center for Cosmological Physics; World Premier International Research Center Initiative, MEXT, Japan FX The ACT project was proposed in 2000 and funded on 2004 January 1. Many have contributed to the project since its inception. We especially thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Felipe Rojas, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, Katerina Visnjic, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. ACT is on the Chajnantor Science preserve, which was made possible by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and NANTEN2 groups. The ATCA team kindly provided the positions of their 20 GHz sources prior to publication. The PWV data come from the public APEX weather Web site. Field operations were based at the Don Esteban facility run by Astro-Norte. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the members of our external advisory board-Tom Herbig (chair), Charles Alcock, Walter Gear, Cliff Jackson, Amy Newbury, and Paul Steinhardt-who helped guide the project to fruition.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto.; V. A., S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H. Q. and L. I. acknowledge partial support from FONDAP Centro de Astrofisica. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. K. M., M. H., and R. W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. J.D. received support from an RCUK Fellowship. R. H. received funding from the Rhodes Trust. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACTWeb site (http://www.physics.princeton.edu/act/). NR 72 TC 86 Z9 86 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1148 EP 1161 DI 10.1088/0004-637X/722/2/1148 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400014 ER PT J AU Vanderlinde, K Crawford, TM de Haan, T Dudley, JP Shaw, L Ade, PAR Aird, KA Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Crites, AT Desai, S Dobbs, MA Foley, RJ George, EM Gladders, MD Hall, NR Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Loehr, A Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Stubbs, CW van Engelen, A Vieira, JD Williamson, R Yang, Y Zahn, O Zenteno, A AF Vanderlinde, K. Crawford, T. M. de Haan, T. Dudley, J. P. Shaw, L. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Crites, A. T. Desai, S. Dobbs, M. A. Foley, R. J. George, E. M. Gladders, M. D. Hall, N. R. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Loehr, A. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Stubbs, C. W. van Engelen, A. Vieira, J. D. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; STAR-FORMATION; DARK ENERGY; EXTRAGALACTIC SOURCES; INTRACLUSTER MEDIUM; SCALING RELATIONS; POWER SPECTRUM; SOURCE CATALOG; RADIO-SOURCES AB We present a detection-significance-limited catalog of 21 Sunyaev-Zel'dovich-selected galaxy clusters. These clusters, along with one unconfirmed candidate, were identified in 178 deg(2) of sky surveyed in 2008 by the South Pole Telescope (SPT) to a depth of 18 mu K arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z = 0.15 to z > 1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, 3 were previously identified as Abell clusters, 3 were presented as SPT discoveries in Staniszewski et al., and 3 were first identified in a recent analysis of BCS data by Menanteau et al.; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M-200 approximate to 5 x 10(14) M-circle dot h(-1) at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to similar to 4 x 10(14) M-circle dot h(-1) at z = 1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use this cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP seven-year results yields sigma(8) = 0.81 +/- 0.09 and w = -1.07 +/- 0.29, a similar to 50% improvement in precision on both parameters over WMAP7 alone. C1 [Vanderlinde, K.; de Haan, T.; Dudley, J. P.; Shaw, L.; Dobbs, M. A.; Holder, G. P.; van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crawford, T. M.; Carlstrom, J. E.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Foley, R. J.; Loehr, A.; Stalder, B.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Desai, S.; Ngeow, C. -C.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Ngeow, C. -C.] Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. RP Vanderlinde, K (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. EM keith.vanderlinde@mail.mcgill.ca RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation (NSF) Office of Polar Programs; United States Antarctic Program; Raytheon Polar Services Company; NASA Office of Space Science; National Science Foundation (NSF) [ANT-0638937, ANT-0130612, MRI-0723073]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; KICP; Fermi Fellowship; Clay Fellowship; Hubble Fellowship [HF-51259.01-A]; Keck Foundation; GAAN Fellowship; Miller Institute FX The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank H.-M. Cho, T. Lanting, J. Leong, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project and J. Joseph and C. Vu for their contributions to the electronics. We acknowledge S. Alam, W. Barkhouse, S. Bhattacharya, L. Buckley-Greer, S. Hansen, H. Lin, Y-T Lin, C. Smith, and D. Tucker for their contribution to BCS data acquisition, and we acknowledge the DESDM team, which has developed the tools we used to process and calibrate the BCS data; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research was facilitated in part by allocations of time on the COSMOS supercomputer at DAMTP in Cambridge, a UK-CCC facility supported by HEFCE and PPARC. This work is based in part on observations obtained at the Cerro Tololo Inter-American Observatory, and the Las Campanas Observatory. CTIO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation (NSF).; The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. Partial support was provided by NSF grant MRI-0723073. The following individuals acknowledge additional support: A. L. and B. S. from the Brinson Foundation, B. A. B. and K. K. S. from KICP Fellowships, J.J.M. from a Fermi Fellowship, R.J.F. from a Clay Fellowship, D. P. M. from Hubble Fellowship grant HF-51259.01-A, M. B. from the Keck Foundation, Z.S. from a GAAN Fellowship, and A. T. L. from the Miller Institute NR 85 TC 214 Z9 215 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1180 EP 1196 DI 10.1088/0004-637X/722/2/1180 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400017 ER PT J AU Kruse, EA Berger, E Knapp, GR Laskar, T Gunn, JE Loomis, CP Lupton, RH Schlegel, DJ AF Kruse, E. A. Berger, E. Knapp, G. R. Laskar, T. Gunn, J. E. Loomis, C. P. Lupton, R. H. Schlegel, D. J. TI CHROMOSPHERIC VARIABILITY IN SLOAN DIGITAL SKY SURVEY M DWARFS. II. SHORT-TIMESCALE H alpha VARIABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: flare; stars: late-type; stars: magnetic field ID SCALE MAGNETIC TOPOLOGIES; FULLY CONVECTIVE STARS; COOL STARS; MID-M; EMISSION; ROTATION; SAMPLE; RADIO AB We present the first comprehensive study of short-timescale chromospheric H alpha variability in M dwarfs using the individual 15 minute spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey. Our sample contains about 10(3)-10(4) objects per spectral type bin in the range M0-M9, with a typical number of three exposures per object (ranging up to a maximum of 30 exposures). Using this extensive data set, we find that about 16% of the sources exhibit H alpha emission in at least one exposure, and of those about 45% exhibit H alpha emission in all of the available exposures. As in previous studies of H alpha activity (L(H alpha)/L(bol)), we find a rapid increase in the fraction of active objects from M0-M6. However, we find a subsequent decline in later spectral types that we attribute to our use of the individual spectra. Similarly, we find saturated activity at a level of L(H alpha)/L(bol) approximate to 10(-3.6) for spectral types M0-M5 followed by a decline to about 10(-4.3) in the range M7-M9. Within the sample of objects with H alpha emission, only 26% are consistent with non-variable emission, independent of spectral type. The H alpha variability, quantified in terms of the ratio of maximum to minimum H alpha equivalent width (R(EW)), exhibits a rapid rise from M0 to M5, followed by a plateau and a possible decline in M9 objects. In particular, variability with R(EW) greater than or similar to 10 is only observed in objects later than M5, and survival analysis indicates a probability of less than or similar to 0.1% that the R(EW) values for M0-M4 and M5-M9 are drawn from the same distribution. We further find that for an exponential distribution, the R(EW) values follow N(R(EW)). exp[-(R(EW) - 1)/2.3] for M0-M4 and alpha exp[-(R(EW) - 1)/2.9] for M5-M9. Finally, comparing objects with persistent and intermittent H alpha emission, we find that the latter exhibit greater variability. Based on these results, we conclude that H alpha variability in M dwarfs on timescales of 15 minutes to 1 hr increases with later spectral type, and that the variability is larger for intermittent sources. C1 [Kruse, E. A.; Berger, E.; Laskar, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Knapp, G. R.; Gunn, J. E.; Loomis, C. P.; Lupton, R. H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Schlegel, D. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kruse, EA (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. FU Harvard College; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank Fergal Mullally and Steve Bickerton for assistance with obtaining the individual SDSS spectra. E.A.K acknowledges financial support from the Harvard College Program for Research in Science and Engineering (PRISE) and the Harvard College Faculty Aide Program. Funding for SDSS and for SDSS-II was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. NR 22 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1352 EP 1359 DI 10.1088/0004-637X/722/2/1352 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400031 ER PT J AU Kozlowski, S Kochanek, CS Stern, D Prieto, JL Stanek, KZ Thompson, TA Assef, RJ Drake, AJ Szczygiel, DM Wozniak, PR Nugent, P Ashby, MLN Beshore, E Brown, MJI Dey, A Griffith, R Harrison, F Jannuzi, BT Larson, S Madsen, K Pilecki, B Pojmanski, G Skowron, J Vestrand, WT Wren, JA AF Kozlowski, Szymon Kochanek, C. S. Stern, D. Prieto, J. L. Stanek, K. Z. Thompson, T. A. Assef, R. J. Drake, A. J. Szczygiel, D. M. Wozniak, P. R. Nugent, P. Ashby, M. L. N. Beshore, E. Brown, M. J. I. Dey, Arjun Griffith, R. Harrison, F. Jannuzi, B. T. Larson, S. Madsen, K. Pilecki, B. Pojmanski, G. Skowron, J. Vestrand, W. T. Wren, J. A. TI SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z similar or equal to 0.2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: irregular; infrared: galaxies; supernovae: general; supernovae: individual (SDWFS-MT-1, SN 2007va) ID DIGITAL SKY SURVEY; MASS-METALLICITY RELATION; WIDE-FIELD SURVEY; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; ARRAY CAMERA IRAC; GAMMA-RAY BURSTS; H-II REGIONS; INFRARED-EMISSION; ETA-CARINAE AB We report the discovery of a 6 month long mid-infrared transient, SDWFS-MT-1 (aka SN 2007va), in the Spitzer Deep, Wide-Field Survey of the NOAO Deep Wide-Field Survey Bootes field. The transient, located in a z = 0.19 low-luminosity (M([4.5]) similar or equal to -18.6 mag, L/ L(star) similar or equal to 0.01) metal-poor (12 + log(O/H) similar or equal to 7.8) irregular galaxy, peaked at a mid-infrared absolute magnitude of M([4.5]) similar or equal to -24.2 in the 4.5 mu m Spitzer/IRAC band and emitted a total energy of at least 10(51) erg. The optical emission was likely fainter than the mid-infrared, although our constraints on the optical emission are poor because the transient peaked when the source was "behind" the Sun. The Spitzer data are consistent with emission by a modified blackbody with a temperature of similar to 1350 K. We rule out a number of scenarios for the origin of the transient such as a Galactic star, active galactic nucleus activity, gamma-ray burst, tidal disruption of a star by a black hole, and gravitational lensing. The most plausible scenario is a supernova (SN) exploding inside a massive, optically thick circumstellar medium, composed of multiple shells of previously ejected material. If the proposed scenario is correct, then a significant fraction (similar to 10%) of the most luminous SN may be self-enshrouded by dust not only before but also after the SN occurs. The spectral energy distribution of the progenitor of such an SN would be a slightly cooler version of eta Carinae peaking at 20-30 mu m. C1 [Kozlowski, Szymon; Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.; Assef, R. J.; Szczygiel, D. M.; Skowron, J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Stanek, K. Z.; Thompson, T. A.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Stern, D.; Griffith, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prieto, J. L.] Carnegie Observ, Pasadena, CA 91101 USA. [Drake, A. J.; Harrison, F.; Madsen, K.] CALTECH, Pasadena, CA 91125 USA. [Szczygiel, D. M.; Pilecki, B.; Pojmanski, G.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wozniak, P. R.; Vestrand, W. T.; Wren, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ashby, M. L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Beshore, E.; Larson, S.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, M. J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Dey, Arjun; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Pilecki, B.] Univ Concepcion, Dept Fis, Concepcion, Chile. RP Kozlowski, S (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM simkoz@astronomy.ohio-state.edu RI Kozlowski, Szymon/G-4799-2013; Skowron, Jan/M-5186-2014; Brown, Michael/B-1181-2015 OI Kozlowski, Szymon/0000-0003-4084-880X; Skowron, Jan/0000-0002-2335-1730; Brown, Michael/0000-0002-1207-9137 FU National Aeronautics and Space Administration (NASA); NASA [1310744, HF-51261.01-A, NAS 5-2655, NNG05GF22G]; JPL/Caltech [1314516]; National Science Foundation (NSF) [AST-0908816, AST-0407448, AST-0909182]; National Optical Astronomy Observatory (NOAO) FX We thank the anonymous referee, whose comments helped us to improve the manuscript. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech) under contract with the National Aeronautics and Space Administration (NASA). Support for this work was provided by NASA through award numbers 1310744 (C.S.K. and S.K.), 1314516 (M.L.N.A.) issued by JPL/Caltech. C.S.K., K.Z.S., T.A.T., and S.K. are also supported by National Science Foundation (NSF) grant AST-0908816. J.L.P. acknowledges support from NASA through Hubble Fellowship grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc., for NASA, under contract NAS 5-2655. This work made use of images and/or data products provided by NDWFS (Jannuzi & Dey 1999). The NDWFS and the research of A.D and B.T.J. are supported by the National Optical Astronomy Observatory (NOAO). NOAO is operated by AURA, Inc., under a cooperative agreement with NSF. The CRTS survey is supported by NSF under grants AST-0407448 and AST-0909182. The CSS survey is funded by NASA under grant no. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. NR 85 TC 19 Z9 19 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1624 EP 1632 DI 10.1088/0004-637X/722/2/1624 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400050 ER PT J AU Hayden, BT Garnavich, PM Kasen, D Dilday, B Frieman, JA Jha, SW Lampeitl, H Nichol, RC Sako, M Schneider, DP Smith, M Sollerman, J Wheeler, JC AF Hayden, Brian T. Garnavich, Peter M. Kasen, Daniel Dilday, Benjamin Frieman, Joshua A. Jha, Saurabh W. Lampeitl, Hubert Nichol, Robert C. Sako, Masao Schneider, Donald P. Smith, Mathew Sollerman, Jesper Wheeler, J. Craig TI SINGLE OR DOUBLE DEGENERATE PROGENITORS? SEARCHING FOR SHOCK EMISSION IN THE SDSS-II TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID DIGITAL SKY SURVEY; WHITE-DWARF MODELS; LIGHT-CURVE SHAPES; HUBBLE DIAGRAM; STAR; EVOLUTION; BINARIES; IMPACT; RISE; TIME AB From the set of nearly 500 spectroscopically confirmed Type Ia supernovae (SNe) and around 10,000 unconfirmed candidates from SDSS-II, we select a subset of 108 confirmed SNe Ia with well-observed early-time light curves to search for signatures from shock interaction of the SN with a companion star. No evidence for shock emission is seen; however, the cadence and photometric noise could hide a weak shock signal. We simulate shocked light curves using SN Ia templates and a simple Gaussian shock model to emulate the noise properties of the SDSS-II sample and estimate the detectability of the shock interaction signal as a function of shock amplitude, shock width, and shock fraction. We find no direct evidence for shock interaction in the rest-frame B-band, but place an upper limit on the shock amplitude at 9% of SN peak flux (M-B > -16.6 mag). If the single degenerate channel dominates type Ia progenitors, this result constrains the companion stars to be less than about 6 M-circle dot on the main sequence and strongly disfavors red giant companions. C1 [Hayden, Brian T.; Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dilday, Benjamin; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dilday, Benjamin] Las Cumbres Observ Global Telescope Network, Santa Barbara, CA 93117 USA. [Dilday, Benjamin] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Lampeitl, Hubert; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sako, Masao] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ACGC, ZA-7700 Rondebosch, South Africa. [Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Hayden, BT (reprint author), Univ Notre Dame, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. OI Sollerman, Jesper/0000-0003-1546-6615 FU Alfred P. Sloan Foundation; National Science Foundation [0847157]; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; ESO New Technology Telescope at La Silla Observatory [77.A-0437, 78.A-0325, 79.A-0715]; W. M. Keck Foundation; DOE [DE-FG02-08ER41562] FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support in this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group, and the Nordic Optical Telescope is operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, both on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Observations at the ESO New Technology Telescope at La Silla Observatory were made under program IDs 77.A-0437, 78.A-0325, and 79.A-0715. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The South African Large Telescope of the South African Astronomical Observatory is operated by a partnership between the National Research Foundation of South Africa, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, the Hobby-Eberly Telescope Board, Rutgers University, Georg-August-Universitat Gottingen, University of Wisconsin-Madison, University of Canterbury, University of North Carolina-Chapel Hill, Dartmouth College, Carnegie Mellon University, and the United Kingdom SALT consortium. The Italian Telescopio Nazionale Galileo is operated on the island of La Palma by the Fundacion Galileo Galilei of the Instituto Nazionale di Astrofisica at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.; Support for this research at Rutgers University was provided by DOE grant DE-FG02-08ER41562 and NSF CAREER award 0847157 to S.W.J. NR 38 TC 55 Z9 55 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2010 VL 722 IS 2 BP 1691 EP 1698 DI 10.1088/0004-637X/722/2/1691 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LK UT WOS:000284075400056 ER PT J AU Tang, KH Urban, VS Wen, JZ Xin, YY Blankenship, RE AF Tang, Kuo-Hsiang Urban, Volker S. Wen, Jianzhong Xin, Yueyong Blankenship, Robert E. TI SANS Investigation of the Photosynthetic Machinery of Chloroflexus aurantiacus SO BIOPHYSICAL JOURNAL LA English DT Article ID ANGLE NEUTRON-SCATTERING; LIGHT-HARVESTING COMPLEX; RC-LH1 CORE COMPLEX; RHODOSPIRILLUM-RUBRUM; BACTERIOCHLOROPHYLL-C; RHODOPSEUDOMONAS-ACIDOPHILA; BIOLOGICAL MACROMOLECULES; FILAMENTOUS BACTERIUM; STRUCTURAL-CHANGES; CRYSTAL-STRUCTURE AB Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements. C1 [Tang, Kuo-Hsiang; Wen, Jianzhong; Xin, Yueyong; Blankenship, Robert E.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Tang, Kuo-Hsiang; Wen, Jianzhong; Xin, Yueyong; Blankenship, Robert E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Div Chem Sci, Oak Ridge, TN USA. RP Blankenship, RE (reprint author), Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. EM blankenship@wustl.edu RI Wen, Jianzhong/C-1468-2011; Urban, Volker/N-5361-2015 OI Wen, Jianzhong/0000-0002-3057-721X; Urban, Volker/0000-0002-7962-3408 FU Photosynthetic Antenna Research Center; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC 0001035]; Office of Biological and Environmental Research FX This study is based on work supported as part of the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under award No. DE-SC 0001035. The SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. NR 55 TC 14 Z9 14 U1 1 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 20 PY 2010 VL 99 IS 8 BP 2398 EP 2407 DI 10.1016/j.bpj.2010.07.068 PG 10 WC Biophysics SC Biophysics GA 670HT UT WOS:000283412500005 PM 20959079 ER PT J AU Lopez, M Kurkal-Siebert, V Dunn, RV Tehei, M Finney, JL Smith, JC Daniel, RM AF Lopez, Murielle Kurkal-Siebert, Vandana Dunn, Rachel V. Tehei, Moeava Finney, John L. Smith, Jeremy C. Daniel, Roy M. TI Activity and Dynamics of an Enzyme, Pig Liver Esterase, in Near-Anhydrous Conditions SO BIOPHYSICAL JOURNAL LA English DT Article ID VERY-LOW HYDRATION; NEUTRON-SCATTERING; GLASS-TRANSITION; WATER ACTIVITY; HEAT-CAPACITY; ORGANIC MEDIA; CATALYSIS; PROTEIN; LYSOZYME; LIPASE AB Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 (+/- 2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast (<= nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties. C1 [Lopez, Murielle; Daniel, Roy M.] Univ Waikato, Thermophile Res Unit, Hamilton, New Zealand. [Kurkal-Siebert, Vandana] BASF SE, Polymer Res Div, Ludwigshafen, Germany. [Dunn, Rachel V.] Univ Manchester, Manchester Interdisciplinary Bioctr, Manchester, Lancs, England. [Tehei, Moeava] Australian Inst Nucl Sci & Engn, Menai, NSW, Australia. [Tehei, Moeava] Univ Wollongong, Ctr Med Biosci, Sch Chem, Wollongong, NSW, Australia. [Finney, John L.] UCL, Dept Phys & Astron, London, England. [Finney, John L.] UCL, London Ctr Nanotechnol, London, England. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. RP Daniel, RM (reprint author), Univ Waikato, Thermophile Res Unit, Hamilton, New Zealand. EM r.daniel@waikato.ac.nz RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Tehei, Moeava/0000-0003-3654-6833 FU Oak Ridge National Laboratory under United States Department of Energy FX We thank the Institut Laue-Langevin, Grenoble, France, for neutron beam time and associated support. J.C.S. acknowledges support from the Oak Ridge National Laboratory, under the "Neutron Sciences" Laboratory Directed Research and Development Grant, United States Department of Energy. NR 31 TC 7 Z9 7 U1 0 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 20 PY 2010 VL 99 IS 8 BP L62 EP L64 DI 10.1016/j.bpj.2010.07.066 PG 3 WC Biophysics SC Biophysics GA 670HT UT WOS:000283412500002 PM 20959076 ER PT J AU Curtiss, LA Redfern, PC Raghavachari, K AF Curtiss, Larry A. Redfern, Paul C. Raghavachari, Krishnan TI Assessment of Gaussian-4 theory for energy barriers SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SET MODEL CHEMISTRY; MOLECULAR-ENERGIES; THERMOCHEMICAL KINETICS; 2ND-ROW COMPOUNDS; G3X THEORY; HEIGHTS; GEOMETRIES; DATABASE AB Gaussian-4 (G4) theory, and various modifications, are assessed for the calculation of the heights of reaction energy barriers. The results indicate that G4 theory based on QCISD/MG3 geometries shows good accuracy for the calculation of bond-making and bond-breaking reaction barriers with a mean unsigned deviation of 0.71 kcal/mol for 76 barrier heights involving both hydrogen and non-hydrogen transfer reactions. G4 theory based on B3LYP/6-31G(2df,p) geometries has a larger mean unsigned deviation of 1.36 kcal/mol for the 76 barriers heights due to deficiencies in the geometries of transition states for fluorine-containing systems. (C) 2010 Elsevier B.V. All rights reserved. C1 [Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.; Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Raghavachari, Krishnan] Indiana Univ, Dept Chem, Bloomington, IN 47401 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov FU US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC-02-06CH11357]; NSF, Indiana University [CHE-0911454]; Laboratory Computing Resources Center at Argonne National Laboratory FX We acknowledge grants of computer time at the Laboratory Computing Resources Center at Argonne National Laboratory. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC-02-06CH11357 and by an NSF grant, CHE-0911454, at Indiana University (KR). NR 22 TC 30 Z9 30 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 20 PY 2010 VL 499 IS 1-3 BP 168 EP 172 DI 10.1016/j.cplett.2010.09.012 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 661BT UT WOS:000282698700035 ER PT J AU Liu, GK Jensen, MP AF Liu, G. K. Jensen, M. P. TI Theoretical analysis of optical spectra of uranyl in complexes SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; CHARGE-TRANSFER; ACTINYL IONS; VIBRONIC SPECTRA; PHYSICAL NATURE; CS2UO2CL4; CRYSTALS; STATES AB A theoretical model is developed for simulating optical spectra of uranyl in complexes. The spectral profiles of electronic and vibronic transitions of UO(2)(2+) bonded to equatorial ligands are evaluated based on the Huang-Rhys theory of vibronic coupling in solids. This model assumes that only the symmetric O=U=O stretching mode exhibits multi-phonon progression, whereas all other local modes are not Franck-Condon allowed and treated as false origins of the progressing mode. A simulation of vibronic transitions in the UO(2)(NO(3))(2)(TBP)(2) complex is compared with absorption spectrum to determine the excited state energy levels, frequencies of local vibration modes and vibronic coupling strength. (C) 2010 Published by Elsevier B.V. C1 [Liu, G. K.; Jensen, M. P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gkliu@anl.gov RI Jensen, Mark/G-9131-2012 OI Jensen, Mark/0000-0003-4494-6693 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX Work performed at Argonne National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357. NR 24 TC 10 Z9 10 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 20 PY 2010 VL 499 IS 1-3 BP 178 EP 181 DI 10.1016/j.cplett.2010.09.036 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 661BT UT WOS:000282698700037 ER PT J AU Li, LY Howard, C King, DL Gerber, M Dagle, R Stevens, D AF Li, Liyu Howard, Christopher King, David L. Gerber, Mark Dagle, Robert Stevens, Don TI Regeneration of Sulfur Deactivated Ni-Based Biomass Syngas Cleaning Catalysts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GASIFICATION; REMOVAL; GAS AB Nickel-based catalysts have been widely tested for reforming undesired tar and methane from hot biomass-derived syngas. However, nickel catalysts readily deactivate through the adsorption of sulfur compounds in the syngas. We report a new regeneration process that can effectively regenerate sulfur-poisoned Ni reforming catalysts. This process consists of four sequential treatments: (1) controlled oxidation at 750 degrees C in 1% O(2), (2) decomposition at 900 degrees C in inert gas, (3) reduction at 900 degrees C in 2% H(2), and (4) reaction at 900 degrees C under reforming condition. This 4-step regeneration process might have advantages over the conventional steam regeneration process. C1 [Li, Liyu; Howard, Christopher; King, David L.; Gerber, Mark; Dagle, Robert; Stevens, Don] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM liyu.li@pnl.gov FU U.S. Department of Energy FX The authors acknowledge financial support from the Biomass Energy Technology Program of the U.S. Department of Energy. NR 11 TC 12 Z9 13 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 20 PY 2010 VL 49 IS 20 BP 10144 EP 10148 DI 10.1021/ie101032x PG 5 WC Engineering, Chemical SC Engineering GA 661KN UT WOS:000282727300065 ER PT J AU Xiao, HY Gao, F Weber, WJ AF Xiao, H. Y. Gao, F. Weber, W. J. TI Threshold displacement energies and defect formation energies in Y2Ti2O7 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NUCLEAR-WASTE; PSEUDOPOTENTIALS; IMMOBILIZATION; A(2)B(2)O(7); PYROCHLORES; SIMULATION; PLUTONIUM; CERAMICS; OXIDES; FORM AB Ab initio molecular dynamics simulations have been carried out to determine both threshold displacement energies, E-d, and corresponding defect configurations, and ab initio methods have been used to determine defect formation energies in Y2Ti2O7. The minimum E-d is found to be 27 eV for a Y recoil along the < 100 > direction, 31.5 eV for Ti atoms along the < 100 > direction, 14.5 eV for O-48f atoms along the < 110 > direction and 13 eV for O-8b atoms along the < 11 > direction. The average E-d values along three directions determined here are 35.1, 35.4, 17.0 and 16.2 eV for yttrium, titanium, O-48f and O-8b atoms, respectively. Cation interstitials are observed occupying vacant 8a anion sites and bridge sites between two neighboring cations along the < 010 > direction after low energy recoil events. A systematic study of the defect formation energies suggests that cation interstitials that are located at 8a sites, at bridge sites along the < 010 > direction and in split configurations along the < 010 >, < 110 > or < 111 > direction are all stable configurations. It is suggested that the relative stability of cation interstitials may provide a pathway for driving irradiation induced amorphization in Y2Ti2O7. C1 [Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xiao, H. Y.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weber, WJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wjweber@utk.edu RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830]; UT-ORNL Governor's Chair FX Two of the authors (H Y Xiao and F Gao) were supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830, and one author (W J Weber) was supported by the UT-ORNL Governor's Chair program. The research was performed using the supercomputer resources at the Environmental Molecular Sciences Laboratory, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 35 TC 28 Z9 28 U1 5 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 20 PY 2010 VL 22 IS 41 AR 415801 DI 10.1088/0953-8984/22/41/415801 PG 9 WC Physics, Condensed Matter SC Physics GA 655EJ UT WOS:000282227500009 PM 21386601 ER PT J AU Gong, KP Su, D Adzic, RR AF Gong, Kuanping Su, Dong Adzic, Radoslav R. TI Platinum-Monolayer Shell on AuNi0.5Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AU; NI; CLUSTERS AB We describe a simple method for preparing multimetallic nanoparticles by in situ decomposition of the corresponding Prussian blue analogue, which is adsorbed on carbon black. The example involves the AuNi0.5Fe core of the Pt-ML/Au1Ni0.5Fe core-shell electrocatalyst for the oxygen reduction reaction. The core contains 3-5 surface atomic layers of Au, which play an essential role in determining the activity and stability of the catalyst. The Pt-ML/AuNi0.5Fe electrocatalyst exhibited Pt mass and specific activities of 1.38 A/mg(Pt) and 1.12 x 10(-3) A/cm(Pt)(2), respectively, both of which are several times higher than those of commercial Pt/C catalysts. Its all-noble-metal mass activity (0.18 A/mg(Pt,Au)) is higher than or comparable to those of commercial samples. Stability tests showed an insignificant loss in activity after 15 000 triangular-potential cycles. We ascribe the high activity and stability of the Pt-ML/AuNi0.5Fe electrocatalyst to its hierarchical structural properties, the Pt-core interaction, and the high electrochemical stability of the gold shell that precludes exposure to the electrolyte of the relatively active inner-core materials. C1 [Gong, Kuanping; Su, Dong; Adzic, Radoslav R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Adzic@bnl.gov RI Su, Dong/A-8233-2013; Thandavarayan, Maiyalagan/C-5716-2011 OI Su, Dong/0000-0002-1921-6683; Thandavarayan, Maiyalagan/0000-0003-3528-3824 FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Divisions of Chemical and Material Sciences, under Contract DE-AC02-98CH10886. NR 17 TC 123 Z9 125 U1 14 U2 149 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 20 PY 2010 VL 132 IS 41 BP 14364 EP 14366 DI 10.1021/ja1063873 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 668NN UT WOS:000283276800016 PM 20873798 ER PT J AU Landa, A Soderlind, P Velikokhatnyi, OI Naumov, II Ruban, AV Peil, OE Vitos, L AF Landa, A. Soederlind, P. Velikokhatnyi, O. I. Naumov, I. I. Ruban, A. V. Peil, O. E. Vitos, L. TI Alloying-driven phase stability in group-VB transition metals under compression SO PHYSICAL REVIEW B LA English DT Article ID LATTICE-DYNAMICS; HIGH-PRESSURES; MEGABAR PRESSURES; ELASTIC-CONSTANTS; VANADIUM; NB; SUPERCONDUCTIVITY; NIOBIUM AB The change in phase stability of group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered-cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse-acoustic-phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron-scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series. C1 [Landa, A.; Soederlind, P.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Velikokhatnyi, O. I.] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA. [Naumov, I. I.] Hewlett Packard Corp, Informat & Quantum Syst Lab, Palo Alto, CA 94304 USA. [Ruban, A. V.; Peil, O. E.; Vitos, L.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. [Peil, O. E.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Vitos, L.] Uppsala Univ, Div Mat Theory, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden. RP Landa, A (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RI Ruban, Andrei/B-7457-2012; OI Peil, Oleg/0000-0001-9828-4483 FU U.S. DOE [DE-AC52-07NA27344]; Swedish Research Council FX Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. Support from the Swedish Research Council (VR) is gratefully acknowledged by A.V.R., O.E.P., and L. V. A. L. would like to acknowledge A. Bosak for providing numerical data on the TA [xi 00] phonon branch for vanadium metal. NR 35 TC 5 Z9 5 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 14 AR 144114 DI 10.1103/PhysRevB.82.144114 PG 8 WC Physics, Condensed Matter SC Physics GA 667UI UT WOS:000283220100011 ER PT J AU Newton, MC Harder, R Huang, XJ Xiong, G Robinson, IK AF Newton, Marcus C. Harder, Ross Huang, Xiaojing Xiong, Gang Robinson, Ian K. TI Phase retrieval of diffraction from highly strained crystals SO PHYSICAL REVIEW B LA English DT Article ID RECONSTRUCTION; ALGORITHMS AB An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of +/-pi/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of "compressive sensing" has emerged, which dictates that an appropriately subsampled (or compressed ) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l(1) norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a "density-modification" phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l(1) norm of the amplitude by a promotion-penalization (or "propenal") operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered. C1 [Newton, Marcus C.] Univ Surrey, Adv Technol Inst, Surrey GU2 7XH, England. [Harder, Ross] Argonne Natl Lab, Argonne, IL 60439 USA. [Huang, Xiaojing; Xiong, Gang; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. RP Newton, MC (reprint author), Univ Surrey, Adv Technol Inst, Surrey GU2 7XH, England. EM m.newton@surrey.ac.uk RI Huang, Xiaojing/K-3075-2012; Newton, Marcus/C-3135-2014 OI Huang, Xiaojing/0000-0001-6034-5893; FU European Research Council [227711]; U.S. National Science Foundation [DMR-9724294]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was partly supported by European Research Council under "Advanced" Grant No. 227711. The experimental work was carried out at APS beamline 34-ID-C, built with funds from the U.S. National Science Foundation under Grant No. DMR-9724294 and operated by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 17 TC 16 Z9 16 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 16 AR 165436 DI 10.1103/PhysRevB.82.165436 PG 6 WC Physics, Condensed Matter SC Physics GA 667VF UT WOS:000283223200012 ER PT J AU Rodionov, YI Burmistrov, IS Chtchelkatchev, NM AF Rodionov, Ya. I. Burmistrov, I. S. Chtchelkatchev, N. M. TI Relaxation dynamics of the electron distribution in the Coulomb-blockade problem SO PHYSICAL REVIEW B LA English DT Article ID SMALL TUNNEL-JUNCTIONS; QUANTUM-DOT; TRANSPORT; OSCILLATIONS; COHERENT; METALS; THERMOPOWER; CHARGE; FIELD; MODEL AB We study the relaxation dynamics of electron distribution function on the island of a single-electron transistor. We focus on the regime of not very low temperatures in which an electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. The quantum kinetic equation governing evolution of the electron distribution function due to escape of electrons to the reservoirs is derived. Analytical solutions for time dependence of the electron distribution are obtained in the regimes of weak and strong Coulomb blockade. We find that usual exponential in time relaxation is strongly modified due to the presence of Coulomb interaction. C1 [Rodionov, Ya. I.; Burmistrov, I. S.; Chtchelkatchev, N. M.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Burmistrov, I. S.] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyi 141700, Russia. [Chtchelkatchev, N. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RP Rodionov, YI (reprint author), Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia. RI Chtchelkatchev, Nikolay/L-1273-2013; Burmistrov, Igor/K-1047-2012 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483; Burmistrov, Igor/0000-0003-3177-2698 FU Russian Ministry of Education and Science [P926]; Council for Grant of the President of Russian Federation [MK-125.2009.2]; RFBR [09-02-92474-MHKC, 07-02-00998]; RAS; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX The authors are grateful to D. Bagrets, D. Basko, I. Gornyi, A. Ioselevich, V. Kravtsov, Yu. Makhlin, J. Pekola, and K. Tikhonov for stimulating discussions. The research was funded in part by the Russian Ministry of Education and Science under Contract No. P926, the Council for Grant of the President of Russian Federation (Grant No. MK-125.2009.2), RFBR (Grants No. 09-02-92474-MHKC and No. 07-02-00998) and RAS Programs "Quantum Physics of Condensed Matter" and "Fundamentals of nanotechnology and nanomaterials" and also by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. I.S.B. is grateful to the Low Temperature Laboratory at Aalto University for hospitality. NR 68 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 15 AR 155317 DI 10.1103/PhysRevB.82.155317 PG 19 WC Physics, Condensed Matter SC Physics GA 667UQ UT WOS:000283221400003 ER PT J AU Thomas, JC Modine, NA Millunchick, JM Van der Ven, A AF Thomas, John C. Modine, Normand A. Millunchick, Joanna Mirecki Van der Ven, Anton TI Systematic approach for determination of equilibrium atomic surface structure SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; ELECTRON COUNTING MODEL; GAAS(001) SURFACE; CRYSTAL-STRUCTURE; THIN-FILMS; RECONSTRUCTIONS; GROWTH; ALLOYS AB Despite the increasing importance of atomic-scale surface characterization, the state of the art in automating the prediction of atomic surface structure lags behind recent advances in bulk structure prediction. In this paper we present an approach whereby poorly characterized equilibrium surface structure can be systematically determined via a two-step process and apply this approach to the GaAs (001) surface. First we demonstrate that trends in complex surface structure are reducible to a small set of basic structural rules which can then be used to efficiently generate many likely surface reconstruction prototypes. Second we use first-principles energy calculations to screen for low-energy prototypes and apply the cluster expansion formalism to explore the effect of configurational excitations at surface sites capable of low-energy species substitution. Using this method, we generate a database of all likely reconstruction prototypes for the group-V-rich III-V (001) surface, which is then used to obtain the GaAs(001) reconstruction phase diagram from first principles. We also identify a class of (4 x 3) reconstructions that is nearly stable on pure GaAs and is likely important in kinetically limited growth regimes and on strain-stabilized III-V alloy surfaces. C1 [Thomas, John C.; Millunchick, Joanna Mirecki; Van der Ven, Anton] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Modine, Normand A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Thomas, JC (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM avdv@umich.edu RI Thomas, John/A-2764-2009 OI Thomas, John/0000-0002-3162-0152 FU DOE/BES [ER 46172]; U.S. Department of Energy, Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We gratefully acknowledge support from DOE/BES (ER 46172). This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). NR 43 TC 13 Z9 13 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 16 AR 165434 DI 10.1103/PhysRevB.82.165434 PG 13 WC Physics, Condensed Matter SC Physics GA 667VF UT WOS:000283223200010 ER PT J AU Zhang, JH Sknepnek, R Schmalian, J AF Zhang, Junhua Sknepnek, Rastko Schmalian, Joerg TI Spectral analysis for the iron-based superconductors: Anisotropic spin fluctuations and fully gapped s(+/-)-wave superconductivity SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL HUBBARD-MODEL; EXCITATIONS; STATE AB Spin fluctuations are considered to be one of the candidates that drive a sign-reversed s(+/-) superconducting state in the iron pnictides. In the magnetic scenario, whether the spin-fluctuation spectrum exhibits certain unique fine structures is an interesting aspect for theoretical study in order to understand experimental observations. We investigate the detailed momentum dependence of the short-range spin fluctuations using a two-orbital model in the self-consistent fluctuation exchange approximation and find that a common feature of those fluctuations that are capable of inducing a fully gapped s(+/-) state is the momentum anisotropy with lengthened span along the direction transverse to the antiferromagnetic momentum transfer. Performing a qualitative analysis based on the orbital character and the deviation from perfect nesting of the electronic structure for the two-orbital and a more complete five-orbital model, we gain the insight that this type of anisotropic spin fluctuations favor superconductivity due to their enhancement of intraorbital, but interband, pair scattering processes. The momentum anisotropy leads to elliptically shaped magnetic responses which have been observed in inelastic neutron-scattering measurements. Meanwhile, our detailed study on the magnetic and the electronic spectrum shows that the dispersion of the magnetic resonance mode in the nearly isotropic s(+/-) superconducting state exhibits anisotropic propagating behavior in an upward pattern and the coupling of the resonance mode to fermions leads to a dip feature in the spectral function. C1 [Zhang, Junhua; Sknepnek, Rastko; Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhang, Junhua; Sknepnek, Rastko; Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Sknepnek, Rastko] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Zhang, JH (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Schmalian, Joerg/H-2313-2011; OI Sknepnek, Rastko/0000-0002-0144-9921 FU U.S. Department of Energy, Office of Basic Energy Sciences, DMSE; U.S. DOE [DE-AC02-07CH11358] FX We would like to thank A. V. Chubukov, I. Eremin, R. M. Fernandes, and R. J. McQueeney for helpful discussions and Charles Zaruba for technical help. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, DMSE. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 46 TC 17 Z9 17 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 20 PY 2010 VL 82 IS 13 AR 134527 DI 10.1103/PhysRevB.82.134527 PG 9 WC Physics, Condensed Matter SC Physics GA 667TO UT WOS:000283217200005 ER PT J AU Gerhardt, L Klein, SR AF Gerhardt, Lisa Klein, Spencer R. TI Electron and photon interactions in the regime of strong Landau-Pomeranchuk-Migdal suppression SO PHYSICAL REVIEW D LA English DT Article ID EXTREMELY HIGH-ENERGIES; PAIR PRODUCTION; CASCADE SHOWERS; CROSS-SECTIONS; BREMSSTRAHLUNG; NEUTRINOS; PARTICLES; EMISSION; NUCLEI; SEARCH AB Most searches for ultra-high-energy astrophysical neutrinos look for radio emission from the electromagnetic and hadronic showers produced in their interactions. The radio frequency spectrum and angular distribution depend on the shower development, and so are sensitive to the interaction cross sections. At energies above about 10(16) eV (in ice), the Landau-Pomeranchuk-Migdal effect significantly reduces the cross sections for the two dominant electromagnetic interactions: bremsstrahlung and pair production. At higher energies, above about 10(20) eV, the photonuclear cross section becomes larger than that for pair production, and direct pair production and electronuclear interactions become dominant over bremsstrahlung. The electron interaction length reaches a maximum around 10(21) eV, and then decreases slowly as the electron energy increases further. In this regime, the growth in the photon cross section and electron energy loss moderates the rise in nu(e) shower length, which rises from similar to 10 m at 10(16) eV to similar to 50 m at 10(19) eV and similar to 100 m at 10(20) eV, but only to similar to 1 km at 10(24) eV. In contrast, without photonuclear and electronuclear interactions, the shower length would be over 10 km at 10(24) eV. C1 [Gerhardt, Lisa] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Gerhardt, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U.S. National Science Foundation [0653266]; U.S. Department of Energy [DE-AC-76SF00098] FX We thank Brian Mercurio for helpful discussions. This work was funded by the U.S. National Science Foundation under Grant No. 0653266 and the U.S. Department of Energy under Contract No. DE-AC-76SF00098. NR 52 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 20 PY 2010 VL 82 IS 7 AR 074017 DI 10.1103/PhysRevD.82.074017 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 667WN UT WOS:000283227300002 ER PT J AU Whiteside, TS Priest, MA Padgett, CW AF Whiteside, Tad S. Priest, Marie A. Padgett, Clifford W. TI Enthalpies of formation of methyl substituted naphthalenes SO THERMOCHIMICA ACTA LA English DT Article DE Enthalpy of formation; Methyl substituted naphthalenes; G3MP2 calculation; Group additivity ID SEMIEMPIRICAL METHODS; THERMOCHEMISTRY; OPTIMIZATION; GAUSSIAN-2; PREDICTION; PARAMETERS; ENERGIES AB In this work, the enthalpies of formation for the homologous series of methyl substituted naphthalene isomers were calculated using the AM1, PM3, B3PW91, and G3MP2 methods. This work was done primarily to address the lack of data available for many of these compounds and to find the most cost-effective method to calculate the enthalpy of formation. In addition, we explored the development of a group-additivity model as a fast method to calculate the enthalpy of formation. Using this model, two sets of interaction parameters were derived. One set from the G3MP2 results and the other from the B3PW91 results. These parameters differ by an average of 2.3 kJ mol(-1), implying that the simpler B3PW91 calculations may be used to develop a group-additivity model. The model using the G3MP2 derived parameters deviate from the experimental values with a RMS of 3.0 kJ mol(-1). Using the B3PW91 parameters, the model has an RMS of 9.1 kJ molt. Published by Elsevier B.V. C1 [Whiteside, Tad S.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Priest, Marie A.; Padgett, Clifford W.] Armstrong Atlantic State Univ, Savannah, GA USA. RP Whiteside, TS (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM tad.whiteside@srnl.doe.gov NR 21 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD OCT 20 PY 2010 VL 510 IS 1-2 BP 17 EP 23 DI 10.1016/j.tca.2010.06.017 PG 7 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 670CV UT WOS:000283399700003 ER PT J AU Schoups, G Vrugt, JA Fenicia, F de Giesen, NCV AF Schoups, G. Vrugt, J. A. Fenicia, F. de Giesen, N. C. van TI Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models SO WATER RESOURCES RESEARCH LA English DT Article ID PARAMETER UNCERTAINTY; METROPOLIS ALGORITHM; CATCHMENT MODELS; OPTIMIZATION; EVOLUTION; CALIBRATION; INFERENCE AB Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage. C1 [Schoups, G.; Fenicia, F.; de Giesen, N. C. van] Delft Univ Technol, Dept Water Management, NL-2600 GA Delft, Netherlands. [Vrugt, J. A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Vrugt, J. A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Vrugt, J. A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Fenicia, F.] Ctr Rech Publ Gabriel Lippmann, Belvaux, Luxembourg. RP Schoups, G (reprint author), Delft Univ Technol, Dept Water Management, Stevinweg 1,POB 5048, NL-2600 GA Delft, Netherlands. EM g.h.w.schoups@tudelft.nl RI van de Giesen, Nick/B-5010-2008; Vrugt, Jasper/C-3660-2008; Schoups, Gerrit/F-8208-2014 OI van de Giesen, Nick/0000-0002-7200-3353; FU LANL FX We would like to thank Dmitri Kavetski and two anonymous reviewers for constructive reviews that significantly improved a previous version of this paper. The second author was supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 40 TC 33 Z9 33 U1 0 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 20 PY 2010 VL 46 AR W10530 DI 10.1029/2009WR008648 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YX UT WOS:000283551300001 ER PT J AU Schoups, G Vrugt, JA AF Schoups, Gerrit Vrugt, Jasper A. TI A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors SO WATER RESOURCES RESEARCH LA English DT Article ID RAINFALL-RUNOFF MODELS; UNCERTAINTY ASSESSMENT; METROPOLIS ALGORITHM; CATCHMENT MODELS; GLUE METHODOLOGY; OPTIMIZATION; SIMULATION; EVOLUTION AB Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance. Here we investigate to what extent estimates of parameter and predictive uncertainty are affected when these assumptions are relaxed. A formal generalized likelihood function is presented, which extends the applicability of previously used likelihood functions to situations where residual errors are correlated, heteroscedastic, and non-Gaussian with varying degrees of kurtosis and skewness. The approach focuses on a correct statistical description of the data and the total model residuals, without separating out various error sources. Application to Bayesian uncertainty analysis of a conceptual rainfall-runoff model simultaneously identifies the hydrologic model parameters and the appropriate statistical distribution of the residual errors. When applied to daily rainfall-runoff data from a humid basin we find that (1) residual errors are much better described by a heteroscedastic, first-order, auto-correlated error model with a Laplacian distribution function characterized by heavier tails than a Gaussian distribution; and (2) compared to a standard least-squares approach, proper representation of the statistical distribution of residual errors yields tighter predictive uncertainty bands and different parameter uncertainty estimates that are less sensitive to the particular time period used for inference. Application to daily rainfall-runoff data from a semiarid basin with more significant residual errors and systematic underprediction of peak flows shows that (1) multiplicative bias factors can be used to compensate for some of the largest errors and (2) a skewed error distribution yields improved estimates of predictive uncertainty in this semiarid basin with near-zero flows. We conclude that the presented methodology provides improved estimates of parameter and total prediction uncertainty and should be useful for handling complex residual errors in other hydrologic regression models as well. C1 [Schoups, Gerrit] Delft Univ Technol, Dept Water Management, NL-2600 GA Delft, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. RP Schoups, G (reprint author), Delft Univ Technol, Dept Water Management, Stevinweg 1,POB 5048, NL-2600 GA Delft, Netherlands. EM g.h.w.schoups@tudelft.nl RI Vrugt, Jasper/C-3660-2008; Schoups, Gerrit/F-8208-2014 FU LANL FX We would like to thank three anonymous reviewers for their constructive criticism and Steven Weijs, Rolf Hut, Ronald van Nooijen, and Nick van de Giesen for fruitful discussions. The second author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 48 TC 165 Z9 166 U1 7 U2 54 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 20 PY 2010 VL 46 AR W10531 DI 10.1029/2009WR008933 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 671YX UT WOS:000283551300002 ER PT J AU Iwata, T Zhang, Y Hitomi, K Getzoff, ED Kandori, H AF Iwata, Tatsuya Zhang, Yu Hitomi, Kenichi Getzoff, Elizabeth D. Kandori, Hideki TI Key Dynamics of Conserved Asparagine in a Cryptochrome/Photolyase Family Protein by Fourier Transform Infrared Spectroscopy SO BIOCHEMISTRY LA English DT Article ID BLUE-LIGHT RECEPTOR; INDUCED STRUCTURAL-CHANGES; COLI DNA PHOTOLYASE; J-ALPHA HELIX; ADIANTUM PHYTOCHROME3; LOV2 DOMAIN; FAD BLUF; MUTATIONAL ANALYSIS; FLAVIN; PHOTORECEPTOR AB Cryptochromes (Crys) and photolyases (Phrs) are flavoproteins that contain an identical cofactor (flavin adenine dinucleotide, FAD) within the same protein architecture but whose physiological functions are entirely different. In this study, we investigated light-induced conformational changes of a cyanobacterium Cry/Phr-like protein (SCry-DASH) with UV-visible and Fourier transform infrared (FTIR) spectroscopy. We developed a system for measuring light-induced difference spectra under the concentrated conditions. In the presence of a reducing agent, SCry-DASH showed photoreduction to the reduced form, and we identified a signal unique for an anionic form in the process. Difference FTIR spectra enabled us to assign characteristic FTIR bands to the respective redox forms of FAD. An asparagine residue, which anchors the FAD embedded within the protein, is conserved not only in the cyanobaterial protein but also in Phrs and other Crys, including the mammalian clock-related Crys. By characterizing an asparagine-to-cysteine (N392C) mutant of SCry-DASH, which mimics an insect specific Cry, we identified structural changes of the carbonyl group of this conserved asparagine upon light irradiation. We also found that the N392C mutant is stabilized in the anionic form. We did not observe a signal from protonated carboxylic acid residues during the reduction process, suggesting that the carboxylic acid moiety would not be directly involved as a proton donor to FAD in the system. These results are in contrast to plant specific Crys represented by Arabidopsis thaliana Cry I that carry Asp at the position. We discuss potential roles for this conserved asparagine position and functional diversity in the Cry/Phr frame. C1 [Iwata, Tatsuya; Zhang, Yu; Kandori, Hideki] Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan. [Iwata, Tatsuya] Nagoya Inst Technol, Ctr Fostering Young & Innovat Researchers, Showa Ku, Nagoya, Aichi 4668555, Japan. [Hitomi, Kenichi; Getzoff, Elizabeth D.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Getzoff, Elizabeth D.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Kandori, H (reprint author), Nagoya Inst Technol, Dept Frontier Mat, Showa Ku, Nagoya, Aichi 4668555, Japan. EM kandori@nitech.ac.jp FU Japanese Ministry of Education, Culture, Sports, Science, and Technology [20050015, 20108014]; National Institutes of Health [GM37684]; Skaggs Institute for Chemical Biology FX This work was supported by grants from Japanese Ministry of Education, Culture, Sports, Science, and Technology to H.K. (20050015 and 20108014) and National Institutes of Health Grant GM37684 (E.D.G.). K.H. was supported by the Skaggs Institute for Chemical Biology. NR 57 TC 21 Z9 22 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 19 PY 2010 VL 49 IS 41 BP 8882 EP 8891 DI 10.1021/bi1009979 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 662UR UT WOS:000282839900008 PM 20828134 ER PT J AU Bale, S Rajashankar, KR Perry, K Begley, TP Ealick, SE AF Bale, Shridhar Rajashankar, Kanagalaghatta R. Perry, Kay Begley, Tadhg P. Ealick, Steven E. TI HMP Binding Protein ThiY and HMP-P Synthase THI5 Are Structural Homologues SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; THIAMIN BIOSYNTHESIS; NUCLEIC-ACIDS; FORCE-FIELD; COMMON; CRYSTALLOGRAPHY; VITAMIN-B-1; PYRIDOXINE; MECHANISM AB The ATP-binding cassette transporter system ThiXYZ transports N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP), a thiamin salvage pathway intermediate, into cells. FAMP is then converted to 4-amino-5-(hydroxymethyl)-2-methylpyrimidine (HMP) and recycled into the thiamin biosynthetic pathway. ThiY is the periplasmic substrate binding protein of the ThiXYZ system and delivers the substrate FAMP to the transmembrane domain. We report the crystal structure of Bacillus halodurans ThiY with FAMP bound at 2.4 angstrom resolution determined by single-wavelength anomalous diffraction phasing. The crystal structure reveals that ThiY belongs to the group II periplasmic binding protein family. The closest structural homologues of ThiY are periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. ThiY is also structurally homologous to thiamin binding protein (TbpA) and to thiaminase-I. THIS is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate in the thiamin biosynthetic pathway of eukaryotes and is approximately 25% identical in sequence with ThiY. A homology model of Saccharomyces cerevisiae THIS was generated on the basis of the structure of ThiY. Many features of the thiamin pyrimidine binding site are shared between ThiY and THIS, suggesting a common ancestor. C1 [Bale, Shridhar; Rajashankar, Kanagalaghatta R.; Perry, Kay; Begley, Tadhg P.; Ealick, Steven E.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Rajashankar, Kanagalaghatta R.; Perry, Kay] Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. [Begley, Tadhg P.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Begley, TP (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. EM see3@cornell.edu RI Begley, Tadhg/B-5801-2015; OI Perry, Kay/0000-0002-4046-1704 FU National Institutes of Health [DK 44083, DK 67081] FX This work was supported by National Institutes of Health Grants DK 44083 (T.P.B.) and DK 67081 (SEE.). S.E.E. is indebted to the W. M. Keck Foundation and the Lucille P. Markey Charitable Trust. NR 46 TC 5 Z9 7 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 19 PY 2010 VL 49 IS 41 BP 8929 EP 8936 DI 10.1021/bi101209t PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 662UR UT WOS:000282839900013 PM 20873853 ER PT J AU Achilleos, N Guio, P Arridge, CS Sergis, N Wilson, RJ Thomsen, MF Coates, AJ AF Achilleos, N. Guio, P. Arridge, C. S. Sergis, N. Wilson, R. J. Thomsen, M. F. Coates, A. J. TI Influence of hot plasma pressure on the global structure of Saturn's magnetodisk SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FORCE; MODEL AB Using a model of force balance in Saturn's disk-like magnetosphere, we show that variations in hot plasma pressure can change the magnetic field configuration. This effect changes (i) the location of the magnetopause, even at fixed solar wind dynamic pressure, and (ii) the magnetic mapping between ionosphere and disk. The model uses equatorial observations as a boundary condition-we test its predictions over a wide latitude range by comparison with a Cassini high-inclination orbit of magnetic field and hot plasma pressure data. We find reasonable agreement over time scales larger than the period of Saturn kilometric radiation (also known as the camshaft period). Citation: Achilleos, N., P. Guio, C. S. Arridge, N. Sergis, R. J. Wilson, M. F. Thomsen, and A. J. Coates (2010), Influence of hot plasma pressure on the global structure of Saturn's magnetodisk, Geophys. Res. Lett., 37, L20201, doi:10.1029/2010GL045159. C1 [Achilleos, N.; Guio, P.] UCL, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. [Achilleos, N.; Guio, P.; Arridge, C. S.; Coates, A. J.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Sergis, N.] Acad Athens, Off Space Res & Technol, GR-11527 Athens, Greece. [Wilson, R. J.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wilson, R. J.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Achilleos, N (reprint author), UCL, Dept Phys & Astron, Atmospher Phys Lab, Gower St, London WC1E 6BT, England. EM nick@apl.ucl.ac.uk RI Guio, Patrick/A-6271-2008; Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Sergis, Nick/A-9881-2015 OI Achilleos, Nicholas/0000-0002-5886-3509; Guio, Patrick/0000-0002-1607-5862; Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; FU STFC Postdoctoral Fellowship [ST/G007462/1] FX We acknowledge the continued collaboration of the Cassini magnetometer (MAG) and plasma (CAPS, MIMI) instrument teams. CSA was supported by an STFC Postdoctoral Fellowship under grant ST/G007462/1. NR 21 TC 16 Z9 16 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 19 PY 2010 VL 37 AR L20201 DI 10.1029/2010GL045159 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 671WU UT WOS:000283545100008 ER PT J AU Lud, SQ Neppl, S Richter, G Bruno, P Gruen, DM Jordan, R Feulner, P Stutzmann, M Garrido, JA AF Lud, Simon Q. Neppl, Stefan Richter, Gerhard Bruno, Paola Gruen, Dieter M. Jordan, Rainer Feulner, Peter Stutzmann, Martin Garrido, Jose A. TI Controlling Surface Functionality through Generation of Thiol Groups in a Self-Assembled Monolayer SO LANGMUIR LA English DT Article ID ENERGY-ELECTRON BEAMS; ULTRANANOCRYSTALLINE DIAMOND; L-EDGE; FILMS; FABRICATION; GOLD; NANOLITHOGRAPHY; IMMOBILIZATION; SPECTROSCOPY; IRRADIATION AB A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode. C1 [Lud, Simon Q.; Stutzmann, Martin] Tech Univ Munich, Walter Schottky Inst, D-85747 Garching, Germany. [Neppl, Stefan; Feulner, Peter] Tech Univ Munich, Phys Dept E20, D-85747 Garching, Germany. [Richter, Gerhard; Jordan, Rainer] Tech Univ Munich, Wacker Lehrstuhl Makromol Chem, Dept Chem, D-85747 Garching, Germany. [Bruno, Paola; Gruen, Dieter M.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. [Jordan, Rainer] Tech Univ Dresden, Dept Chem, D-01069 Dresden, Germany. RP Garrido, JA (reprint author), Tech Univ Munich, Walter Schottky Inst, D-85747 Garching, Germany. EM garrido@wsi.tum.de RI bruno, paola/G-5786-2011; Jordan, Rainer/B-6542-2008; Garrido, Jose A./K-7491-2015; Stutzmann, Martin/B-1480-2012; OI Jordan, Rainer/0000-0002-9414-1597; Garrido, Jose A./0000-0001-5621-1067; Stutzmann, Martin/0000-0002-0068-3505 FU DFG [GA1432/1-1]; Nanosystems Initiative Munich (NIM); TUM International Graduate School of Science and Engineering (IGSSE); U.S. Department of Energy at Argonne National Laboratory [DE-AC02-06CH11357]; Munich Centre for Advanced Photonics via MAP [C.1.5] FX The project was funded by the DFG (project GA1432/1-1), the Nanosystems Initiative Munich (NIM), and the TUM International Graduate School of Science and Engineering (IGSSE). Work performed under the auspices of the U.S. Department of Energy (contract DE-AC02-06CH11357) at Argonne National Laboratory. S.N. and P.F. acknowledge support from the Helmholtz-Zentrum-Berlin and from the Munich Centre for Advanced Photonics via MAP C.1.5. NR 37 TC 13 Z9 13 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 19 PY 2010 VL 26 IS 20 BP 15895 EP 15900 DI 10.1021/la102225r PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 664CO UT WOS:000282936700027 PM 20845943 ER PT J AU Lei, HC Hu, RW Choi, ES Petrovic, C AF Lei, Hechang Hu, Rongwei Choi, E. S. Petrovic, C. TI Thermally activated energy and flux-flow Hall effect of Fe1+y(Te1+xSx)(z) SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SIGN REVERSAL; MIXED-STATE; II SUPERCONDUCTORS; THIN-FILMS; T-C; TRANSPORT-PROPERTIES; VORTEX DYNAMICS; MOTION; PHASE AB Thermally activated flux flow (TAFF) and flux-flow Hall effect (FFHE) of Fe(Te,S) single crystal in the mixed state are studied in magnetic fields up to 35 T. Thermally activated energy (TAE) is analyzed using conventional Arrhenius relation and modified TAFF theory which is closer to experimental results. The results indicate that there is a crossover from single-vortex pinning region to collective creep pinning region with increasing magnetic field. The temperature dependence of TAE is different for H parallel to ab and H parallel to c. On the other hand, the analysis of FFHE in the mixed state indicates that there is no Hall sign reversal. We also observe scaling behavior vertical bar rho(xy)(H)vertical bar=A rho(xx)(H)(beta). C1 [Lei, Hechang; Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Choi, E. S.] Florida State Univ, NHMFL Phys, Tallahassee, FL 32310 USA. RP Lei, HC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU U.S. Department of Energy [DE-Ac02-98CII10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as part of the Energy Frontier Research Center (EFRC), Center for Emergent Superconductivity (CES); NSF [DMR-0084173]; State of Florida FX We thank T. P. Murphy and J. B. Warren for experimental support at NHMFL and Brookhaven National Laboratory (BNL). This work was carried out at BNL, which is operated for the U.S. Department of Energy by Brookhaven Science Associates under Grant No. DE-Ac02-98CII10886. This work was in part supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as part of the Energy Frontier Research Center (EFRC), Center for Emergent Superconductivity (CES). A portion of this work was performed at NHMFL, which is supported by NSF Cooperative under Agreement No. DMR-0084173, by the State of Florida, and by the U.S. Department of Energy. NR 57 TC 19 Z9 19 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 19 PY 2010 VL 82 IS 13 AR 134525 DI 10.1103/PhysRevB.82.134525 PG 6 WC Physics, Condensed Matter SC Physics GA 666LA UT WOS:000283115500006 ER PT J AU Wang, SB Mao, WL Sorini, AP Chen, CC Devereaux, TP Ding, Y Xiao, YM Chow, P Hiraoka, N Ishii, H Cai, YQ Kao, CC AF Wang, Shibing Mao, Wendy L. Sorini, Adam P. Chen, Cheng-Chien Devereaux, Thomas P. Ding, Yang Xiao, Yuming Chow, Paul Hiraoka, Nozomu Ishii, Hirofumi Cai, Yong Q. Kao, Chi-Chang TI High-pressure evolution of Fe2O3 electronic structure revealed by x-ray absorption SO PHYSICAL REVIEW B LA English DT Article ID EDGE STRUCTURE; PRE-EDGE; TRANSITION; SCATTERING; SPECTRA; OXIDATION; MAGNETISM; COLLAPSE; STATE; FE AB We report the high-pressure measurement of the Fe K edge in hematite (Fe2O3) by x-ray absorption spectroscopy in partial fluorescence yield geometry. The pressure-induced evolution of the electronic structure as Fe2O3 transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorption pre-edge. The crystal-field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing good qualitative agreement with the measurements. The mechanism for the pressure-induced electronic phase transitions of Fe2O3 is discussed and it is shown that ligand hybridization significantly reduces the critical high-spin/low-spin transition pressure. C1 [Wang, Shibing] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Wang, Shibing; Mao, Wendy L.; Sorini, Adam P.; Chen, Cheng-Chien; Devereaux, Thomas P.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Mao, Wendy L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Chen, Cheng-Chien] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Devereaux, Thomas P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Ding, Yang] Carnegie Inst Washington, HPSynC, Washington, DC 20015 USA. [Xiao, Yuming; Chow, Paul] Carnegie Inst Washington, HPCAT, Washington, DC 20015 USA. [Hiraoka, Nozomu; Ishii, Hirofumi] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Cai, Yong Q.] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Kao, Chi-Chang] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Kao, Chi-Chang] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Wang, SB (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. EM shibingw@stanford.edu RI Mao, Wendy/D-1885-2009; Ding, Yang/K-1995-2014; Cai, Yong/C-5036-2008 OI Ding, Yang/0000-0002-8845-4618; Cai, Yong/0000-0002-9957-6426 FU NSF-Geophysics [EAR-0738873]; Department of Energy through DOE-NNSA (CDAC) [DE-AC02-76SF00515]; U.S. Department of Energy [DE-AC02-76SF00515, DE-FG02-08ER46540]; DOE [DE-SC0001057]; JASRI [2007A4264]; NSRRC [2006-3-112-3]; DOE-BES [DE-AC02-06CH11357]; NSF; W.M. Keck Foundation FX The authors thank W. Harrison, S. Johnston, E. Kaneshita, and B. Moritz for helpful discussions, and thank H.-k. Mao and J. Shu on experiments. S.W. and W.L.M. are supported by the NSF-Geophysics under Grant No. EAR-0738873 and Department of Energy through DOE-NNSA (CDAC) under Grant No. DE-AC02-76SF00515. A.P.S., C.C.C., and T.P.D. are supported by the U.S. Department of Energy under Contracts No. DE-AC02-76SF00515 and No. DE-FG02-08ER46540 (CMSN). Y.D. is supported by EFree funded by DOE (Grant No. DE-SC0001057). The experiment at SPring-8 was performed under the approval of JASRI (Grant No. 2007A4264) and NSRRC (Grant No. 2006-3-112-3). Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 26 TC 9 Z9 9 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 19 PY 2010 VL 82 IS 14 AR 144428 DI 10.1103/PhysRevB.82.144428 PG 5 WC Physics, Condensed Matter SC Physics GA 666LQ UT WOS:000283117100008 ER PT J AU Chae, KY Bardayan, DW Blackmon, JC Chipps, KA Hatarik, R Jones, KL Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Pittman, ST Smith, MS AF Chae, K. Y. Bardayan, D. W. Blackmon, J. C. Chipps, K. A. Hatarik, R. Jones, K. L. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Pittman, S. T. Smith, M. S. TI Spin assignments to excited states in Na-22 through a Mg-24(p,He-3)Na-22 reaction measurement SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR STRUCTURE AB The level structure of Na-22 has been studied at the Holifield Radioactive Ion Beam Facility in Oak Ridge National Laboratory using the Mg-24(p, He-3)Na-22 reaction. Proton beams of 41 and 41.5 MeV were generated by the 25-MV tandem accelerator and bombarded isotopically enriched Mg-24 targets. Angular distributions of recoiling He-3 particles were extracted by using a segmented annular silicon strip detector array. Spins and parities for 10 levels were constrained through a distorted-wave Born approximation analysis of angular distributions, including three levels above the proton threshold at 6.739 MeV. C1 [Chae, K. Y.; Bardayan, D. W.; Blackmon, J. C.; Liang, J. F.; Nesaraja, C. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Nesaraja, C. D.; Pittman, S. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Hatarik, R.; O'Malley, P. D.; Pain, S. D.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Chae, KY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Matei, Catalin/B-2586-2008; OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Matei, Catalin/0000-0002-2254-3853; Nesaraja, Caroline/0000-0001-5571-8341 FU National Science Foundation [NSF-PHY-00-98800]; US Department of Energy [DE-FG02-96ER40983, DE-FG02-96ER40955, DE-AC05-00OR22725]; University of Tennessee [DE-FG02-96ER40983]; Tennessee Technological University [DE-FG02-96ER40955]; ORNL [DE-AC05-00OR22725] FX This work was supported in part by the National Science Foundation under Contract No. NSF-PHY-00-98800; the US Department of Energy under Contracts No. DE-FG02-96ER40983 with University of Tennessee, No. DE-FG02-96ER40955 with Tennessee Technological University, and No. DE-AC05-00OR22725 with ORNL. NR 10 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 19 PY 2010 VL 82 IS 4 AR 047302 DI 10.1103/PhysRevC.82.047302 PG 4 WC Physics, Nuclear SC Physics GA 666MT UT WOS:000283120200005 ER PT J AU Jiang, CL Stefanini, AM Esbensen, H Rehm, KE Corradi, L Fioretto, E Mason, P Montagnoli, G Scarlassara, F Silvestri, R Singh, PP Szilner, S Tang, XD Ur, CA AF Jiang, C. L. Stefanini, A. M. Esbensen, H. Rehm, K. E. Corradi, L. Fioretto, E. Mason, P. Montagnoli, G. Scarlassara, F. Silvestri, R. Singh, P. P. Szilner, S. Tang, X. D. Ur, C. A. TI Fusion hindrance for Ca plus Ca systems: Influence of neutron excess SO PHYSICAL REVIEW C LA English DT Article ID BARRIER AB The measurement of the excitation function for fusion evaporation reactions in the system Ca-40 + Ca-48 (Q = 4.56 MeV) has been extended downward by two orders of magnitude with respect to previous cross section data. A first indication of an S-factor maximum in a system with a positive Q value has been observed. In addition a correlation between fusion hindrance and neutron excess N - Z has been found for the Ca + Ca, Ni + Ni, and Ca + Zr systems. C1 [Jiang, C. L.; Esbensen, H.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanini, A. M.; Corradi, L.; Fioretto, E.; Silvestri, R.; Singh, P. P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Univ Padua, Dipartimento Fis, I-67037 Padua, Italy. [Mason, P.; Montagnoli, G.; Scarlassara, F.; Ur, C. A.] Ist Nazl Fis Nucl, Sez Padova, I-67037 Padua, Italy. [Szilner, S.] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia. [Tang, X. D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Tang, Xiaodong /F-4891-2016 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; European Commission [RII3-CT-2004-506065]; Croatian MZOS [0098-1191005-2890]; NSF [PHY07-58100] FX We want to thank the staff of the XTU Tandem for providing the excellent 40Ca beams. The help of Mr. Loriggiola in preparing the 48Ca targets is gratefully acknowledged. We also thank B. B. Back and R. V. F. Janssens for valuable discussions. This work was partially supported by the US Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357, by the European Commission within the 6th Framework Programme through I3-EURONS (Contract No. RII3-CT-2004-506065), the Croatian MZOS 0098-1191005-2890 grant, and by the NSF under Contract No. PHY07-58100. NR 29 TC 47 Z9 47 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 19 PY 2010 VL 82 IS 4 AR 041601 DI 10.1103/PhysRevC.82.041601 PG 4 WC Physics, Nuclear SC Physics GA 666MT UT WOS:000283120200001 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for f(J)(2220) in Radiative J/psi Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID BHABHA SCATTERING; BOUND-STATE; XI(2230); GLUEBALLS; ENERGIES; SCALARS; GEV/C AB We present a search for f(J)(2220) production in radiative J/psi --> gamma f(J)(2220) decays using 460 fb(-1) of data collected with the BABAR detector at the SLAC PEP-II e(+)e(-) collider. The f(J)(2220) is searched for in the decays to K+K- and (KSKS0)-K-0. No evidence of this resonance is observed, and 90% confidence level upper limits on the product of the branching fractions for J/psi --> gamma f(J)(2220) and f(J)(2220) --> K+K-((KSKS0)-K-0) as a function of spin and helicity are set at the level of 10(-5), below the central values reported by the Mark III experiment. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Nicolaci, M.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Oyanguren, Arantza/K-6454-2014; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Oyanguren, Arantza/0000-0002-8240-7300; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Sciacca, Crisostomo/0000-0002-8412-4072; Lafferty, George/0000-0003-0658-4919; Adye, Tim/0000-0003-0627-5059; Martinelli, Maurizio/0000-0003-4792-9178; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043 FU SLAC; DOE (USA); NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (U.S.-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (U.S.-Israel). NR 32 TC 3 Z9 3 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 19 PY 2010 VL 105 IS 17 AR 172001 DI 10.1103/PhysRevLett.105.172001 PG 7 WC Physics, Multidisciplinary SC Physics GA 666PA UT WOS:000283126900005 PM 21231035 ER PT J AU Wagner, A Rybka, G Hotz, M Rosenberg, LJ Asztalos, SJ Carosi, G Hagmann, C Kinion, D van Bibber, K Hoskins, J Martin, C Sikivie, P Tanner, DB Bradley, R Clarke, J AF Wagner, A. Rybka, G. Hotz, M. Rosenberg, L. J. Asztalos, S. J. Carosi, G. Hagmann, C. Kinion, D. van Bibber, K. Hoskins, J. Martin, C. Sikivie, P. Tanner, D. B. Bradley, R. Clarke, J. TI Search for Hidden Sector Photons with the ADMX Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID AMPLIFIER AB Hidden U(1) gauge symmetries are common to many extensions of the standard model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with standard model photons, providing a means for electromagnetic power to pass through conducting barriers. The axion dark matter experiment detector was used to search for hidden vector bosons originating in an emitter cavity driven with microwave power. We exclude hidden vector bosons with kinetic couplings chi > 3.48 x 10(-8) for masses less than 3 mu eV. This limit represents an improvement of more than 2 orders of magnitude in sensitivity relative to previous cavity experiments. C1 [Wagner, A.; Rybka, G.; Hotz, M.; Rosenberg, L. J.] Univ Washington, Seattle, WA 98195 USA. [Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA. [Bradley, R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Clarke, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wagner, A (reprint author), Univ Washington, Seattle, WA 98195 USA. FU U.S. Department of Energy, Office of High Energy Physics [DE-FG02-96ER40956, DE-AC52-07NA27344, DE-FG02-97ER41029]; Lawrence Livermore National Laboratory; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The ADMX Collaboration gratefully acknowledges support by the U.S. Department of Energy, Office of High Energy Physics under Contracts No. DE-FG02-96ER40956 (University of Washington), No. DE-AC52-07NA27344 (Lawrence Livermore National Laboratory), and No. DE-FG02-97ER41029 (University of Florida). Additional support was provided by Lawrence Livermore National Laboratory under the LDRD program. Development of the SQUID amplifier (J.C) was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 26 Z9 26 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 19 PY 2010 VL 105 IS 17 AR 171801 DI 10.1103/PhysRevLett.105.171801 PG 4 WC Physics, Multidisciplinary SC Physics GA 666PA UT WOS:000283126900004 PM 21231034 ER PT J AU Klein, MI Debaz, L Agidi, S Lee, H Xie, G Lin, AHM Hamaker, BR Lemos, JA Koo, H AF Klein, Marlise I. DeBaz, Lena Agidi, Senyo Lee, Herbert Xie, Gary Lin, Amy H. -M. Hamaker, Bruce R. Lemos, Jose A. Koo, Hyun TI Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development SO PLOS ONE LA English DT Article ID DENTAL-CARIES; POLYSACCHARIDE PRODUCTION; GENE-EXPRESSION; DNA RELEASE; TT-FARNESOL; METABOLISM; APIGENIN; PH; GLUCOSYLTRANSFERASES; HYDROXYAPATITE AB The combination of sucrose and starch in the presence of surface-adsorbed salivary a-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e. g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity. C1 [Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Ctr Oral Biol, Rochester, NY 14642 USA. [Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Eastman Dept Dent, Rochester, NY 14642 USA. [Lemos, Jose A.; Koo, Hyun] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA. [Lee, Herbert; Xie, Gary] Los Alamos Natl Lab, Los Alamos, NM USA. [Lin, Amy H. -M.; Hamaker, Bruce R.] Purdue Univ, Dept Food Sci, Whistler Ctr Carbohydrate Res, W Lafayette, IN 47907 USA. RP Klein, MI (reprint author), Univ Rochester, Med Ctr, Ctr Oral Biol, Rochester, NY 14642 USA. EM Hyun_Koo@urmc.rochester.edu RI Klein, Marlise/A-2550-2014; OI Klein, Marlise/0000-0002-7916-1557; xie, gary/0000-0002-9176-924X FU National Institutes of Health (NIH) [Y1-DE-6006-02]; University of California Office of President-UCOP FX This research was partially supported by grants from the National Institutes of Health (NIH Y1-DE-6006-02) and the University of California Office of President-UCOP 2009 Lab Research Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 52 TC 47 Z9 50 U1 1 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13478 DI 10.1371/journal.pone.0013478 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700011 PM 20976057 ER PT J AU Matthews, TD Edwards, R Maloy, S AF Matthews, T. David Edwards, Robert Maloy, Stanley TI Chromosomal Rearrangements Formed by rrn Recombination Do Not Improve Replichore Balance in Host-Specific Salmonella enterica Serovars SO PLOS ONE LA English DT Article ID ESCHERICHIA-COLI-CHROMOSOME; RIBOSOMAL-RNA GENES; NADPH PHAGOCYTE OXIDASE; REPLICATION FORK TRAP; GENOME SEQUENCE; YERSINIA-PESTIS; INTRACELLULAR SALMONELLA; HOMOLOGOUS RECOMBINATION; ANTIMICROBIAL ACTIONS; TERMINUS REGION AB Background: Most of the,2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance. Methodology/Principal Findings: This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance. Conclusions/Significance: The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle. C1 [Matthews, T. David; Edwards, Robert; Maloy, Stanley] San Diego State Univ, Dept Biol, Ctr Microbial Sci, San Diego, CA 92182 USA. [Edwards, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Matthews, TD (reprint author), San Diego State Univ, Dept Biol, Ctr Microbial Sci, San Diego, CA 92182 USA. EM smaloy@sciences.sdsu.edu FU Natioinal Institute of Health [1U54CA132384, 1U54CA132379] FX This work was supported by grant from the National Institute of Health (# 1U54CA132384 and # 1U54CA132379). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 5 Z9 5 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13503 DI 10.1371/journal.pone.0013503 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700022 PM 20976060 ER PT J AU Yang, SH Peng, QA Zhang, Q Zou, LF Li, Y Robert, C Pritchard, L Liu, H Hovey, R Wang, Q Birch, P Toth, IK Yang, CH AF Yang, Shihui Peng, Quan Zhang, Qiu Zou, Lifang Li, Yan Robert, Christelle Pritchard, Leighton Liu, Hui Hovey, Raymond Wang, Qi Birch, Paul Toth, Ian K. Yang, Ching-Hong TI Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937 SO PLOS ONE LA English DT Article ID III SECRETION SYSTEM; SOFT-ROT PATHOGENESIS; ERWINIA-CHRYSANTHEMI; EFFECTOR PROTEINS; HYPERSENSITIVE RESPONSE; ADENYLATE-CYCLASE; VIRULENCE FACTORS; SIGMA-FACTOR; PLANT-CELLS; ERWINIA-CHRYSANTHEMI-3937 AB Background: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. Methodology/Principal Findings: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cutoff value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. Conclusion/Significances: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens. C1 [Yang, Shihui; Peng, Quan; Zhang, Qiu; Zou, Lifang; Li, Yan; Hovey, Raymond; Yang, Ching-Hong] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. [Li, Yan; Wang, Qi] China Agr Univ, Dept Plant Pathol, Beijing 100094, Peoples R China. [Robert, Christelle; Pritchard, Leighton; Liu, Hui; Birch, Paul; Toth, Ian K.] Scottish Crop Res Inst, Dundee DD2 5DA, Scotland. RP Yang, SH (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. EM Ian.Toth@scri.ac.uk; chyang@uwm.edu RI Pritchard, Leighton/A-7331-2008; YANG, SHIHUI/A-6526-2008; Birch, Paul/F-7681-2012; OI Pritchard, Leighton/0000-0002-8392-2822; YANG, SHIHUI/0000-0002-9394-9148; Birch, Paul/0000-0002-6559-3746 FU National Science Foundation [EF-0332163]; Research Growth Initiative of the University of Wisconsin-Milwaukee; Scottish Government Rural and Environment Research and Analysis Directorate (RERAD); China Scholarship Council FX This project is supported by grants from the National Science Foundation (award no. EF-0332163), the Research Growth Initiative of the University of Wisconsin-Milwaukee, the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD), and the State Scholarship Fund of the China Scholarship Council awarded to Yan Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 15 Z9 15 U1 2 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 19 PY 2010 VL 5 IS 10 AR e13472 DI 10.1371/journal.pone.0013472 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 666KU UT WOS:000283114700009 PM 20976052 ER PT J AU Demkowicz, MJ Bhattacharyya, D Usov, I Wang, YQ Nastasi, M Misra, A AF Demkowicz, M. J. Bhattacharyya, D. Usov, I. Wang, Y. Q. Nastasi, M. Misra, A. TI The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces SO APPLIED PHYSICS LETTERS LA English DT Article ID HELIUM; MULTILAYERS; ALLOYS AB Atomistic modeling shows that Cu-Nb and Cu-V interfaces contain high excess atomic volume due to constitutional vacancy concentrations of similar to 5 at. % and similar to 0.8 at. %., respectively. This finding is supported by experiments demonstrating that an approximately fivefold higher He concentration is required to observe He bubbles via through-focus transmission electron microscopy at Cu-Nb interfaces than in Cu-V interfaces. Interfaces with structures tailored to minimize precipitation and growth of He bubbles may be used to design damage-resistant composites for fusion reactors. (C) 2010 American Institute of Physics. [doi:10.1063/1.3502594] C1 [Demkowicz, M. J.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Bhattacharyya, D.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Usov, I.; Wang, Y. Q.] Los Alamos Natl Lab, MST Struct Property Relat Grp 8, Los Alamos, NM 87545 USA. RP Demkowicz, MJ (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM demkowicz@mit.edu RI Misra, Amit/H-1087-2012 FU Center for Materials in Irradiation and Mechanical Extremes; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; LANL FX We thank R. R. Greco for carrying out He3 implantations, P. Dickerson for TEM sample preparation, and R. G. Hoagland and G. R. Odette for insightful discussions. This research was funded by the Center for Materials in Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. Support from the LANL LDRD program (NRA measurements) is also acknowledged. NR 25 TC 45 Z9 45 U1 4 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 161903 DI 10.1063/1.3502594 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100018 ER PT J AU Garrett, MP Ivanov, IN Gerhardt, RA Puretzky, AA Geohegan, DB AF Garrett, Matthew P. Ivanov, Ilia N. Gerhardt, Rosario A. Puretzky, Alex A. Geohegan, David B. TI Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRICAL-PROPERTIES; CONDUCTIVITY; TRANSPORT; TRANSPARENT; COMPOSITES; FILMS AB Single wall carbon nanotube (SWNT) networks of different loadings were measured by impedance spectroscopy. The resistances of the junctions and bundles have been separated by modeling ac impedance spectroscopy data to an equivalent circuit of two parallel resistance-capacitance elements in series. The junction resistance was found to be 3-3.5 times higher than the bundle resistance. The dc and ac properties of the SWNT networks were found to obey a percolation scaling law, with parameters determined by dispersant type and SWNT purity. The values of the critical exponent in all cases were higher than the expected value of 1.3, which is related to widely distributed bundle and junction conductivities. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3490650] C1 [Garrett, Matthew P.; Ivanov, Ilia N.; Gerhardt, Rosario A.; Puretzky, Alex A.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Garrett, Matthew P.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Gerhardt, Rosario A.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Ivanov, IN (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM ivanovin@ornl.gov RI ivanov, ilia/D-3402-2015; Gerhardt, Rosario/D-6573-2012; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI ivanov, ilia/0000-0002-6726-2502; Gerhardt, Rosario/0000-0001-8774-0842; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research, conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 30 Z9 30 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 163105 DI 10.1063/1.3490650 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100061 ER PT J AU Ren, Y Hovenier, JN Higgins, R Gao, JR Klapwijk, TM Shi, SC Bell, A Klein, B Williams, BS Kumar, S Hu, Q Reno, JL AF Ren, Y. Hovenier, J. N. Higgins, R. Gao, J. R. Klapwijk, T. M. Shi, S. C. Bell, A. Klein, B. Williams, B. S. Kumar, S. Hu, Q. Reno, J. L. TI Terahertz heterodyne spectrometer using a quantum cascade laser SO APPLIED PHYSICS LETTERS LA English DT Article AB A terahertz (THz) heterodyne spectrometer is demonstrated based on a quantum cascade laser (QCL) as a local oscillator (LO) and an NbN hot electron bolometer as a mixer, and it is used to measure high-resolution molecular spectral lines of methanol (CH(3)OH) between 2.913-2.918 THz. The spectral lines are taken from a gas cell containing methanol gas and using a single-mode QCL at 2.9156 THz as an LO, which is operated in the free running mode. By increasing the pressure of the gas, line broadening and saturation are observed. The measured spectra showed good agreement with a theoretical model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3502479] C1 [Ren, Y.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. [Ren, Y.; Shi, S. C.] Chinese Acad Sci, PMO, Nanjing 210008, Jiangsu, Peoples R China. [Ren, Y.] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China. [Higgins, R.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Gao, J. R.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Bell, A.; Klein, B.] MPIfR, D-53121 Bonn, Germany. [Williams, B. S.; Kumar, S.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ren, Y (reprint author), Delft Univ Technol, Kavli Inst NanoSci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. EM y.ren@tudelft.nl; j.r.gao@tudelft.nl RI Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 FU KNAW; RadioNet; CAS; NWO FX We acknowledge W. Zhang and P. Khosropanah for making the HEB mixer ready for this experiment and A. de Lange for discussions. The work was partly supported by China Exchange Programme executed by KNAW and CAS, and by the AMSTAR+ project of RadioNet under FP7, and NWO. NR 15 TC 14 Z9 14 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 18 PY 2010 VL 97 IS 16 AR 161105 DI 10.1063/1.3502479 PG 3 WC Physics, Applied SC Physics GA 671KD UT WOS:000283502100005 ER PT J AU Nguyen, SL Jang, JI Ketterson, JB Kanatzidis, MG AF Nguyen, Sandy L. Jang, Joon I. Ketterson, John B. Kanatzidis, Mercouri G. TI (Ag2TeS3)(2)center dot A(2)S(6) (A = Rb, Cs): Layers of Silver Thiotellurite Intergrown with Alkali-Metal Polysulfides SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; CHALCOGENIDES; TELLURIDES; PLATINUM; LIGANDS; SYSTEM; TES32; ANION; SALT; LI AB The layered compounds RbAg2TeS6 and CsAg2TeS6 crystallize in the noncentrosymmetric space group P6(3)cm, with a = 19;15 angstrom, c = 14.64 angstrom, and V = 4648 angstrom(3) and a = 19.41 angstrom, c = 14.84 angstrom, and V = 4839 angstrom(3), respectively. The structures are composed of neutral [Ag2TeS3] layers alternating with charge-balanced salt layers containing polysulfide chains of [S-6](2-) and alkali-metal ions. RbAg2TeS6 and CsAg2TeS6 are air- and water-stable, wide-band-gap semiconductors (E-g similar to 2.0 eV) exhibiting nonlinear-optical second-harmonic generation. C1 [Nguyen, Sandy L.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jang, Joon I.; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU National Science Foundation [DMR-0801855]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; NU FX Financial support for this work was received from National Science Foundation Grant DMR-0801855. SEM/EDS analyses were performed at the EPIC facility of the NUANCE Center at Northwestern University (NU), supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and NU. NR 37 TC 18 Z9 18 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9098 EP 9100 DI 10.1021/ic1011346 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400002 PM 20860364 ER PT J AU Chen, JZ Szalda, DJ Fujita, E Creutet, C AF Chen, Jinzhu Szalda, David J. Fujita, Etsuko Creutet, Carol TI Iron(II) and Ruthenium(II) Complexes Containing P, N, and H Ligands: Structure, Spectroscopy, Electrochemistry, and Reactivity SO INORGANIC CHEMISTRY LA English DT Article ID CATIONIC HYDRIDO-COMPLEXES; RAY CRYSTAL-STRUCTURE; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; COORDINATION-COMPOUNDS; TETRAPHENYLBORATE ION; HOMOGENEOUS CATALYSIS; REDOX POTENTIALS; PULSE-RADIOLYSIS; METAL-COMPLEXES AB The purpose of this work was to explore the possibility of using iron(II) hydrides in CO2 reduction and to compare their reactivity to that of their ruthenium analogues. Fe(bpy)(P(OEt)(3))(3)H+ and Ru(bpy)(P(OEt)(3))(3)H+ do not react with CO2 in acetonitrile, but the one-electron-reduction products of Ru(bpy)(P(OEt3)(3)H+ and Ru(bpy)(2)(P(OEt3)H+ and the two-electron-reduction product of Fe(bPY)(P(OEt3)(3)H+ do. Ru(bpy)(2)(P(OEt)(3))H+ also reacts slowly with CO2 to give a formate complex [as reported previously by Albertin et al. (Inorg. Chem. 2004, 43, 1336)] with a second-order rate constant of similar to 4 x 10(-3) M-1 s(-1) in methanol. The structures for the hydride complexes [Fe(bpy)(P(OEt3)(3)H](+) and [Ru(bpy)(2)(P(OEt)(3))H](+) and for the (eta(5)-Cp)bis- and -tris-PTA complexes (PTA = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1.3.7]decane) of iron(II) are reported. These and the CpFe(CO)(bpy)(+) and (FePNNP)-P-II compounds have been subjected to electrochemical and UV-vis spectroscopic characterization Fe(bpy)(P(OEt3)(3)H+ exhibits a quasi-reversible oxidation at +0.42 V vs AgCl/Ag in acetonitrile, Ru(bpy)(P(OEt3)(3)H+ and Ru(bpy)(2)(P(OEt3)H+ are oxidized irreversibly at +0.90 and +0.55 V, respectively, vs AgCl/Ag. The reduction site for Fe(bpy)(P(OEt)(3))(3)H+ and Fe(bpy)(P(OEt3)(3)(CH3CN)(2+) appears to be the metal and gives rise to a two-electron process. The bpy-centered reductions are negatively shifted in the ruthenium(II) hydride complexes, compared to the acetonitrile complexes. The results of attempts to prepare other iron(II) hydrides are summarized. C1 [Chen, Jinzhu; Fujita, Etsuko; Creutet, Carol] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Szalda, David J.] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. RP Creutet, C (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ccreutz@bnl.gov RI Fujita, Etsuko/D-8814-2013 FU Brookhaven National Laboratory [DE-AC02-98CH10884]; U.S. Department of Energy [DE-AC02-98CH10884]; Division of Chemical Sciences, Geosciences and Biosciences of the Office of Basic Energy Sciences FX This research was carried out at Brookhaven National Laboratory under Contract DE-AC02-98CH10884 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences and Biosciences of the Office of Basic Energy Sciences. We thank Dr. Yasuo Matsubara for doing some of the MS measurements. NR 87 TC 16 Z9 16 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9380 EP 9391 DI 10.1021/ic101077t PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400038 PM 20857940 ER PT J AU Lunk, HJ Hartl, H Hartl, MA Fait, MJG Shenderovich, IG Feist, M Frisk, TA Daemen, LL Mauder, D Eckelt, R Gurinov, AA AF Lunk, Hans-Joachim Hartl, Hans Hartl, Monika A. Fait, Martin J. G. Shenderovich, Ilya G. Feist, Michael Frisk, Timothy A. Daemen, Luke L. Mauder, Daniel Eckelt, Reinhard Gurinov, Andrey A. TI "Hexagonal Molybdenum Trioxide"-Known for 100 Years and Still a Fount of New Discoveries SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; NEUTRON-SCATTERING; THIN-FILMS; MOO3; TETRAHYDRATE; MOLYBDATES; PHASE; WATER; NO2 AB In 1906, the preparation of "molybdic acid hydrate" was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO(3)-NH(3)-H(2)O, have been published. The reported molecular formulas of "hexagonal molybdenum oxide" varied from MoO(3) to MoO(3)center dot 0.33NH(3) to MoO(3)center dot nH(2)O (0.09 <= n <= 0.69) to MoO(3)center dot mNH(3)center dot nH(2)O (0.09 <= m <= 0.20; 0.18 <= n <= 0.60). Samples, prepared by the acidification route were investigated using thermal analysis coupled online to a mass spectrometer for evolved gas analysis, X-ray powder diffraction, Fourier transform infrared, Raman, magic-angle-spinning (1)H- and (15)N NMR spectroscopy, and incoherent inelastic neutron scattering. A comprehensive characterization of these samples will lead to a better understanding of their structure and physical properties as well as uncover the underlying relationship between the various compositions. The synthesized polymeric parent samples can be represented by the structural formula (NH(4))(x infinity)(3)[Mo(y)square(1-y)3(3y)(OH)(x)(H(2)O)(m-n)]center dot H(2)O with 0.10 <= x <= 0.14, 0.84 <= y <= 0.88, and m + n >= 3 - x - 3y. The X-ray study of a selected monocrystal confirmed the presence of the well-known 3D framework of edge- and comer-sharing MoO(6) octahedra. The colorless monocrystal crystallizes in the hexagonal system with space group P6(3)/m, Z=6, and unit cell parameters of a = 10.527(1) angstrom, c=3.7245(7) angstrom, V=357.44(8) angstrom(3), and rho = 3.73 g.cm(-3). The structure of the prepared monocrystal can best be described by the structural formula (NH(4))(0.13 infinity)(3)[Mo(0.86)square(0.14)O(2.58)(OH)(0.13)(H(2)O)(0.29-n)]center dot nH(2)O, which is consistent with the existence of one vacancy (square) for six molybdenum sites. The sample MoO(3)center dot 0.326NH(3)center dot 0.343H(2)O, prepared by the ammoniation of a partially dehydrated MoO(3)center dot 0.170NH(3)center dot 0.153H(2)O with dry gaseous ammonia, accommodates NH(3) in the hexagonal tunnels, in addition to [NH(4)](+) cations and H(2)O. The "chimie douce" reaction of MoO(3)center dot 0.155NH(3)center dot 0.440H(2)O with a 1:1 mixture of NO/NO(2) at 100 degrees C resulted in the synthesis of MoO(3)center dot 0.539H(2)O: This material is of great interest as a host of various molecules and cations. C1 [Lunk, Hans-Joachim; Frisk, Timothy A.] Global Tungsten & Powders Corp, Towanda, PA 18848 USA. [Hartl, Hans; Shenderovich, Ilya G.; Mauder, Daniel; Gurinov, Andrey A.] Free Univ Berlin, D-14195 Berlin, Germany. [Hartl, Monika A.; Daemen, Luke L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fait, Martin J. G.; Eckelt, Reinhard] Univ Rostock, Leibniz Inst Catalysis, D-18059 Rostock, Germany. [Feist, Michael] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany. RP Lunk, HJ (reprint author), Global Tungsten & Powders Corp, Towanda, PA 18848 USA. EM hans-joachim.lunk@globaltungsten.com RI Shenderovich, Ilya/C-4301-2011; Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Gurinov, Andrei/M-6358-2013; Hartl, Monika/N-4586-2016 OI Shenderovich, Ilya/0000-0001-6713-9080; Hartl, Monika/0000-0002-6601-7273; Gurinov, Andrei/0000-0002-9488-3064; Hartl, Monika/0000-0002-6601-7273 NR 40 TC 27 Z9 28 U1 9 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9400 EP 9408 DI 10.1021/ic101103g PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400040 PM 20839845 ER PT J AU Berthon, C Boubals, N Charushnikova, IA Collison, D Cornet, SM Auwer, C Gaunt, AJ Kaltsoyannis, N May, I Petit, S Redmond, MP Reilly, SD Scott, BL AF Berthon, Claude Boubals, Nathalie Charushnikova, Iraida A. Collison, David Cornet, Stephanie M. Den Auwer, Christophe Gaunt, Andrew J. Kaltsoyannis, Nikolas May, Iain Petit, Sebastien Redmond, Michael P. Reilly, Sean D. Scott, Brian L. TI The Reaction Chemistry of Plutonyl(VI) Chloride Complexes with Triphenyl Phosphineoxide and Triphenyl Phosphinimine SO INORGANIC CHEMISTRY LA English DT Article ID MOLECULAR-STRUCTURE; ABSORPTION-SPECTRA; CRYSTAL-STRUCTURES; ACTINYL IONS; URANYL; NEPTUNYL(VI); COORDINATION; CARBONATE; PU(VI); IMIN AB The reaction between Ph(3)PO dissolved in acetone and "PuO(2)Cl(2)" in dilute HCl resulted in the formation of [PuO(2)Cl(2)(Ph(3)PO)(2)]. Crystallographic characterization of the acetone solvate revealed the expected axial trans plutonyl dioxo, with trans Cl and Ph(3)PO in the equatorial plane. Spectroscopic analyses ((31)P NMR, (1)H NMR, and vis/nlR) indicate the presence of both cis and trans isomers in solution, with the trans isomer being more stable. Confirmation of the higher stability of the trans versus cis isomers for [AnO(2)Cl(2)(Ph(3)PO)(2)] (An = U and Pu) was obtained through quantum chemical computational analysis, which also reveals the Pu-O(TPPO) bond to be more ionic than the U-O(TPPO) bond. Slight variation in reaction conditions led to the crystallization of two further minor products, [PuO(2)(Ph(3)PO)(4)][ClO(4)](2) and cis-[PuCl(2)(Ph(3)PO)(4)], the latter complex revealing the potential for reduction to Pu(IV). In addition, the reaction of Ph(3)PNH with [PuO(2)Cl(2)(thf)(2)](2) in anhydrous conditions gave evidence for the formation of both cis- and trans-[PuO(2)Cl(2)(Ph(3)PNH)(2)] in solution (by (31)P NMR). However, the major reaction pathway involved protonation of the ligand with the crystallographic characterization of [Ph(3)PNH(2)](2)[PuO(2)Cl(4)]. We believe that HCl/SiMe(3)Cl carried through from the small scale preparation of [PuO(2)Cl(2)(thf)(2)](2) was the source of both protons and chlorides. The fact that this chemistry was significantly different from previous uranium studies, where cis-/trans-[UO(2)Cl(2)L(2)] (L = Ph(3)PO or Ph(3)PNH) were the only products observed, provides further evidence of the unique challenges and opportunities associated with the chemistry of plutonium. C1 [Cornet, Stephanie M.; Petit, Sebastien; Redmond, Michael P.] Univ Manchester, Sch Chem, Ctr Radiochem Res, Manchester M13 9PL, Lancs, England. [Berthon, Claude; Boubals, Nathalie; Charushnikova, Iraida A.; Den Auwer, Christophe] CEA, Nucl Energy Div, RadioChenm & Proc Dept, F-30207 Bagnols Sur Ceze, France. [Gaunt, Andrew J.; May, Iain; Reilly, Sean D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Kaltsoyannis, Nikolas] UCL, Dept Chem, London WC1H 0AJ, England. RP Cornet, SM (reprint author), Univ Manchester, Sch Chem, Ctr Radiochem Res, Manchester M13 9PL, Lancs, England. EM stephanie.cornet@manchester.ac.uk; n.kaltsoyannis@ucl.ac.uk; iainmay@lanl.gov RI BERTHON, Claude/B-1349-2016; boubals, nathalie/D-4994-2016; Scott, Brian/D-8995-2017; OI BERTHON, Claude/0000-0002-7881-7817; boubals, nathalie/0000-0002-4797-8191; Scott, Brian/0000-0003-0468-5396; Kaltsoyannis, Nikolas/0000-0003-0293-5742; Gaunt, Andrew/0000-0001-9679-6020 FU Heavy Element Chemical Research; Chemical Sciences Division of the Office of Basic Energy Sciences, United States Department of Energy; EPSRC [GR/S95169/01, GR/S06233/01, GR/595152/01]; EU FX We acknowledge the Heavy Element Chemical Research Program, Chemical Sciences Division of the Office of Basic Energy Sciences, United States Department of Energy, the EPSRC (and specifically grants GR/S95169/01, GR/S06233/01, and GR/595152/01) and the EU ACTINET program for funding. We also thank UCL for computing resources via the Research Computing "Legion" cluster and associated services. NR 53 TC 16 Z9 16 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9554 EP 9562 DI 10.1021/ic101251a PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400056 PM 20839846 ER PT J AU Sebastian, CP Malliakas, CD Chondroudi, M Schellenberg, I Rayaprol, S Hoffmann, RD Pottgen, R Kanatzidis, MG AF Sebastian, C. Peter Malliakas, Christos D. Chondroudi, Maria Schellenberg, Inga Rayaprol, Sudhindra Hoffmann, Rolf-Dieter Poettgen, Rainer Kanatzidis, Mercouri G. TI Indium Flux-Growth of Eu2AuGe3: A New Germanide with an AlB2 Superstructure SO INORGANIC CHEMISTRY LA English DT Article ID NEUTRON STRUCTURE DETERMINATION; CHARGE-DENSITY-WAVE; GA SQUARE NET; CRYSTAL-STRUCTURE; RARE-EARTH; INTERMETALLIC COMPOUNDS; EXPLORATORY SYNTHESIS; MAGNETIC-PROPERTIES; X-RAY; ALUMINUM SILICIDES AB The germanide Eu2AuGe3 was obtained as large single crystals in high yield from a reaction of the elements in liquid indium. At room temperature Eu2AuGe3 crystallizes with the Ca2AgSi3 type, space group Fmmm, an ordered variant of the AlB2 type: a = 857.7(4), b = 1485.5(10), c = 900.2(4) pm. The gold and germanium atoms build up slightly distorted graphite-like layers which consist of Ge-6 and Au2Ge4 hexagons, leading to two different hexagonal-prismatic coordination environments for the europium atoms. Magnetic susceptibility data showed Curie-Weiss law behavior above 50 K and antiferromagnetic ordering at 11 K. The experimentally measured magnetic moment indicates divalent europium. The compound exhibits a distinct magnetic anisotropy based on single crystal measurements and at 5 K it shows a metamagnetic transition at similar to 10 kOe. Electrical conductivity measurements show metallic behavior. The structural transition at 130 K observed in the single crystal data was very well supported by the conductivity measurements. Eu-151 Mossbauer spectroscopic data show an isomer shift of -11.24 mm/s at 77 K, supporting the divalent character of europium. In the magnetically ordered regime one observes superposition of two signals with hyperfine fields of 26.0 (89%) and 3.5 (11%) T, respectively, indicating differently ordered domains. C1 [Schellenberg, Inga; Hoffmann, Rolf-Dieter; Poettgen, Rainer] Univ Munster, Inst Anorgan & Analyt Chem, D-48149 Munster, Germany. [Schellenberg, Inga; Hoffmann, Rolf-Dieter; Poettgen, Rainer] Univ Munster, NRW Grad Sch Chem, D-48149 Munster, Germany. [Sebastian, C. Peter; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chondroudi, Maria; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Rayaprol, Sudhindra] Bhabha Atom Res Ctr, Mumbai Ctr, UGC DAE Consortium Sci Res, Bombay 400085, Maharashtra, India. RP Pottgen, R (reprint author), Univ Munster, Inst Anorgan & Analyt Chem, Corrensstr 30, D-48149 Munster, Germany. EM pottgen@uni-muenster.de; m-kanatzidis@northwestern.edu RI Rayaprol, Sudhindra/A-3831-2008; Peter, Sebastian/A-2666-2013 FU Department of Energy [DE-FG02-07ER46356]; Deutsche Forschungsgemeinschaft; Northwestern Materials Research Center under NSF [DMR-0520513] FX Financial support from the Department of Energy (Grant DE-FG02-07ER46356) and the Deutsche Forschungsgemeinschaft are gratefully acknowledged. Use was made of facilities operated by the Northwestern Materials Research Center under NSF Grand DMR-0520513. Technical support was provided by Dr. O. Chemyashevskyy. NR 86 TC 26 Z9 26 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9574 EP 9580 DI 10.1021/ic101340a PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400058 PM 20836517 ER PT J AU Aliaga-Alcalde, N Marques-Gallego, P Kraaijkamp, M Herranz-Lancho, C den Dulk, H Gorner, H Roubeau, O Teat, SJ Weyhermuller, T Reedijk, J AF Aliaga-Alcalde, Nuria Marques-Gallego, Patricia Kraaijkamp, Mirte Herranz-Lancho, Coral den Dulk, Hans Goerner, Helmut Roubeau, Olivier Teat, Simon J. Weyhermueller, Thomas Reedijk, Jan TI Copper Curcuminoids Containing Anthracene Groups: Fluorescent Molecules with Cytotoxic Activity SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; DNA-BINDING PROPERTIES; BREAST-CANCER CELLS; CRYSTAL-STRUCTURE; IN-VITRO; MODIFIED 1,10-PHENANTHROLINES; ANTITUMOR ACTIVITIES; CLEAVAGE PROPERTIES; CIRCULAR-DICHROISM; NUCLEASE ACTIVITY AB The coordination chemistry of the new curcuminoid ligand, 1,7-(di-9-anthracene-1,6-heptadiene-3,5-dione), abbreviated 9Accm has been studied, resulting in two new copper-9Accm compounds. Compound 1, [Cu(phen)Cl(9Accm)], was synthesized by reacting 9Accm with [Cu(phen)Cl(2)) in a 1:1 ratio (M:L) and compound 2, [Cu(9Accm)(2)], was prepared from Cu(OAc)(2) and 9Accm (1:2). UV-vis, electron paramagnetic resonance (ERR), and superconducting quantum interference device (SQUID) measurements were some of the techniques employed to portray these species; studies on single crystals of free 9Accm, [Cu(phen)Cl(9Accm)] and [Cu(9Accm)(2)(py)] provided detailed structural information about compounds 1 and 2.py, being the first two copper-curcuminoids crystallographically described. In addition the antitumor activity of the new compounds was studied and compared with free 9Accm for a number of human tumor cells. To provide more insight on the mode of action of these compounds under biological conditions, additional experiments were accomplished, including studies on the nature of their interactions with calf thymus DNA by UV-vis titration and Circular Dichroism. These experiments together with DNA-binding studies indicate electrostatic interactions between some of these species and the double helix, pointing out the weak nature of the interaction of the compounds with CT-DNA. The intrinsic fluorescence of the free ligand and both copper compounds provided valuable information over the cellular process and therefore, fluorescence microscopy studies were performed using a human osteosarcoma cell line. Studies in vitro using this technique suggest that the action of these molecules seems to occur outside the nuclei. C1 [Aliaga-Alcalde, Nuria] ICREA, Barcelona 08028, Spain. [Aliaga-Alcalde, Nuria; Herranz-Lancho, Coral] Univ Barcelona, Fac Quim, E-08028 Barcelona, Spain. [Aliaga-Alcalde, Nuria; Marques-Gallego, Patricia; Kraaijkamp, Mirte; den Dulk, Hans; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands. [Goerner, Helmut; Weyhermueller, Thomas] Max Planck Inst Bioanorgan Chem, D-45413 Mulheim, Germany. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Aliaga-Alcalde, N (reprint author), ICREA, Marti & Franques 1-11, Barcelona 08028, Spain. EM nuria.aliaga@icrea.it; reedijk@chem.leidenuniv.nl RI Reedijk, Jan/F-1992-2010; Weyhermuller, Thomas/G-6730-2012; Marques Gallego, Patricia/A-6191-2014; Aliaga-Alcalde, Nuria/H-5886-2011; Roubeau, Olivier/A-6839-2010 OI Reedijk, Jan/0000-0002-6739-8514; Weyhermuller, Thomas/0000-0002-0399-7999; Marques Gallego, Patricia/0000-0002-5496-9103; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Roubeau, Olivier/0000-0003-2095-5843 FU Ministerio de Educacion y Ciencia [CTQ2009-06959/BQU]; ICREA (Institut Catala de Recerca i Estudis Avancats); Teva/pharmachemie, Boy, The Netherlands; CCL RC Daresbury Laboratory, SRS, via European Union; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the Ministerio de Educacion y Ciencia (CTQ2009-06959/BQU) and ICREA (Institut Catala de Recerca i Estudis Avancats) for the financial support. The cytotoxicity tests of the compounds were generously supported by Dr. D. de Vos from Teva/pharmachemie, Boy, The Netherlands. We acknowledge the provision of time at the CCL RC Daresbury Laboratory, SRS, via support by the European Union. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 67 TC 34 Z9 35 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 18 PY 2010 VL 49 IS 20 BP 9655 EP 9663 DI 10.1021/ic101331c PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 662CB UT WOS:000282783400068 PM 20839841 ER PT J AU Lombardo, FC Mazzitelli, FD Villar, PI Dalvit, DAR AF Lombardo, F. C. Mazzitelli, F. D. Villar, P. I. Dalvit, D. A. R. TI Casimir energy between media-separated cylinders: The scalar case SO PHYSICAL REVIEW A LA English DT Article ID FORCES AB We derive exact expressions for the Casimir scalar interaction energy between media-separated eccentric dielectric cylinders and for the media-separated cylinder-plane geometry using a mode-summation approach. Similarly to the electromagnetic Casimir-Lifshitz interaction energy between fluid-separated planar plates, the force between cylinders is attractive or repulsive depending on the relative values of the permittivities of the three intervening media. C1 [Lombardo, F. C.; Mazzitelli, F. D.] FCEyN UBA, Dept Fis Juan Jose Giambiagi, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina. [Villar, P. I.] BSC, Comp Applicat Sci & Engn Dept, E-08034 Barcelona, Spain. [Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lombardo, FC (reprint author), FCEyN UBA, Dept Fis Juan Jose Giambiagi, Fac Ciencias Exactas & Nat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. FU DARPA/MTO under DOE/NNSA [DE-AC52-06NA25396]; UBA; CONICET; ANPCyT, Argentina; UNESCO FX We thank J. Etcheverry and F. Intravaia for useful discussions. The work of DARD was funded by DARPA/MTO's Casimir Effect Enhancement program under DOE/NNSA Contract DE-AC52-06NA25396. FCL and FDM were supported by UBA, CONICET, and ANPCyT, Argentina. PIV acknowledges support of UNESCO LOREAL For Women in Science Programme. NR 33 TC 16 Z9 16 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT 18 PY 2010 VL 82 IS 4 AR 042509 DI 10.1103/PhysRevA.82.042509 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 665OV UT WOS:000283046200004 ER PT J AU Petrova, AE Krasnorussky, VN Shikov, AA Yuhasz, WM Lograsso, TA Lashley, JC Stishov, SM AF Petrova, Alla E. Krasnorussky, Vladimir N. Shikov, Anatoly A. Yuhasz, William M. Lograsso, Thomas A. Lashley, Jason C. Stishov, Sergei M. TI Elastic, thermodynamic, and electronic properties of MnSi, FeSi, and CoSi SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM PHASE-TRANSITION; WEAK FERROMAGNETISM; SPIN FLUCTUATIONS; BAND-STRUCTURE; HIGH-PRESSURE; MONOSILICIDES; TRANSPORT; LATTICE AB Measurements of the sound velocities, heat capacities, magnetic susceptibilities, and electrical resistivities of single crystals of MnSi, FeSi, and CoSi were performed in the temperature range 2.5-300 K and the elastic constants were calculated. The temperature dependence of the mentioned quantities reveals nontrivial features, reflecting specifics of magnetic and electron subsystems in these materials. C1 [Petrova, Alla E.; Krasnorussky, Vladimir N.; Stishov, Sergei M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Shikov, Anatoly A.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Yuhasz, William M.; Lograsso, Thomas A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Lashley, Jason C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Petrova, AE (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. EM sergei@hppi.troitsk.ru FU Russian Foundation for Basic Research; Physics Department of RAS on Strongly Correlated Systems; Presidium of RAS on Physics of Strongly Compressed Matter; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science FX We express our deep gratitude to Joe Thompson for the technical assistance. A.E.P., S.M.S., and V.N.K. appreciate support of the Russian Foundation for Basic Research, Program of the Physics Department of RAS on Strongly Correlated Systems, and Program of the Presidium of RAS on Physics of Strongly Compressed Matter. W.M.Y. and T.A.L. wish to acknowledge research performed at Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Science. NR 38 TC 27 Z9 28 U1 7 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 18 PY 2010 VL 82 IS 15 AR 155124 DI 10.1103/PhysRevB.82.155124 PG 6 WC Physics, Condensed Matter SC Physics GA 665QF UT WOS:000283049800004 ER PT J AU Rahman, R Muller, RP Levy, JE Carroll, MS Klimeck, G Greentree, AD Hollenberg, LCL AF Rahman, Rajib Muller, Richard P. Levy, James E. Carroll, Malcolm S. Klimeck, Gerhard Greentree, Andrew D. Hollenberg, Lloyd C. L. TI Coherent electron transport by adiabatic passage in an imperfect donor chain SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM DOTS; WAVE-GUIDES; NEMO 3-D; SILICON; ATOM; SPECTROSCOPY AB Coherent tunneling adiabatic passage (CTAP) has been proposed as a long-range physical quantum bits (qubit) transport mechanism in solid-state quantum computing architectures. Although the mechanism can be implemented in either a chain of quantum dots or donors, a one-dimensional chain of donors in Si is of particular interest due to the natural confining potential of donors that can, in principle, help reduce the gate densities in solid-state quantum computing architectures. Using detailed atomistic modeling, we investigate CTAP in a more realistic triple donor system in the presence of inevitable fabrication imperfections. In particular, we investigate how an adiabatic pathway for CTAP is affected by donor misplacements and propose schemes to correct for such errors. We also investigate the sensitivity of the adiabatic path to gate voltage fluctuations. The tight-binding based atomistic treatment of straggle used here may benefit understanding of other donor nanostructures, such as donor-based charge and spin qubits. Finally, we derive an effective 3 X 3 model of CTAP that accurately resembles the voltage tuned lowest energy states of the multimillion atom tight-binding simulations and provides a translation between intensive atomistic Hamiltonians and simplified effective Hamiltonians while retaining the relevant atomic-scale information. This method can help characterize multidonor experimental structures quickly and accurately even in the presence of imperfections, overcoming some of the numeric intractabilities of finding optimal eigenstates for nonideal donor placements. C1 [Rahman, Rajib; Muller, Richard P.; Levy, James E.; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Greentree, Andrew D.; Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia. RP Rahman, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rrahman@sandia.gov; rmuller@sandia.gov RI Hollenberg, Lloyd/B-2296-2010; Greentree, Andrew/A-8503-2008; Klimeck, Gerhard/A-1414-2012; OI Greentree, Andrew/0000-0002-3505-9163; Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X FU Laboratory Directed Research and Development program at Sandia National Laboratories; National Security Agency Laboratory for Physical Sciences [EAO-09-0000049393]; Lockheed Martin Co., for the United States Department of Energy [DE-AC04-94AL85000]; NASA; Australian Research Council, NSA; ARO [W911NF-08-1-0527]; Australian Research Council [DP0880466, DP0770715] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and by the National Security Agency Laboratory for Physical Sciences under Contract No. EAO-09-0000049393. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. Part of the development of NEMO-3D was initially performed at JPL, Caltech under a contract with NASA. NCN/nanohub.org computational resources were used. This work was supported by the Australian Research Council, NSA, and ARO (Contract No. W911NF-08-1-0527). A.D.G. and L.C.L.H. acknowledge the Australian Research Council for financial support (Projects No. DP0880466 and No. DP0770715, respectively). R. R. also acknowledges discussions with T. Gurrieri and R. Young of SNL. NR 54 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 18 PY 2010 VL 82 IS 15 AR 155315 DI 10.1103/PhysRevB.82.155315 PG 9 WC Physics, Condensed Matter SC Physics GA 665QF UT WOS:000283049800008 ER PT J AU Neufeld, RB Renk, T AF Neufeld, R. B. Renk, Thorsten TI Mach cone signal and energy deposition scenarios in linearized hydrodynamics SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; SCATTERING; COLLISIONS; NUCLEI; QCD AB Particle correlation measurements associated with a hard or semihard trigger in heavy-ion collisions may reflect Mach cone shock waves excited in the bulk medium by partonic energy loss. This is of great interest because, when compared with theory, such measurements can provide information on the transport properties of the medium. Specifically, the formation of Mach cone shock waves is sensitive to the viscosity and speed of sound, as well as the detailed nature of the jet-medium interaction. However, modeling the physics of shock-wave excitation to obtain a meaningful comparison with measured correlations is very challenging, as the correlations arise from an interplay of perturbative as well as nonperturbative phenomena at different momentum scales. In this work we take a step in that direction by presenting a systematic study of the dependence of azimuthal particle correlations on the spatiotemporal structure of energy deposition into the medium. Our results indicate that detailed modeling of the evolution of an initially produced hard parton and the interaction of this evolving state with the medium is crucial, as both the magnitude and the shape of the shock-wave signal show a strong dependence on the assumptions being made. C1 [Neufeld, R. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Renk, Thorsten] Univ Jyvaskyla, Dept Phys, FI-00014 Jyvaskyla, Finland. [Renk, Thorsten] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. EM neufeld@lanl.gov FU Finnish Academy [115262]; US Department of Energy, Office of Science [DE-AC52-06NA25396] FX This work was supported by an Academy Research Fellowship from the Finnish Academy and Academy Project No. 115262 and, also, by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396. NR 35 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT 18 PY 2010 VL 82 IS 4 AR 044903 DI 10.1103/PhysRevC.82.044903 PG 12 WC Physics, Nuclear SC Physics GA 665QT UT WOS:000283051300001 ER PT J AU Kojo, T Pisarski, RD Tsvelik, AM AF Kojo, Toru Pisarski, Robert D. Tsvelik, A. M. TI Covering the Fermi surface with patches of quarkyonic chiral spirals SO PHYSICAL REVIEW D LA English DT Article ID LARGE N-C; PHASE-DIAGRAM; DENSITY; MODEL; QCD AB We argue that in cold, dense quark matter, in the limit of a large number of colors the ground state is unstable with respect to creation of a complicated quarkyonic chiral spiral state, in which both chiral and translational symmetries are spontaneously broken. The entire Fermi surface is covered with patches of quarkyonic chiral spirals, whose number increases as the quark density does. The low energy excitations are gapless, given by the Wess-Zumino-Novikov-Witten model plus transverse kinetic terms localized about different patches. C1 [Kojo, Toru] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, New York, NY 11973 USA. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, New York, NY 11973 USA. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Phys, Dept Condensed Matter Phys & Mat Sci, New York, NY 11973 USA. RP Kojo, T (reprint author), RIKEN, BNL Res Ctr, Brookhaven Natl Lab, New York, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-98CH10886]; RIKEN; Alexander von Humboldt Foundation FX We are grateful to Y. Hidaka, L. McLerran, A. Rebhan, and A. Schmitt for discussions and interest in our work. The research of R. D. P. and A. T. is supported under the U.S. Department of Energy Contract No. DE-AC02-98CH10886. T. K. is supported by the Special Postdoctoral Research Program of RIKEN. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. NR 35 TC 26 Z9 27 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 18 PY 2010 VL 82 IS 7 AR 074015 DI 10.1103/PhysRevD.82.074015 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 665QZ UT WOS:000283051900001 ER PT J AU Chen, CC Moritz, B Vernay, F Hancock, JN Johnston, S Jia, CJ Chabot-Couture, G Greven, M Elfimov, I Sawatzky, GA Devereaux, TP AF Chen, C. -C. Moritz, B. Vernay, F. Hancock, J. N. Johnston, S. Jia, C. J. Chabot-Couture, G. Greven, M. Elfimov, I. Sawatzky, G. A. Devereaux, T. P. TI Unraveling the Nature of Charge Excitations in La2CuO4 with Momentum-Resolved Cu K-Edge Resonant Inelastic X-Ray Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; SUPERCONDUCTORS; SPECTROSCOPY; OXYGEN; TEMPERATURE; DEPENDENCE; SPECTRA; PLANE; HOLES AB The results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic x-ray scattering (RIXS) from La2CuO4. The model includes electronic orbitals necessary to highlight the nonlocal Zhang-Rice singlet, charge transfer, and d-d excitations, as well as states with apical oxygen 2p(z) character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multiorbital character of RIXS profiles in the energy transfer range 1-6 eV. C1 [Chen, C. -C.; Moritz, B.; Johnston, S.; Jia, C. J.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, C. -C.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Vernay, F.] Univ Perpignan Via Domitia, LAMPS, F-66860 Perpignan, France. [Hancock, J. N.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Hancock, J. N.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland. [Johnston, S.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Jia, C. J.; Chabot-Couture, G.; Greven, M.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Greven, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Elfimov, I.; Sawatzky, G. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Chen, CC (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RI Sawatzky, George/D-2997-2012; Moritz, Brian/D-7505-2015; Johnston, Steven/J-7777-2016; OI Moritz, Brian/0000-0002-3747-8484; Jia, Chunjing/0000-0001-7999-1932 FU U.S. DOE [DE-AC02-76SF00515, DE-FG02-08ER46540]; DOE [DE-AC02-05CH11231]; NSC, Taiwan [NSC-095-SAF-I-564-013-TMS]; NSERC; SHARCNET FX The authors thank J. van den Brink, Y.-J. Kim, W.-S. Lee, J.-H. Chu, K. Ko, and L.-Q. Lee for discussions. This work is supported by the U.S. DOE under contract number DE-AC02-76SF00515, and DE-FG02-08ER46540 (CMSN). This research used resources of the NERSC, supported by DOE under Contract No. DE-AC02-05CH11231. C. C. C. acknowledges support from NSC, Taiwan, under contract No. NSC-095-SAF-I-564-013-TMS. S. J. acknowledges support from NSERC and SHARCNET. T. P. D., B. M., F. V., and S. J. are grateful for the hospitality of PITP. NR 45 TC 13 Z9 13 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 18 PY 2010 VL 105 IS 17 AR 177401 DI 10.1103/PhysRevLett.105.177401 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SB UT WOS:000283054700017 PM 21231077 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PO Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JR Neustroev, R Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJYO Owen, M Padilla, M Padley, R Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, LA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. O. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. R. Neustroev, R. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, R. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, R. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, L. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Dependence of the t(t)over-bar production cross section on the transverse momentum of the top quark SO PHYSICS LETTERS B LA English DT Article DE Top quark; Differential cross sections; Perturbative QCD ID COLLISIONS; PHYSICS AB We present a measurement of the differential cross section for t (t) over bar events produced in p (p) over bar collisions at root s = 1.96 TeV as a function of the transverse momentum (p(T)) of the top quark. The selected events contain a high-p(T) lepton (l), a large imbalance in p(T). four or more jets with at least one candidate for a b jet, and correspond to 1 fb(-1) of integrated luminosity recorded with the D0 detector. Objects in the event are associated through a constrained kinematic fit to the t (t) over bar -> WbW (b) over bar -> lvbq (q) over bar' (b) over bar process. Results from next and next-to-next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision. (C) 2010 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. R.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barberis, E.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, R.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3 CNRS, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, IN2P3 CNRS, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Inst Phys 3 A, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Bandurin, D. V.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, L. A.] Inst High Energy Phys, Protvino, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Barfuss, A. -F.; Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Baldin, B.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Ferbel, T.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Banerjee, S.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. O.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, R.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Gutierrez, Phillip/C-1161-2011; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Williams, Mark/0000-0001-5448-4213; Price, Darren/0000-0003-2750-9977; Belanger-Champagne, Camille/0000-0003-2368-2617; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC (Canada); CFI (Canada); NSERC (Canada); West Grid Project (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermi lab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina): FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West Grid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 28 TC 23 Z9 24 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 515 EP 521 DI 10.1016/j.physletb.2010.09.011 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aleexev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, R Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Browns, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoeh, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aleexev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, R. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Browns, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoeh, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA Do Collaboration TI Measurement of the normalized Z/gamma* -> mu(+)mu(-) transverse momentum distribution in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Z bosons; Differential cross section; Perturbative QCD; Event generators; Monte Carlo models ID CROSS-SECTION; HADRON COLLIDERS; PAIRS; QCD AB We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0-330 GeV, in proton-antiproton collisions at root s = 1.96 TeV. The measurement uses 0.97 fb(-1) of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma* -> mu(+)mu(-) + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals. (C) 2010 Elsevier B.V. All rights reserved. C1 [Belanger-Champagne, C.; Lim, J. K.; Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, CNRS IN2P3, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Browns, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Aleexev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, R.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoeh, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank Zhao Li, Mike Seymour, Frank Siegert, Peter Skands and Chien-Peng Yuan for very useful discussions on the theoretical calculations. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 52 TC 28 Z9 28 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 522 EP 530 DI 10.1016/j.physletb.2010.09.012 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300003 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, R Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parson, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkovav, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, R Slattery, R Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, R Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, R Vokac, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, R. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parson, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, R. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkovav, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, R. Slattery, R. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, R. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, R. Vokac, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the dijet invariant mass cross section in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Quantum chromodynamics; Dijets; Cross section; Tevatron; D0 ID EXTRA DIMENSIONS; PHYSICS; QUARK AB The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in p (p) over bar collisions at root s = 1.96 TeV using 0.7 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, R.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, R.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, R.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, R.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkovav, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bean, A.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.] Boston Univ, Boston, MA 02215 USA. [Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parson, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, R.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, R.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 25 TC 25 Z9 25 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 531 EP 538 DI 10.1016/j.physletb.2010.09.013 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beria, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, V Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, R Hagopian, S Haley, J Hang, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfas, E Karmanov, D Kasper, PA Katsanos, TI Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, R Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, F Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, R Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beria, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, V. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, R. Hagopian, S. Haley, J. Hang, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfas, E. Karmanov, D. Kasper, P. A. Katsanos, T. I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, R. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, Fl. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, R. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI Search for the rare decay B-s(0) -> mu(+)mu(-) SO PHYSICS LETTERS B LA English DT Article DE b-quarks; Rare decays ID LARGE TAN BETA; PARTICLE PHYSICS; CP-VIOLATION; B-DECAYS; RUN-II; SYMMETRY; DETECTOR; FLAVOR AB We present the results of a search for the flavor changing neutral current decay B-s(0) -> mu(+)mu(-) using 6.1 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron Collider. The observed number of B-s(0) candidates is consistent with background expectations. The resulting upper limit on the branching fraction is B(B-s(0) -> mu(+)mu(-)) < 5.1 x 10(-8) at the 95% C.L. This limit is a factor of 2.4 better than that of the previous DO analysis and the best limit to date. Published by Elsevier B.V. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Hang, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Schaile, D.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS,IN2P3, Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Bernardi, G.; Enari, V.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, V.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] Irfu, CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, R.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, R.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, Fl.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, R.; Nunnemann, T.; Sanders, M. P.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beria, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Lammers, S.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Rominsky, M.; Rubinov, R.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, T. I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Carrera, Edgar/0000-0002-0857-8507; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Bertram, Iain/0000-0003-4073-4941 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 33 TC 61 Z9 61 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 18 PY 2010 VL 693 IS 5 BP 539 EP 544 DI 10.1016/j.physletb.2010.09.024 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 673YY UT WOS:000283701300005 ER PT J AU Classen, AT Norby, RJ Campany, CE Sides, KE Weltzin, JF AF Classen, Aimee T. Norby, Richard J. Campany, Courtney E. Sides, Katherine E. Weltzin, Jake F. TI Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem SO PLOS ONE LA English DT Article ID ELEVATED CO2; SOIL-MOISTURE; TREE ESTABLISHMENT; ATMOSPHERIC CO2; PLANT COMMUNITY; FOREST; RESPONSES; MODELS; REGENERATION; TEMPERATURE AB Background: Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Methodology/Principal Findings: We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species. Conclusions: The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change. C1 [Classen, Aimee T.; Campany, Courtney E.; Weltzin, Jake F.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Classen, Aimee T.; Norby, Richard J.; Sides, Katherine E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Weltzin, Jake F.] USA Natl Phenol Network, Tucson, AZ USA. RP Classen, AT (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. EM aclassen@utk.edu RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012; OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828; Whitacre, Katherine/0000-0002-7573-6448 FU US Department of Energy, Office of Science, Biological and Environmental [DE-FG02-02ER63366]; U. S. Department of Energy [DE-AC05-00OR22725] FX Research was sponsored by the US Department of Energy, Office of Science, Biological and Environmental Research Program, Grant No. DE-FG02-02ER63366. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; We thank SK Chapman, GM Crutsinger, W Godsoe, PJ Hanson, CM Iversen, JA Langley, and NJ Sanders, and two reviewers for very helpful comments on the manuscript. Work was conducted at Oak Ridge National Laboratory, which is managed by UT Battelle, LLC, for the U. S. Department of Energy under Contract DE-AC05-00OR22725. NR 54 TC 17 Z9 18 U1 2 U2 31 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 18 PY 2010 VL 5 IS 10 AR e13476 DI 10.1371/journal.pone.0013476 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 665ON UT WOS:000283045300038 PM 20976104 ER PT J AU Shen, YF Tolic, N Liu, T Zhao, R Petritis, BO Gritsenko, MA Camp, DG Moore, RJ Purvine, SO Esteva, FJ Smith, RD AF Shen, Yufeng Tolic, Nikola Liu, Tao Zhao, Rui Petritis, Brianne O. Gritsenko, Marina A. Camp, David G. Moore, Ronald J. Purvine, Samuel O. Esteva, Francisco J. Smith, Richard D. TI Blood Peptidome-Degradome Profile of Breast Cancer SO PLOS ONE LA English DT Article ID HUMAN PLASMA PROTEOME; MASS-SPECTROMETRY; HEAVY-CHAINS; TUMOR-CELLS; PLASMINOGEN; INHIBITOR; PROTEINS; MARKERS; MICROENVIRONMENT; DEGRADATION AB Background: Cancer invasion and metastasis are closely associated with activities within the degradome; however, little is known about whether these activities can be detected in the blood of cancer patients. Methodology and Principal Findings: The peptidome-degradome profiles of pooled blood plasma sampled from 15 breast cancer patients (BCP) and age, race, and menopausal status matched control healthy persons (HP) were globally characterized using advanced comprehensive separations combined with tandem Fourier transform mass spectrometry and new data analysis approaches that facilitated top-down peptidomic analysis. The BCP pool displayed 71 degradome protein substrates that encompassed 839 distinct peptidome peptides. In contrast, the HP 50 degradome substrates found encompassed 425 peptides. We find that the ratios of the peptidome peptide relative abundances can vary as much as >4000 fold between BCP and HP. The experimental results also show differential degradation of substrates in the BCP sample in their functional domains, including the proteolytic and inhibitory sites of the plasmin-antiplasmin and thrombin-antithrombin systems, the main chains of the extracellular matrix protection proteins, the excessive degradation of innate immune system key convertases and membrane attack complex components, as well as several other cancer suppressor proteins. Conclusions: Degradomics-peptidomics profiling of blood plasma is highly sensitive to changes not evidenced by conventional bottom-up proteomics and potentially provides unique signatures of possible diagnostic utility. C1 [Shen, Yufeng; Liu, Tao; Gritsenko, Marina A.; Camp, David G.; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolic, Nikola; Zhao, Rui; Purvine, Samuel O.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Petritis, Brianne O.] Arizona State Univ, Biol Design Interdisciplinary Grad Degree Program, Tempe, AZ USA. [Esteva, Francisco J.] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX 77030 USA. [Esteva, Francisco J.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Yufeng.shen@pnl.gov; rds@pnl.gov RI Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; OI Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; Esteva, Francisco/0000-0003-2437-3920 FU National Institutes of Health, National Center for Research Resources [RR18522]; DOE [DE-AC05-76RLO-1830] FX Funding was provided by the National Institutes of Health, National Center for Research Resources (RR18522). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; Work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RLO-1830. NR 43 TC 30 Z9 31 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 18 PY 2010 VL 5 IS 10 AR e13133 DI 10.1371/journal.pone.0013133 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 665ON UT WOS:000283045300004 PM 20976186 ER PT J AU Zelikin, AN Price, AD Stadler, B AF Zelikin, Alexander N. Price, Andrew D. Stadler, Brigitte TI Poly(Methacrylic Acid) Polymer Hydrogel Capsules: Drug Carriers, Sub-compartmentalized Microreactors, Artificial Organelles SO SMALL LA English DT Article ID ENZYME-LOADED LIPOSOMES; POLYELECTROLYTE CAPSULES; EN-ROUTE; DELIVERY; FILMS; MICROCAPSULES; ENCAPSULATION; DEGRADATION; OXIDATION; PROTEINS AB Multilayered polymer capsules attract significant research attention and are proposed as candidate materials for diverse biomedical applications, from targeted drug delivery to micro encapsulated catalysis and sensors. Despite tremendous efforts, the studies which extend beyond proof of concept and report on the use of polymer capsules in drug delivery are few, as are the developments in encapsulated catalysis with the use of these carriers. In this Concept article, the recent successes of poly(methacrylic acid) hydro gel capsules as carrier vessels for delivery of therapeutic cargo, creation of microreactors, and assembly of sub-compartmentalized cell mimics are discussed. The developed technologies are outlined, successful applications of these capsules are highlighted, capsules properties which contribute to their performance in diverse applications are discussed, and further directions and plausible developments in the field are suggested. C1 [Zelikin, Alexander N.; Stadler, Brigitte] Aarhus Univ, Interdisciplinary Nanosci Ctr iNano, DK-8000 Aarhus C, Denmark. [Zelikin, Alexander N.] Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark. [Price, Andrew D.] Sandia Natl Labs, Dept CINT Sci, Albuquerque, NM 87185 USA. [Zelikin, Alexander N.; Price, Andrew D.; Stadler, Brigitte] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia. RP Zelikin, AN (reprint author), Aarhus Univ, Interdisciplinary Nanosci Ctr iNano, DK-8000 Aarhus C, Denmark. EM zelikin@chem.au.dk; adprice@sandia.gov; bstadler@inano.au.dk RI Zelikin, Alexander/J-3659-2012; Stadler, Brigitte/I-2661-2013; OI Zelikin, Alexander/0000-0002-9864-321X; Stadler, Brigitte/0000-0002-7335-3945 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 32 Z9 32 U1 3 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD OCT 18 PY 2010 VL 6 IS 20 BP 2201 EP 2207 DI 10.1002/smll.201000765 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 676DO UT WOS:000283890500001 PM 20721952 ER PT J AU Yang, YF McCue, LA Parsons, AB Feng, S Zhou, JZ AF Yang, Yunfeng McCue, Lee Ann Parsons, Andrea B. Feng, Sheng Zhou, Jizhong TI The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control SO BMC MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; VIBRIO-CHOLERAE; SUPEROXIDE-DISMUTASE; TARGET PREDICTION; PUTREFACIENS MR-1; IRON HOMEOSTASIS; NONCODING RNAS; SEQUENCE; PROTEIN; GENES AB Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the gamma proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other gamma-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis. C1 [Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Yang, Yunfeng; Parsons, Andrea B.; Zhou, Jizhong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [McCue, Lee Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Feng, Sheng] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27710 USA. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. RP Yang, YF (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn RI Yang, Yunfeng/H-9853-2013; OI Yang, Yunfeng/0000-0001-8274-6196; McCue, Lee Ann/0000-0003-4456-517X FU United States Department of Energy's Office of Biological through Shewanella Federation; Microbial Genome Program; US Department of Energy [DE-AC05-00OR22725, DE-AC06-76RLO 1830] FX We thank Choo Yieng Hamilton, Chris Hemme and Charles X. Guan for technical support. This work was supported by The United States Department of Energy's Office of Biological and Environmental Research under the Genomics: GTL Program through the Shewanella Federation, and the Microbial Genome Program. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725. PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC06-76RLO 1830. NR 39 TC 5 Z9 5 U1 3 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD OCT 16 PY 2010 VL 10 AR 264 DI 10.1186/1471-2180-10-264 PG 10 WC Microbiology SC Microbiology GA 671JW UT WOS:000283500700001 PM 20950482 ER PT J AU Perry, WL Gunderson, JA Balkey, MM Dickson, PM AF Perry, W. Lee Gunderson, Jake A. Balkey, Matthew M. Dickson, Peter M. TI Impact-induced friction ignition of an explosive: Infrared observations and modeling SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HMX AB A contaminant (grit) trapped between an explosive and an impacted surface can significantly reduce the impact energy required to initiate a secondary high explosive. Several severe accidents have occurred when an explosive charge was dropped from a height insufficient to cause ignition by heating due only to plastic deformation; the frictional heating from embedded grit has been implicated. Here, we describe an idealization of this situation where a small sample of a polymer-bonded cyclotetramethylenetetranitramine explosive (HMX-PBX 9501), with a 400 mu m diameter sphere of silica embedded in the surface, was impacted between instrumented transparent anvils and infrared images were recorded. The instrumentation provided temperature and the work done by the friction between the grit and the anvil surface for the impact process, up to ignition. All experiments were conducted under impact conditions insufficient to cause ignition without grit. Ignition occurred at approximately 500 mu s, a grit temperature of 1000 K, and an impact load of 12 kN. A high-fidelity numerical heat transport model, using four-step reversible decomposition kinetics for HMX, clarified the physical mechanism of ignition in the experiment. The model suggested that only a very small part of the silica sphere was heated by the friction process and residual heat in the impacted surface behind the moving grit caused ignition. The model agreed well with the experiment in terms of time and temperature, and we have good confidence in the mechanistic picture provided by the model. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3487932] C1 [Perry, W. Lee; Gunderson, Jake A.; Balkey, Matthew M.; Dickson, Peter M.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Perry, WL (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM gunderson@lanl.gov OI Perry, William/0000-0003-1993-122X FU Los Alamos National Laboratory FX The authors would like to aknowledge Dr. David K. Zerkle for his invaluable insight into the modeling of HE thermal cookoff. Funding for this research was provided by the Los Alamos National Laboratory Weapons Surety Program. NR 17 TC 3 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084902 DI 10.1063/1.3487932 PG 8 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100159 ER PT J AU Xiong, J Matias, V Wang, H Zhai, JY Maiorov, B Trugman, D Tao, BW Li, YR Jia, QX AF Xiong, J. Matias, V. Wang, H. Zhai, J. Y. Maiorov, B. Trugman, D. Tao, B. W. Li, Y. R. Jia, Q. X. TI Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CRITICAL-CURRENT-DENSITY; THIN-FILMS; BUFFER LAYERS; IBAD-MGO; YBA2CU3O7 AB A much simplified template, i.e., two nonsuperconducting layers between the superconducting YBa(2)Cu(3)O(7-delta) (YBCO) and the polycrystalline metal substrate, has been developed for high-performance coated conductors by using biaxially aligned TiN as a seed layer. A combination of a thin TiN (similar to 10 nm by ion-beam assisted deposition) layer and an epitaxial buffer LaMnO(3) layer (similar to 120 nm) allows us to grow epitaxial YBCO films with values of full width at half-maximum around 3.5 degrees and 1.7 degrees for the phi-scan of (103) and rocking curve of (005) YBCO, respectively. The YBCO films grown on electropolished polycrystalline Hastelloy using this two-layer template exhibited a superconducting transition temperature of 89.5 K, a critical current density of 1.2 MA/cm(2) at 75.5 K, and an alpha value (proportional factor of critical current density J(c) similar to H(-alpha)) of around 0.33, indicating a high density of pinning centers and an absence of weak links. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499270] C1 [Xiong, J.; Matias, V.; Zhai, J. Y.; Maiorov, B.; Trugman, D.; Jia, Q. X.] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Xiong, J.; Tao, B. W.; Li, Y. R.] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Xiong, J (reprint author), Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. EM jxiong@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; Zhai, Junyi/K-4162-2014; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Maiorov, Boris/0000-0003-1885-0436 FU U.S. Department of Energy; Center for Integrated Nanotechnologies; National Science Foundation of China [50902017]; National Science Foundation [NSF-0846504] FX This work was supported by the U.S. Department of Energy and the Center for Integrated Nanotechnologies. J.X. acknowledges the support from National Science Foundation of China under Grant No. 50902017. H. W. thanks the support from National Science Foundation (Grant No. NSF-0846504) NR 21 TC 22 Z9 23 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083903 DI 10.1063/1.3499270 PG 4 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100084 ER PT J AU Jung, HJ Purvine, SO Kim, H Petyuk, VA Hyung, SW Monroe, ME Mun, DG Kim, KC Park, JM Kim, SJ Tolic, N Slysz, GW Moore, RJ Zhao, R Adkins, JN Anderson, GA Lee, H Camp, DG Yu, MH Smith, RD Lee, SW AF Jung, Hee-Jung Purvine, Samuel O. Kim, Hokeun Petyuk, Vladislav A. Hyung, Seok-Won Monroe, Matthew E. Mun, Dong-Gi Kim, Kyong-Chul Park, Jong-Moon Kim, Su-Jin Tolic, Nikola Slysz, Gordon W. Moore, Ronald J. Zhao, Rui Adkins, Joshua N. Anderson, Gordon A. Lee, Hookeun Camp, David G., II Yu, Myeong-Hee Smith, Richard D. Lee, Sang-Won TI Integrated Post-Experiment Monoisotopic Mass Refinement: An Integrated Approach to Accurately Assign Monoisotopic Precursor Masses to Tandem Mass Spectrometric Data SO ANALYTICAL CHEMISTRY LA English DT Article ID PEPTIDE IDENTIFICATION RATES; PROTEIN IDENTIFICATIONS; PROTEOMIC ANALYSES; HIGH-THROUGHPUT; SOFTWARE TOOL; SPECTRA; DEAMIDATION; ELIMINATION; ALGORITHM; ERRORS AB Accurate assignment of monoisotopic precursor masses to tandem mass spectrometric (MS/MS) data is a fundamental and critically important step for successful peptide identifications in mass spectrometry based proteomics. Here we describe an integrated approach that combines three previously reported methods of treating MS/MS data for precursor mass refinement. This combined method, "integrated post-experiment monoisotopic mass refinement" (iPE-MMR), integrates steps (1) generation of refined MS/MS data by DeconMSn; (2) additional refinement of the resultant MS/MS data by a modified version of PE-MMR; and (3) elimination of systematic errors of precursor masses using DtaRefinery. iPE-MMR is the first method that utilizes all MS information from multiple MS scans of a precursor ion including multiple charge states, in an MS scan, to determine precursor mass. With the combination of these methods, iPE-MMR increases sensitivity in peptide identification and provides increased accuracy when applied to complex high-throughput proteomics data. C1 [Jung, Hee-Jung; Kim, Hokeun; Hyung, Seok-Won; Mun, Dong-Gi; Kim, Kyong-Chul; Park, Jong-Moon; Kim, Su-Jin; Lee, Sang-Won] Korea Univ, Dept Chem, Seoul 136701, South Korea. [Purvine, Samuel O.; Petyuk, Vladislav A.; Monroe, Matthew E.; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Purvine, Samuel O.; Petyuk, Vladislav A.; Monroe, Matthew E.; Tolic, Nikola; Slysz, Gordon W.; Moore, Ronald J.; Zhao, Rui; Adkins, Joshua N.; Anderson, Gordon A.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Lee, Hookeun] Gachon Univ Med & Sci, Lee Gil Ya Canc & Diabet Inst, Inchon 406840, South Korea. [Yu, Myeong-Hee] Korea Inst Sci & Technol, Funct Prote Ctr, Div Life Sci, Seoul 130650, South Korea. RP Lee, SW (reprint author), Korea Univ, Dept Chem, 1 5 Ka Anam Dong, Seoul 136701, South Korea. EM rds@pnl.gov; sw_lee@korea.ac.kr RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; Lee, Sang-Won/H-6760-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Lee, Sang-Won/0000-0002-5042-0084; Lee, Hookeun/0000-0002-0696-8421; Petyuk, Vladislav/0000-0003-4076-151X FU Korean Ministry of Education, Science Technology [FPR08A1-010]; Korea Research Foundation [KRF-2009-013-C00036]; Converging Research Center through the Ministry of Education, Science and Technology [2010K001300]; NIH National Center for Research Resources [RR18522] FX This work was supported in part by Grant No. FPR08A1-010 of 21C Frontier Functional Proteomics Project from the Korean Ministry of Education, Science & Technology. S.-W.L. acknowledges the Korea Research Foundation Grant KRF-2009-013-C00036, the Converging Research Center Program (Grant 2010K001300) through the Ministry of Education, Science and Technology and NIH National Center for Research Resources (Grant RR18522) for support of portions of this research. Significant portions of this work were performed in the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research. NR 22 TC 12 Z9 12 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2010 VL 82 IS 20 BP 8510 EP 8518 DI 10.1021/ac101388b PG 9 WC Chemistry, Analytical SC Chemistry GA 663BX UT WOS:000282859100022 PM 20863060 ER PT J AU Patterson, BM Hamilton, CE AF Patterson, Brian M. Hamilton, Christopher E. TI Dimensional Standard for Micro X-ray Computed Tomography SO ANALYTICAL CHEMISTRY LA English DT Article ID 3D CHARACTERIZATION; FOAMS; RESOLUTION AB The decrease in the cost of high end computing and the availability of high quality X-ray sources in the laboratory environment has led to an increased use of three-dimensional (3D) X-ray micro computed tomography (mu CT). In the medical community, the primary concern for CT is calibrating for X-ray absorption and ascertaining the difference between healthy tissue and cancerous tissue or examining fractures. Absorption calibration is also important in the materials community, however confirming dimensional accuracy of voids, defects, machined parts, cracks, or the distribution of dispersed particles is typically more important. One key aspect of mu CT that is often overlooked in the literature is the number of radiographs required for dimensional accuracy of the 3D reconstruction and minimization of image noise. In mu CT, a number of radiographs are collected in theta increments as the sample is rotated at least 180 degrees. They are typically collected in 1 degrees increments (or 181 radiographs), 0.25 degrees increments (721 radiographs), or some other multiple. The question that arises, especially in a laboratory based instrument, where the required exposure times are longer to get high-quality signal-to-noise compared to synchrotron sources, is what is the optimal number of images required to reach the volumetric statistics of the sample, and minimize the noise while not overly scanning the sample at a cost in time? A dimensional standard based upon NIST certified glass microspheres dispersed in a low density poly(styrene) matrix to answer this question is proposed. Experiments are shown that describe the microsphere size statistics as a function of number of radiographs calculated using a commercial software package, AvizoFire. These results are important in understanding the distribution of voids in a foam and confirming the accuracy of the 3D measurements obtained. C1 [Patterson, Brian M.; Hamilton, Christopher E.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Patterson, BM (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM bpatterson@lanl.gov OI Hamilton, Christopher/0000-0002-1605-5992; Patterson, Brian/0000-0001-9244-7376 FU Laboratory Directed Research and Development program [20080015, 20100026]; Institute for Multiscale and Materials Studies; DOE/NNSA [DE-AC52-06NA25396] FX LANL is operated by LANS, LLC, under DOE/NNSA contract DE-AC52-06NA25396. We acknowledge Andrew Dattelbaum for providing the microspheres, Trevor Marks for the foam sample, and George J. Havrilla and Ellen Cerreta for their technical feedback. Funding was provided by the Laboratory Directed Research and Development program (LDRD-DR's 20080015 and 20100026) as well as the Institute for Multiscale and Materials Studies. NR 20 TC 13 Z9 13 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2010 VL 82 IS 20 BP 8537 EP 8543 DI 10.1021/ac101522q PG 7 WC Chemistry, Analytical SC Chemistry GA 663BX UT WOS:000282859100025 PM 20845931 ER PT J AU Gakh, AA Anisimova, NY Kiselevsky, MV Sadovnikov, SV Stankov, IN Yudin, MV Rufanov, KA Krasavin, MY Sosnov, AV AF Gakh, Andrei A. Anisimova, Natalia Yu Kiselevsky, Mikhail V. Sadovnikov, Sergey V. Stankov, Ivan N. Yudin, Mikhail V. Rufanov, Konstantin A. Krasavin, Mikhail Yu Sosnov, Andrey V. TI Dihydro-resveratrol-A potent dietary polyphenol SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Dihydro-resveratrol; Cancer; Phytoestrogen ID ESTROGEN-RECEPTOR; IN-VIVO; TRANS-RESVERATROL; CANCER; GRAPES; CELLS; METABOLITES; DERIVATIVES; APOPTOSIS; GENISTEIN AB Dihydro-resveratrol (dihydro-R), a prominent polyphenol component of red wine, has a profound proliferative effect on hormone-sensitive tumor cell lines such as breast cancer cell line MCF7. We found a significant increase in MCF7 tumor cells growth rates in the presence of picomolar concentrations of this compound. The proliferative effect of dihydro-R was not observed in cell lines that do not express hormone receptors (MDA-MB-231, BT-474, and R-562). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Anisimova, Natalia Yu; Kiselevsky, Mikhail V.] RAMS, NN Blokhin Russian Canc Res Ctr, Moscow, Russia. [Sadovnikov, Sergey V.; Stankov, Ivan N.; Yudin, Mikhail V.; Rufanov, Konstantin A.; Krasavin, Mikhail Yu; Sosnov, Andrey V.] Chem Divers Res Inst, Chimki 141401, Moscow Reg, Russia. RP Gakh, AA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM gakhaa@ornl.gov RI Krasavin, Mikhail/F-2343-2011; Anisimova, Natalia/A-6640-2014; Kiselevskiy, Mikhail/D-8822-2017; OI Anisimova, Natalia/0000-0002-4370-6578; Kiselevskiy, Mikhail/0000-0002-0132-167X; Krasavin, Mikhail/0000-0002-0200-4772 FU International Science and Technology Center (ISTC); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Global IPP program through the International Science and Technology Center (ISTC). Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 27 TC 12 Z9 14 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD OCT 15 PY 2010 VL 20 IS 20 BP 6149 EP 6151 DI 10.1016/j.bmcl.2010.08.002 PG 3 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 651YK UT WOS:000281963700043 PM 20813524 ER PT J AU Ogier, JC Calteau, A Forst, S Goodrich-Blair, H Roche, D Rouy, Z Suen, G Zumbihl, R Givaudan, A Tailliez, P Medigue, C Gaudriault, S AF Ogier, Jean-Claude Calteau, Alexandra Forst, Steve Goodrich-Blair, Heidi Roche, David Rouy, Zoe Suen, Garret Zumbihl, Robert Givaudan, Alain Tailliez, Patrick Medigue, Claudine Gaudriault, Sophie TI Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus SO BMC GENOMICS LA English DT Article ID MOBILE GENETIC ELEMENTS; ESCHERICHIA-COLI STRAIN; III SECRETION SYSTEM; PSEUDOMONAS-AERUGINOSA; ENTEROCYTE EFFACEMENT; STREPTOCOCCUS-THERMOPHILUS; ENTOMOPATHOGENIC NEMATODES; PATHOGENICITY ISLANDS; INSECTICIDAL ACTIVITY; CONJUGATIVE ELEMENTS AB Background: Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). Results: RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGP(mob)), or with no remarkable feature (RGP(none)). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGP(mob) and RGP(none), have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. Conclusions: This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution. C1 [Ogier, Jean-Claude; Zumbihl, Robert; Givaudan, Alain; Tailliez, Patrick; Gaudriault, Sophie] INRA, UMR 1133, Lab EMIP, F-34095 Montpellier, France. [Ogier, Jean-Claude; Zumbihl, Robert; Givaudan, Alain; Tailliez, Patrick; Gaudriault, Sophie] Univ Montpellier 2, UMR 1133, Lab EMIP, F-34095 Montpellier, France. [Calteau, Alexandra; Roche, David; Rouy, Zoe; Medigue, Claudine] CEA, Genoscope & CNRS UMR 8030, Lab Anal Bioinformat Genom & Metab, F-91006 Evry, France. [Forst, Steve] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. [Goodrich-Blair, Heidi] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Suen, Garret] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Gaudriault, S (reprint author), INRA, UMR 1133, Lab EMIP, Pl Eugene Bataillon, F-34095 Montpellier, France. EM sgaudriault@univ-montp2.fr OI Suen, Garret/0000-0002-6170-711X; CALTEAU, Alexandra/0000-0002-5871-9347 FU Institut National de la Recherche Agronomique [SPE 2007_1133_03]; Agence Nationale de la Recherche (ANR); GIS IBiSA FX We thank Christine Laroui for technical assistance. We thank the Xenorhabdus genome consortium for access to the Xenorhabdus genomes, R. Ffrench-constant and N. Waterfield for access to the Photorhabdus asymbiotica genomes before public access. We thank Eric Duchaud for critical reading of parts of the manuscript. This study received financial support from the Institut National de la Recherche Agronomique (grant SPE 2007_1133_03), the Agence Nationale de la Recherche (ANR PFTV MicroScope) and the GIS IBiSA. NR 103 TC 19 Z9 19 U1 0 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 15 PY 2010 VL 11 AR 568 DI 10.1186/1471-2164-11-568 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 678EF UT WOS:000284055200001 PM 20950463 ER PT J AU Lin, HK Zheng, SY Williams, AJ Balic, M Groshen, S Scher, HI Fleisher, M Stadler, W Datar, RH Tai, YC Cote, RJ AF Lin, Henry K. Zheng, Siyang Williams, Anthony J. Balic, Marija Groshen, Susan Scher, Howard I. Fleisher, Martin Stadler, Walter Datar, Ram H. Tai, Yu-Chong Cote, Richard J. TI Portable Filter-Based Microdevice for Detection and Characterization of Circulating Tumor Cells SO CLINICAL CANCER RESEARCH LA English DT Article ID RESISTANT PROSTATE-CANCER; BREAST-CANCER; SEPARATION; SURVIVAL; DISEASE; SIZE AB Purpose: Sensitive detection and characterization of circulating tumor cells (CTC) could revolutionize the approach to patients with early-stage and metastatic cancer. The current methodologies have significant limitations, including limited capture efficiency and ability to characterize captured cells. Here, we report the development of a novel parylene membrane filter-based portable microdevice for size-based isolation with high recovery rate and direct on-chip characterization of captured CTC from human peripheral blood. Experimental Design: We evaluated the sensitivity and efficiency of CTC capture in a model system using blood samples from healthy donors spiked with tumor cell lines. Fifty-nine model system samples were tested to determine the recovery rate of the microdevice. Moreover, 10 model system samples and 57 blood samples from cancer patients were subjected to both membrane microfilter device and Cell Search platform enumeration for direct comparison. Results: Using the model system, the microdevice achieved >90% recovery with probability of 95% recovering at least one cell when five are seeded in 7.5 mL of blood. CTCs were identified in 51 of 57 patients using the microdevice, compared with only 26 patients with the Cell Search method. When CTCs were detected by both methods, greater numbers were recovered by the microfilter device in all but five patients. Conclusions: This filter-based microdevice is both a capture and analysis platform, capable of multiplexed imaging and genetic analysis. The microdevice presented here has the potential to enable routine CTC analysis in the clinical setting for the effective management of cancer patients. Clin Cancer Res; 16(20); 5011-8. (C) 2010 AACR. C1 [Lin, Henry K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Zheng, Siyang] Penn State Univ, Dept Bioengn, University Pk, PA 16802 USA. [Williams, Anthony J.; Datar, Ram H.; Cote, Richard J.] Univ Miami, Miller Sch Med, Dept Pathol, Miami, FL 33136 USA. [Balic, Marija] Med Univ Graz, Dept Oncol, Graz, Austria. [Groshen, Susan] Univ So Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA 90033 USA. [Scher, Howard I.] Mem Sloan Kettering Canc Ctr, Genitourinary Oncol Serv, New York, NY 10021 USA. [Fleisher, Martin] Mem Sloan Kettering Canc Ctr, Dept Clin Labs, New York, NY 10021 USA. [Stadler, Walter] Univ Chicago, Pritzker Sch Med, Dept Med, Chicago, IL 60637 USA. [Tai, Yu-Chong] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. RP Cote, RJ (reprint author), 1611 NW 12th Ave, Miami, FL 33136 USA. EM rcote@med.miami.edu FU National Institutes of Health [1R21CA123027]; Doheny Eye Institute [EY03040] FX National Institutes of Health Grant 1R21CA123027 (RJC), Doheny Eye Institute Specialized Imaging Core grant EY03040. NR 18 TC 199 Z9 206 U1 14 U2 83 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD OCT 15 PY 2010 VL 16 IS 20 BP 5011 EP 5018 DI 10.1158/1078-0432.CCR-10-1105 PG 8 WC Oncology SC Oncology GA 663IT UT WOS:000282877700013 PM 20876796 ER PT J AU Yan, S Hua, B Bao, ZY Yang, J Liu, CX Deng, BL AF Yan, Sen Hua, Bin Bao, Zhengyu Yang, John Liu, Chongxuan Deng, Baolin TI Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ZERO-VALENT IRON; RAY PHOTOELECTRON-SPECTROSCOPY; REDUCTION; PARTICLES; CARBONATE; SULFIDE; NANOPARTICLES; REMEDIATION; GROUNDWATER; COMPLEXES AB This study investigated the influences of pH, bicarbonate, and calcium on U(VI) removal and reduction by synthetic nanoscale zerovalent iron (nanoFe(0)) particles under anoxic conditions. The results showed that the rates of MO removal and reduction by nanoFe(0) varied significantly with pH and concentrations of bicarbonate and/or calcium. For instance, at pH 6.92 the pseudo-first-order rate constants of U(VI) removal decreased by 78.5% and 81.3%, and U(VI) reduction decreased by 90.3% and 89.3%, when bicarbonate and calcium concentrations were increased from 0 to 1 mM, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of UO(2) and iron (hydr)oxides as a result of the redox interactions between U(VI) and nanoFe(0). The study demonstrated the potential of using nanoFe(0) for U(VI)-contaminated site remediation and highlighted the impacts of pH, bicarbonate, and calcium on the U(VI) removal and reduction processes. C1 [Yan, Sen; Hua, Bin; Deng, Baolin] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. [Yan, Sen; Bao, Zhengyu] China Univ Geosci, Key Lab Biogeol & Environm Geol, Minist Educ, Wuhan 430074, Hubei, Peoples R China. [Hua, Bin; Yang, John] Lincoln Univ Missouri, Dept Agr & Environm Sci, Jefferson City, MO 65102 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Deng, BL (reprint author), Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. EM dengb@missouri.edu RI Liu, Chongxuan/C-5580-2009; Yan, Sen/G-8700-2014; OI Deng, Baolin/0000-0001-6569-1808 FU China Scholarship Council (CSC); United States Department of Energy (DOE)'s Joint EPA, NSF, and DOE FX We would like to thank the China Scholarship Council (CSC) for sponsoring S.Y. to conduct this cooperative research at the University of Missouri. Reviews by Dr. Armelle Braud on an earlier draft of this paper are greatly appreciated, as well as constructive comments by four anonymous reviewers and the ES&T associate editor, Dr. Michelle Scherer. This work was partially supported by the United States Department of Energy (DOE)'s Joint EPA, NSF, and DOE program on Nanotechnology in the Office of Biological and Environmental Research (BER). NR 29 TC 49 Z9 56 U1 5 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7783 EP 7789 DI 10.1021/es9036308 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500011 PM 20858002 ER PT J AU Zhang, CY Dehoff, K Hess, N Oostrom, M Wietsma, TW Valocchi, AJ Fouke, BW Werth, CJ AF Zhang, Changyong Dehoff, Karl Hess, Nancy Oostrom, Mart Wietsma, Thomas W. Valocchi, Albert J. Fouke, Bruce W. Werth, Charles J. TI Pore-Scale Study of Transverse Mixing Induced CaCO3 Precipitation and Permeability Reduction in a Model Subsurface Sedimentary System SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DEEP-SALINE AQUIFERS; CARBON-DIOXIDE; POROUS-MEDIA; REACTIVE TRANSPORT; CO2 SEQUESTRATION; BRINE PILOT; STORAGE; GROWTH; CALCITE; TEXAS AB A microfluidic pore structure etched into a silicon wafer was used as a two-dimensional model subsurface sedimentary system (i.e., micromodel) to study mineral precipitation and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl2 and Na2CO3 at four different saturation states (Omega = [Ca2+]CO32-]/K-spCaCO3) were introduced through two separate inlets, and they mixed by diffusion transverse to the main flow direction along the center of the micromodel resulting in CaCO3 precipitation. Precipitation rates increased and the total amount of precipitates decreased with increasing saturation state, and only vaterite and calcite crystals were formed (no aragonite). The relative amount of vaterite increased from 80% at the lowest saturation state (Omega(v) = 2.8 for vaterite) to 95% at the highest saturation state (Omega(v) = 4.5). Fluorescent tracer tests conducted before and after CaCO3 precipitation indicate that pore spaces were occluded by CaCO3 precipitates along the transverse mixing zone, thus substantially reducing porosity and permeability, and potentially limiting transformation from vaterite to the more stable calcite. The results suggest that mineral precipitation along plume margins can decrease both reactant mixing during groundwater remediation, and injection and storage efficiency during CO2 sequestration. C1 [Dehoff, Karl; Valocchi, Albert J.; Werth, Charles J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Zhang, Changyong; Hess, Nancy] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Wietsma, Thomas W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Fouke, Bruce W.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. RP Werth, CJ (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM werth@illinois.edu RI Zhang, Changyong/A-8012-2013; OI Hess, Nancy/0000-0002-8930-9500 FU Office of Science (BER), U.S. Department of Energy (DOE) [DE-FG02-06ER64207]; U.S. Department of Education [P200A060190]; Pacific Northwest National Laboratory Directed Research; Los Alamos National laboratory [LDRD 82552-001-10] FX This work was supported by the Office of Science (BER), U.S. Department of Energy (DOE), Grant No. DE-FG02-06ER64207, by a Graduate Assistance in Areas of National Need fellowship from the U.S. Department of Education for Karl Dehoff, Grant P200A060190, by the Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative, and by LDRD 82552-001-10 sponsored by the Los Alamos National laboratory. A portion of the experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) scientific user facility operated for the DOE by PNNL. We thank Jon Ekman at the Beckman Imaging Technology Group, University of Illinois, for help with laser confocal imaging. NR 44 TC 52 Z9 53 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7833 EP 7838 DI 10.1021/es1019788 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500019 PM 20804136 ER PT J AU Lee, JW Kidder, M Evans, BR Paik, S Buchanan, AC Garten, CT Brown, RC AF Lee, James W. Kidder, Michelle Evans, Barbara R. Paik, Sokwon Buchanan, A. C., III Garten, Charles T. Brown, Robert C. TI Characterization of Biochars Produced from Cornstovers for Soil Amendment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CATION-EXCHANGE CAPACITY; BIOMASS; CARBON; PYROLYSIS AB Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 degrees C and gasification at 700 degrees C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent. C1 [Lee, James W.; Kidder, Michelle; Evans, Barbara R.; Paik, Sokwon; Buchanan, A. C., III; Garten, Charles T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brown, Robert C.] Iowa State Univ, Ctr Sustainable Environm Technol, Dept Mech Engn, Ames, IA 50011 USA. RP Lee, JW (reprint author), Johns Hopkins Univ, Whiting Sch Engn, 118 Latrobe Hall, Baltimore, MD 21218 USA. EM JLee349@jhu.edu RI Lee, James/A-3510-2010 FU USDA [68-3A75-5-233]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy [CNMS-2007-074]; DOE [DE-AC05-00OR22725] FX We thank Deanne J. Brice and Tanya Bunch for their assistance in helping the measurement of cation exchange capacity; Ed Hagaman for NMR; Mac Post and Joe Katz for stimulating discussions. This research was supported by USDA Grant No. 68-3A75-5-233. A portion of this research was conducted through ORNL/CNMS User Project CNMS-2007-074 at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract No. DE-AC05-00OR22725. We are also grateful to three anonymous referees for their constructive suggestions to the manuscript. NR 20 TC 106 Z9 132 U1 5 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2010 VL 44 IS 20 BP 7970 EP 7974 DI 10.1021/es101337x PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 661KP UT WOS:000282727500040 PM 20836548 ER PT J AU Isaure, MP Sarret, G Harada, E Choi, YE Marcus, MA Fakra, SC Geoffroy, N Pairis, S Susini, J Clemens, S Manceau, A AF Isaure, Marie-Pierre Sarret, Geraldine Harada, Emiko Choi, Yong-Eui Marcus, Matthew A. Fakra, Sirine C. Geoffroy, Nicolas Pairis, Sebastien Susini, Jean Clemens, Stephan Manceau, Alain TI Calcium promotes cadmium elimination as vaterite grains by tobacco trichomes SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; HYPERACCUMULATOR ARABIDOPSIS-HALLERI; EXAFS SPECTROSCOPY; CRYSTAL-GROWTH; CARBONATE CRYSTALLIZATION; TRANSFORMATION MECHANISM; STRUCTURE REFINEMENTS; METAL CONCENTRATIONS; BIOLOGICAL SYNTHESIS; ELECTRON-MICROSCOPY AB In tobacco plants, elimination of Zn and Cd via the production of Ca-containing grains at the top of leaf hairs, called trichomes, is a potent detoxification mechanism. This study examines how Cd is incorporated in these biominerals, and how calcium growth supplement modifies their nature. Scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), microfocused X-ray diffraction (mu-XRD), and microfocused X-ray absorption near edge structure (mu-XANES) spectroscopy were used to image the morphology of the grains, identify the crystallized mineral phases, and speciate Cd, respectively. The mineralogy of the grains and chemical form of Cd varied with the amount of Ca. When tobacco plants were grown in a nutrient solution containing 25 mu M Cd and low Ca supplement (Ca/Cd = 11 mol ratio), most of the grains were oblong-shaped and low-Cd-substituted calcite. When exposed to the same amount of Cd and high Ca supplement (Ca/Cd = 131 mol ratio), grains were more abundant and diverse in compositions, and in total more Cd was eliminated. Most grains in the high Ca/Cd experiment were round-shaped and composed predominantly of Cd-substituted vaterite, a usually metastable calcium carbonate polymorph, and subordinate calcite. Calcium oxalate and a Ca amorphous phase were detected occasionally in the two treatments, but were devoid of Cd. The biomineralization of cadmium and implications of results for Cd exposure of smokers and phytoremediation are discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Isaure, Marie-Pierre; Sarret, Geraldine; Harada, Emiko; Geoffroy, Nicolas; Manceau, Alain] Univ Grenoble 1, Inst Sci Terre ISTerre, F-38041 Grenoble 9, France. [Isaure, Marie-Pierre; Sarret, Geraldine; Harada, Emiko; Geoffroy, Nicolas; Manceau, Alain] CNRS, F-38041 Grenoble 9, France. [Marcus, Matthew A.; Fakra, Sirine C.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harada, Emiko; Choi, Yong-Eui] Kangwon Natl Univ, Coll Forest & Environm Sci, Forest Resources Div, Chunchon 200701, Kangwon Do, South Korea. [Harada, Emiko; Clemens, Stephan] Leibniz Inst Pflanzenbiochem, D-06120 Halle, Saale, Germany. [Pairis, Sebastien] Univ Grenoble 1, Inst Neel, F-38042 Grenoble 9, France. [Pairis, Sebastien] CNRS, Dept Matiere Condensee Mat & Fonct, F-38042 Grenoble 9, France. [Susini, Jean] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Isaure, MP (reprint author), Univ Pau & Pays Adour, IPREM UMR 5254 LCABIE, 2 Ave Pierre Angot, F-64053 Pau 9, France. EM marie-pierre.isaure@univ-pau.fr RI Clemens, Stephan/A-5107-2009; Sarret, Geraldine/I-2797-2016; OI Clemens, Stephan/0000-0003-0570-1060; Harada, Emiko/0000-0002-8479-8034 FU Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; BioGreen 21 program; International Human Frontier Science Program Organization; Alexander von Humboldt Foundation FX The manuscript benefited from comments and suggestions by two anonymous reviewers. We acknowledge the ALS (Berkeley, California) and the ESRF (Grenoble, France) for the provision of beamtime. The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract number DE-AC02-05CH11231. Emiko Harada is the recipient of fellowships from the BioGreen 21 program, the International Human Frontier Science Program Organization, and the Alexander von Humboldt Foundation. NR 104 TC 21 Z9 24 U1 2 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2010 VL 74 IS 20 BP 5817 EP 5834 DI 10.1016/j.gca.2010.07.011 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 653ZX UT WOS:000282139000008 ER PT J AU Reusser, L Graly, J Bierman, P Rood, D AF Reusser, Lucas Graly, Joseph Bierman, Paul Rood, Dylan TI Calibrating a long-term meteoric Be-10 accumulation rate in soil SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EASTERN NORTH-ISLAND; NEW-ZEALAND; RIVER TERRACES; CLIMATE-CHANGE; WAIPAOA RIVER; EROSION; RECORD; KA; STRATIGRAPHY; DEPOSITION AB Using 13 samples collected from a 4.1 meter profile in a well-dated and stable New Zealand fluvial terrace, we present the first long-term accumulation rate for meteoric Be-10 in soil (1.68 to 1.72 x 10(6) at/(cm(2).yr)) integrated over the past similar to 18 ka. Site-specific accumulation data, such as these, are prerequisite to the application of meteoric Be-10 in surface process studies. Our data begin the process of calibrating long-term meteoric Be-10 delivery rates across latitude and precipitation gradients. Our integrated rate is lower than contemporary meteoric Be-10 fluxes measured in New Zealand rainfall, suggesting that long-term average precipitation, dust flux, or both, at this site were less than modern values. With accurately calibrated long-term delivery rates, such as this, meteoric Be-10 will be a powerful tool for studying rates of landscape change in environments where other cosmogenic nuclides, such as in situ Be-10, cannot be used. Citation: Reusser, L., J. Graly, P. Bierman, and D. Rood (2010), Calibrating a long-term meteoric Be-10 accumulation rate in soil, Geophys. Res. Lett., 37, L19403, doi:10.1029/2010GL044751. C1 [Reusser, Lucas; Bierman, Paul] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA. [Reusser, Lucas; Graly, Joseph; Bierman, Paul] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Rood, Dylan] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Reusser, L (reprint author), Univ Vermont, Rubenstein Sch Environm & Nat Resources, 180 Colchester Ave, Burlington, VT 05405 USA. EM lreusser@uvm.edu OI Graly, Joseph/0000-0002-7939-6022 FU NSF [BCS-0317530, ARC-0713956] FX We thank B. Gomez and M. Marden for introducing us to the Waipaoa, T. Brown for AMS assistance, and G. Balco and A. Heimsath for helpful reviews. Funded by NSF BCS-0317530 and NSF ARC-0713956. NR 36 TC 10 Z9 10 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 15 PY 2010 VL 37 AR L19403 DI 10.1029/2010GL044751 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 666AI UT WOS:000283079000001 ER PT J AU Jang, WY Kyriakides, S Kraynik, AM AF Jang, Wen-Yea Kyriakides, Stelios Kraynik, Andrew M. TI On the compressive strength of open-cell metal foams with Kelvin and random cell structures SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Foams; Aluminum; Elastic properties; Strength ID ELASTIC PROPERTIES; PART II; MICROSTRUCTURE; DEFORMATION; MECHANICS AB Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the < 100 > direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N(3) cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216,512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5-10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress-strain response of the aluminum base material. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Jang, Wen-Yea; Kyriakides, Stelios] Univ Texas Austin, Res Ctr Mech Solids Struct & Mat, Austin, TX 78712 USA. [Kraynik, Andrew M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kyriakides, S (reprint author), Univ Texas Austin, Res Ctr Mech Solids Struct & Mat, WRW 110,C0600, Austin, TX 78712 USA. EM skk@mail.utexas.edu FU National Science Foundation [CMS-0856155] FX The authors acknowledge with thanks the financial support of the work by the National Science Foundation through Grant CMS-0856155. The authors also wish to thank B.D. Leyda and ERG for providing the Duocel aluminum foam samples used in the study to our specifications. NR 31 TC 45 Z9 48 U1 4 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2872 EP 2883 DI 10.1016/j.ijsolstr.2010.06.014 PG 12 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400003 ER PT J AU Wang, H Raeisinia, B Wu, PD Agnew, SR Tome, CN AF Wang, H. Raeisinia, B. Wu, P. D. Agnew, S. R. Tome, C. N. TI Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Anisotropic; Constitutive laws; Crystals; Homogenization; Viscoplastic ID CRYSTALLOGRAPHIC TEXTURE; VISCOPLASTIC MODEL; ZIRCONIUM ALLOYS; SINGLE CRYSTALS; PRISMATIC SLIP; FCC METALS; STRAIN; DEFORMATION; ANISOTROPY; TEMPERATURE AB Various self-consistent polycrystal plasticity models for hexagonal close packed (HCP) polycrystals are evaluated by studying the deformation behavior of magnesium alloy AZ31B sheet under different uniaxial strain paths. In all employed polycrystal plasticity models both slip and twinning contribute to plastic deformation. The material parameters for the various models are fitted to experimental uniaxial tension and compression along the rolling direction (RD) and then used to predict uniaxial tension and compression along the traverse direction (TD) and uniaxial compression in the normal direction (ND). An assessment of the predictive capability of the polycrystal plasticity models is made based on comparisons of the predicted and experimental stress responses and R values. It is found that, among the models examined, the self-consistent models with grain interaction stiffness halfway between those of the limiting Secant (stiff) and Tangent (compliant) approximations give the best results. Among the available options, the Affine self-consistent scheme results in the best overall performance. Furthermore, it is demonstrated that the R values under uniaxial tension and compression within the sheet plane show a strong dependence on imposed strain. This suggests that developing anisotropic yield functions using measured R values must account for the strain dependence. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Raeisinia, B.; Agnew, S. R.] Univ Virginia Charlottesville, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Wu, PD (reprint author), McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. EM peidong@mcmaster.ca RI Wang, Huamiao/F-7693-2010; Tome, Carlos/D-5058-2013; Wu, Peidong/A-7009-2008 OI Wang, Huamiao/0000-0002-7167-2483; FU NSERC Magnesium Strategic Research Network; Office of Basic Energy Sciences (DOE) [FWP 06SCPE401]; United States Automotive Materials Partnership (USAMP); US Department of Energy National Energy Technology Laboratory [DE-FC26-02OR22910] FX This research was supported by funding from the NSERC Magnesium Strategic Research Network. More information on the Network can be found at www.MagNET.ubc.ca. CT and SA acknowledge support from Office of Basic Energy Sciences (DOE), Project FWP 06SCPE401. Dr. A. Jain is gratefully acknowledged for help with the texture analysis. BR is grateful for the support of the United States Automotive Materials Partnership (USAMP) which is, in turn, funded by the US Department of Energy National Energy Technology Laboratory under Award Number DE-FC26-02OR22910. NR 49 TC 132 Z9 135 U1 5 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2905 EP 2917 DI 10.1016/j.ijsolstr.2010.06.016 PG 13 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400006 ER PT J AU Brake, MR Wickert, JA AF Brake, M. R. Wickert, J. A. TI Tilted guides with friction in web conveyance systems SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Webs; Magnetic tape; Tilt; Tilted guides; Friction ID VIBRATION CONTROL; LATERAL DYNAMICS; TRAVELING BEAM; MOVING-MEDIA; STABILITY; SURFACE; MOTION AB One challenge in designing web conveyance systems is controlling the displacement and vibration of the webs by guides without introducing instabilities or higher frequency disturbances from flange impacts. A solution to this problem is to use an actively or passively tilted guide or roller to steer the web. In this paper, a model of tilted guides with friction is developed, and it is shown that tilted guides produce a change in the web's displacement, slope, bending moment, and shear force. When the web is conceptually unwrapped from its path, the normal force between the web and a tilted guide has a component that acts in the direction of the web's lateral displacement, resulting in an equivalent force and bending moment acting on the web. The model is validated by measurements, and is compared to a previously existing model of guide tilt. In the configurations studied, the displacement of the web near the guide is linearly dependent on the tilt angle and tension and it increases exponentially with the web's span length. When the guide's tilt is oriented towards the center of the web's wrap around the guide, the equivalent bending moment is zero in the absence of friction, and there is good agreement between the model developed in this paper and the previously existing model. However, when the center of the web's wrap is oriented 90 degrees away from the guide's tilt orientation, the equivalent force is zero in the absence of friction, and measurements demonstrate the necessity of the equivalent bending moment. Published by Elsevier Ltd. C1 [Brake, M. R.] Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. [Wickert, J. A.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. RP Brake, MR (reprint author), Sandia Natl Labs, Appl Mech Dev Dept, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov FU Information Storage Industry Consortium; Doug Johnson of Imation Corporation FX The authors gratefully acknowledge the support and collaboration from the Information Storage Industry Consortium and the assistance provided by Doug Johnson of Imation Corporation. The authors would also like to thank Carnegie Mellon University's Department of Mechanical Engineering, where this research was conducted, and Prof. Bill Messner for his feedback on drafts of this paper. NR 27 TC 4 Z9 4 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 15 PY 2010 VL 47 IS 21 BP 2952 EP 2957 DI 10.1016/j.ijsolstr.2010.06.019 PG 6 WC Mechanics SC Mechanics GA 645XV UT WOS:000281500400009 ER PT J AU Cao, JB Fan, W Zhou, Q Sheu, E Liu, AW Barrett, C Wu, J AF Cao, Jinbo Fan, Wen Zhou, Qin Sheu, Erica Liu, Aiwen Barrett, C. Wu, J. TI Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR TRANSITIONS; ORGANIZATION; TEMPERATURE; EXPANSION; NANOBEAMS; DOMAINS AB The spontaneous strain associated with the structural change in the metal-insulator transition in VO2 is orders of magnitude higher than thermal expansion mismatch used in bimetallic strips. Here we show that this strain can be leveraged to thermally activate bending of crystalline VO2-based bilayer microcantilevers at extremely large curvatures, making them suitable for thermal sensors, energy transducers and actuators with unprecedented sensitivities. The single-crystallinity, deposition conditions, and postdeposition treatments were utilized to control the metal-insulator domain structure along the cantilever, by which we achieved bending curvatures a few hundred times higher than conventional bilayer cantilevers with the same geometry. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3501052] C1 [Cao, Jinbo; Fan, Wen; Sheu, Erica; Liu, Aiwen; Barrett, C.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cao, Jinbo; Barrett, C.; Wu, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fan, Wen] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. [Zhou, Qin] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Cao, JB (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011 OI Wu, Junqiao/0000-0002-1498-0148 FU Siemens Seed Fund at U.C. Berkeley; National Science Foundation (NSF) [EEC-0832819] FX This work was supported by a Siemens Seed Fund at U.C. Berkeley (measurements) and by the National Science Foundation (NSF) under Grant No. EEC-0832819 (material synthesis and device fabrication). NR 17 TC 27 Z9 28 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083538 DI 10.1063/1.3501052 PG 4 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100055 ER PT J AU Goettler, D Su, M Leseman, Z Soliman, Y Olsson, R El-Kady, I AF Goettler, Drew Su, Mehmet Leseman, Zayd Soliman, Yasser Olsson, Roy El-Kady, Ihab TI Realizing the frequency quality factor product limit in silicon via compact phononic crystal resonators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAPS AB High-Q (quality factor) resonators are a versatile class of components for radio frequency micro-electromechanical systems. Phononic crystals provide a promising method of producing these resonators. In this article, we present a theoretical study of the Q factor of a cavity resonator in a two-dimensional phononic crystal comprised of tungsten rods in a silicon matrix. One can optimize the Q of a phononic crystal resonator by varying the number of inclusions or the cavity harmonic number. We conclude that using higher harmonics marginally increases Q while increasing crystal length via additional inclusions causes Q to increase by orders of magnitude. Incorporating loss into the model shows that the silicon material limit on Q is achievable using a two-dimensional phononic crystal design with a reasonable length. With five layers of inclusions on either side of the cavity, the material limit on Q is achieved, regardless of the harmonic number. (C) 2010 American Institute of Physics. [doi:10.1063/1.3475987] C1 [Goettler, Drew; Su, Mehmet; Leseman, Zayd] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Su, Mehmet; Soliman, Yasser] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87131 USA. [Olsson, Roy] Sandia Natl Labs, Microelect Dev Lab, Albuquerque, NM 87185 USA. [El-Kady, Ihab] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. RP Goettler, D (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by the Sandia Corporation, Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 15 Z9 15 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084505 DI 10.1063/1.3475987 PG 5 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100144 ER PT J AU Gu, YJ Cao, JB Wu, JQ Chen, LQ AF Gu, Yijia Cao, Jinbo Wu, Junqiao Chen, Long-Qing TI Thermodynamics of strained vanadium dioxide single crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR TRANSITIONS; STRUCTURAL ASPECTS; VO2; TEMPERATURE; ORGANIZATION; DOMAINS; STRESS; OXIDES; FILMS AB Vanadium dioxide undergoes a metal-insulator transition, in which the strain condition plays an important role. To investigate the strain contribution, a phenomenological thermodynamic potential for the vanadium dioxide single crystal was constructed. The transformations under the uniaxial stress, wire, and thin film boundary conditions were analyzed, and the corresponding phase diagrams were constructed. The calculated phase diagrams agree well with existing experimental data, and show that the transformation temperature (and Curie temperature) strongly depends on the strain condition. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499349] C1 [Gu, Yijia; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Cao, Jinbo; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cao, Jinbo; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Gu, YJ (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yug115@psu.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Gu, Yijia/A-6418-2013; Chen, LongQing/I-7536-2012 OI Wu, Junqiao/0000-0002-1498-0148; Gu, Yijia/0000-0001-8036-6309; Chen, LongQing/0000-0003-3359-3781 FU NSF [DMR 0507146] FX This work is supported by NSF under Grant No. DMR 0507146. NR 24 TC 35 Z9 35 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083517 DI 10.1063/1.3499349 PG 7 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100034 ER PT J AU Guo, S Ovchinnikov, OS Curtis, ME Johnson, MB Jesse, S Kalinin, SV AF Guo, S. Ovchinnikov, O. S. Curtis, M. E. Johnson, M. B. Jesse, S. Kalinin, S. V. TI Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ACOUSTIC MICROSCOPY; POLARIZATION; CANTILEVERS; DEPENDENCE; CERAMICS; TRENDS; WATER AB Applications of the ferroelectric materials for the information storage necessitate the understanding of local switching behavior on the level of individual grains and microstructural elements. In particular, implementation of multilevel neuromorphic elements requires the understanding of history-dependent polarization responses. Here, we introduce the spatially resolved approach for mapping local Preisach densities in polycrystalline ferroelectrics based on first-order reversal curve (FORC) measurements over spatially resolved grid by piezoresponse force spectroscopy using tip-electrode. The band excitation approach allowed effective use of cantilever resonances to amplify weak piezoelectric signal and also provided insight in position-, voltage-, and voltage history-dependent mechanical properties of the tip-surface contact. Several approaches for visualization and comparison of the multidimensional data sets formed by FORC families or Preisach densities at each point are introduced and compared. The relationship between switching behavior and microstructure is analyzed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493738] C1 [Guo, S.; Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Curtis, M. E.; Johnson, M. B.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. RP Guo, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Division of the Scientific User Facilities, U.S. DOE; NSF-SIA/NRI; Oklahoma/Arkansas MRSEC [DMR-0520550] FX The work is supported at the Center for Nanophase Materials Sciences by the Division of the Scientific User Facilities, U.S. DOE. M. E. C. and M.B.J. would like to acknowledge support from an NSF-SIA/NRI supplement to the center for Semiconductor Physics in Nanostructures (C-SPIN), the Oklahoma/Arkansas MRSEC Grant No. DMR-0520550 that initiated and funded a collaboration between C-SPIN and Texas Instruments. Furthermore M. E. C. and M.B.J. would like to thank K. R. Udayakumar, G. D. Lian, and J. Chung for ferroelectric samples, TEM sample preparation and TEM work and discussions. NR 56 TC 20 Z9 20 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084103 DI 10.1063/1.3493738 PG 10 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100104 ER PT J AU Lu, RT Shi, JJ Baca, FJ Wu, JZ AF Lu, Rongtao Shi, Jack J. Baca, F. Javier Wu, Judy Z. TI High performance multiwall carbon nanotube bolometers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE; PHOTOCONDUCTIVITY; NOISE AB High infrared bolometric photoresponse has been observed in multiwall carbon nanotube (MWCNT) films at room temperature. The observed detectivity D* in exceeding 3.3 x 106 cm Hz(1/2)/W on MWCNT film bolometers is a factor of 7 higher than that obtained on the single-wall CNT (SWCNT) counterparts. The response time of about 1-2 ms on MWCNT bolometers is more than an order of magnitude shorter than that of SWCNT bolometers. The observed high performance may be attributed to the naturally suspended inner-shell structure in a MWCNT, which enhances photon absorption and restricts bolometer external thermal link to environment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3492633] C1 [Lu, Rongtao; Shi, Jack J.; Baca, F. Javier; Wu, Judy Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Baca, F. Javier] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP Lu, RT (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM rtlu@ku.edu FU ARO [ARO-W911NF-09-1-0295]; NSF [NSF-DMR-0803149] FX This research was supported by ARO (ARO-W911NF-09-1-0295). J.W. also acknowledges support from NSF (NSF-DMR-0803149). NR 28 TC 28 Z9 28 U1 4 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084305 DI 10.1063/1.3492633 PG 5 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100120 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI First principles investigations of the thermoelectric behavior of tin sulfide SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SNS AB We present the results of density functional theory and Boltzmann transport calculations suggesting that the commonly available and inexpensive material SnS may show reasonable thermoelectric performance at temperatures suitable for exhaust waste heat recovery, if the material can be heavily p-doped and if the mobility is not greatly degraded by high doping. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496661] C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parkerds@ornl.gov RI lee, yunzhu/G-1723-2011; Singh, David/I-2416-2012 FU U.S. Department of Energy; Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 10 TC 31 Z9 32 U1 4 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 083712 DI 10.1063/1.3496661 PG 3 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100070 ER PT J AU Sheng, G Li, YL Zhang, JX Choudhury, S Jia, QX Gopalan, V Schlom, DG Liu, ZK Chen, LQ AF Sheng, G. Li, Y. L. Zhang, J. X. Choudhury, S. Jia, Q. X. Gopalan, V. Schlom, D. G. Liu, Z. K. Chen, L. Q. TI Phase transitions and domain stabilities in biaxially strained (001) SrTiO3 epitaxial thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRESS-INDUCED FERROELECTRICITY; STRONTIUM-TITANATE; RAMAN SCATTERING; PEROVSKITE AB We applied phase-field approach to investigate both ferroelectric and antiferrodistortive transitions in (001) SrTiO3 epitaxial thin films that are strained biaxially. A domain/phase stability diagram of "misfit strain-temperature" was constructed for equibiaxially strained (001) SrTiO3 thin films, which exhibits significant differences from previous diagrams obtained using thermodynamic analysis of a single domain. For unequibiaxially strained (001) SrTiO3 thin films, "misfit strain-misfit strain" domain stability diagrams at several representative temperatures were obtained. The predicted phase transitions, domain stabilities, and domain structures in three different SrTiO3 thin films under either equibiaxial or unequibiaxial strains agree well with experimental observations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488636] C1 [Sheng, G.; Zhang, J. X.; Gopalan, V.; Liu, Z. K.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Li, Y. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Choudhury, S.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Sheng, G (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM shengguang@psu.edu RI Jia, Q. X./C-5194-2008; Sheng, Guang/C-2043-2012; Choudhury, Samrat/B-4115-2009; Chen, LongQing/I-7536-2012; Schlom, Darrell/J-2412-2013; Liu, Zi-Kui/A-8196-2009 OI Chen, LongQing/0000-0003-3359-3781; Schlom, Darrell/0000-0003-2493-6113; Liu, Zi-Kui/0000-0003-3346-3696 FU DOE [DOE DE-FG02-07ER46417]; NSF [IIP-0737759, DMR-0820404, DMR-0908718, DMR-9983532, DMR-0122638]; Materials Simulation Center; Graduate Education and Research Services at The Pennsylvania State University; Center for Integrated Nanotechnologies; DOE through the LANL/LDRD FX This work was supported by the DOE under the Grant No. DOE DE-FG02-07ER46417 (Sheng and Chen) and NSF under Grant No. IIP-0737759 (Liu). The computer simulations were carried out on the LION clusters at the Pennsylvania State University supported in part by the NSF grants (Grant Nos. DMR-0820404, DMR-0908718, DMR-9983532, and DMR-0122638) and in part by the Materials Simulation Center and the Graduate Education and Research Services at The Pennsylvania State University. The work at Los Alamos National Laboratory was supported by DOE through the LANL/LDRD Program and the Center for Integrated Nanotechnologies (Q. X. Jia). NR 32 TC 6 Z9 6 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084113 DI 10.1063/1.3488636 PG 6 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100114 ER PT J AU Wang, H Cooper, TA Lin, HT Wereszczak, AA AF Wang, Hong Cooper, Thomas A. Lin, Hua-Tay Wereszczak, Andrew A. TI Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PIEZOELECTRIC MULTILAYER ACTUATORS; FERROELECTRIC CERAMICS; FRACTURE BEHAVIORS; PLZT CERAMICS; FIELD; PZT; MICROCRACKING; PROPAGATION; RELIABILITY; CAPACITORS AB Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 10(8) cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3486469] C1 [Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.] Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, H (reprint author), Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wangh@ornl.gov RI Wereszczak, Andrew/I-7310-2016; Wang, Hong/O-1987-2016 OI Wereszczak, Andrew/0000-0002-8344-092X; Wang, Hong/0000-0002-0173-0545 FU U.S. Department of Energy, Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Drs. B. M. Evans III and N. Balke for reviewing the manuscript and T. Geer for assisting the preparation of stack sections. NR 60 TC 11 Z9 11 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2010 VL 108 IS 8 AR 084107 DI 10.1063/1.3486469 PG 12 WC Physics, Applied SC Physics GA 674LJ UT WOS:000283745100108 ER PT J AU Prathapam, T Aleshin, A Guan, YH Gray, JW Martin, GS AF Prathapam, Tulsiram Aleshin, Alexey Guan, Yinghui Gray, Joe W. Martin, G. Steven TI p27(Kip1) Mediates Addiction of Ovarian Cancer Cells to MYCC (c-MYC) and Their Dependence on MYC Paralogs SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ONCOGENE ADDICTION; CELLULAR SENESCENCE; CYCLE PROGRESSION; GENE; EXPRESSION; OVEREXPRESSION; PROLIFERATION; TARGET; PHOSPHORYLATION; TUMORIGENESIS AB The MYCC (c-MYC) gene is amplified in 30-60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27(Kip1) and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27(Kip1) or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27(Kip1) knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27(Kip1). They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs. C1 [Martin, G. Steven] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Guan, Yinghui; Gray, Joe W.] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA. [Guan, Yinghui; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Martin, GS (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 16 Barker Hall 3204, Berkeley, CA 94720 USA. EM gsm@berkeley.edu FU National Institutes of Health [CA 17542, P50 CA 83639]; Office of Science, Office of Biological and Environmental Research, United States Department of Energy [DE-AC0205CH11231]; Philip Morris External Research Program FX This work was supported, in whole or in part, by National Institutes of Health Grants CA 17542 (to G.S.M.) and P50 CA 83639 (to J.W.G.). This work was also supported by the Office of Science, Office of Biological and Environmental Research, United States Department of Energy Contract DE-AC0205CH11231 (to J.W.G.) and the Philip Morris External Research Program (to G.S.M.). NR 44 TC 5 Z9 5 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 15 PY 2010 VL 285 IS 42 BP 32529 EP 32538 DI 10.1074/jbc.M110.151902 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 660XZ UT WOS:000282683000067 PM 20647308 ER PT J AU Kaczmarski, K Poe, DP Guiochon, G AF Kaczmarski, Krzysztof Poe, Donald P. Guiochon, Georges TI Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Supercritical fluid chromatography; Axial temperature profiles; Column efficiency; Expansion cooling; Heat balance; Heat generation; Heat transfer; Peak profiles; Radial temperature profiles; Viscous friction ID PRESSURE LIQUID-CHROMATOGRAPHY; CARBON-DIOXIDE; PACKED-COLUMNS; THERMAL-PROCESSES; SOLUTE RETENTION; MASS-TRANSFER; MOBILE-PHASE; EFFICIENCY; DROP; TEMPERATURE AB When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. (C) 2010 Elsevier By. All rights reserved. C1 [Kaczmarski, Krzysztof] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Poe, Donald P.] Univ Minnesota, Dept Chem & Biochem, Duluth, MN 55812 USA. [Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl FU Polish Ministry of Science and Higher Education [N N204 002036] FX This work was partially supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. NR 36 TC 29 Z9 29 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 15 PY 2010 VL 1217 IS 42 BP 6578 EP 6587 DI 10.1016/j.chroma.2010.08.035 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 666IX UT WOS:000283109300017 PM 20813372 ER PT J AU Walker, ME McFarlane, J Glasgow, DC Chung, E Taboada-Serrano, P Yiacoumi, S Tsouris, C AF Walker, M. E. McFarlane, J. Glasgow, D. C. Chung, E. Taboada-Serrano, P. Yiacoumi, S. Tsouris, C. TI Influence of radioactivity on surface interaction forces SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE AFM; Adhesion force; Surface force; Particle transport; Radioactivity ID AEROSOLS; MICROSCOPY; PARTICLES; MODELS; DUST AB Although some differences have been observed, the transport behavior of radioactive aerosol particles has often been assumed to be analogous to the behavior of nonradioactive aerosols in dispersion models. However, radioactive particles can become electrostatically charged as a result of the decay process. Theories have been proposed to describe this self-charging phenomenon, which may have a significant effect on how these particles interact with one another and with charged surfaces in the environment. In this study, atomic force microscopy (AFM) was employed to quantify surface forces between a particle and a planar surface and to compare measurements with and without the involvement of radioactivity. The main objective of this work is to assess directly the effects of radioactivity on the surface interactions of radioactive aerosols via the measurement of the adhesion force. The adhesion force between a silicon nitride AFM tip and an activated gold substrate was measured so that any possible effects due to radioactivity could be observed. The adhesion force between the tip and the gold surface increased significantly when the gold substrate (25 mm(2) surface area) was activated to a level of approximately 0.6 mCi. The results of this investigation will prompt further work into the effects of radioactivity in particle-surface interactions. (C) 2010 Elsevier Inc. All rights reserved. C1 [Walker, M. E.; McFarlane, J.; Taboada-Serrano, P.; Tsouris, C.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Separat & Mat Res Grp, Oak Ridge, TN 37831 USA. [Glasgow, D. C.] Oak Ridge Natl Lab, Div Chem Sci, Radiochem Anal Grp, Oak Ridge, TN 37831 USA. [Chung, E.; Yiacoumi, S.; Tsouris, C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Tsouris, C (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Separat & Mat Res Grp, Oak Ridge, TN 37831 USA. EM tsourisc@ornl.gov RI Taboada-Serrano, Patrica/F-4745-2012; Tsouris, Costas/C-2544-2016; McFarlane, Joanna/C-5998-2016 OI Tsouris, Costas/0000-0002-0522-1027; McFarlane, Joanna/0000-0002-4112-5104 FU Oak Ridge National Laboratory (ORNL); National Science Foundation [CBET-0651683]; Dunbar Lockwood [DOE NA-243]; US Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the Seed Money Fund of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL). Activation of the gold film was performed at the High Flux Isotope Reactor at ORNL. Partial support was provided by the National Science Foundation, under Grant CBET-0651683. The support that Dunbar Lockwood of DOE NA-243 provided to Mark Walker is also gratefully acknowledged.; This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 18 TC 6 Z9 6 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD OCT 15 PY 2010 VL 350 IS 2 BP 595 EP 598 DI 10.1016/j.jcis.2010.06.042 PG 4 WC Chemistry, Physical SC Chemistry GA 644YJ UT WOS:000281417800032 PM 20650464 ER PT J AU Tarver, CM AF Tarver, Craig M. TI Chemical Energy Release in Several Recently Discovered Detonation and Deflagration Flows SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE deflagration; detonation; energy release; nonequilibrium AB Several recent experiments on complex detonation and deflagration flows are analyzed in terms of the chemical energy release required to sustain these flows. The observed double cellular structures in detonating gaseous nitromethane-oxygen and NO2-fuel (H-2, CH4, and C2H6) mixtures are explained by the amplification of two distinct pressure wave frequencies by two exothermic reactions, the faster reaction forming vibrationally excited NO* and the slower reaction forming highly vibrationally excited N-2**. The establishment of a Chapman-Jouguet (C-J) deflagration behind a weak shock wave, the C-J detonation established after a head-on collision with a shock front, and the C-J detonation conditions established in reactive supersonic flows are quantitatively calculated using the chemical energy release of a H-2+Cl-2 mixture. For these three reactive flows, these calculations illustrate that different fractions of the exothermic chemical energy are used to sustain steady-state propagation. C-J detonation calculations on the various initial states using the CHEETAH chemical equilibrium code are shown to be in good agreement with experimental detonation velocity measurements for the head-on collision and supersonic flow detonations. C1 Lawrence Livermore Natl Lab, Energet Mat Ctr L 282, Livermore, CA 94551 USA. RP Tarver, CM (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr L 282, Livermore, CA 94551 USA. EM tarver1@llnl.gov FU United States Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 13 TC 0 Z9 0 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 1 EP 15 DI 10.1080/07370652.2010.484410 PG 15 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600001 ER PT J AU Kashiwa, BA Hull, LM AF Kashiwa, B. A. Hull, L. M. TI A Multifield Model and Method for Metal- Loaded High Explosives SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE equation-of-state (EOS); high-explosive (HE); metal-loaded; multifield AB An ensemble average of the full conservation equations for multiple materials produces an unclosed system called the multifield equations. Closures are approached by way of correlation to data from direct numerical simulations or from experiment for simplified conditions. The resulting multifield model using this approach is displayed and a numerical solution method used for sample simulations is outlined. Selected results are shown to illustrate the utility of the model and method for understanding the performance of a high explosive with a dense loading of small tungsten grains. C1 [Kashiwa, B. A.; Hull, L. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kashiwa, BA (reprint author), Los Alamos Natl Lab, Div Theoret, B216, Los Alamos, NM 87545 USA. EM bak@lanl.gov FU DOE/DoD Joint Munitions Program FX Los Alamos National Laboratory is operated by Los Alamos National Security LLC, for the U.S. Department of Energy's NNSA. Support for this work by the DOE/DoD Joint Munitions Program is gratefully acknowledged. NR 5 TC 0 Z9 0 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 16 EP 34 DI 10.1080/07370651003776991 PG 19 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600002 ER PT J AU Kuklja, MM Rashkeev, SN AF Kuklja, Maija M. Rashkeev, Sergey N. TI Molecular Mechanisms of Shear Strain Sensitivity of the Energetic Crystals DADNE and TATB SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE DADNE; decomposition chemistry; hot spots; shear strain; TATB ID PENTAERYTHRITOL TETRANITRATE; 1,1-DIAMINO-2,2-DINITROETHYLENE; DECOMPOSITION; EXPLOSIVES; DETONATION AB Simulation of the chemical reactions of decomposition in ideal, defect-containing, and deformed crystalline 1,1-diamino-2,2-dinitroethylene (DADNE) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is performed by means of density functional theory. It is shown that the shear strain deformation plays a crucial role in defining the sensitivity of explosive crystals to initiation and strongly depends on the interactions between the molecules and the crystalline lattice. Based on those calculations, we were able to reveal the important difference in the effects that shear strain has on the chemical properties of these two materials. By focusing on the molecular nature of the shear strain-induced chemistry, we found that the energetic barriers for DADNE decomposition decrease due to shear, whereas those for TATB are not affected by this deformation. This suggests that shear strain may play an important role in defining the sensitivity of hot spots. C1 [Kuklja, Maija M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Rashkeev, Sergey N.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Kuklja, MM (reprint author), Natl Sci Fdn, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM mkukla@nsf.gov NR 21 TC 10 Z9 10 U1 0 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD OCT 15 PY 2010 VL 28 SU 1 SI SI BP 66 EP 77 DI 10.1080/07370651003639397 PG 12 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA V31UX UT WOS:000208909600005 ER PT J AU Sangvanich, T Sukwarotwat, V Wiacek, RJ Grudzien, RM Fryxell, GE Addleman, RS Timchalk, C Yantasee, W AF Sangvanich, Thanapon Sukwarotwat, Vichaya Wiacek, Robert J. Grudzien, Rafal M. Fryxell, Glen E. Addleman, R. Shane Timchalk, Charles Yantasee, Wassana TI Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Ferrocyanide; Mesoporous silica; Cesium; Thallium; Prussian Blue ID SELF-ASSEMBLED MONOLAYERS; ACTINIDE SEQUESTRATION; HEAVY-METALS; SUPPORTS; CATALYSTS; SORBENTS; REMOVAL AB Copper(II) ferrocyanide on mesoporous silica (FC-Cu-EDA-SAMMS (TM)) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian Blue) for removing cesium (Cs(+)) and thallium (Tl(+)) from natural waters and simulated acidic and alkaline wastes. From pH 0.1-7.3, FC-Cu-EDA-SAMMS had greater affinities for Cs and Tl and was less affected by the solution pH, competing cations, and matrices. SAMMS also outperformed Prussian Blue in terms of adsorption capacities (e.g., 21.7 versus 2.6 mg Cs/g in acidic waste stimulant (pH 1.1), 28.3 versus 5.8 mg Tl/g in seawater), and rate (e.g., over 95 wt% of Cs was removed from seawater after 2 min with SAMMS, while only 75 wt% was removed with Prussian Blue). SAMMS also had higher stability (e.g., 2.5-13-fold less Fe dissolved from 2 to 24 h of contact time). In addition to environmental applications, SAMMS has great potential to be used as orally administered drug for limiting the absorption of radioactive Cs and toxic Tl in gastrointestinal tract. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sangvanich, Thanapon; Yantasee, Wassana] Oregon Hlth & Sci Univ, Sch Med, Portland, OR 97239 USA. [Sukwarotwat, Vichaya; Wiacek, Robert J.; Grudzien, Rafal M.; Fryxell, Glen E.; Addleman, R. Shane; Timchalk, Charles] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yantasee, W (reprint author), Oregon Hlth & Sci Univ, Sch Med, Portland, OR 97239 USA. EM yantasee@ohsu.edu FU National Institute of Allergy and Infectious Disease (NIAID) [R01 AI074064]; National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; Department of Energy's Office of Biological and Environmental Research FX The work was supported by the National Institute of Allergy and Infectious Disease (NIAID), grant# R01 AI074064 and the National Institute of Environmental Health Sciences (NIEHS), grant# R21 ES015620. A portion of research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 31 TC 127 Z9 131 U1 18 U2 140 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD OCT 15 PY 2010 VL 182 IS 1-3 BP 225 EP 231 DI 10.1016/j.jhazmat.2010.06.019 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 655HV UT WOS:000282240800030 PM 20594644 ER PT J AU Yang, DL Martinez, R Fayyaz-Najafi, B Wright, R AF Yang, Dali Martinez, Ronald Fayyaz-Najafi, Babak Wright, Ronald TI Light hydrocarbon distillation using hollow fibers as structured packings SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Hollow fibers; Structural packing; Distillation; Olefins; Paraffins ID MASS-TRANSFER PERFORMANCE; MEMBRANE DISTILLATION; OLEFIN/PARAFFIN SEPARATIONS; SOLVENT-EXTRACTION; MODULES; FLOW AB This paper compares separation efficiency and operational stability in the distillation process of two pairs of light hydrocarbon mixtures (iso-/n-butane and propylene/propane) using a distillation column made of micro-porous hollow fibers. The hollow fibers used in the column are non-selective and wetable by the process fluid In the column with a 36 5 cm length, more than 25% enrichment of iso-butane is obtained from a iso-/n-butane (55/45%) mixture while similar to 8% enrichment of propylene is obtained from a propylene/propane (65/35%) mixture Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range is obtained for the former pair The pressure drop of the hollow fiber packings on both vapor and liquid sides is also discussed. Within the loading range (F-factor <2.0 Pa(0 5)), a pressure drop of less than 10 mbar/m is obtained in vapor phase for these two pairs of mixtures Mass transfer coefficients of >0 15 and 004 cm/s are obtained for iso-/n-butane and propylene/propane, respectively, even though the membrane layer contributes an additional mass transfer resistance to the overall mass transfer process Furthermore, without effectively separating individual fibers, a high packing density may result in a severe channeling problem and thus decrease the separation efficiency (C) 2010 Elsevier B.V All rights reserved. C1 [Yang, Dali] Los Alamos Natl Lab, MST 7, Los Alamos, NM 87545 USA. [Martinez, Ronald] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. [Fayyaz-Najafi, Babak] Chevron Energy Technol Co, Richmond, CA USA. [Wright, Ronald] Chevron Global Downstream, Richmond, CA USA. RP Yang, DL (reprint author), Los Alamos Natl Lab, MST 7, POB 1663, Los Alamos, NM 87545 USA. FU DOE; Chevron Energy Technology Company FX We gratefully acknowledge DOE Energy Efficiency and Renewable Energy (EERE) -ITP program and Chevron Energy Technology Company to fund this work. Loan Le helped to make two hollow fiber modules, which authors are thankful. We thank Professors Cussler and Sirkar for their encouragement and scientific insights. We thank Dr. Malcolm Morrison for providing fruitful discussions on the hollow fiber module design and the marketing perspective on the hollow fiber industry. We would also like to thank Z. Olujic for an advanced copy of their manuscript. NR 40 TC 4 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD OCT 15 PY 2010 VL 362 IS 1-2 BP 86 EP 96 DI 10.1016/j.memsci.2010.06.019 PG 11 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 646VK UT WOS:000281571100010 ER PT J AU DeMange, P Marian, J Caro, M Caro, A AF DeMange, P. Marian, J. Caro, M. Caro, A. TI TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COATED-PARTICLE FUEL; HIGH-TEMPERATURE; HTR FUEL; SILICON-CARBIDE; GILSOCARBON GRAPHITE; DIMENSIONAL CHANGES; PYC/SIC INTERFACE; PYROLYTIC CARBONS; SHEAR PROPERTIES; STRESS-ANALYSIS AB A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 x 10(25) n m(-2) (E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-Sic-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance. (C) 2010 Elsevier B.V. All rights reserved. C1 [DeMange, P.; Marian, J.; Caro, M.; Caro, A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM marian1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank J. Latkowski, K. Kramer, and J. Powers for providing neutronics data for this study, and S. Zinkle and J. Farmer for helpful discussions. We are also grateful to D. Petti, G. Miller and J. Maki for their critical review of the manuscript. This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 79 TC 2 Z9 2 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2010 VL 405 IS 2 BP 144 EP 155 DI 10.1016/j.jnucmat.2010.08.004 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 670GX UT WOS:000283410300009 ER PT J AU Hunt, RD Montgomery, FC Collins, JL AF Hunt, R. D. Montgomery, F. C. Collins, J. L. TI Treatment techniques to prevent cracking of amorphous microspheres made by the internal gelation process SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HTR FUEL FABRICATION; ZIRCONIA MICROSPHERES; CERIA; URANIUM; YTTRIA; CEA AB The internal gelation process has been used to make plutonium gel spheres and zirconium gel spheres with stabilized yttrium. However, attempts to convert these amorphous gel spheres into kernels have failed due to cracking during the subsequent heat treatments. The porosity of the amorphous microspheres is typically not sufficient to permit the gases that are formed during subsequent heat treatments to escape. The microspheres will crack when the internal pressure becomes too great. In this study, several treatment techniques were applied to zirconium microspheres stabilized with yttrium in an effort to reduce or eliminate cracking. A combination of water washes, a pressurized water treatment at 473 K for 3 h, and a Dowanol PM treatment was shown to eliminate the cracking problem with the zirconium microspheres, which were heated to 1438 K. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hunt, R. D.; Montgomery, F. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Collins, J. L.] Harbach Engn & Solut, Dayton, OH 45458 USA. RP Hunt, RD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM huntrd@ornl.gov FU US Department of Energy through the Office of Nuclear Energy, Science and Technology [DE-AC05-000R22725]; UT-Battelle, LLC; Nuclear Science and Technology Division FX This effort was sponsored by the US Department of Energy through the Office of Nuclear Energy, Science and Technology's Deep-Burn Development Project under Contract DE-AC05-000R22725 with UT-Battelle, LLC. The work was performed at the Oak Ridge National Laboratory under the auspices of the Nuclear Science and Technology Division. NR 13 TC 15 Z9 15 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2010 VL 405 IS 2 BP 160 EP 164 DI 10.1016/j.jnucmat.2010.08.007 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 670GX UT WOS:000283410300011 ER PT J AU Marina, OA Pederson, LR Thomsen, EC Coyle, CA Yoon, KJ AF Marina, O. A. Pederson, L. R. Thomsen, E. C. Coyle, C. A. Yoon, K. J. TI Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas SO JOURNAL OF POWER SOURCES LA English DT Article DE Ni/YSZ anode; HCl; Chlorine adsorption; SOFC performance; Coal contaminants ID HIGH-TEMPERATURE; TECHNOLOGY DEVELOPMENT; SOFC ANODES; HCL; PERFORMANCE; SURFACE; CL; CHLOROCARBONS; CONTAMINANTS; CATALYSTS AB The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650-850 degrees C. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to 100 ppm, above which losses were insensitive to HCl concentration. Neither cell potential, nor current density had any effect on the extent of poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas containing HCl. The presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marina, O. A.; Thomsen, E. C.; Coyle, C. A.; Yoon, K. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pederson, L. R.] N Dakota State Univ, Fargo, ND 58105 USA. RP Marina, OA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM olga.marina@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory [AC06-76RLO 1830] FX We would like to acknowledge technical assistance of C.N. Cramer and J. Bonnet. SEM and FESEM analysis was performed by Dr. D. Edwards and B. Arey. Auger analyses were performed by A.S. Lea. Support for this work is provided by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory through the SECA Coal-Based Systems Core Research Program. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract AC06-76RLO 1830. NR 31 TC 7 Z9 7 U1 6 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2010 VL 195 IS 20 SI SI BP 7033 EP 7037 DI 10.1016/j.jpowsour.2010.05.006 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 627HC UT WOS:000280029100007 ER PT J AU Walz, KA Johnson, CS Genthe, J Stoiber, LC Zeltner, WA Anderson, MA Thackeray, MM AF Walz, Kenneth A. Johnson, Christopher S. Genthe, Jamie Stoiber, Lucas C. Zeltner, Walter A. Anderson, Marc A. Thackeray, Michael M. TI Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings (vol 195, pg 4943, 2010) SO JOURNAL OF POWER SOURCES LA English DT Correction C1 [Walz, Kenneth A.; Genthe, Jamie; Stoiber, Lucas C.; Zeltner, Walter A.; Anderson, Marc A.] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA. [Johnson, Christopher S.; Thackeray, Michael M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Walz, KA (reprint author), Univ Wisconsin, Environm Chem & Technol Program, 660 N Pk St, Madison, WI 53706 USA. EM kawalz@wisc.edu RI Anderson, Marc/I-2437-2015 NR 1 TC 0 Z9 0 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2010 VL 195 IS 20 SI SI BP 7126 EP 7127 DI 10.1016/j.jpowsour.2010.04.075 PG 2 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 627HC UT WOS:000280029100021 ER PT J AU Wu, L Agnew, SR Ren, Y Brown, DW Clausen, B Stoica, GM Wenk, HR Liaw, PK AF Wu, L. Agnew, S. R. Ren, Y. Brown, D. W. Clausen, B. Stoica, G. M. Wenk, H. R. Liaw, P. K. TI The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Magnesium; Low-cycle fatigue; Texture; Twinning; Neutron diffraction; Synchrotron diffraction ID SITU NEUTRON-DIFFRACTION; SOLID-SOLUTION ALLOYS; MG-ALLOY; EXTRUDED MAGNESIUM; WROUGHT MAGNESIUM; MECHANICAL ANISOTROPY; DEFORMATION-BEHAVIOR; 7150-ALUMINUM ALLOY; STRESS-RELAXATION; FRACTURE-BEHAVIOR AB The effect of texture on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B, was studied at room temperature. It is shown that the Coffin-Manson and Basquin relationships can be used to describe the fatigue resistance of the alloy. The alloy loaded along the rolling direction exhibits only slightly better low-cycle fatigue resistance than that loaded along the transverse direction, due to the in-plane texture symmetry. The in-plane cases exhibit better fatigue behavior than the through-thickness loading. Neutron diffraction and synchrotron diffraction were employed to assist in making mechanistic understandings for the findings. The fundamental difference in the low-cycle fatigue behaviors between the in-plane and through-thickness loadings is attributed to the different activation sequences of twinning and detwinning mechanisms involved and, particularly, the greater requirement for c-axis compression of the grains during the through-thickness tests. The different activation sequences are essentially determined by the initial crystallographic texture, such that the inverted hysteresis-loop shapes are observed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wu, L.; Stoica, G. M.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Agnew, S. R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wenk, H. R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Wu, L (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM lwu7@utk.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU National Science Foundation [EEC-9527527, DMR-0231320]; Office of Basic Energy Science (DOE) [FWP 06SCPE401]; Los Alamos National Security LLC under DOE [DE AC52 06NA25396]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors are grateful to the financial supports from the National Science Foundation-Combined Research and Curriculum Development (CRCD) Program under EEC-9527527, with Ms. M. Poats as the Program Director, and the National Science Foundation-International Materials Institutes (IMI) Program under DMR-0231320, with Dr. C. Huber as the Program Director. S.R.A. is sponsored by a sub-contract from the Los Alamos National Laboratory funded by the Office of Basic Energy Science (DOE) through Project FWP 06SCPE401.; This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC52 06NA25396. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 57 TC 82 Z9 85 U1 2 U2 46 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2010 VL 527 IS 26 BP 7057 EP 7067 DI 10.1016/j.msea.2010.07.047 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 666KF UT WOS:000283113200037 ER PT J AU Meyer, KA Polemi, A Shuford, KL Whitten, WB Shaw, RW AF Meyer, Kent A. Polemi, Alessia Shuford, Kevin L. Whitten, William B. Shaw, Robert W. TI Surface coating effects on the assembly of gold nanospheres SO NANOTECHNOLOGY LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; METAL NANOPARTICLES; SILVER NANOPARTICLES; OPTICAL-PROPERTIES; SINGLE GOLD; SCATTERING; PARTICLES; ARRAYS; SIZE; LITHOGRAPHY AB Optical spectra and atomic force microscopy (AFM) images of individually selected spheres and mechanically assembled silica-coated gold nanosphere pairs were recorded. The shell served as a means of rigid control of the minimum spacing between the metal cores. The spectra of the assembled spheres were simulated using classical electrodynamics. The observed spectra resulted in superior characterization of the particle assembly geometry, relative to the AFM data. Experimental investigations regarding less-rigid polyvinylpyrrolidone (PVP) sphere coatings were also performed and some comparisons were made. C1 [Meyer, Kent A.; Whitten, William B.; Shaw, Robert W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Polemi, Alessia; Shuford, Kevin L.] Drexel Univ, Dept Chem, Philadelphia, PA 19104 USA. RP Meyer, KA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RI Shuford, Kevin/L-2435-2014; OI POLEMI, Alessia/0000-0002-3620-6073 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Drexel University FX This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. KLS thanks Drexel University for startup funding. The authors thank Tom Darlington (Nanocomposix, Inc.) for help in valuable discussions concerning nanoparticle growth mechanisms and for providing TEM images. The authors thank the referees for valuable comments leading to improvements in this manuscript. NR 50 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2010 VL 21 IS 41 AR 415701 DI 10.1088/0957-4484/21/41/415701 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 651WR UT WOS:000281958600019 PM 20834119 ER PT J AU Singh, A Hanisch, J Matias, V Ronning, F Mara, N Pohl, D Rellinghaus, B Reagor, D AF Singh, A. Haenisch, J. Matias, V. Ronning, F. Mara, N. Pohl, D. Rellinghaus, B. Reagor, D. TI Transforming insulating rutile single crystal into a fully ordered nanometer-thick transparent semiconductor SO NANOTECHNOLOGY LA English DT Article ID TITANIUM-DIOXIDE; INTERFACE; OXIDES; STATE; FILMS; TIO2 AB Rutile single crystals treated with ion-beam preferential etching (IBPE) are investigated with electrical transport and transmission electron microscopy. The initially insulating single crystals show the formation of an oxygen vacancy-rich, highly ordered, thin conducting layer, below a crystalline rutile TiO(2) surface layer. Carrier concentrations of 10(19) cm(-3) and very high mobilities of the order of 300 cm(2) V(-1) s(-1) are observed in the nanolayers. The observations indicate that rutile single crystals can be effectively transformed into controlled conducting material using IBPE for creating a new breakthrough in transparent conducting media. C1 [Singh, A.; Haenisch, J.; Matias, V.; Ronning, F.; Mara, N.; Reagor, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Singh, A.; Haenisch, J.; Pohl, D.; Rellinghaus, B.] IFW Dresden, D-01069 Dresden, Germany. RP Reagor, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM reagor@lanl.gov RI Hanisch, Jens/D-8503-2011; Mara, Nathan/J-4509-2014; OI Ronning, Filip/0000-0002-2679-7957; Mara, Nathan/0000-0002-9135-4693 NR 18 TC 4 Z9 4 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2010 VL 21 IS 41 AR 415303 DI 10.1088/0957-4484/21/41/415303 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 651WR UT WOS:000281958600011 PM 20834121 ER PT J AU Insepov, Z Ivanov, V Frisch, H AF Insepov, Z. Ivanov, V. Frisch, H. TI Comparison of candidate secondary electron emission materials SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Secondary electron emission; Micro-channel plate; Materials; Monte Carlo method ID YIELDS; FILMS; MGO AB Secondary electron emission (SEE) yields obtained with empirical models deviate significantly from experiment. Therefore they cannot be used to predict the SEE data for various materials. The angular dependencies of SEE in empirical models are also drastically different and inconvenient for comparison. SEE coefficients were calculated by a theoretical method that uses Monte Carlo simulation, empirical theories, and close comparison to experiment, in order to parameterize the SEE yields of highly emissive materials. We have successfully applied this method to bulk Al(2)O(3), a highly emissive material for micro-channel plates, as well as to thinly deposited films of Al(2)O(3). The simulation results will be used in the selection of an emissive material, and if the emission yield of the material is small, as a resistive material for the deposition and characterization experiments that will be conducted by a large-area fast detector project at Argonne National Laboratory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Insepov, Z.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Ivanov, V.] Muons Inc, Batavia, IL USA. [Frisch, H.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Insepov, Z (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM insepov@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 FU US Department of Energy [DE-ACO2-06CH11357] FX This work was supported by the US Department of Energy, under Contract DE-ACO2-06CH11357. NR 29 TC 7 Z9 9 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT 15 PY 2010 VL 268 IS 20 BP 3315 EP 3320 DI 10.1016/j.nimb.2010.08.002 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 662ZJ UT WOS:000282852500003 ER PT J AU Goncalves, VP Navarra, FS Ullrich, T AF Goncalves, V. P. Navarra, F. S. Ullrich, T. TI Looking for intrinsic charm in the forward region at BNL RHIC and CERN LHC SO NUCLEAR PHYSICS A LA English DT Article DE Quantum Chromodynamics; Intrinsic charm; Color Glass Condensate ID COLOR GLASS CONDENSATE; ENERGY PA COLLISIONS; HADRON-PRODUCTION; NUCLEON; PROTON AB The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC. (C) 2010 Elsevier B.V. All rights reserved. C1 [Goncalves, V. P.] Univ Fed Pelotas, Inst Fis & Matemat, BR-96010900 Pelotas, RS, Brazil. [Navarra, F. S.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ullrich, T.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Goncalves, VP (reprint author), Univ Fed Pelotas, Inst Fis & Matemat, Caixa Postal 354, BR-96010900 Pelotas, RS, Brazil. EM barros@ufpel.edu.br; navarra@if.usp.br FU CNPq; FAPESP; FAPERGS FX We are deeply grateful to Raju Venugopalan, Wally Melnitchouk, Dmitri Kharzeev and Gregory Soyez for fruitful discussions. This work was partially financed by the Brazilian funding agencies CNPq, FAPESP and FAPERGS. NR 37 TC 11 Z9 11 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 15 PY 2010 VL 842 BP 59 EP 71 DI 10.1016/j.nuclphysa.2010.04.004 PG 13 WC Physics, Nuclear SC Physics GA 614HA UT WOS:000279045000005 ER PT J AU Cerjan, A Cerjan, C AF Cerjan, Alexander Cerjan, Charles TI Analytic solution of flat-top Gaussian and Laguerre-Gaussian laser field components SO OPTICS LETTERS LA English DT Article ID PARAXIAL APPROXIMATION; ELECTROMAGNETIC-FIELD; BEAM; VACUUM AB We generalized the nonparaxial field components of Laguerre-Gaussian and flattened Gaussian beams obtained using the angular spectrum method to include symmetric radial and angular expansions and simplified them using an approximate evaluation of the integral equations for the field components. These field components possess series expressions in orders of a natural expansion parameter, which clarifies the physical interpretation of the series expansion. A connection between Laguerre-Gaussian and flat-top Gaussian profiles is obtained. (C) 2010 Optical Society of America C1 [Cerjan, Alexander] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Cerjan, Charles] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cerjan, A (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM alexander.cerjan@yale.edu FU United States Department of Energy (DOE) by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the United States Department of Energy (DOE) by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 14 TC 6 Z9 7 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 15 PY 2010 VL 35 IS 20 BP 3465 EP 3467 PG 3 WC Optics SC Optics GA 665PO UT WOS:000283048100053 PM 20967101 ER PT J AU Bouchet, F Gupta, S Mukamel, D AF Bouchet, Freddy Gupta, Shamik Mukamel, David TI Thermodynamics and dynamics of systems with long-range interactions SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Summer School on Fundamental Problems in Statistical Physics CY AUG 31-SEP 11, 2009 CL European Ctr Foresta, Leuven, BELGIUM HO European Ctr Foresta DE Long-range interactions; Ensemble inequivalence; Vlasov equation; Quasistationary states; Driven diffusive systems; Stationary states ID QUASI-STATIONARY STATES; NEGATIVE SPECIFIC-HEAT; DIMENSIONAL ISING FERROMAGNET; SELF-GRAVITATING SYSTEMS; DRIVEN DIFFUSIVE SYSTEMS; MEAN-FIELD MODELS; PHASE-TRANSITIONS; ENSEMBLE INEQUIVALENCE; STATISTICAL-MECHANICS; METASTABLE STATES AB We review simple aspects of the thermodynamic and dynamical properties of systems with long-range pairwise interactions (LRI), which decay as 1/r(d+sigma) at large distances r in d dimensions. Two broad classes of such systems are discussed. (i) Systems with a slow decay of the interactions, termed "strong" LRI, where the energy is super-extensive. These systems are characterized by unusual properties such as inequivalence of ensembles, negative specific heat, slow decay of correlations, anomalous diffusion and ergodicity breaking. (ii) Systems with faster decay of the interaction potential, where the energy is additive, thus resulting in less dramatic effects. These interactions affect the thermodynamic behavior of systems near phase transitions, where long-range correlations are naturally present. Long-range correlations are often present in systems driven out of equilibrium when the dynamics involves conserved quantities. Steady state properties of driven systems with local dynamics are considered within the framework outlined above. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gupta, Shamik; Mukamel, David] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Bouchet, Freddy] UNSA, CNRS, INLN, F-06560 Valbonne, France. [Bouchet, Freddy] CNLS, LANL, Los Alamos, NM 87545 USA. RP Gupta, S (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. EM Freddy.Bouchet@inln.cnrs.fr; shamik.gupta@weizmann.ac.il; david.mukamel@weizmann.ac.il RI Gupta, Shamik/E-9993-2016 OI Gupta, Shamik/0000-0002-6080-4890 NR 93 TC 61 Z9 62 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD OCT 15 PY 2010 VL 389 IS 20 SI SI BP 4389 EP 4405 DI 10.1016/j.physa.2010.02.024 PG 17 WC Physics, Multidisciplinary SC Physics GA 652IN UT WOS:000281997300010 ER PT J AU Li, DF Guo, ZC Xiao, HY Zu, XT Gao, F AF Li, Deng-feng Guo, Zhi-cheng Xiao, Hai-yan Zu, Xiao-tao Gao, Fei TI Stability of S and Se induced reconstructions on GaP(001)(2 x 1) surface SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Density functional theory; GaP; Passivation effect; Electronic property ID GAAS(100) SURFACES; PASSIVATED GAAS(100); GAAS(001); SULFUR; 1ST-PRINCIPLES; INP(001); PTCDA; SEMICONDUCTORS; MONOLAYER; MODEL AB The structural and electronic properties of S- and Se-passivated GaP(0 0 1)(2 x 1) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(0 0 1)(2 x 1) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(0 0 1) surfaces are 1.83 and 1.63 eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other. (C) 2010 Elsevier BM. All rights reserved. C1 [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Deng-feng; Guo, Zhi-cheng] Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. [Xiao, Hai-yan; Zu, Xiao-tao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM licqupt@yahoo.cn; fei.gao@pnl.gov RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 26 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD OCT 15 PY 2010 VL 405 IS 20 BP 4262 EP 4266 DI 10.1016/j.physb.2010.07.021 PG 5 WC Physics, Condensed Matter SC Physics GA 660UF UT WOS:000282670700004 ER PT J AU Blanc, S Gallais, Y Cazayous, M Measson, MA Sacuto, A Georges, A Wen, JS Xu, ZJ Gu, GD Colson, D AF Blanc, S. Gallais, Y. Cazayous, M. Measson, M. A. Sacuto, A. Georges, A. Wen, J. S. Xu, Z. J. Gu, G. D. Colson, D. TI Loss of antinodal coherence with a single d-wave superconducting gap leads to two energy scales for underdoped cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID DOPING DEPENDENCE; PHASE-DIAGRAM; BI2SR2CACU2O8+DELTA; PSEUDOGAP; EXCITATIONS; SCATTERING; BI2212 AB We address the question of the two energy scales in the superconducting state of hole-doped copper-oxide superconductors below the optimal doping level. We show by performing temperature-dependent Raman scattering measurements on Bi(2)Sr(2)CaCu(2)O(8+delta) that the two energy scales often assigned to two distinct gaps, are both associated with coherent Bogoliubov quasiparticles and can be simply explained by a one single d-wave gap and the loss of antinodal coherence. We then establish that the critical temperature Tc is controlled by the fraction of coherent Fermi surface f(c) around the nodes such as: k(B)T(c)(alpha)f(c)center dot Delta(max), where Delta(max) is the maximum amplitude of the superconducting gap. C1 [Blanc, S.; Gallais, Y.; Cazayous, M.; Measson, M. A.; Sacuto, A.] Univ Paris 07, CNRS, Lab Mat & Phenomenes Quant, UMR 7162, F-75205 Paris 13, France. [Georges, A.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Georges, A.] Coll France, F-75005 Paris, France. [Wen, J. S.; Xu, Z. J.; Gu, G. D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Colson, D.] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France. RP Sacuto, A (reprint author), Univ Paris 07, CNRS, Lab Mat & Phenomenes Quant, UMR 7162, Bat Condorcet, F-75205 Paris 13, France. EM alain.sacuto@univ-paris-diderot.fr RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013; Georges, Antoine/H-4855-2012; Gallais, Yann/E-5240-2011; Measson, Marie-aude/E-6388-2015; Sacuto, Alain/L-2620-2016 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255; Georges, Antoine/0000-0001-9479-9682; Gallais, Yann/0000-0002-0589-1522; Measson, Marie-aude/0000-0002-6495-7376; Sacuto, Alain/0000-0002-8351-6154 NR 44 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 15 PY 2010 VL 82 IS 14 AR 144516 DI 10.1103/PhysRevB.82.144516 PG 6 WC Physics, Condensed Matter SC Physics GA 665PL UT WOS:000283047800009 ER PT J AU Miller, KH Xu, XS Berger, H Knowles, ES Arenas, DJ Meisel, MW Tanner, DB AF Miller, K. H. Xu, X. S. Berger, H. Knowles, E. S. Arenas, D. J. Meisel, M. W. Tanner, D. B. TI Magnetodielectric coupling of infrared phonons in single-crystal Cu2OSeO3 SO PHYSICAL REVIEW B LA English DT Article AB Reflection and transmission as a function of temperature (5-300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (T-c similar to 60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature. C1 [Miller, K. H.; Knowles, E. S.; Arenas, D. J.; Meisel, M. W.; Tanner, D. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Xu, X. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Berger, H.] Ecole Polytech Fed Lausanne, Inst Phys Complex Matter, CH-1015 Lausanne, Switzerland. [Arenas, D. J.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA. RP Miller, KH (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Xu, Xiaoshan/B-1255-2009 OI Xu, Xiaoshan/0000-0002-4363-392X FU DOE [DE-FG02-02ER45984]; NSF [DMR-0701400] FX The authors wish to thank H. T. Stokes and F. Pfuner for valuable discussions on the SMODES program. This work was supported by DOE through Grant No. DE-FG02-02ER45984 and the NSF via Grant No. DMR-0701400. NR 17 TC 33 Z9 33 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 15 PY 2010 VL 82 IS 14 AR 144107 DI 10.1103/PhysRevB.82.144107 PG 8 WC Physics, Condensed Matter SC Physics GA 665PL UT WOS:000283047800001 ER PT J AU Chang, XY Wu, QO Ben-Zvi, I Burrill, A Kewisch, J Rao, T Smedley, J Wang, ED Muller, EM Busby, R Dimitrov, D AF Chang, Xiangyun Wu, Qiong Ben-Zvi, Ilan Burrill, Andrew Kewisch, Jorg Rao, Triveni Smedley, John Wang, Erdong Muller, Erik M. Busby, Richard Dimitrov, Dimitre TI Electron Beam Emission from a Diamond-Amplifier Cathode SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY RECOVERY; AFFINITY; LASER AB The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400 mA/mm(2), while its average density can be more than 100 mA/mm(2). The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50 pC/0.5 mm(2). There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust. C1 [Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Muller, Erik M.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Busby, Richard; Dimitrov, Dimitre] Tech X Corp, Boulder, CO 80303 USA. RP Chang, XY (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Brookhaven Science Associates, LLC with U.S. DOE [DE-AC02-98CH10886, DE-FG02-08ER41547] FX We were helped in these experiments by many colleagues; we especially highly appreciate the aid from, and discussions with Joan Yater. This work was supported by Brookhaven Science Associates, LLC under Contracts No. DE-AC02-98CH10886 and DE-FG02-08ER41547 with the U.S. DOE. NR 17 TC 9 Z9 10 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 15 PY 2010 VL 105 IS 16 AR 164801 DI 10.1103/PhysRevLett.105.164801 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SP UT WOS:000283056100006 PM 21230979 ER PT J AU Olmon, RL Rang, M Krenz, PM Lail, BA Saraf, LV Boreman, GD Raschke, MB AF Olmon, Robert L. Rang, Matthias Krenz, Peter M. Lail, Brian A. Saraf, Laxmikant V. Boreman, Glenn D. Raschke, Markus B. TI Determination of Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Optical Vector Network Analyzer SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT; MODES AB In addition to the electric field E(r), the associated magnetic field H(r) and current density J(r) characterize any electromagnetic device, providing insight into antenna coupling and mutual impedance. We demonstrate the optical analogue of the radio frequency vector network analyzer implemented in interferometric homodyne scattering-type scanning near-field optical microscopy for obtaining E(r), H(r), and J(r). The approach is generally applicable and demonstrated for the case of a linear coupled-dipole antenna in the midinfrared spectral region. The determination of the underlying 3D vector electric near-field distribution E(r) with nanometer spatial resolution and full phase and amplitude information is enabled by the design of probe tips with selectivity with respect to E(parallel to) and E(perpendicular to) fabricated by focused ion-beam milling and nano-chemical-vapor-deposition methods. C1 [Olmon, Robert L.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Olmon, Robert L.; Rang, Matthias; Raschke, Markus B.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Raschke, Markus B.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Krenz, Peter M.; Boreman, Glenn D.] Univ Cent Florida, Ctr Res & Educ Opt & Lasers, Orlando, FL 32816 USA. [Lail, Brian A.] Florida Inst Technol, Dept Elect & Comp Engn, Melbourne, FL 32901 USA. [Saraf, Laxmikant V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Olmon, RL (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM markus.raschke@colorado.edu RI Raschke, Markus/F-8023-2013; Lail, Brian/L-6382-2015 OI Lail, Brian/0000-0001-6039-3385 FU National Science Foundation (NSF) [CHE 0748226] FX Funding from the National Science Foundation (NSF CAREER Grant CHE 0748226 and IGERT) is gratefully acknowledged as is support from the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. NR 30 TC 48 Z9 48 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 15 PY 2010 VL 105 IS 16 AR 167403 DI 10.1103/PhysRevLett.105.167403 PG 4 WC Physics, Multidisciplinary SC Physics GA 665SP UT WOS:000283056100010 PM 21231012 ER PT J AU Balhorn, RL Skorupski, KA Hok, S Balhorn, MC Guerrero, T Rebhun, RB AF Balhorn, Rod L. Skorupski, Katherine A. Hok, Saphon Balhorn, Monique Cosman Guerrero, Ted Rebhun, Robert B. TI A selective high affinity ligand (SHAL) designed to bind to an over-expressed human antigen on non-Hodgkin's lymphoma also binds to canine B-cell lymphomas SO VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY LA English DT Article DE Canine; Lymphoma; HLA; Lym-1; Non-Hodgkin's ID MONOCLONAL-ANTIBODY; CLINICAL-TRIAL; LYM-1; LEUKEMIA; IMMUNOTHERAPY; MALIGNANCIES; DIAGNOSIS; SURVIVAL; THERAPY AB Therapies using antibodies directed against cell surface proteins have improved survival for human patients with non-Hodgkin's lymphoma (NHL). It is possible that similar immunotherapeutic approaches may also benefit canine NHL patients. Unfortunately, variability between human and canine epitopes often limits the usefulness of such therapies in pet dogs. The Lym-1 antibody recognizes a unique epitope on HLA-DR10 that is expressed on the majority of human B-cell malignancies. The Lym-1 antibody has now been observed to bind to dog lymphocytes and B-cell NHL Sequence comparisons and computer modeling of a human and three canine DRB1 proteins identified several orthologs of human HLA-DR10 expressed by dog lymphocytes. Immuno-staining confirmed the presence of proteins containing the Lym-1 epitope on dog lymphocytes and B-cell NHL In addition, a selective high affinity ligand (SHAL) SH-7139 designed to bind within the Lym-1 epitope of HLA-DR10 was also observed to bind to canine B-cell NHL tissue. This SHAL, which is selectively cytotoxic to cells expressing HLA-DR10 and has been shown to cure mice bearing human B-cell lymphoma xenografts, may prove useful in treating B-cell malignancies in pet dogs. (c) 2010 Elsevier B.V. All rights reserved. C1 [Balhorn, Rod L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Skorupski, Katherine A.; Guerrero, Ted; Rebhun, Robert B.] Univ Calif Davis, Comparat Canc Ctr, Davis, CA 95616 USA. [Hok, Saphon] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Balhorn, Monique Cosman] Calif State Univ E Bay, Dept Chem, Hayward, CA 94542 USA. RP Rebhun, RB (reprint author), 2112 Tupper Hall,1 Shields Ave, Davis, CA 95616 USA. EM rbrebhun@ucdavis.edu FU Toni Wiebe Memorial Research Fund FX We would like to thank Dr. Xinbin Chen for allowing use of resources within the core oncology laboratory. This work was supported in part by the Toni Wiebe Memorial Research Fund. NR 15 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2427 J9 VET IMMUNOL IMMUNOP JI Vet. Immunol. Immunopathol. PD OCT 15 PY 2010 VL 137 IS 3-4 BP 235 EP 242 DI 10.1016/j.vetimm.2010.05.014 PG 8 WC Immunology; Veterinary Sciences SC Immunology; Veterinary Sciences GA 657HB UT WOS:000282402700007 PM 20576295 ER PT J AU Burdett, JJ Muller, AM Gosztola, D Bardeen, CJ AF Burdett, Jonathan J. Mueller, Astrid M. Gosztola, David Bardeen, Christopher J. TI Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRIPLET-TRIPLET ABSORPTION; PENTACENE THIN-FILMS; CRYSTALLINE TETRACENE; DELAYED FLUORESCENCE; ANTHRACENE-CRYSTALS; TEMPERATURE-DEPENDENCE; MOLECULAR-CRYSTALS; OPTICAL-PROPERTIES; ELECTRONIC STATES; SINGLE-CRYSTALS AB The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2 mu s or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)-> S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)-> T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495764] C1 [Burdett, Jonathan J.; Mueller, Astrid M.; Bardeen, Christopher J.] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Burdett, JJ (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM christopher.bardeen@ucr.edu RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU National Science Foundation [CHE-0719039]; Petroleum Research Foundation [46906-AC6]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation, Grant No. CHE-0719039, and the Petroleum Research Foundation Grant No. 46906-AC6. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 88 TC 111 Z9 111 U1 15 U2 102 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144506 DI 10.1063/1.3495764 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400039 PM 20950016 ER PT J AU Chang, CH Hall, GE Sears, TJ AF Chang, Chih-Hsuan Hall, Gregory E. Sears, Trevor J. TI Sub-Doppler spectroscopy of mixed state levels in CH2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MAGNETIC-ROTATION SPECTROSCOPY; OPTICAL DOUBLE-RESONANCE; SINGLET CH2; ABSORPTION-SPECTROSCOPY; VISIBLE ABSORPTION; METHYLENE CH2; SPECTRUM; TRANSITION; (1)A(1); (CH2)-C-1 AB Perturbations in the 7(16) and 8(18) mixed singlet/triplet levels of (a) over tilde (1)A(1) (0,0,0) methylene, CH2, have been reinvestigated by frequency-modulated laser sub-Doppler saturation spectroscopy. The hyperfine structure was completely resolved for both the predominantly singlet and the predominantly triplet components of these mixed rotational levels using (b) over tilde B-1(1)-(a) over tilde (1)A(1) optical transitions near 12 200 cm(-1) with megahertz resolution. The mixing coefficients were obtained from the observed hyperfine splittings and a two-level deperturbation model. The analysis also determines the energy separation of the unperturbed zero-order levels and the unperturbed hyperfine splittings for the triplet perturbing levels 6(15) (H) over tilde B-3(1) (0,3,0) and 9(37) (X) over tilde B-3(1) (0,2,0). (C) 2010 American Institute of Physics. [doi:10.1063/1.3502084] C1 [Chang, Chih-Hsuan; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chang, CH (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM sears@bnl.gov RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences FX This work was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences within the Office of Basic Energy Sciences. NR 39 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144310 DI 10.1063/1.3502084 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400026 PM 20950003 ER PT J AU Li, AY Xie, DQ Dawes, R Jasper, AW Ma, JY Guo, H AF Li, Anyang Xie, Daiqian Dawes, Richard Jasper, Ahren W. Ma, Jianyi Guo, Hua TI Global potential energy surface, vibrational spectrum, and reaction dynamics of the first excited, ((A)over-tilde(2)A ') state of HO2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; CROSS-SECTIONS; ELECTRONIC STATES; QUANTUM DYNAMICS; HIGH-RESOLUTION; EMISSION BANDS; RATE CONSTANTS; BASIS-SETS; PLUS O-2; ATOMS AB The authors report extensive high-level ab initio studies of the first excited ((A) over tilde (2)A') state of HO2. A global potential energy surface (PES) was developed by spline-fitting 17 000 ab initio points at the internal contracted multireference configuration interaction (icMRCI) level with the AVQZ basis set. To ascertain the spectroscopic accuracy of the PES, the near-equilibrium region of the molecule was also investigated using three interpolating moving least-squares-based PESs employing dynamically weighted icMRCI methods in the complete basis set limit. Vibrational energy levels on all four surfaces agree well with each other and a new assignment of some vibrational features is proposed. In addition, the dynamics of both the forward and reverse directions of the H+O-2((a) over tilde (1)Delta(g))<-> OH + O reaction (J=0) were studied using an exact wave packet method. The reactions are found to be dominated by sharp resonances. (C) 2010 American Institute of Physics. [doi:10.1063/1.3490642] C1 [Li, Anyang; Xie, Daiqian] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Inst Theoret & Computat Chem, Nanjing 210093, Peoples R China. [Dawes, Richard; Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Ma, Jianyi; Guo, Hua] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. RP Xie, DQ (reprint author), Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Inst Theoret & Computat Chem, Nanjing 210093, Peoples R China. EM dqxie@nju.edu.cn RI Jasper, Ahren/A-5292-2011; Guo, Hua/J-2685-2014; Dawes, Richard/C-6344-2015; Li, Anyang/J-2138-2016 OI Guo, Hua/0000-0001-9901-053X; Li, Anyang/0000-0001-6634-842X FU National Natural Science Foundation of China [20725312, 91021010]; Ministry of Science and Technology [2007CB815201]; Department of Energy [DE-FG02-05ER15694, DE-AC04-94-AL85000] FX The work at NJU was supported by the National Natural Science Foundation of China (Grant Nos. 20725312 and 91021010) and the Ministry of Science and Technology (Grant No. 2007CB815201). The Sandia and UNM teams were funded by Department of Energy (Grant Nos. DE-FG02-05ER15694 to HG and DE-AC04-94-AL85000 to A.W.J.). Part of the calculations was carried out at the National Energy Research Scientific Computing (NERSC) Center. NR 63 TC 24 Z9 24 U1 3 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144306 DI 10.1063/1.3490642 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400022 PM 20949999 ER PT J AU Li, X Hong, KL Liu, Y Shew, CY Liu, E Herwig, KW Smith, GS Zhao, JP Zhang, GZ Pispas, S Chen, WR AF Li, Xin Hong, Kunlun Liu, Yun Shew, Chwen-Yang Liu, Emily Herwig, Kenneth W. Smith, Gregory S. Zhao, Junpeng Zhang, Guangzhao Pispas, Stergios Chen, Wei-Ren TI Water distributions in polystyrene-block-poly[styrene-g-poly(ethylene oxide)] block grafted copolymer system in aqueous solutions revealed by contrast variation small angle neutron scattering study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DODECYL-SULFATE MICELLES; TRIBLOCK COPOLYMER; DIBLOCK COPOLYMERS; POLYSTYRENE; DENDRIMERS; SANS; MICROSTRUCTURE; NANOSTRUCTURES; CONFORMATION; COUNTERION AB We develop an experimental approach to analyze the water distribution around a core-shell micelle formed by polystyrene-block-poly[styrene-g-poly(ethylene oxide (PEO)] block copolymers in aqueous media at a fixed polymeric concentration of 10 mg/ml through contrast variation small angle neutron scattering (SANS) study. Through varying the D(2)O/H(2)O ratio, the scattering contributions from the water molecules and the micellar constituent components can be determined. Based on the commonly used core-shell model, a theoretical coherent scattering cross section incorporating the effect of water penetration is developed and used to analyze the SANS I(Q). We have successfully quantified the intramicellar water distribution and found that the overall micellar hydration level increases with the increase in the molecular weight of hydrophilic PEO side chains. Our work presents a practical experimental means for evaluating the intramacromolecular solvent distributions of general soft matter systems. (c) 2010 American Institute of Physics. [doi:10.1063/1.343331] C1 [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Xin; Herwig, Kenneth W.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Li, Xin; Liu, Emily] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Liu, Yun] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Shew, Chwen-Yang] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Zhao, Junpeng; Zhang, Guangzhao] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Pispas, Stergios] Natl Hellen Res Fdn, Inst Theoret & Phys Chem, GR-11635 Athens, Greece. [Chen, Wei-Ren] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Chen, Wei-Ren] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Hong, KL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM hongkq@ornl.gov; liue@rpi.edu; chenw@ornl.gov RI Herwig, Kenneth/F-4787-2011; Liu, Yun/F-6516-2012; Li, Xin/K-9646-2013; nhrf, tpci/M-8699-2013; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Li, Xin/0000-0003-0606-434X; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU HFIR ORNL [IPTS-2301]; NCNR NIST; U.S. Department of Energy [DE-FG07-07ID14889]; U.S. Nuclear Regulatory Commission [NRC-38-08-950]; CUNY; Laboratory Directed Research and Development Program [05272]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The support of HFIR ORNL (Grant No. IPTS-2301) and NCNR NIST is greatly acknowledged. The research carried out at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. X.L. and E.L. acknowledge the financial support by U.S. Department of Energy under NERI-C Award No. DE-FG07-07ID14889 and U.S. Nuclear Regulatory Commission under Award No. NRC-38-08-950. C.Y.S. thanks the support from the CUNY PSC grants. We also thank the support from the Laboratory Directed Research and Development Program (Project ID No. 05272) of ORNL. NR 49 TC 9 Z9 9 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144912 DI 10.1063/1.3493331 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400069 PM 20950046 ER PT J AU Phillips, CL Magyar, RJ Crozier, PS AF Phillips, Carolyn L. Magyar, Rudolph J. Crozier, Paul S. TI A two-temperature model of radiation damage in alpha-quartz SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; DISPLACEMENT CASCADES; INDUCED AMORPHIZATION; BASIS-SET; SILICA; IRRADIATION; CHANNELS; METALS AB Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, alpha-quartz, to model heat deposition in a SiO(2) lattice. Our model of the SiO(2) electronic subsystem is based on quantum simulations of the electronic response in a SiO(2) repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations. (c) 2010 American Institute of Physics. [doi:10.1063/1.3481356] C1 [Phillips, Carolyn L.] Univ Michigan, Ann Arbor, MI 48109 USA. [Magyar, Rudolph J.; Crozier, Paul S.] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. RP Phillips, CL (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM phillicl@umich.edu FU DOE [DE-FG02-97ER25308]; Sandia National Laboratories; United States Department of Energy National Nuclear Security Administration [DEAC04-94AL8500] FX We would like to thank Aaron S. Keys who provided the code for performing the local bond angle analysis. We also acknowledge valuable discussions with Harold P. Hjalmarson. We thank Ann Mattson for suggesting the investigation of TTMs in MD simulations. C.L.P. would also like to acknowledge her DOE CSGF funding under DOE Grant No. DE-FG02-97ER25308 and the support of the Sandia National Laboratories. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy National Nuclear Security Administration under Contract No. DEAC04-94AL8500. NR 46 TC 7 Z9 7 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144711 DI 10.1063/1.3481356 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400057 PM 20950034 ER PT J AU Seltzer, SJ Michalak, DJ Donaldson, MH Balabas, MV Barber, SK Bernasek, SL Bouchiat, MA Hexemer, A Hibberd, AM Kimball, DFJ Jaye, C Karaulanov, T Narducci, FA Rangwala, SA Robinson, HG Shmakov, AK Voronov, DL Yashchuk, VV Pines, A Budker, D AF Seltzer, S. J. Michalak, D. J. Donaldson, M. H. Balabas, M. V. Barber, S. K. Bernasek, S. L. Bouchiat, M. -A. Hexemer, A. Hibberd, A. M. Kimball, D. F. Jackson Jaye, C. Karaulanov, T. Narducci, F. A. Rangwala, S. A. Robinson, H. G. Shmakov, A. K. Voronov, D. L. Yashchuk, V. V. Pines, A. Budker, D. TI Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATOMIC FORCE MICROSCOPY; WALL-COATED CELL; PARAFFIN CRYSTALS; POLARIZED XE-129; NORMAL-ALKANES; MAGNETOMETER; RELAXATION; PHASE; LIGHT; SPECTROSCOPY AB Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of CvC double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489922] C1 [Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Pines, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Balabas, M. V.] SI Vavilov State Opt Inst, St Petersburg 199034, Russia. [Barber, S. K.; Hexemer, A.; Voronov, D. L.; Yashchuk, V. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bernasek, S. L.; Hibberd, A. M.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Bouchiat, M. -A.] Ecole Normale Super, Dept Phys, Lab Kastler Brossel, F-75231 Paris, France. [Kimball, D. F. Jackson] Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA. [Jaye, C.] NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Karaulanov, T.; Shmakov, A. K.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narducci, F. A.] USN, Air Syst Command, EO Sensors Div, Patuxent River, MD 20670 USA. [Rangwala, S. A.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Robinson, H. G.] NIST, Div Time & Frequency, Boulder, CO 80305 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Seltzer, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM seltzer@berkeley.edu; budker@berkeley.edu RI Rangwala, Sadiq/E-6899-2012; Balabas, Mikhail/A-5273-2012; Budker, Dmitry/F-7580-2016 OI Balabas, Mikhail/0000-0002-5383-7897; Budker, Dmitry/0000-0002-7356-4814 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division and Nuclear Science Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF/DST [PHY-0425916]; Office of Naval Research (ONR) [N0001409WX21049] FX The authors thank Daniel Fischer, Kristin Schmidt, and Ed Kramer for assistance with the NEXAFS measurements, and Joel Ager, Joshua Wnuk, David Trease, and Gwendal Kervern for helpful discussions and other assistance. S.J.S., D.J.M., M. H. D., A. P., and D. B., the Advanced Light Source, and the DSC, FTIR, and AFM studies were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division and Nuclear Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Other parts of this work were funded by the NSF/DST under Grant No. PHY-0425916 for U.S.-India cooperative research, by an Office of Naval Research (ONR) MURI grant, and by ONR under Grant No. N0001409WX21049. NR 81 TC 20 Z9 20 U1 1 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2010 VL 133 IS 14 AR 144703 DI 10.1063/1.3489922 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 667NN UT WOS:000283200400049 PM 20950026 ER PT J AU Fulton, JL Schenter, GK Baer, MD Mundy, CJ Dang, LX Balasubramanian, M AF Fulton, John L. Schenter, Gregory K. Baer, Marcel D. Mundy, Christopher J. Dang, Liem X. Balasubramanian, Mahalingam TI Probing the Hydration Structure of Polarizable Halides: A Multiedge XAFS and Molecular Dynamics Study of the Iodide Anion SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; LIQUID-VAPOR INTERFACE; FINE-STRUCTURE; ION SOLVATION; AB-INITIO; ELECTRONIC-STRUCTURE; WATER; SPECTROSCOPY; SPECTRA AB A comprehensive analysis of the H2O structure about aqueous iodide (I) is reported from molecular dynamics (MD) simulation and X-ray absorption fine structure (XAFS) measurements. This study establishes the essential ingredients of an interaction potential that reproduces the experimentally determined first-solvation shell of aqueous iodide. XAFS spectra from the iodide K, L-1, and L-3 edges were corefined to establish the complete structure of the first hydration shell about aqueous iodide. Further, we have utilized molecular dynamics simulations employing both DFT (-1-dispersion) and empirical polarizable interaction potentials to generate an ensemble of structures that were directly compared to the XAFS data. Our results indicate that DFT-MD simulations provide a description of the molecular structure that is more consistent with the XAFS experimental data. The experimental data yield approximately 6.3 water molecules located at I-H and I-O distances of 2.65 and 3.50 angstrom. respectively. The differences in the two interaction potentials can be traced to the treatment of the electronic charge density in the vicinity of the iodide. The empirical polarizable interaction potential yields a significantly higher induced dipole for the aqueous iodide than the DE-I study. The lower induced dipole moment from the DFT simulation produces a higher coordination number and leads to a more symmetric solvation environment than that produced by the empirical polarizable interaction potential. Furthermore, the hydrogen bonding of second-shell water with the first-shell water establishes a strong ordering of the water about the iodide surface. C1 [Fulton, John L.; Schenter, Gregory K.; Mundy, Christopher J.; Dang, Liem X.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. [Baer, Marcel D.] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. EM johnfulton@pal.gov RI Baer, Marcel/K-7664-2012; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. We also acknowledge the resource NWice located in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research at PNNL. PNC/XSD facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the Pacific Northwest National Laboratory, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-CH11357 NR 66 TC 44 Z9 44 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 14 PY 2010 VL 114 IS 40 BP 12926 EP 12937 PG 12 WC Chemistry, Physical SC Chemistry GA 659DC UT WOS:000282546200020 PM 20849138 ER PT J AU Zehr, RT Deskins, NA Henderson, MA AF Zehr, R. T. Deskins, N. A. Henderson, M. A. TI Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSIENT ABSORPTION-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; REDUCED TIO2(110); O-2 DISSOCIATION; RADICAL EJECTION; OXYGEN ADATOMS; MASS-SPECTRA; SURFACE; TIO2; ACETONE AB The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD). temperature prograrnmed desorption (TPD), and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O-2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state with TFA molecules in other TPD states unaffected. PSD measurements revealed that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Postirradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trilluoroacetate (evolving its CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone its both pathways (CH3 trifluoroacetate and CF3 + acetate) were detected when thermodynamics shows it clear preference for only one (CF3 + acetate). These observations are in contrast to the photochemical behavior of acetone, butanone, and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote multiple channels of photofragmentation. Factors that dictate the partitioning between the three TFA channels are not related to photon energy (above that of the TiO2 band gap) but likely to the electronic structure of the charge transfer excited state. C1 [Zehr, R. T.; Deskins, N. A.; Henderson, M. A.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov RI Deskins, Nathaniel/H-3954-2012 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences, and Biosciences; U.S. Department of Energy [DEAC06-76RLO1830]; Office of Biological and Environmental Research FX The authors thank Michel Dupuis, Dave Dixon, and Bob Homers for their insights. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830. The experimental studies reported here were Performed in the William R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Computational resources Were provided by the Molecular Science Computing Facility located in EMSL and the National Energy Research Scientific Computing Center in Berkeley, CA. NR 45 TC 11 Z9 11 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16900 EP 16908 DI 10.1021/jp910507k PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000004 ER PT J AU Strunk, J Vining, WC Bell, AT AF Strunk, Jennifer Vining, William C. Bell, Alexis T. TI A Study of Oxygen Vacancy Formation and Annihilation in Submonolayer Coverages of TiO2 Dispersed on MCM-48 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REDUCED TITANIUM-DIOXIDE; VANADIUM-OXIDE CATALYSTS; ELECTRON-SPIN-RESONANCE; POLYCRYSTALLINE TIO2; SELECTIVE OXIDATION; METHANOL OXIDATION; INTRINSIC DEFECTS; RUTILE TIO2(110); TRANSITION-METAL; SINGLE-CRYSTALS AB The reduction and reoxidation of submonolayer coverages of TiO2 deposited onto MCM-48 were investigated. The deposited TiO2 was characterized by Raman and UV-visible spectroscopy. Raman spectra show that Ti atoms are bonded to the silica support by Ti-O-Si bonds and that crystalline TiO2 is not formed. The results of the Raman and UV-visible spectroscopy suggest that the dispersed TiO2 is present as two-dimensional oligorneric structures. Reduction in H-2 at 923 K produces Ti3+ cations observable by EPR (g = 1.932), suggesting the formation of oxygen vacancies. The fraction of Ti that could be reduced increased with TiO2 surface concentration. This observation is attributed to the ease with which O atoms can be removed from the TiO2 overlayer as the size of the titania patches increases. The amount of oxygen removed during reduction was quantified by pulsed reoxidation. It was observed that the temperature required for complete reoxidation decreased with increasing surface coverage of the silica support by TiO2. This trend is explained with a proposed model of the reoxidation process, in which the rate limiting step is the migration of peroxide species through or between the deposited TiO2 patches. A linear correlation was established between the intensity of the EPR signal for Ti-34 and the amount of oxygen removed from TiO2/SiO2. This relationship was then used to determine the oxygen vacancy concentration present on the surface of TiO2/SiO2 after temperature-programmed oxidation of methanol. C1 [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The authors thank Junk Yano and Henning Schroeder for assistance in acquiring the EPR data. Helpful advice on the interpretation of the EPR spectra was provided by One of the references of this work. NR 84 TC 77 Z9 79 U1 1 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16937 EP 16945 DI 10.1021/jp100104d PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000009 ER PT J AU Mudiyanselage, K Yi, CW Szanyi, J AF Mudiyanselage, Kumudu Yi, Cheol-Woo Szanyi, Janos TI Reactions of NO2 with Ba(OH)(2) on Pt(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STORAGE MATERIALS; NSR CATALYSTS; PT-BA/GAMMA-AL2O3 CATALYST; VIBRATIONAL SPECTROSCOPY; THERMAL-DECOMPOSITION; BARIUM OXIDE; MODEL; H2O; BAO; CO2 AB The interaction of NO2 with amorphous and crystalline Ba(OH)(2) supported on Pt(111) was studied in the wide pressure range of 1.0 x 10(-9) to 1.0 x 10(-4) Torr and compared to that with a thick (>20 monolayer equivalent (MLE)) BaO film using infrared reflection absorption spectroscopy (IRAS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The amorphous and crystalline Bi(OH)(2) layers were prepared by exposing a thick BsO (>20 MLE) layer on Pt(111) to H2O at 300 and 425 K, respectively. The amorphous and crystalline Ba(OH)(2) layers partially convert to Ba(NOx)(2) (nitrites anti nitrates) following their exposure, to elevated NO2 pressure (similar to 1.0 x 10(-4) Torr) at 300 K. The exposure of the crystalline Ba(OH)(2)/Pt(111) system to NO2 at 425 K, however, leads to the desorption of H2O and the complete conversion of the crystalline Ba(OH)(2) layer to Ba(NOx)(2), which consists of mainly crystalline nitrates and a small amount of nitrites. The amounts of NOx stored by BaO (>20 MLE)/Pt(111) and crystalline Ba(OH)(2)/Pt(111) systems upon their exposure to NO2 at 425 K are comparable. The thus-formed bulk crystalline Ba(NO3)(2) phase decomposes in two steps, twill releasing, NO and O-2, in accord with the melting/decomposition scheme for bulk Ba(NO3)(2). C1 [Mudiyanselage, Kumudu; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yi, Cheol-Woo] Sungshin Womens Univ, Dept Chem, Seoul 136742, South Korea. [Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pal.gov RI Mudiyanselage, Kumudu/B-2277-2013; Yi, Cheol-Woo/B-3082-2010 OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Yi, Cheol-Woo/0000-0003-4549-5433 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE Office of Biological and Environmental Research; US DOE [DE-AC05-76RL01830]; Sungshin Women's University FX We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. C.-W.Y. also acknowledges the support of this work by Sungshin Women's University Research Grant of 2010. NR 28 TC 4 Z9 4 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 16955 EP 16963 DI 10.1021/jp101589z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000011 ER PT J AU Kim, J Kay, BD Dohnalek, Z AF Kim, Jooho Kay, Bruce D. Dohnalek, Zdenek TI Formaldehyde Polymerization on (WO3)(3)/TiO2(110) Model Catalyst SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; FORMIC-ACID; (WO3)(3) CLUSTERS; OXIDE SURFACES; ADSORPTION; DECOMPOSITION; TIO2(110); METHANOL; OXIDATION; H2CO AB Polymerization of formaldehyde, H2CO, was studied under ultrahigh vacuum conditions on a model catalyst consisting of monodispersed (WO3)(3) clusters anchored on TiO2(110). Formaldehyde oligomers, (H2CO)(n,) desorbing from the polymer that formed on the catalyst surface are detected between 250 and 325 K in ten-me:mime-programmed desorption experiments. At least two monolayers (ML) of H2CO tire required on the surface to observe (H2CO)(n), desorption and the amount saturates for H2CO coverages excess of similar to 40 ML. The presence of H2CO multilayers is required for the polymerization to take place indicating that it had to occur below 100 K. The saturation amount increases with increasing coverage of (WO3):( clusters with the highest amount of similar to 13 ML observed on 1.2 (WO3)(3)/nm(2). No (H2CO)(n) desorption was observed on the bare TiO2(110) surface. C1 [Kim, Jooho; Kay, Bruce D.; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov; Zdenek.Dohnalek@pnl.gov OI Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Bioscienees and Geosciences; Department of Energy's Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO 1830] FX We thank R. Rousseau for stimulating discussions. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Bioscienees and Geosciences, and performed at W. R. Wiley Environmental Molecular Science Laboratory. a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 40 TC 29 Z9 29 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17017 EP 17022 DI 10.1021/jp102710m PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000019 ER PT J AU Yang, F Choi, YM Liu, P Hrbek, J Rodriguez, JA AF Yang, Fan Choi, YongMan Liu, Ping Hrbek, Jan Rodriguez, Jose A. TI Autocatalytic Reduction of a Cu2O/Cu(111) Surface by CO: STM, XPS, and DFT Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; PT-GROUP METALS; OXYGEN-INDUCED RECONSTRUCTIONS; ELEVATED PRESSURES; ULTRAHIGH-VACUUM; OXIDATION; CU(111); OXIDE; MECHANISM; CATALYST AB The reduction of a Cu2O surface layer on Cu(111) by CO was studied using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and calculations based on density functional theory. Real-time XPS measurements show the existence of an induction time and an autocatalytic reaction for the reduction of the Cu2O/Cu(111) surfaces. The reduction of the Cu2O surface layer goes through two stages, the "slow reaction" regime and the "fast reaction" regime. During the "slow reaction" regime, an "O-deficient Cu2O" phase forms and propagates on the surface. which lowers the reaction barrier for the removal of lattice oxygen in Cu2O. The propagation of the "O-deficient Cu2O" phase across the surface leads to the "fast reaction" regime, through which the reduction rate is approximately constant clue to a "step-only" reaction mechanism. STM studies provide an atomic level picture for the intermediate structures and the reaction pathway during the reduction of the CU2O surface oxide. Upon the loss of chemisorbed oxygen from the typical Cu2O honeycomb structure, a reconstruction occurs, and Cu2O heptagons are formed. The "O-deficient Cu2O" phase is a disordered phase linked to the formation of. Cu2O heptagons. The Cu2O heptagons provide adsorption sites for CO, which reacts with chemisorbed oxygen hopped from neighboring Cu2O honeycombs. C1 [Yang, Fan; Choi, YongMan; Liu, Ping; Hrbek, Jan; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013; Choi, YongMan/N-3559-2014; YANG, FAN/J-2706-2012 OI Choi, YongMan/0000-0003-4276-1599; YANG, FAN/0000-0002-1406-9717 FU U.S. Department of Energy (Chemical Sciences Division) [DE-ACO2-98CH10886, DE-AC02-05CH11231] FX The authors are thankful to the U.S. Department of Energy (Chemical Sciences Division, DE-ACO2-98CH10886 and DE-AC02-05CH11231Grants) for financial support. DFT calculations were carried out at Center for Functional Nanomaterials Brookhaven National Laboratory and National Energy Research Scientific Computing (NERSC) Center. NR 62 TC 35 Z9 35 U1 11 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17042 EP 17050 DI 10.1021/jp1029079 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000023 ER PT J AU Du, YG Deskins, NA Zhang, ZR Dohnalek, Z Dupuis, M Lyubinetsky, I AF Du, Yingge Deskins, N. Aaron Zhang, Zhenrong Dohnalek, Zdenek Dupuis, Michel Lyubinetsky, Igor TI Water Interactions with Terminal Hydroxyls on TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DISSOCIATIVE ADSORPTION; O-2 DISSOCIATION; OXYGEN ADATOMS; OH GROUPS; SURFACE; TIO2; PHOTOCATALYSIS; PSEUDOPOTENTIALS; DEFECTS; SITES AB A combination of scanning tunneling microscopy and density functional theory has been used to investigate 'the interactions between water molecules and terminal hydroxyls (OH1's) adsorbed on the TiO2(110) surface at 300 K. We show that OH1's have. a significant effect on the water reactivity. Two distinctive reaction pathways are unraveled depending on the whether H2O and OHt are on the same or adjacent Ti rows. The underlying reaction mechanisms involve proton transfer from H2O to OHt leading to the formation of new H2O molecules, accompanied by O scrambling and along- or across-row apparent motion of OHt's. C1 [Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel] Inst Interfacial Catalysis, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Du, Yingge; Lyubinetsky, Igor] Inst Interfacial Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. [Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Inst Interfacial Catalysis, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zdenek.dohnalek@pnl.gov; michel.dupuis@pnl.gov; igor.lyubinetsky@pnl.gov RI Deskins, Nathaniel/H-3954-2012; OI Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences FX We thank NI. A. Henderson, G. A. Kimmel, and M. G. Petrik for stimulating discussions. This work was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at EMSL a national scientific user facility sponsored by the DOE's Office of Biological and Environment:11 Research and located at PNNL, Computational resources were provided by the National Energy Research Scientific Computing Center and the EMSL. NR 42 TC 21 Z9 21 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17080 EP 17084 DI 10.1021/jp1036876 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000027 ER PT J AU Oxford, SM Lee, PL Chupas, PJ Chapman, KW Kung, MC Kung, HH AF Oxford, Sean M. Lee, Peter L. Chupas, Peter J. Chapman, Karena W. Kung, Mayfair C. Kung, Harold H. TI Study of Supported PtCu and PdAu Bimetallic Nanoparticles Using In-Situ X-ray Tools' SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGER-ELECTRON-SPECTROSCOPY; SURFACE SEGREGATION; CARBON-MONOXIDE; PRUSSIAN BLUE; CO ADSORPTION; COPPER-ALLOYS; WORK FUNCTION; CU ALLOYS; CATALYSTS; CHEMISORPTION AB A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS). and pair distribution function analysis (FTIR) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H(2) or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus. the surface of a PtCu bimetallic particle of about 2.5 rim after treatment was found 10 be enriched in Cu, while the core was bimetallic. There was no evidence or a component-segregated core shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the smile. For the PdAu bimetallic particles, the surface and core compositions we re. similar after H(2) treatment, and Pd was enriched in the surface alter CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information ran available either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight inn) structure function relationships and time-on-stream behavior of bimetallic catalysts. C1 [Oxford, Sean M.; Chupas, Peter J.; Kung, Mayfair C.; Kung, Harold H.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Lee, Peter L.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Kung, HH (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM hkung@northwestern.edu RI Kung, Harold/B-7647-2009; Kung, Mayfair/B-7648-2009; Chapman, Karena/G-5424-2012 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSE-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located tit Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The TEM work was perforated in the EPIC facility of NUANCE Center at Northwestern University. NUANCE. Center is supported by NSE-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 49 TC 45 Z9 45 U1 8 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17085 EP 17091 DI 10.1021/jp103675n PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000028 ER PT J AU Lin, L Quezada, BR Stair, PC AF Lin, Li Quezada, Brian R. Stair, Peter C. TI Adsorption, Desorption, and Reaction of Methyl Radicals on Surface Terminations of alpha-Fe2O3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CATALYTIC PARTIAL OXIDATION; SINGLE-CRYSTAL HEMATITE; FE3O4(111) FILMS; METAL-OXIDES; LEED CRYSTALLOGRAPHY; CCL4 CHEMISTRY; NITROUS-OXIDE; IRON-OXIDE; HALIDES CL AB The adsorption, desorption, and reaction of gas phase methyl radicals were studied on the (0001)-oriented alpha-Fe2O3 surface in ultrahigh vacuum. Two different surface terminations were compared: An Fe3O4(111) layer and the so-called "hiphase" surface thought to be a mixture of Fe and Fe2O3 terminations. Gas phase methyl radicals were prepared by pyrolysis of azomethane. On Fe7,04 (1 I 1) methyl radical adsorption forms surface methoxide species as determined by the C(1s) X PS binding energy. Temperature programmed reaction spectroscopy produced direct desorption of methyl radicals at all coverages and the formation of ethane at high coverages in two desorption peaks at 331 and 4139 K. The activation energies for desorption were 841 and 133 kJ/mol in the two regimes. The two surface terminations exhibit saturation coverages that differ by ca., 30x: 1.5 x 10(14) and 5.2 x 10(12) per cm(2) for the Fe3O4(111) and "biphase" terminations, respectively. These results are interpreted in terms of' bonding models and differences in atomic structure for the two terminations. C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Quezada, Brian R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lin, Li] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Liu, Li/E-8959-2013 OI Liu, Li/0000-0002-4852-1580 FU US Department of Energy, BES-Chemical Sciences, Geosciences and Bioscienees Division [DE-FG0203ER15457] FX This work was supported by the US Department of Energy, BES-Chemical Sciences, Geosciences and Bioscienees Division under Grant No. DE-FG0203ER15457. NR 60 TC 1 Z9 1 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17105 EP 17111 DI 10.1021/jp1039018 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000031 ER PT J AU Mullins, DR Senanayake, SD Chen, TL AF Mullins, D. R. Senanayake, S. D. Chen, T. -L. TI Adsorption and Reaction of C-1-C-3 Alcohols over CeOx(111) Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE-PROGRAMMED DESORPTION; SCANNING-TUNNELING-MICROSCOPY; CERIUM OXIDE; ZINC-OXIDE; ALIPHATIC-ALCOHOLS; SINGLE-CRYSTAL; SURFACES; DECOMPOSITION; METHANOL; 1-PROPANOL AB This study reports the interaction of methanol, ethanol, 1-propanol, and 2-propanol with well-ordered CeO2(111) thin film surfaces. All of the alcohols adsorb at low temperature by forming alkoxy and hydroxyl species on the surface. On fully oxidized CeO2(111), recombination occurs between some of the alkoxys and hydroxyls, resulting in alcohol desorption near 220 K. At the same temperature, some of the surface hydroxyls disproportionate to produce water and the loss of lattice a The remaining, alkoxys react above 550 K. The primary alcohols favor dehydrogenation products (aldehydes). There is a net loss of from the system, resulting in a reduction of the ceria. The secondary alcohol, 2-propanol, undergoes primarily dehydration, producing propene with no net change in the cerium oxidation state. Reduced CeOx(111) competes with the gaseous products for available O. Little or no water is produced. The reaction selectivity for the C-2 and C-3 alcohols shifts toward favoring dehydration products. The loss of O Iron. the alcohols leads to oxidation of the reduced ceria. Compared with the oxidized surface, the alkene desorption shifts to lower temperature, whereas the aldehyde desorption shifts to higher temperature. This indicates that, on the reduced surface, it is easier to break the C-O bond but more difficult to break the O-substrate bond. C1 [Mullins, D. R.; Senanayake, S. D.; Chen, T. -L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Many thanks to Michele Kidder for supplying the alcohols and advising LIS ill methods removing water impurities. The research was sponsored by the Division of Chemical Sciences, Geoscience, and Biosciences, Of lice of Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ricle National Laboratory, managed and operated by UT Battelle, LLC. Use of the National Synchrotron Light Source. Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 44 Z9 44 U1 3 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17112 EP 17119 DI 10.1021/jp103905e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000032 ER PT J AU Parkinson, GS Dohnalek, Z Smith, RS Kay, BD AF Parkinson, Gareth S. Dohnalek, Zdenek Smith, R. Scott Kay, Bruce D. TI Reactivity of Fe-0 Atoms with Mixed CCl4 and D2O Films over FeO(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOSTRUCTURE GROWTH; TERMINATED FEO(111); MULTILAYERS; CLUSTERS; NANOPARTICLES; AGGREGATION; DESORPTION; DEPOSITION; LAYERS; WATER AB The interaction of Fe with chlorinated hydrocarbons in an aqueous environment is important for the utilization of Fe-0 nanoparticles in ground water rentechation technologies. This article upon prior work that utilized an "atom dropping" technique to show that Feu atoms react readily with pure CCl4 and D2O upon contact at 30 K to form the FlFeCCl(3) and DFeOD insertion complexes, respectively. Here We deposit Feu atoms into containing both D2O ancl CCl4 as separate layers. Temerature-programmed desorption (ITD) is used to show that the ClFeCCl3 and DFeOD insertion complexes are imreactive with each other and both molecular D2O and CCl4 up to the desorption temperature of each species on an FeO(111) substrate. These results suggest that the Fe insertion complexes are energetically favorable and are thus relative stable with respect to subsequent reactions. C1 [Parkinson, Gareth S.; Dohnalek, Zdenek; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov; Bruce.Kay@pnl.gov RI Smith, Scott/G-2310-2015; OI Smith, Scott/0000-0002-7145-1963; Parkinson, Gareth/0000-0003-2457-8977; Dohnalek, Zdenek/0000-0002-5999-7867 FU Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830] FX The authors acknowledge valuable discussions with our theoretical collaborators, Bojana Ginovska, Donald M. Camaioni, and Michel Dupuis. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences. Geosciences, and Biosciences. This work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC06-76RLO 1830. NR 23 TC 1 Z9 1 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17136 EP 17141 DI 10.1021/jp103896k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000035 ER PT J AU Mandeltort, L Buttner, M Yates, JT Choudhury, P Xiao, L Johnson, JK AF Mandeltort, Lynn Buettner, Michael Yates, John T., Jr. Choudhury, Pabitra Xiao, Li Johnson, J. Karl TI Carbon Chlorine Bond Scission in Li-Doped Single-Walled Carbon Nanotubes: Reaction of CH3Cl and Lithium SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; WAVE BASIS-SET; SADDLE-POINTS; DEFECT SITE; ADSORPTION; DESORPTION; MOLECULES; VAPORIZATION; PURIFICATION AB The doping of single-walled carbon nanotubes (SWNTs) under ultrahigh vacuum by Li atoms has been explored experimentally and theoretically. The chemical effect of Li in breaking the C-Cl bond in chloromethane has been observed. Temperature programmed desorption (TPD) experiments show that at low coverage CH3Cl is physisorbed to the undoped SWNT sample, exhibiting a desorption process near 178 K. The CH3Cl desorption peak shifts to about 240 K for lithiated SWNTs, indicating an increase in binding energy of about 0.16 eV. More importantly, the integrated intensity of the CH3Cl desorption peak is dramatically reduced in the lithiated SWNT case, and CH3, CH6, or related species arc not observed in significant quantities in the TPD experiments up to a temperature of 500 K. This strongly indicates that CH3Cl reacts on Initiated SWNTs to produce an irreversibly bound species. Products and Li2Cl are observed to desorb near 700 K. Density functional theory calculations present possible reaction mechanisms and clues to the fate of the reacted CH3Cl. Our calculations show that at least two Li atoms are required to dissociate CH3Cl through a low-energy pathway. The products of the reaction are LiCl and CH3. The CH3 is chemically bound to defect sites on the nanotubes, and CH3 + CH3 radical recombination is suppressed. The second atom acts catalytically to lower the reaction energy required to break the C-Cl bond in CH3Cl. Furthermore, the CH3Cl bound to SWNT defect sites is observed to dehydrogenate at high temperatures in molecular dynamics simulations. This study indicates the potential for Li doping of SWNTs and other high surface area carbons to produce highly dispersed reaction centers for the destruction of toxic materials containing carbon chlorine bonds. C1 [Mandeltort, Lynn; Buettner, Michael; Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Choudhury, Pabitra; Xiao, Li; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RI Buttner, Michael/A-2958-2008; Johnson, Karl/E-9733-2013 OI Buttner, Michael/0000-0002-8351-6015; Johnson, Karl/0000-0002-3608-8003 FU DTRA [HDTRA 1-09-1-0008] FX We thank A.J. Kennedy for artistic help and the Defense Threat Reduction Agency (DTRA) for support of this work under DTRA contract no. HDTRA 1-09-1-0008. NR 44 TC 6 Z9 6 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17148 EP 17158 DI 10.1021/jp103942n PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000037 ER PT J AU Coulter, KE Way, JD Gade, SK Chaudhari, S Sholl, DS Semidey-Flecha, L AF Coulter, Kent E. Way, J. Douglas Gade, Sabina K. Chaudhari, Saurabh Sholl, David S. Semidey-Flecha, Lymarie TI Predicting, Fabricating, and Permeability Testing of Free-Standing Ternary Palladium-Copper-Gold Membranes for Hydrogen Separation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BINARY ALLOY MEMBRANES; PD; PURIFICATION; TEMPERATURES; PERMEATION; ABSORPTION; PRESSURES; SURFACES; SYSTEM AB For hydrogen from coal gasification to he used economically, novel separation processes that produce high-purity H(2) must be developed. While binary palladium based alloys have shown promising pure hydrogen flux values, the search for optimal binary or ternary alloys is an involved and costly process due to the immense number of alloy variations that can be prepared and tested. In this paper an approach to identify. fabricate, and experimentally verify the hydrogen permeation performance of PdCu and PdAu binary alloys and ternary alloys of PdCuAu at various copper and gold concentrations to produce robust, poison-tolerant, hydrogen selective free-standing membranes is reported. This approach utilizes three primary tasks of (1) materials modeling and composition selection, (2) fabrication of high-performance binary and ternary alloy membranes, and (3) membrane testing and evaluation that are all operating independently and concurrently. for the binary Pd-Cu system, using, a pure Pd membrane as the reference, both the theoretically predicted and experimentally measured additions of copper lowered the hydrogen permeability. For the binary Pd-Au system, the addition of gold slightly lowered permeability in the theoretical model but in the experimental testing was enhanced. For the ternary system, both experimental and theoretical permeabilities were depressed, with Cu exhibiting a larger influence on reducing the permeability. C1 [Coulter, Kent E.] SW Res Inst, San Antonio, TX 78228 USA. [Way, J. Douglas; Gade, Sabina K.; Chaudhari, Saurabh] Colorado Sch Mines, Golden, CO 80401 USA. [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Semidey-Flecha, Lymarie] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Coulter, KE (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM kent.coulter@swri.org FU U.S. Department of Energy (National Energy Technology Laboratory) [DE-FC26-07NT43056] FX The authors gratefully acknowledge support of this work from the U.S. Department of Energy (National Energy Technology Laboratory) through cooperative agreement No. DE-FC26-07NT43056. NR 40 TC 29 Z9 29 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17173 EP 17180 DI 10.1021/jp1039628 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000040 ER PT J AU Halevi, B Peterson, EJ Delariva, A Jeroro, E Lebarbier, VM Wang, Y Vohs, JM Kiefer, B Kunkes, E Havecker, M Behrens, M Sehlogl, R Datye, AK AF Halevi, Barr Peterson, Eric J. DeLaRiva, Andrew Jeroro, Ese Lebarbier, Vanessa M. Wang, Yong Vohs, John M. Kiefer, Boris Kunkes, Edward Havecker, Michael Behrens, Malte Sehloegl, Robert Datye, Abhaya K. TI Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SURFACE SCIENCE; ULTRASOFT PSEUDOPOTENTIALS; CARBON-MONOXIDE; PDZN ALLOYS; BASIS-SET; METHANOL; METALS; CATALYSTS AB We present aerosol-derived alloy powders as a uniquely useful platform for studying the contribution of the metal phase to multifunctional supported catalysts. Multimetallic heterogeneous catalysts made by traditional methods are usually nonhomogenous while UHV-based methods, such as mass selected clusters or metal vapor deposited on single crystals, lead to considerably more homogeneous, well-defined samples. However, these well-defined samples have low surface areas and do riot lend themselves to catalytic activity tests in flow reactors under industrially relevant conditions. Bimetallic alloy powders derived by aerosol synthesis are homogeneous and single phase and can have surface areas ranging 1-10 m(2)/g, making, them suitable for use in conventional flow reactors. The utility of aerosol-derived alloy powders as model catalysts is illustrated through the synthesis of single phase PdZn which was used to derive the specific reactivity of the L1(0) tetragonal alloy phase for methanol steam reforming. Turnover frequencies on unsupported PdZn were determined from the experimentally determined metal surface area to be 0.21 molecules of methanol reacted per surface Pd at 250 degrees C and 0.06 molecules of CO oxidized to CO(2) per surface Pd at 185 degrees C. The experimentally measured activation energies for MSR and CO-oxidation on PdZn are 48 and 87 kJ/mol, respectively. C1 [Halevi, Barr; Peterson, Eric J.; DeLaRiva, Andrew; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Halevi, Barr; Peterson, Eric J.; DeLaRiva, Andrew; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Jeroro, Ese] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Lebarbier, Vanessa M.; Wang, Yong; Vohs, John M.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Kunkes, Edward; Havecker, Michael; Behrens, Malte; Sehloegl, Robert] Max Planck Soc, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, MSC01 1120, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Wang, Yong/C-2344-2013; Behrens, Malte/A-3035-2017; OI Behrens, Malte/0000-0003-3407-5011; Datye, Abhaya/0000-0002-7126-8659; Jeroro, Eseoghene/0000-0001-5286-6592 FU U.S. Department of Energy [DE-FG02-05ER15712, DE-FG02-08ER46530]; NSF [OISE 0730277]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX We gratefully acknowledge funding for this work provided by the U.S. Department of Energy Grant No. DE-FG02-05ER15712 and partial funding from Grant DE-FG02-08ER46530 and NSF Grant OISE 0730277. We also gratefully acknowledge computing resources provided by the New Mexico Computing Applications Center (NMCAC) on Encanto. Ambient pressure XPS experiments were carried out at BESSY II Helmholtz-Zentrum Berlin. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Lastly, we thank Ron Goeke at Sandia National Laboratories, Albuquerque for helpful discussions and analysis. The work was inspired by the work of Professor D. Wayne Goodman on the development of model catalysts. NR 51 TC 27 Z9 27 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17181 EP 17190 DI 10.1021/jp103967x PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000041 ER PT J AU Yang, Y Mims, CA Disselkamp, RS Kwak, JH Peden, CHF Campbell, CT AF Yang, Yong Mims, C. A. Disselkamp, R. S. Kwak, Ja-Hun Peden, C. H. F. Campbell, C. T. TI (Non)formation of Methanol by Direct Hydrogenation of Formate on Copper Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WATER-GAS SHIFT; FORMIC-ACID; SUPPORTED COPPER; KINETICS; CU(111); ADSORPTION; CU/SIO2; CU(100); CO2; DECOMPOSITION AB We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0,25 were produced at temperatures between 413 and 453 K on supported (Cu/SiO(2)) copper and unsupported copper catalysts. The adlayers were produced; by various methods including (1) steady-state catalytic conditions in CO(2)-H(2) (3:1, 6 bar) atmospheres ad (2) exposure of the catalysts to formic acid. As reported in previous work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of similar to 0.25 at the law temperatures of this study. The reactivity of these formate adlayers was investigated :it relevant reaction temperatures in atmospheres containing up to 6 bar H(2) partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation ("titration") of these adlayers was insignificant (<0.2 mol % of the formate adlayer), even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in consisting of CO-hydrogen mixtures or dry CO(2) was also unproductive. The formate decomposition kinetics, measured by IR, was also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO(2)) and unsupported copper catalysts gave similar results, implying that the methanol synthesis reaction mechanism involves only metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O(2) or N(2)O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of, water is also observed during this titration as the copper surface is rereduced. These results indicate that coadsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl. C1 [Mims, C. A.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Yang, Yong; Disselkamp, R. S.; Kwak, Ja-Hun; Peden, C. H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yang, Yong; Campbell, C. T.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Mims, CA (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. EM charles.mims@utoronto.ca RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU Laboratory Directed Research and Development (LDRI); U.S. Department of Energy's Office of Biological and Environmental Research; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division [DE-FG02-96ER14630] FX We thank Wayne Goodman for his scientific inspiration, mentoring, and collaboration, and for untold number of good times that defy description. This project was performed at the Institute for Interfacial Catalysis (IIC) at Pacific Northwest National Laboratory (PNNL) and funded by a Laboratory Directed Research and Development (LDRI) grant. The work was carried out in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL a national scientific user facility supported by the U.S. Department of Energy's Office of Biological and Environmental Research. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. C.T.C. would like to acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division grant number DE-FG02-96ER14630, for support of this work. C.A.M. gratefully acknowledges PNNL support for his participation as visiting professor. NR 33 TC 29 Z9 30 U1 4 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 14 PY 2010 VL 114 IS 40 BP 17205 EP 17211 DI 10.1021/jp104068k PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 659DA UT WOS:000282546000044 ER PT J AU Palacios, A Horner, DA Rescigno, TN McCurdy, CW AF Palacios, A. Horner, D. A. Rescigno, T. N. McCurdy, C. W. TI Two-photon double ionization of the helium atom by ultrashort pulses SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ELECTRON; AUGER; PHOTOELECTRON; RADIATION AB Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate ab initio calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-colour pump-probe experiments with short pulses whose central frequencies cause the sequential ionization process to dominate, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom. C1 [Palacios, A.] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. [Horner, D. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Palacios, A (reprint author), Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. RI Palacios, Alicia/J-6823-2012 OI Palacios, Alicia/0000-0001-6531-9926 FU US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation [PHY-0604628]; Los Alamos National Laboratory [DE-AC02-05CH11231] FX This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory and the Los Alamos National Laboratory under contract DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. CWM acknowledges support from the National Science Foundation (grant no PHY-0604628). NR 45 TC 37 Z9 37 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194003 DI 10.1088/0953-4075/43/19/194003 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100004 ER PT J AU Seibert, MM Boutet, S Svenda, M Ekeberg, T Maia, FRNC Bogan, MJ Timneanu, N Barty, A Hau-Riege, S Caleman, C Frank, M Benner, H Lee, JY Marchesini, S Shaevitz, JW Fletcher, DA Bajt, S Andersson, I Chapman, HN Hajdu, J AF Seibert, M. Marvin Boutet, Sebastien Svenda, Martin Ekeberg, Tomas Maia, Filipe R. N. C. Bogan, Michael J. Timneanu, Nicusor Barty, Anton Hau-Riege, Stefan Caleman, Carl Frank, Matthias Benner, Henry Lee, Joanna Y. Marchesini, Stefano Shaevitz, Joshua W. Fletcher, Daniel A. Bajt, Sasa Andersson, Inger Chapman, Henry N. Hajdu, Janos TI Femtosecond diffractive imaging of biological cells SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID FREE-ELECTRON LASER; X-RAY-DIFFRACTION; SPIROPLASMA; HOLOGRAPHY; RECONSTRUCTION; SCATTERING; RADIATION AB In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 angstrom during the pulse. C1 [Seibert, M. Marvin; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Timneanu, Nicusor; Caleman, Carl; Hajdu, Janos] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Boutet, Sebastien; Bogan, Michael J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Boutet, Sebastien; Bogan, Michael J.; Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barty, Anton; Chapman, Henry N.] Univ Hamburg, Ctr Free Electron Laser Sci, Hamburg, Germany. [Lee, Joanna Y.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA. [Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shaevitz, Joshua W.] Princeton Univ, Carl Icahn Lab 150, Princeton, NJ 08544 USA. [Bajt, Sasa] DESY, Photon Sci, D-22607 Hamburg, Germany. [Andersson, Inger] Swedish Univ Agr Sci, Dept Mol Biol, SE-75124 Uppsala, Sweden. RP Seibert, MM (reprint author), Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, Husargatan 3,Box 596, SE-75124 Uppsala, Sweden. EM marvin@xray.bmc.uu.se; janos@xray.bmc.uu.se RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Timneanu, Nicusor/C-7691-2012; Bogan, Mike/I-6962-2012; Rocha Neves Couto Maia, Filipe/C-3146-2014; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014 OI Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Bogan, Mike/0000-0001-9318-3333; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Barty, Anton/0000-0003-4751-2727; FU Swedish Research Council; Swedish Foundation for International Cooperation in Research and Higher Education; Swedish Foundation for Strategic Research; Sven and Lilly Lawski Foundation; Natural Sciences and Engineering Research Council of Canada, US Department of Energy, Office of Basic Energy Sciences; DFG Cluster of Excellence at the Munich Centre for Advanced Photonics; National Science Foundation Center for Biophotonics, University of California, Davis; Advanced Light Source, Lawrence Berkeley Lab, under DOE contract; European Union (TUIXS); US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; European Union [RII3-CT-2004-506008] FX We are grateful to the scientific and technical staff of FLASH at DESY, Hamburg, in particular to R Treusch, S Dusterer and S Toleikis. We also thank T Moller, C Bostedt and H Thomas for allowing us to use their vacuum chamber for these studies. We thank R Lee and A Szoke for many stimulating discussions. This work was supported by the following agencies: The Swedish Research Council; The Swedish Foundation for International Cooperation in Research and Higher Education; The Swedish Foundation for Strategic Research; The Sven and Lilly Lawski Foundation (PhD fellowship to MMS); Natural Sciences and Engineering Research Council of Canada through a Postdoctoral Fellowship to MJB (MJB is currently supported through the PULSE Institute at the SLAC National Accelerator Laboratory by the US Department of Energy, Office of Basic Energy Sciences); The DFG Cluster of Excellence at the Munich Centre for Advanced Photonics, The National Science Foundation Center for Biophotonics, University of California, Davis: The Advanced Light Source, Lawrence Berkeley Lab, under DOE contract; The European Union (TUIXS); parts of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Damage simulations were performed on UPPMAX resources under project p2009018. Access to FLASH is provided by the European Union contract RII3-CT-2004-506008 (IA-SFS). NR 43 TC 24 Z9 24 U1 0 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194015 DI 10.1088/0953-4075/43/19/194015 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100016 ER PT J AU Toleikis, S Bornath, T Doppner, T Dusterer, S Faustlin, RR Forster, E Fortmann, C Glenzer, SH Gode, S Gregori, G Irsig, R Laarmann, T Lee, HJ Li, B Meiwes-Broer, KH Mithen, J Nagler, B Przystawik, A Radcliffe, P Redlin, H Redmer, R Reinholz, H Ropke, G Tavella, F Thiele, R Tiggesbaumker, J Uschmann, I Vinko, SM Whitcher, T Zastrau, U Ziaja, B Tschentscher, T AF Toleikis, S. Bornath, T. Doeppner, T. Duesterer, S. Faeustlin, R. R. Foerster, E. Fortmann, C. Glenzer, S. H. Goede, S. Gregori, G. Irsig, R. Laarmann, T. Lee, H. J. Li, B. Meiwes-Broer, K-H Mithen, J. Nagler, B. Przystawik, A. Radcliffe, P. Redlin, H. Redmer, R. Reinholz, H. Roepke, G. Tavella, F. Thiele, R. Tiggesbaeumker, J. Uschmann, I. Vinko, S. M. Whitcher, T. Zastrau, U. Ziaja, B. Tschentscher, T. TI Probing near-solid density plasmas using soft x-ray scattering SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID EQUATION-OF-STATE; EXTREME-ULTRAVIOLET; THOMSON SCATTERING; GIANT PLANETS; HYDROGEN; LASER; TARGET; MATTER; WATER AB X-ray scattering using highly brilliant x-ray free-electron laser (FEL) radiation provides new access to probe free-electron density, temperature and ionization in near-solid density plasmas. First experiments at the soft x-ray FEL FLASH at DESY, Hamburg, show the capabilities of this technique. The ultrashort FEL pulses in particular can probe equilibration phenomena occurring after excitation of the plasma using ultrashort optical laser pumping. We have investigated liquid hydrogen and find that the interaction of very intense soft x-ray FEL radiation alone heats the sample volume. As the plasma establishes, photons from the same pulse undergo scattering, thus probing the transient, warm dense matter state. We find a free-electron density of (2.6 +/- 0.2) x 10(20) cm(-3) and an electron temperature of 14 +/- 3.5 eV. In pump-probe experiments, using intense optical laser pulses to generate more extreme states of matter, this interaction of the probe pulse has to be considered in the interpretation of scattering data. In this paper, we present details of the experimental setup at FLASH and the diagnostic methods used to quantitatively analyse the data. C1 [Toleikis, S.; Duesterer, S.; Faeustlin, R. R.; Laarmann, T.; Redlin, H.; Tavella, F.] Deutsches Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Bornath, T.; Goede, S.; Irsig, R.; Meiwes-Broer, K-H; Przystawik, A.; Redmer, R.; Reinholz, H.; Roepke, G.; Thiele, R.; Tiggesbaeumker, J.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Doeppner, T.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Foerster, E.; Uschmann, I.; Zastrau, U.] Univ Jena, Inst Opt & Quantenelektron, D-07743 Jena, Germany. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Gregori, G.; Mithen, J.; Vinko, S. M.; Whitcher, T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Lee, H. J.; Nagler, B.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Li, B.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Radcliffe, P.; Tschentscher, T.] European XFEL GmbH, D-22671 Hamburg, Germany. [Ziaja, B.] CFEL, D-22607 Hamburg, Germany. [Ziaja, B.] Inst Nucl Phys, PL-31342 Krakow, Poland. RP Toleikis, S (reprint author), Deutsches Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. EM sven.toleikis@desy.de RI Redmer, Ronald/F-3046-2013; Vinko, Sam/I-4845-2013; OI Vinko, Sam/0000-0003-1016-0975; Thiele, Robert/0000-0001-8350-9942 FU Helmholtz association [VH-VI-104]; German Federal Ministry for Education and Research [FSP 301-FLASH]; Deutsche Forschungsgemeinschaft [SFB 652, LA 1431/2-3]; Engineering and Physical Sciences Research Council [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [08-ERI-002, 08-LW-004]; European Community [RII3-CT-2004-506008 (IA-SFS)] FX This work was initiated by the Virtual Institute Plasma Physics using FEL radiation funded by the Helmholtz association under no VH-VI-104 and is continued in the project FSP 301-FLASH funded by the German Federal Ministry for Education and Research. The University of Rostock acknowledges support by the Deutsche Forschungsgemeinschaft through the SFB 652 and RRF received support for the spectrometer and simulation codes from the GRK 1355 at the University of Hamburg. TL acknowledges DFG support under grant no LA 1431/2-3. The work of GG, BL and JM was supported in part by the Engineering and Physical Sciences Research Council (grant no EP/G007187/1) and by the Science and Technology Facilities Council of the United Kingdom. The work of TD and SHG was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract no DE-AC52-07NA27344. The work was also supported by Laboratory Directed Research and Development grants no 08-ERI-002 and no 08-LW-004. The provision of a CCD detector by D Riley at QUB, UK, a He-cryostat by CP Schulz at MBI, Berlin, and support for access to FLASH by DESY and by the European Community under contract RII3-CT-2004-506008 (IA-SFS) are gratefully acknowledged. We finally thank all people involved at the FLASH facility for their outstanding support. NR 40 TC 10 Z9 10 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 14 PY 2010 VL 43 IS 19 SI SI AR 194017 DI 10.1088/0953-4075/43/19/194017 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 651WM UT WOS:000281958100018 ER PT J AU Alushin, GM Ramey, VH Pasqualato, S Ball, DA Grigorieff, N Musacchio, A Nogales, E AF Alushin, Gregory M. Ramey, Vincent H. Pasqualato, Sebastiano Ball, David A. Grigorieff, Nikolaus Musacchio, Andrea Nogales, Eva TI The Ndc80 kinetochore complex forms oligomeric arrays along microtubules SO NATURE LA English DT Article ID CHROMOSOME BI-ORIENTATION; ELECTRON-MICROSCOPY; ATTACHMENT SITE; MOLECULAR ARCHITECTURE; OUTER KINETOCHORE; STRUCTURAL BASIS; SPINDLE POLE; RESOLUTION; HEC1; VISUALIZATION AB The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment (a process required for cell division), but the molecular mechanism underlying its function remains unknown. Here we present a subnanometre-resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that the Ndc80 complex binds the microtubule with a tubulin monomer repeat, recognizing alpha- and beta-tubulin at both intra-and inter-tubulin dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments through interactions mediated by the amino-terminal tail of the NDC80 protein, which is the site of phospho-regulation by Aurora B kinase. The complex's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing kinetochore-microtubule attachments. C1 [Ball, David A.; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Alushin, Gregory M.; Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Pasqualato, Sebastiano; Musacchio, Andrea] European Inst Oncol, Dept Expt Oncol, I-20139 Milan, Italy. [Grigorieff, Nikolaus] Brandeis Univ, Rosenstiel Basic Med Res Ctr, Howard Hughes Med Inst, Waltham, MA 02453 USA. [Musacchio, Andrea] Italian Inst Technol, Res Unit, I-20139 Milan, Italy. [Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM enogales@lbl.gov RI Pasqualato, Sebastiano/G-1032-2011; OI Musacchio, Andrea/0000-0003-2362-8784 FU National Institute of General Medical Sciences FX We are grateful to K. H. Downing for supporting the work carried out by D.A.B., to C. Ciferri for his knowledge and advice about the Ndc80 complex and critical reading of the manuscript, and to P. Grob and S. Lipscomb for electron-microscopy and computer support, respectively. We also acknowledge D. Typke and B. Glaeser for advice on data collection, and C. Sindelar for discussion of data processing strategies. This work was funded by a grant from the National Institute of General Medical Sciences (E.N.). E.N. and N.G. are Howard Hughes Medical Institute Investigators. NR 57 TC 132 Z9 132 U1 3 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP 805 EP U68 DI 10.1038/nature09423 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700058 PM 20944740 ER PT J AU Smoot, GF AF Smoot, George F. TI Thinking in aeons SO NATURE LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Smoot, GF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 14 PY 2010 VL 467 IS 7317 BP S12 EP S12 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 663PB UT WOS:000282898700011 PM 20944612 ER PT J AU Clark, SM Zaug, JM AF Clark, S. M. Zaug, J. M. TI Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus SO PHYSICAL REVIEW B LA English DT Article ID KOLMOGOROV-SMIRNOV TEST; ADVANCED-LIGHT-SOURCE; CRYSTAL-STRUCTURE; HIGH-PRESSURE; LOW-TEMPERATURE; TRANSITION; ASTRONOMY; SPECTRA AB The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The alpha phase was found to transform into the alpha' phase at 0.87 perpendicular to 0.04 GPa with a volume change in 0.1 perpendicular to 0.3 cc/mol. A fit of a second-order Birch-Murnaghan equation to the data gave V(o) = 16.94 +/- 0.08 cc/mol and K(o) = 6.7 +/- 0.5 GPa for the alpha phase and V(o) = 16.4 +/- 0.1 cc/mol and K(o) = 9.1 +/- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +/- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second-order Birch-Murnaghan equation to our data combined with previous measurements gave V(o) = 11.43 +/- 0.05 cc/mol and K(o) = 34.7 +/- 0.5 GPa for the A17 phase, V(o) = 9.62 +/- 0.01 cc/mol and K(o) = 65.0 +/- 0.6 GPa for the A7 phase and, V(o) = 9.23 +/- 0.01 cc/mol and K(o) = 72.5 +/- 0.3 GPa for the simple cubic phase. C1 [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Clark, S. M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Zaug, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Clark, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU Defense Threat Reduction Agency; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Martin Kunz and the ALS staff for support on beamline 12.2.2 and the input of an anonymous reviewer which greatly improved this manuscript. J.M.Z. acknowledges partial financial support from the Defense Threat Reduction Agency including the LLNL DOE Campaign II program directed by Kimberly Budil. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 8 Z9 8 U1 6 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134111 DI 10.1103/PhysRevB.82.134111 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600002 ER PT J AU Klimczuk, T Gofryk, K Wang, CH Allred, JM Ronning, F Sadowski, W Griveau, JC Colineau, E Safarik, D Thompson, JD Cava, RJ AF Klimczuk, T. Gofryk, K. Wang, C. H. Allred, J. M. Ronning, F. Sadowski, W. Griveau, J. -C. Colineau, E. Safarik, D. Thompson, J. D. Cava, R. J. TI Superconductivity in the Rh-based Heusler family MRh2Sn (Retracted article. See vol. 83, artn no. 19901, 2011) SO PHYSICAL REVIEW B LA English DT Article; Retracted Publication ID TRANSITION-TEMPERATURE; EARTH; ALLOYS; MGB2 AB Superconductivity and structural characterization is reported for the Heusler structure compounds ScRh2Sn, LuRh2Sn, and YRh2Sn. The superconducting T-c's are 2.0 K, 2.9 K, and 4.1 K, respectively. The electronic contributions to the specific heat and the Debye temperatures are reported, and suggest that the observed trend in T-c is governed primarily by an increase in electron-phonon coupling on going from ScRh2Sn to YRh2Sn. The electron-phonon coupling constant lambda(ep) and the normalized specific-heat jump Delta C/gamma T-c suggest that the MRh2Sn system evolves from weak coupling to moderate coupling superconductivity. C1 [Klimczuk, T.; Gofryk, K.; Wang, C. H.; Ronning, F.; Safarik, D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.; Griveau, J. -C.; Colineau, E.] European Commiss, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Klimczuk, T.; Sadowski, W.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Wang, C. H.] Univ Calif Irvine, Irvine, CA 92697 USA. [Allred, J. M.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Klimczuk, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Klimczuk, Tomasz/M-1716-2013; Gofryk, Krzysztof/F-8755-2014; OI Klimczuk, Tomasz/0000-0003-2602-5049; Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957; Safarik, Douglas/0000-0001-8648-9377 FU U.S. Department of Energy, Office of Science; U.S. Department of Energy [DE-FG02-98ER45706]; European Commission FX Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, Office of Science. The work at Princeton University was supported by the U.S. Department of Energy, Grant No. DE-FG02-98ER45706. T.K. acknowledges the European Commission for financial support. NR 27 TC 1 Z9 1 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134520 DI 10.1103/PhysRevB.82.134520 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600006 ER PT J AU Lahiri, D Khalid, S Modak, P Raychaudhuri, P Dhar, SK Sharma, SM AF Lahiri, Debdutta Khalid, S. Modak, P. Raychaudhuri, Pratap Dhar, S. K. Sharma, Surinder M. TI Understanding the role of structural disorder on spin polarization in CeMnNi4 using XAFS SO PHYSICAL REVIEW B LA English DT Article ID HALF-METALLIC FERROMAGNETS; LOCAL-STRUCTURE; SPINTRONICS; SEMICONDUCTOR; DIFFRACTION; ELECTRONICS; ALLOYS; ENERGY; FILMS AB The role of disorder on ferromagnetism has generally been detrimental. We show how Mn-Ni antisite disorder enhances polarization in CeMnNi4. The disorder is determined to be 6% by x-ray absorption fine structure. The electronic structure of pure CeMnNi4 is pseudo-half-metallic. Site exchange alters the near neighbor bond parameters and modifies the density of states favorably, increasing the polarization (obtained by first-principles calculations) from 13 to 47% (experimental similar to 66%) C1 [Lahiri, Debdutta; Modak, P.; Sharma, Surinder M.] Bhabha Atom Res Ctr, High Pressure & Synchrotron Radiat Phys Div, Bombay 400085, Maharashtra, India. [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Modak, P.; Raychaudhuri, Pratap] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India. RP Lahiri, D (reprint author), Bhabha Atom Res Ctr, High Pressure & Synchrotron Radiat Phys Div, Bombay 400085, Maharashtra, India. EM debduttalahiri@yahoo.com NR 55 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 13 AR 134424 DI 10.1103/PhysRevB.82.134424 PG 6 WC Physics, Condensed Matter SC Physics GA 664CX UT WOS:000282937600004 ER PT J AU Zeng, L Cao, JX Helgren, E Karel, J Arenholz, E Ouyang, L Smith, DJ Wu, RQ Hellman, F AF Zeng, Li Cao, J. X. Helgren, E. Karel, J. Arenholz, E. Ouyang, Lu Smith, David J. Wu, R. Q. Hellman, F. TI Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; MOLECULAR-DYNAMICS; SILICON; SEMICONDUCTOR; SPINTRONICS; CRYSTALLINE; MNXGE1-X; ALLOYS AB Transition metals such as Mn generally have large local moments in covalent semiconductors due to their partially filled d shells. However, Mn magnetization in group-IV semiconductors is more complicated than often recognized. Here we report a striking crossover from a quenched Mn moment (<0.1 mu(B)) in amorphous Si (a-Si) to a large distinct local Mn moment (>= 3 mu(B)) in amorphous Ge (a-Ge) over a wide range of Mn concentrations (0.005-0.20). Corresponding differences are observed in d-shell electronic structure and the sign of the Hall effect. Density-functional-theory calculations show distinct local structures, consistent with different atomic density measured for a-Si and a-Ge, respectively, and the Mn coordination number N-c is found to be the key factor. Despite the amorphous structure, Mn in a-Si is in a relatively well-defined high coordination interstitial type site with broadened d bands, low moment, and electron (n-type) carriers, while Mn in a-Ge is in a low coordination substitutional type site with large local moment and holes (p-type) carriers. Moreover, the correlation between N-c and the magnitude of the local moment is essentially independent of the matrix; the local Mn moments approach zero when N-c>7 for both a-Si and a-Ge. C1 [Zeng, Li; Helgren, E.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cao, J. X.; Wu, R. Q.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Karel, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ouyang, Lu; Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Zeng, L (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM fhellman@berkeley.edu RI MSD, Nanomag/F-6438-2012; Wu, Ruqian/C-1395-2013; Karel, Julie/J-5305-2014; Cao, Juexian/C-7345-2015 OI Wu, Ruqian/0000-0002-6156-7874; FU NSF [DMR-0505524]; DOE Office of Basic Energy Sciences [DE-AC02-05CH11231, DE-FG02-05ER46237] FX Synthesis and most measurements were supported by NSF Grant No. DMR-0505524. Characterization and work at the Advanced Light Source were supported by DOE Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. Work at UCI was supported by DOE Office of Basic Energy Sciences under Contract No. DE-FG02-05ER46237. Calculations were performed on parallel computers at NERSC. We acknowledge use of facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. NR 51 TC 18 Z9 18 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 14 PY 2010 VL 82 IS 16 AR 165202 DI 10.1103/PhysRevB.82.165202 PG 8 WC Physics, Condensed Matter SC Physics GA 664EF UT WOS:000282942000003 ER PT J AU Seo, JW Prellier, W Padhan, P Boullay, P Kim, JY Lee, H Batista, CD Martin, I Chia, EEM Wu, T Cho, BG Panagopoulos, C AF Seo, J. W. Prellier, W. Padhan, P. Boullay, P. Kim, J-Y Lee, Hangil Batista, C. D. Martin, I. Chia, Elbert E. M. Wu, T. Cho, B-G. Panagopoulos, C. TI Tunable Magnetic Interaction at the Atomic Scale in Oxide Heterostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY; MAGNETORESISTANCE; INTERFACE AB We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO(3), with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively. C1 [Seo, J. W.; Panagopoulos, C.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Seo, J. W.; Chia, Elbert E. M.; Wu, T.; Panagopoulos, C.] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore. [Prellier, W.; Padhan, P.; Boullay, P.] ENSICAEN, CNRS, UMR 6508, Lab CRISMAT, F-14050 Caen, France. [Padhan, P.] Indian Inst Technol Madras, Dept Phys, Madras 600036, Tamil Nadu, India. [Kim, J-Y; Lee, Hangil] Pohang Accelerator Lab, Pohang 790784, South Korea. [Lee, Hangil] Sookmyung Womens Univ, Dept Chem, Seoul 140742, South Korea. [Batista, C. D.; Martin, I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cho, B-G.] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 790784, South Korea. [Panagopoulos, C.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Panagopoulos, C.] FORTH, Iraklion 71003, Greece. RP Seo, JW (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RI PANAGOPOULOS, CHRISTOS/G-8754-2011; Wu, Tom/A-1158-2012; Chia, Elbert/B-6996-2011; Batista, Cristian/J-8008-2016 OI Wu, Tom/0000-0003-0845-4827; Chia, Elbert/0000-0003-2066-0834; FU National Research Foundation of Singapore; EURYI; STAR; LAFICS; CEFIPRA/IFPCAR; Merlion project [n2.04.07] FX This work was supported by MEXT-CT-2006-039047, EURYI, KRF-2005-215-C00040, LAFICS, STAR, CEFIPRA/IFPCAR, National Research Foundation of Singapore, and the Merlion project (n2.04.07). The authors acknowledge H. Hwang for helpful comments on the Goodenough-Kanamori rules, and A. Pautrat and Y. Tokura for useful discussions. NR 21 TC 15 Z9 15 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2010 VL 105 IS 16 AR 167206 DI 10.1103/PhysRevLett.105.167206 PG 4 WC Physics, Multidisciplinary SC Physics GA 664GR UT WOS:000282948900011 PM 21231007 ER PT J AU Yao, H Kivelson, SA AF Yao, Hong Kivelson, Steven A. TI Fragile Mott Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONATING-VALENCE-BOND; SPIN LIQUIDS; STATES; MODEL; SUPERCONDUCTIVITY AB We prove that there exists a class of crystalline insulators, which we call "fragile Mott insulators,'' which are not adiabatically connected to any sort of band insulator provided time-reversal and certain point-group symmetries are respected, but which are otherwise unspectacular in that they exhibit no topological order nor any form of fractionalized quasiparticles. Different fragile Mott insulators are characterized by different nontrivial one-dimensional representations of the crystal point group. We illustrate this new type of insulators with two examples: the d Mott insulator discovered in the checkerboard Hubbard model at half-filling and the Affleck-Kennedy-Lieb-Tasaki insulator on the square lattice. C1 [Yao, Hong] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yao, Hong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kivelson, Steven A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Yao, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yao, Hong/D-3202-2011 OI Yao, Hong/0000-0003-2867-6144 FU DOE [DE-FG02-06ER46287, DE-AC02-05CH11231] FX We would like to thank Dung-Hai Lee, Srinivas Raghu, Shinsei Ryu, Wei-Feng Tsai, Ashvin Vishwanath, and especially Xiao-Liang Qi for insightful discussions. This work was supported, in part, by DOE Grants No. DE-FG02-06ER46287 at Stanford (SAK) and No. DE-AC02-05CH11231 at Berkeley (HY). NR 26 TC 22 Z9 22 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2010 VL 105 IS 16 AR 166402 DI 10.1103/PhysRevLett.105.166402 PG 4 WC Physics, Multidisciplinary SC Physics GA 664GR UT WOS:000282948900008 PM 21230988 ER PT J AU Bassi, G Ellison, JA Heinemann, K Warnock, R AF Bassi, Gabriele Ellison, James A. Heinemann, Klaus Warnock, Robert TI Transformation of phase space densities under the coordinate changes of accelerator physics SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In self-consistent modeling of many-particle systems it is convenient to solve the Maxwell equations for self-fields in coordinates based in the laboratory with time as the evolution variable, but conventional and also convenient to follow particle motion in Frenet-Serret coordinates referred to a reference orbit, with arclength along that orbit as the evolution variable. We refer to these two pictures as the laboratory system and beam system descriptions, while emphasizing that a Lorentz transformation is not involved; it is only a matter of two alternative descriptions of motion in one inertial frame. The problem then arises of how to express the laboratory system charge/current density for the Maxwell equations in terms of the phase space density described in the beam system. We find the exact expression, then make justified approximations to put the formula in a simple and practical form. Incidentally, we derive exact and approximate equations of motion in the different coordinates, without the use of the canonical formalism. The results have been applied in a study of coherent synchrotron radiation in bunch compressors. C1 [Bassi, Gabriele] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bassi, Gabriele] Cockcroft Inst, Daresbury WA4 4AD, England. [Ellison, James A.; Heinemann, Klaus] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Warnock, Robert] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Warnock, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bassi, G (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. EM gbassi@bnl.gov; ellison@math.unm.edu; heineman@math.unm.edu; warnock@slac.stanford.edu FU DOE [AC03-76SF00515, DE-FG02-99ER41104] FX This work has been supported by DOE under AC03-76SF00515 and DE-FG02-99ER41104. NR 13 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 14 PY 2010 VL 13 IS 10 AR 104403 DI 10.1103/PhysRevSTAB.13.104403 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 664HJ UT WOS:000282950700003 ER PT J AU Ramanathan, V Banerjee, S Powers, N Cunningham, N Chandler-Smith, NA Zhao, K Brown, K Umstadter, D Clarke, S Pozzi, S Beene, J Vane, CR Schultz, D AF Ramanathan, Vidya Banerjee, Sudeep Powers, Nathan Cunningham, Nathaniel Chandler-Smith, Nathan A. Zhao, Kun Brown, Kevin Umstadter, Donald Clarke, Shaun Pozzi, Sara Beene, James Vane, C. R. Schultz, David TI Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution. C1 [Ramanathan, Vidya; Banerjee, Sudeep; Powers, Nathan; Cunningham, Nathaniel; Chandler-Smith, Nathan A.; Zhao, Kun; Brown, Kevin; Umstadter, Donald] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Clarke, Shaun; Pozzi, Sara] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Beene, James; Vane, C. R.; Schultz, David] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Ramanathan, V (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. RI Umstadter, Donald/A-1581-2016 OI Umstadter, Donald/0000-0002-2182-4346 FU Air Force Office of Scientific Research (AFOSR); Defense Advanced Research Projects Agency (DARPA); Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE); Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS) FX This work is funded by the Air Force Office of Scientific Research (AFOSR), the Defense Advanced Research Projects Agency (DARPA), the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE), and the Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS). We thank Jeff Thomas for providing the three-dimensional drawing. NR 15 TC 19 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 14 PY 2010 VL 13 IS 10 AR 104701 DI 10.1103/PhysRevSTAB.13.104701 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 664HJ UT WOS:000282950700004 ER PT J AU Kilbourne, KH Quinn, TM Webb, R Guilderson, T Nyberg, J Winter, A AF Kilbourne, K. H. Quinn, T. M. Webb, R. Guilderson, T. Nyberg, J. Winter, A. TI Coral windows onto seasonal climate variability in the northern Caribbean since 1479 SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Little Ice Age; seasonality; coral; Caribbean; Montastrea; paleoclimate ID SEA-SURFACE TEMPERATURES; INTERTROPICAL CONVERGENCE ZONE; O-18 ISOTOPIC DISEQUILIBRIUM; HEMISPHERE WARM POOL; ICE-AGE; BIOLOGICAL CARBONATES; LATE HOLOCENE; SR/CA RATIOS; OXYGEN; WATER AB Mean surface ocean conditions in the Caribbean were up to similar to 2 degrees C cooler than today at times during the Little Ice Age. The seasonal context for such mean state changes is important for determining the mechanisms involved. We reconstructed surface ocean conditions in southwest Puerto Rico at approximately monthly resolution over eight 4-12 year periods during the last similar to 520 years to test if the seasonal cycles of temperature or salinity varied with mean state. We carried out paired analyses of Sr/Ca and delta O-18 for two coral cores. The delta O-18 data contained clear annual cycles and were significantly correlated to temperature during the 20th century calibration periods (1993-2004 and 1902-1912, r = 0.73). The Sr/Ca data contained high-frequency noise that obscured the seasonal cycles, although the centennial variability matched that of the coral delta O-18, indicating a common forcing that is likely temperature. The seasonal coral delta O-18 amplitude averaged 0.60 +/- 0.17 parts per thousand, with none of the periods significantly different from the most recent. The simplest explanation is that the amplitudes of seasonal seawater delta O-18 and temperature variations were not different from today. Previous work in the southern Caribbean indicates that the Intertropical Convergence Zone was shifted southward or weaker during the Little Ice Age, and we speculate about how this could occur with no apparent affect on seasonality in the northern Caribbean. C1 [Kilbourne, K. H.; Quinn, T. M.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. [Kilbourne, K. H.; Quinn, T. M.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Quinn, T. M.] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Webb, R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, T.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, T.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Nyberg, J.] Geol Survey Sweden, SE-75128 Uppsala, Sweden. [Winter, A.] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00681 USA. RP Kilbourne, KH (reprint author), Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. EM kilbourn@cbl.umces.edu RI Rinaldi2, Carlos/D-4479-2011; Quinn, Terrence/A-5755-2008; Kilbourne, Kelly /D-6560-2012 OI Kilbourne, Kelly /0000-0001-7864-8438 FU National Science Foundation [OCE-0327420]; Elsie and William Knight Oceanographic Fellowship FX Thank you to Ethan Goddard for analytical support and to Fred Taylor, Milton Carlo, and Peter Swart for help with coral coring. We also thank Kevin Helmle for his help cutting and X-raying the cores. Funding for this project included the National Science Foundation grant OCE-0327420 to T. M. Q., T. P. G., and R. S. W. and the Elsie and William Knight Oceanographic Fellowship to K. H. K. This manuscript is contribution 4363 of the University of Maryland Center for Environmental Science. NR 46 TC 6 Z9 6 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD OCT 13 PY 2010 VL 11 AR Q10006 DI 10.1029/2010GC003171 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 665YV UT WOS:000283074900001 ER PT J AU Cowee, MM Gary, SP Wei, HY Tokar, RL Russell, CT AF Cowee, M. M. Gary, S. P. Wei, H. Y. Tokar, R. L. Russell, C. T. TI An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1-D hybrid simulation results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA OBSERVATIONS; MAGNETIC-FIELD; COMPUTER-SIMULATIONS; BEAM INSTABILITIES; GALILEO SPACECRAFT; VOYAGER-1; ENCOUNTER; EXOSPHERE; SATURN; TORUS AB Titan's dense atmosphere is thought to be an important source of pickup ions in the Saturnian magnetosphere. Cassini spacecraft measurements of the plasmas near Titan show evidence of pickup ions, yet electromagnetic ion cyclotron waves, which are direct indicators of ion pickup, have not yet been detected. Pickup ions and their associated ion cyclotron waves have been observed at Saturn's Extended Neutral Cloud (similar to 4-10 R-s), as well as at Jupiter's moon, Io, suggesting that the plasma and pickup conditions near Titan may be fundamentally different than these other environments. Using 1-D hybrid simulations, we investigate ion cyclotron wave growth for variable conditions in the Titan environment to test which conditions could yield waves with sufficient amplitude to be clearly detected by spacecraft. Results suggest that ion cyclotron waves have not been observed at Titan because their growth time is too long compared to the convection time of background plasma through the interaction region and therefore will not be of sufficient amplitude to be observed by Cassini. Because Titan can be located in either the magnetically noisy Saturnian current sheet or in the magnetically quiet lobe region, we consider both of these environments in this study. C1 [Cowee, M. M.; Gary, S. P.; Wei, H. Y.; Tokar, R. L.; Russell, C. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cowee, MM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mcowee@lanl.gov RI Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 FU Institute of Geophysics and Planetary Physics; NASA Cassini program FX The authors wish to thank Dan Winske for helpful suggestions. This work was done in conjunction with the International Space Science Institute Working Group on Induced Magnetospheres. It was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy and was supported by the Institute of Geophysics and Planetary Physics (UCLA) Los Alamos National Laboratory minigrant program and the NASA Cassini program. NR 54 TC 11 Z9 11 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 13 PY 2010 VL 115 AR A10224 DI 10.1029/2010JA015769 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 666EU UT WOS:000283096700003 ER PT J AU Fabian, M Proffen, T Ruett, U Veress, E Svab, E AF Fabian, M. Proffen, Th Ruett, U. Veress, E. Svab, E. TI Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CHARGE-TRANSFER; WASTE GLASSES; IONS; SCATTERING; OXIDES; STATE; BORON; IRON; NMR AB Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)center dot 10B(2)O(3)center dot 25Na(2)O center dot 5BaO center dot ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 angstrom, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties. C1 [Fabian, M.; Svab, E.] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. [Proffen, Th] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Ruett, U.] DESY, D-22603 Hamburg, Germany. [Veress, E.] Univ Babes Bolyai, Fac Chem, R-3400 Cluj Napoca, Romania. RP Fabian, M (reprint author), Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. EM fabian@szfki.hu RI Fabian, Margit/C-7210-2011; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU EC [N226507-NMI3, FP7/2007-2013, 226716]; NPDF at the Lujan Center at Los Alamos Neutron Science Center under DOE [DE-AC52-06NA25396, DMR 00-76488] FX The authors are indebted to Drs L Koszegi, Gy Meszaros and P Jovari for their helpful contributions in this work. This research project has been supported by the EC under the FP7 Grant Agreement N226507-NMI3. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center under DOE contract DE-AC52-06NA25396 and grant DMR 00-76488. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. NR 29 TC 4 Z9 4 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 404206 DI 10.1088/0953-8984/22/40/404206 PG 8 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000009 PM 21386567 ER PT J AU Sen, S Uzun, SS Benmore, CJ Aitken, BG AF Sen, S. Uzun, S. Soyer Benmore, C. J. Aitken, B. G. TI Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-CHANGE MATERIALS; CHANGE OPTICAL DISK; NEUTRON-DIFFRACTION; LOCAL-STRUCTURE; AMORPHOUS GE15TE85; ATOMIC-STRUCTURE; DATA-STORAGE; SCATTERING; CRYSTALLIZATION; GE2SB2TE5 AB High-energy x-ray diffraction is employed to study the atomic structure of bulk GexAs2xTe100-3x glasses with compositions in the range 25 <= 3x <= 70. The coordination environments of Te atoms suggest significant violation of chemical order in these glasses. Analyses of the nearest-neighbor coordination environments and the parameters for the first sharp diffraction peak indicate that these telluride glasses are structurally and chemically more disordered as compared with their sulfide or selenide analogs. The compositional evolution of the structural parameters is shown to be consistent with the corresponding variation in molar volume and glass transition temperature. C1 [Sen, S.; Uzun, S. Soyer] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Benmore, C. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aitken, B. G.] Corning Inc, Glass Res Div, Corning, NY 14831 USA. RP Sen, S (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. OI Benmore, Chris/0000-0001-7007-7749 FU National Science Foundation [DMR 0906070]; US DOE [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation grant DMR 0906070 to SS. The Argonne National Laboratory is supported by the US DOE under contract number DE-AC02-06CH11357. NR 41 TC 11 Z9 11 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 405401 DI 10.1088/0953-8984/22/40/405401 PG 9 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000021 PM 21386579 ER PT J AU Sidorov, VA Thompson, JD Fisk, Z AF Sidorov, V. A. Thompson, J. D. Fisk, Z. TI Magnetic transitions in a heavy-fermion antiferromagnet U2Zn17 at high pressure SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID COMPOUND U2ZN17; HYDROSTATIC-PRESSURE; LOW-TEMPERATURES; TOROID CELL; 8 GPA; SYSTEM; CALORIMETRY; CERU2GE2; STATE AB Pressure-dependent electrical resistivity and ac-calorimetry measurements on single crystals of the heavy-fermion antiferromagnet U2Zn17 at pressures to 5.5 GPa reveal that the low temperature magnetic order changes above similar to 3 GPa. The Neel temperature (T-N = 9.7 K at ambient pressure) decreases slowly for pressures below 3 GPa, but above this pressure a new magnetic state develops at T-M approximate to 8.7 K. This magnetic phase becomes more stable with pressure increase (dT(M)/dP = 1 K GPa(-1), T-M = 10.5 K at 5.3 GPa). The heavy-electron state in U2Zn17 is robust against pressure-the electronic specific heat coefficient gamma approximate to 0.4 J mol(-1) K-2 is nearly pressure independent for both magnetic phases. Magnetic ac-susceptibility measurements show that the pressure-induced state is not ferromagnetic. C1 [Sidorov, V. A.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sidorov, V. A.] Russian Acad Sci, Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Sidorov, VA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vs_hppi@mail.ru FU US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Russian Foundation for Basic Research [09-02-00336]; [NSF-DMR-0801253] FX Work at Los Alamos National Laboratory was performed at the auspices of the US DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. VAS acknowledges support of the Russian Foundation for Basic Research (grant 09-02-00336). ZF acknowledges a support by grant NSF-DMR-0801253. We are grateful to F Ronning for measurements of the specific heat of our U2Zn17 sample at normal pressure and E Nazaretskii for help with writing software for ac-calorimetry measurements. NR 22 TC 7 Z9 7 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 13 PY 2010 VL 22 IS 40 AR 406002 DI 10.1088/0953-8984/22/40/406002 PG 4 WC Physics, Condensed Matter SC Physics GA 653MQ UT WOS:000282096000024 PM 21386582 ER PT J AU Ergen, O Ruebusch, DJ Fang, H Rathore, AA Kapadia, R Fan, ZF Takei, K Jamshidi, A Wu, M Javey, A AF Ergen, Onur Ruebusch, Daniel J. Fang, Hui Rathore, Asghar A. Kapadia, Rehan Fan, Zhiyong Takei, Kuniharu Jamshidi, Arash Wu, Ming Javey, Ali TI Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-Assisted Vapor-Liquid-Solid Process SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANODIC ALUMINA; NANOWIRES; GROWTH; DEPOSITION; GAN AB Highly regular, single-crystalline nanopillar arrays with tunable shapes and geometry are synthesized by the template-assisted vapor liquid solid growth mechanism. In this approach, the grown nanopillars faithfully reproduce the shape of the pores because during the growth the liquid catalyst seeds fill the space available, thereby conforming to the pore geometry. The process is highly generic for various material systems, and as an example, CdS and Ge nanopillar arrays with square, rectangular, and circular cross sections are demonstrated. In the future, this technique can be used to engineer the intrinsic properties of NPLs as a function of three independently controlled dimensional parameters - length, width and height. C1 [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Jamshidi, Arash; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Jamshidi, Arash; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Ergen, Onur; Ruebusch, Daniel J.; Fang, Hui; Rathore, Asghar A.; Kapadia, Rehan; Fan, Zhiyong; Takei, Kuniharu; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Wu, Ming/J-9906-2012; Kapadia, Rehan/B-4100-2013; Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013; OI Kapadia, Rehan/0000-0002-7611-0551; Fang, Hui/0000-0002-4651-9786; Fan, Zhiyong/0000-0002-5397-0129 FU BSAC; MDV; World Class University FX This work was funded by BSAC and MDV. The synthesis part was supported by an LDRD from LBL. A.J. acknowledges support from World Class University program. NR 18 TC 21 Z9 21 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 13972 EP 13974 DI 10.1021/ja1052413 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100008 PM 20849108 ER PT J AU Williams, WD Shekhar, M Lee, WS Kispersky, V Delgass, WN Ribeiro, FH Kim, SM Stach, EA Miller, JT Allard, LF AF Williams, W. Damion Shekhar, Mayank Lee, Wen-Sheng Kispersky, Vincent Delgass, W. Nicholas Ribeiro, Fabio H. Kim, Seung Min Stach, Eric A. Miller, Jeffrey T. Allard, Lawrence F. TI Metallic Corner Atoms in Gold Clusters Supported on Rutile Are the Dominant Active Site during Water-Gas Shift Catalysis SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CO OXIDATION; AU; NANOPARTICLES; AU/TIO2; NOBLE AB Au/TiO(2) catalysts used in the water gas shift (WGS) reaction at 120 degrees C, 7% CO, 22% H(2)O, 9% CO(2), and 37% H(2) had rates up to 0.1 moles of CO converted per mole of Au per second. However, the rate per mole of Au depends strongly on the Au particle size. The use of a nonporous, model support allowed for imaging of the active catalyst and a precise determination of the gold size distribution using transmission electron microscopy (TEM) because all the gold is exposed on the surface. A physical model of Au/TiO(2) is used to show that corner atoms with fewer than seven neighboring gold atoms are the dominant active sites. The number of corner sites does not vary as particle size increases above 1 nm, giving the surprising result that the rate per gold cluster is independent of size. C1 [Williams, W. Damion; Shekhar, Mayank; Lee, Wen-Sheng; Kispersky, Vincent; Delgass, W. Nicholas; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Kim, Seung Min; Stach, Eric A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Kim, Seung Min; Stach, Eric A.] Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM Fabio@purdue.edu RI ID, MRCAT/G-7586-2011; Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Ribeiro, Fabio/0000-0001-7752-461X FU U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science [DE-FG02-03ER15466]; Office of Energy Efficiency and Renewable Energy FX Funding provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Grant DE-FG02-03ER15466 and the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, for microscopy at the High Temperature Materials Laboratory-ORNL. NR 17 TC 88 Z9 88 U1 9 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14018 EP 14020 DI 10.1021/ja1064262 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100024 PM 20853899 ER PT J AU Sessler, JL Cai, JJ Gong, HY Yang, XP Arambula, JF Hay, BP AF Sessler, Jonathan L. Cai, Jiajia Gong, Han-Yuan Yang, Xiaoping Arambula, Jonathan F. Hay, Benjamin P. TI A Pyrrolyl-Based Triazolophane: A Macrocyclic Receptor With CH and NH Donor Groups That Exhibits a Preference for Pyrophosphate Anions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN-BONDS; SHAPE-PERSISTENT; BINDING; RECOGNITION; COMPLEXES; OLIGOMERS; CONTACTS; PYRENE; CL AB A pyrrolyl-based triazolophane, incorporating CH and NH donor groups, acts as a receptor for the pyrophosphate anion in chloroform solution. It shows selectivity for this trianion, followed by HSO4- > H2PO4- > Cl- > Br- (all as the corresponding tetrabutylammonium salts), with NH-anion interactions being more important than CH-anion interactions. In the solid state, the receptor binds the pyrophosphate anion in a clip-like slot via NH and CH hydrogen bonds. C1 [Sessler, Jonathan L.; Cai, Jiajia; Gong, Han-Yuan; Yang, Xiaoping; Arambula, Jonathan F.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Sessler, Jonathan L.] Yonsei Univ, Dept Chem, Seoul 120749, South Korea. [Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Sessler, JL (reprint author), Univ Texas Austin, Dept Chem & Biochem, 1 Univ Stn A5300, Austin, TX 78712 USA. EM sessler@mail.utexas.edu FU National Institutes of Health [GM58907]; National Science Foundation [0749571, 0741973]; WCU (World Class University [R32-2008-000-10217-0] FX This work was supported by the National Institutes of Health (Grant No. GM58907 to J.L.S.) and the National Science Foundation (Grant Nos. 0749571 to J.L.S. and 0741973 for the X-ray diffractometer). B.P.H. acknowledges support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE at Oak Ridge National Laboratory. Support under the WCU (World Class University) program (R32-2008-000-10217-0) is also acknowledged. NR 36 TC 67 Z9 68 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14058 EP 14060 DI 10.1021/ja107098r PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100037 PM 20853896 ER PT J AU Worsley, MA Pauzauskie, PJ Olson, TY Biener, J Satcher, JH Baumann, TF AF Worsley, Marcus A. Pauzauskie, Peter J. Olson, Tammy Y. Biener, Juergen Satcher, Joe H., Jr. Baumann, Theodore F. TI Synthesis of Graphene Aerogel with High Electrical Conductivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FUNCTIONALIZED GRAPHENE; POLYMER NANOCOMPOSITES; SHEETS; OXIDE; FILMS; TRANSPARENT; ELECTRODES; COMPOSITE; GRAPHITE; SENSORS AB We report the synthesis of ultra-low-density three-dimensional macroassemblies of graphene sheets that exhibit high electrical conductivities and large internal surface areas. These materials are prepared as monolithic solids from suspensions of single-layer graphene oxide in which organic sol-gel chemistry is used to cross-link the individual sheets. The resulting gels are supercritically dried and then thermally reduced to yield graphene aerogels with densities approaching 10 mg/cm(3). In contrast to methods that utilize physical cross-links between GO, this approach provides covalent carbon bonding between the graphene sheets. These graphene aerogels exhibit an improvement in bulk electrical conductivity of more than 2 orders of magnitude (similar to 1 x 10(2) S/m) compared to graphene assemblies with physical cross-links alone (similar to 5 x 10(-1) S/m). The graphene aerogels also possess large surface areas (584 m(2)/g) and pore volumes (2.96 cm(3)/g), making these materials viable candidates for use in energy storage, catalysis, and sensing applications. C1 [Worsley, Marcus A.; Pauzauskie, Peter J.; Olson, Tammy Y.; Biener, Juergen; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Pauzauskie, Peter/A-1316-2014; Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 31 TC 422 Z9 430 U1 145 U2 1135 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 13 PY 2010 VL 132 IS 40 BP 14067 EP 14069 DI 10.1021/ja1072299 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 660RD UT WOS:000282660100040 PM 20860374 ER PT J AU Xiang, HJ Kan, EJ Wei, SH Gong, XG Whangbo, MH AF Xiang, H. J. Kan, E. J. Wei, Su-Huai Gong, X. G. Whangbo, M. -H. TI Thermodynamically stable single-side hydrogenated graphene SO PHYSICAL REVIEW B LA English DT Article ID BERRYS PHASE; GAS AB The single-sided hydrogenation of graphene was examined by combining the cluster expansion method with density-functional theory to find that hydrogen atoms prefer to form one-dimensional chains, leading to ripples made up of sp(2) carbon atoms between them. The formation of such novel structures is due to the competition between electronic kinetic energy and elastic strain energy. Surprisingly, the single-sided hydrogenation of graphene is thermodynamically stable at low hydrogen coverage, and some hydrogenated graphenes are semiconducting, similar to graphene nanoribbons. The new single-side hydrogenated graphene structures account for several puzzling experimental observations. In addition, we propose a low-energy single-side fluorinated graphene structure. C1 [Xiang, H. J.; Gong, X. G.] Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. [Xiang, H. J.; Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Kan, E. J.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. RI gong, xingao /B-1337-2010; Xiang, Hongjun/I-4305-2016; Kan, Erjun/A-4322-2009; gong, xingao/D-6532-2011 OI Xiang, Hongjun/0000-0002-9396-3214; Kan, Erjun/0000-0003-0433-4190; FU National Science Foundation of China; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; U.S. Department of Energy [DE-AC36-08GO28308]; U.S. DOE [DE-FG02-86ER45259] FX Work at Fudan was partially supported by the National Science Foundation of China, Pujiang plan, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. M.H.W. thanks the financial support from U.S. DOE under Grant No. DE-FG02-86ER45259. NR 23 TC 35 Z9 36 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 13 PY 2010 VL 82 IS 16 AR 165425 DI 10.1103/PhysRevB.82.165425 PG 4 WC Physics, Condensed Matter SC Physics GA 663GW UT WOS:000282872400005 ER PT J AU Zaniewski, AM Loster, M Sadtler, B Alivisatos, AP Zettl, A AF Zaniewski, Anna M. Loster, Matthias Sadtler, Bryce Alivisatos, A. Paul Zettl, A. TI Direct measurement of the built-in potential in a nanoscale heterostructure SO PHYSICAL REVIEW B LA English DT Article ID PROBE FORCE MICROSCOPY; SPECTROSCOPY; NANORODS; SILICON AB We combine transmission electron microscopy with electrostatic force microscopy to determine the built-in potential across individual isolated Cu(2)S-CdS heterostructured nanorods. We observe a variation of potentials for different bicomponent nanorods, ranging from 100 to 920 mV with an average of 250 mV. Nanorods of a uniform composition with no heterojunction do not show a built-in potential, as expected. The results are particularly relevant for applications of colloidal nanocrystals in optoelectronic devices such as photovoltaics. C1 [Zaniewski, Anna M.; Loster, Matthias; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zaniewski, Anna M.; Loster, Matthias; Sadtler, Bryce; Alivisatos, A. Paul; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Zaniewski, Anna M.; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Sadtler, Bryce; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Zaniewski, AM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Alivisatos , Paul /N-8863-2015; Zettl, Alex/O-4925-2016 OI Alivisatos , Paul /0000-0001-6895-9048; Zettl, Alex/0000-0001-6330-136X FU Office of Energy Research, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0832819] FX This work was supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support for EFM instrumentation was provided by the National Science Foundation under Grant No. EEC-0832819. The authors thank S. M. Hughes for the HRTEM images, and Jessy Baker for CdS NRs and useful discussions. NR 15 TC 4 Z9 4 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 13 PY 2010 VL 82 IS 15 AR 155311 DI 10.1103/PhysRevB.82.155311 PG 5 WC Physics, Condensed Matter SC Physics GA 663GQ UT WOS:000282871700005 ER PT J AU Strikman, M Weiss, C AF Strikman, M. Weiss, C. TI Quantifying the nucleon's pion cloud with transverse charge densities SO PHYSICAL REVIEW C LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; LIMIT; FORM AB The transverse densities in a fast-moving nucleon offer a model-independent framework for analyzing the spatial structure of the pion cloud and its role in current matrix elements. We calculate the chiral large-distance component of the charge density in a dispersion representation of the form factor and discuss its partonic interpretation. It dominates over the nonchiral density only at surprisingly large distances above similar to 2 fm. The chiral component can be probed in precision low-Q(2) elastic eN scattering or in peripheral deep-inelastic processes that resolve its quark/gluon content. C1 [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Weiss, C.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Strikman, M (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. FU US DOE [DE-FGO2-93ER40771]; Jefferson Science Associates, LLC under US DOE [DE-AC05-06OR23177] FX We are indebted to M. Burkardt, L. Frankfurt, J. Goity, F. Gross, N. Kivel, W. Melnitchouk, G. A. Miller, and M. V. Polyakov for helpful discussions. This work is supported by the US DOE under Grant No. DE-FGO2-93ER40771 and by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177. NR 30 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 13 PY 2010 VL 82 IS 4 AR 042201 DI 10.1103/PhysRevC.82.042201 PG 5 WC Physics, Nuclear SC Physics GA 663HD UT WOS:000282873100002 ER PT J AU Bousso, R Freivogel, B Leichenauer, S AF Bousso, Raphael Freivogel, Ben Leichenauer, Stefan TI Saturating the holographic entropy bound SO PHYSICAL REVIEW D LA English DT Article ID PRINCIPLE; MONSTERS AB The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S less than or similar to A(3/4), may hold true. In this note, we exhibit light sheets whose entropy exceeds A(3/4) by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order Lambda(-1) (Lambda(-2)), and not vertical bar Lambda vertical bar(-3/4) as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S less than or similar to A(3/4) is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems. C1 [Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bousso, Raphael] Univ Tokyo, Inst Phys & Math Universe, Kashiwa City, Chiba 2778568, Japan. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [0855653]; Institute for the Physics and Mathematics of the Universe [RFP2-08-06]; US Department of Energy [DE-AC02-05CH11231] FX We are grateful to L. Susskind for discussions. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation under Grant No. 0855653, by the Institute for the Physics and Mathematics of the Universe, under fqxi Grant No. RFP2-08-06, and by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 13 PY 2010 VL 82 IS 8 AR 084024 DI 10.1103/PhysRevD.82.084024 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 663HP UT WOS:000282874300005 ER PT J AU Ramalho, G Tsushima, K AF Ramalho, G. Tsushima, K. TI Model for the Delta (1600) resonance and gamma N -> Delta(1600) transition SO PHYSICAL REVIEW D LA English DT Article ID CLOUDY BAG MODEL; PARTIAL-WAVE ANALYSIS; INTERACTION FORM-FACTORS; MAGNETIC-MOMENTS; QUARK-MODEL; OCTET BARYONS; MESON PRODUCTION; LATTICE QCD; PI-N; NUCLEON AB A covariant spectator constituent quark model is applied to study the gamma N ->Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N ->Delta(1232) transition. To estimate the pion cloud contributions in the gamma N ->Delta(1600) transition, we include the relevant intermediate states, pi N, pi Delta, pi N(1440) and pi Delta(1600). Dependence on the four-momentum transfer squared, Q(2), is predicted for the magnetic dipole transition form factor, G(M)*(Q(2)), as well as the helicity amplitudes, A(1/2)(Q(2)) and A(3/2)(Q(2)). The results at Q2 0 are compared with the existing data. C1 [Ramalho, G.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, EBAC, Newport News, VA 23606 USA. RP Ramalho, G (reprint author), Ctr Fis Teor Particulas, Av Rovisco Pais, P-1049001 Lisbon, Portugal. OI Ramalho, Gilberto/0000-0002-9930-659X FU Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union; Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177] FX The authors would like to thank Y. Kohyama for providing K. T. in the past with the calculation note of CBM which has helped the present study. The authors also would like to thank B. Julia-Diaz and H. Kamano for helpful discussions. G. R. would like to thank Franz Gross and the Jefferson Lab Theory Group for the invitation and hospitality during the period of February and March in 2010. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under Grant No. SFRH/BPD/26886/2006. This work is also supported partially by the European Union (HadronPhysics2 project "Study of strongly interacting matter''), and partially by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 81 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 13 PY 2010 VL 82 IS 7 AR 073007 DI 10.1103/PhysRevD.82.073007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 663HJ UT WOS:000282873700001 ER PT J AU Mastorides, T Rivetta, C Fox, JD Van Winkle, D Baudrenghien, P AF Mastorides, T. Rivetta, C. Fox, J. D. Van Winkle, D. Baudrenghien, P. TI RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The Large Hadron Collider rf station-beam interaction strongly influences the longitudinal beam dynamics, both single-bunch and collective effects. Nonlinearities and noise generated within the radio frequency (rf) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the rf accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the rf components and the configuration of the low level rf (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the rf system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations. C1 [Mastorides, T.; Rivetta, C.; Fox, J. D.; Van Winkle, D.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Baudrenghien, P.] CERN, Geneva, Switzerland. RP Mastorides, T (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM themis@slac.stanford.edu; rivetta@slac.stanford.edu FU CERN BE-RF; US-LARP; SLAC AARD; DOE [DE-AC02-76SF00515] FX The authors would like to thank the CERN BE-RF group for their help, support, and interest in all phases of this project. Conversations with Alex Chao and Ron Ruth at SLAC were very helpful for the development of the single-bunch longitudinal beam emittance growth formalism. The authors are also grateful to Joachim Tuckmantel at CERN for all his inspiring work on the longitudinal beam blowup effects. Alex Bullitt at SLAC contributed to the clarity and organization of this article. The US-LARP program and SLAC AARD group have greatly supported this work. This work was supported by the DOE through the U.S. LHC Accelerator Research Program (LARP) and under Contract No. DE-AC02-76SF00515. NR 27 TC 3 Z9 3 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 13 PY 2010 VL 13 IS 10 AR 102801 DI 10.1103/PhysRevSTAB.13.102801 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 663IG UT WOS:000282876000001 ER PT J AU Banerjee, G Car, S Scott-Craig, JS Borrusch, MS Walton, JD AF Banerjee, Goutami Car, Suzana Scott-Craig, John S. Borrusch, Melissa S. Walton, Jonathan D. TI Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID EXPANSION AFEX PRETREATMENT; LIGNOCELLULOSIC BIOMASS; TRICHODERMA-REESEI; CORN STOVER; HYDROLYSIS; CELLULOSE; PRODUCTS; BIOFUELS; XYLANASE; ETHANOL AB Background: Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, beta-glucosidase, a GH10 endo-beta 1,4-xylanase, and beta-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. Results: When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-beta 1,4-xylanase (EX3) and a lower proportion of endo-beta 1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of a-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, beta-mannanase, amyloglucosidase, alpha-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-beta 1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-b1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and beta-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. Conclusion: The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes. C1 [Walton, Jonathan D.] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Walton, JD (reprint author), Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM walton@msu.edu FU Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER) [DE-FC02-07ER64494] FX We thank Cliff Foster, Michigan State University and the Great Lakes Bioenergy Research Center, for the wall carbohydrate analyses, and Derek Marshall of the Biomass Conversion Research Laboratory, Department of Chemical Engineering, Michigan State University, for the AFEX treatments. This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (GLBRC) (DOE Office of Science BER DE-FC02-07ER64494). NR 26 TC 65 Z9 67 U1 10 U2 56 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD OCT 12 PY 2010 VL 3 AR 22 DI 10.1186/1754-6834-3-22 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 670NZ UT WOS:000283433300001 PM 20939889 ER PT J AU Nyman, M Alam, TM McIntyre, SK Bleier, GC Ingersoll, D AF Nyman, May Alam, Todd M. McIntyre, Sarah K. Bleier, Grant C. Ingersoll, David TI Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM ION CONDUCTIVITY; TEMPERATURE-DEPENDENCE; LI5LA3M2O12 M; NMR-SPECTRA; CONDUCTORS; LI5LA3NB2O12; TA; IDENTIFICATION; COORDINATION; THERMOMETER AB The solid-state lithium electrolytes Li(5)La(3)Ta(2)O(12) and Li(5)La(3)Nb(2)O(12) have been the focus of recent studies due to their chemically robust nature (against the lithium electrode; particularly the tantalate analogue) and high lithium conductivity. Structural characterization and Li-conductivity studies have shown that there are two populations of lithium cations, nominally called octahedral (less tightly bound) and tetrahedral sites (tightly bound), and the octahedrally coordinated lithium are considerably more mobile than the tetrahedrally coordinated lithium. In this study, we have documented two methods to preferentially vacate the tetrahedral or nonmobile lithium sites. This is accomplished by either Li(2)O volatility upon repeated mixing and heating solid-state processing steps or by aqueous H(+)-Li(+) exchange, followed by removal of the exchanged-in H(+) by water vaporization. The aqueous treatment produces the largest change in the tetrahedral (nonmobile) lithium sites concentration. The ability to ion-exchange the Li(+) also suggests an aqueous instability of these phases that is not widely recognized. These processes are documented by (6)Li MAS NMR, infrared spectroscopy, and thermogravimetry. Combined (6)Li and (7)Li NMR studies show that aqueous treatment significantly increases the dynamics of the remaining Li sites. The NMR energy of activation (E) for lithium mobility in Li(5-x)La(3)Ta(2)O(12-x/2) decreases by similar to 54% for the long-T1 Li component and similar to 14% for the last-T(1) component following heat treatment, while subsequent aqueous treatment revealed a slow component with a similar E to the heat treated sample hut with the short-T(1) component showing an approximate doubling in the E(a). C1 [Nyman, May; Alam, Todd M.; McIntyre, Sarah K.; Bleier, Grant C.; Ingersoll, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800,MS-0754, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov FU Department of Energy [DE-AC04-94A L85000] FX We gratefully thank the Laboratory Directed Research and Development (LDRD) program or funding. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94A L85000. NR 31 TC 36 Z9 36 U1 7 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 12 PY 2010 VL 22 IS 19 BP 5401 EP 5410 DI 10.1021/cm101438x PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 658DS UT WOS:000282471000001 ER PT J AU Lioutas, CB Frangis, N Todorov, I Chung, DY Kanatzidis, MG AF Lioutas, Christos B. Frangis, Nikolaos Todorov, Iliya Chung, Duck Young Kanatzidis, Mercouri G. TI Understanding Nanostructures in Thermoelectric Materials: An Electron Microscopy Study of AgPb18SbSe20 Crystals SO CHEMISTRY OF MATERIALS LA English DT Article ID HIGH FIGURE; AGPBMSBTE2+M; PERFORMANCE; SCIENCE; MERIT; PBTE AB The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb18SbSe20 (= 18PbSe + AgSbSe2) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals or varying sizes are found, endotaxially grown in the matrix of PbSe (phase A). and consist or two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis or the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb18SbSe20 and the telluride analog AgPb18SbTe20 (LAST-18). C1 [Lioutas, Christos B.; Frangis, Nikolaos] Aristotle Univ Thessaloniki, Dept Phys, Solid State Phys Sect, GR-54124 Thessaloniki, Greece. [Todorov, Iliya; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL USA. [Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Frangis, N (reprint author), Aristotle Univ Thessaloniki, Dept Phys, Solid State Phys Sect, GR-54124 Thessaloniki, Greece. EM frangis@auth.gr; m-kanatzidis@northwestern.edu FU U.S. Department of Energy, Office or Science, Office of Basic Energy Sciences [DE-SC0001054] FX This material is based upon work supported as part of the Center for Revolutionary Materials for Solid State Energy Conversion, an Enemy Frontier Research Center funded by the U.S. Department of Energy, Office or Science, Office of Basic Energy Sciences, under Award Number DE-SC0001054. NR 25 TC 16 Z9 16 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 12 PY 2010 VL 22 IS 19 BP 5630 EP 5635 DI 10.1021/cm102016j PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 658DS UT WOS:000282471000028 ER PT J AU Zavala, VM AF Zavala, Victor M. TI Stability analysis of an approximate scheme for moving horizon estimation SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Estimation; Stability; Large scale; Observability; Nonlinear programming ID DISCRETE-TIME-SYSTEMS; STATE ESTIMATION; SENSITIVITY; OBSERVERS AB We analyze the stability properties of an approximate algorithm for moving horizon estimation (MHE). The strategy provides instantaneous state estimates and is thus suitable for large-scale feedback control. In particular, we study the interplay between numerical approximation errors and the convergence of the estimator error. In addition, we establish connections between the numerical properties of the Hessian of the MHE problem and traditional observability definitions. We demonstrate the developments through a simulation case study. (C) 2010 Published by Elsevier Ltd. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Zavala, VM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave,Bldg 240, Argonne, IL 60439 USA. EM vzavala@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy through contract DE-AC02-06CH11357. We acknowledge the insightful comments and suggestions of the reviewers. NR 24 TC 11 Z9 12 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD OCT 12 PY 2010 VL 34 IS 10 BP 1662 EP 1670 DI 10.1016/j.compchemeng.2010.02.033 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA 660HL UT WOS:000282630800011 ER PT J AU Rowland, JC Dietrich, WE Stacey, MT AF Rowland, Joel C. Dietrich, William E. Stacey, Mark T. TI Morphodynamics of subaqueous levee formation: Insights into river mouth morphologies arising from experiments SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID SCALE FLOW STRUCTURES; PLANE TURBULENT JETS; SUSPENDED SEDIMENT; SHALLOW FLOWS; DEPOSITION; DELTA; ENTRAINMENT; TRANSPORT; DYNAMICS; VELOCITY AB Levee formation by deposition from sediment-laden flows debouching into open waters has been conceptually and analytically linked to jet hydrodynamics since the middle of the 20th century. Despite this long-standing association between jets and levees, the morphodynamics controlling subaqueous levee development remain largely unquantified and poorly understood. Here we report the results of physical experiments on subaqueous levee development modeled on floodplain tie channel processes. In the laboratory, we created subaqueous levees from a sediment-laden jet entering a basin of still water. Levee formation occurred where the local shear velocity of the jet declined below the critical shear velocity for entrainment of sediment into suspension. The rate of levee deposition depended on the rate of lateral sediment transfer to the jet margins and the settling velocity of suspended sediment. In our friction-dominated flows, lateral sediment flux to the levees was primarily due to dispersive lateral transport driven by turbulence. High rates of sediment transfer from the jet core to the margins led to levee growth that outpaced deposition along the flow centerline. Under hypopycnal conditions, we failed to produce levees. We observed distinct differences in levee morphology due to changes in the size and density of suspended sediment under identical hydrodynamic conditions. Our experimental results and review of published data on hypopycnal river mouths suggest that suspended sediment characteristics, relative magnitude of bed friction, and channel outlet aspect ratios may have a more significant influence on river mouth morphology than the buoyancy of discharging waters as envisioned in existing conceptual models. C1 [Rowland, Joel C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Dietrich, William E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Stacey, Mark T.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov FU American Chemical Society; National Center for Earth-Surface Dynamics (NCED); Chevron ETC; George E. Hilley at Stanford University; U.S. Department of Energy FX This work was supported by funding from the American Chemical Society Petroleum Research Fund and the National Center for Earth-Surface Dynamics (NCED). Additional support for experiments involving buoyant outflows was provided by Chevron ETC and the Terman Fellowship to George E. Hilley at Stanford University. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program to J.C.R. Jeremy Venditti, Kathleen Mai, Ken Ferrier, Leslie Hsu, Claire LeGall, and Timothy Greib assisted in data collection and analysis. Stuart Foster, John Potter, Neto Santana, Johnny Sanders, and Taylor Perron all provided critical assistance in flume construction. Mark Schmeeckle provided the infrared laser used in the suspended sediment profiling. The Coastal and Marine Geology Team at the U. S. Geological Survey provided the use of their Particle Size Analysis Laboratory at Menlo Park for the determination of settling velocities. We also thank Chris Ellis at the Saint Anthony Falls Laboratory, University of Minnesota, who freely gave his insights and advice on experimental design and provided advice critical for the development of the laser surveying technique for bed topography. Federico Falcini reviewed an early version of this manuscript and provided many valuable improvements to the analysis presented. Finally we thank Chris Paola, Maarten Kleinhans, and an anonymous reviewer for their thoughtful and detailed reviews of this manuscript. NR 64 TC 22 Z9 22 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD OCT 12 PY 2010 VL 115 AR F04007 DI 10.1029/2010JF001684 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 666CM UT WOS:000283088100001 ER PT J AU Ho, V Boudouris, BW Segalman, RA AF Ho, Victor Boudouris, Bryan W. Segalman, Rachel A. TI Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization SO MACROMOLECULES LA English DT Article ID COIL BLOCK-COPOLYMERS; POLYMER SOLAR-CELLS; WATER-SOLUBLE POLYTHIOPHENES; FIELD-EFFECT TRANSISTORS; MICROPHASE SEPARATION; CONJUGATED POLYMERS; MELTING BEHAVIOR; REGIOREGULAR POLY(3-ALKYLTHIOPHENES); TRIBLOCK COPOLYMERS; OPTICAL-PROPERTIES C1 [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 FU NSF; Lawrence Berkeley National Laboratories; U.S. Department of Energy [DE-AC02-050-111231] FX We gratefully acknowledge support through an NSF CAREER award for the synthesis and characterization of structure and support through the DOE-Office of Science Plastic Electronics Program at Lawrence Berkeley National Laboratories for device fabrication and characterization. VH gratefully acknowledges the National Science Foundation for a graduate fellowship. Device fabrication and characterization was performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science. Office of Basic Energy Sciences, U.S. Department of Energy. under Contract No. DE-AC02-050-111231 NR 58 TC 77 Z9 77 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 7895 EP 7899 DI 10.1021/ma101697m PG 5 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500003 ER PT J AU Kim, SY Park, MJ Balsara, NP Jackson, A AF Kim, Sung Yeon Park, Moon Jeong Balsara, Nitash P. Jackson, Andrew TI Confinement Effects on Watery Domains in Hydrated Block Copolymer Electrolyte Membranes SO MACROMOLECULES LA English DT Article ID SMALL-ANGLE SCATTERING; SULFONATED POLYSTYRENE; NEUTRON-SCATTERING; IONOMER MEMBRANES; NAFION MEMBRANES; PHASE-BEHAVIOR; FUEL-CELLS; X-RAY; PROTON; CONDUCTIVITY AB The morphology of a series of diblock copolymers comprising randomly still-ciliated polystyrene (PSS) and polymethylbutylene (PMB) blocks equilibrated with humid air was determined by in situ small-angle neutron scattering (SANS). In-situ SANS data were collected over a wide angular range permitting the determination of the superstructure of the hydrophilic PSS-rich and hydrophobic PMB-rich domains and the substructure within the hydrophilic PSS-rich domains. When the characteristic length oldie superstructure is larger than 10 nm, the hydrophilic PSS domains :ire heterogeneous with periodically arranged watery domains. The scattering signature of the watery domains is very similar to the well-established "ionomer peak". This peak vanishes when the neutron scattering length density or the water (H(2)O/D(2)O mixture) is matched to that of the PSS block. The spacing between watery domains depends only on sulfonation level of the PSS block. When the characteristic length of the superstructure is less than 10 nm, the watery substructure disappears and homogeneous hydrated PSS-rich domains are obtained. C1 [Park, Moon Jeong] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. [Kim, Sung Yeon; Park, Moon Jeong] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Park, MJ (reprint author), Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. EM moonpark@postech.edu RI Jackson, Andrew/B-9793-2008; Park, Moon Jeong/F-5752-2013 OI Jackson, Andrew/0000-0002-6296-0336; FU Ministry or Education, Science and Technology [2010-0007798, R31-2009-000-10059-0]; National Science Foundation [DMR-0504122] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry or Education, Science and Technology (Project No. 2010-0007798) and WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (Project No. R31-2009-000-10059-0). The SANS facilities at NIST are supported in part by the National Science Foundation under Agreement DMR-0504122. NR 35 TC 20 Z9 20 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8128 EP 8135 DI 10.1021/ma101620k PG 8 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500038 ER PT J AU Wang, YT Zou, Y Araki, T Jan, LN Kilcoyne, ALD Sokolov, J Ade, H Rafailovich, M AF Wang, Yantian Zou, Ying Araki, Tohru Jan Luening Kilcoyne, A. L. D. Sokolov, Jonathan Ade, Harald Rafailovich, Miriam TI Probing the Chain and Crystal Lattice Orientation in Polyethylene Thin Films by Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy SO MACROMOLECULES LA English DT Article ID SURFACE FREE-ENERGY; RUBBED POLYIMIDE; PHOTOELECTRON-SPECTROSCOPY; MOLECULAR-ORIENTATION; DISPERSIVE COMPONENT; POLARIZED XANES; ULTRATHIN FILMS; SPECTRA; SPHERULITES; SUBSTRATE AB The chain and the crystal unit cell orientation of linear low density polyethylene (LLDPE) were measured with near edge X-ray absorption line structure (NEXAFS) spectroscopy. A strongly attractive substrate, silicon, and a weakly attractive substrate, mica, were used. For a 100 nm thick LLDPE film on the silicon substrate, the crystals exhibit an edge-on lamellar morphology, with the chains predominantly parallel to the substrate, and the orthorhombic unit cell < a, b, c > in the following approximate orientation: b and c are in the film plane with b along the crystal fibril direction and c perpendicular to the fibril direction and a perpendicular to the him plane. On the mica substrates, LLDPE films with thickness below 180 nm completely dewet the surface and form isolated droplets, while a film 366 nm thick crystallizes as spherulites with most of the chains perpendicular to the substrate before annealing and with a twisted lamellar structure after isothermal crystallization at 60 degrees C. The results demonstrate that the combination of electron yield NEXAFS and high spatial resolution transmission NEXAFS is a powerful tool to measure the crystal orientation in the polymer thin films on a small length scale. C1 [Wang, Yantian; Sokolov, Jonathan; Rafailovich, Miriam] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Zou, Ying; Araki, Tohru; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Jan Luening] Stanford Synchrotron Radiat Lightsource, Stanford, CA 94209 USA. [Kilcoyne, A. L. D.] Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wang, YT (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM ytwang@notes.cc.sunysb.edu RI Ade, Harald/E-7471-2011; Kilcoyne, David/I-1465-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering [DE-FG02-98ER45737] FX The authors wish to thank Dr. Arnold Lustiger at ExxonMobil Research and Engineering Corporation for providing the polyethylene. The X-ray characterization work by NCSU is supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering, for support under Contract DE-FG02-98ER45737. We acknowledge beamline BL-5-2 at Stanford Synchrotron Radiation Lightsource and beamline 5.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory for providing the instrumentation and beam time for the NEXAFS and STXM experiments, respectively. NR 51 TC 7 Z9 7 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8153 EP 8161 DI 10.1021/ma101213h PG 9 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500041 ER PT J AU Ding, YF Qi, HJ Alvine, KJ Ro, HW Ahn, DU Lin-Gibson, S Douglas, JF Soles, CL AF Ding, Yifu Qi, H. Jerry Alvine, Kyle J. Ro, Hyun Wook Ahn, Dae Up Lin-Gibson, Sheng Douglas, Jack F. Soles, Christopher L. TI Stability and Surface Topography Evolution in Nanoimprinted Polymer Patterns under a Thermal Gradient SO MACROMOLECULES LA English DT Article ID FLASH IMPRINT LITHOGRAPHY; MOLECULAR-WEIGHT; RHEOLOGICAL MEASUREMENTS; RESIDUAL-STRESS; THIN-FILMS; RELAXATION; VISCOELASTICITY; STEP; NANOFABRICATION; DEFORMATION AB Nanostructures created in polymer films by nanoimprint lithography are subject to large stresses, both those from the imprinting processes as well as stresses arising from the intrinsic thermodynamic instabilities. These stresses can induce nanostructure deformations that compromise the intended function of the imprinted pattern. Controlling these stresses, and thus the stability of the imprinted patterns, is a key scientific issue for this technology. The requirement of film stability against dewetting requires the use of entangled polymer films, which necessitates an understanding of complex viscoelastic response of these materials to large stresses. Here we investigate the evolution of the surface topography of nanoimprinted patterns in polystyrene films through a high throughput annealing approach in which the patterns are annealed for a fixed time on a controlled temperature gradient. Using principles of time-temperature superposition we systematically explore the effect of varying basic system variables such as pattern feature size, polymer molecular mass, imprinting temperature. on nanopattern stability, and on the evolution of imprinted patterns driven by surface tension and internal stress. Nanostructure collapse generally occurs through a combination of a "slumping'' instability, where the imprinted film simply relaxes toward it planar film and the pattern height decreases with time, and a lateral "zigzag" instability in the nanoimprinted lines. C1 [Ding, Yifu; Qi, H. Jerry; Ahn, Dae Up] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Alvine, Kyle J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Ro, Hyun Wook; Lin-Gibson, Sheng; Douglas, Jack F.; Soles, Christopher L.] NIST, Div Polymers, Gaithersburg, MD 20899 USA. RP Ding, YF (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM Yifu.Ding@colorado.Edu; Christopher.soles@nist.gov RI Qi, H. Jerry/C-1588-2009 FU National Science Foundation [CMMI-0928067, CMMI-1031785] FX We acknowledge the funding support from the National Science Foundation under Grant Nos. CMMI-0928067 and CMMI-1031785 and the nanofabrication laboratory of the Center for Nanoscale Science and Technology (CNST) at NIST for access to their facilities. NR 52 TC 5 Z9 6 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8191 EP 8201 DI 10.1021/ma1018632 PG 11 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500046 ER PT J AU Wanakule, NS Virgili, JM Teran, AA Wang, ZG Balsara, NP AF Wanakule, Nisita S. Virgili, Justin M. Teran, Alexander A. Wang, Zhen-Gang Balsara, Nitash P. TI Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts SO MACROMOLECULES LA English DT Article ID POLY(ETHYLENE OXIDE) ELECTROLYTES; TEMPERATURE IONIC LIQUIDS; POLYMER ELECTROLYTES; SOLID-STATE; PHASE-BEHAVIOR; ELECTROCHEMICAL CHARACTERIZATION; MICROPHASE SEPARATION; MOLECULAR-WEIGHT; CONDUCTIVITY BEHAVIOR; VARYING SELECTIVITY AB We report on the thermal properties, phase behavior, and thermodynamics of a series of polystyrene-Nock-poly(ethylene oxide) copolymers (SEO) mixed with the ionic species Li[N(SO(2)CF(3))(2)] (LiTFSI), imidazolium TFSI (ImTFSI), and an equimolar mixture of LiTFSI and ImTESI (Mix). Differential scanning calorimetric scans reveal similar thermal behavior of SEO/LiTESI and SEO/ImTFSI at the same salt concentrations. Phase behavior and thermodynamics were determined using a combination of small-angle X-ray scattering and birefringence. The thermodynamics lour mixtures can be mapped on to the theory of neat block copolymer phase behavior provided the Flory-Huggins interaction parameter, chi, between the blocks is replaced by an effective chi (chi(eff)) that increases linearly with salt concentration. The phase behavior and the value of m, the slope of the chi(eff) versus salt concentration data, were similar for SEO/LiTFSI, SEO/ImTFSI, and SEO/Mix blends. The theory developed by Wang [J. Phys. Chem. 13. 2008, 41, 16205] provides a basis for understanding the fundamental underpinnings of the measured value of m. We compare our experimental results with the predictions of this theory with no adjustable parameters. C1 [Wang, Zhen-Gang] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Wanakule, Nisita S.; Virgili, Justin M.; Teran, Alexander A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Virgili, Justin M.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Teran, Alexander A.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. RP Wang, ZG (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. FU National Science Foundation [DMR-0966662, CBET-0965812, CBET-0966632]; U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation (DMR-0966662, CBET-0965812, and CBET-0966632) and the Batteries for Advanced Transportation Technologies MATO Program, supported by the U.S. Department of Energy FreedomCAR and Vehicle Technologies Program. N.S.W. was supported by a National Science Foundation Graduate Research Fellowship. The Advanced Light Source IS supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Light-source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy. Office of Basic Energy Sciences. We thank Shrayesh Patel for helpful discussions and Ariel Tsui for experimental help. NR 73 TC 60 Z9 60 U1 2 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 12 PY 2010 VL 43 IS 19 BP 8282 EP 8289 DI 10.1021/ma1013786 PG 8 WC Polymer Science SC Polymer Science GA 658GM UT WOS:000282478500055 ER PT J AU Amiri, H Lascialfari, A Furukawa, Y Borsa, F Timco, GA Winpenny, REP AF Amiri, H. Lascialfari, A. Furukawa, Y. Borsa, F. Timco, G. A. Winpenny, R. E. P. TI Comparison of the magnetic properties and the spin dynamics in heterometallic antiferromagnetic molecular rings SO PHYSICAL REVIEW B LA English DT Article ID RELAXATION AB We present a comparison of the results obtained in the antiferromagnetic (AFM) homometallic ring Cr-8 with the results in three heterometallic rings with a Cr ion replaced by Cd, Ni, and Fe ions, i. e., Cr7Cd, Cr7Ni, and Cr7Fe, respectively. The experimental results include magnetic susceptibility, H-1 nuclear-magnetic-resonance (NMR) spectra, spin-spin and spin-lattice relaxation rates data, collected in the temperature range 1.65 < T < 300 K at two applied magnetic fields. The data include both new results and previously published data. The static magnetic properties derived from susceptibility and H-1 NMR linewidth can be analyzed in a simple way in terms of the properties of the individual ions constituting the ring and their nearest-neighbor antiferromagnetic exchange coupling. The nuclear-spin-lattice relaxation rate at low temperature can be described phenomenologically by a model, which assumes a single-correlation time for the relaxation of the magnetization, as used previously for homometallic AFM rings. The correlation frequencies obtained from the fit of the data, increase by as much as two orders of magnitude in the Cr7Ni and Cr7Fe rings with respect to the homometallic ring Cr-8 and the diamagnetically substituted Cr7Cd ring. This result can be explained qualitatively in terms of a change in spin-phonon coupling due to the enhancement of crystal-field effects in the heterometallic rings. For a more quantitative analysis one should take into account the multi-Lorentzian behavior of the spin-spin correlation function for which detailed theoretical calculations are required. At temperatures higher than the magnetic exchange energy J/k(B), the mechanism for nuclear-spin-lattice relaxation changes since the fluctuations of the moments of the magnetic ions become weakly correlated. We find a fluctuation frequency much higher in the heterometallic rings as a result of the perturbation introduced by the substituted magnetic ion. C1 [Amiri, H.; Lascialfari, A.] Univ Milan, Dept Mol Sci Appl Biosyst, I-20134 Milan, Italy. [Amiri, H.; Lascialfari, A.; Borsa, F.] Univ Pavia, Dept Phys A Volta, I-27100 Pavia, Italy. [Amiri, H.; Lascialfari, A.; Borsa, F.] Univ Pavia, CNISM, I-27100 Pavia, Italy. [Lascialfari, A.] CNR, Ist Nanosci, Ctr S3, I-41125 Modena, Italy. [Furukawa, Y.; Borsa, F.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Furukawa, Y.; Borsa, F.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Timco, G. A.; Winpenny, R. E. P.] Univ Manchester, Sch Chem, Lewis Magnetism Lab, Manchester M13 9PL, Lancs, England. [Winpenny, R. E. P.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. RP Amiri, H (reprint author), Univ Milan, Dept Mol Sci Appl Biosyst, I-20134 Milan, Italy. EM houshang.amiri@unipv.it FU European community; Italian Ministry of Research; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX The authors are grateful to P. Santini, S. Carretta, and G. Amoretti for useful discussions and suggestions. The present work was done with financial support from the NoE-MAGMANET network of the European community and PRIN-2008 project of the Italian Ministry of Research. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 32 TC 8 Z9 8 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 12 PY 2010 VL 82 IS 14 AR 144421 DI 10.1103/PhysRevB.82.144421 PG 13 WC Physics, Condensed Matter SC Physics GA 662LP UT WOS:000282809100007 ER PT J AU Li, HF Broholm, C Vaknin, D Fernandes, RM Abernathy, DL Stone, MB Pratt, DK Tian, W Qiu, Y Ni, N Diallo, SO Zarestky, JL Bud'ko, SL Canfield, PC McQueeney, RJ AF Li, H. -F. Broholm, C. Vaknin, D. Fernandes, R. M. Abernathy, D. L. Stone, M. B. Pratt, D. K. Tian, W. Qiu, Y. Ni, N. Diallo, S. O. Zarestky, J. L. Bud'ko, S. L. Canfield, P. C. McQueeney, R. J. TI Anisotropic and quasipropagating spin excitations in superconducting Ba(Fe0.926Co0.074)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID STATE AB Inelastic neutron scattering from superconducting (SC) Ba (Fe0.926Co0.074)(2)As-2 reveals anisotropic and quasi-two-dimensional (2D) magnetic excitations close to Q(AFM)=(1/21/2) - the 2D antiferromagnetic (AFM) wave vector of the parent BaFe2As2 compound. The correlation length anisotropy of these low-energy fluctuations is consistent with spin nematic correlations in the J(1)-J(2) model with J(1)/J(2)similar to 1. The spin resonance at similar to 8.3 meV in the SC state displays the same anisotropy. The anisotropic fluctuations experimentally evolve into two distinct maxima only along the direction transverse to Q(AFM) above similar to 80 meV indicating unusual quasipropagating excitations. C1 [Li, H. -F.; Vaknin, D.; Fernandes, R. M.; Pratt, D. K.; Tian, W.; Ni, N.; Diallo, S. O.; Zarestky, J. L.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, H. -F.; Vaknin, D.; Fernandes, R. M.; Pratt, D. K.; Tian, W.; Ni, N.; Diallo, S. O.; Zarestky, J. L.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Abernathy, D. L.; Stone, M. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Qiu, Y.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Li, HF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Broholm, Collin/E-8228-2011; Vaknin, David/B-3302-2009; BL18, ARCS/A-3000-2012; Stone, Matthew/G-3275-2011; Fernandes, Rafael/E-9273-2010; Abernathy, Douglas/A-3038-2012; Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Diallo, Souleymane/B-3111-2016 OI Broholm, Collin/0000-0002-1569-9892; Vaknin, David/0000-0002-0899-9248; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Diallo, Souleymane/0000-0002-3369-8391 FU U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. DOE by Iowa State University [DE-AC02-07CH11358]; U.S. DOE [DE-FG02-08ER46544]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE FX This research is supported by the U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. Johns Hopkins Institute for Quantum Matter is supported by the U.S. DOE under Grant No. DE-FG02-08ER46544. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor and Spallation Neutron Source is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. We thank M. J. Loguillo for assistance with the ARCS measurements. We acknowledge the expert technical assistance of Scott Spangler at JHU in machining the sample mount for HB-3 measurements. NR 26 TC 49 Z9 49 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 12 PY 2010 VL 82 IS 14 AR 140503 DI 10.1103/PhysRevB.82.140503 PG 4 WC Physics, Condensed Matter SC Physics GA 662LP UT WOS:000282809100004 ER PT J AU Mianowski, S Werner-Malento, E Korgul, A Pomorski, M Pachucki, K Pfutzner, M Szweryn, B Zylicz, J Hornshoj, P Nilsson, T Rykaczewski, K AF Mianowski, S. Werner-Malento, E. Korgul, A. Pomorski, M. Pachucki, K. Pfuetzner, M. Szweryn, B. Zylicz, J. Hornshoj, P. Nilsson, T. Rykaczewski, K. TI Radiative electron capture in the first-forbidden unique decay of Kr-81 SO PHYSICAL REVIEW C LA English DT Article ID INTERNAL BREMSSTRAHLUNG; DETOUR TRANSITIONS; ORBITAL ELECTRONS; K CAPTURE AB The photon spectrum accompanying the orbital K-electron capture in the first-forbidden unique decay of Kr-81 was measured. The total radiation intensity for photon energies larger than 50 keV was found to be 1.42(22) x 10(-4) per K capture. Both the shape of the spectrum and its intensity relative to the ordinary, nonradiative capture rate are compared to theoretical predictions. The best agreement is found for the recently developed model that employs the length gauge for the electromagnetic field. C1 [Mianowski, S.; Werner-Malento, E.; Korgul, A.; Pomorski, M.; Pachucki, K.; Pfuetzner, M.; Szweryn, B.; Zylicz, J.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Hornshoj, P.] Univ Aarhus, Inst Phys & Astron, DK-8000 Aarhus C, Denmark. [Nilsson, T.] Chalmers, S-41296 Gothenburg, Sweden. [Nilsson, T.] CERN, Div EP, CH-1211 Geneva 23, Switzerland. [Rykaczewski, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Mianowski, S (reprint author), Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. EM pfutzner@fuw.edu.pl RI Nilsson, Thomas/B-7705-2009 OI Nilsson, Thomas/0000-0002-6990-947X NR 20 TC 1 Z9 1 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 12 PY 2010 VL 82 IS 4 AR 044308 DI 10.1103/PhysRevC.82.044308 PG 7 WC Physics, Nuclear SC Physics GA 662LW UT WOS:000282809800001 ER PT J AU Appelquist, T Bai, Y AF Appelquist, Thomas Bai, Yang TI Light dilaton in walking gauge theories SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; TECHNICOLOR AB We analyze the existence of a dilaton in gauge theories with approximate infrared conformal symmetry. To the extent that these theories are governed in the infrared by an approximate fixed point (walking), the explicit breaking of the conformal symmetry at these scales is vanishingly small. If confinement and spontaneous chiral-symmetry breaking set in at some infrared scale, the resultant breaking of the approximate conformal symmetry can lead to the existence of a dilaton with mass parametrically small compared to the confinement scale, and potentially observable at the LHC. C1 [Appelquist, Thomas] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Appelquist, T (reprint author), Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. FU DOE [DE-FG02-92ER-40704]; U.S. Department of Energy [DE-AC02-07CH11359] FX We thank Bill Bardeen, George Fleming, Walter Goldberger, Ethan Neil, Witek Skiba, and Rohana Wijewardhana for helpful discussions. We also thank the Aspen Center for Physics where this work was initiated. This work (T. A.) was supported partially by DOE Grant No. DE-FG02-92ER-40704. Fermilab is operated by Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 30 TC 47 Z9 47 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 12 PY 2010 VL 82 IS 7 AR 071701 DI 10.1103/PhysRevD.82.071701 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 662MU UT WOS:000282812200001 ER PT J AU Darby, IG Grzywacz, RK Batchelder, JC Bingham, CR Cartegni, L Gross, CJ Hjorth-Jensen, M Joss, DT Liddick, SN Nazarewicz, W Padgett, S Page, RD Papenbrock, T Rajabali, MM Rotureau, J Rykaczewski, KP AF Darby, I. G. Grzywacz, R. K. Batchelder, J. C. Bingham, C. R. Cartegni, L. Gross, C. J. Hjorth-Jensen, M. Joss, D. T. Liddick, S. N. Nazarewicz, W. Padgett, S. Page, R. D. Papenbrock, T. Rajabali, M. M. Rotureau, J. Rykaczewski, K. P. TI Orbital Dependent Nucleonic Pairing in the Lightest Known Isotopes of Tin SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY AB By studying the Xe-109 -> Te-105 -> Sn-101 superallowed alpha-decay chain, we observe low-lying states in Sn-101, the one-neutron system outside doubly magic Sn-100. We find that the spins of the ground state (J = 7/2) and first excited state (J = 5/2) in Sn-101 are reversed with respect to the traditional level ordering postulated for Sn-103 and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate. C1 [Darby, I. G.; Grzywacz, R. K.; Bingham, C. R.; Cartegni, L.; Liddick, S. N.; Nazarewicz, W.; Padgett, S.; Papenbrock, T.; Rajabali, M. M.; Rotureau, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Darby, I. G.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Grzywacz, R. K.; Bingham, C. R.; Gross, C. J.; Nazarewicz, W.; Papenbrock, T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Joss, D. T.; Page, R. D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Darby, IG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Hjorth-Jensen, Morten/B-1417-2008; rotureau, jimmy/B-2365-2013; OI Papenbrock, Thomas/0000-0001-8733-2849 FU Office of Science, U.S. Department of Energy [DE-FG02-96ER40983 (UT), DE-AC05-00OR22725 (ORNL), DE-AC05-060R23100 (ORAU), DE-FC03-03NA00143 (NNSA)]; UK Science and Technology Facilities Council FX This research is sponsored by the Office of Science, U.S. Department of Energy under Contracts No. DE-FG02-96ER40983 (UT), No. DE-AC05-00OR22725 (ORNL), No. DE-AC05-060R23100 (ORAU), and No. DE-FC03-03NA00143 (NNSA), and by the UK Science and Technology Facilities Council. NR 27 TC 48 Z9 48 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 162502 DI 10.1103/PhysRevLett.105.162502 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300005 PM 21230967 ER PT J AU Highland, MJ Fister, TT Richard, MI Fong, DD Fuoss, PH Thompson, C Eastman, JA Streiffer, SK Stephenson, GB AF Highland, Matthew J. Fister, Timothy T. Richard, Marie-Ingrid Fong, Dillon D. Fuoss, Paul H. Thompson, Carol Eastman, Jeffrey A. Streiffer, Stephen K. Stephenson, G. Brian TI Polarization Switching without Domain Formation at the Intrinsic Coercive Field in Ultrathin Ferroelectric PbTiO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; OXIDE; REVERSAL; STATES AB Polarization switching in ferroelectrics has been thought to occur only through the nucleation and growth of new domains. Here we use in situ synchrotron x-ray scattering to monitor switching controlled by applied chemical potential. In sufficiently thin PbTiO3 films, nucleation is suppressed and switching occurs by a continuous mechanism, i.e., by uniform decrease and inversion of the polarization without domain formation. The observed lattice parameter shows that the electric field in the film during switching reaches the theoretical intrinsic coercive field. C1 [Highland, Matthew J.; Fister, Timothy T.; Richard, Marie-Ingrid; Fong, Dillon D.; Fuoss, Paul H.; Eastman, Jeffrey A.; Streiffer, Stephen K.; Stephenson, G. Brian] Argonne Natl Lab, Argonne, IL 60439 USA. [Richard, Marie-Ingrid] Univ Paul Cezanne Aix Marseille, IM2NP, Fac Sci St Jerome, F-13397 Marseille, France. [Thompson, Carol] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Highland, MJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stephenson@anl.gov RI Eastman, Jeffrey/E-4380-2011; Richard, Marie-Ingrid/F-6693-2012 OI Richard, Marie-Ingrid/0000-0002-8172-3141 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank J. Hlinka for insightful discussions. Experiments were carried out using beam line 12-ID-D of the Advanced Photon Source and sample preparation and characterization facilities at the Center for Nanoscale Materials. Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 32 TC 66 Z9 66 U1 4 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 167601 DI 10.1103/PhysRevLett.105.167601 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300023 PM 21231014 ER PT J AU Yang, KY Huang, K Chen, WQ Rice, TM Zhang, FC AF Yang, Kai-Yu Huang, Kun Chen, Wei-Qiang Rice, T. M. Zhang, Fu-Chun TI Andreev and Single-Particle Tunneling Spectra of Underdoped Cuprate Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; MOTT INSULATOR; COOPER PAIRS; BI2SR2CACU2O8+DELTA; PSEUDOGAP; PHYSICS; STATE AB We study tunneling spectroscopy between a normal metal and an underdoped cuprate superconductor modeled by a phenomenological theory in which the pseudogap is a precursor to the undoped Mott insulator. In the low barrier tunneling limit, the spectra are enhanced by Andreev reflection only within a voltage region of the small superconducting energy gap. In the high barrier tunneling limit, the spectra show a large energy pseudogap associated with single particle tunneling. Our theory semiquantitatively describes the two gap behavior observed in tunneling experiments. C1 [Yang, Kai-Yu; Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Yang, Kai-Yu; Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Yang, Kai-Yu; Huang, Kun; Chen, Wei-Qiang; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Rice, T. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yang, KY (reprint author), ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RI yang, kai-yu/C-4140-2011; CHEN, Weiqiang/D-3058-2009 FU Swiss National funds; NCCR MaNEP; Hong Kong RGC [HKU 7056/08P, 7010/09P, 7010/10P]; U.S. DOE, Office of Basic Energy Sciences FX We thank M. Sigrist and Q. H. Wang for discussions. This work is partially supported by Swiss National funds and the NCCR MaNEP (K. Y. Y., T. M. R.), and Hong Kong RGC (WQC,FCZ) HKU 7056/08P, 7010/09P, and 7010/10P. T. M. R. acknowledges the support from the Center for Emergent Superconductivity, an Energy Frontier Research Center supported by the U.S. DOE, Office of Basic Energy Sciences. NR 39 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 12 PY 2010 VL 105 IS 16 AR 167004 DI 10.1103/PhysRevLett.105.167004 PG 4 WC Physics, Multidisciplinary SC Physics GA 662OD UT WOS:000282816300016 PM 21230999 ER PT J AU Saharay, M Guo, H Smith, JC AF Saharay, Moumita Guo, Hong Smith, Jeremy C. TI Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS SO PLOS ONE LA English DT Article ID FREE-ENERGY LANDSCAPE; TRICHODERMA-REESEI; ACTIVE-SITE; MOLECULAR-DYNAMICS; GLYCOSYL HYDROLASES; CLOSTRIDIUM-CELLULOLYTICUM; ANGSTROM RESOLUTION; QM/MM SIMULATIONS; PROCESSIVE ACTION; CRYSTAL-STRUCTURE AB The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production. C1 [Saharay, Moumita; Guo, Hong; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. [Guo, Hong; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. RP Saharay, M (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. EM smithjc@ornl.gov RI saharay, moumita/K-7397-2012; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; National Science Foundation FX The authors acknowledge funding from the BioEnergy Science Center (BESC). BESC is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research was supported in part by the National Science Foundation through TeraGrid (64) resources provided by NICS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 14 Z9 15 U1 3 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 12 PY 2010 VL 5 IS 10 AR e12947 DI 10.1371/journal.pone.0012947 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662KX UT WOS:000282807300002 PM 20967294 ER PT J AU Roper, M Seminara, A Bandi, MM Cobb, A Dillard, HR Pringle, A AF Roper, Marcus Seminara, Agnese Bandi, M. M. Cobb, Ann Dillard, Helene R. Pringle, Anne TI Dispersal of fungal spores on a cooperatively generated wind SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hydrodynamics; cooperation; fungal spores ID SCLEROTINIA-SCLEROTIORUM; NEUROSPORA-CRASSA; AFFECTING ASCUS; MECHANISM; DISCHARGE; EVOLUTION AB Because of their microscopic size, the forcibly ejected spores of ascomycete fungi are quickly brought to rest by drag. Nonetheless some apothecial species, including the pathogen Sclerotinia sclerotiorum, disperse with astonishing rapidity between ephemeral habitats. Here we show that by synchronizing the ejection of thousands of spores, these fungi create a flow of air that carries spores through the nearly still air surrounding the apothecium, around intervening obstacles, and to atmospheric currents and new infection sites. High-speed imaging shows that synchronization is self-organized and likely triggered by mechanical stresses. Although many spores are sacrificed to produce the favorable airflow, creating the potential for conflict among spores, the geometry of the spore jet physically targets benefits of the airflow to spores that cooperate maximally in its production. The ability to manipulate a local fluid environment to enhance spore dispersal is a previously overlooked feature of the biology of fungal pathogens, and almost certainly shapes the virulence of species including S. sclerotiorum. Synchronous spore ejection may also provide a model for the evolution of stable, self-organized behaviors. C1 [Roper, Marcus] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England. [Seminara, Agnese; Bandi, M. M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Cobb, Ann; Dillard, Helene R.] Cornell Univ, Dept Plant Pathol & Plant Microbe Biol, Geneva, NY 14456 USA. [Cobb, Ann; Dillard, Helene R.] New York State Agr Exptl Stn, Geneva, NY 14456 USA. [Pringle, Anne] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Roper, M (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. EM mroper@math.berkeley.edu; seminara@seas.harvard.edu OI SEMINARA, Agnese/0000-0001-5633-8180 FU Miller Institute for Basic Research in Science; European Union; Harvard University FX We thank Else Vellinga for collecting many of the fruiting bodies used in this study and Barb Rotz and the University of California, Berkeley Greenhouses for providing culturing materials, Joi Strauss for assistance in culturing S. sclerotiorum, Sheila Patek, Louise Glass, L. Mahadevan, Mark Dayel, D. A. Weitz, Shmuel Rubinstein, and George Lauder for providing lab space or equipment, and Anna Simonin, Antonio Celani and Primrose Boynton for discussions. This research is funded by fellowships from the Miller Institute for Basic Research in Science to M. R., and from the European Union Framework 7, (to A. S.) Additional support from a Harvard University Herbaria Farlow Fellowship is acknowledged by M. R. NR 34 TC 29 Z9 29 U1 5 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17474 EP 17479 DI 10.1073/pnas.1003577107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700009 PM 20880834 ER PT J AU Chen, H Ricklin, D Hammel, M Garcia, BL McWhorter, WJ Sfyroera, G Wu, YQ Tzekou, A Li, S Geisbrecht, BV Woods, VL Lambris, JD AF Chen, Hui Ricklin, Daniel Hammel, Michal Garcia, Brandon L. McWhorter, William J. Sfyroera, Georgia Wu, You-Qiang Tzekou, Apostolia Li, Sheng Geisbrecht, Brian V. Woods, Virgil L., Jr. Lambris, John D. TI Allosteric inhibition of complement function by a staphylococcal immune evasion protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE allosteric modulation; complement amplification; hydrogen-deuterium exchange mass spectrometry; small angle X-ray scattering; surface plasmon resonance ID EXCHANGE MASS-SPECTROMETRY; X-RAY-SCATTERING; CONFORMATIONAL-CHANGES; STRUCTURAL-ANALYSES; AUREUS PROTEIN; C3; ACTIVATION; INSIGHTS; REVEALS; PATHWAY AB The complement system is a major target of immune evasion by Staphylococcus aureus. Although many evasion proteins have been described, little is known about their molecular mechanisms of action. Here we demonstrate that the extracellular fibrinogen-binding protein (Efb) from S. aureus acts as an allosteric inhibitor by inducing conformational changes in complement fragment C3b that propagate across several domains and influence functional regions far distant from the Efb binding site. Most notably, the inhibitor impaired the interaction of C3b with complement factor B and, consequently, formation of the active C3 convertase. As this enzyme complex is critical for both activation and amplification of the complement response, its allosteric inhibition likely represents a fundamental contribution to the overall immune evasion strategy of S. aureus. C1 [Chen, Hui; Ricklin, Daniel; Sfyroera, Georgia; Wu, You-Qiang; Tzekou, Apostolia; Lambris, John D.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. [Hammel, Michal] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Garcia, Brandon L.; McWhorter, William J.; Geisbrecht, Brian V.] Univ Missouri, Sch Biol Sci, Div Cell Biol & Biophys, Kansas City, MO 64110 USA. [Li, Sheng; Woods, Virgil L., Jr.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. RP Lambris, JD (reprint author), Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. EM Lambris@upenn.edu RI Ricklin, Daniel/F-5104-2011; OI Ricklin, Daniel/0000-0001-6140-0233; Lambris, John/0000-0002-9370-5776 FU National Institutes of Health [AI030040, AI068730, AI072106, GM062134, AI071028, CA099835, CA118595, AI076961, AI081982, NS070899, GM093325, RR029388, AI2008031]; Department of Energy FX We thank Paul N. Barlow for providing the fH(19-20) protein. This study was supported by National Institutes of Health Grants AI030040, AI068730, AI072106, GM062134, AI071028, CA099835, CA118595, AI076961, AI081982, NS070899, GM093325, RR029388, and AI2008031. Advanced Light Source beamline 12.3.1 (SIBYLS) is supported by the Department of Energy program Integrated Diffraction Analysis Technologies. NR 43 TC 46 Z9 46 U1 2 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17621 EP 17626 DI 10.1073/pnas.1003750107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700034 PM 20876141 ER PT J AU Olson, DG Tripathi, SA Giannone, RJ Lo, J Caiazza, NC Hogsett, DA Hettich, RL Guss, AM Dubrovsky, G Lynd, LR AF Olson, Daniel G. Tripathi, Shital A. Giannone, Richard J. Lo, Jonathan Caiazza, Nicky C. Hogsett, David A. Hettich, Robert L. Guss, Adam M. Dubrovsky, Genia Lynd, Lee R. TI Deletion of the Cel48S cellulase from Clostridium thermocellum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cellulosome; CelS; family 48; exoglucanase ID QUANTITATIVE PROTEOMIC ANALYSIS; CRYSTALLINE CELLULOSE; LC-MS/MS; IDENTIFICATION; COMPLEX; GENES; COMPONENTS; CELLULOLYTICUM; FERMENTATION; PURIFICATION AB Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, SS, and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mutant (S mutant) were able to completely solubilize 10 g/L crystalline cellulose. The cellulose hydrolysis rate of the S mutant strain was 60% lower than the parent strain, with the S mutant strain also exhibiting a 40% reduction in cell yield. The cellulosome produced by the S mutant strain was purified by affinity digestion, characterized enzymatically, and found to have a 35% lower specific activity on Avicel. The composition of the purified cellulosome was analyzed by tandem mass spectrometry with APEX quantification and no significant changes in abundance were observed in any of the major (> 1% of cellulosomal protein) enzymatic subunits. Although most cellulolytic bacteria have one family 48 cellulase, C. thermocellum has two, Cel48S and Cel48Y. Cellulose solubilization by a Cel48S and Cel48Y double knockout was essentially the same as that of the Cel48S single knockout. Our results indicate that solubilization of crystalline cellulose by C. thermocellum can proceed to completion without expression of a family 48 cellulase. C1 [Olson, Daniel G.; Tripathi, Shital A.; Caiazza, Nicky C.; Hogsett, David A.; Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA. [Olson, Daniel G.; Guss, Adam M.; Dubrovsky, Genia; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Lo, Jonathan; Lynd, Lee R.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. [Olson, Daniel G.; Tripathi, Shital A.; Giannone, Richard J.; Lo, Jonathan; Caiazza, Nicky C.; Hogsett, David A.; Hettich, Robert L.; Guss, Adam M.; Dubrovsky, Genia; Lynd, Lee R.] BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Giannone, Richard J.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Lynd, LR (reprint author), Mascoma Corp, Lebanon, NH 03766 USA. EM lee.lynd@dartmouth.edu RI Guss, Adam/A-6204-2011; Olson, Daniel/F-2058-2011; Lynd, Lee/N-1260-2013; Hettich, Robert/N-1458-2016 OI Guss, Adam/0000-0001-5823-5329; Olson, Daniel/0000-0001-5393-6302; Lynd, Lee/0000-0002-5642-668X; Hettich, Robert/0000-0001-7708-786X FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Department of Energy [DE-FG02-02ER1535]; Mascoma Corporation and the BioEnergy Science Center, Oak Ridge National Laboratory FX We thank Dr. Erin Wiswall for assistance with protein purification and Meryl B. Olson for her assistance with statistical calculations. This research was supported by Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Department of Energy Grant DE-FG02-02ER1535 and grants from the Mascoma Corporation and the BioEnergy Science Center, Oak Ridge National Laboratory, a Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. NR 38 TC 61 Z9 66 U1 0 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 12 PY 2010 VL 107 IS 41 BP 17727 EP 17732 DI 10.1073/pnas.1003584107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 662LV UT WOS:000282809700052 PM 20837514 ER PT J AU Keating, EH Doherty, J Vrugt, JA Kang, QJ AF Keating, Elizabeth H. Doherty, John Vrugt, Jasper A. Kang, Qinjun TI Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality SO WATER RESOURCES RESEARCH LA English DT Article ID AARDVARK NUCLEAR DETONATION; STEADY-STATE CONDITIONS; FULL-BAYESIAN APPROACH; BURIED HEAT SOURCE; INVERSE PROBLEM; DIFFERENTIAL EVOLUTION; AQUIFER PARAMETERS; TRANSPORT; FLOW; CALIBRATION AB Highly parameterized and CPU-intensive groundwater models are increasingly being used to understand and predict flow and transport through aquifers. Despite their frequent use, these models pose significant challenges for parameter estimation and predictive uncertainty analysis algorithms, particularly global methods which usually require very large numbers of forward runs. Here we present a general methodology for parameter estimation and uncertainty analysis that can be utilized in these situations. Our proposed method includes extraction of a surrogate model that mimics key characteristics of a full process model, followed by testing and implementation of a pragmatic uncertainty analysis technique, called null-space Monte Carlo (NSMC), that merges the strengths of gradient-based search and parameter dimensionality reduction. As part of the surrogate model analysis, the results of NSMC are compared with a formal Bayesian approach using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Such a comparison has never been accomplished before, especially in the context of high parameter dimensionality. Despite the highly nonlinear nature of the inverse problem, the existence of multiple local minima, and the relatively large parameter dimensionality, both methods performed well and results compare favorably with each other. Experiences gained from the surrogate model analysis are then transferred to calibrate the full highly parameterized and CPU intensive groundwater model and to explore predictive uncertainty of predictions made by that model. The methodology presented here is generally applicable to any highly parameterized and CPU-intensive environmental model, where efficient methods such as NSMC provide the only practical means for conducting predictive uncertainty analysis. C1 [Keating, Elizabeth H.; Vrugt, Jasper A.; Kang, Qinjun] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Doherty, John] Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Adelaide, SA 5001, Australia. [Doherty, John] Watermark Numer Comp, Brisbane, Qld, Australia. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. RP Keating, EH (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM ekeating@lanl.gov RI Vrugt, Jasper/C-3660-2008; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU U.S. Department of Energy; Los Alamos National Laboratory FX This work was supported by the U.S. Department of Energy Underground Test Area Project. The third author is supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory Postdoctoral Program. The source code of DREAM is written in MATLAB and sequential and parallel implementations can be obtained from the third author upon request ( jasper@uci.edu). PEST and ancillary software can be downloaded from http://www.pesthomepage.org. We appreciate the many useful comments and suggestions of the anonymous reviewers and the Associate Editor, and the thoughtful internal review by Andy Wolfsberg. We thank R. J. Laczniak and Keith Halford of the U.S. Geological Survey for providing the InSAR data sets. NR 54 TC 50 Z9 50 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 12 PY 2010 VL 46 AR W10517 DI 10.1029/2009WR008584 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 666FS UT WOS:000283100300002 ER PT J AU Li, LY King, DL AF Li, Liyu King, David L. TI Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE SO(x) trap; Regenerable; Lean-burn engine; Emission control; Ag; Lean-rich cycle; NO(x) trap ID RICH CYCLING CONDITIONS; SOX STORAGE MATERIALS; COPPER-OXIDE; REDUCING CONDITIONS; REDUCTION; CATALYST; NOX; CAPACITY; SORBENTS; ADSORBENTS AB It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine after-treatment systems, especially in the case of NO(x) traps. A silica-supported silver-based, fast regenerable SO(2) absorbent has been developed and will be described. Over a temperature range of 300-550 degrees C, it absorbs SO(2) present in a simulated exhaust gas during the lean cycles, and can be fully regenerated by short rich gas cycles at the same temperature. The preferred silica support is fumed silica. The thermal instability of Ag(2)O under fuel-lean conditions at 230 degrees C and above makes it possible to rapidly regenerate the sulfur-loaded absorbent during the fuel-rich cycle due to the lack of a requirement to simultaneously reduce Ag(2)O to Ag. Ag particles can also effectively oxidize SO(2) to SO(3), facilitating the formation of Ag(2)SO(4) and requiring no additional oxidation catalysts.This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NO, traps, and thus can protect the downstream particulate filter and the NO(x) trap from sulfur poisoning. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Liyu; King, David L.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM liyu.li@pnl.gov FU U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies; U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory FX Support of this work by the U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies, is gratefully acknowledged. This research was performed in part using the facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. We also thank Drs. Paul Park and Ronald Silver of Caterpillar, Inc. for providing lean-rich exhaust cycling conditions and for helpful discussions. NR 27 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD OCT 11 PY 2010 VL 100 IS 1-2 BP 238 EP 244 DI 10.1016/j.apcatb.2010.07.039 PG 7 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 677BB UT WOS:000283963000030 ER PT J AU Perna, P Maccariello, D Radovic, M di Uccio, US Pallecchi, I Codda, M Marre, D Cantoni, C Gazquez, J Varela, M Pennycook, SJ Granozio, FM AF Perna, P. Maccariello, D. Radovic, M. di Uccio, U. Scotti Pallecchi, I. Codda, M. Marre, D. Cantoni, C. Gazquez, J. Varela, M. Pennycook, S. J. Granozio, F. Miletto TI Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure SO APPLIED PHYSICS LETTERS LA English DT Article ID CRYSTAL AB We show that the growth of the heterostructure LaGaO3/SrTiO3 yields the formation of a highly conductive interface. Our samples were carefully analyzed by high resolution electron microscopy, in order to assess their crystal perfection and to evaluate the abruptness of the interface. Their carrier density and sheet resistance are compared to the case of LaAlO3/SrTiO3 and a superconducting transition is found. The results open the route to widening the field of polar-nonpolar interfaces, pose some phenomenological constrains to their underlying physics and highlight the chance of tailoring their properties for future applications by adopting suitable polar materials. (c) 2010 American Institute of Physics. [doi:10.1063/1.3496440] C1 [Cantoni, C.; Gazquez, J.; Varela, M.; Pennycook, S. J.; Granozio, F. Miletto] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Maccariello, D.; Radovic, M.; di Uccio, U. Scotti; Pallecchi, I.; Codda, M.; Marre, D.] Univ Genoa, Dipartimento Fis, CNR SPIN, I-16146 Genoa, Italy. [Perna, P.] Univ Naples Federico 2, CNR SPIN, Dipartimento Sci Fisiche, I-80126 Naples, Italy. RP Granozio, FM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM miletto@na.infn.it RI Scotti di Uccio, Umberto/A-4647-2012; Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Maccariello, Davide/J-8165-2013; PERNA, PAOLO/C-3862-2012; Varela, Maria/E-2472-2014; Marre, Daniele/G-5965-2014; Cantoni, Claudia/G-3031-2013 OI Gazquez, Jaume/0000-0002-2561-328X; Maccariello, Davide/0000-0002-8681-2717; PERNA, PAOLO/0000-0001-8537-4834; Varela, Maria/0000-0002-6582-7004; Marre, Daniele/0000-0002-6230-761X; Cantoni, Claudia/0000-0002-9731-2021 FU EU [033191]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; Division of Materials Sciences and Engineering FX The authors gratefully acknowledge S. Gariglio, A. Caviglia, C. Cancellieri, N. Reyren, J.-M. Triscone for measuring the superconducting properties of our samples and for the fruitful discussions. I.P., M.C. and D.M. acknowledge financial support from EU under the FP6-STREP project NANOXIDE Contract No. 033191. C.C., M.V. and S.J.P. acknowledge financial support from the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (C.C.) and Division of Materials Sciences and Engineering (M.V. and S.J.P.) NR 25 TC 68 Z9 69 U1 4 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 11 PY 2010 VL 97 IS 15 AR 152111 DI 10.1063/1.3496440 PG 3 WC Physics, Applied SC Physics GA 667TM UT WOS:000283216900041 ER PT J AU Soh, DBS Koplow, JP Moore, SW Schroder, KL Hsu, WL AF Soh, Daniel B. S. Koplow, Jeffrey P. Moore, Sean W. Schroder, Kevin L. Hsu, Wen L. TI The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers SO OPTICS EXPRESS LA English DT Article ID LASER; TURBULENCE AB In addition to fiber nonlinearity, fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. In this paper we have performed a numerical analysis of spectral broadening of incoherent light based on a fully stochastic model. Under a wide range of operating conditions, these numerical simulations exhibit striking features such as damped oscillatory spectral broadening (during the initial stages of propagation), and eventual convergence to a stationary, steady state spectral distribution at sufficiently long propagation distances. In this study we analyze the important role of fiber dispersion in such phenomena. We also demonstrate an analytical rate equation expression for spectral broadening. (C) 2010 Optical Society of America C1 [Soh, Daniel B. S.; Koplow, Jeffrey P.; Moore, Sean W.; Schroder, Kevin L.; Hsu, Wen L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Soh, DBS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM dbsoh@sandia.gov FU Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank Roger L. Farrow for valuable discussions. This research was supported by Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy, under contract DE-AC04-94AL85000. NR 15 TC 25 Z9 25 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 11 PY 2010 VL 18 IS 21 BP 22393 EP 22405 PG 13 WC Optics SC Optics GA 673TR UT WOS:000283686500092 PM 20941139 ER PT J AU Ricci, A Poccia, N Joseph, B Barba, L Arrighetti, G Ciasca, G Yan, JQ McCallum, RW Lograsso, TA Zhigadlo, ND Karpinski, J Bianconi, A AF Ricci, A. Poccia, N. Joseph, B. Barba, L. Arrighetti, G. Ciasca, G. Yan, J. -Q. McCallum, R. W. Lograsso, T. A. Zhigadlo, N. D. Karpinski, J. Bianconi, A. TI Structural phase transition and superlattice misfit strain of RFeAsO (R=La, Pr, Nd, Sm) SO PHYSICAL REVIEW B LA English DT Article ID CUPRATE PEROVSKITES; DIAGRAM; HETEROSTRUCTURES; SUPERCONDUCTORS; MICROSTRAIN; SYSTEMS; LATTICE; SIZE AB The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high-resolution x-ray diffraction is found to be sharp while the RFeAsO (R= La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single-crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature-dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe(2)As(2) (A=Ca, Sr, Ba) "122" systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals. C1 [Ricci, A.; Poccia, N.; Joseph, B.; Ciasca, G.; Bianconi, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Barba, L.; Arrighetti, G.] CNR, Inst Crystallog, I-34012 Trieste, Italy. [Yan, J. -Q.; McCallum, R. W.; Lograsso, T. A.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Zhigadlo, N. D.; Karpinski, J.] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland. RP Bianconi, A (reprint author), Univ Roma La Sapienza, Dipartimento Fis, P Aldo Moro 2, I-00185 Rome, Italy. EM antonio.bianconi@roma1.infn.it RI Joseph, Boby/A-4797-2009; Ciasca, Gabriele/D-2447-2013; Bianconi, Antonio/J-3997-2013; Barba, Luisa/D-3162-2012; OI Joseph, Boby/0000-0002-3334-7540; Bianconi, Antonio/0000-0001-9795-3913; Barba, Luisa/0000-0001-8832-7056; Ciasca, Gabriele/0000-0002-3694-8229; Arrighetti, Gianmichele/0000-0001-9423-899X FU Paul Scherrer Institute, Zurich; Sapienza University of Rome; Swiss National Science Foundation; Iowa State University [DE-AC02-07CH11358] FX We thank Z.-A. Ren and Z.-X. Zhao for providing the powder samples, the X04SA beamline staff of Swiss light source, Zurich, for help, the Paul Scherrer Institute, Zurich, for support of European researchers, and N.L. Saini for discussions. This project is supported by the Sapienza University of Rome. The work at the ETH Zurich was supported by the Swiss National Science Foundation through the NCCR pool MaNEP. Ames laboratory is operated for U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 39 TC 28 Z9 28 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 14 AR 144507 DI 10.1103/PhysRevB.82.144507 PG 5 WC Physics, Condensed Matter SC Physics GA 661SQ UT WOS:000282748800004 ER PT J AU Takagi, S Subedi, A Cooper, VR Singh, DJ AF Takagi, Shigeyuki Subedi, Alaska Cooper, Valentino R. Singh, David J. TI Effect of A-site size difference on polar behavior in MBiScNbO6 (M=Na, K, and Rb): Density functional calculations SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; POLARIZATION ROTATION; FERROELECTRIC-PHASE; 1ST PRINCIPLES; PEROVSKITE; TEMPERATURE; ORIGIN; CRYSTALS; BATIO3; PBTIO3 AB We investigate the effect of A-site size differences in the double perovskites BiScO3-MNbO3 (M= Na, K, and Rb) using first-principles calculations. We find that the polarization of these materials is 70-90 mu C/cm(2) along the rhombohedral direction. The main contribution to the high polarization comes from large off-centerings of Bi ions, which are strongly enhanced by the suppression of octahedral tilts as the M-ion size increases. A high Born effective charge of Nb also contributes to the polarization and this contribution is also enhanced by increasing the M-ion size. C1 [Takagi, Shigeyuki; Subedi, Alaska; Cooper, Valentino R.; Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Takagi, Shigeyuki; Subedi, Alaska] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Takagi, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012; Cooper, Valentino /A-2070-2012; Takagi, Shigeyuki/D-1301-2013 OI Cooper, Valentino /0000-0001-6714-4410; Takagi, Shigeyuki/0000-0002-8434-7946 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Naval Research FX This work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (A.S., V.R.C., and D.J.S.) and the Office of Naval Research (S.T.). NR 42 TC 16 Z9 16 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 13 AR 134108 DI 10.1103/PhysRevB.82.134108 PG 5 WC Physics, Condensed Matter SC Physics GA 661SM UT WOS:000282748300002 ER PT J AU Upton, MH Forrest, TR Walters, AC Howard, CA Ellerby, M Said, AH McMorrow, DF AF Upton, M. H. Forrest, T. R. Walters, A. C. Howard, C. A. Ellerby, M. Said, A. H. McMorrow, D. F. TI Phonons and superconductivity in YbC6 and related compounds SO PHYSICAL REVIEW B LA English DT Article AB The out-of-plane intercalate phonons of superconducting YbC6 have been measured with inelastic x-ray scattering. Model fits to these data, and previously measured out-of-plane intercalate phonons in graphite intercalation compounds (GICs), reveal surprising trends with the superconducting transition temperature. These trends suggest that superconducting GICs should be viewed as electron-doped graphite. C1 [Upton, M. H.; Said, A. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Forrest, T. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Forrest, T. R.; Howard, C. A.; Ellerby, M.; McMorrow, D. F.] UCL, Dept Phys & Astron, London, England. [Forrest, T. R.; Howard, C. A.; Ellerby, M.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London, England. [Walters, A. C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Upton, MH (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI McMorrow, Desmond/C-2655-2008 OI McMorrow, Desmond/0000-0002-4947-7788 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0115852]; EPSRC; Wolfson Royal Society FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The construction of HERIX was partially supported by the NSF under Grant No. DMR-0115852. Work in London was supported by the EPSRC and a Wolfson Royal Society Award. We thank Diego Casa for comments on the manuscript. NR 23 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 11 PY 2010 VL 82 IS 13 AR 134515 DI 10.1103/PhysRevB.82.134515 PG 5 WC Physics, Condensed Matter SC Physics GA 661SM UT WOS:000282748300009 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for b -> u transitions in B- -> DK- and D*K- decays SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; PHYSICS; MATRIX AB We report results from an updated study of the suppressed decays We report results from an updated study of the suppressed decays B- -> DK- and B- -> D*K- followed by D -> K+ pi(-), where D-(*()0) indicates a D-(*()0)or a (D) over bar (()*()0) meson, and D* -> D pi(0) or D* -> D gamma. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity triangle angle gamma due to interference between the b -> c transition B- -> D-(*K-)0(-) followed by the doubly Cabibbo-suppressed decay D-0 -> K+ pi(-), and the b -> u transition B- -> (D) over bar (()*()0) K- followed by the Cabibbo-favored decay (D) over bar (0) -> K+ pi(-). We also report an analysis of the decay B- -> D-(*())pi(-) with the D decaying into the doubly Cabibbo-suppressed mode D -> K+ pi(-). Our results are based on 467 x 10(6) Gamma(4S) -> BB- decays collected with the BABAR detector at SLAC. We measure the ratios R-(*()) of the suppressed ([K+ pi(-)](D)K- / pi(-)) to favored ([K+ pi(-)](D)K- / pi(-)) branching fractions as well as the CP asymmetries A(()*()) of those modes. We see indications of signals for the B- -> DK- and B- -> D-D pi 0(()*()) K- suppressed modes, with statistical significances of 2.1 and 2.2 sigma, respectively, and we measure: R-DK = (1.1 +/- 0: 6 +/- 0.2) x 10(-2); A(DK) = -0.86 +/- 0: 47(-0.16)(+0.12), R-(D pi 0)K* = (1.8 +/- 0: 9 +/- 0: 4) x 10(-2); A ((D pi 0)K)* = +0.77 +/- 0: 35 +/- 0.12; R-(D gamma)K* = (1.3 +/- 1.4 +/- 0.8) x 10(-2); A((D gamma)K)* = +0.36 +/- 0: 94(-0.41)(+0.25), where the first uncertainty is statistical and the second is systematic. We use a frequentist approach to obtain the magnitude of the ratio r(B) equivalent to vertical bar A(B- -> (D) over bar 0K(-))/A(B- -> (DK-)-K-0)vertical bar = (9.5(-4.1)(+5.1))%, with r(B) < 16: 7% at 90% confidence level. In the case of B- -> D*K- we find r(B) equivalent to vertical bar A(B- -> <(D)over bar>0K(-))/A(B- -> (DK-)-K-0)vertical bar = (9.6(-5.1)(+3.5))%, with r(B)* < 15.0% at 90% confidence level. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Dept Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Watson, A. T.; Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Martinelli, Maurizio/0000-0003-4792-9178; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Carpinelli, Massimo/0000-0002-8205-930X; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Adye, Tim/0000-0003-0627-5059; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A.P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 22 TC 21 Z9 21 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 11 PY 2010 VL 82 IS 7 AR 072006 DI 10.1103/PhysRevD.82.072006 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 661TN UT WOS:000282751100002 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Ambrosio, G Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, M Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Bertolucci, S Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Binder, M Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bocci, A Bocian, D Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, VM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dalmau, J Daly, CH Dam, M Dameri, M Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PECF De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, A Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, A Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eremin, V Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Evdokimov, VN Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Ferro, F Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Fopma, J Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Gnanvo, KG Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Pineiro, B Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Green, B Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Grewal, A Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Haboubi, G Hackenburg, R Hadavand, HK Hadley, DR Haeberli, C Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hallewell, GD Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heinemann, FEW Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Hollyman, G Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Horvat, S Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howell, DF Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joos, D Joram, C Jorge, PM Jorgensen, S Joseph, J Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O Kind, P King, BT King, M Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kisielewski, B Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R MacQueen, D Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Manara, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, A Mann, WA Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayer, JK Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW McGarvie, S McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Mima, S Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misawa, S Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Mladenov, D Moa, T Moch, M Mockett, P Moed, S Moeller, V Nig, KM Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgan, D Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Moszczynski, A Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munar, A Munwes, Y Murakami, K Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Naito, D Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Negroni, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GY Ottersbach, JP Ottewell, B Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Palla, J Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panin, VN Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Peak, LS Pecsy, M Morales, MIP Peeters, SJM Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popescu, R Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Prata, M Pravahan, R Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Raine, C Raith, B Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rensch, B Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, LP Rossi, L Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sala, P Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Bauza, OS Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schaller, M Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Scholte, RC Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schroff, D Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shield, P Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siebel, M Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spogli, L Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steele, G Stefanidis, E Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stiller, W Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, M Strizenec, P Hmer, RS Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szczygiel, RR Szeless, B Szymocha, T Sanchez, J Ta, D Gameiro, ST Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, RP Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, D Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzamarioudaki, E Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vertogardov, L Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vogt, H Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, JC Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wellisch, HP Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Woehrling, E Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wuestenfeld, J Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Xu, N Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, S Yang, UK Yang, Y Yang, Y Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yu, J Yuan, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Ambrosio, G. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Dos Santos Pedrosa, F. Baltasar Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, M. Barr, A. J. Barreiro, F. Guimaraes da Costa, J. Barreiro Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Belhorma, B. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Bertolucci, S. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Binder, M. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bischof, R. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J-B Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Boaretto, C. Bobbink, G. J. Bocci, A. Bocian, D. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Braccini, S. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Caprio, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervetto, M. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dalmau, J. Daly, C. H. Dam, M. Dameri, M. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Gomez, M. M. Diaz Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, A. Dunford, M. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eremin, V. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Evdokimov, V. N. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Ferro, F. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Fopma, J. Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Gnanvo, K. G. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Pineiro, B. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Green, B. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Grewal, A. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Groer, L. S. Grognuz, J. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Haboubi, G. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haeberli, C. Haefner, P. Haertel, R. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hallewell, G. D. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, R. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heinemann, F. E. W. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Hendriks, P. J. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hindson, D. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Hollins, T. I. Hollyman, G. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Horvat, S. Hostachy, J-Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howell, D. F. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jahoda, M. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, M. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joos, D. Joram, C. Jorge, P. M. Jorgensen, S. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. Kind, P. King, B. T. King, M. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kisielewski, B. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lambacher, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Le Vine, M. Leahu, M. Lebedev, A. Lebel, C. Lechowski, M. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Lepidis, J. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, T. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lupi, A. Lutz, G. Lynn, D. Lynn, J. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. MacQueen, D. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahmood, A. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Manabe, A. Manara, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Mangin-Brinet, M. Manjavidze, I. D. Mann, A. Mann, W. A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayer, J. K. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. McGarvie, S. McGlone, H. Mchedlidze, G. McLaren, R. A. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Messmer, I. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Migliaccio, A. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Mima, S. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misawa, S. Miscetti, S. Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Mladenov, D. Moa, T. Moch, M. Mockett, P. Moed, S. Moeller, V. Nig, K. Mo Moeser, N. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morgan, D. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Moszczynski, A. Mount, R. Mountricha, E. Mouraviev, S. V. Moye, T. H. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munar, A. Munwes, Y. Murakami, K. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Naito, D. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Nauyock, F. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Negroni, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neukermans, L. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Francisco, O. Norniella Norton, P. R. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, C. Oliver, J. Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ottewell, B. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozone, K. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Palla, J. Pallin, D. Palma, A. Palmer, J. D. Palmer, M. J. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panin, V. N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadopoulou, Th. D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peeters, S. J. M. Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petereit, E. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popescu, R. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Prata, M. Pravahan, R. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qian, Z. Qin, Z. Qing, D. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Raine, C. Raith, B. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rensch, B. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Romero, D. A. Roa Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, L. P. Rossi, L. Rotaru, M. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sala, P. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Bauza, O. Salto Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schaller, M. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Scholte, R. C. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schroff, D. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schweiger, D. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shield, P. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siebel, M. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Speckmayer, P. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spogli, L. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Stefanidis, E. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stiller, W. Stockmanns, T. Stockton, M. C. Stodulski, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, M. Strizenec, P. Hmer, R. Stro Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Sturm, P. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szczygiel, R. R. Szeless, B. Szymocha, T. Sanchez, J. Ta, D. Gameiro, S. Taboada Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, R. P. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, D. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzamarioudaki, E. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vertogardov, L. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villani, E. G. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vogt, H. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webel, M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wellisch, H. P. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Woehrling, E. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wuestenfeld, J. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Xu, N. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, S. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yao, W-M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yu, J. Yuan, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zambrano, V. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration TI Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; EXCITED QUARKS; DIJETS AB A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the LHC and correspond to an integrated luminosity of 315 nb(-1) collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% C. L. the q* mass interval 0: 30< m(q)*< 1:26 TeV, extending the reach of previous experiments. C1 [Aad, G.; Ahles, F.; Aktas, A.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Joos, D.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Meirose, B.; Messmer, I.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schroff, D.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Webel, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Corriveau, F.; Ernst, J.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Buchanan, N. J.; Caron, B.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; MacQueen, D.; Moore, R. W.; Pinfold, J. L.; Soluk, R.; Soni, N.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Neukermans, L.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Dawson, J. W.; Torregrosa, E. Fullana; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Ottersbach, J. P.; Paramonov, A.; Petereit, E.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rumyantsev, L.; Rutherfoord, J. P.; Savine, A. Y.; Shaver, L.; Shupe, M. A.; Tompkins, D.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsarouchas, C.; Tsipolitis, G.; Tzamarioudaki, E.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Jorgensen, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Francisco, O. Norniella; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Puigdengoles, C.; Riu, I.; Rossetti, V.; Bauza, O. Salto; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Conventi, F.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haeberli, C.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Hollins, T. I.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; McMahon, T. J.; Moye, T. H.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.; Woehrling, E.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-24310 Sehitkamil, Gaziantep, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Uslenghi, M.; Valentinetti, S.; Vercesi, V.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bilogna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Mengarelli, A.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Prabhu, R.; Psoroulas, S.; Radics, B.; Raith, B.; Rottlaender, I.; Runolfsson, O.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Stockmanns, T.; Ta, D.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE IF, BR-21945970 Rio De Janeiro, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Popescu, R.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Palmer, M. J.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anghinolfi, F.; Bachas, K.; Bachy, G.; Dos Santos Pedrosa, F. Baltasar; Battistin, M.; Bellina, F.; Berge, D.; Bertinelli, F.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Elsing, M.; Fabre, C.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Froidevaux, D.; Gayde, J-C.; Gianotti, F.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grognuz, J.; Gruwe, M.; Hahn, F.; Hatch, M.; Hauschild, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Joram, C.; Kaplon, J.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Kollar, D.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lundberg, J.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchesotti, M.; Martin, B.; Maugain, J. M.; Menot, C.; Messina, A. M.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nicquevert, B.; Palla, J.; Pastore, Fr.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Rembser, C.; Dos Santos, D. Roda; Salzburger, A.; Scannicchio, D. A.; Schuler, G.; Schweiger, D.; Sfyrla, A.; Sherman, D.; Sloper, J.; Spigo, G.; Stanecka, E.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandoni, G.; Rodriguez, F. Varela; Vinek, E.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zsenei, A.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Jen-La Plante, I.; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, CN-100049 Beijing, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Liu, M.; Liu, Y.; Xu, C.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, CN-230026 Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Qi, M.; Yu, J.] Nanjing Univ, Dept Phys, CN-210093 Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Sun, X. H.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, CN-250100 Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Defay, P. O.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS,IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Caughron, S.; Cole, B.; Cooke, M.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Hughes, E. W.; Leltchouk, M.; Marshall, Z.; Negroni, S.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Lundquist, J.; Rensch, B.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; Bocian, D.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Kisielewski, B.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Moszczynski, A.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Stodulski, M.; Szczygiel, R. R.; Szymocha, T.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kostka, P.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Nig, K. Mo; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Vogt, H.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wuestenfeld, J.; Wunstorf, R.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhochschule Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Barone, M.; Beretta, M.; Bertolucci, S.; Bilokon, H.; Braccini, S.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.; Zambrano, V.] Ist Nazl Fis Nucl, Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Gomez, M. M. Diaz; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Mangin-Brinet, M.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Saavedra, A. F.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Raine, C.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stenzel, H.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Belhorma, B.; Boldea, V.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, INPG, CNRS,IN2P3, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Guimaraes da Costa, J. Barreiro; Belloni, A.; Black, K. M.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schoening, A.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat V, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Saeki Ku, Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Manara, A.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Subramania, S.; Whittington, D.; Yang, Y.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bischof, R.; Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Barashkou, A.; Bardin, D. Y.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Dedovich, D. V.; Glonti, G. L.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Ladygin, E.; Lazarev, A. B.; Olchevski, A. G.; Sisakyan, A. N.; Zhemchugov, A.] JINR, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Ozone, K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Natl Univ La Plata, FCE, Dept Fis, IFLP CONICET UNLP, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vankov, P.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Dalmau, J.; Eisenhandler, E.; Ellis, K.; Gnanvo, K. G.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Green, B.; Hollyman, G.; Kilvington, G.; McGarvie, S.; McMahon, T. R.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Stefanidis, E.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Univ Paris 06, Phys Theor & Hautes Energies Lab, CNRS,IN2P3, FR-75252 Paris, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Nat Vet Skapliga Fak, Fys Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Oliver, C.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Antonaki, A.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Masetti, L.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Antonaki, A.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Freestone, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Nauyock, F.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Thompson, R. J.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Bee, C.; Benchouk, C.; Bernardet, K.; Cerna, C.; Clemens, J. C.; Djama, F.; Etienne, F.; Feligioni, L.; Hallewell, G. D.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Rozanov, A.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Nderitu, S. K.; Potter, C. T.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, AU-3010 Parkville, Vic, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Comune, G.; Di Mattia, A.; Ermoline, I.; Gonzalez-Pineiro, B.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Richards, R. A.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Cavalli, D.; Citterio, M.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy. [Cavalli, D.; Citterio, M.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Kuzhir, P.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Komar, A. A.; Konovalov, S. P.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Russian Acad Sci, PN Lebedev Phys Inst, RU-117218 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst, RU-115409 Moscow, Russia. [Eremin, V.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Binder, M.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Lambacher, M.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Groh, M.; Haefner, P.; Haertel, R.; Hauff, D.; Horvat, S.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stiller, W.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Yuan, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, JP-8510193 Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Carlino, G.; Cevenini, F.; Chiefari, G.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Cevenini, F.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Scholte, R. C.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Scholte, R. C.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Panin, V. N.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] New York Univ, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Mima, S.; Naito, D.; Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J-B; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lechowski, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Grewal, A.; Gwenlan, C.; Hawes, B. M.; Heinemann, F. E. W.; Hindson, D.; Holmes, A.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, M.; Karagoz, M.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Lynn, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Ottewell, B.; Shield, P.; Tseng, J. C-L.; Vertogardov, L.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.; Yang, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Munar, A.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Haboubi, G.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Benincasa, G. P.; Carvalho, J.; Conde Muino, P.; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, PT-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Jahoda, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Evdokimov, V. N.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Makouski, M.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino 142281, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Moch, M.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Moch, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Spogli, L.; Stanescu, C.; Tonazzo, A.] Ist Nazl Fis Nucl, Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Spogli, L.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, RUPHE, Fac Sci Ain Chock, Casablanca, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gautard, V.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Ponsot, P.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Virchaux, M.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.; Spencer, E.; Taylor, G.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Harper, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Morgan, D.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. [Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Tylmad, M.; Yang, Z.] AlbaNova, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Qing, D.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kuze, M.; Sodomka, J.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Groer, L. S.; Guo, B.; Jankowski, E.; Joo, K. K.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Mayer, J. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Kurchaninov, L. L.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Wellisch, H. P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Mann, W. A.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Romero, D. A. Roa; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Bellaterra 08193, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] IMB CNM CSIC, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.; Tsionou, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Jared, R. C.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Liebig, W.; Meyer, J.; Redelbach, A.; Hmer, R. Stro; Trefzger, T.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kind, P.; Klier, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Lepidis, J.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Sartisohn, G.; Schroers, M.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Univ Lyon 1, CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. [Amorim, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Morais, A.; Palma, A.; Pinto, B.; Purohit, M.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Arfaoui, S.; Soh, D. A.] CPPM, Marseille, France. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.; Yu, J.] Univ Coimbra, Dept Phys, P-3000 Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Robson, Aidan/G-1087-2011; Di Domenico, Antonio/G-6301-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; crosetti, nanni/H-3040-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Nemecek, Stanislav/C-3487-2012; Szczygiel, Robert/B-5662-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; valente, paolo/A-6640-2010; Fazio, Salvatore /G-5156-2010; Rescia, Sergio/D-8604-2011; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; de Groot, Nicolo/A-2675-2009; Perrino, Roberto/B-4633-2010; Mitsou, Vasiliki/D-1967-2009; Moraes, Arthur/F-6478-2010; Gutierrez, Phillip/C-1161-2011; Stoicea, Gabriel/B-6717-2011; Alexa, Calin/F-6345-2010; Buttar, Craig/D-3706-2011; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Liu, Sheng/K-2815-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Kastoryano, Michael/L-6037-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Jones, Roger/H-5578-2011; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Marcisovsky, Michal/H-1533-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; CARPENTIERI, CARMELA/E-2137-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tassi, Enrico/K-3958-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; kayumov, fred/M-6274-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Konovalov, Serguei/M-9505-2015; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; vasilyeva, lidia/M-9569-2015; Popescu, Razvan/H-6521-2016; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Casado, Pilar/H-1484-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Capua, Marcella/A-8549-2015; OI Di Domenico, Antonio/0000-0001-8078-2759; Ferrando, James/0000-0002-1007-7816; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; valente, paolo/0000-0002-5413-0068; Rescia, Sergio/0000-0003-2411-8903; Doyle, Anthony/0000-0001-6322-6195; Perrino, Roberto/0000-0002-5764-7337; Mitsou, Vasiliki/0000-0002-1533-8886; Moraes, Arthur/0000-0002-5157-5686; Stoicea, Gabriel/0000-0002-7511-4614; La Rosa, Alessandro/0000-0001-6291-2142; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Jones, Roger/0000-0002-6427-3513; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Tomasek, Lukas/0000-0002-5224-1936; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; CARPENTIERI, CARMELA/0000-0002-2994-0317; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Popescu, Razvan/0000-0003-1989-764X; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Bailey, David C/0000-0002-7970-7839; Nielsen, Jason/0000-0002-9175-4419; Grancagnolo, Francesco/0000-0002-9367-3380; Mambelli, Marco/0000-0002-9489-2681; CACCIA, MASSIMO/0000-0002-9499-678X; Cataldi, Gabriella/0000-0001-8066-7718; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Begel, Michael/0000-0002-1634-4399; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Vari, Riccardo/0000-0002-2814-1337; Chiarella, Vitaliano/0000-0002-4210-2924; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gnanvo, Kondo/0000-0002-5348-0664; Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Mincer, Allen/0000-0002-6307-1418; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Adye, Tim/0000-0003-0627-5059; Bertolucci, Sergio/0000-0003-1738-4736; Santos, Helena/0000-0003-1710-9291; Evans, Harold/0000-0003-2183-3127; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Zambrano, Valentina/0000-0001-6213-8126; Capua, Marcella/0000-0002-2443-6525; Haas, Andrew/0000-0002-4832-0455; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Pomarede, Daniel/0000-0003-2038-0488; Orellana, Frederik/0000-0001-7614-3882; Vos, Marcel/0000-0001-8474-5357; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Paoloni, Alessandro/0000-0002-4141-7799; sala, paola/0000-0001-9859-5564; Belanger-Champagne, Camille/0000-0003-2368-2617; SPOGLI, Luca/0000-0003-2310-0306 FU ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium fur Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science and Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission FX We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium fur Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science and Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and CEA-DSM/IRFU, France; Georgian Academy of Sciences; BMBF, DFG, HGF and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation ROSATOM; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educacio ' n y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and Technology Facilities Council and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 37 TC 71 Z9 72 U1 6 U2 78 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 11 PY 2010 VL 105 IS 16 AR 161801 DI 10.1103/PhysRevLett.105.161801 PG 19 WC Physics, Multidisciplinary SC Physics GA 661UG UT WOS:000282753000004 PM 21230962 ER PT J AU Ghaemi, P Mong, RSK Moore, JE AF Ghaemi, Pouyan Mong, Roger S. K. Moore, J. E. TI In-Plane Transport and Enhanced Thermoelectric Performance in Thin Films of the Topological Insulators Bi2Te3 and Bi2Se3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE DIRAC CONE; PHONON CONFINEMENT; SURFACE; PHASE; MERIT AB Several small-band-gap semiconductors are now known to protect metallic surface states as a consequence of the topology of the bulk electron wave functions. The known "topological insulators'' with this behavior include the important thermoelectric materials Bi2Te3 and Bi2Se3, whose surfaces are observed in photoemission experiments to have an unusual electronic structure with a single Dirac cone. We study inplane (i.e., horizontal) transport in thin films made of these materials. The surface states from top and bottom surfaces hybridize, and conventional diffusive transport predicts that the tunable hybridization-induced band gap leads to increased thermoelectric performance at low temperatures. Beyond simple diffusive transport, the conductivity shows a crossover from the spin-orbit-induced antilocalization at a single surface to ordinary localization. C1 [Ghaemi, Pouyan; Mong, Roger S. K.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ghaemi, Pouyan; Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU BES DMSE FX The authors acknowledge conversations with K. Hippalgaonkar and R. Ramesh and support from BES DMSE (P.G. and J.E.M.). NR 31 TC 115 Z9 115 U1 14 U2 125 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 11 PY 2010 VL 105 IS 16 AR 166603 DI 10.1103/PhysRevLett.105.166603 PG 4 WC Physics, Multidisciplinary SC Physics GA 661UG UT WOS:000282753000012 PM 21230991 ER PT J AU Bentz, W Cloet, IC Londergan, JT Thomas, AW AF Bentz, W. Cloet, I. C. Londergan, J. T. Thomas, A. W. TI Reassessment of the NuTeV determination of the weak mixing angle SO PHYSICS LETTERS B LA English DT Article DE Weak mixing angle; Neutrino deep inelastic scattering; NuTeV; Charge symmetry; Strange quark asymmetry ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTIONS; ELECTROWEAK PARAMETERS; QUARK DISTRIBUTIONS; STRANGE SEA; NUCLEON; CHARGE; SYMMETRY; PROTON; EMC AB In light of the recent discovery of the importance of the isovector EMC effect for the interpretation of the NuTeV determination of sin(2)theta(w), it seems timely to reassess the central value and the errors on this fundamental Standard Model parameter derived from the NuTeV data. We also include earlier work on charge symmetry violation and the recent limits on a possible asymmetry between s and (s) over bar quarks. With these corrections we find a revised NuTeV result of sin(2)theta(w) =0.2221 +/- 0.0013(stat) +/- 0.0020(syst), which is in excellent agreement with the running of sin(2)theta(w) predicted by the Standard Model. As a further check, we find that the separate ratios of neutral current to charge current cross-sections for neutrinos and for antineutrinos are both in agreement with the Standard Model, at just over one standard deviation, once the corrections described here are applied. (C) 2010 Published by Elsevier B.V. C1 [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bentz, W.] Tokai Univ, Dept Phys, Sch Sci, Hiratsuka, Kanagawa 2591292, Japan. [Londergan, J. T.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Londergan, J. T.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. [Thomas, A. W.] Univ Adelaide, CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. RP Cloet, IC (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM icloet@jlab.org RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU Australian Research Council; U.S. Department of Energy [DEFG03-97ER4014]; School of Science, Tokai University [DE-ACO5-060R23177]; U.S. National Science Foundation [NSF PHY-0854805] FX We would like to thank Jens Erler, Larry Nodulman and Heidi Schellman for helpful correspondence. We also thank W. van Oers and R. Young for useful discussions. This work was supported by the Australian Research Council through an Australian Laureate Fellowship (A.W.T.), by the U.S. Department of Energy under Grant No. DEFG03-97ER4014 and by Contract No. DE-ACO5-060R23177, under which Jefferson Science Associates, LLC, operates Jefferson Laboratory, by a subsidy from the School of Science, Tokai University, for Activating Educational Institutions and by U.S. National Science Foundation grant NSF PHY-0854805. NR 46 TC 51 Z9 51 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 11 PY 2010 VL 693 IS 4 BP 462 EP 466 DI 10.1016/j.physletb.2010.09.001 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 666IH UT WOS:000283107700010 ER PT J AU Ding, LL Kuhne, WW Hinton, DE Song, JA Dynan, WS AF Ding, Lingling Kuhne, Wendy W. Hinton, David E. Song, Jian Dynan, William S. TI Quantifiable Biomarkers of Normal Aging in the Japanese Medaka Fish (Oryzias latipes) SO PLOS ONE LA English DT Article ID CYSTIC DEGENERATION/SPONGIOSIS HEPATIS; GERM-CELL MUTAGENESIS; LYSOSOMAL AXIS THEORY; LIFE-SPAN; VERTEBRATE MODEL; IN-VIVO; GRADUAL SENESCENCE; ZEBRAFISH; TELEOST; ACCUMULATION AB Background: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. Principal Findings: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated beta-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. Significance: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors. C1 [Ding, Lingling; Kuhne, Wendy W.; Dynan, William S.] Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. [Ding, Lingling; Song, Jian] Wuhan Univ, Sch Med, Dept Anat & Embryol, Wuhan, Hubei, Peoples R China. [Kuhne, Wendy W.] Savannah River Natl Lab, Aiken, SC USA. [Hinton, David E.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. RP Ding, LL (reprint author), Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. EM wdynan@mcg.edu FU U.S. Department of Energy Low Dose Radiation Research Program (DOE) [FG02-03ERG3649, DE-SC0002343]; National Research Service Award [1F32ES015663-01] FX U.S. Department of Energy Low Dose Radiation Research Program (DOE FG02-03ERG3649 and DE-SC0002343) and National Research Service Award (1F32ES015663-01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 19 Z9 20 U1 0 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 11 PY 2010 VL 5 IS 10 AR e13287 DI 10.1371/journal.pone.0013287 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 661SK UT WOS:000282748100021 PM 20949019 ER PT J AU Yirak, K Frank, A Cunningham, AJ AF Yirak, Kristopher Frank, Adam Cunningham, Andrew J. TI SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM: clouds; ISM: supernova remnants ID ADAPTIVE MESH REFINEMENT; SHOCK-CLOUD INTERACTION; HYDRODYNAMIC INTERACTION; THERMAL CONDUCTION; GAS CLOUDS; TURBULENCE; MAGNETOHYDRODYNAMICS; FRAGMENTATION; SIMULATIONS; DESTRUCTION AB Isolated regions of higher density populate the interstellar medium (ISM) on all scales-from molecular clouds, to the star-forming regions known as cores, to heterogeneous ejecta found near planetary nebulae and supernova remnants. These clumps interact with winds and shocks from nearby energetic sources. Understanding the interactions of shocked clumps is vital to our understanding of the composition, morphology, and evolution of the ISM. The evolution of shocked clumps is well understood in the limiting "adiabatic" case where physical processes such as self-gravity, heat conduction, radiative cooling, and magnetic fields are ignored. In this paper, we address the issue of evolution and convergence when one of these processes-radiative cooling-is included. Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. Numerical studies which include radiative cooling typically adopt the 100-200 cells per clump radius resolution. In this paper, we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1536 cells per clump radius, employing adaptive mesh refinement (AMR) in a two-dimensional axisymmetric geometry (2.5 dimensions). We also provide a fully three-dimensional simulation, at 192 cells per clump radius, which supports our 2.5 dimensional results. We find no appreciable self-convergence at similar to 100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient resolution, such as the demonstration of adequate resolution of the cooling layers behind shocks. We discuss associated refinement criteria for AMR codes. C1 [Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. [Cunningham, Andrew J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Yirak, K (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. EM yirak@pas.rochester.edu FU NASA [20269, 051080-001]; National Science Foundation [AST-0507519]; University of Rochester Laboratory for Laser Energetics; DOE [DE-FC03-02NA00057]; Space Telescope Science Institute [HST-AR-10972, HST-AR-11250, HST-AR-11252] FX The authors thank Jonathan Carroll and Brandon Shroyer for useful discussions. Support for this work was in part provided by NASA through awards issued by JPL/Caltech through Spitzer programs 20269 and 051080-001, the National Science Foundation through grants AST-0507519 as well as the Space Telescope Science Institute through grants HST-AR-10972, HST-AR-11250, and HST-AR-11252. K.Y. is a recipient of the Graduate Horton Fellowship provided by the University of Rochester Laboratory for Laser Energetics. We also acknowledge funds received through the DOE Cooperative Agreement No. DE-FC03-02NA00057. NR 30 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 412 EP 424 DI 10.1088/0004-637X/722/1/412 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900036 ER PT J AU Simcic, J Schultz, DR Mawhorter, RJ Greenwood, JB Winstead, C McKoy, BV Smith, SJ Chutjian, A AF Simcic, J. Schultz, D. R. Mawhorter, R. J. Greenwood, J. B. Winstead, C. McKoy, B. V. Smith, S. J. Chutjian, A. TI MEASUREMENT AND CALCULATION OF ABSOLUTE SINGLE AND MULTIPLE CHARGE EXCHANGE CROSS SECTIONS FOR Feq+ IONS IMPACTING H2O SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; molecular processes; plasmas; solar wind ID X-RAY-EMISSION; SOLAR-WIND; COLLISION; ATOMS; IONIZATION; HYDROGEN; CHANDRA; SYSTEM; COMETS; VENUS AB Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+. C1 [Simcic, J.; Chutjian, A.] CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, Pasadena, CA 91109 USA. [Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Mawhorter, R. J.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Greenwood, J. B.] Queens Univ Belfast, Dept Phys, Belfast BT7 1NN, Antrim, North Ireland. [Winstead, C.; McKoy, B. V.] CALTECH, Dept Chem, Pasadena, CA 91125 USA. [Smith, S. J.] Indiana Wesleyan Univ, Dept Phys, Marion, IN 46953 USA. RP Simcic, J (reprint author), CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Greenwood, Jason/L-4799-2014 FU National Aeronautics and Space Administration with California Institute of Technology; US Department of Energy [DE-AC05-OR22464] FX The experimental work was carried out at JPL/Caltech, and was supported by the National Aeronautics and Space Administration through agreement with the California Institute of Technology. D.R.S. gratefully acknowledges support from the US Department of Energy under Contract No. DE-AC05-OR22464. Copyright 2010 California Institute of Technology. NR 36 TC 9 Z9 9 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 435 EP 439 DI 10.1088/0004-637X/722/1/435 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900038 ER PT J AU Lampeitl, H Smith, M Nichol, RC Bassett, B Cinabro, D Dilday, B Foley, RJ Frieman, JA Garnavich, PM Goobar, A Im, M Jha, SW Marriner, J Miquel, R Nordin, J Ostman, L Riess, AG Sako, M Schneider, DP Sollerman, J Stritzinger, M AF Lampeitl, Hubert Smith, Mathew Nichol, Robert C. Bassett, Bruce Cinabro, David Dilday, Benjamin Foley, Ryan J. Frieman, Joshua A. Garnavich, Peter M. Goobar, Ariel Im, Myungshin Jha, Saurabh W. Marriner, John Miquel, Ramon Nordin, Jakob Oestman, Linda Riess, Adam G. Sako, Masao Schneider, Donald P. Sollerman, Jesper Stritzinger, Maximilian TI THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; galaxies: fundamental parameters; supernovae: general ID DIGITAL SKY SURVEY; LIGHT CURVES; COSMOLOGICAL PARAMETERS; IMPROVED DISTANCES; HUBBLE DIAGRAM; STAR-FORMATION; DATA RELEASE; DARK ENERGY; DUST; MASS AB We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i. e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 sigma and 3 sigma) that SNe Ia are similar or equal to 0.1 +/- 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R(V) = 1.0 +/- 0.2, while SNe Ia in star-forming hosts require R(V) = 1.8+(0.2)(0.4). The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4 sigma) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information. C1 [Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ACGC, ZA-7701 Rondebosch, South Africa. S African Astron Observ, ZA-7935 Observatory, South Africa. [Cinabro, David] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Dilday, Benjamin; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Garnavich, Peter M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Goobar, Ariel; Nordin, Jakob] Albanova Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden. [Goobar, Ariel; Nordin, Jakob] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Im, Myungshin] Seoul Natl Univ, CEOU, Dept Phys & Astron, Seoul, South Korea. [Miquel, Ramon] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, Ramon; Oestman, Linda] Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Sako, Masao] Univ Penn, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Sollerman, Jesper] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Sollerman, Jesper; Stritzinger, Maximilian] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Stritzinger, Maximilian] Carnegie Observ, La Serena, Chile. RP Lampeitl, H (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. RI Im, Myungshin/B-3436-2013; OI Im, Myungshin/0000-0002-8537-6714; Bassett, Bruce/0000-0001-7700-1069; Sollerman, Jesper/0000-0003-1546-6615; Miquel, Ramon/0000-0002-6610-4836; stritzinger, maximilian/0000-0002-5571-1833 FU SKA; MEST [2009-0063616]; U.S. Department of Energy [DE-FG02-08ER41562]; W. M. Keck Foundation; STFC FX The authors thank the referees for their careful reading of the paper. We also thank Mark Sullivan, Janine Pforr, and Isobel Hook for helpful discussions during the course of this research. We thank Rick Kessler for his comments on an earlier draft of this paper. H. L. and R. C. H. were supported by STFC, while M.S. is funded by an SKA fellowship. M. I. acknowledges the support from the grant no. 2009-0063616 from MEST. S.W.J. acknowledges support from U.S. Department of Energy grant DE-FG02-08ER41562.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-MaximilliansUniversitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 55 TC 104 Z9 105 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 566 EP 576 DI 10.1088/0004-637X/722/1/566 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900046 ER PT J AU Dall'Aglio, A Gnedin, NY AF Dall'Aglio, Aldo Gnedin, Nickolay Y. TI ANALYSIS OF METHODS FOR DETECTING THE PROXIMITY EFFECT IN QUASAR SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; intergalactic medium; quasars: absorption lines ID LY-ALPHA FOREST; INTERGALACTIC MEDIUM; HIGH-REDSHIFT; RADIATIVE-TRANSFER; OPTICAL DEPTH; ABSORPTION-LINES; COLUMN DENSITIES; CLUMPY UNIVERSE; STELLAR OBJECTS; REIONIZATION AB Using numerical simulations of structure formation, we investigate several methods for determining the strength of the proximity effect in the H I Ly alpha forest. We analyze three high-resolution (similar to 10 kpc) redshift snapshots ((z) over bar = 4, 3, and 2.25) of a Hydro-Particle-Mesh simulation to obtain realistic absorption spectra of the H I Ly alpha forest. We model the proximity effect along the simulated sight lines with a simple analytical prescription based on the assumed quasar luminosity and the intensity of the cosmic UV background (UVB). We begin our analysis investigating the intrinsic biases thought to arise in the widely adopted standard technique of combining multiple lines of sight when searching for the proximity effect. We confirm the existence of these biases, albeit smaller than previously predicted with simple Monte Carlo simulations. We then concentrate on the analysis of the proximity effect along individual lines of sight. After determining its strength with a fiducial value of the UVB intensity, we construct the proximity effect strength distribution (PESD). We confirm that the PESD inferred from the simple averaging technique accurately recovers the input strength of the proximity effect at all redshifts. Moreover, the PESD closely follows the behaviors found in observed samples of quasar spectra. However, the PESD obtained from our new simulated sight lines presents some differences to that of simple Monte Carlo simulations. At all redshifts, we find a smaller dispersion of the strength parameters, the source of the corresponding smaller biases found when combining multiple lines of sight. After developing three new theoretical methods for recovering the strength of the proximity effect on individual lines of sight, we compare their accuracy to the PESD from the simple averaging technique. All our new approaches are based on the maximization of the likelihood function, albeit invoking some modifications. The new techniques presented here, in spite of their complexity, fail to recover the input proximity effect in an unbiased way, presumably due to some (unknown) higher order correlations in the spectrum. Thus, employing complex three-dimensional simulations, we provide strong evidence in favor of the PESD obtained from the simple averaging technique, as a method of estimating the UVB intensity, free of any intrinsic biases. C1 [Dall'Aglio, Aldo] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Dall'Aglio, A (reprint author), Astrophys Inst Potsdam, Sternwarte 16, D-14482 Potsdam, Germany. EM adaglio@aip.de FU Deutsche Forschungsgemeinschaft [Wi 1369/21-1] FX We thank the San Diego Supercomputer Center which allowed us to perform our simulations. A.D. acknowledges support by the Deutsche Forschungsgemeinschaft under Wi 1369/21-1. NR 52 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 699 EP 709 DI 10.1088/0004-637X/722/1/699 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900056 ER PT J AU Roberts, LF Woosley, SE Hoffman, RD AF Roberts, L. F. Woosley, S. E. Hoffman, R. D. TI INTEGRATED NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; stars: neutron; supernovae: general ID R-PROCESS NUCLEOSYNTHESIS; METAL-POOR STARS; THERMONUCLEAR REACTION-RATES; CORE-COLLAPSE SUPERNOVAE; MASSIVE STARS; EARLY GALAXY; PROTONEUTRON STARS; CHEMICAL EVOLUTION; IMPROVED NUCLEAR; ALPHA-PROCESS AB Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper, we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M(circle dot) model for a PNS ismoderately neutron-rich at late times however, and produces Rb-87, Sr-88, Y-89, and Zr-90 in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M(circle dot) PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal-poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved. C1 [Roberts, L. F.; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Hoffman, R. D.] Lawrence Livermore Natl Lab, Computat Nucl Phys Grp, Livermore, CA 94550 USA. RP Roberts, LF (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. OI Roberts, Luke/0000-0001-7364-7946 FU NNSA/DOE [DE-FC52-08NA28752]; University of California Office of the President [09-IR-07-117968-WOOS]; US NSF [AST-0909129]; DOE [DEFC-02-06ER41438]; Department of Energy at Lawrence Livermore National Laboratory [DE-AC52- 07NA27344] FX We thank Alex Heger, David Lai, Enrico Ramirez-Ruiz, Sanjay Reddy, and Yong-Zhong Qian for useful discussions about issues relating to this work. L. R. was supported by an NNSA/DOE Stewardship Science Graduate Fellowship (DE-FC52-08NA28752) and the University of California Office of the President (09-IR-07-117968-WOOS). S. W. was supported by the US NSF (AST-0909129), the University of California Office of the President (09-IR-07-117968-WOOS), and the DOE SciDAC Program (DEFC-02-06ER41438). R. H. was supported by the DOE SciDAC Program (DEFC-02-06ER41438) and under the auspices of the Department of Energy at Lawrence Livermore National Laboratory under contract DE-AC52- 07NA27344. NR 60 TC 60 Z9 64 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2010 VL 722 IS 1 BP 954 EP 967 DI 10.1088/0004-637X/722/1/954 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 663SH UT WOS:000282908900080 ER PT J AU Ghafghazi, S Sowlati, T Sokhansanj, S Melin, S AF Ghafghazi, S. Sowlati, T. Sokhansanj, S. Melin, S. TI Techno-economic analysis of renewable energy source options for a district heating project SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE district heating systems; renewable energy options; economic analysis; greenhouse gas emissions; wood pellets ID FEASIBILITY ANALYSIS; SUPPLY OPTIONS; LARGE HOTEL; BIOMASS; COCOMBUSTION; COMBUSTION; TECHNOLOGIES; PERFORMANCE; EMISSIONS; TURKEY AB With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10MW peaking/backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering tax savings due to depreciation and operating costs, and salvage value of equipment and building and resale price of land in the cash flow analysis. It was shown that the natural gas boiler option provided less expensive energy followed by the wood pellet heat producing technologies, sewer heat recovery, and geothermal heat pump. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for 37% of the heat production cost for the considered district-heating center. The results show that the cost of produced heat from wood pellet grate burner is well comparable to that of the natural gas boiler. Emissions of the systems are also calculated in this study. It is shown that the natural gas boiler for the base-load heat production would produce more than 4300 tonnes of GHG emission per year, while wood pellet burning systems are GHG neutral. Sensitivity analysis on various inputs to the economic model has been carried out. It was shown that 20% increase in capital cost of the natural gas base-load system or 1% decrease in wood pellet price inflation would make the wood pellet grate burner economically preferable to the natural gas boiler. Copyright (c) 2009 John Wiley & Sons, Ltd. C1 [Ghafghazi, S.; Sowlati, T.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, S.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, S.] Delta Res Corp, Delta, BC, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2931-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca OI Ghafghazi, Saeed/0000-0001-8226-6176 FU BC Ministry of Forest and Range; Natural Sciences and Engineering Research Council of Canada (NSERC) FX We thank BC Ministry of Forest and Range and Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support to carry out this research. We also thank engineers at the City of Vancouver for their help in providing data and information needed for our analyses. NR 43 TC 19 Z9 19 U1 2 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0363-907X J9 INT J ENERG RES JI Int. J. Energy Res. PD OCT 10 PY 2010 VL 34 IS 12 BP 1109 EP 1120 DI 10.1002/er.1637 PG 12 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 655ZY UT WOS:000282296400007 ER PT J AU Wang, M Kang, QJ Viswanathan, H Robinson, BA AF Wang, Moran Kang, Qinjun Viswanathan, Hari Robinson, Bruce A. TI Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID LATTICE BOLTZMANN METHOD; HIGH ZETA-POTENTIALS; ELECTROOSMOTIC FLOWS; POROUS-MEDIA; BOUNDARY-CONDITIONS; MICROCHANNELS; EQUATION; SIMULATIONS; MICROSPHERES; MICROPUMPS AB Physicochemical transport due to electro-osmosis of dilute electrolyte solutions (<1 x 10(-3) mol/L) through microporous media with granular random microstructures has been modeled in this work by our three-step numerical framework. First, the three-dimensional microstructures of porous media are reproduced by a random generation growth method. Second, the effects of chemical adsorption and electrical dissociation at the solid-liquid interfaces are modeled to determine the electrical boundary conditions, which vary with the ionic concentration, pH, and temperature. Finally, the nonlinear governing equations for electrokinetic transport are solved using a highly efficient lattice Poisson-Boltzmann algorithm. The simulation results indicate that the electro-osmotic permeability through the granular microporous media increases monotonically with the porosity, ionic concentration, pH, and temperature. When the surface electric potential is higher than about -50 mV, the electro-osmotic permeability exponentially increases with the electric potential. The electro-osmotic permeability increases with the bulk ionic concentration even though the surface zeta potential decreases correspondingly, which deviates from the conclusions based on the thin layer model. The electro-osmotic permeability increases exponentially with pH and linearly with temperature. The present modeling results improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems and help guide the design of porous electrodes in microenergy systems. C1 [Wang, Moran; Kang, Qinjun; Viswanathan, Hari; Robinson, Bruce A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Wang, M (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Mail Stop T003,POB 1663, Los Alamos, NM 87545 USA. EM mwang@lanl.gov RI Wang, Moran/A-1150-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU LANL [20080727PRD2] FX This work is supported by LANL's LDRD Project 20080727PRD2, through the J. R. Oppenheimer Fellowship awarded to M. W. The authors appreciate very much the helpful comments from Paul Glover, other two anonymous reviewers, as well as the associate editor. We would also like to thank A. Revil, J. Wang, and S. Chen for helpful discussions. NR 61 TC 9 Z9 10 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 9 PY 2010 VL 115 AR B10205 DI 10.1029/2010JB007460 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 690NE UT WOS:000285010700002 ER PT J AU Siefring, CL Morrill, JS Sentman, DD Heavner, MJ AF Siefring, Carl L. Morrill, Jeff S. Sentman, Davis D. Heavner, Matthew J. TI Simultaneous near-infrared and visible observations of sprites and acoustic-gravity waves during the EXL98 campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID STATE VIBRATIONAL POPULATIONS; COMPLEX AIRGLOW CHEMISTRIES; BLUE JETS; SPREADFEX CAMPAIGN; AIRCRAFT CAMPAIGN; N-2 EMISSIONS; RED SPRITES; OH; IONOSPHERE; ATMOSPHERE AB This paper reports the first images of Near-InfraRed (NIR) 900 to 1700 nm sprite emissions obtained during the Energetics of Upper Atmospheric Excitation by Lightning 1998 (EXL98) airborne observing mission. Results include the first NIR observations of sprites and a correlation between nighttime hydroxyl (OH) airglow, acoustic-gravity waves, and sprite location. A NIR camera monitored both OH airglow and N-2(B) First Positive (1PG) emissions in the NIR by sprites. OH airglow is used as a tracer of acoustic-gravity waves and density structures in the neutral atmosphere in the 80-95 km altitude region. The visible-light imager also observed faint hydroxyl airglow, at times, allowing convenient comparison of the gravity waves and the sprites without image processing. On only one night of observations was a clear correlation observed between the OH airglow and the sprites, with tops of extended lines of sprites appearing to align with the acoustic-gravity wave troughs in the 80 to 95 km altitude region. This investigation shows that a proper viewing geometry is needed to detect such a correlation and requires a distance of about 400-800 km from the sprites. Comparison of sprite visible and NIR emissions show that the NIR is brightest in the central body, likely dimmer at the tops, and rarely above sensitivity in the tendril regions. The observed NIR sprite emissions are thought to be primarily 1PG from the (1,0) and (0,0) vibration transitions near 888 and 1050 nm respectively. The study indicates a need for future NIR spectrographic measurement. C1 [Siefring, Carl L.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Morrill, Jeff S.] USN, Res Lab, EO Hulburt Ctr Space Res, Washington, DC 20375 USA. [Sentman, Davis D.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Heavner, Matthew J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Siefring, CL (reprint author), USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. EM siefring@ccs.nrl.navy.mil FU NASA [NAG5-5125, NAG5-5019, NAG5-5172]; ONR; NRL FX We thank the High-frequency Active Auroral Research Program (HAARP) for loan of the NRL NIR camera for the EXL98 flights. Dan Osborne, Eugene Wescott, Dana Moudry, Jim Desroschers, Laura Peticolas, Veronika Besser, and Don Hampton were instrumental to data collection and campaign operations. We thank Aeroair Inc., and particularly Jeff Tobolsky for piloting the EXL98 aircraft missions. The University of Alaska Fairbanks' Geophysical Institute group was supported by NASA grants NAG5-5125 and NAG5-5019. The work at NRL was sponsored by NASA NAG5-5172 and ONR. Jeff S. Morrill was partially supported by the Edison Memorial graduate-training program at NRL. NR 54 TC 9 Z9 9 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 9 PY 2010 VL 115 AR A00E57 DI 10.1029/2009JA014862 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 690NK UT WOS:000285011300001 ER PT J AU Thomsen, MF Reisenfeld, DB Delapp, DM Tokar, RL Young, DT Crary, FJ Sittler, EC McGraw, MA Williams, JD AF Thomsen, M. F. Reisenfeld, D. B. Delapp, D. M. Tokar, R. L. Young, D. T. Crary, F. J. Sittler, E. C. McGraw, M. A. Williams, J. D. TI Survey of ion plasma parameters in Saturn's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INNER MAGNETOSPHERE; NITROGEN AB A survey of the bulk plasma ion properties observed by the Cassini Plasma Spectrometer instrument over roughly the first 4.5 years of its mission in orbit around Saturn is presented. The moments (density, temperature, and flow velocity) of the plasma distributions below 50 keV have been computed by numerical integration of the observed counts in the "Singles" (non-mass-resolved) data, partitioned into species on the basis of concurrent determinations of the composition from the time-of-flight data. Moments are presented for three main species: H+, W+ (water group ions), and ions with m/q = 2, which are presumed to be H-2(+). While the survey extends to radial distances of 30 R-S and thus includes some solar wind or magnetosheath values, our principal interest is the large-scale spatial variation of the magnetospheric plasma properties, so we focus attention on radial distances inside of 17 R-S. Principal findings include the following: (1) the densities of all three components are highly variable but are generally well organized by dipole L and magnetic latitude; (2) the density of ions with m/q = 2 varies from a few percentage of the H+ density in the inner magnetosphere to a maximum of several tens of percentage near the orbit of Titan, suggesting that Titan is an important source for H-2(+) in the outer magnetosphere; (3) water group ions are the dominant population in the inner magnetosphere, but only within similar to 3 R-S of the equatorial plane because of their strong centrifugal confinement; (4) derived latitudinal scale heights are largest for the light ions and generally increase with radial distance; (5) the L dependence of the calculated temperatures is not consistent with adiabatic transport but is in fair agreement with the expectations for plasma originating from ion pickup; (6) in agreement with the findings of Sergis et al. (2010), inside of L similar to 11, the particle pressure is dominated by ions with energies below a few keV; (7) the derived flow velocities reveal the global circulation pattern of relatively dense populations in the magnetosphere, with no evidence for return circulation from the nightside to the dayside beyond similar to 20 R-S; and (8) the azimuthal flow speeds are typically less than full corotation over the entire L range examined, varying from similar to 50% to 70% of full corotation. C1 [Thomsen, M. F.; Delapp, D. M.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reisenfeld, D. B.; McGraw, M. A.; Williams, J. D.] Univ Montana, Missoula, MT 59812 USA. [Young, D. T.; Crary, F. J.] SW Res Inst, San Antonio, TX 78228 USA. [Sittler, E. C.] Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Thomsen, MF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mthomsen@lanl.gov RI Reisenfeld, Daniel/F-7614-2015; OI Williams, John/0000-0001-5773-5364 FU U.S. Department of Energy, NASA; JPL [1243218]; Southwest Research Institute FX The authors thank Tom Hill for encouragement and very helpful discussions. We also thank both referees for careful and insightful reviews. Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy, with support from the NASA Cassini program. The Cassini Plasma Spectrometer was supported by JPL contract 1243218 with Southwest Research Institute. The Cassini project is managed by the Jet Propulsion Laboratory for NASA. NR 33 TC 131 Z9 131 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 9 PY 2010 VL 115 AR A10220 DI 10.1029/2010JA015267 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 690NK UT WOS:000285011300006 ER PT J AU de Silva, TI Turner, R Hue, S Trikha, R van Tienen, C Onyango, C Jaye, A Foley, B Whittle, H Rowland-Jones, SL Cotten, M AF de Silva, Thushan I. Turner, Roxanne Hue, Stephane Trikha, Roochi van Tienen, Carla Onyango, Clayton Jaye, Assan Foley, Brian Whittle, Hilton Rowland-Jones, Sarah L. Cotten, Matthew TI HIV-1 subtype distribution in the Gambia and the significant presence of CRF49_cpx, a novel circulating recombinant form SO RETROVIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; DISEASE PROGRESSION; MOLECULAR EPIDEMIOLOGY; CENTRAL-AFRICA; SEQUENCE; SURVEILLANCE; DIVERSITY; INFECTION; COMPLEX; SENEGAL AB Background: Detailed local HIV-1 sequence data are essential for monitoring the HIV epidemic, for maintaining sensitive sequence-based diagnostics, and to aid in designing vaccines. Results: Reported here are full envelope sequences derived from 38 randomly selected HIV-1 infections identified at a Gambian clinic between 1991 and 2009. Special care was taken to generate sequences from circulating viral RNA as uncloned products, either by limiting dilution or single genome amplification polymerase chain reaction (PCR). Within these 38 isolates, eight were subtyped as A and 18 as CRF02_AG. A small number of subtype B, C, D viruses were identified. Surprising, however, was the identification of six isolates with subtype J-like envelopes, a subtype found normally in Central Africa and the Democratic Republic of the Congo (DRC), with gag p24 regions that clustered with subtype A sequences. Near full-length sequence from three of these isolates confirmed that these represent a novel circulating recombinant form of HIV-1, now named CRF49_cpx. Conclusions: This study expands the HIV-1 sequence database from the Gambia and will provide important data for HIV diagnostics, patient care, and vaccine development. C1 [de Silva, Thushan I.; Turner, Roxanne; Trikha, Roochi; van Tienen, Carla; Onyango, Clayton; Jaye, Assan; Whittle, Hilton; Cotten, Matthew] Med Res Council UK Labs, Fajara, Gambia. [de Silva, Thushan I.; Hue, Stephane] UCL, MRC UCL Ctr Med Mol Virol, Div Infect & Immun, London WC1E 6BT, England. [Rowland-Jones, Sarah L.] John Radcliffe Hosp, Human Immunol Unit, MRC, Weatherall Inst Mol Med, Oxford OX3 9DU, England. [Foley, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cotten, M (reprint author), Med Res Council UK Labs, Atlantic Rd,POB 273, Fajara, Gambia. EM matt.cotten@web.de RI van Tienen, Carla/A-1119-2012; OI Hue, Stephane/0000-0002-8580-6905; Foley, Brian/0000-0002-1086-0296 FU Medical Research Council (UK) FX TdS is supported by a Medical Research Council (UK) Clinical Research Training Fellowship. We would like to thank the patients and staff at the MRC (UK) Fajara Genitourinary Medicine (GUM) clinic for their participation in the HIV cohort, which made this study possible. NR 42 TC 9 Z9 9 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PD OCT 9 PY 2010 VL 7 AR 82 DI 10.1186/1742-4690-7-82 PG 14 WC Virology SC Virology GA 670JZ UT WOS:000283419000001 PM 20932333 ER PT J AU Oh, SM Oh, SW Yoon, CS Scrosati, B Amine, K Sun, YK AF Oh, Seung-Min Oh, Sung-Woo Yoon, Chong-Seung Scrosati, Bruno Amine, Khalil Sun, Yang-Kook TI High-Performance Carbon-LiMnPO4 Nanocomposite Cathode for Lithium Batteries SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID ELECTRODE MATERIALS; PARTICLE-SIZE; LIMNPO4; LIFEPO4; TEMPERATURE; TRIPHYLITE; DISCHARGE; PHOSPHATE; MN; FE AB A cathode material of an electrically conducting carbon-LiMnPO4 nanocomposite is synthesized by ultrasonic spray pyrolysis followed by ball milling. The effect of the carbon content on the physicochemical and electrochemical properties of this material is extensively studied. A LiMnPO4 electrode with 30 wt% acetylene black (AB) carbon exhibits an excellent rate capability and good cycle life in cell tests at 55 and 25 degrees C. This electrode delivers a discharge capacity of 158 mAh g(-1) at 1/20 C, 126 mAh g(-1) at 1 C, and 107 mAh g(-1) at 2 C rate, which are the highest capacities reported so far for this type of electrode. Transmission electron microscopy and Mn dissolution results confirm that the carbon particles surrounding the LiMnPO4 protect the electrode from H F attack, and thus lead to a reduction of the Mn dissolution that usually occurs with this electrode. The improved electrochemical properties of the C-LiMnPO4 electrode are also verified by electrochemical impedance spectroscopy. C1 [Oh, Seung-Min; Oh, Sung-Woo; Sun, Yang-Kook] Hanyang Univ, Dept Chem Engn, Dept WCU Energy Engn, Seoul 133791, South Korea. [Yoon, Chong-Seung] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea. [Scrosati, Bruno] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy. [Amine, Khalil] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Oh, SM (reprint author), Hanyang Univ, Dept Chem Engn, Dept WCU Energy Engn, Seoul 133791, South Korea. EM bruno.scrosati@uniroma1.it; yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; FU Korean Government (MEST) [NRF-2009-C1AAA001-0093307, 2009-0092780] FX This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-0093307) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2009-0092780). NR 24 TC 200 Z9 206 U1 17 U2 214 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 8 PY 2010 VL 20 IS 19 BP 3260 EP 3265 DI 10.1002/adfm.201000469 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 669YP UT WOS:000283386400007 ER PT J AU Jesse, S Guo, S Kumar, A Rodriguez, BJ Proksch, R Kalinin, SV AF Jesse, S. Guo, S. Kumar, A. Rodriguez, B. J. Proksch, R. Kalinin, S. V. TI Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy SO NANOTECHNOLOGY LA English DT Article ID FERROELECTRICS; INFORMATION; CANTILEVER; MOLECULES; CRYSTALS; FUTURE; MODES AB Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e. g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored. C1 [Jesse, S.; Guo, S.; Kumar, A.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rodriguez, B. J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Proksch, R.] Asylum Res, Santa Barbara, CA 93117 USA. RP Jesse, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI Kalinin, Sergei/I-9096-2012; Kumar, Amit/C-9662-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Kumar, Amit/0000-0002-1194-5531; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 FU ORNL SEED; ORNL FX Research sponsored by ORNL SEED funding (SJ and SVK). The authors gratefully acknowledge multiple discussions with S Pennycook and A Lupini. NR 59 TC 31 Z9 31 U1 1 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 8 PY 2010 VL 21 IS 40 AR 405703 DI 10.1088/0957-4484/21/40/405703 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 648XC UT WOS:000281726700019 PM 20823500 ER PT J AU Cao, W De, S Singh, KP Chen, S Schoffler, MS Alnaser, AS Bocharova, IA Laurent, G Ray, D Zherebtsov, S Kling, MF Ben-Itzhak, I Litvinyuk, IV Belkacem, A Osipov, T Rescigno, T Cocke, CL AF Cao, W. De, S. Singh, K. P. Chen, S. Schoeffler, M. S. Alnaser, A. S. Bocharova, I. A. Laurent, G. Ray, D. Zherebtsov, S. Kling, M. F. Ben-Itzhak, I. Litvinyuk, I. V. Belkacem, A. Osipov, T. Rescigno, T. Cocke, C. L. TI Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics SO PHYSICAL REVIEW A LA English DT Article ID DOUBLE-IONIZATION; SPECTROSCOPY; PHOTOIONIZATION; DISSOCIATION; SPECTRA; OXYGEN; CO2+ AB The dynamic process of fragmentation of COq+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C+-O+ fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C+-O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation. C1 [Cao, W.; De, S.; Singh, K. P.; Chen, S.; Bocharova, I. A.; Laurent, G.; Ray, D.; Kling, M. F.; Ben-Itzhak, I.; Litvinyuk, I. V.; Cocke, C. L.] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Zherebtsov, S.; Kling, M. F.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Schoeffler, M. S.; Bocharova, I. A.; Belkacem, A.; Osipov, T.; Rescigno, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alnaser, A. S.] Amer Univ Sharjah, Dept Phys, Sharjah, U Arab Emirates. [Litvinyuk, I. V.] Griffith Univ, Ctr Quantum Dyanam, Nathan, Qld 4111, Australia. RP Cao, W (reprint author), Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. RI Chen, Shouyuan/G-1528-2010; Ben-Itzhak, Itzik/J-8273-2012; Kling, Matthias/D-3742-2014; Schoeffler, Markus/B-6261-2008; Litvinyuk, Igor/A-5739-2009; cao, wei/D-9643-2015 OI Ben-Itzhak, Itzik/0000-0002-6214-3520; Schoeffler, Markus/0000-0001-9214-6848; Litvinyuk, Igor/0000-0002-4306-1669; FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; National Science Foundation [CHE-0822646]; U.S. Army Research Office [W911NF-07-1-0475]; German Science Foundation FX This work was supported by Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, by the National Science Foundation under Grant No. CHE-0822646, by the U.S. Army Research Office under Grant No. W911NF-07-1-0475, and by the German Science Foundation via the Emmy-Noether program and the Cluster of Excellence: Munich Center for Advanced Photonics. NR 19 TC 6 Z9 6 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT 8 PY 2010 VL 82 IS 4 AR 043410 DI 10.1103/PhysRevA.82.043410 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 660WO UT WOS:000282677400010 ER PT J AU Groger, R Lookman, T Saxena, A AF Groeger, R. Lookman, T. Saxena, A. TI Incompatibility of strains and its application to mesoscopic studies of plasticity SO PHYSICAL REVIEW B LA English DT Article ID COMPATIBILITY; TRANSFORMATION; DISLOCATIONS; ELASTICITY; DYNAMICS AB Structural transitions are invariably affected by lattice distortions. If the body is to remain crack free, the strain field cannot be arbitrary but has to satisfy the Saint-Venant compatibility constraint. Equivalently, an incompatibility constraint consistent with the actual dislocation network has to be satisfied in media with dislocations. This constraint can be incorporated into strain-based free energy functionals to study the influence of dislocations on phase stability. We provide a systematic analysis of this constraint in three dimensions and show how three incompatibility equations accommodate an arbitrary dislocation density. This approach allows the internal stress field to be calculated for an anisotropic material with spatially inhomogeneous microstructure and distribution of dislocations by minimizing the free energy. This is illustrated by calculating the stress field of an edge dislocation and comparing it with that of an edge dislocation in an infinite isotropic medium. We outline how this procedure can be utilized to study the interaction of plasticity with polarization and magnetization. C1 [Groeger, R.] Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. [Lookman, T.; Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Groger, R (reprint author), Acad Sci Czech Republic, Inst Phys Mat, Zizkova 22, Brno 61662, Czech Republic. EM groger@ipm.cz RI Groger, Roman/G-3608-2010; OI Lookman, Turab/0000-0001-8122-5671 FU Marie-Curie International Reintegration [247705]; Academy of Sciences of the Czech Republic [AV0Z20410507]; U.S. Department of Energy FX This research was supported by the Marie-Curie International Reintegration Grant No. 247705 "MesoPhysDef" and in part by the Academy of Sciences of the Czech Republic (Research Project No. AV0Z20410507) and by the U.S. Department of Energy. NR 30 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 8 PY 2010 VL 82 IS 14 AR 144104 DI 10.1103/PhysRevB.82.144104 PG 5 WC Physics, Condensed Matter SC Physics GA 660XD UT WOS:000282678900004 ER PT J AU Karadimitriou, ME Kavousanaki, EG Perakis, IE Dani, KM AF Karadimitriou, M. E. Kavousanaki, E. G. Perakis, I. E. Dani, Keshav M. TI Transient three-pulse four-wave mixing spectra of magnetoexcitons coupled with an incompressible quantum liquid SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; FERMI-EDGE SINGULARITY; NONLINEAR-OPTICAL-RESPONSE; EXCITON-EXCITON CORRELATION; HARTREE-FOCK APPROXIMATION; FILLED LANDAU-LEVELS; HALL-EFFECT REGIME; COLLECTIVE EXCITATIONS; MANY-BODY; TRANSFORMATION APPROACH AB We present a nonequilibrium many-body formulation of the coherent ultrafast nonlinear optical response of doped semiconductors and systems with a strongly correlated ground state, such as the quantum Hall system (QHS). Our theory is based on a truncation of the density-matrix equations of motion in the absence of a small interaction parameter, obtained by expanding in terms of the optical field and by using Hubbard operator density matrices to describe the exact dynamics within a subspace of many-body states. We identify signatures of noninstantaneous interactions between magnetoexcitons (X) and the incompressible two-dimensional electron gas (2DEG) during femtosecond and picosecond time scales by describing X coupling to inter-Landau-level magnetoroton (MR) and magnetoplasmon excitations. We show that strong X coupling to X + MR configurations changes the temporal evolution of the nonlinear optical spectra as compared to the random-phase approximation (RPA). We calculate the three-pulse four-wave mixing signal, whose dependence on frequency and two time delays reflects the dephasing and relaxation of the strongly coupled X-2DEG system, and demonstrate that the dynamics of the X-2DEG interaction process can be resolved with femtosecond optical pulses. Our results shed light into unexplored subpicosecond and coherent dynamics of the QHS and may be used to interpret and guide two-dimensional correlation spectroscopy experiments. C1 [Karadimitriou, M. E.; Kavousanaki, E. G.; Perakis, I. E.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Karadimitriou, M. E.; Kavousanaki, E. G.; Perakis, I. E.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Dani, Keshav M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Karadimitriou, ME (reprint author), Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. RI Perakis, Ilias/G-9186-2011; Kavousanaki, Eleftheria/D-5712-2015; Dani, Keshav/B-7490-2015 OI Kavousanaki, Eleftheria/0000-0003-1805-6638; Dani, Keshav/0000-0003-3917-6305 FU EU FX This work was supported by the EU ITN program ICARUS and by the EU STREP program HYSWITCH. We are grateful to J. Tignon and S. Cundiff for very useful discussions, and especially to D. S. Chemla for inspiring our work. NR 99 TC 4 Z9 4 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 8 PY 2010 VL 82 IS 16 AR 165313 DI 10.1103/PhysRevB.82.165313 PG 24 WC Physics, Condensed Matter SC Physics GA 660XI UT WOS:000282679400007 ER PT J AU Nelson-Cheeseman, BB Chopdekar, RV Iwata, JM Toney, MF Arenholz, E Suzuki, Y AF Nelson-Cheeseman, B. B. Chopdekar, R. V. Iwata, J. M. Toney, M. F. Arenholz, E. Suzuki, Y. TI Modified magnetic ground state in NiMn2O4 thin films SO PHYSICAL REVIEW B LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; NICKEL MANGANITE; SPINEL; DIFFRACTION; THERMISTORS; TRANSITION; CRYSTAL AB We demonstrate the stabilization of a magnetic ground state in epitaxial NiMn2O4 (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn4+: Mn3+ concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low temperature. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn4+ while the canted moment ferrimagnetic ordering is preserved below 60 K. C1 [Nelson-Cheeseman, B. B.; Chopdekar, R. V.; Iwata, J. M.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Toney, M. F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Nelson-Cheeseman, BB (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM bbnelsonchee@anl.gov RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU National Science Foundation [0604277]; Office of Science, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE-BES; NSF-IGERT; Intel Foundation FX This work was supported by the National Science Foundation under Grant No. 0604277. R. V. C. was also partly supported by the Director, Office of Science, Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The ALS is supported by U.S. DOE-BES. Portions of this research were carried out at SSRL, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. B.B.N.C. would also like to acknowledge the support from NSF-IGERT and the Intel Foundation. We would like to thank K. M. Yu for RBS. NR 29 TC 13 Z9 13 U1 0 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 8 PY 2010 VL 82 IS 14 AR 144419 DI 10.1103/PhysRevB.82.144419 PG 7 WC Physics, Condensed Matter SC Physics GA 660XD UT WOS:000282678900007 ER PT J AU Shenoy, SR Lookman, T Saxena, A AF Shenoy, S. R. Lookman, T. Saxena, A. TI Scaled free energies, power-law potentials, strain pseudospins, and quasiuniversality for first-order structural transitions SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; MARTENSITIC TRANSFORMATIONS; TWIN BOUNDARIES; LANDAU THEORY; DYNAMICS; MODEL; LATTICE; ALLOYS; FLUIDS AB We consider ferroelastic first-order phase transitions with N-OP order-parameter strains entering Landau free energies as invariant polynomials that have N-V structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6-N-OP nonorder-parameter strains. Four three-dimensional (3D) transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal, and cubic/orthorhombic unit-cell distortions, with, respectively, N-OP=1, 2, 3, and 2; and N-V=2, 3, 4, and 6. Five two-dimensional (2D) transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition lambda <= 1. To leading order in lambda the scaled Landau minima become material independent, in a kind of "quasiuniversality." The scaled minima in N-OP-dimensional order-parameter space, fall at the center and at the NV corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The "polyhedra" for the four 3D transitions are, respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the n terms harmonic in the nonorder-parameter strains, by substituting solutions of the "no dislocation" St Venant compatibility constraints, and explicitly obtain power-law anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with N-V+1 values, pointing to the polyhedra corners and the (zero-value) center. The total scaled free energies then become Z(NV)+1 clocklike pseudospin Hamiltonians, with temperature-dependent local Landau terms, nearest-neighbor Ginzburg couplings, and power-law St Venant interactions that drive the elastic domain-wall texturing. The scaled free energies can be used in relaxational or underdamped dynamic simulations to study ferroelastic strain textures and their dynamical evolution pathways. The pseudospin models can similarly be studied via local meanfield treatments and Monte Carlo simulations. C1 [Shenoy, S. R.] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. [Shenoy, S. R.] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Lookman, T.; Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Shenoy, SR (reprint author), Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. OI Lookman, Turab/0000-0001-8122-5671 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; ICTP, Trieste FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. ICTP, Trieste, is also thanked for support. We are grateful to Marcel Porta and Alexander Nersesyan for discussions. NR 54 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 8 PY 2010 VL 82 IS 14 AR 144103 DI 10.1103/PhysRevB.82.144103 PG 21 WC Physics, Condensed Matter SC Physics GA 660XD UT WOS:000282678900003 ER PT J AU Zenker, B Fehske, H Batista, CD AF Zenker, B. Fehske, H. Batista, C. D. TI Competing chiral and multipolar electric phases in the extended Falicov-Kimball model SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; VALENCE; STATE AB We study the effects of interband hybridization within the framework of an extended Falicov-Kimball model with itinerant c and f electrons. An explicit interband hybridization breaks the U(1) symmetry associated with the conservation of the difference between the total number of particles in each band. As a result, the degeneracy between multipolar electric and chiral orderings is lifted. We analyze the weak-and strong-coupling limits of the c-f electron Coulomb interaction at zero temperature, and derive the corresponding mean-field quantum phase diagrams at half filling for a model defined on a square lattice. C1 [Zenker, B.; Fehske, H.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zenker, B (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. RI Batista, Cristian/J-8008-2016 FU Deutsche Forschungsgemeinschaft [SFB 652, B5]; NNSA of the U.S. DOE at the Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was supported by the Deutsche Forschungsgemeinschaft through SFB 652, B5, and by the NNSA of the U.S. DOE at the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. B.Z. and H. F. are grateful for the hospitality provided at the Los Alamos National Laboratory. NR 29 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 8 PY 2010 VL 82 IS 16 AR 165110 DI 10.1103/PhysRevB.82.165110 PG 7 WC Physics, Condensed Matter SC Physics GA 660XI UT WOS:000282679400004 ER PT J AU Cerchiai, BL Ferrara, S Marrani, A Zumino, B AF Cerchiai, Bianca L. Ferrara, Sergio Marrani, Alessio Zumino, Bruno TI Charge orbits of extremal black holes in five-dimensional supergravity SO PHYSICAL REVIEW D LA English DT Article ID MAXWELL-EINSTEIN SUPERGRAVITY; NON-BPS ATTRACTORS; U-DUALITY; SPECIAL GEOMETRY; JORDAN ALGEBRAS; CRITICAL-POINTS; MODULI SPACE; N=2; ENTROPY; DIMENSIONS AB We derive the U-duality charge orbits, as well as the related moduli spaces, of "large" and "small" extremal black holes in nonmaximal ungauged Maxwell-Einstein supergravities with symmetric scalar manifolds in d = 5 space-time dimensions. The stabilizer groups of the various classes of orbits are obtained by determining and solving suitable U-invariant sets of constraints, both in "bare" and "dressed" charge bases, with various methods. After a general treatment of attractors in real special geometry (also considering nonsymmetric cases), the N = 2 "magic" theories, as well as the N = 2 Jordan symmetric sequence, are analyzed in detail. Finally, the half-maximal (N = 4) matter-coupled supergravity is also studied in this context. C1 [Cerchiai, Bianca L.] Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, Italy. [Ferrara, Sergio] CERN, Div Theory, CH-1211 Geneva, Switzerland. [Ferrara, Sergio] INFN LNF, I-00044 Frascati, Italy. [Ferrara, Sergio] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Marrani, Alessio] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Zumino, Bruno] Univ Calif Berkeley, Lawrence Berkeley Lab, Theory Grp, Berkeley, CA 94720 USA. [Zumino, Bruno] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Cerchiai, BL (reprint author), Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy. EM Bianca.Cerchiai@unimi.it; sergio.ferrara@cern.ch; marrani@lnf.infn.it; zumino@thsrv.lbl.gov OI Cerchiai, Bianca Letizia/0000-0002-0109-0330; Ferrara, Sergio/0000-0001-7662-3480 FU European Commission [FP7-PEOPLE-IRG-2008, PIRG04-GA-2008-239412]; ERC [226455]; INFN-Frascati National Laboratories; DOE [DE-FG03-91ER40662]; INFN; Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [10996-13607-44 PHHXM] FX S.F. and A.M. would like to thank L. Borsten and M. Trigiante for enlightening discussions. B.L.C. and A.M. would like to thank the CTP of the University of California, Berkeley, where part of this work was done, for kind hospitality and a stimulating environment. A.M. would also like to acknowledge the warm hospitality and inspiring environment of the Department of Physics, Theory Unit Group at CERN, Geneva. The work of B.L.C. has been supported in part by the European Commission under the FP7-PEOPLE-IRG-2008 Grant No. PIRG04-GA-2008-239412 "String Theory and Noncommutative Geometry" (STRING). The work of S.F. has been supported by the ERC Advanced Grant No. 226455, "Supersymmetry, Quantum Gravity and Gauge Fields" (SUPERFIELDS), and also in part by INFN-Frascati National Laboratories, and by DOE Grant No. DE-FG03-91ER40662, Task C. The work of A.M. has been supported by INFN as a visitor at Stanford University. The work of B.Z. has been supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and in part by NSF Grant No. 10996-13607-44 PHHXM. NR 65 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 8 PY 2010 VL 82 IS 8 AR 085010 DI 10.1103/PhysRevD.82.085010 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660XP UT WOS:000282680900006 ER PT J AU Creutz, M Misumi, T AF Creutz, Michael Misumi, Tatsuhiro TI Classification of minimally doubled fermions SO PHYSICAL REVIEW D LA English DT Article ID LATTICE FERMIONS; CHIRAL FERMIONS; NEUTRINOS; ABSENCE; QUARKS; PROOF AB We propose a method to control the number of species of lattice fermions, which yields new classes of minimally doubled lattice fermions. We show it is possible to control the number of species by handling O(a) Wilson-term-like corrections in fermion actions, which we will term "twisted-ordering method". Using this method we obtain new minimally doubled actions with one exact chiral symmetry and exact locality. We classify the known minimally doubled fermions into two types based on the locations of the propagator poles in the Brillouin zone. C1 [Creutz, Michael] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Misumi, Tatsuhiro] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Creutz, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM creutz@bnl.gov; misumi@yukawa.kyoto-u.ac.jp FU Japan Society for Promotion of Science (JSPS) [21-1226]; Alexander von Humboldt Foundation; U.S. Department of Energy [DE-AC02-98CH10886] FX T. M. is supported by Grant-in-Aid for the Japan Society for Promotion of Science (JSPS) Research Grant (No. 21-1226). T. M. thanks Taro Kimura for stimulating discussions. M. C. is grateful to the Alexander von Humboldt Foundation for support for visits to the University of Mainz. This manuscript has been authored under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 28 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 8 PY 2010 VL 82 IS 7 AR 074502 DI 10.1103/PhysRevD.82.074502 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660XN UT WOS:000282680100004 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Measurement of CP observables in B-+/- -> DCPK +/- decays and constraints on the CKM angle gamma SO PHYSICAL REVIEW D LA English DT Article ID VIOLATION AB Using the entire sample of 467 x 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B-+/- -> DK +/- decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A(CP+) = 0.25 +/- 0.06 +/- 0.02 and A(CP-) = 0.09 +/- 0.07 +/- 0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A(CP+) is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, RCP+ 1.18 +/- 0.09 +/- 0.05 and RCP- = 1.07 +/- 0.08 +/- 0.04. We infer frequentist confidence intervals for the angle gamma of the unitarity triangle, for the strong phase difference delta(B), and for the amplitude ratio r(B), which are related to the B- -> DK- decay amplitude by r(B)e(i(delta B-gamma)) = A(B- -> (D) over bar K-0(-)) = A(B- -> (D) over bar K-0(-))/A(B- -> (DK-)-K-0). Including statistical and systematic uncertainties, we obtain 0: 24 < rB < 0: 45 ( 0: 06 < rB < 0: 51) and, modulo 180 degrees, 11.3 degrees < gamma < 22.7 degrees or 80.8 degrees < gamma < 99.2 degrees or 157.3 degrees < gamma < 168.7 degrees (7.0 degrees < gamma < 173.0 degrees) at the 68% ( 95%) confidence level. C1 [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.] INFN Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Ind Technol Inst, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, Perugia, Italy. [Sordini, V.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Martinelli, M.; Pappagallo, M.] INFN Sez Bari, I-70126 Bari, Italy. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. RP Sanchez, PD (reprint author), Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Lafferty, George/0000-0003-0658-4919; Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866; Martinelli, Maurizio/0000-0003-4792-9178; Faccini, Riccardo/0000-0003-2613-5141; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Bellis, Matthew/0000-0002-6353-6043; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712 FU U.S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 29 TC 26 Z9 26 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 8 PY 2010 VL 82 IS 7 AR 072004 DI 10.1103/PhysRevD.82.072004 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660XN UT WOS:000282680100001 ER PT J AU Hazen, TC Dubinsky, EA DeSantis, TZ Andersen, GL Piceno, YM Singh, N Jansson, JK Probst, A Borglin, SE Fortney, JL Stringfellow, WT Bill, M Conrad, ME Tom, LM Chavarria, KL Alusi, TR Lamendella, R Joyner, DC Spier, C Baelum, J Auer, M Zemla, ML Chakraborty, R Sonnenthal, EL D'haeseleer, P Holman, HYN Osman, S Lu, ZM Van Nostrand, JD Deng, Y Zhou, JZ Mason, OU AF Hazen, Terry C. Dubinsky, Eric A. DeSantis, Todd Z. Andersen, Gary L. Piceno, Yvette M. Singh, Navjeet Jansson, Janet K. Probst, Alexander Borglin, Sharon E. Fortney, Julian L. Stringfellow, William T. Bill, Markus Conrad, Mark E. Tom, Lauren M. Chavarria, Krystle L. Alusi, Thana R. Lamendella, Regina Joyner, Dominique C. Spier, Chelsea Baelum, Jacob Auer, Manfred Zemla, Marcin L. Chakraborty, Romy Sonnenthal, Eric L. D'haeseleer, Patrik Holman, Hoi-Ying N. Osman, Shariff Lu, Zhenmei Van Nostrand, Joy D. Deng, Ye Zhou, Jizhong Mason, Olivia U. TI Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria SO SCIENCE LA English DT Article ID PETROLEUM-HYDROCARBONS; GEN.-NOV.; CRUDE-OIL; COMMUNITIES; TEMPERATURES; ANTARCTICA; GEOCHIP; SPILL AB The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous gamma-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5 degrees C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown. C1 [Hazen, Terry C.; Dubinsky, Eric A.; DeSantis, Todd Z.; Andersen, Gary L.; Piceno, Yvette M.; Singh, Navjeet; Jansson, Janet K.; Probst, Alexander; Borglin, Sharon E.; Fortney, Julian L.; Stringfellow, William T.; Bill, Markus; Conrad, Mark E.; Tom, Lauren M.; Chavarria, Krystle L.; Alusi, Thana R.; Lamendella, Regina; Joyner, Dominique C.; Baelum, Jacob; Auer, Manfred; Zemla, Marcin L.; Chakraborty, Romy; Sonnenthal, Eric L.; Holman, Hoi-Ying N.; Osman, Shariff; Zhou, Jizhong; Mason, Olivia U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Stringfellow, William T.; Spier, Chelsea] Univ Pacific, Ecol Engn Res Program, Stockton, CA 95211 USA. [Lu, Zhenmei; Van Nostrand, Joy D.; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Norman, OK 73072 USA. [D'haeseleer, Patrik] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Hazen, TC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 70A-3317,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tchazen@lbl.gov RI Borglin, Sharon/I-1013-2016; Conrad, Mark/G-2767-2010; Deng, Ye/A-2571-2013; Wright, Dawn/A-4518-2011; Balum, Jacob/I-2353-2013; Sonnenthal, Eric/A-4336-2009; Holman, Hoi-Ying/N-8451-2014; Dubinsky, Eric/D-3787-2015; Chakraborty, Romy/D-9230-2015; Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Stringfellow, William/O-4389-2015; Van Nostrand, Joy/F-1740-2016; Piceno, Yvette/I-6738-2016; Bill, Markus/D-8478-2013; Probst, Alexander/K-2813-2016; Hazen, Terry/C-1076-2012; OI Wright, Dawn/0000-0002-2997-7611; Balum, Jacob/0000-0002-1022-6586; Holman, Hoi-Ying/0000-0002-7534-2625; Dubinsky, Eric/0000-0002-9420-6661; Chakraborty, Romy/0000-0001-9326-554X; Andersen, Gary/0000-0002-1618-9827; Stringfellow, William/0000-0003-3189-5604; Van Nostrand, Joy/0000-0001-9548-6450; Piceno, Yvette/0000-0002-7915-4699; Bill, Markus/0000-0001-7002-2174; Hazen, Terry/0000-0002-2536-9993; D'haeseleer, Patrik/0000-0003-0007-8150; ?, ?/0000-0002-7584-0632 FU University of California at Berkeley, Energy Biosciences Institute under U.S. Department of Energy [DE-AC02-05CH11231]; University of Oklahoma Research Foundation; British Petroleum; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute, to Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231 and by the University of Oklahoma Research Foundation. The Energy Biosciences Institute is funded by British Petroleum. The SR-FTIR work was conducted at the infrared beamline at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. We thank T. Pollard, K. Keller, M. Carrera, P. Willems, P. Carragher, P. Collinson, S. Lisiecki, P. Vaishampayan, R. Graham, J. Wong, N. Duncan, D. Long, and N. Tam for logistical and technical support. We also thank the captain, crew, and science teams aboard the R/V Ocean Veritas and the R/V Brooks McCall. The National Center for Biotechnology Information accession numbers of the 16S rRNA genes retrieved from clone library analyses are HM587888, HM587889, and HM587890. Sequences for 16S rRNA are also available at greengenes.lbl.gov. NR 19 TC 452 Z9 472 U1 56 U2 487 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 8 PY 2010 VL 330 IS 6001 BP 204 EP 208 DI 10.1126/science.1195979 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 660LP UT WOS:000282644600037 PM 20736401 ER PT J AU Quest, DJ Land, ML Brettin, TS Cottingham, RW AF Quest, Daniel J. Land, Miriam L. Brettin, Thomas S. Cottingham, Robert W. TI Next generation models for storage and representation of microbial biological annotation SO BMC BIOINFORMATICS LA English DT Article; Proceedings Paper CT 7th Annual Midsouth Computational Biology and Bioinformatics (MCBIOS) CY FEB 19-20, 2010 CL Jonesboro, AR ID SEMANTIC-WEB; ONTOLOGY; UNIFICATION; DATABASE; TOOL AB Background: Traditional genome annotation systems were developed in a very different computing era, one where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and automatically generated annotation. Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These technologies tightly couple the annotation software system to hardware and third party software (e. g. relational database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically tractable. The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way. Results: Here, we develop a framework for linking traditional data to OWL-based ontologies in genome annotation. We show how data standards can decouple hardware and third party software tools from annotation pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to GenBank/EMBL files. Conclusions: The power of this approach lies in its ability to assemble annotation data from multiple databases across multiple locations into a representation that is understandable to researchers. In this way, all researchers, experimental and computational, will more easily understand the informatics processes constructing genome annotation and ultimately be able to help improve the systems that produce them. C1 [Quest, Daniel J.; Land, Miriam L.; Brettin, Thomas S.; Cottingham, Robert W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Quest, DJ (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. EM questdj@ornl.gov RI Land, Miriam/A-6200-2011 OI Land, Miriam/0000-0001-7102-0031 FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science,; U. S. Department of Energy Joint Genome Institute; Oak Ridge National Laboratory; U. S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the BioEnergy Science Center (BESC) which is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, along with the U. S. Department of Energy Joint Genome Institute, and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 41 TC 3 Z9 3 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 7 PY 2010 VL 11 SU 6 AR S15 DI 10.1186/1471-2105-11-S6-S15 PG 16 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 759CB UT WOS:000290216600015 PM 20946598 ER PT J AU Yakunin, KN Marronetti, P Mezzacappa, A Bruenn, SW Lee, CT Chertkow, MA Hix, WR Blondin, JM Lentz, EJ Messer, OEB Yoshida, S AF Yakunin, Konstantin N. Marronetti, Pedro Mezzacappa, Anthony Bruenn, Stephen W. Lee, Ching-Tsai Chertkow, Merek A. Hix, W. Raphael Blondin, John M. Lentz, Eric J. Messer, O. E. Bronson Yoshida, Shin'ichirou TI Gravitational waves from core collapse supernovae SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) CY JAN 26-29, 2010 CL Univ Rome, Rome, ITALY HO Univ Rome ID EQUATION-OF-STATE; NEWTONIAN HYDRODYNAMICS; ACCRETION SHOCK; RADIATION; NEUTRINO; SIMULATIONS; INSTABILITY; GENERATION; MATTER AB We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitor masses between 12 and 25 M(circle dot). These models are distinguished by the fact that they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete wave forms (i.e. through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models. C1 [Yakunin, Konstantin N.; Marronetti, Pedro; Bruenn, Stephen W.] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. [Mezzacappa, Anthony; Hix, W. Raphael; Lentz, Eric J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Mezzacappa, Anthony; Lee, Ching-Tsai; Chertkow, Merek A.; Hix, W. Raphael; Lentz, Eric J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Blondin, John M.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Messer, O. E. Bronson] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Yoshida, Shin'ichirou] Univ Tokyo, Dept Earth Sci & Astron, Tokyo, Japan. RP Yakunin, KN (reprint author), Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. EM cyakunin@fau.edu; pmarrone@fau.edu RI Hix, William/E-7896-2011; Yoshida, Shin'ichirou/G-2396-2011; Messer, Bronson/G-1848-2012; Lentz, Eric/M-7173-2015; Mezzacappa, Anthony/B-3163-2017 OI Hix, William/0000-0002-9481-9126; Messer, Bronson/0000-0002-5358-5415; Lentz, Eric/0000-0002-5231-0532; Mezzacappa, Anthony/0000-0001-9816-9741 NR 26 TC 38 Z9 38 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD OCT 7 PY 2010 VL 27 IS 19 SI SI AR 194005 DI 10.1088/0264-9381/27/19/194005 PG 9 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 653DM UT WOS:000282067500006 ER PT J AU Dawes, R Wang, XG Jasper, AW Carrington, T AF Dawes, Richard Wang, Xiao-Gang Jasper, Ahren W. Carrington, Tucker, Jr. TI Nitrous oxide dimer: A new potential energy surface and rovibrational spectrum of the nonpolar isomer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; DISCRETE VARIABLE REPRESENTATION; SHELL HARTREE-FOCK; DER-WAALS COMPLEX; BASIS-SETS; VIBRATIONAL LEVELS; QUANTUM-MECHANICS; INFRARED-SPECTRA; N2O DIMER; VECTOR PARAMETRIZATION AB The spectrum of nitrous oxide dimer was investigated by constructing new potential energy surfaces using coupled-cluster theory and solving the rovibrational Schrodinger equation with a Lanczos algorithm. Two four-dimensional (rigid monomer) global ab initio potential energy surfaces (PESs) were made using an interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The first exploratory fit was made from 1646 CCSD(T)/3ZaP energies. Isomeric minima and connecting transition structures were located on the fitted surface, and the energies of those geometries were benchmarked using complete basis set (CBS) extrapolations, counterpoise (CP) corrections, and explicitly correlated (F12b) methods. At the geometries tested, the explicitly correlated F12b method produced energies in close agreement with the estimated CBS limit. A second fit to 1757 data at the CCSD(T)-F12b/VTZ-F12 level was constructed with an estimated fitting error of less than 1.5 cm(-1). The second surface has a global nonpolar O-in minimum, two T-shaped N-in minima, and two polar minima. Barriers between these minima are small and some wave functions have amplitudes in several wells. Low-lying rovibrational wave functions and energy levels up to about 150 cm(-1) were computed on the F12b PES using a discrete variable representation/finite basis representation method. Calculated rotational constants and intermolecular frequencies are in very close agreement with experiment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494542] C1 [Dawes, Richard] Missouri Univ Sci & Technol, Rolla, MO 65401 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Wang, Xiao-Gang; Carrington, Tucker, Jr.] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. RP Dawes, R (reprint author), Missouri Univ Sci & Technol, Rolla, MO 65401 USA. EM dawesr@mst.edu; xgwang.dalian@gmail.com; ajasper@sandia.gov; tucker.carrington@queensu.ca RI Jasper, Ahren/A-5292-2011; CARRINGTON, Tucker/I-6727-2012; Wang, Xiaogang/B-2439-2013; Dawes, Richard/C-6344-2015 OI CARRINGTON, Tucker/0000-0002-5200-2353; Wang, Xiaogang/0000-0002-7929-5889; FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000]; Natural Sciences and Engineering Research Council of Canada FX R.D. and A.W.J. are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U. S. Department of Energy; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. X.-G. W. and T. C. are supported by the Natural Sciences and Engineering Research Council of Canada. Calculations were done on computers of the Reseau Quebecois de Calcul de Haute Performance (RQCHP) and a computer at Queen's University purchased with money from the Canadian Foundation for Innovation. NR 73 TC 53 Z9 53 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 7 PY 2010 VL 133 IS 13 AR 134304 DI 10.1063/1.3494542 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 661CE UT WOS:000282699800023 PM 20942536 ER PT J AU Barker, JR Weston, RE AF Barker, John R. Weston, Ralph E., Jr. TI Collisional Energy Transfer Probability Densities P(E, J; E ' J ') for Monatomics Colliding with Large Molecules SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID VIBRATIONALLY EXCITED PYRAZINE; CLASSICAL TRAJECTORY SIMULATIONS; THERMAL UNIMOLECULAR REACTIONS; RADICAL RECOMBINATION KINETICS; 2-DIMENSIONAL MASTER EQUATION; LARGE POLYATOMIC-MOLECULES; SELECTIVE IONIZATION KCSI; DER-WAALS CLUSTERS; LOW-PRESSURE-LIMIT; CHEMICAL-REACTIONS AB Collisional energy transfer remains an important area of uncertainty in master equation simulations. Quasi-classical trajectory (QCT) calculations were used to examine the energy transfer probability density distribution (energy transfer kernel), which depends on translational temperature, on the nature of the collision partners, and on the initial and final total internal energies and angular momenta: P(E, J; E', J'). For this purpose, model potential energy functions were taken from the literature or were formulated for pyrazine + Ar and for ethane + Ar collisions. For each collision pair, batches of 10(5) trajectories were computed with three selected initial vibrational energies and five selected values for initial total angular momentum. Most trajectories were carried out with relative translational energy distributions at 300 K, but some were carried out at 1000 or 1200 K. In addition, some trajectories were computed for artificially "heavy" ethane, in which the H-atoms were assigned masses of 20 amu. The results were binned according to (Delta E, Delta J), and a least-squares analysis was carried out by omitting the quasi-elastic trajectories from consideration. By trial-and-error, an empirical function was identified that fitted all 45 batches of trajectories with moderate accuracy. The results reveal significant correlations between initial and final energies and angular momenta. In particular, a strong correlation between Delta E and Delta J depends on the smallest rotational constant in the excited polyatomic. These results show that the final rotational energy distribution is not independent of the initial distribution, showing that the plausible simplifying assumption described by Smith and Gilbert [Int. J. Chem. Kinet. 1988, 20, 307-329] and extended by Miller, Klippenstein, and Rally [J. Phys. Chem. A 2002, 106, 4904-4913] is invalid for the systems studied. C1 [Barker, John R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Weston, Ralph E., Jr.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Barker, JR (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM jrbarker@umich.edu RI Barker, John/F-5904-2012 OI Barker, John/0000-0001-9248-2470 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98CH10886] FX J. R. B. thanks the NSF (Division of Atmospheric and Geospace Sciences) for funding some of this work. He also thanks K. D. King, B. M. Toselli, L. M. Yoder, A. Chimbayo, Y. Liu, P. J. Stimac, R. G. Gilbert, David M. Golden, and other colleagues for helpful discussions. Computing by R. E. W. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through contract number DE-AC02-98CH10886. He thanks J. T. Muckerman, G. E. Hall, and J. Preses for help and advice. NR 135 TC 20 Z9 20 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 7 PY 2010 VL 114 IS 39 BP 10619 EP 10633 DI 10.1021/jp106443d PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 654ZL UT WOS:000282210000016 PM 20843047 ER PT J AU Broniatowski, M Flasinski, M Dynarowicz-Latka, P Majewski, J AF Broniatowski, Marcin Flasinski, Michal Dynarowicz-Latka, Patrycja Majewski, Jaroslaw TI Partially Fluorinated Thioethers at the Water/Air Interface. Langmuir Mono layer Characterization and X-ray Scattering Studies SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SEMIFLUORINATED ALKANES; STRUCTURAL-PROPERTIES; AIR/WATER INTERFACE; PHASE-SEPARATION; N-ALKANES; MONOLAYERS; SURFACTANTS; CRYSTALLINE; AMPHIPHILES; HYDROCARBON AB A series of partially fluorinated aliphatic thioethers of the following formula: CF(3)-(CF(2))(7)-(CH(2))(10)-S-C(n)H(2n+1), where n = 1, 2, 4, 8, 12, and 18, were synthesized and spread from chloroform solution onto the water/air interface in a Langmuir trough. Upon compression of the film, the surface pressure-mean molecular area isotherms were recorded. It turned out that all the investigated compounds are capable of stable Langmuir monolayers formation. The electrical properties of the studied monolayers have been investigated by monitoring the change in the surface potential (Delta V) upon film compression. The performed experiments proved that regardless of the length of the C(n)H(2n+1) chain, the orientation of the film molecules is very similar. The investigated monolayers have been visualized applying Brewster angle microscopy. The monolayers of the shorter homologues turned out to be homogeneous until their collapse, whereas for longer homologues, the formation of multikiyer aggregates was observed. The methods of grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XR) have also been applied for the characterization of the organization of thioether molecules in their monolayers. The GIXD experiments proved that the films of the studied thioethers possess a periodical in-plane structure. They are collectively tilted toward the next neighbor (NN tilt), and their packing within the monolayer (xy) plane can be described by the 2-dimentional rectangular centered lattice. Interpretation of the XR results indicate that only the partially fluorinated chain of the thioether molecule is periodically organized at the water/air interface, whereas the hydrocarbon chain is disordered and has a liquid character. C1 [Broniatowski, Marcin; Flasinski, Michal; Dynarowicz-Latka, Patrycja] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland. [Majewski, Jaroslaw] Los Alamos Natl Lab, Scattering Ctr, Los Alamos, NM 87545 USA. RP Broniatowski, M (reprint author), Jagiellonian Univ, Fac Chem, Ingardena 3, PL-30060 Krakow, Poland. EM broniato@chemia.uj.edu.pl RI Lujan Center, LANL/G-4896-2012; Dynarowicz-Latka, Patrycja/Q-1067-2015 OI Dynarowicz-Latka, Patrycja/0000-0002-9778-6091 NR 46 TC 5 Z9 5 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 7 PY 2010 VL 114 IS 39 BP 12549 EP 12557 DI 10.1021/jp105114d PG 9 WC Chemistry, Physical SC Chemistry GA 654ZK UT WOS:000282209900014 PM 20879803 ER PT J AU Kumar, RS Zhang, Y Sinogeikin, S Xiao, YM Kumar, S Chow, P Cornelius, AL Chen, CF AF Kumar, Ravhi S. Zhang, Yi Sinogeikin, Stanislav Xiao, Yuming Kumar, Sathish Chow, Paul Cornelius, Andrew L. Chen, Changfeng TI Crystal and Electronic Structure of FeSe at High Pressure and Low Temperature SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PHASE-DIAGRAM; SUPERCONDUCTIVITY AB We have investigated the high-pressure crystal and electronic structures of superconducting Fe Se by high-resolution synchrotron powder X-ray diffraction and density functional theory (DMT) calculations at ambient and at low temperatures down to 8 K. Ambient nuclear resonant inelastic X-ray scattering (NRIXS) experiments were performed on Fe Se to understand the partial phonon density of states (PDOS) of the high-pressure phases. On the basis of our experimental results and DFT calculations, we demonstrate a pressure-induced distortion of the low-temperature Cmma phase at around 1.6 GPa and the appearance of a high-pressure Pbnm phase. Upon increasing the pressure above 9 GPa, the orthorhombic phase becomes the major phase, and a mixed-phase region exists up to 26 GPa. The pressure-induced structural changes in this system and its connection to T, enhancement are discussed. C1 [Kumar, Ravhi S.; Zhang, Yi; Kumar, Sathish; Cornelius, Andrew L.; Chen, Changfeng] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Kumar, Ravhi S.; Zhang, Yi; Kumar, Sathish; Cornelius, Andrew L.; Chen, Changfeng] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Sinogeikin, Stanislav; Xiao, Yuming; Chow, Paul] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. RP Kumar, RS (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu; zhangyi@physics.unlv.edu RI Cornelius, Andrew/A-9837-2008; Zhang, Yi/C-9291-2011; Kumar, Ravhi/B-8427-2012; OI Kumar, Ravhi/0000-0002-1967-1619 FU DOE [DE-FC52-06NA26274]; DOE-BES [DE-ACO2-06CH11357]; DOE-NNSA; NSF FX Work at UNLV was supported by DOE under Cooperative Agreement No. DE-FC52-06NA26274. The experiments were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-ACO2-06CH11357. NR 27 TC 38 Z9 39 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 7 PY 2010 VL 114 IS 39 BP 12597 EP 12606 DI 10.1021/jp1060446 PG 10 WC Chemistry, Physical SC Chemistry GA 654ZK UT WOS:000282209900021 PM 20839813 ER PT J AU Li, GS Camaioni, DM Amonette, JE Zhang, ZC Johnson, TJ Fulton, JL AF Li, Guosheng Camaioni, Donald M. Amonette, James E. Zhang, Z. Conrad Johnson, Timothy J. Fulton, John L. TI [CuCln](2-n) Ion-Pair Species in 1-Ethyl-3-methylimidazolium Chloride Ionic Liquid-Water Mixtures: Ultraviolet-Visible, X-ray Absorption Fine Structure, and Density Functional Theory Characterization SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SUPERCRITICAL WATER; ELECTRONIC-SPECTRUM; MOLECULAR-STRUCTURE; HALIDE-COMPLEXES; SPECTROSCOPY; SOLVATION; TETRACHLOROCUPRATE(II); COORDINATION; DYNAMICS; CRYSTAL AB We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption line structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu2+ with multiple Cl- ligands to form various CuCln(2-n) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM+ cation. ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl42- species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C-2 symmetry compared to Did in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems. C1 [Li, Guosheng; Camaioni, Donald M.; Amonette, James E.; Zhang, Z. Conrad; Johnson, Timothy J.; Fulton, John L.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. EM john.fulton@pnl.gov FU U.S. Department of Energy's (DOE); Biosciences and Geosciences; NSERC; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Washington; Simon Fraser University; Pacific Northwest National Laboratory; Advanced Photon Source FX D.M.C. thanks Michel Dupuis (PNNL) for discussions on theory and simulation of copper. We thank Y. Su and H. M. Brown for the preparation of the high-purity ionic liquid compound. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. PNNL is operated for the Department of Energy by Battelle. PNC/XOR facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy - Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the Pacific Northwest National Laboratory, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 67 TC 20 Z9 20 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 7 PY 2010 VL 114 IS 39 BP 12614 EP 12622 DI 10.1021/jp106762b PG 9 WC Chemistry, Physical SC Chemistry GA 654ZK UT WOS:000282209900023 PM 20879804 ER PT J AU Dai, QQ Zhang, Y Wang, YN Wang, YD Zou, B Yu, WW Hu, MZ AF Dai, Quanqin Zhang, Yu Wang, Yingnan Wang, Yiding Zou, Bo Yu, William W. Hu, Michael Z. TI Ligand Effects on Synthesis and Post-Synthetic Stability of PbSe Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CDSE/CDS CORE/SHELL NANOCRYSTALS; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; EXTINCTION COEFFICIENT; II-VI; NONCOORDINATING SOLVENTS; COLLOIDAL NANOCRYSTALS; OPTICAL-PROPERTIES; INFRARED-EMISSION; CDTE NANOCRYSTALS AB This paper reports the effect of ligands including oleic acid (OA), trioctylphosphine (TOP), and tributylphosphine (TBP) on the PbSe nanocrystal growth during synthesis, as well as the effect of OA ligands on the nanocrystal stability after synthesis. These ligands play important roles in the nucleation and growth mechanism of nanocrystals. We have discovered that the ligand effect on the growth of PbSe nanocrystals can differ from that on the mostly studied CdSe nanocrystals. Also, we present a method for producing relatively smaller and more monodisperse PbSe nanocrystals based on our new understanding that the use of TBP, instead of the generally reported TOP, can slow clown the growth of PbSe nanocrystals. In addition, our postsynthetic investigation of OA ligand effects demonstrate the dominant desorption of OA-bonded Pb atoms, causing the shrinkage of PbSe nanocrystals. This provides some insight into stabilization strategies for labile PbSe nanocrystals. C1 [Wang, Yingnan; Zou, Bo] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Dai, Quanqin; Hu, Michael Z.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yu; Wang, Yiding; Yu, William W.] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China. [Yu, William W.] Worcester Polytech Inst, Dept Chem & Biochem, Worcester, MA 01609 USA. RP Zou, B (reprint author), Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. EM zoubo@jlu.edu.cn; wyu6000@gmail.com; hum1@ornl.gov RI Zou, Bo/C-6926-2008; OI Zou, Bo/0000-0002-3215-1255; Hu, Michael/0000-0001-8461-9684 FU U.S. Department of Energy Office Energy Efficiency and Renewable Energy; NSFC [21073071]; National Basic Research Program of China [2005CB724400, 2007CB808000]; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University; Oak Ridge National Laboratory FX This work was partially supported by the Industrial Technologies Program of the U.S. Department of Energy Office Energy Efficiency and Renewable Energy, the LDRD program of the Oak Ridge National Laboratory, NSFC (21073071), the National Basic Research Program of China (2005CB724400 and 2007CB808000), and the State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University. NR 51 TC 24 Z9 24 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 7 PY 2010 VL 114 IS 39 BP 16160 EP 16167 DI 10.1021/jp102660g PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 654ZJ UT WOS:000282209800012 ER PT J AU Velizhanin, KA AF Velizhanin, Kirill A. TI Comment on "Impact Ionization and Auger Recombination Rates in Semiconductor Quantum Dots" SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Editorial Material C1 Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies CNLS T4, Los Alamos, NM 87545 USA. RP Velizhanin, KA (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies CNLS T4, Los Alamos, NM 87545 USA. EM kirill@lanl.gov RI Velizhanin, Kirill/C-4835-2008 NR 5 TC 0 Z9 0 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 7 PY 2010 VL 114 IS 39 BP 16859 EP 16859 DI 10.1021/jp103681y PG 1 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 654ZJ UT WOS:000282209800102 ER PT J AU Binder, AJ Dawes, R Jasper, AW Camden, JP AF Binder, Andrew J. Dawes, Richard Jasper, Ahren W. Camden, Jon P. TI The Role of Excited Electronic States in Hypervelocity Collisions: Enhancement of the O(P-3) + HCl -> OCl plus H Reaction Channel SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; POTENTIAL-ENERGY SURFACES; CROSSED-BEAMS; HYPERTHERMAL REACTIONS; PLUS HCL; SPECTROSCOPY; SIMULATIONS; EXCITATION; ALKANES; EXAMPLE AB The role of excited electronic states in the O + HCl reaction was studied using the quasi-classical trajectory method for collison energies between 1 and 5.5 eV. Global potential energy surfaces were developed for the ground ((3)A") and first excited ((3)A') electronic states of the OHCl system using and interpolating moving least-squares-based method for energies up to 6.5 eV above the reactant valley. High-accuracy ab initio data were computed at automatically selected points using an 18-electronic-state model and the generalized dynamically weighted multireference configuration interaction (GDW-MRCI) method extrapolated to the complete basis set limit. The results show significant dynamical differences between ground- and excited-state reactions. At high collision energies, over half of the total OCl reactive flux originates from reactions on the (3)A' state, whereas OH is produced almost exclusively by the (3)A" state. Inclusion of the excited electronic state, therefore, dramatically alters the OCl/OH product branching ratio. C1 [Dawes, Richard] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. [Binder, Andrew J.; Camden, Jon P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Dawes, R (reprint author), Missouri Univ Sci & Technol, Rolla, MO 65409 USA. EM dawesr@mst.edu; jcamden@utk.edu RI Jasper, Ahren/A-5292-2011; Dawes, Richard/C-6344-2015; OI Binder, Andrew/0000-0003-3221-2887 FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000]; University of Tennessee Knoxville FX R.D. and A.W.J. are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000. R.D. thanks K. A. Peterson (Washington State) for useful discussions regarding the electronic structure of this system. This work is also supported by the University of Tennessee Knoxville (A.J.B. and J.P.C.). A.J.B. and J.P.C. thank George Schatz for useful discussions on the conversion of diatom quantum numbers to classical action variables. NR 23 TC 7 Z9 7 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 7 PY 2010 VL 1 IS 19 BP 2940 EP 2945 DI 10.1021/jz1011059 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 661KR UT WOS:000282727700034 ER PT J AU Sabbah, H Biennier, L Klippenstein, SJ Sims, IR Rowe, BR AF Sabbah, Hassan Biennier, Ludovic Klippenstein, Stephen J. Sims, Ian R. Rowe, Bertrand R. TI Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; KINETICS; FLAMES; NUCLEATION; CLUSTERS; GROWTH; DIMERS AB A critical step in currently accepted models for soot formation in combustion is the dimerization of polycyclic aromatic hydrocarbons as small as pyrene, which is necessary within these models to reproduce correctly the soot particle size distribution. We present experimental measurements on the kinetics of pyrene dimerization performed in low temperature supersonic flows with photoionization mass spectrometric detection, coupled with theoretical results based on careful consideration of the intermolecular interaction energies, binding energy, equilibrium constant, and intermolecular dynamics. These results demon strate that the equilibrium of the reaction strongly favors the dissociation of the pyrene dimer at high temperature and that physical dimerization (involving van der Waals forces) of pyrene cannot be a key step in carbon particle formation in hot environments such as flames and circumstellar shells. C1 [Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Sabbah, Hassan; Biennier, Ludovic; Sims, Ian R.; Rowe, Bertrand R.] Univ Rennes 1, Inst Phys Rennes, Equipe Astrochim Expt, CNRS,UMR 6251, F-35042 Rennes, France. RP Klippenstein, SJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sjk@anl.gov; ian.sims@univ-rennes1.fr RI Sabbah, Hassan/E-6202-2013; Sims, Ian/F-8989-2014; Biennier, Ludovic/O-1618-2014; OI Sims, Ian/0000-0001-7870-1585; Klippenstein, Stephen/0000-0001-6297-9187 FU French Programmes Physique Stellaire; Physique et Chimie du Milieu Interstellaire; Indo-French Centre for the Promotion of Advanced Research [3405-3]; Region de Bretagne, Rennes Metropole; European Union [MEXC-CT-2004-006734]; NASA [NNH09AK241]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX This work is supported by the French Programmes Physique Stellaire and Physique et Chimie du Milieu Interstellaire. L.B and B.R.R. would like to acknowledge support from the Indo-French Centre for the Promotion of Advanced Research (Project number 3405-3). I.R.S. thanks the Region de Bretagne, Rennes Metropole, and the European Union (Marie Curie Chair, Contract MEXC-CT-2004-006734) for support. The Rennes team thanks Daniel Travers for the implementation of the data acquisition and electronics and Jonathan Courbe for the mechanical design. The theoretical work (S.J.K.) has been supported by NASA's Planetary Atmospheres Program through Grant NNH09AK241 and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. NR 25 TC 53 Z9 53 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 7 PY 2010 VL 1 IS 19 BP 2962 EP 2967 DI 10.1021/jz101033t PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 661KR UT WOS:000282727700038 ER PT J AU Zaug, JM Bastea, S Crowhurst, JC Armstrong, MR Teslich, NE AF Zaug, Joseph M. Bastea, Sorin Crowhurst, Jonathan C. Armstrong, Michael R. Teslich, Nick E., Jr. TI Photoacoustically Measured Speeds of Sound of Liquid HBO2: Semi-Empirical Modeling of Boron-Containing Explosives SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID EQUATION-OF-STATE; HIGH-TEMPERATURE; COMBUSTION; IGNITION; WATER; SCATTERING; PRESSURE AB Elucidation of geodynamic geochemical and shock-induced processes is often limited by challenges to determine accurately molecular fluid equations of state (EOS). High-pressure liquid-state reactions of carbon species underlie physicochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. Here we introduce a versatile photoacoustic technique developed to measure precise adiabatic speeds of sound of high-pressure molecular fluids and fluid mixtures. metaboric acid, HBO2 speeds of sound are measured up to 0.5 GPa along the 277 degrees C isotherm. A polarized Exponential-6 interatomic potential form, parametrized using our data, enables EOS determinations and corresponding semiemprical evaluations of > 2000 degrees C thermodynamics states including energy release from bororganic formulations. Our thermochemical model predictions of boronated hydrocarbon shock Hugoniot states differ from experiment by < 3%. C1 [Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Armstrong, Michael R.; Teslich, Nick E., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zaug, JM (reprint author), Lawrence Livermore Natl Lab, POB 808,L-350, Livermore, CA 94551 USA. EM zaug1@llnl.gov RI Armstrong, Michael/I-9454-2012 FU DOE Campaign-II; Joint DoD/DOE; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX J.M.Z. is grateful to L. E. Fried, J. M. Brown, and E. H. Abramson for stimulating and thoughtful discussions. We thank E. H. Abramson for providing single crystals of SrB4O7:Sm2+ and Kwei-Yu Chu for creating the PALS animation sequence. This research was supported by the DOE Campaign-II and Joint DoD/DOE Munitions Technology Programs and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 34 TC 1 Z9 1 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 7 PY 2010 VL 1 IS 19 BP 2982 EP 2988 DI 10.1021/jz1006725 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 661KR UT WOS:000282727700042 ER PT J AU Bagriantsev, SN Minor, DL AF Bagriantsev, Sviatoslav N. Minor, Daniel L., Jr. TI Small Molecule Ion Channel Match Making: A Natural Fit for New ASIC Ligands SO NEURON LA English DT Editorial Material ID PAIN; DISEASES C1 [Bagriantsev, Sviatoslav N.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu OI Bagriantsev, Sviatoslav/0000-0002-6661-3403 FU NHLBI NIH HHS [R01 HL080050]; NIDCD NIH HHS [R01 DC007664]; NINDS NIH HHS [R21 NS065448] NR 15 TC 3 Z9 4 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 J9 NEURON JI Neuron PD OCT 7 PY 2010 VL 68 IS 1 BP 1 EP 3 DI 10.1016/j.neuron.2010.09.038 PG 3 WC Neurosciences SC Neurosciences & Neurology GA 674AA UT WOS:000283704200001 PM 20920784 ER PT J AU Zhang, GP Hupalo, M Li, M Wang, CZ Evans, JW Tringides, MC Ho, KM AF Zhang, G. P. Hupalo, M. Li, M. Wang, C. Z. Evans, J. W. Tringides, M. C. Ho, K. M. TI Stochastic coarsening model for Pb islands on a Si(111) surface SO PHYSICAL REVIEW B LA English DT Article ID METAL-SURFACES; DRIVEN AB The coarsening behavior of individual Pb islands on Si(111) surface has been studied by scanning tunneling microscopy. Traditionally island decay follows a smooth power-law dependence on the time until disappearance. In Pb/Si(111), some unstable islands are inactive for a long time but once their decay is triggered they suffer a "sudden death." Four-layer islands are found to decay rapidly, increasing the area covered by seven-layer islands. All islands, decaying or otherwise, are accompanied by island size fluctuation which involve a large number of perimeter atoms moving collectively as a "quantized" unit. A stochastic model is developed to elucidate the mechanism behind this coarsening behavior of Pb islands. The distinct evolution of the islands with different heights is correctly predicted, and the size fluctuations of islands and the sudden death behavior observed in island coarsening are also recovered. The key ingredients are incorporation of accurate non-Gaussian statistics of the size fluctuations and also accounting for size changes in large quantized bursts. C1 [Zhang, G. P.; Hupalo, M.; Li, M.; Wang, C. Z.; Evans, J. W.; Tringides, M. C.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Dept Phys & Astron, Ames, IA 50011 USA. [Zhang, G. P.; Li, M.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Zhang, GP (reprint author), Iowa State Univ, Ames Lab, US DOE, Dept Phys & Astron, Ames, IA 50011 USA. RI Zhang, Guiping/F-4390-2011; 石, 源/D-5929-2012; ruc, phy/E-4170-2012 OI Zhang, Guiping/0000-0001-8697-5711; FU U.S. Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; NSF of China [10704088]; NSF [CHE-0809472] FX Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Super-computing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. M. L. was supported by NSF of China under Grant No. 10704088. J.E. was supported by NSF under Grant No. CHE-0809472. NR 12 TC 5 Z9 5 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 7 PY 2010 VL 82 IS 16 AR 165414 DI 10.1103/PhysRevB.82.165414 PG 5 WC Physics, Condensed Matter SC Physics GA 660JH UT WOS:000282636200008 ER PT J AU Fotiades, N Cizewski, JA Krucken, R Clark, RM Fallon, P Lee, IY Macchiavelli, AO Becker, JA Younes, W AF Fotiades, N. Cizewski, J. A. Kruecken, R. Clark, R. M. Fallon, P. Lee, I. Y. Macchiavelli, A. O. Becker, J. A. Younes, W. TI High-spin states in Nb-96,Nb-97 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; ISOTOPES AB The high-spin level structures of the Nb-96,Nb-97 isotopes have been studied. The isotopes were produced in the fission of the compound systems formed in two heavy-ion-induced reactions, Mg-24 (134.5 MeV) + Yb-173 and Na-23 (129 MeV) + Yb-176. Gamma-ray spectroscopy was accomplished with the Gammasphere array. High-spin states are observed for the first time in both isotopes with excitation energies up to 5.2 and 6.6 MeV in Nb-96,Nb-97, respectively. The coupling of the odd proton occupying the g(9/2) orbital to the yrast states in the subshell closure nucleus of Zr-96 can account for the first excited states of Nb-97. A comparison with the first excited states in Zr-95 is also attempted. The addition of a neutron hole in Nb-96 results in a much more fragmented level scheme. C1 [Fotiades, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cizewski, J. A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Kruecken, R.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Becker, J. A.; Younes, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fotiades, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fotia@lanl.gov RI Kruecken, Reiner/A-1640-2013; OI Kruecken, Reiner/0000-0002-2755-8042; Fotiadis, Nikolaos/0000-0003-1410-3871 FU US Department of Energy [DE-AC52-06NA25396, DE-AC52-07NA27344, AC03-76SF00098]; National Science Foundation (Rutgers) FX This work was supported in part by the US Department of Energy under Contract Nos. DE-AC52-06NA25396 (LANL), DE-AC52-07NA27344 (LLNL), and AC03-76SF00098 (LBNL), and by the National Science Foundation (Rutgers). NR 31 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT 7 PY 2010 VL 82 IS 4 AR 044306 DI 10.1103/PhysRevC.82.044306 PG 7 WC Physics, Nuclear SC Physics GA 660JM UT WOS:000282637000002 ER PT J AU Hoteling, N Chiara, CJ Broda, R Walters, WB Janssens, RVF Hjorth-Jensen, M Carpenter, MP Fornal, B Hecht, AA Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Wang, X Wohr, A Wrzesinski, J Zhu, S AF Hoteling, N. Chiara, C. J. Broda, R. Walters, W. B. Janssens, R. V. F. Hjorth-Jensen, M. Carpenter, M. P. Fornal, B. Hecht, A. A. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Wang, X. Woehr, A. Wrzesinski, J. Zhu, S. TI Structure of Fe-60,Fe-62 and the onset of vg(9/2) occupancy SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; MULTINUCLEON TRANSFER; BETA-DECAY; NEUTRON; FE-60; DEFORMATION; ISOTOPES; STATES AB Level structures in Fe-60,62(34,36) and adjacent nuclei were studied with Gammasphere using the reaction of a 430-MeV Ni-64 beam on a 55-mg/cm(2) thick U-238 target. High-spin level schemes were deduced from singly- and doubly-gated prompt coincidence events. Levels populated in the beta decay of Mn-60,Mn-62 isomers were studied in singly-and doubly-gated delayed coincidences. Spin and parity assignments were deduced from angular correlations of gamma rays observed in both nuclei, leading to firm positive-parity yrast assignments up through 8(+) in Fe-62. The observed levels for Fe-60 up to similar to 3.5 MeV compare well with pf shell-model calculations available in the literature. Calculations performed in a limited pfg basis exhibit reasonable agreement for the 2(+), 4(+), and 6(+) levels in Fe-62. However, theoretical descriptions that include the newly identified negative-parity levels in Fe-62 require a much larger basis, necessarily including g(9/2) neutrons, as well as improved interactions leading to negative-parity levels. C1 [Hoteling, N.; Chiara, C. J.; Walters, W. B.; Hecht, A. A.; Woehr, A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hoteling, N.; Chiara, C. J.; Janssens, R. V. F.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Woehr, A.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Wang, X.; Woehr, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Chiara, CJ (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94-ER40834, DE-AC02-06CH11357]; Polish Ministry of Science [1P03B05929, NN202103333] FX This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-94-ER40834 and Contract No. DE-AC02-06CH11357, and by the Polish Ministry of Science under Contract Nos. 1P03B05929 and NN202103333. NR 32 TC 22 Z9 22 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT 7 PY 2010 VL 82 IS 4 AR 044305 DI 10.1103/PhysRevC.82.044305 PG 10 WC Physics, Nuclear SC Physics GA 660JM UT WOS:000282637000001 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K.-H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K.-H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J.-H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H.-G. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAYS; SPECTRUM AB We report on the results of the search for extremely-high energy neutrinos with energies above 10(7) GeV obtained with the partially (similar to 30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E-2 phi(ve+v mu+v tau) similar or equal to 1.4 x 10(-6) GeV cm(-2) sec(-1) sr(-1) for neutrinos in the energy range from 3 x 10(7) to 3 x 10(9) GeV. C1 [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Buitink, S.; Goldschmidt, A.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown BB11000, Barbados. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J.-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H.-G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DC 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DC 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K.-H.; Gurtner, M.; Helbing, K.; Kampert, K.-H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hoshina, K (reprint author), Chiba Univ, Dept Phys, Chiba 2638522, Japan. EM mase@hepburn.s.chiba-u.ac.jp; syoshida@hepburn.s.chiba-u.ac.jp RI Wiebusch, Christopher/G-6490-2012; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; OI Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Perez de los Heros, Carlos/0000-0002-2084-5866; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU U.S. National Science Foundation - Office of Polar; U.S. National Science Foundation - Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation; Ministry of Education of Brazil; Japan-US Bilateral Joint Projects in the Japan Society for the Promotion of Science FX We acknowledge the support from the following agencies: U.S. National Science Foundation - Office of Polar Programs, U.S. National Science Foundation - Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. A. Kappes and A. Gross acknowledge support by the EU Marie Curie OIF Program. J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. This analysis work has been particularly supported by the Japan-US Bilateral Joint Projects in the Japan Society for the Promotion of Science. NR 39 TC 27 Z9 27 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT 7 PY 2010 VL 82 IS 7 AR 072003 DI 10.1103/PhysRevD.82.072003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660JR UT WOS:000282637900001 ER PT J AU Carena, M Draper, P Shah, NR Wagner, CEM AF Carena, Marcela Draper, Patrick Shah, Nausheen R. Wagner, Carlos E. M. TI Determining the structure of supersymmetry breaking with renormalization group invariants SO PHYSICAL REVIEW D LA English DT Article ID LARGE TAN-BETA; ELECTROWEAK SYMMETRY-BREAKING; SPARTICLE MASS-SPECTRUM; GRAND UNIFIED THEORIES; LIGHTEST HIGGS BOSON; STANDARD MODEL; SO(10) UNIFICATION; DARK-MATTER; SOFT TERMS; MSSM AB If collider experiments demonstrate that the minimal supersymmetric standard model (MSSM) is a good description of nature at the weak scale, the experimental priority will be the precise determination of superpartner masses. These masses are governed by the weak scale values of the soft supersymmetry-breaking (SUSY-breaking) parameters, which are in turn highly dependent on the SUSY-breaking scheme present at high scales. It is therefore of great interest to find patterns in the soft parameters that can distinguish different high-scale SUSY-breaking structures, identify the scale at which the breaking is communicated to the visible sector, and determine the soft breaking parameters at that scale. In this work, we demonstrate that 1-loop renormalization group invariant quantities present in the MSSM may be used to answer each of these questions. We apply our method first to generic flavor-blind models of SUSY breaking, and then we examine in detail the subset of these models described by general gauge mediation and the constrained MSSM with nonuniversal Higgs masses. As renormalization group invariance generally does not hold beyond leading-log order, we investigate the magnitude and direction of the 2-loop corrections. We find that with superpartners at the TeV scale, these 2-loop effects are either negligible, or they are of the order of optimistic experimental uncertainties and have definite signs, which allows them to be easily accounted for in the overall uncertainty. C1 [Carena, Marcela; Shah, Nausheen R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, Marcela; Draper, Patrick; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy (DOE) [DE-AC02-07CH11359, DE-FGO2-96-ER40956]; U.S. DOE, Division of High-Energy Physics [DE-AC02-06CH11357] FX The Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy (DOE). Work at Argonne National Laboratory is supported in part by the U.S. DOE, Division of High-Energy Physics, Contract No. DE-AC02-06CH11357. This work was supported in part by the U.S. DOE under Task TeV of Contract No. DE-FGO2-96-ER40956. M. C., N. S., and C. W. would like to thank the Aspen Center for Physics, where part of this work has been done. NR 105 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 7 PY 2010 VL 82 IS 7 AR 075005 DI 10.1103/PhysRevD.82.075005 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660JR UT WOS:000282637900008 ER PT J AU Zhang, H Li, CS Cao, QH Li, Z AF Zhang, Hao Li, Chong Sheng Cao, Qing-Hong Li, Zhao TI Dark matter model with non-Abelian gauge symmetry SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAY ELECTRONS; ENERGY-SPECTRUM; E(+/-) EXCESSES; WMAP DATA; POSITRON; PAMELA; SIGNALS; REGION; FERMI AB We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored. C1 [Zhang, Hao; Li, Chong Sheng; Li, Zhao] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Zhang, Hao; Li, Chong Sheng; Li, Zhao] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cao, Qing-Hong] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Li, Zhao] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Zhang, H (reprint author), Peking Univ, Dept Phys, Beijing 100871, Peoples R China. EM haozhang.pku@pku.edu.cn; csli@pku.edu.cn; caoq@hep.anl.gov; zhaoli@pa.msu.edu RI ZHANG, Hao/G-6430-2015 FU National Natural Science Foundation of China [10721063, 10975004, 10635030]; Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) [03921-07-137]; U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-90ER40560]; U.S. National Science Foundation [PHY-0855561] FX This work is supported in part by the National Natural Science Foundation of China, under Grants No. 10721063, No. 10975004, and No. 10635030. Q. H. C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant No. 03921-07-137, and by the U.S. Department of Energy under Grants No. DE-AC02-06CH11357 and No. DE-FG02-90ER40560. Z. L. is supported in part by the U.S. National Science Foundation under Grant No. PHY-0855561. NR 86 TC 20 Z9 20 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 7 PY 2010 VL 82 IS 7 AR 075003 DI 10.1103/PhysRevD.82.075003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 660JR UT WOS:000282637900006 ER PT J AU Bardarson, JH Brouwer, PW Moore, JE AF Bardarson, J. H. Brouwer, P. W. Moore, J. E. TI Aharonov-Bohm Oscillations in Disordered Topological Insulator Nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE DIRAC CONE; NANOTUBES; SURFACE AB A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi(2)Se(3) nanowires [Peng et al., Nature Mater. 9, 225 ( 2010)] where conductance was found to oscillate as a function of magnetic flux phi through the wire, with a period of one flux quantum phi(0) = h/e and maximum conductance at zero flux. This seemingly agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic theory, which in the simplest form predicts a period of phi(0) but a minimum at zero flux due to a nontrivial Berry phase in topological insulators. We show how h/e and h/2e flux oscillations of the conductance depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss further experiments that could verify the theory. C1 [Bardarson, J. H.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bardarson, J. H.; Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Brouwer, P. W.] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany. [Brouwer, P. W.] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany. RP Bardarson, JH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Brouwer, Piet/O-4828-2016; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU U.S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX We acknowledge conversations with J. Cayssol, D. Carpentier, E. Orignac, and A. Vishwanath. This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (J.H.B. and J.E.M.) and the Alexander von Humboldt Foundation (P.W.B.). NR 24 TC 75 Z9 75 U1 2 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2010 VL 105 IS 15 AR 156803 DI 10.1103/PhysRevLett.105.156803 PG 4 WC Physics, Multidisciplinary SC Physics GA 660KR UT WOS:000282641900006 PM 21230927 ER PT J AU Adolphi, NL Huber, DL Bryant, HC Monson, TC Fegan, DL Lim, J Trujillo, JE Tessier, TE Lovato, DM Butler, KS Provencio, PP Hathaway, HJ Majetich, SA Larson, RS Flynn, ER AF Adolphi, Natalie L. Huber, Dale L. Bryant, Howard C. Monson, Todd C. Fegan, Danielle L. Lim, JitKang Trujillo, Jason E. Tessier, Trace E. Lovato, Debbie M. Butler, Kimberly S. Provencio, Paula P. Hathaway, Helen J. Majetich, Sara A. Larson, Richard S. Flynn, Edward R. TI Characterization of single-core magnetite nanoparticles for magnetic imaging by SQUID relaxometry SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID INTERACTING PARTICLES; MAGNETORELAXOMETRY; SYSTEM; RELAXATION; MECHANISMS; BINDING AB Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Neel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multicore particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity. C1 [Adolphi, Natalie L.] Univ New Mexico, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Huber, Dale L.; Monson, Todd C.; Provencio, Paula P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bryant, Howard C.; Fegan, Danielle L.; Tessier, Trace E.; Flynn, Edward R.] Senior Sci LLC, Albuquerque, NM 87111 USA. [Lim, JitKang; Majetich, Sara A.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Trujillo, Jason E.; Lovato, Debbie M.; Butler, Kimberly S.; Larson, Richard S.] Univ New Mexico, Dept Pathol, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Hathaway, Helen J.] Univ New Mexico, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA. RP Adolphi, NL (reprint author), Univ New Mexico, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. EM NAdolphi@salud.unm.edu RI Lim, Jit Kang/G-3771-2010; Majetich, Sara/B-1022-2015; Huber, Dale/A-6006-2008; OI Majetich, Sara/0000-0003-0848-9317; Huber, Dale/0000-0001-6872-8469; Monson, Todd/0000-0002-9782-7084; Lim, JitKang/0000-0002-3205-1617 FU National Institutes of Health [RAI066765B, RCA096154B, RCA105742B, RCA123785B]; Howard Hughes Medical Institute; National Science Foundation [CBET-0853963]; US Department of Energy [DE-AC04-94AL85000] FX NLA acknowledges helpful discussions with Kevin R Minard and John Dixon. Senior Scientific, LLC, acknowledges the support of the National Institutes of Health under grants RAI066765B, RCA096154B, RCA105742B and RCA123785B. JEJ acknowledges the support of the Howard Hughes Medical Institute Medical Research Training Fellowship program. SAM and JKL acknowledge support from the National Science Foundation under grant CBET-0853963. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under contract no DE-AC04-94AL85000. NLA has equity interests in ABQMR and nanoMR; ABQMR and nanoMR did not sponsor this work. NR 36 TC 31 Z9 31 U1 2 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD OCT 7 PY 2010 VL 55 IS 19 BP 5985 EP 6003 DI 10.1088/0031-9155/55/19/023 PG 19 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 653CP UT WOS:000282061800023 PM 20858918 ER PT J AU Hsiung, LL AF Hsiung, Luke L. TI Deformation twinning in a creep-deformed nanolaminate structure SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB The underlying mechanism of deformation twinning occurring in a TiAl-(gamma)/Ti(3)Al-(alpha(2)) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both gamma and alpha(2) thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed. C1 Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Hsiung, LL (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, L-352,POB 808, Livermore, CA 94551 USA. EM hsiungl@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author gratefully acknowledges Dr C T Liu for supplying TiAl/Ti3Al laminate material. NR 10 TC 2 Z9 2 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 6 PY 2010 VL 22 IS 39 AR 395003 DI 10.1088/0953-8984/22/39/395003 PG 5 WC Physics, Condensed Matter SC Physics GA 651WQ UT WOS:000281958500005 PM 21403216 ER PT J AU Moreira, PAFP Devanathan, R Weber, WJ AF Moreira, Pedro A. F. P. Devanathan, Ram Weber, William J. TI Atomistic simulation of track formation by energetic recoils in zircon SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SWIFT HEAVY-IONS; DAMAGE AB We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm(-1) and a radius of 3 nm. At a low dE/dx of 2.55 keV nm(-1), the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization. C1 [Devanathan, Ram] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Moreira, Pedro A. F. P.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, MS K2-01, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Weber, William/A-4177-2008; Devanathan, Ram/C-7247-2008; Moreira, Pedro /D-1750-2013; Moreira, Pedro/E-1086-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Weber, William/0000-0002-9017-7365; Devanathan, Ram/0000-0001-8125-4237; Moreira, Pedro /0000-0003-0975-6034; Moreira, Pedro/0000-0003-2843-775X; FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences (BES), US Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), Brazil FX This work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences (BES), US Department of Energy (DOE) under Contract No. DE-AC05-76RL01830. The computations were performed using resources of the EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PAFPM acknowledges CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), Brazil, for a fellowship. NR 28 TC 17 Z9 17 U1 4 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 6 PY 2010 VL 22 IS 39 AR 395008 DI 10.1088/0953-8984/22/39/395008 PG 9 WC Physics, Condensed Matter SC Physics GA 651WQ UT WOS:000281958500010 PM 21403221 ER PT J AU Kanan, MW Yano, J Surendranath, Y Dinca, M Yachandra, VK Nocera, DG AF Kanan, Matthew W. Yano, Junko Surendranath, Yogesh Dinca, Mircea Yachandra, Vittal K. Nocera, Daniel G. TI Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN-EVOLVING CATALYST; HYDROGEN-PRODUCTION; SOLAR-ENERGY; CRYSTAL-STRUCTURE; EVOLUTION; CUBANE; CORE; ELECTROCATALYSIS; SUBSTITUTION; PHOTOANODES AB A water oxidation catalyst generated via electrodeposition from aqueous solutions containing phosphate and Co(2+) (Co-Pi) has been studied by in situ X-ray absorption spectroscopy. Spectra were obtained for Co-Pi films of two different thicknesses at an applied potential supporting water oxidation catalysis and at open circuit. Extended X-ray absorption fine structure (EXAFS) spectra indicate the presence of bis-oxo/hydroxo-bridged Co subunits incorporated into higher nuclearity clusters in Co-Pi. The average cluster nuclearity is greater in a relatively thick film (similar to 40-50 nmol Co ions/cm(2)) deposited at 1.25 V vs NHE than in an extremely thin film (similar to 3 nmol Co ions/cm(2)) deposited at 1.1 V. X-ray absorption near edge structure (XANES) spectra and electrochemical data support a Co valency greater than 3 for both Co-Pi samples when catalyzing water oxidation at 1.25 V. Upon switching to open circuit, Co-Pi undergoes a continuous reduction due to residual water oxidation catalysis, as indicated by the negative shift of the edge energy. The rate of reduction depends on the average cluster size. On the basis of structural parameters extracted from fits to the EXAFS data of Co-Pi with two different thicknesses and comparisons with EXAFS spectra of Co oxide compounds, a model is proposed wherein the Co oxo/hydroxo clusters of Co-Pi are composed of edge-sharing CoO(6) octahedra, the structural motif found in cobaltates. Whereas cobaltates contain extended planes of CoO(6) octahedra, the Co-Pi clusters are of molecular dimensions. C1 [Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kanan, Matthew W.; Surendranath, Yogesh; Dinca, Mircea; Nocera, Daniel G.] MIT, Dept Chem, Cambridge, MA 02139 USA. RP Yachandra, VK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM vkyachandra@lbl.gov; nocera@mit.edu RI Dinca, Mircea/C-1345-2008; OI Dinca, Mircea/0000-0002-1262-1264 FU Chesonis Foundation; NIH; National Science Foundation; Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) [DE-AC02-05CH11231]; Helios Solar Energy Research Center [DE-AC02-05CH11231]; NIH, the National Center for Research Resources; DOE Office of Biological and Environmental Research FX We thank the Chesonis Foundation for generous financial support. M.W.K. was supported by a Ruth L. Kirschstein NIH Postdoctoral Fellowship. Y.S is supported by a National Science Foundation predoctoral fellowship. J.Y. and V.K.Y were supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under Contract DE-AC02-05CH11231. Part of this work was funded by the Helios Solar Energy Research Center supported by OBES, DOE, under Contract DE-AC02-05CH11231. Synchrotron facilities were provided by the Stanford Synchrotron Radiation Laboratory (SSRL) operated by DOE OBES. The SSRL Biomedical Technology program is supported by NIH, the National Center for Research Resources, and the DOE Office of Biological and Environmental Research. We thank Dr. Yulia Pushkar for help with collection of preliminary data. NR 48 TC 296 Z9 297 U1 29 U2 318 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 6 PY 2010 VL 132 IS 39 BP 13692 EP 13701 DI 10.1021/ja1023767 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 663DV UT WOS:000282864100040 PM 20839862 ER PT J AU Bradley, JA Yang, P Batista, ER Boland, KS Burns, CJ Clark, DL Conradson, SD Kozimor, SA Martin, RL Seidler, GT Scott, BL Shuh, DK Tyliszczak, T Wilkerson, MP Wolfsberg, LE AF Bradley, Joseph A. Yang, Ping Batista, Enrique R. Boland, Kevin S. Burns, Carol J. Clark, David L. Conradson, Steven D. Kozimor, Stosh A. Martin, Richard L. Seidler, Gerald T. Scott, Brian L. Shuh, David K. Tyliszczak, Tolek Wilkerson, Marianne P. Wolfsberg, Laura E. TI Experimental and Theoretical Comparison of the O K-Edge Nonresonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL-COMPLEXES; VARIABLE PHOTON ENERGY; ADVANCED LIGHT-SOURCE; ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; METALLOCENE DICHLORIDES; SUPEROXIDE-DISMUTASE; EXCITED-STATES; HIGH-PRESSURE AB Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T-d symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies. C1 [Bradley, Joseph A.; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Scott, Brian L.; Wilkerson, Marianne P.; Wolfsberg, Laura E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bradley, Joseph A.; Seidler, Gerald T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Shuh, David K.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Shuh, David K.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yang, Ping] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stosh@lanl.gov RI Clark, David/A-9729-2011; Yang, Ping/E-5355-2011; Seidler, Gerald/I-6974-2012; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Yang, Ping/0000-0003-4726-2860 FU Los Alamos by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE; Glenn T. Seaborg Institute; Frederick Reines postdoctoral fellowship; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC52-06NA25396]; NSERC; University of Washington; Simon Fraser University; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences FX We are grateful to Professor Jennifer C. Green for helpful discussions and to insights provided by several anonymous reviewers. This work was supported at Los Alamos by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE, under the Heavy Element Chemistry Program at LANL, the Glenn T. Seaborg Institute postdoctoral fellowship (P.Y.), Glenn T. Seaborg Institute graduate fellowship (J.B.), and Frederick Reines postdoctoral fellowship (S.A.K.). The work at the ALS Beamline 11.0.2 and LBNL were (D.K.S., T.T.) was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Work at the University of Washington (GTS) was supported by the U.S. Department of Energy Basic Energy Sciences. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), the Advanced Light Source (ALS), and the Advanced Photon Source (APS), all of which are national user facilities supported by the U.S. Department of Energy, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy under Contract DE-AC52-06NA25396. PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, Simon Fraser University and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 76 TC 25 Z9 25 U1 0 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 6 PY 2010 VL 132 IS 39 BP 13914 EP 13921 DI 10.1021/ja1040978 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 663DV UT WOS:000282864100062 PM 20839792 ER PT J AU Kalluri, UC Keller, M AF Kalluri, Udaya C. Keller, Martin TI Bioenergy research: a new paradigm in multidisciplinary research SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Review DE bioenergy; ethanol; plant; microbe; integrated science ID CELLULOSE-BINDING DOMAINS; CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; QUANTITATIVE PROTEOMIC ANALYSIS; CARBOHYDRATE-ACTIVE ENZYMES; MICROBIAL COMMUNITIES; CELL-WALLS; ARABIDOPSIS-THALIANA; CELLOBIOHYDROLASE-I; BIOFUEL PRODUCTION; SINGLE CELLS AB The field of biology is becoming increasingly interdisciplinary and cross-cutting. This changing research atmosphere is creating the way for a new kind of enquiry that while building upon the traditional research establishment is providing a new multidisciplinary framework to more effectively address scientific grand challenges. Using the US Department of Energy sponsored BioEnergy Science Center as an example, we highlight how impactful breakthroughs in biofuel science can be achieved within a large cross-disciplinary team environment. Such transformational insights are key to furthering our understanding and in generating models, theories and processes that can be used to overcome recalcitrance of biomass for sustainable biofuel production. Multidisciplinary approaches have an increasingly greater role to play in meeting rising demands for food, fibre, energy, clean environment and good health. Discoveries achieved by diverse minds and cross-applications of tools and analytical approaches have tremendous potential to fill existing knowledge gaps, clear roadblocks and facilitate translation of basic sciences discoveries as solutions towards addressing some of the most pressing global issues. C1 [Keller, Martin] Oak Ridge Natl Lab, Biol & Environm Sci Directorate, Oak Ridge, TN 37831 USA. [Kalluri, Udaya C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Kalluri, Udaya C.; Keller, Martin] Oak Ridge Natl Lab, BESC BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Keller, M (reprint author), Oak Ridge Natl Lab, Biol & Environm Sci Directorate, Oak Ridge, TN 37831 USA. EM kellerm@ornl.gov RI Keller, Martin/C-4416-2012; KALLURI, UDAYA/A-6218-2011; OI KALLURI, UDAYA/0000-0002-5963-8370 FU Office of Biological and Environmental Research in the DOE Office of Science; UT-Battelle, LLC [DE-AC05-00OR22725] FX The authors would like to thank Brian Davison and Meghan Drake for their suggestions and assistance in preparing this manuscript. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the US Department of Energy. NR 90 TC 11 Z9 12 U1 0 U2 17 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD OCT 6 PY 2010 VL 7 IS 51 BP 1391 EP 1401 DI 10.1098/rsif.2009.0564 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 643FM UT WOS:000281281000001 PM 20542958 ER PT J AU Bock, N Holmstrom, E Peery, TB Lizarraga, R Chisolm, ED De Lorenzi-Venneri, G Wallace, DC AF Bock, Nicolas Holmstroem, Erik Peery, Travis B. Lizarraga, Raquel Chisolm, Eric D. De Lorenzi-Venneri, Giulia Wallace, Duane C. TI Liquid-state properties from first-principles density functional theory calculations: Static properties SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; ELASTIC-CONSTANTS; ALKALI-METALS; ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; MONATOMIC LIQUIDS; DEGREES C; SODIUM; TEMPERATURES; PRESSURE AB In order to test the vibration-transit (V-T) theory of liquid dynamics, ab initio density functional theory (DFT) calculations of thermodynamic properties of Na and Cu are performed and compared with experimental data. The calculations are done for the crystal at T=0 and T(m), and for the liquid at T(m). The key theoretical quantities for crystal and liquid are the structural potential and the dynamical matrix, both as functions of volume. The theoretical equations are presented, as well as details of the DFT computations. The properties compared with experiment are the equilibrium volume, the isothermal bulk modulus, the internal energy, and the entropy. The agreement of theory with experiment is uniformly good. Our primary conclusion is that the application of DFT to V-T theory is feasible and the resulting liquid calculations achieve the same level of accuracy as does ab initio lattice dynamics for crystals. Moreover, given the well-established reliability of DFT, the present results provide a significant confirmation of V-T theory itself. C1 [Bock, Nicolas; Holmstroem, Erik; Peery, Travis B.; Lizarraga, Raquel; Chisolm, Eric D.; De Lorenzi-Venneri, Giulia; Wallace, Duane C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Holmstroem, Erik; Lizarraga, Raquel] Univ Austral Chile, Fac Ciencias, Inst Fis, Valdivia, Chile. RP Bock, N (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM nbock@lanl.gov RI Holmstrom, Erik/A-5308-2009 OI Holmstrom, Erik/0000-0002-1198-3861 FU U. S. Department of Energy [DE-AC52-06NA25396]; FONDECYT [11070115, 11080259]; DID (UACH) [SR2008-0, S-2008-51] FX We would like to thank the Ten Bar Cafe for its impeccable service and highly stimulating beverages. N.B. would like to thank Matt Challacombe for helpful discussions. This work was supported by the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. E.H. and R.L. also acknowledge support from FONDECYT under Projects No. 11070115 and 11080259, DID (UACH) Grants No. SR2008-0 and No. S-2008-51. NR 37 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 14 AR 144101 DI 10.1103/PhysRevB.82.144101 PG 9 WC Physics, Condensed Matter SC Physics GA 659LS UT WOS:000282568600001 ER PT J AU McCauley, AP Zhao, RK Reid, MTH Rodriguez, AW Zhou, JF Rosa, FSS Joannopoulos, JD Dalvit, DAR Soukoulis, CM Johnson, SG AF McCauley, Alexander P. Zhao, Rongkuo Reid, M. T. Homer Rodriguez, Alejandro W. Zhou, Jiangfeng Rosa, F. S. S. Joannopoulos, John D. Dalvit, D. A. R. Soukoulis, Costas M. Johnson, Steven G. TI Microstructure effects for Casimir forces in chiral metamaterials SO PHYSICAL REVIEW B LA English DT Article AB We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10(-4) of the total force, making them virtually undetectable in experiments. C1 [McCauley, Alexander P.; Reid, M. T. Homer; Rodriguez, Alejandro W.; Joannopoulos, John D.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Zhao, Rongkuo; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, Rongkuo; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhou, Jiangfeng] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Rosa, F. S. S.; Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Johnson, Steven G.] MIT, Dept Math, Cambridge, MA 02139 USA. RP McCauley, AP (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. RI Zhao, Rongkuo/B-5731-2008; Zhou, Jiangfeng/D-4292-2009; Soukoulis, Costas/A-5295-2008 OI Zhou, Jiangfeng/0000-0002-6958-3342; FU Army Research Office through the ISN [W911NF-07-D-0004]; DARPA [N66001-09-1-2070-DOD]; DOE/NNSA [DE-AC52-06NA25396] FX We thank P. Bermel and S. J. Rahi for useful discussions. This work was supported by the Army Research Office through the ISN under Contract No. W911NF-07-D-0004 and by DARPA under Contract No. N66001-09-1-2070-DOD and under DOE/NNSA through Contract No. DE-AC52-06NA25396. NR 22 TC 21 Z9 21 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 16 AR 165108 DI 10.1103/PhysRevB.82.165108 PG 5 WC Physics, Condensed Matter SC Physics GA 659MB UT WOS:000282569500001 ER PT J AU Paudyal, D Mudryk, Y Pecharsky, VK Gschneidner, KA AF Paudyal, Durga Mudryk, Ya. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Competing crystal and magnetic structures in Gd5Ge4 SO PHYSICAL REVIEW B LA English DT Article ID SYSTEMS AB From formation energy calculated as a function of shear displacement of neighboring slabs in Gd5Ge4, we confirm stability of Pu5Rh4-type and Tm5Si2Sb2-type structures in addition to the well known orthorhombic O(I) and O(II) structures. The former two structures are more stable when some of the Ge sites are substituted by Ga or Sb, respectively. The sizes as well as the valence electron concentrations of the substituting atoms play important role in the preferred replacements of the Ge atoms in the Pu5Rh4-type and Tm5Si2Sb2-type structures. The calculations of band structure and exchange interactions reveal that the O(I), Pu5Rh4-type, and Tm5Si2Sb2-type structures have ferromagnetic ground states, but the ground state of the O(II)-type structure is antiferromagnetic. C1 [Paudyal, Durga; Mudryk, Ya.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Paudyal, D (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U.S. Department of Energy under Contract No. DE-AC02-07CH11358. This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. NR 30 TC 5 Z9 5 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 14 AR 144413 DI 10.1103/PhysRevB.82.144413 PG 6 WC Physics, Condensed Matter SC Physics GA 659LS UT WOS:000282568600003 ER PT J AU Stojanovic, VM Vukmirovic, N Bruder, C AF Stojanovic, Vladimir M. Vukmirovic, Nenad Bruder, C. TI Polaronic signatures and spectral properties of graphene antidot lattices SO PHYSICAL REVIEW B LA English DT Article ID WALL CARBON NANOTUBES; SU-SCHRIEFFER-HEEGER; ELECTRONIC-STRUCTURE; SYSTEMS; ENERGY AB We explore the consequences of electron-phonon (e-ph) coupling in graphene antidot lattices (graphene nanomeshes), i.e., triangular superlattices of circular holes (antidots) in a graphene sheet. They display a direct band gap whose magnitude can be controlled via the antidot size and density. The relevant coupling mechanism in these semiconducting counterparts of graphene is the modulation of the nearest-neighbor electronic hopping integrals due to lattice distortions (Peierls-type e-ph coupling). We compute the full momentum dependence of the e-ph vertex functions for a number of representative antidot lattices. Based on the latter, we discuss the origins of the previously found large conduction-band quasiparticle spectral weight due to e-ph coupling. In addition, we study the nonzero-momentum quasiparticle properties with the aid of the self-consistent Born approximation, yielding results that can be compared with future angle-resolved photoemission spectroscopy measurements. Our principal finding is a significant e-ph mass enhancement, an indication of polaronic behavior. This can be ascribed to the peculiar momentum dependence of the e-ph interaction in these narrow-band systems, which favors small phonon momentum scattering. We also discuss implications of our study for recently fabricated large-period graphene antidot lattices. C1 [Stojanovic, Vladimir M.; Bruder, C.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Vukmirovic, Nenad] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Stojanovic, VM (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. EM vladimir.stojanovic@unibas.ch RI Vukmirovic, Nenad/D-9489-2011; Stojanovic, Vladimir/I-8928-2014; Bruder, Christoph/E-1424-2017 OI Vukmirovic, Nenad/0000-0002-4101-1713; Stojanovic, Vladimir/0000-0001-7452-1114; Bruder, Christoph/0000-0002-4170-3293 FU Swiss NSF; NCCR Nanoscience FX The authors are grateful to M. Vanevic for useful comments. V.M.S. acknowledges interesting discussions with J. C. Egues, D. C. Glattli, and B. Trauzettel. This work was financially supported by the Swiss NSF and the NCCR Nanoscience. NR 80 TC 20 Z9 20 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 16 AR 165410 DI 10.1103/PhysRevB.82.165410 PG 12 WC Physics, Condensed Matter SC Physics GA 659MB UT WOS:000282569500009 ER PT J AU Terentjevs, A Catellani, A Prendergast, D Cicero, G AF Terentjevs, A. Catellani, A. Prendergast, D. Cicero, G. TI Importance of on-site corrections to the electronic and structural properties of InN in crystalline solid, nonpolar surface, and nanowire forms SO PHYSICAL REVIEW B LA English DT Article ID FUNDAMENTAL-BAND GAP; III-V NITRIDES; 1ST-PRINCIPLES CALCULATIONS; INDIUM NITRIDE; WURTZITE INN; SYSTEMS AB In this work, we employ first-principle calculations to predict the structural and electronic properties of InN nanowires comparing the results obtained at the local-density approximation (LDA) and at the LDA+U level. Our study suggests that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the indium d states and the nitrogen p states in order to recover the correct energy level symmetry and ordering at the Gamma point of the Brillouin zone and obtain a reliable description of InN band structure. We apply the methodology to predict the electronic properties of InN nanowires and find that LDA and LDA+U results are in qualitative agreement both in terms of confinement and surface-passivant effects. C1 [Terentjevs, A.] Politecn Torino, Dept Phys, Turin, Italy. [Catellani, A.] CNR IMEM, Parma, Italy. [Prendergast, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cicero, G.] Politecn Torino, Chem & Mat Sci Engn Dept, Turin, Italy. RP Terentjevs, A (reprint author), Politecn Torino, Dept Phys, Turin, Italy. RI Terentjev, Aleksandr/G-5945-2016; OI Terentjev, Aleksandr/0000-0003-1817-4925; Catellani, Alessandra/0000-0001-5197-7186; Cicero, Giancarlo/0000-0002-2920-9882 FU ERANET initiative (EU); CNR; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-05CH11231] FX This work is a part of the NANOLICHT project supported by the ERANET initiative "NanoSci-ERA: NanoScience in the European Research Area" (within the EU FP6). Computer time was provided by CINECA through the CNR-INFM "Iniziativa Calcolo Parallelo." One of us (G.C.) acknowledges the "Programma Short-Term Mobility 2008" promoted by CNR for financial support. Part of this work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Molecular Foundry. NR 29 TC 15 Z9 15 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 16 AR 165307 DI 10.1103/PhysRevB.82.165307 PG 6 WC Physics, Condensed Matter SC Physics GA 659MB UT WOS:000282569500004 ER PT J AU Wilson, SD Yamani, Z Rotundu, CR Freelon, B Valdivia, PN Bourret-Courchesne, E Lynn, JW Chi, SX Hong, T Birgeneau, RJ AF Wilson, Stephen D. Yamani, Z. Rotundu, C. R. Freelon, B. Valdivia, P. N. Bourret-Courchesne, E. Lynn, J. W. Chi, Songxue Hong, Tao Birgeneau, R. J. TI Antiferromagnetic critical fluctuations in BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID SPIN DYNAMICS; SUPERCONDUCTIVITY; LA2CUO4; WAVES AB Magnetic correlations near the magnetostructural phase transition in the bilayer iron-pnictide parent compound, BaFe2As2, are measured. In close proximity to the antiferromagnetic phase transition in BaFe2As2, a crossover to three-dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about T-N. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe2As2 and their evolution near the anticipated crossover to three-dimensional critical behavior and long-range order are discussed. C1 [Wilson, Stephen D.; Rotundu, C. R.; Bourret-Courchesne, E.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wilson, Stephen D.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Yamani, Z.] CNR, Canadian Neutron Beam Ctr, Chalk River Labs, Chalk River, ON K0J 1P0, Canada. [Freelon, B.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Valdivia, P. N.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA. [Lynn, J. W.; Chi, Songxue] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chi, Songxue] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Hong, Tao] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Wilson, SD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM stephen.wilson@bc.edu RI Hong, Tao/F-8166-2010; yamani, zahra/B-7892-2012; Chi, Songxue/A-6713-2013; OI Hong, Tao/0000-0002-0161-8588; Chi, Songxue/0000-0002-3851-9153; Rotundu, Costel/0000-0002-1571-8352 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences, U.S. DOE [DE-AC03-76SF008]; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Office of Basic Energy Sciences, U.S. DOE under Contract No. DE-AC03-76SF008. Work at ORNL was partially supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. DOE. NR 25 TC 5 Z9 5 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 14 AR 144502 DI 10.1103/PhysRevB.82.144502 PG 6 WC Physics, Condensed Matter SC Physics GA 659LS UT WOS:000282568600006 ER PT J AU Wong, FJ Chopdekar, RV Suzuki, Y AF Wong, Franklin J. Chopdekar, Rajesh V. Suzuki, Yuri TI Disorder and localization at the LaAlO3/SrTiO3 heterointerface SO PHYSICAL REVIEW B LA English DT Article ID WEAK-LOCALIZATION; FIELD; HETEROSTRUCTURES; INTERFACES; MOBILITY; OXIDES; FILMS AB Through low-temperature electrical transport and magnetotransport, we investigate the role of disorder on the metallicity at the (001) LaAlO3/SrTiO3 heterointerface. We observe a trend of reduced mobility in higher sheet carrier concentration samples, and therefore speculate that disorder and carriers are introduced concomitantly in purely polar instability-induced metallic interfaces. Magnetotransport distinctly reveals stronger spin-orbit interaction in higher carrier concentration samples. The competition between spin-orbit scattering and inelastic scattering is explored through a temperature dependence study of the magnetotransport. C1 [Wong, Franklin J.; Chopdekar, Rajesh V.; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wong, Franklin J.; Suzuki, Yuri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wong, FJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU Army Research Office [MURI W911NF-08-1-0317]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Michael Flatte for valuable discussions and Kin Man Yu for Rutherford backscattering spectrometry measurements. This research is supported by the Army Research Office under Grant No. MURI W911NF-08-1-0317. The x-ray reflectivity measurements were performed on a facility instrument supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 21 Z9 22 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 6 PY 2010 VL 82 IS 16 AR 165413 DI 10.1103/PhysRevB.82.165413 PG 5 WC Physics, Condensed Matter SC Physics GA 659MB UT WOS:000282569500012 ER PT J AU Frauenfelder, H AF Frauenfelder, Hans TI Myoglobin as an example of protein complexity SO CHEMICAL PHYSICS LA English DT Article DE Protein dynamics; Myoglobin; alpha-Fluctuations; beta-Fluctuations; Ligand binding ID 3-DIMENSIONAL FOURIER SYNTHESIS; X-RAY CRYSTALLOGRAPHY; LIGAND MIGRATION; STRUCTURAL DYNAMICS; CONFORMATIONAL DYNAMICS; ENERGY LANDSCAPES; STOCHASTIC-THEORY; SINGLE-MOLECULE; TIME; BINDING AB Fifty years ago, some proteins such as myoglobin appeared to be simple. As they were studied more deeply with sophisticated tools and over extended ranges of time, temperature, pressure, and in different environments, the simplicity turned into complexity and even today no protein is fully understood. Protein assemblies, cells, and extended biological systems (the brain!) display even more complexity. Here I sketch some of the steps that led to the present, still incomplete, understanding of the physics of a "simple" protein, myoglobin. The number of papers concerning myoglobin is vast. The choice made here is therefore exceedingly biased but I hope that it gives some insight into the present picture. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, T6, Los Alamos, NM 87545 USA. EM frauenfelder@lanl.edu FU Department of Energy [DE-AC5206NA25396] FX The work was supported by Department of Energy Contract DE-AC5206NA25396. I enjoyed collaboration and discussions with Joel Berendzen, Guo Chen, Paul Fenimore, Ben McMahon, Jan Swenson, and Robert Young. NR 54 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD OCT 5 PY 2010 VL 375 IS 2-3 BP 612 EP 615 DI 10.1016/j.chemphys.2010.07.022 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 659VH UT WOS:000282594600065 ER PT J AU Parton, WJ Hanson, PJ Swanston, C Torn, M Trumbore, SE Riley, W Kelly, R AF Parton, William J. Hanson, Paul J. Swanston, Chris Torn, Margaret Trumbore, Susan E. Riley, William Kelly, Robin TI ForCent model development and testing using the Enriched Background Isotope Study experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID SOIL ORGANIC-MATTER; LITTER DECOMPOSITION RATES; GROSS PRIMARY PRODUCTION; FINE-ROOT; LEAF-LITTER; ECOSYSTEM PROCESSES; CONSTANT FRACTION; LIGNIN CONTROL; N2O EMISSIONS; WOODY-TISSUE AB The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool (14)C signature (Delta (14)C) data from the Enriched Background Isotope Study (14)C experiment (1999-2006) shows that the model correctly simulates the temporal dynamics of the (14)C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass Delta (14)C data, and with soil respiration Delta (14)C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study (14)C experimental treatments on soil respiration Delta (14)C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer. C1 [Parton, William J.; Kelly, Robin] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Hanson, Paul J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Swanston, Chris] US Forest Serv, No Res Stn, Houghton, MI 49931 USA. [Torn, Margaret; Riley, William] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Trumbore, Susan E.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92697 USA. RP Parton, WJ (reprint author), Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. EM billp@nrel.colostate.edu RI Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015; Hanson, Paul J./D-8069-2011; Trumbore, Susan/B-1948-2013 OI Riley, William/0000-0002-4615-2304; Hanson, Paul J./0000-0001-7293-3561; FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX Funding for the Enriched Background Isotope Study project was provided by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under contract DE-AC02-05CH11231, as a part of the Terrestrial Carbon Processes (TCP) Program. NR 52 TC 28 Z9 29 U1 1 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD OCT 5 PY 2010 VL 115 AR G04001 DI 10.1029/2009JG001193 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 661YE UT WOS:000282768500002 ER PT J AU Dziarmaga, J Rams, MM AF Dziarmaga, Jacek Rams, Marek M. TI Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of a z > 1 dynamical exponent SO NEW JOURNAL OF PHYSICS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; SYMMETRY-BREAKING; COSMOLOGICAL EXPERIMENTS; DEFECT FORMATION; STRING FORMATION; VORTEX FORMATION; LIQUID-CRYSTALS; SUPERFLUID; QUENCH; MECHANISM AB We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z = 2. Just like in the case z = 1 considered by Dziarmaga and Rams (2010 New J. Phys. 12 055007), when a critical front propagates much faster than the maximal group velocity of quasiparticles v(q), then the transition is effectively homogeneous: the density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for the case z = 1, the inhomogeneous transition becomes adiabatic not below vq but at a lower threshold velocity (v) over cap, proportional to the inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold (v) over cap is nonzero despite the vanishing minimal group velocity of low-energy quasiparticles. In the adiabatic regime below (v) over cap, the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain. C1 [Dziarmaga, Jacek; Rams, Marek M.] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. [Dziarmaga, Jacek; Rams, Marek M.] Jagiellonian Univ, Ctr Complex Syst Res, PL-30059 Krakow, Poland. [Rams, Marek M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Rams, MM (reprint author), Jagiellonian Univ, Inst Phys, Reymonta 4, PL-30059 Krakow, Poland. EM marek.rams@uj.edu.pl RI Rams, Marek/E-1598-2016 OI Rams, Marek/0000-0002-1235-7758 FU Polish Ministry of Science and Education [N202 079135, N202 174335]; US Department of Energy FX We thank Wojciech Zurek for discussions. The work of JD and MMR was supported in part by the Polish Ministry of Science and Education research projects N202 079135 and N202 174335, respectively. MMR acknowledges partial support of the US Department of Energy through the LANL/LDRD Program. NR 72 TC 12 Z9 12 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 5 PY 2010 VL 12 AR 103002 DI 10.1088/1367-2630/12/10/103002 PG 19 WC Physics, Multidisciplinary SC Physics GA 687GK UT WOS:000284766800002 ER PT J AU Ritz, CS Kim-Lee, HJ Detert, DM Kelly, MM Flack, FS Savage, DE Cai, Z Evans, PG Turner, KT Lagally, MG AF Ritz, C. S. Kim-Lee, H-J Detert, D. M. Kelly, M. M. Flack, F. S. Savage, D. E. Cai, Z. Evans, P. G. Turner, K. T. Lagally, M. G. TI Ordering of nanostressors on free-standing silicon nanomembranes and nanoribbons SO NEW JOURNAL OF PHYSICS LA English DT Article ID STRAINED-SILICON; ON-INSULATOR; FILMS; MEMBRANES; NANOSTRUCTURES; SUPERLATTICES; FABRICATION; RELAXATION; NANOTUBES; TRANSPORT AB Epitaxial growth of self-assembled quantum dots (QDs) on single-crystal nanomembranes yields organized arrays of QDs via a growth mode mediated by QD-induced strains in the membrane. A crucial aspect of this effect arises because epitaxial growth on thin Si sheets and nanostructures derived from them can occur simultaneously on two surfaces separated only by the 10-nm-scale thickness of the membrane. A QD on one surface of a free-standing membrane causes the nucleation of QDs in specific positions on the opposite surface. Control experiments using molecular beam epitaxy to deposit QDs on a single surface do not yield long-range order. Through-membrane elastic interactions consistent with predictions from finite-element-based mechanics models are observed using synchrotron x-ray microdiffraction. The role of crystallographic anisotropy is evident in finite-element predictions of the strains that bias the nucleation events. The scaling of the dot spacing with membrane thickness is consistent with the spacing of nucleation sites predicted using the mechanical model. C1 [Ritz, C. S.; Kim-Lee, H-J; Detert, D. M.; Kelly, M. M.; Flack, F. S.; Savage, D. E.; Evans, P. G.; Turner, K. T.; Lagally, M. G.] Univ Wisconsin, Madison, WI 53706 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL USA. RP Lagally, MG (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lagally@engr.wisc.edu RI Evans, Paul/A-9260-2009 OI Evans, Paul/0000-0003-0421-6792 FU US Department of Energy, Office of Basic Energy Sciences [DE-FG02-03ER46028, DE-FG02-04ER46147]; US Air Force Office of Scientific Research [FA9950-06-1-0472, FA9550-08-1-0337]; US National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center [DMR-0520527]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank George Celler of SOITEC for providing SOI materials. MGL acknowledges support from the US Department of Energy, Office of Basic Energy Sciences (grant number DE-FG02-03ER46028), by the US Air Force Office of Scientific Research (grant number FA9950-06-1-0472) and by the US National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center (grant number DMR-0520527). KTT acknowledges support from the US Air Force Office of Scientific Research (grant number FA9550-08-1-0337). PGE acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, through contract number DE-FG02-04ER46147. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 41 TC 11 Z9 11 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 5 PY 2010 VL 12 AR 103011 DI 10.1088/1367-2630/12/10/103011 PG 12 WC Physics, Multidisciplinary SC Physics GA 687GK UT WOS:000284766800011 ER PT J AU Akrap, A Angst, M Khalifah, P Mandrus, D Sales, BC Forro, L AF Akrap, Ana Angst, Manuel Khalifah, Peter Mandrus, David Sales, Brian C. Forro, Laszlo TI Electrical transport in charge-ordered Fe2OBO3: Resistive switching and pressure effects SO PHYSICAL REVIEW B LA English DT Article ID DRIVEN PHASE-TRANSITION; DENSITY-WAVE; MANGANITES; SOLIDS AB The pressure-temperature-electric field phase diagram of Fe2OBO3 is studied under ambient and high pressure using resistivity and thermoelectric power measurements. The onset of the incommensurate charge order at T-CO=340 K does not depend on pressure up to at least 2 GPa. The temperature of the transition to the commensurate charge order is increased by similar to 10 K/GPa. High pressure stabilizes the commensurate phase. We find evidence for resistive switching in the incommensurate phase, which may be linked to the dynamics of the charge-order domain boundaries. C1 [Akrap, Ana; Forro, Laszlo] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. [Akrap, Ana] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Angst, Manuel; Mandrus, David; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Angst, Manuel] Forschungszentrum Julich GmbH, Inst Festkorperforsch, JCNS, D-52425 Julich, Germany. [Angst, Manuel] Forschungszentrum Julich GmbH, JARA FIT, D-52425 Julich, Germany. [Khalifah, Peter] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Mandrus, David] Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA. [Mandrus, David] Univ Tennessee, Div Technol, Knoxville, TN 37996 USA. RP Akrap, A (reprint author), Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. EM ana.akrap@gmail.com RI Angst, Manuel/I-4380-2012; Akrap, Ana/G-1409-2013; Mandrus, David/H-3090-2014 OI Angst, Manuel/0000-0001-8892-7019; Akrap, Ana/0000-0003-4493-5273; FU Swiss National Science Foundation; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Helmholtz-University; NCCR FX The authors acknowledge financial support from the Swiss National Science Foundation and its NCCR MaNEP. Part of research was sponsored by Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. M.A. acknowledges the Initiative and Networking Fund of the Helmholtz Association of German Research Centers for financial support of the Helmholtz-University Young Investigator Group Complex Ordering Phenomena in Multifunctional Oxides. NR 39 TC 5 Z9 5 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 5 PY 2010 VL 82 IS 16 AR 165106 DI 10.1103/PhysRevB.82.165106 PG 7 WC Physics, Condensed Matter SC Physics GA 658RZ UT WOS:000282508400005 ER PT J AU Chan, R Gulacsi, M Ormeci, A Bishop, AR AF Chan, R. Gulacsi, M. Ormeci, A. Bishop, A. R. TI Pairing mechanism of iron pnictide superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SCHRIEFFER-WOLFF TRANSFORMATION; HIGH-TC SUPERCONDUCTIVITY; CU-O SUPERCONDUCTORS; MODEL; SUPEREXCHANGE; CHROMIUM AB By applying an exact unitary transformation to a two-band Hamiltonian which also includes the effects due to large pnictogen polarizabilities, we show that an attractive spin-mediated Hubbard term appears in the d(xz), d(yz) nearest-neighbor channel. This pairing mechanism implies a singlet superconducting order parameter in iron pnictides. C1 [Chan, R.] NICTA, Canberra Res Lab, Canberra, ACT 2612, Australia. [Gulacsi, M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Ormeci, A.] Max Planck Inst Chem Phys Stoffe, Dresden, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chan, R (reprint author), NICTA, Canberra Res Lab, Canberra, ACT 2612, Australia. RI Ormeci, Alim/F-1082-2012 OI Ormeci, Alim/0000-0001-5468-3378 NR 48 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 5 PY 2010 VL 82 IS 13 AR 132503 DI 10.1103/PhysRevB.82.132503 PG 4 WC Physics, Condensed Matter SC Physics GA 658RI UT WOS:000282506700001 ER PT J AU Li, J Zhang, S Bartell, J Nisoli, C Ke, X Lammert, PE Crespi, VH Schiffer, P AF Li, J. Zhang, S. Bartell, J. Nisoli, C. Ke, X. Lammert, Paul E. Crespi, Vincent H. Schiffer, P. TI Comparing frustrated and unfrustrated clusters of single-domain ferromagnetic islands SO PHYSICAL REVIEW B LA English DT Article ID ARTIFICIAL SPIN-ICE; CELLULAR-AUTOMATA AB We have studied the magnetic-moment configurations of different geometry clusters of single-domain nano-scale ferromagnetic islands. The clusters consisted of four islands arranged in geometries taken from the square lattice of artificial spin ice. The magnetic-moment configurations were imaged by magnetic force microscopy after effectively annealing through ac demagnetization. We then compared the results for cluster geometries with and without frustration of the magnetostatic interactions between the island moments. We found that nonfrustrated clusters achieve their lowest energy states more readily than do frustrated clusters. This behavior suggests the presence of a kinetic barrier associated with frustration of the magnetostatic interactions. C1 [Li, J.; Zhang, S.; Bartell, J.; Lammert, Paul E.; Crespi, Vincent H.; Schiffer, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Li, J.; Zhang, S.; Bartell, J.; Lammert, Paul E.; Crespi, Vincent H.; Schiffer, P.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Nisoli, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nisoli, C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Ke, X.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Schiffer, P (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. EM pes12@psu.edu RI Schiffer, Peter/F-3227-2011; Li, Jie/L-5091-2013; Li, Jie/D-9021-2014; Zhang, Sheng/M-9238-2014; OI Nisoli, Cristiano/0000-0003-0053-1023; Zhang, Sheng/0000-0002-9710-6738; Crespi, Vincent/0000-0003-3846-3193; Schiffer, Peter/0000-0002-6430-6549 FU Army Research Office; National Science Foundation [DMR-0820404]; National Nanotechnology Infrastructure Network FX We acknowledge financial support from the Army Research Office and the National Science Foundation MRSEC program (Grant No. DMR-0820404) and the National Nanotechnology Infrastructure Network. We are grateful to Chris Leighton and Mike Erickson for the film deposition. NR 26 TC 13 Z9 13 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 5 PY 2010 VL 82 IS 13 AR 134407 DI 10.1103/PhysRevB.82.134407 PG 5 WC Physics, Condensed Matter SC Physics GA 658RI UT WOS:000282506700013 ER PT J AU Reurings, F Rauch, C Tuomisto, F Jones, RE Yu, KM Walukiewicz, W Schaff, WJ AF Reurings, Floris Rauch, Christian Tuomisto, Filip Jones, Rebecca E. Yu, Kin M. Walukiewicz, Wladek Schaff, William J. TI Defect redistribution in postirradiation rapid-thermal-annealed InN SO PHYSICAL REVIEW B LA English DT Article ID FUNDAMENTAL-BAND GAP; ELECTRON-TRANSPORT; WURTZITE INN; VACANCIES AB We have applied positron annihilation to study point defects in 2 MeV (4)He(+)-irradiated and subsequently rapid-thermal-annealed (RTA) InN grown by molecular-beam epitaxy. The irradiation fluences ranged from 5 x 10(14) to 2 x 10(16) cm(-2). The irradiation primarily produces donor defects but the subjects of this work are the acceptor-type defects produced in lower concentrations: VIn, in addition to negative-ion-type defects. The heat treatment results in a redistribution of the irradiation-induced point defects. The In vacancies near the film-substrate interface appear restructured after the RTA process, possibly influenced by growth defects near the interface, while deeper in the InN layer, the defects produced in the irradiation are partially removed in the annealing. This could be responsible for the improved transport properties of the annealed C1 [Reurings, Floris; Rauch, Christian; Tuomisto, Filip] Aalto Univ, Dept Appl Phys, FI-00076 Aalto, Finland. [Jones, Rebecca E.; Yu, Kin M.; Walukiewicz, Wladek] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaff, William J.] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Reurings, F (reprint author), Aalto Univ, Dept Appl Phys, POB 11100, FI-00076 Aalto, Finland. EM floris.reurings@tkk.fi RI Yu, Kin Man/J-1399-2012; Tuomisto, Filip/B-8189-2008; Rauch, Christian /E-7308-2012 OI Yu, Kin Man/0000-0003-1350-9642; Tuomisto, Filip/0000-0002-6913-5654; Rauch, Christian /0000-0002-7383-6197 FU Academy of Finland; European Commission [PITN-GA-2008-213238] FX This research project was partially supported by the Academy of Finland, the MIDE programme, and the European Commission under the 7th Framework Programme through the Marie Curie Initial Training Network RAINBOW, Contract No. PITN-GA-2008-213238. NR 26 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 5 PY 2010 VL 82 IS 15 AR 153202 DI 10.1103/PhysRevB.82.153202 PG 4 WC Physics, Condensed Matter SC Physics GA 658RT UT WOS:000282507800002 ER PT J AU Bazavov, A Bernard, C DeTar, C Freeman, W Gottlieb, S Heller, UM Hetrick, JE Laiho, J Levkova, L Oktay, M Osborn, J Sugar, RL Toussaint, D Van de Water, RS AF Bazavov, A. Bernard, C. DeTar, C. Freeman, W. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Laiho, J. Levkova, L. Oktay, M. Osborn, J. Sugar, R. L. Toussaint, D. Van de Water, R. S. CA MILC Collaboration TI Scaling studies of QCD with the dynamical highly improved staggered quark action SO PHYSICAL REVIEW D LA English DT Article ID LATTICE GAUGE-THEORIES; MONTE-CARLO ALGORITHM; SPEEDING-UP; SIMULATIONS; FERMIONS; FLAVORS AB We study the lattice spacing dependence, or scaling, of physical quantities using the highly improved staggered quark (HISQ) action introduced by the HPQCD/UKQCD Collaboration, comparing our results to similar simulations with the asqtad fermion action. Results are based on calculations with lattice spacings approximately 0.15, 0.12, and 0.09 fm, using four flavors of dynamical HISQ quarks. The strange and charm quark masses are near their physical values, and the light-quark mass is set to 0.2 times the strange-quark mass. We look at the lattice spacing dependence of hadron masses, pseudoscalar meson decay constants, and the topological susceptibility. In addition to the commonly used determination of the lattice spacing through the static quark potential, we examine a determination proposed by the HPQCD Collaboration that uses the decay constant of a fictitious "unmixed s (s) over bar'' pseudoscalar meson. We find that the lattice artifacts in the HISQ simulations are much smaller than those in the asqtad simulations at the same lattice spacings and quark masses. C1 [Bazavov, A.; Freeman, W.; Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bernard, C.; Laiho, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [DeTar, C.; Levkova, L.; Oktay, M.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Gottlieb, Steven] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY 11961 USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Osborn, J.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Sugar, R. L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Van de Water, R. S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Bazavov, A (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. OI Hetrick, James/0000-0002-0740-2251; Heller, Urs M./0000-0002-2780-5584 FU U.S. Department of Energy [DE-FG02-91ER-40628, DE-FC02-06ER-41446, DE-FG02-91ER-40661, DE-FC02-06ER-41443, DE-FC06-01ER-41437, DE-FG02-04ER-41298, DE-FC02-06ER-41439]; NSF [PHY05-55235, PHY07-57333, PHY07-03296, PHY05-55243, PHY09-03571, PHY05-55234, PHY07-57035, OCI-0832315, PHY05-55397, PHY09-03536, PHY07-04171, CNS-0421498, CNS-0420873, CNS-0420985]; IBM Shared University Research (SUR); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy Grants No. DE-FG02-91ER-40628, No. DE-FC02-06ER-41446, No. DE-FG02-91ER-40661, No. DE-FC02-06ER-41443, No. DE-FC06-01ER-41437, No. DE-FG02-04ER-41298, No. DE-FC02-06ER-41439, and by the NSF under Grants No. PHY05-55235, No. PHY07-57333, No. PHY07-03296, No. PHY05-55243, No. PHY09-03571, No. PHY05-55234, No. PHY07-57035, No. OCI-0832315, No. PHY05-55397, No. PHY09-03536, and No. PHY07-04171. Computation for this work was done at the Texas Advanced Computing Center (TACC), the National Center for Supercomputing Resources (NCSA), and the National Institute for Computational Sciences (NICS) under NSF teragrid allocation TG-MCA93S002. Computer time at the National Center for Atmospheric Research was provided by NSF MRI Grant No. CNS-0421498, NSF MRI Grant No. CNS-0420873, NSF MRI Grant No. CNS-0420985, NSF sponsorship of the National Center for Atmospheric Research, the University of Colorado, and a grant from the IBM Shared University Research (SUR) program. Computer time was also provided by the National Energy Resources Supercomputing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D. T. would like to thank the University of Colorado for hospitality during part of this work. We thank Christine Davies, Alan Gray, Eduardo Follana, and Ron Horgan for discussions and help in developing and verifying our codes. NR 50 TC 59 Z9 59 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 5 PY 2010 VL 82 IS 7 AR 074501 DI 10.1103/PhysRevD.82.074501 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 658SG UT WOS:000282509100005 ER PT J AU Dunkle, JA Xiong, LQ Mankin, AS Cate, JHD AF Dunkle, Jack A. Xiong, Liqun Mankin, Alexander S. Cate, Jamie H. D. TI Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ribosome structure; erythromycin; telithromycin; clindamycin; chloramphenicol ID ARCHAEON HALOBACTERIUM-HALOBIUM; BINDING-SITE; RESISTANCE MUTATIONS; RNA GENE; MACROLIDE ANTIBIOTICS; CONFERRING RESISTANCE; BACTERIAL RIBOSOME; DOMAIN-II; 23S; SUBUNIT AB Differences between the structures of bacterial, archaeal, and eukaryotic ribosomes account for the selective action of antibiotics. Even minor variations in the structure of ribosomes of different bacterial species may lead to idiosyncratic, species-specific interactions of the drugs with their targets. Although crystallographic structures of antibiotics bound to the peptidyl transferase center or the exit tunnel of archaeal (Haloarcula marismortui) and bacterial (Deinococcus radiodurans) large ribosomal subunits have been reported, it remains unclear whether the interactions of antibiotics with these ribosomes accurately reflect those with the ribosomes of pathogenic bacteria. Here we report X-ray crystal structures of the Escherichia coli ribosome in complexes with clinically important antibiotics of four major classes, including the macrolide erythromycin, the ketolide telithromycin, the lincosamide clindamycin, and a phenicol, chloramphenicol, at resolutions of similar to 3.3 angstrom-3.4 angstrom. Binding modes of three of these antibiotics show important variations compared to the previously determined structures. Biochemical and structural evidence also indicates that interactions of telithromycin with the E. coli ribosome more closely resembles drug binding to ribosomes of bacterial pathogens. The present data further argue that the identity of nucleotides 752, 2609, and 2055 of 23S ribosomal RNA explain in part the spectrum and selectivity of antibiotic action. C1 [Dunkle, Jack A.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dunkle, Jack A.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xiong, Liqun; Mankin, Alexander S.] Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU National Institutes of Health [GM65050]; National Cancer Institute [CA92584]; National Science Foundation [MCB-0824739]; Department of Energy [DE-AC03 76SF00098] FX We thank K. Frankel, S. Classen, and G. Meigs for help with data measurement at the SIBYLS and 8.3.1 beamlines at the Advanced Light Source; P. Afonine and P. Adams for help with Phenix refinement; and S.-H. Kim, P. Adams, and J. Holton for useful crystallographic discussions. This work was funded by the National Institutes of Health Grant GM65050 (J. H. D. C.) and National Cancer Institute Grant CA92584 for the SIBYLS and 8.3.1 beamlines, by the National Science Foundation Grant MCB-0824739 (A. S. M.), and by the Department of Energy Grant DE-AC03 76SF00098 for the SIBYLS and 8.3.1 beamlines. NR 46 TC 168 Z9 172 U1 4 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 5 PY 2010 VL 107 IS 40 BP 17152 EP 17157 DI 10.1073/pnas.1007988107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 658TJ UT WOS:000282512000021 PM 20876128 ER PT J AU Erhart, P Aberg, D Sturm, BW Wu, KJ Lordi, V AF Erhart, Paul Aberg, Daniel Sturm, Benjamin W. Wu, Kuang-Jen Lordi, Vincenzo TI Theory-guided growth of aluminum antimonide single crystals with optimal properties for radiation detection SO APPLIED PHYSICS LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CDZNTE DETECTORS; BASIS-SET; RAY; METALS; CDTE AB First-principles calculations are used to study the thermodynamic and electronic properties of a large set of intrinsic and extrinsic defects in AlSb. The results are employed in conjunction with experimental impurity data to devise an improved growth process for mitigating the detrimental effects of native defects and impurities. A codoping strategy using Te is demonstrated that leads to a significant increase in both mobility and resistivity without introducing lifetime-limiting deep levels. The resulting material exhibits an order of magnitude improvement in mobility-lifetime product and allows spectroscopic detection of alpha particles with AlSb. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499307] C1 [Erhart, Paul; Aberg, Daniel; Sturm, Benjamin W.; Wu, Kuang-Jen; Lordi, Vincenzo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Erhart, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM erhart1@llnl.gov; lordi2@llnl.gov RI Erhart, Paul/G-6260-2011; OI Erhart, Paul/0000-0002-2516-6061; Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Nuclear Security Administration Office of Nonproliferation Research and Development [NA-22]; LLNL LDRD FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors acknowledge support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) and the LLNL LDRD Program. NR 20 TC 5 Z9 5 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 4 PY 2010 VL 97 IS 14 AR 142104 DI 10.1063/1.3499307 PG 3 WC Physics, Applied SC Physics GA 661XF UT WOS:000282765700036 ER PT J AU Konezny, SJ Rothberg, LJ Galvin, ME Smith, DL AF Konezny, S. J. Rothberg, L. J. Galvin, M. E. Smith, D. L. TI The effects of energetic disorder and polydispersity in conjugation length on the efficiency of polymer-based light-emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID DEVICE MODEL; TRANSPORT; FIELD AB Energetic disorder plays a critical role in governing the performance of organic light-emitting diodes (OLEDs). This is particularly true for polymer-based OLEDs in which disorder can be controlled but not eliminated. Contrary to the common assumption that energetic disorder has only a negative effect on performance, we provide experimental evidence of improved efficiency when the energetic disorder is increased upon deliberate addition of traps via an increase in polymer chain length distribution. We use numerical calculations to extract the mechanisms responsible for the observed improvements and discuss the general conditions under which traps can be introduced to increase device efficiency. (C) 2010 American Institute of Physics. [doi:10.1063/1.3497282] C1 [Konezny, S. J.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Rothberg, L. J.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. [Galvin, M. E.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. [Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Konezny, SJ (reprint author), Yale Univ, Dept Chem, POB 208107, New Haven, CT 06520 USA. EM steven.konezny@yale.edu; megalvind@gmail.com RI Konezny, Steven/G-3947-2013 FU NSF [DMR-0513416, DMR-0804960]; DoE Office of Basic Energy Sciences [08SPCE973]; Eastman Kodak FX L.R. would like to thank Eastman Kodak for partial support of this work and the NSF for Grant Nos. DMR-0513416 and DMR-0804960. Work at Los Alamos National Laboratory was supported by DoE Office of Basic Energy Sciences Work Proposal No. 08SPCE973. NR 17 TC 8 Z9 8 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 4 PY 2010 VL 97 IS 14 AR 143305 DI 10.1063/1.3497282 PG 3 WC Physics, Applied SC Physics GA 661XF UT WOS:000282765700075 ER PT J AU Levander, AX Yu, KM Novikov, SV Tseng, A Foxon, CT Dubon, OD Wu, J Walukiewicz, W AF Levander, A. X. Yu, K. M. Novikov, S. V. Tseng, A. Foxon, C. T. Dubon, O. D. Wu, J. Walukiewicz, W. TI GaN1-xBix: Extremely mismatched semiconductor alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; BAND-GAP; BISMUTH; SURFACTANT; DEPENDENCE; GROWTH; GANAS AB Through nonequilibrium low-temperature molecular beam epitaxy, we have grown GaN1-xBix alloys on sapphire substrates with x up to 0.11. The GaN1-xBix alloys are found to be amorphous with GaN crystals distributed throughout the film. A dramatic reduction in the optical band gap from 3.4 eV in GaN to as low as 1.2 eV for x similar to 0.11 was qualitatively explained by formation of a narrow band originating from anticrossing interaction between Bi localized states and the extended states of the GaN matrix. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499753] C1 [Levander, A. X.; Yu, K. M.; Tseng, A.; Dubon, O. D.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, A. X.; Tseng, A.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Levander, AX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Wu, Junqiao/G-7840-2011; Yu, Kin Man/J-1399-2012 OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CBET-0932905]; EPSRC [EP/I004203/1, EP/G046867/1, EP/G030634/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some of the characterization work (XRD and absorption spectroscopy) were supported by National Science Foundation under Grant No. CBET-0932905. The synthesis work at the University of Nottingham was undertaken with support from the EPSRC (Grant Nos. EP/I004203/1, EP/G046867/1, and EP/G030634/1). We thank R. Broesler for assistance in the absorption and photoreflectance measurements. A.L. acknowledges the Achievement Rewards for Collegiate Scientists Foundation for financial support. NR 26 TC 18 Z9 19 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 4 PY 2010 VL 97 IS 14 AR 141919 DI 10.1063/1.3499753 PG 3 WC Physics, Applied SC Physics GA 661XF UT WOS:000282765700032 ER PT J AU Murata, Y Starodub, E Kappes, BB Ciobanu, CV Bartelt, NC McCarty, KF Kodambaka, S AF Murata, Y. Starodub, E. Kappes, B. B. Ciobanu, C. V. Bartelt, N. C. McCarty, K. F. Kodambaka, S. TI Orientation-dependent work function of graphene on Pd(111) SO APPLIED PHYSICS LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON SEGREGATION; SURFACE; METALS AB Selected-area diffraction establishes that at least six different in-plane orientations of monolayer graphene on Pd(111) can form during graphene growth. From the intensities of low-energy electron microscopy images as a function of incident electron energy, we find that the work functions of the different rotational domains vary by up to 0.15 eV. Density functional theory calculations show that these significant variations result from orientation-dependent charge transfer from Pd to graphene. These findings suggest that graphene electronics will require precise control over the relative orientation of the graphene and metal contacts. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495784] C1 [Murata, Y.; Kodambaka, S.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Starodub, E.; Bartelt, N. C.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Kappes, B. B.; Ciobanu, C. V.] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. RP Kodambaka, S (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM kodambaka@ucla.edu RI Ciobanu, Cristian/B-3580-2009; McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012; Murata, Yuya/J-8768-2014 OI McCarty, Kevin/0000-0002-8601-079X; Murata, Yuya/0000-0002-3450-8801 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC04-94AL85000]; Northrop Grumman; UC; NSF [CMMI-0825592, CMMI-0846858] FX Work at Sandia was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No. DE-AC04-94AL85000. We acknowledge support from Northrop Grumman and UC Discovery grant, and from the NSF through Grants Nos. CMMI-0825592 and CMMI-0846858. NR 23 TC 61 Z9 61 U1 4 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 4 PY 2010 VL 97 IS 14 AR 143114 DI 10.1063/1.3495784 PG 3 WC Physics, Applied SC Physics GA 661XF UT WOS:000282765700066 ER PT J AU Lawrence, PK Kittichotirat, W McDermott, JE Bumgarner, RE AF Lawrence, Paulraj K. Kittichotirat, Weerayuth McDermott, Jason E. Bumgarner, Roger E. TI A three-way comparative genomic analysis of Mannheimia haemolytica isolates SO BMC GENOMICS LA English DT Article ID BOVINE RESPIRATORY-DISEASE; PASTEURELLA-HAEMOLYTICA; ESCHERICHIA-COLI; HAEMOPHILUS-INFLUENZAE; ENVIRONMENTAL SIGNALS; NUCLEOTIDE-SEQUENCE; OUTER-MEMBRANE; OVIS-ARIES; LEUKOTOXIN; VIRULENCE AB Background: Mannhemia haemolytica is a Gram-negative bacterium and the principal etiological agent associated with bovine respiratory disease complex. They transform from a benign commensal to a deadly pathogen, during stress such as viral infection and transportation to feedlots and cause acute pleuropneumonia commonly known as shipping fever. The U. S beef industry alone loses more than one billion dollars annually due to shipping fever. Despite its enormous economic importance there are no specific and accurate genetic markers, which will aid in understanding the pathogenesis and epidemiology of M. haemolytica at molecular level and assist in devising an effective control strategy. Description: During our comparative genomic sequence analysis of three Mannheimia haemolytica isolates, we identified a number of genes that are unique to each strain. These genes are "high value targets" for future studies that attempt to correlate the variable gene pool with phenotype. We also identified a number of high confidence single nucleotide polymorphisms (hcSNPs) spread throughout the genome and focused on non-synonymous SNPs in known virulence genes. These SNPs will be used to design new hcSNP arrays to study variation across strains, and will potentially aid in understanding gene regulation and the mode of action of various virulence factors. Conclusions: During our analysis we identified previously unknown possible type III secretion effector proteins, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated sequences (Cas). The presence of CRISPR regions is indicative of likely co-evolution with an associated phage. If proven functional, the presence of a type III secretion system in M. haemolytica will help us re-evaluate our approach to study hostpathogen interactions. We also identified various adhesins containing immuno-dominant domains, which may interfere with host-innate immunity and which could potentially serve as effective vaccine candidates. C1 [Lawrence, Paulraj K.] Washington State Univ, Dept Vet Microbiol & Pathol, Pullman, WA 99164 USA. [McDermott, Jason E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kittichotirat, Weerayuth; Bumgarner, Roger E.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. RP Lawrence, PK (reprint author), Washington State Univ, Dept Vet Microbiol & Pathol, Pullman, WA 99164 USA. EM pklawrence@vetmed.wsu.edu RI Bumgarner, Roger/K-3531-2015; OI Bumgarner, Roger/0000-0002-8168-6985; McDermott, Jason/0000-0003-2961-2572 FU Roche Applied Science FX We are thankful to Roche Applied Science for funding these sequencing projects. We also thank Drs. William Foreyt, Washington State University and Anthony Confer, Oklahoma State University for providing us with M. haemolytica serotype A2 isolates from domestic sheep and cattle, respectively. We thank Matt Parsek of the Department of Microbiology at the University of Washington for allowing us to use unpublished Pseudomonas aeruginosa sequence data generated in collaboration with him in order to estimate the errors in our sequence assemblies. NR 93 TC 8 Z9 8 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD OCT 4 PY 2010 VL 11 AR 535 DI 10.1186/1471-2164-11-535 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 666NT UT WOS:000283122800001 PM 20920355 ER PT J AU Antonangeli, D Farber, DL Said, AH Benedetti, LR Aracne, CM Landa, A Soderlind, P Klepeis, JE AF Antonangeli, Daniele Farber, Daniel L. Said, Ayman H. Benedetti, Laura Robin Aracne, Chantel M. Landa, Alexander Soederlind, Per Klepeis, John E. TI Shear softening in tantalum at megabar pressures SO PHYSICAL REVIEW B LA English DT Article ID ELASTIC-CONSTANTS; NIOBIUM; SOLIDS; GPA; NB; TA AB We have experimentally and theoretically investigated the aggregate elasticity of tantalum to pressures exceeding 1 Mbar. Our inelastic x-ray scattering measurements show a softening in the aggregate shear velocity in the 90-100 GPa range with typical pressure dependence above 120 GPa. Our calculations suggest that, in analogy with theoretical predictions on vanadium and niobium, this anomalous behavior is likely due to the intraband nesting of the Fermi surface that leads to an electronic topological transition and a concomitant transverse-acoustic-phonon mode softening. C1 [Antonangeli, Daniele; Farber, Daniel L.; Benedetti, Laura Robin; Aracne, Chantel M.; Landa, Alexander; Soederlind, Per; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Said, Ayman H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60192 USA. [Benedetti, Laura Robin] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Antonangeli, Daniele] Univ Paris Diderot, Univ Paris 06, Inst Phys Globe Paris, UMR CNRS 7590,Inst Mineral & Phys Milieux Condens, F-75005 Paris, France. RP Antonangeli, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Farber, Daniel/F-9237-2011 FU U.S. DOE [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-06CH11357]; NSF [DMR-0115852] FX This work was performed under the auspice of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CII11357. The construction of HERIX was partially supported by the NSF under Grant No. DMR-0115852. NR 41 TC 10 Z9 10 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 4 PY 2010 VL 82 IS 13 AR 132101 DI 10.1103/PhysRevB.82.132101 PG 4 WC Physics, Condensed Matter SC Physics GA 657OL UT WOS:000282421900001 ER PT J AU Debessai, M Hamlin, JJ Schilling, JS Rosenmann, D Hinks, DG Claus, H AF Debessai, M. Hamlin, J. J. Schilling, J. S. Rosenmann, D. Hinks, D. G. Claus, H. TI Superconductivity for CaC6 to 32 GPa hydrostatic pressure SO PHYSICAL REVIEW B LA English DT Article AB The dependence of the superconducting transition temperature Tc of CaC6 has been determined as a function of hydrostatic pressure in both helium-loaded gas and diamond- anvil cells to 0.6 GPa and 32 GPa, respectively. Following an initial increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 to 4 K at similar to 10 GPa. Between 18 and 32 GPa, no superconducting transition is observed above 2 K. C1 [Debessai, M.; Hamlin, J. J.; Schilling, J. S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Rosenmann, D.; Hinks, D. G.; Claus, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Debessai, M (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. FU National Science Foundation [DMR-0703896] FX Thanks are due to V. G. Tissen for supplying the NiMo-alloy gaskets used in the DAC experiments. The authors at Washington University gratefully acknowledge research support by the National Science Foundation through Grant No. DMR-0703896. NR 13 TC 7 Z9 7 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 4 PY 2010 VL 82 IS 13 AR 132502 DI 10.1103/PhysRevB.82.132502 PG 3 WC Physics, Condensed Matter SC Physics GA 657OL UT WOS:000282421900002 ER PT J AU Giebink, NC Wiederrecht, GP Wasielewski, MR Forrest, SR AF Giebink, N. C. Wiederrecht, G. P. Wasielewski, M. R. Forrest, S. R. TI Ideal diode equation for organic heterojunctions. I. Derivation and application SO PHYSICAL REVIEW B LA English DT Article ID INTERNAL ELECTRIC-FIELD; CHARGE-TRANSFER STATES; LIGHT-EMITTING-DIODES; OPEN-CIRCUIT VOLTAGES; SOLAR-CELLS; PHOTOVOLTAIC DEVICES; RECOMBINATION; PERFORMANCE; SEMICONDUCTORS; TRANSISTORS AB The current-voltage characteristics of organic heterojunctions (HJs) are often modeled using the generalized Shockley equation derived for inorganic diodes. However, since this description does not rigorously apply to organic semiconductor donor-acceptor (D-A) HJs, the extracted parameters lack a clear physical meaning. Here, we derive the current density-voltage (J-V) characteristic specifically for D-A HJ solar cells and show that it predicts the general dependence of dark current, open-circuit voltage (V(oc)), and short-circuit current (J(sc)) on temperature and light intensity as well as the maximum Voc for a given D-A material pair. We propose that trap-limited recombination due to disorder at the D-A interface leads to the introduction of two temperature-dependent ideality factors and show that this describes the dark current of copper phthalocyanine/C(60) and boron subphthalocyanine/C(60) cells at low temperature, where fits to the generalized Shockley equation break down. We identify the polaron pair recombination rate as a key factor that determines the J-V characteristics in the dark and under illumination and provide direct measurements of this process in our companion paper II [N. C. Giebink, B. E. Lassiter, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155306 (2010)]. These results provide a general physical framework for interpreting the J-V characteristics and understanding the efficiency of both small molecule and polymer organic, planar and bulk HJ solar cells. C1 [Giebink, N. C.; Forrest, S. R.] Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Forrest, S. R.] Univ Michigan, Dept Mat Sci, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Forrest, S. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.] Northwestern Univ, Argonne NW Solar Energy Res Ctr ANSER, Evanston, IL 60208 USA. [Wasielewski, M. R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Giebink, NC (reprint author), Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA. EM stevefor@umich.edu FU Department of Energy, Office of Basic Energy Sciences [DE-SC0000957]; Argonne-Northwestern Solar Energy Research (ANSER) Center [DE-SC0001059]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Air Force Office of Scientific Research; Global Photonic Energy Corp. FX This work was supported in part by Department of Energy, Office of Basic Energy Sciences as part of Energy Frontier Research Centers: the Center for Solar and Thermal Energy Conversion at the University of Michigan (Award No. DE-SC0000957, S.R.F.) and the Argonne-Northwestern Solar Energy Research (ANSER) Center (Contract No. DE-SC0001059, N.C.G., G.P.W., and M.R.W.). The Center for Nanoscale Materials is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357(N.C.G., G.P.W., and M.R.W.). We also thank B. E. Lassiter (supported by the Air Force Office of Scientific Research and Global Photonic Energy Corp.) for technical assistance. NR 48 TC 130 Z9 131 U1 4 U2 127 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 4 PY 2010 VL 82 IS 15 AR 155305 DI 10.1103/PhysRevB.82.155305 PG 12 WC Physics, Condensed Matter SC Physics GA 657OR UT WOS:000282422500003 ER PT J AU Giebink, NC Lassiter, BE Wiederrecht, GP Wasielewski, MR Forrest, SR AF Giebink, N. C. Lassiter, B. E. Wiederrecht, G. P. Wasielewski, M. R. Forrest, S. R. TI Ideal diode equation for organic heterojunctions. II. The role of polaron pair recombination SO PHYSICAL REVIEW B LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; MODULATED PHOTOCURRENT SPECTROSCOPY; FULLERENE DYADS; CHARGE-TRANSFER; SOLAR-CELLS; EMISSION; DEVICES AB In paper I [N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 82, 155305 (2010)], we proposed that current transport in a donor-acceptor heterojunction (HJ) depends on the balance of polaron pair (PP) dissociation and recombination. Here, we directly investigate these processes in archetype planar copper phthalocyanine (CuPc)/C(60) and boron subpthalocyanine chloride (SubPc)/C(60) HJs. Using intensity-modulated photocurrent spectroscopy (IMPS) along with emission from interfacial Pc/C(60) exciplex states, we monitor the geminate PP density at the HJ as a function of bias and illumination intensity. We find that the SubPc/C(60) PP density is limited by the dynamics of dissociation, where it increases from short circuit, and peaks at open circuit. In contrast, that of CuPc/C(60) is dominated by faster recombination kinetics and declines monotonically over the same voltage domain. We conclude that the PP recombination rate depends on electric field, and propose a simple expression that qualitatively explains the observed exciplex luminescence and IMPS behavior for these HJs. Our results provide insight into polaron pair recombination, which governs the current-voltage characteristics of organic heterojunctions in the dark and under illumination. C1 [Giebink, N. C.; Lassiter, B. E.; Forrest, S. R.] Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Lassiter, B. E.; Forrest, S. R.] Univ Michigan, Dept Mat Sci, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Lassiter, B. E.; Forrest, S. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Giebink, N. C.; Wiederrecht, G. P.; Wasielewski, M. R.] Northwestern Univ, Argonne NW Solar Energy Res Ctr ANSER, Evanston, IL 60208 USA. [Wasielewski, M. R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Giebink, NC (reprint author), Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA. EM stevefor@umich.edu FU Department of Energy, Office of Basic Energy Sciences [DE-SC0000957]; Argonne-Northwestern Solar Energy Research (ANSER) Center [DE-SC0001059]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Air Force Office of Scientific Research; Global Photonic Energy Corp.; Ministry of Knowledge and Economy of Korea [2009-advanced-B-015] FX This work was supported in part by Department of Energy, Office of Basic Energy Sciences as part of Energy Frontier Research Centers: The Center for Solar and Thermal Energy Conversion at the University of Michigan (Award No. DE-SC0000957, S.R.F.) and the Argonne-Northwestern Solar Energy Research (ANSER) Center (Contract No. DE-SC0001059, N.C.G., G.P.W., and M.R.W.). The Center for Nanoscale Materials is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 (N.C.G., G.P.W., and M.R.W.). N.C.G. also thanks the Air Force Office of Scientific Research and Global Photonic Energy Corp. for their support. B.E.L. acknowledges support from the collaborative R&D program with technology advanced country, [2009-advanced-B-015] by the Ministry of Knowledge and Economy of Korea. NR 29 TC 52 Z9 52 U1 2 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 4 PY 2010 VL 82 IS 15 AR 155306 DI 10.1103/PhysRevB.82.155306 PG 8 WC Physics, Condensed Matter SC Physics GA 657OR UT WOS:000282422500004 ER PT J AU Tandel, SK Chowdhury, P Lakshmi, S Tandel, US Ahmad, I Carpenter, MP Gros, S Janssens, RVF Khoo, TL Kondev, FG Greene, JP Hartley, DJ Lauritsen, T Lister, CJ Peterson, D Robinson, A Seweryniak, D Zhu, S AF Tandel, S. K. Chowdhury, P. Lakshmi, S. Tandel, U. S. Ahmad, I. Carpenter, M. P. Gros, S. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Greene, J. P. Hartley, D. J. Lauritsen, T. Lister, C. J. Peterson, D. Robinson, A. Seweryniak, D. Zhu, S. TI Rotational bands in odd-A Cm and Cf isotopes: Exploring the highest neutron orbitals SO PHYSICAL REVIEW C LA English DT Article ID OCTUPOLE CORRELATIONS; DEFORMATION; ACTINIDES; NO-254 AB Rotational bands have been identified up to high spins (approximate to 28 (h) over bar) in the odd-A nuclei Cm-247,Cm-249 and Cf-249 through inelastic excitation and transfer reactions around the Z = 100 region where stability results from shell effects. The [620]1/2 Nilsson configuration in Cm-249 is the highest-lying neutron orbital, from above the N = 164 spherical subshell gap, for which high-spin rotational behavior has been established. The data allow for an unambiguous experimental assignment of configurations to the observed bands, unusual for odd-A nuclei near Z = 100. The high-spin properties are described in terms of Woods-Saxon cranking calculations. C1 [Tandel, S. K.; Chowdhury, P.; Lakshmi, S.; Tandel, U. S.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Ahmad, I.; Carpenter, M. P.; Gros, S.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Greene, J. P.; Lauritsen, T.; Lister, C. J.; Peterson, D.; Robinson, A.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. RP Tandel, SK (reprint author), Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. EM sktandel@gmail.com RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015 OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94ER40848, DE-AC02-06CH11357]; National Science Foundation FX This research is supported by the US Department of Energy, Office of Nuclear Physics, under Grants No. DE-FG02-94ER40848 and No. DE-AC02-06CH11357, and the National Science Foundation. The authors are also indebted for the use of 248Cm and 249Cf to the Office of Basic Energy Sciences, US Department of Energy, through the transplutonium element production facilities at Oak Ridge National Laboratory. NR 27 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 4 PY 2010 VL 82 IS 4 AR 041301 DI 10.1103/PhysRevC.82.041301 PG 5 WC Physics, Nuclear SC Physics GA 657OV UT WOS:000282422900001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cole, BA Comets, MP Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cole, B. A. Comets, M. P. Connors, M. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. TI High p(T) direct photon and pi(0) triggered azimuthal jet correlations and measurement of k(T) for isolated direct photons in p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; DEEP-INELASTIC SCATTERING; FRAGMENTATION FUNCTIONS; TRANSVERSE-MOMENTUM; CROSS-SECTION; P(P)OVER-BAR COLLISIONS; ENERGY; QCD; PARTICLES; QUARK AB Correlations of charged hadrons of 1< p(T) < 10 Gev/c with high pT direct photons and pi(0) mesons in the range 5< p(T) < 15 Gev/c are used to study jet fragmentation in the gamma + jet and dijet channels, respectively. The magnitude of the partonic transverse momentum, k(T), is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Deaton, M. B.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Hester, T.; Kotchetkov, D.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] State Res Ctr Russian Federat, IHEP Protvino, Inst High Energy Phys, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221, Czech Republic. [Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Saito, N.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Armendariz, R.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Jouan, D.; Suire, C.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Inoue, Y.; Ishihara, M.; Kametani, S.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Reuter, M.; Sickles, A.; Taneja, S.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; FU Office of Nuclear Physics in the Office of Science of the Department of Energy FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cienti ' fico e Tecnolo ' gico and Fundac, a ~ o de Amparo a` Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a` l'E ' nergie Atomique, and Institut National de Physique Nucle ' aire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fu " r Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U. S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the USHungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 49 TC 19 Z9 19 U1 6 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT 4 PY 2010 VL 82 IS 7 AR 072001 DI 10.1103/PhysRevD.82.072001 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 657PE UT WOS:000282424000001 ER PT J AU Adamson, P Auty, DJ Ayres, DS Backhouse, C Barr, G Barrett, WL Bishai, M Blake, A Bock, GJ Boehnlein, DJ Bogert, D Bower, C Budd, S Cavanaugh, S Cherdack, D Childress, S Choudhary, BC Coelho, JAB Cobb, JH Coleman, SJ Corwin, L Cravens, JP Cronin-Hennessy, D Danko, IZ de Jong, JK Devenish, NE Diwan, MV Dorman, M Escobar, CO Evans, JJ Falk, E Feldman, GJ Frohne, MV Gallagher, HR Gomes, RA Goodman, MC Gouffon, P Gran, R Grant, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Himmel, A Holin, A Huang, X Hylen, J Ilic, J Irwin, GM Isvan, Z Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kopp, S Kordosky, M Krahn, Z Kreymer, A Lang, K Lefeuvre, G Ling, J Litchfield, PJ Loiacono, L Lucas, P Mann, WA Marshak, ML Mayer, N McGowan, AM Mehdiyev, R Meier, JR Messier, MD Michael, DG Miller, JL Miller, WH Mishra, SR Mitchell, J Moore, CD Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Oliver, WP Orchanian, M Paley, J Patterson, RB Patzak, T Pawloski, G Pearce, GF Pittam, R Plunkett, RK Ratchford, J Raufer, TM Rebel, B Rodrigues, PA Rosenfeld, C Rubin, HA Ryabov, VA Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Semenov, VK Shanahan, P Smart, W Sousa, A Strait, M Tagg, N Talaga, RL Thomas, J Thomson, MA Tinti, G Toner, R Tzanakos, G Urheim, J Vahle, P Viren, B Weber, A Webb, RC White, C Whitehead, L Wojcicki, SG Wright, DM Yang, T Zois, M Zwaska, R AF Adamson, P. Auty, D. J. Ayres, D. S. Backhouse, C. Barr, G. Barrett, W. L. Bishai, M. Blake, A. Bock, G. J. Boehnlein, D. J. Bogert, D. Bower, C. Budd, S. Cavanaugh, S. Cherdack, D. Childress, S. Choudhary, B. C. Coelho, J. A. B. Cobb, J. H. Coleman, S. J. Corwin, L. Cravens, J. P. Cronin-Hennessy, D. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Frohne, M. V. Gallagher, H. R. Gomes, R. A. Goodman, M. C. Gouffon, P. Gran, R. Grant, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Himmel, A. Holin, A. Huang, X. Hylen, J. Ilic, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. Kordosky, M. Krahn, Z. Kreymer, A. Lang, K. Lefeuvre, G. Ling, J. Litchfield, P. J. Loiacono, L. Lucas, P. Mann, W. A. Marshak, M. L. Mayer, N. McGowan, A. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Michael, D. G. Miller, J. L. Miller, W. H. Mishra, S. R. Mitchell, J. Moore, C. D. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Oliver, W. P. Orchanian, M. Paley, J. Patterson, R. B. Patzak, T. Pawloski, G. Pearce, G. F. Pittam, R. Plunkett, R. K. Ratchford, J. Raufer, T. M. Rebel, B. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Semenov, V. K. Shanahan, P. Smart, W. Sousa, A. Strait, M. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Tinti, G. Toner, R. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Weber, A. Webb, R. C. White, C. Whitehead, L. Wojcicki, S. G. Wright, D. M. Yang, T. Zois, M. Zwaska, R. CA MINOS Collaboration TI Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL; NEUTRINO AB We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector. C1 [Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Choudhary, B. C.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Moore, C. D.; Plunkett, R. K.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ayres, D. S.; Budd, S.; Goodman, M. C.; Huang, X.; McGowan, A. M.; Paley, J.; Sanchez, M. C.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Whitehead, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Michael, D. G.; Mualem, L.; Newman, H. B.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Mitchell, J.; Thomson, M. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Coelho, J. A. B.; Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Patzak, T.] APC Univ Paris 7 Denis Diderot, F-75205 Paris 13, France. [Gomes, R. A.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Cavanaugh, S.; Feldman, G. J.; Sanchez, M. C.; Sousa, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [de Jong, J. K.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Bower, C.; Corwin, L.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Sanchez, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Semenov, V. K.] Inst High Energy Phys, RU-140284 Protvino, Moscow Region, Russia. [Ryabov, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 119991, Russia. [Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Nichol, R. J.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Cronin-Hennessy, D.; Kasahara, S. M. S.; Krahn, Z.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Backhouse, C.; Barr, G.; Cobb, J. H.; de Jong, J. K.; Pittam, R.; Rodrigues, P. A.; Tinti, G.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Danko, I. Z.; Isvan, Z.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Grant, N.; Hartnell, J.; Ilic, J.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ling, J.; Mishra, S. R.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Devenish, N. E.; Falk, E.; Harris, P. G.; Hartnell, J.; Lefeuvre, G.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Cravens, J. P.; Kopp, S.; Lang, K.; Loiacono, L.; Mehdiyev, R.; Ratchford, J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Coleman, S. J.; Kordosky, M.; Nelson, J. K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Miller, J. L.] James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Gomes, Ricardo/B-6899-2008; Nichol, Ryan/C-1645-2008; Harris, Philip/I-7419-2012; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Semenov, Vitaliy/E-9584-2017; Coelho, Joao/D-3546-2013; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Evans, Justin/P-4981-2014 OI Hartnell, Jeffrey/0000-0002-1744-7955; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Gomes, Ricardo/0000-0003-0278-4876; Harris, Philip/0000-0003-4369-3874; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670; COLEMAN, STEPHEN/0000-0002-4621-9169; Evans, Justin/0000-0003-4697-3337 FU U.S. DOE; United Kingdom STFC; U.S. NSF; State and University of Minnesota; University of Athens, Greece; Brazil FAPESP; Brazil CNPq FX We gratefully acknowledge the many valuable conversations with Alan Kostelecky and Jorge Diaz during the course of this work. This work was supported by the U.S. DOE, the United Kingdom STFC, the U.S. NSF, the State and University of Minnesota, the University of Athens, Greece, and Brazil's FAPESP and CNPq. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contribution to this effort. NR 28 TC 51 Z9 51 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 4 PY 2010 VL 105 IS 15 AR 151601 DI 10.1103/PhysRevLett.105.151601 PG 5 WC Physics, Multidisciplinary SC Physics GA 657QC UT WOS:000282426400005 PM 21230890 ER PT J AU Fernandes, RM VanBebber, LH Bhattacharya, S Chandra, P Keppens, V Mandrus, D McGuire, MA Sales, BC Sefat, AS Schmalian, J AF Fernandes, R. M. VanBebber, L. H. Bhattacharya, S. Chandra, P. Keppens, V. Mandrus, D. McGuire, M. A. Sales, B. C. Sefat, A. S. Schmalian, J. TI Effects of Nematic Fluctuations on the Elastic Properties of Iron Arsenide Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID STATE AB We demonstrate that the changes in the elastic properties of the FeAs systems, as seen in our resonant ultrasound spectroscopy data, can be naturally understood in terms of fluctuations of emerging nematic degrees of freedom. Both the softening of the lattice in the normal, tetragonal phase as well as its hardening in the superconducting phase are consistently described by our model. Our results confirm the view that structural order is induced by magnetic fluctuations. C1 [Fernandes, R. M.; Schmalian, J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fernandes, R. M.; Schmalian, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [VanBebber, L. H.; Keppens, V.; Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Bhattacharya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bhattacharya, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Chandra, P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA. [Chandra, P.] Rutgers State Univ, Ctr Emergent Mat, Piscataway, NJ 08855 USA. [Mandrus, D.; McGuire, M. A.; Sales, B. C.; Sefat, A. S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Fernandes, RM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM rafaelmf@ameslab.gov RI McGuire, Michael/B-5453-2009; Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU U.S. DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division; NSF [NSF-DMR-0804719, NSF-NIRT-ECS-0608842] FX Work at Ames Laboratory and ORNL was supported by the U.S. DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division. L. H. V. and V. K. (NSF-DMR-0804719) and P. C. (NSF-NIRT-ECS-0608842) thank the NSF for financial support. The authors acknowledge the hospitality of the Aspen Center for Physics (J. S. and P. C.) and of the Trinity College, University of Cambridge (S. B.). NR 34 TC 200 Z9 200 U1 5 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 4 PY 2010 VL 105 IS 15 AR 157003 DI 10.1103/PhysRevLett.105.157003 PG 4 WC Physics, Multidisciplinary SC Physics GA 657QC UT WOS:000282426400017 PM 21230930 ER PT J AU Li, SL Zhang, CL Wang, M Luo, HQ Lu, XY Faulhaber, E Schneidewind, A Link, P Hu, JP Xiang, T Dai, PC AF Li, Shiliang Zhang, Chenglin Wang, Meng Luo, Hui-qian Lu, Xingye Faulhaber, Enrico Schneidewind, Astrid Link, Peter Hu, Jiangping Xiang, Tao Dai, Pengcheng TI Normal-State Hourglass Dispersion of the Spin Excitations in FeSexTe1-x SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEMPERATURE SUPERCONDUCTOR AB We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co, Ni)(x)As-2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe0.45Te0.55, we argue that the observed incommensurate spin excitations in FeSe1-xTex are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling. C1 [Li, Shiliang; Wang, Meng; Luo, Hui-qian; Lu, Xingye; Hu, Jiangping; Xiang, Tao; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, Chenglin; Wang, Meng; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Faulhaber, Enrico; Schneidewind, Astrid] Gemeinsame Forsch Grp HZB TU Dresden, Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Faulhaber, Enrico; Schneidewind, Astrid] TU Mnchen, Forsch Neutronenquelle Heinz Maier Leibnitz FRM 2, D-85747 Garching, Germany. [Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Xiang, Tao] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Li, SL (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; WANG, MENG/E-6595-2012; Hu, Jiangping/A-9154-2010; hu, jiangping /C-3320-2014; OI Dai, Pengcheng /0000-0002-6088-3170; WANG, MENG/0000-0002-8232-2331; Hu, Jiangping/0000-0003-4480-1734; Schneidewind, Astrid/0000-0002-7239-9888 FU Chinese Academy of Science [2010CB833102]; US DOE, BES, through DOE [DE-FG02-05ER46202]; US DOE, BES, through Division of Scientific User Facilities FX This work is supported by Chinese Academy of Science, 973 Program (2010CB833102), and by the US DOE, BES, through DOE DE-FG02-05ER46202 and Division of Scientific User Facilities. NR 35 TC 31 Z9 31 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 4 PY 2010 VL 105 IS 15 AR 157002 DI 10.1103/PhysRevLett.105.157002 PG 4 WC Physics, Multidisciplinary SC Physics GA 657QC UT WOS:000282426400016 PM 21230929 ER PT J AU Schroeder, CB Esarey, E Geddes, CGR Benedetti, C Leemans, WP AF Schroeder, C. B. Esarey, E. Geddes, C. G. R. Benedetti, C. Leemans, W. P. TI Physics considerations for laser-plasma linear colliders SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-BEAMS; WAKE-FIELD; INJECTION; ACCELERATOR; PULSES; DRIVEN; WAVES AB Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultrahigh accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasilinear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultrashort bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10(17) cm(-3) requires tens of J of laser energy per stage (using 1 mu m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage. C1 [Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Benedetti, C.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schroeder, CB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Csaba Toth for many valuable discussions on the topic of laser technology. The authors would also like to thank G. Dugan for many useful and enlightening conversations about collider physics. One of the authors (E. E.) also acknowledges useful conversations with R. Assmann, W. Chou, T. Raubenheimer, M. Seidel, T. Tajima, and K. Yokoya at the Workshop for High Power Laser Technology for Future Accelerators, especially concerning the use of round beams at the IP. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 104 Z9 107 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 4 PY 2010 VL 13 IS 10 AR 101301 DI 10.1103/PhysRevSTAB.13.101301 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 657QK UT WOS:000282427200001 ER PT J AU Stupakov, G Podobedov, B AF Stupakov, G. Podobedov, B. TI High-frequency impedance of small-angle tapers and collimators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya's formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO. C1 [Stupakov, G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Podobedov, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stupakov, G (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy under Contracts No. DE-AC02-76SF00515 and No. DE-AC02-98CH10886. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 4 PY 2010 VL 13 IS 10 AR 104401 DI 10.1103/PhysRevSTAB.13.104401 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 657QK UT WOS:000282427200003 ER PT J AU Hu, T Zhang, QM Wells, JC Gong, XG Zhang, ZY AF Hu, Tu Zhang, Qiming Wells, Jack C. Gong, Xingao Zhang, Zhenyu TI A comparative first-principles study of the adsorption of a carbon atom on copper and nickel surfaces SO PHYSICS LETTERS A LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; LARGE-SCALE; NANOTUBES; HYDROCARBONS; SEGREGATION; ABLATION; NI(100); POINTS AB The adsorption energies of a carbon atom at the most stable adsorption sites on the Cu and Ni(100), (110) and (111) surfaces have been studied by first-principles calculations. The preference order of the adsorption sites for both Cu and Ni surfaces is the same. The (100) hollow site is the most stable one. The diffusion barriers for a C atom on the three surfaces have also been obtained, with the highest mobility on the (111) surface of both metals. Our investigation shows that the adsorption energies of the C atom on Ni are significantly higher in magnitude than those on Cu for all the three surfaces. This phenomenon is mainly due to the interaction and hybridization between C p-orbits and partially filed d-shell of Ni, which forms a stronger binding. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hu, Tu; Zhang, Qiming] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Wells, Jack C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Engn Sci Adv Res, Oak Ridge, TN 37831 USA. [Gong, Xingao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Zhang, Zhenyu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Zhang, QM (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM zhang@uta.edu RI gong, xingao /B-1337-2010; Wells, Jack/D-3675-2016; gong, xingao/D-6532-2011 OI Wells, Jack/0000-0002-5083-3030; FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy; NSF [0906025] FX Some of us (Q.Z. and X.G.) are grateful to Su-huai Wei for beneficial discussions. This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy, and in part by NSF Grant No. 0906025. The computational work was done at the High Performance Computing Center of the University of Texas at Arlington. NR 38 TC 8 Z9 9 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD OCT 4 PY 2010 VL 374 IS 44 BP 4563 EP 4567 DI 10.1016/j.physleta.2010.09.022 PG 5 WC Physics, Multidisciplinary SC Physics GA 669JR UT WOS:000283344200015 ER PT J AU Kamaev, O Solomey, N Burnstein, RA Chakravorty, A Chen, YC Choong, WS Clark, K Dukes, EC Durandet, C Felix, J Fu, Y Gidal, G Gustafson, HR Holmstrom, T Huang, M James, C Jenkins, CM Jones, TD Kaplan, DM Longo, MJ Lu, LC Luebke, W Luk, KB Nelson, KS Park, HK Perroud, JP Rajaram, D Rubin, HA Volk, J White, CG White, SL Zyla, P AF Kamaev, O. Solomey, N. Burnstein, R. A. Chakravorty, A. Chen, Y. C. Choong, W. S. Clark, K. Dukes, E. C. Durandet, C. Felix, J. Fu, Y. Gidal, G. Gustafson, H. R. Holmstrom, T. Huang, M. James, C. Jenkins, C. M. Jones, T. D. Kaplan, D. M. Longo, M. J. Lu, L. C. Luebke, W. Luk, K. B. Nelson, K. S. Park, H. K. Perroud, J. -P. Rajaram, D. Rubin, H. A. Volk, J. White, C. G. White, S. L. Zyla, P. TI Study of the rare hyperon decay Omega(-/+) -> Xi(-/+)pi(+)pi(-) SO PHYSICS LETTERS B LA English DT Article DE Omega-minus decays; Hyperon resonances; CP violation AB We report a new measurement of the decay Omega(-) -> Xi(-/+)pi(+)pi(-) with 76 events and a first observation of the decay (Omega) over bar (+) -> (Xi) over bar (+)pi(+)pi(-) with 24 events, yielding a combined branching ratio (3.74(-0.56)(+0.67)) x 10(-4). This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with B(Omega(-) -> Xi(-)pi(+)pi(-)) = 4.04(-0.71)(+0.83) x 10(-4) and B((Omega) over bar (+) -> (Xi) over bar (+)pi(+)pi(-)) = 3.15(-0.89)(+1.12) x 10(-4). Contrary to theoretical expectation, we see little evidence for the decays Omega(-) -> Xi(*0)(1530)pi(-) and (Omega) over bar (+) -> (Xi) over bar (*0)(1530)pi(+) and place a 90% C.L. upper limit on the combined branching ratio B(Omega(-)((Omega) over bar (+)) -> Xi(*0)(1530))pi(-/+)) < 7.0 x 10(-5). (C) 2010 Elsevier B.V. All rights reserved. C1 [Kamaev, O.; Solomey, N.; Burnstein, R. A.; Chakravorty, A.; Kaplan, D. M.; Luebke, W.; Rajaram, D.; Rubin, H. A.; White, C. G.; White, S. L.] IIT, Chicago, IL 60616 USA. [Chen, Y. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Choong, W. S.; Luk, K. B.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Fu, Y.; Gidal, G.; Jones, T. D.; Luk, K. B.; Zyla, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [James, C.; Volk, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Felix, J.] Univ Guanajuato, Leon 3700, Mexico. [Perroud, J. -P.] Univ Lausanne, CH-1015 Lausanne, Switzerland. [Gustafson, H. R.; Longo, M. J.; Park, H. K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Clark, K.; Jenkins, C. M.] Univ S Alabama, Mobile, AL 36688 USA. [Dukes, E. C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L. C.; Nelson, K. S.] Univ Virginia, Charlottesville, VA 22904 USA. RP Kaplan, DM (reprint author), IIT, Chicago, IL 60616 USA. EM kaplan@iit.edu FU U.S. Dept. of Energy; National Science Council of Taiwan, ROC FX We wish to thank the Fermilab, LBNL, and university technical staffs for their able assistance in commissioning and running this experiment. This work was supported by the U.S. Dept. of Energy and the National Science Council of Taiwan, ROC. NR 9 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 4 PY 2010 VL 693 IS 3 BP 236 EP 240 DI 10.1016/j.physletb.2010.08.037 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 667RQ UT WOS:000283211800006 ER PT J AU Bai, Y Martin, A AF Bai, Yang Martin, Adam TI Topological pions SO PHYSICS LETTERS B LA English DT Article DE New strong dynamics; Nambu-Goldstone Bosons; Photon plus jet resonance ID HADRON COLLIDERS AB We study the collider signatures of new pions, composite particles which emerge from a TeV-scale, confining gauge theory with vector-like matter. Similar to the neutral pion in QCD, these new pions mainly decay into a pair of standard model (SM) gauge bosons via triangular anomaly diagrams. One of the new pions, which decays to a gluon plus a photon, has excellent discovery potential at the LHC. Published by Elsevier B.V. C1 [Bai, Yang; Martin, Adam] Dept Theoret Phys, Fermilab, Batavia, IL 60510 USA. RP Bai, Y (reprint author), Dept Theoret Phys, Fermilab, Batavia, IL 60510 USA. EM bai@fnal.gov FU United States Department of Energy [DE-ACO2-07CH11359] FX The authors are grateful to Gustavo Burdman and Chris Hill for useful discussions. Fermilab is operated by Fermi Research Alliance, LLC under contract no. DE-ACO2-07CH11359 with the United States Department of Energy. NR 24 TC 15 Z9 15 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 4 PY 2010 VL 693 IS 3 BP 292 EP 295 DI 10.1016/j.physletb.2010.08.058 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 667RQ UT WOS:000283211800015 ER PT J AU Xiong, SS Miao, XY Spencer, J Khripin, C Luk, TS Brinker, CJ AF Xiong, Shisheng Miao, Xiaoyu Spencer, Jeffrey Khripin, Constantine Luk, Ting S. Brinker, C. Jeffrey TI Integration of a Close-Packed Quantum Dot Monolayer with a Photonic-Crystal Cavity Via Interfacial Self-Assembly and Transfer SO SMALL LA English DT Article ID BINARY NANOPARTICLE SUPERLATTICES; NANOCRYSTAL SUPERLATTICES; STRUCTURAL-CHARACTERIZATION; ARRAYS; FILMS; GOLD C1 [Miao, Xiaoyu; Luk, Ting S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Xiong, Shisheng; Khripin, Constantine; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Spencer, Jeffrey] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87106 USA. RP Luk, TS (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM tsluk@sandia.gov; cjbrink@sandia.gov FU Sandia National Laboratories; U.S. Department of Energy Office of Basic Energy Sciences [DE-FG02-02-ER15368]; Office of Basic Energy Sciences Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC04-94AL85000] FX This work is funded by the LDRD program of the Sandia National Laboratories and U.S. Department of Energy Office of Basic Energy Sciences NSET grant DE-FG02-02-ER15368 and the Office of Basic Energy Sciences Division of Materials Sciences and Engineering. Part of the work is performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 30 TC 10 Z9 10 U1 0 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD OCT 4 PY 2010 VL 6 IS 19 BP 2126 EP 2129 DI 10.1002/smll.201000897 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 668MM UT WOS:000283274100009 PM 20818625 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; SCALE-DEPENDENT ALIGNMENT; INCOMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; DIRECT NUMERICAL-SIMULATION; INERTIAL-RANGE SPECTRUM; EARTHS PLASMA SHEET; MHD TURBULENCE; ALFVEN WAVES; ULYSSES OBSERVATIONS; STREAM INTERFACES AB A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. When the measurements are rotated into the local-Parker-spiral coordinate system, the shear is seen to be abrupt. Converging flows are seen; about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Analysis of the turbulence across the CIRs is performed. When possible, the effects of discontinuities are removed. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CIR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of subintervals is performed, and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic field, and total energy vary smoothly across the CIR. The total-energy spectral index is similar to 3/2 in the slow and fast wind and in the CIRs. Fourier analysis of Elsasser fluctuations shows a smooth transition across the CIR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. Spreading of turbulence away from the region where it is produced is limited to similar to 10(6) km. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, spectral slopes, and in-out nature): none show evidence of driving of turbulence by shear. C1 [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Denton, Michael H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YW, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 FU NASA; NSF; Los Alamos National Laboratory; STFC [SBA7743] FX The authors wish to thank Joachim Birn, Jack Gosling, John Podesta, Pete Riley, Ruth Skoug, and John Steinberg for helpful conversations. This research was supported by the NASA Heliospheric SR&T Program, by the NASA Heliospheric Guest-Investigator Program, by the NSF SHINE Program, and by the LDRD Program at Los Alamos National Laboratory. Work at Lancaster University was supported under STFC grant SBA7743. NR 204 TC 51 Z9 51 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 2 PY 2010 VL 115 AR A10101 DI 10.1029/2009JA014966 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 658TX UT WOS:000282513400002 ER PT J AU Mattsson, AE Armiento, R AF Mattsson, Ann E. Armiento, Rickard TI The Subsystem Functional Scheme: The Armiento-Mattsson 2005 (AM05) Functional and Beyond SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article; Proceedings Paper CT 13th International Conference on Application of the Density Functional Theory to Chemistry and Physics CY AUG 31-SEP 01, 2009 CL Lyon, FRANCE DE density functional theorey; exchange-correlation functionals ID GENERALIZED GRADIENT APPROXIMATION; ELECTRON-GAS; DENSITY; EXCHANGE; ENERGY; SURFACES; STATE; WATER AB The subsystem functional scheme (Kohn and Mattsson, Phys Rev Lett 1998, 81, 3487; Armiento and Mattsson Phys Rev B 2002, 66, 165117) is a recently proposed framework for constructing exchange-correlation density-functionals for use in density functional theory based calculations. The fundamental principle is to describe the physics in a real material by mapping onto model systems that exhibit the characteristic physics in each separate part of the real system. The local density approximately (LDA) functional can be seen as a subsystem functional: in all parts of the real material the assumption is that the needed physics is well described by the uniform electron gas model system. It is well known that this assumption is very accurate for surprisingly large classes of materials. The Armiento Mattsson 2005 (AM05) (Armiento and Mattsson, Phys Rev B 2005, 72, 085108; Mattsson and Armiento, Phys Rev B 2009, 79, 155101) functional takes this a step further by distinguishing between two separate types of regions in a real material, one type that is assumed to be well described by the uniform electron gas, and the other type of region assumed to be well described by a surface model system. AM05 gives a consistent improvement over LDA. One important consequence of the subsystem functional scheme is that it is known what physics is included in a functional. Based on the performance of AM05 for a number of different systems, we discuss where the model systems included are enough and when additional physics need to be included in a new functional. Improvement of AM05 is possible by fine-tuning the details in the construction. But a new major step in accuracy improvement is only expected if new physics is integrated in a functional via an additional model system. We discuss what type of physics would be needed and what model systems could be used for this next step beyond AM05. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2274-2282, 2010 C1 [Mattsson, Ann E.] Sandia Natl Labs, Multiscale Dynam Mat Modeling MS 1322, Albuquerque, NM 87185 USA. [Armiento, Rickard] MIT, Dept Mat Sci, Cambridge, MA 02139 USA. RP Mattsson, AE (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling MS 1322, POB 5800, Albuquerque, NM 87185 USA. EM aematts@sandia.gov RI Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 NR 41 TC 5 Z9 5 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD OCT PY 2010 VL 110 IS 12 SI SI BP 2274 EP 2282 DI 10.1002/qua.22601 PG 9 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 638JE UT WOS:000280889600019 ER PT J AU Hasanbeigi, A Menke, C Price, L AF Hasanbeigi, Ali Menke, Christoph Price, Lynn TI The CO2 abatement cost curve for the Thailand cement industry SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Abatement cost curve; Cement industry; CO2 emission; Abatement technologies AB The cement industry is one of the largest carbon dioxide (CO2) emitters in the Thai industry. The cement sector accounted for about 20,633 kilotonnes (ktonnes) CO2 emissions in 2005 in Thailand. A bottom-up CO2 abatement cost curve (ACC) is constructed in this study for the Thai cement industry to determine the potentials and costs of CO2 abatement, taking into account the costs and CO2 abatement of different technologies. The period of 2010-2025 is chosen as the scenario period. We analyzed 41 CO2 abatement technologies and measures for the cement industry. Using the bottom-up CO2 ACC model, the cost-effective annual CO2 abatement potential for the Thai cement industry during the 15 year scenario period (2010-2025) is equal to 3095 ktonnes CO2/year. This is about 15% of the Thai cement industry's total CO2 emissions in 2005. The total technical annual CO2 abatement potential is 3143 ktonnes CO2/year, which is about 15.2% of the Thai cement industry's total CO2 emissions in 2005. We also conducted a sensitivity analysis for the discount rate parameter. Published by Elsevier Ltd. C1 [Hasanbeigi, Ali; Price, Lynn] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, China Energy Grp,Energy Anal Dept, Berkeley, CA 94720 USA. [Hasanbeigi, Ali; Menke, Christoph] King Mongkuts Univ Technol Thonburi, Joint Grad Sch Energy & Environm, Bangkok 10140, Thailand. [Menke, Christoph] Univ Appl Sci Trier, Dept Bldg Engn Serv, Div Energy Technol, D-54293 Trier, Germany. RP Hasanbeigi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, China Energy Grp,Energy Anal Dept, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM AHasanbeigi@lbl.gov NR 26 TC 38 Z9 40 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 J9 J CLEAN PROD JI J. Clean Prod. PD OCT PY 2010 VL 18 IS 15 BP 1509 EP 1518 DI 10.1016/j.jclepro.2010.06.005 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 645UR UT WOS:000281492200004 ER PT J AU Guedj, J Perelson, AS AF Guedj, Jeremie Perelson, Alan S. TI ANALYSIS OF HCV RNA DECLINE DURING ANTIVIRAL THERAPY SHOWS THE SECOND PHASE SLOPE INCREASES WITH TREATMENT EFFECTIVENESS: IMPLICATIONS FOR TREATMENT DURATION SO HEPATOLOGY LA English DT Meeting Abstract CT 61st Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases CY OCT 29-NOV 02, 2010 CL Boston, MA SP Amer Assoc Study Liver Dis C1 [Guedj, Jeremie; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2010 VL 52 IS 4 SU S MA 962 BP 784A EP 784A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 740EY UT WOS:000288775601280 ER PT J AU Rasmussen, AL Diamond, DL Carter, VS McDermott, J Waters, KM Katze, MG AF Rasmussen, Angela L. Diamond, Deborah L. Carter, Victoria S. McDermott, Jason Waters, Katrina M. Katze, Michael G. TI SYSTEMS VIROLOGY APPROACHES REVEAL NOVEL METABOLIC TARGETS FOR HCV THERAPEUTICS DEVELOPMENT SO HEPATOLOGY LA English DT Meeting Abstract CT 61st Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases CY OCT 29-NOV 02, 2010 CL Boston, MA SP Amer Assoc Study Liver Dis C1 [Rasmussen, Angela L.; Diamond, Deborah L.; Carter, Victoria S.; Katze, Michael G.] Univ Washington, Seattle, WA 98195 USA. [McDermott, Jason; Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2010 VL 52 IS 4 SU S MA 1041 BP 823A EP 823A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 740EY UT WOS:000288775601359 ER PT J AU Rasmussen, AL Diamond, DL Carter, VS McDermott, J Waters, KM Katze, MG AF Rasmussen, Angela L. Diamond, Deborah L. Carter, Victoria S. McDermott, Jason Waters, Katrina M. Katze, Michael G. TI A GENETIC VARIATION IN IL28-B GENE INFLUENCES EARLY VIRAL KINETICS AND TREATMENT OUTCOME IN HIV-HCV COINFECTED PATIENTS SO HEPATOLOGY LA English DT Meeting Abstract CT 61st Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases CY OCT 29-NOV 02, 2010 CL Boston, MA SP Amer Assoc Study Liver Dis C1 [Rasmussen, Angela L.; Diamond, Deborah L.; Carter, Victoria S.; Katze, Michael G.] Univ Washington, Seattle, WA 98195 USA. [McDermott, Jason; Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2010 VL 52 IS 4 SU S MA 1043 BP 823A EP 824A PG 2 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 740EY UT WOS:000288775601361 ER PT J AU Diamond, DL Rasmussen, AL Susnow, NJ Datta, S Magaret, C Webb-Robertson, BJM Krasnoselsky, A Burnum, KE Yeh, MM McDermott, J Jacobs, JM Gritsenko, MA Bhattacharya, R Perkins, JD Carithers, RL Liou, IW Strom, S LeCiel, C Carter, VS Purdy, DE Walters, KA Larson, AM Peng, XX Proll, SC Waters, KM Smith, RD Self, S Katze, MG AF Diamond, Deborah L. Rasmussen, Angela L. Susnow, Nathan J. Datta, Sujay Magaret, Craig Webb-Robertson, Bobbie-Jo M. Krasnoselsky, Alexei Burnum, Kristin E. Yeh, Matthew M. McDermott, Jason Jacobs, Jon M. Gritsenko, Marina A. Bhattacharya, Renuka Perkins, James D. Carithers, Robert L. Liou, Iris W. Strom, Susan LeCiel, Cosette Carter, Victoria S. Purdy, David E. Walters, Kathie-Anne Larson, Anne M. Peng, Xinxia Proll, Sean C. Waters, Katrina M. Smith, Richard D. Self, Steven Katze, Michael G. TI HEPATITIS C VIRUS (HCV) INFECTION AND PATHOGENESIS: FROM SYSTEMS BIOLOGY TO TRANSLATIONAL RESEARCH SO HEPATOLOGY LA English DT Meeting Abstract CT 61st Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases CY OCT 29-NOV 02, 2010 CL Boston, MA SP Amer Assoc Study Liver Dis C1 [Susnow, Nathan J.; Bhattacharya, Renuka; Carithers, Robert L.; Liou, Iris W.; Strom, Susan] Univ Washington, Div Gastroenterol, Seattle, WA 98195 USA. [Datta, Sujay] Fred Hutchinson Canc Res Ctr, Program Biostat & Biomath, Seattle, WA 98104 USA. [Magaret, Craig; Self, Steven] Fred Hutchinson Canc Res Ctr, Stat Ctr HIVAIDS Res & Prevent, Seattle, WA 98104 USA. [Burnum, Kristin E.; Jacobs, Jon M.; Gritsenko, Marina A.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Walters, Kathie-Anne] Inst Syst Biol, Seattle, WA USA. [Larson, Anne M.] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD OCT PY 2010 VL 52 IS 4 SU S MA 1056 BP 829A EP 830A PG 2 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 740EY UT WOS:000288775601374 ER PT J AU Rogers, JD Jordan, G AF Rogers, Juan D. Jordan, Gretchen TI New research evaluation frameworks and methods for systems level learning: introduction to a special section SO RESEARCH EVALUATION LA English DT Editorial Material AB The papers in this special section reflect some of the new approaches proposed to address pressing issues of R&D evaluation. These issues are due mainly to the complexity of the system of science and technology within which policies and programs are charged with reaching their objectives. And R&D organizations need to learn from evaluation results for policy and management improvement. Many levels of collective and individual action interact in the process of R&D which makes tracing their effects very difficult. The five papers in this special section address some aspect of the multilevel interactions of the R&D system and propose a framework or method to capture its effects and importance for learning from evaluation. C1 [Rogers, Juan D.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. [Jordan, Gretchen] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rogers, JD (reprint author), Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. EM jdrogers@gatech.edu; gbjorda@sandia.gov NR 0 TC 2 Z9 2 U1 1 U2 11 PU BEECH TREE PUBLISHING PI GUILDFORD PA 10 WATFORD CLOSE,, GUILDFORD GU1 2EP, SURREY, ENGLAND SN 0958-2029 J9 RES EVALUAT JI Res. Evaluat. PD OCT PY 2010 VL 19 IS 4 BP 235 EP 237 DI 10.3152/095820210X12827366906526 PG 3 WC Information Science & Library Science SC Information Science & Library Science GA 716SU UT WOS:000286994600001 ER PT J AU Jordan, GB AF Jordan, Gretchen B. TI A theory-based logic model for innovation policy and evaluation SO RESEARCH EVALUATION LA English DT Article AB Current policy and program rationale, objectives, and evaluation use a fragmented picture of the innovation process. This presents a challenge since in the United States officials in both the executive and legislative branches of government see innovation, whether that be new products or processes or business models, as the solution to many of the problems the country faces. The logic model is a popular tool for developing and describing the rationale for a policy or program and its context. This article sets out to describe generic logic models of both the R&D process and the diffusion process, building on existing theory-based frameworks. Then a combined, theory-based logic model for the innovation process is presented. Examples of the elements of the logic, each a possible leverage point or intervention, are provided, along with a discussion of how this comprehensive but simple model might be useful for both evaluation and policy development. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jordan, GB (reprint author), Sandia Natl Labs, Dept 01912 MS 0359,POB 5800, Albuquerque, NM 87185 USA. EM gbjorda@sandia.gov NR 24 TC 6 Z9 6 U1 5 U2 17 PU BEECH TREE PUBLISHING PI GUILDFORD PA 10 WATFORD CLOSE,, GUILDFORD GU1 2EP, SURREY, ENGLAND SN 0958-2029 J9 RES EVALUAT JI Res. Evaluat. PD OCT PY 2010 VL 19 IS 4 BP 263 EP 273 DI 10.3152/095820210X12827366906445 PG 11 WC Information Science & Library Science SC Information Science & Library Science GA 716SU UT WOS:000286994600004 ER PT J AU Arent, D Sweeney, J AF Arent, Douglas Sweeney, James TI SOLAR ISSUES SO TECHNOLOGY REVIEW LA English DT Letter C1 [Arent, Douglas] Natl Renewable Energy Lab, Joint Inst Strateg Energy Anal, Golden, CO USA. [Sweeney, James] Stanford Univ, Precourt Energy Efficiency Ctr, Stanford, CA 94305 USA. RP Arent, D (reprint author), Natl Renewable Energy Lab, Joint Inst Strateg Energy Anal, Golden, CO USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU TECHNOL REV PI CAMBRIDGE PA 1 MAIN ST, 13 FLR, CAMBRIDGE, MA 02142 USA SN 1099-274X J9 TECHNOL REV JI Technol. Rev. PD OCT PY 2010 VL 113 IS 5 BP 8 EP 8 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 716ZJ UT WOS:000287011700004 ER PT J AU Jin, VL Romanek, CS Donovan, LA Sharitz, RR AF Jin, Virginia L. Romanek, Christopher S. Donovan, Lisa A. Sharitz, Rebecca R. TI Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U. S. Coastal Plain SO JOURNAL OF THE TORREY BOTANICAL SOCIETY LA English DT Article DE (13)C; (15)N; ammonium; Glycine; nitrogen uptake ID COLD-TEMPERATE FORESTS; FREE AMINO-ACIDS; ORGANIC-NITROGEN; ARCTIC PLANTS; ECTOMYCORRHIZAL FUNGI; INORGANIC NITROGEN; MICROBES; MINERALIZATION; ACQUISITION; CARBON AB JIN, V. L. (USDA-ARS, Lincoln, NE 68583), ROMANEK, C. S. (Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506), DONOVAN, L. A. (Department of Plant Biology, University of Georgia, Athens, GA 30702), SHARITZ, R. R. (Savannah River Ecology Laboratory, Aiken, SC 29802). Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pious palustris Mill. in the southeastern U. S. Coastal Plain. J. Torrey Bot. Soc. 137: 339-347. 2010.-Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain forest, subxeric sandhills long-leaf pine forest). Seedlings of Acer rubrum L. and Pinus palustris Mill. in floodplain and sandhills forests, respectively, were treated with isotopically-enriched organic N ((15)N-[2]-(13)C-glycine) or inorganic N ((15)NH(4)(+)) to examine in situ uptake. We also measured soil organic and inorganic N concentrations to assess the availability of N for plant uptake. Neither species took up organic N as intact (15)N-[2]-(13)C-glycine, but significant root (15)N enrichment in both species indicated that N mineralized from labeled glycine was taken up. Free amino-N dominated the total 2 M KCl-extractable N in floodplain (57 +/- 3%) and sandhills soils (75 +/- 3%), followed by NH(4)(+) then NO(3)(-) in both soils. Up to 13% of glycine label was mineralized to NH(4)(+) at both sites, suggesting that the majority of label was immobilized or adsorbed in the soil. Recovery of NH(4)(+) label also indicated strong soil immobilization, particularly in sandhills soils after 24 hours. Although uptake of intact organic N did not occur in either species, N mineralized from glycine was taken up by plants in these two contrasting temperate forested ecosystems. C1 [Jin, Virginia L.] Univ Nebraska, USDA ARS, Lincoln, NE 68583 USA. [Romanek, Christopher S.] Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA. [Donovan, Lisa A.] Univ Georgia, Dept Plant Biol, Athens, GA 30702 USA. [Sharitz, Rebecca R.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Jin, VL (reprint author), Univ Nebraska, USDA ARS, Lincoln, NE 68583 USA. EM Virginia.Jin@ars.usda.gov RI Donovan, Lisa/H-4754-2016 OI Donovan, Lisa/0000-0001-9814-0666 FU National Science Foundation; Society of Wetland Scientists; Sigma Xi; United States Department of Energy [DE-FC09-96SR18546]; University of Georgia [DE-FC09-96SR18546] FX Funding for this research was provided by a Doctoral Dissertation Improvement Grant from the National Science Foundation, a Student Research Award from the Society of Wetland Scientists, and a Sigma Xi Grant-in-Aid of Research granted to VLJ. The authors thank J. Schimel and two anonymous reviewers for their constructive comments. We are also grateful to P. Stankus, B. Staub, and L. Paddock for field and laboratory assistance. VLJ was supported by Award Number DE-FC09-96SR18546 between the United States Department of Energy and the University of Georgia, and by a Final Year Graduate School Assistantship provided by the University of Georgia. NR 45 TC 2 Z9 2 U1 2 U2 21 PU TORREY BOTANICAL SOC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 1095-5674 J9 J TORREY BOT SOC JI J. Torrey Bot. Soc. PD OCT-DEC PY 2010 VL 137 IS 4 BP 339 EP 347 DI 10.3159/10-RA-022.1 PG 9 WC Plant Sciences SC Plant Sciences GA 719RE UT WOS:000287225600004 ER PT J AU Wintz, DT Goldberg, KA Mochi, I Huh, S AF Wintz, Daniel T. Goldberg, Kenneth A. Mochi, Iacopo Huh, Sungmin TI Photon flux requirements for extreme ultraviolet reticle imaging in the 22-and 16-nm nodes SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE extreme ultraviolet lithography; extreme ultraviolet; linewidth roughness; actinic mask inspection; reticle; imaging ID LINE-EDGE ROUGHNESS; LITHOGRAPHY AB Extreme UV (EUV)-wavelength actinic microscopy yields detailed information about EUV mask patterns, architectures, defects, and the performance of defect repair strategies without the complications of photoresist imaging. To understand the pattern measurement limits of EUV mask microscopy, we investigate the effects of shot noise on aerial image linewidth measurements in the 22- and 16-nm lithography generations. Using a simple model we probe the influence of photon shot noise on measured, apparent line roughness, and find general flux density requirements independent of the specific EUV microscope configurations. Analysis reveals the trade-offs between photon energy density, effective pixel dimension on the CCD, and image log slope (ILS). We find that shot-noise-induced linewidth roughness (LWR) varies inversely with the square root of the photon energy density and is proportional to the magnification ratio. While high magnification is necessary for adequate spatial resolution, for a given flux density, higher magnification ratios have diminishing benefits. We find that to achieve an LWR (3 sigma) value of 5% of linewidth for dense, 88-nm mask features with a 2.52 normalized ILS value (image log-slope, ILS, equal to 28.6/mu m) and 13.5-nm effective pixel width (1000 x magnification ratio), a peak photon flux of approximately 1400 photons/pixel per exposure is required. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3491512] C1 [Wintz, Daniel T.; Goldberg, Kenneth A.; Mochi, Iacopo] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Huh, Sungmin] Samsung, Hwaseong City 445701, Gyeonggi Do, South Korea. RP Wintz, DT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM KAGoldberg@lbl.gov FU SEMATECH; SEMATECH through the U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to acknowledge the support of SEMATECH project leader Sungmin (Sean) Huh, and insightful feedback from Patrick Naulleau (Lawrence Berkeley National Laboratory) and Chris Mack (Lithoguru). This work was supported by SEMATECH, through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 1 Z9 1 U1 0 U2 1 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD OCT-DEC PY 2010 VL 9 IS 4 AR 041205 DI 10.1117/1.3491512 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA 711OR UT WOS:000286601800016 ER PT J AU Summa, B Scorzelli, G Jiang, M Bremer, PT Pascucci, V AF Summa, Brian Scorzelli, Giorgio Jiang, Ming Bremer, Peer-Timo Pascucci, Valerio TI Interactive Editing of Massive Imagery Made Simple: Turning Atlanta into Atlantis SO ACM TRANSACTIONS ON GRAPHICS LA English DT Article DE Algorithms; Design; Performance; Poisson equation; gradient domain editing; gigapixel images; out-of-core processing; cache-oblivious data layout ID SPACE-FILLING CURVES; POISSON; EQUATION; SOLVER AB This article presents a simple framework for progressive processing of high-resolution images with minimal resources. We demonstrate this framework's effectiveness by implementing an adaptive, multi-resolution solver for gradient-based image processing that, for the first time, is capable of handling gigapixel imagery in real time. With our system, artists can use commodity hardware to interactively edit massive imagery and apply complex operators, such as seamless cloning, panorama stitching, and tone mapping. We introduce a progressive Poisson solver that processes images in a purely coarse-to-fine manner, providing near instantaneous global approximations for interactive display (see Figure 1). We also allow for data-driven adaptive refinements to locally emulate the effects of a global solution. These techniques, combined with a fast, cache-friendly data access mechanism, allow the user to interactively explore and edit massive imagery, with the illusion of having a full solution at hand. In particular, we demonstrate the interactive modification of gigapixel panoramas that previously required extensive offline processing. Even with massive satellite images surpassing a hundred gigapixels in size, we enable repeated interactive editing in a dynamically changing environment. Images at these scales are significantly beyond the purview of previous methods yet are processed interactively using our techniques. Finally our system provides a robust and scalable out-of-core solver that consistently offers high-quality solutions while maintaining strict control over system resources. C1 [Summa, Brian; Scorzelli, Giorgio; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Jiang, Ming; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Summa, B (reprint author), Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. EM bsumma@sci.utah.edu; scrgiorgio@sci.utah.edu; jiang4@llnl.gov; bremer5@llnl.gov; pascucci@sci.utah.edu FU National Science Foundation [IIS-0904631, IIS-0906379, CCF-0702817]; U.S. Department of Energy [DE-SC0001922, DE-FC02-06ER25781, DE-AC52-07NA27344, LLNL-JRNL-453051] FX This work is supported in part by the National Science Foundation awards IIS-0904631, IIS-0906379, and CCF-0702817. This work was also performed under the auspices of the U.S. Department of Energy by the University of Utah under contract DE-SC0001922 and DE-FC02-06ER25781 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-JRNL-453051. NR 42 TC 0 Z9 0 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0730-0301 EI 1557-7368 J9 ACM T GRAPHIC JI ACM Trans. Graph. PD OCT PY 2010 VL 29 IS 5 AR 133 DI 10.1145/1857907.1857909 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 681CQ UT WOS:000284285600002 ER PT J AU Okhuysen, BS Riahi, DN AF Okhuysen, B. S. Riahi, D. N. TI Perturbation and stability analyses of nonlinear buoyant flow in mushy layers SO FLUID DYNAMICS RESEARCH LA English DT Article ID COMPOSITIONAL CONVECTION; BINARY-ALLOYS; SOLIDIFICATION AB We consider the problem of weakly nonlinear buoyant flow and its stability in horizontal dendrite layers, often referred to as mushy layers, during solidification of binary alloys. A mushy layer is a layer that is formed adjacent to the solidification front and is composed of both solid dendrites and melt. Understanding the convective flow driven by the buoyancy force within the mushy layer is known to be important for proper production of high-quality solidified alloy. In the present study, no restriction is imposed on the thickness of the mushy layer, and a number of simplifying assumptions made in previous related nonlinear analyses are lifted here in order to determine the results on the basis of a more realistic model. Using perturbation and stability analyses and some numerical approaches, we determine the steady stable solutions to the weakly nonlinear problem under a certain range of the parameter values where such analyses are valid. The relevant parameters for the present problem are the Rayleigh number representing the buoyancy, the Stefan number representing the latent heat of solidification, a concentration ratio parameter representing the composition of the solid dendrites in the mushy layer, and the far-field temperature parameter. We found, in particular, that depending on the range of parameter values, stable convective flow is possible in the form of subcritical or supercritical down-hexagons, with down-flow at the cells' centers and up-flow at the cells' boundaries, and subcritical or supercritical up-hexagons, with up-flow at the cells' centers and down-flow at the cells' boundaries, supercritical rectangles, supercritical squares and supercritical rolls. C1 [Okhuysen, B. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Riahi, D. N.] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA. RP Okhuysen, BS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM driahi@utpa.edu NR 18 TC 0 Z9 0 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0169-5983 J9 FLUID DYN RES JI Fluid Dyn. Res. PD OCT PY 2010 VL 42 IS 5 AR 055510 DI 10.1088/0169-5983/42/5/055510 PG 27 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 679GQ UT WOS:000284150300010 ER PT J AU Romero, V Luketa, A Sherman, M AF Romero, Vicente Luketa, Anay Sherman, Martin TI Application of a Versatile "Real-Space" Validation Methodology to a Fire Model SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA 11th Non-Deterministic Approaches Conference CY MAY 04-07, 2009 CL Palm Springs, CA SP AIAA ID EMISSIVITY AB This paper applies a pragmatic approach to validation of a fire-dynamics model involving computational fluid dynamics, combustion, participating-media radiation, and heat transfer. The validation problem involves experimental and predicted steady-state temperatures of a calorimeter in a wind-driven hydrocarbon pool fire. Significant aleatory and epistemic sources of uncertainty in the experiments and simulations exist and are transformed to a common basis of interval uncertainty for aggregation and comparison purposes. The validation comparison of experimental and simulation results, and corresponding criteria and procedures for model substantiation or refutation, take place in "real space" as opposed to "transform space" where various transform measures of discrepancy between experiment and simulation results are calculated and assessed. The versatile model validation approach handles difficulties associated with representing and aggregating aleatory and epistemic uncertainties (discrete and continuous) from multiple correlated and uncorrelated source types, including 1) experimental variability from multiple repeat experiments, 2) uncertainty of experimental inputs, 3) experimental output measurement uncertainties, 4) uncertainties that arise in data processing and inference from raw simulation and experiment outputs, 5) parameter and model-form uncertainties intrinsic to the model, and 6) numerical solution uncertainty from model discretization effects. C1 [Romero, Vicente; Luketa, Anay; Sherman, Martin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Romero, V (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM vjromer@sandia.gov NR 31 TC 2 Z9 2 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT-DEC PY 2010 VL 24 IS 4 BP 730 EP 744 DI 10.2514/1.46358 PG 15 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 673XE UT WOS:000283696700006 ER PT J AU McMasters, RL Dinwiddie, RB AF McMasters, Robert L. Dinwiddie, Ralph B. TI Accounting for Finite Flash Duration in Diffusivity Experiments SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID MEASURING THERMAL-DIFFUSIVITY; CONDUCTIVITY; SAMPLES AB The laser flash method, as a means of measuring thermal diffusivity, is well established, and several manufacturers produce equipment for performing these types of experiments. Over time, mathematical models of increasing sophistication employing nonlinear regression have been used in the analysis of flash diffusivity experiments. These models have historically assumed an instantaneous flash and have been highly accurate for most samples of moderate diffusivity and sample thickness. As samples become thinner and more highly conductive, the duration of the experiments becomes very short. Since the duration of the flash is typically on the order of several milliseconds, the assumption that this period of time is instantaneous becomes less valid for very short experiments. In the present research, three models accounting for the duration of the flash are applied to three samples of stainless steel of varying thicknesses and compared with a model that assumes an instantaneous flash. The models accounting for the finite flash duration generate results that are much more consistent between samples than the model assuming an instantaneous flash. Moreover, the conformance of the mathematical models accounting for flash duration is much closer to the measured data than the model that assumes an instantaneous flash. C1 [McMasters, Robert L.] Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. [Dinwiddie, Ralph B.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP McMasters, RL (reprint author), Virginia Mil Inst, Dept Mech Engn, Lexington, VA 24450 USA. EM mcmastersrl@vmi.edu; dinwiddierb@ornl.gov FU U.S. Department of Energy, Office of Energy Efficiency, and Renewable Energy FX The authors would like to express appreciation to Ron Chandler at the Virginia Military Institute for his contributions in preparing the samples for the experiments performed as part of this research. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency, and Renewable Energy, Vehicle Technologies Program. NR 19 TC 2 Z9 2 U1 0 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD OCT-DEC PY 2010 VL 24 IS 4 BP 818 EP 822 DI 10.2514/1.49047 PG 5 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 673XE UT WOS:000283696700015 ER PT J AU Basu, SK Mukherjee, G Sonzogni, AA AF Basu, S. K. Mukherjee, G. Sonzogni, A. A. TI Nuclear Data Sheets for A=95 SO NUCLEAR DATA SHEETS LA English DT Article ID DELAYED-NEUTRON EMISSION; GAMMA-RAY ENERGIES; LIVED FISSION-PRODUCTS; HALF-LIFE MEASUREMENTS; LOW-LYING STATES; HIGH-SPIN STATES; MULTIPOLE MIXING RATIOS; ISOBARIC ANALOG STATES; YRAST LEVEL STRUCTURE; HIGH ANGULAR-MOMENTUM AB Fxperimental data on ground and excited state properties for all known nuclei with mass number A = 95 have been compiled and evaluated States populated in radioactive decay as well as in nuclear reactions have been considered For these nuclei level and decay schemes as well as tables of nuclear properties are presented This work supersedes the 1993 evaluation by T W Burrows (1993Bu08) In summary three isomers were identified in Ag-95 and their respective decay schemes were presented (2003Do09) though only limits on their half lives could be obtained Besides high resolution prompt gamma-spectroscopy of Ag-95 has been reported for the first time (2003Ma24) A comprehensive level scheme Pd-95 is now available through the decay of Ag-95 (2005Ha45) and the energy of the 21/2+ spin-gap isomer have been established for the first time by observing the gamma-rays from the yrast levels (2003Ma24) The level scheme of Rh-95 has been extended up to 39/2 h by in-beam spectroscopy (1994Ro08) and the gamma-delayed proton decays from Ag-96 isomers to low-lying levels in Pd-95 have been observed (2003Ba39) The high spin level scheme of Ru-95 has been extended up 43/2 h (1994Gh06) and the lifetime or lifetime limits of several high spin states have been reported (2004Ga08) In Tc-95 the level scheme has been extended by in-beam spectroscopy (2000Gh01) New data on high spin states in Mo-95 have been available through in-beam spectroscopy using heavy ion reactions ((1998Kh04) (2004Ch18) (2009Zh11)1 The data on Nb-95 has been considerably extended by (iota p) reaction (2005Ra30) and by (Se-82 p2n gamma) reaction (2005Bu08) In Zr-95 new measurements on mu (2005St24) and Q (1998Se01) have become available Controversy on the existence of a 23 keV state in Zr-95 has been resolved by a high-resolution measurement using magnetic spectrometer (2003So23) New data on high spin states have been published through heavy-ion Induced fission 1(2002Fo03) (2005Pa48)1 Very recently new high spin data on Y-95 by n-Induced and spontaneous fission decay have been available (2009Ur02) High spin data on Sr-95 have been reported by gamma-spectroscopy of spontaneous fission decay (2004Hw04) In Rb-95 revised estimate of gamma-n decay intensity (2002Pf04) and mass excess (2007Ra23) have been reported New data on Kr-85 It decay have been reported [(2006Ge05) (2007Si17)) and Incorporated C1 [Basu, S. K.; Mukherjee, G.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Basu, SK (reprint author), Ctr Variable Energy Cyclotron, Kolkata 700064, India. NR 305 TC 20 Z9 20 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT-NOV PY 2010 VL 111 IS 10-11 BP 2555 EP + DI 10.1016/j.nds.2010.10.001 PG 182 WC Physics, Nuclear SC Physics GA 677UH UT WOS:000284016800001 ER PT J AU Sabharwall, P Patterson, M Utgikar, V Gunnerson, F AF Sabharwall, Piyush Patterson, Mike Utgikar, Vivek Gunnerson, Fred TI Phase change heat transfer device for process heat applications SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to similar to 1300 K) and industrial scale power transport (>= 50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both. Published by Elsevier BM. C1 [Sabharwall, Piyush; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID USA. [Utgikar, Vivek] Univ Idaho, Dept Chem Engn, Idaho Falls, ID USA. [Gunnerson, Fred] Univ Idaho, Nucl Engn Program, Idaho Falls, ID USA. RP Sabharwall, P (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM piyush.sabharwall@inl.gov OI Patterson, Michael/0000-0002-8698-3284 NR 11 TC 7 Z9 7 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2010 VL 240 IS 10 BP 2409 EP 2414 DI 10.1016/j.nucengdes.2010.05.054 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 678MD UT WOS:000284079000005 ER PT J AU Tang, Y Grandy, C Seidensticker, R AF Tang, Yu Grandy, Christopher Seidensticker, Ralph TI Seismic response of annular cylindrical tanks SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC AB A study is made of the dynamic response of liquid containing, upright annular cylindrical tanks subjected to the horizontal component of a seismic excitation at its base. The tank is assumed to be rigid. Critical response quantities for rigid annular tanks are evaluated over wide ranges of parameters involved and the results presented in a form convenient for use in practical applications. The effect of tank flexibility on the response is then assessed by the procedure proposed by Veletsos and Yang (1977). Simple approximation equations for estimating the fundamental frequency of the outer tank wall-liquid and inner tank wall-liquid systems are proposed. Published by Elsevier B.V. C1 [Tang, Yu; Grandy, Christopher; Seidensticker, Ralph] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Tang, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yutang@anl.gov; cgrandy@anl.gov; rseidensticker@anl.gov NR 12 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2010 VL 240 IS 10 BP 2614 EP 2625 DI 10.1016/j.nucengdes.2010.07.014 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 678MD UT WOS:000284079000028 ER PT J AU Hogan, K Liao, YH Beeny, B Vierow, K Cole, R Humphries, L Gauntt, R AF Hogan, Kevin Liao, Yehong Beeny, Bradley Vierow, Karen Cole, Randall, Jr. Humphries, Larry Gauntt, Randall TI Implementation of a generalized diffusion layer model for condensation into MELCOR SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC ID NONCONDENSABLE GASES; CONVECTION; VAPOR AB Condensation of co-current steam noncondensable gas mixtures in vertical tubes is an important, yet difficult to model, component of many passive nuclear reactor cooling systems. The stagnant film model, which is used by the severe accident code MELCOR, gains its name by assuming that the gas vapor film formed along the condensation surface is stagnant. Liao developed a generalized diffusion layer model that removes limitations of the stagnant film model and considers additional phenomena to improve predictive capabilities for condensation heat transfer with noncondensable gases. Similarities between the formulations of the stagnant film model and generalized diffusion layer model allow for the generalized diffusion layer model to be implemented into MELCOR. Input decks representing experimental facilities that produced co-current condensation data have been created to analyze and validate the generalized diffusion layer model implemented in MELCOR. The experimental data span a wide range of noncondensable gas mass fractions and include condensation mass transfer both on a vertical flat plate and in vertical tubes. MELCOR predictions of the condensation mass flux are seen to improve when using the generalized diffusion layer model instead of the stagnant film model. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hogan, Kevin; Beeny, Bradley; Vierow, Karen] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Liao, Yehong] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Cole, Randall, Jr.; Humphries, Larry; Gauntt, Randall] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vierow, K (reprint author), Texas A&M Univ, Dept Nucl Engn, 3133 TAMU, College Stn, TX 77843 USA. EM vierow@ne.tamu.edu NR 20 TC 5 Z9 5 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2010 VL 240 IS 10 BP 3202 EP 3208 DI 10.1016/j.nucengdes.2010.05.059 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 678MD UT WOS:000284079000093 ER PT J AU Arikawa, Y Yamanoi, K Nagai, T Watanabe, K Kouno, M Sakai, K Nakazato, T Shimizu, T Cadatal, MR Estacio, ES Sarukura, N Nakai, M Norimatsu, T Azechi, H Murata, T Fujino, S Yoshida, H Izumi, N Satoh, N Kan, H AF Arikawa, Yasunobu Yamanoi, Kohei Nagai, Takahiro Watanabe, Kozue Kouno, Masahiro Sakai, Kohei Nakazato, Tomoharu Shimizu, Toshihiko Cadatal, Marilou Raduban Estacio, Elmer Surat Sarukura, Nobuhiko Nakai, Mitsuo Norimatsu, Takayoshi Azechi, Hiroshi Murata, Takahiro Fujino, Shigeru Yoshida, Hideki Izumi, Nobuhiko Satoh, Nakahiro Kan, Hirofumi TI Note: Light output enhanced fast response and low afterglow Li-6 glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID AREAL DENSITY; TEMPERATURE; PR3+; LUMINESCENCE; CAPSULES AB The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Megajoule. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488460] C1 [Arikawa, Yasunobu; Yamanoi, Kohei; Nagai, Takahiro; Watanabe, Kozue; Kouno, Masahiro; Sakai, Kohei; Nakazato, Tomoharu; Shimizu, Toshihiko; Cadatal, Marilou Raduban; Estacio, Elmer Surat; Sarukura, Nobuhiko; Nakai, Mitsuo; Norimatsu, Takayoshi; Azechi, Hiroshi] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Murata, Takahiro] Kumamoto Univ, Kumamoto 8608555, Japan. [Fujino, Shigeru] Kyushu Univ, Fukuoka 8190395, Japan. [Yoshida, Hideki] Ceram Res Ctr Nagasaki, Nagasaki 8593726, Japan. [Izumi, Nobuhiko] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Satoh, Nakahiro; Kan, Hirofumi] Hamamatsu Photon Kk, Hamamatsu, Shizuoka 4312103, Japan. RP Arikawa, Y (reprint author), Osaka Univ, Inst Laser Engn, 2-6 Yamadaoka, Suita, Osaka 5650871, Japan. EM arikawa-y@ile.osaka-u.ac.jp; yamanoi-k@ile.osaka-u.ac.jp; nagai-t@ile.osaka-u.ac.jp; watanabe-k@ile.osaka-u.ac.jp; kouno-m@ile.osaka-u.ac.jp; sakai-k@ile.osaka-u.ac.jp; nakazato-t@ile.osaka-u.ac.jp; shimizu-t@ile.osaka-u.ac.jp; cadatal-m@ile.osaka-u.ac.jp; estacio-es@ile.osaka-u.ac.jp; sarukura-n@ile.osaka-u.ac.jp; mitsuo@ile.osaka-u.ac.jp; norimats@ile.osaka-u.ac.jp; azechi@ile.osaka-u.ac.jp; murata@educ.kumamoto-u.ac.jp; fujino@chem-eng.kyushu-u.ac.jp; yoshida@crcn.jp; izumi2@llnl.gov; naka@crl.hpk.co.jp; kan@crl.hpk.co.jp RI Shimizu, Toshihiko/F-5079-2015; Estacio, Elmer/F-6695-2015; Sarukura, Nobuhiko/F-3276-2015; Azechi, Hiroshi/H-5876-2015; Nakai, Mitsuo/I-6758-2015; Norimatsu, Takayoshi/I-5710-2015; Yamanoi, Kohei/B-2150-2013; Arikawa, Yasunobu/L-8760-2015; IZUMI, Nobuhiko/J-8487-2016; Nakazato, Tomoharu/J-5181-2016 OI Shimizu, Toshihiko/0000-0001-6712-3804; Estacio, Elmer/0000-0002-4938-571X; Sarukura, Nobuhiko/0000-0003-2353-645X; Nakai, Mitsuo/0000-0001-6076-756X; Yamanoi, Kohei/0000-0003-4492-4099; Arikawa, Yasunobu/0000-0002-3142-3060; IZUMI, Nobuhiko/0000-0003-1114-597X; Nakazato, Tomoharu/0000-0001-5609-3945 FU Japan Society for the Promotion of Science [18106016]; Open Advanced Research Facilities Initiative; Research Fellowship [3273]; [16082204] FX This work is supported by the Japan Society for the Promotion of Science under the contracts of Grant-in-Aid for Scientific Research (S) No. 18106016, Grant-in-Aid on Priority Area No. 16082204, Open Advanced Research Facilities Initiative, and Research Fellowship for Young Scientists No. 3273. NR 18 TC 3 Z9 3 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 106105 DI 10.1063/1.3488460 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NL UT WOS:000283753400065 PM 21034133 ER PT J AU Kwan, TJT Morgado, RE Wang, TSF Vodolaga, B Terekhin, V Onischenko, LM Vorozhtsov, SB Samsonov, EV Vorozhtsov, AS Alenitsky, YG Perpelkin, EE Glazov, AA Novikov, DL Parkhomchuk, V Reva, V Vostrikov, V Mashinin, VA Fedotov, SN Minayev, SA AF Kwan, Thomas J. T. Morgado, Richard E. Wang, Tai-Sen F. Vodolaga, B. Terekhin, V. Onischenko, L. M. Vorozhtsov, S. B. Samsonov, E. V. Vorozhtsov, A. S. Alenitsky, Yu. G. Perpelkin, E. E. Glazov, A. A. Novikov, D. L. Parkhomchuk, V. Reva, V. Vostrikov, V. Mashinin, V. A. Fedotov, S. N. Minayev, S. A. TI The development of enabling technologies for producing active interrogation beams SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ACCELERATOR; STABILITY AB A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (similar to 1 mA) and high-quality (emittance similar to 15 pi mm mrad; energy spread similar to 0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488354] C1 [Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Vodolaga, B.; Terekhin, V.] All Russia Sci Res Inst Tech Phys, Snezhinsk, Russia. [Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Parkhomchuk, V.; Reva, V.; Vostrikov, V.] BINP, Novosibirsk 630090, Russia. [Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A.] Res Firm IFI, Moscow, Russia. RP Kwan, TJT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Parkhomchuk, Vasily/B-3835-2017 OI Parkhomchuk, Vasily/0000-0001-5833-0051 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work, supported by the Weapons Safeguards and Security Exchange (WSSX) program, was performed by Los Alamos National Laboratory operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract no. DE-AC52-06NA25396. NR 25 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 103304 DI 10.1063/1.3488354 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NL UT WOS:000283753400016 PM 21034084 ER PT J AU Simakov, EI Earley, LM Heath, CE Shchegolkov, DY Schultz, BD AF Simakov, Evgenya I. Earley, Lawrence M. Heath, Cynthia E. Shchegolkov, Dmitry Yu. Schultz, Brian D. TI First experimental demonstration of a photonic band gap channel-drop filter at 240 GHz SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CRYSTAL AB We have designed, fabricated, and tested a novel photonic band gap (PBG) channel-drop filter (CDF) operating at around 240 GHz. A PBG CDF is a device that allows the channeling of selected frequencies from continuous spectra into separate waveguides through select defects in a PBG structure. It is compact and configurable, and thus, it can be employed for millimeter-wave spectrometry with applications in communications, radio astronomy, and radar receivers for remote sensing and nonproliferation. In this paper we present the design, modeling, and fabrication methods used to produce a silicon-based PBG CDF, and demonstrate its ability to filter the frequency of 240 GHz with a linewidth of approximately 1 GHz and transmission of 25 dB above background. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488376] C1 [Simakov, Evgenya I.; Earley, Lawrence M.; Heath, Cynthia E.; Shchegolkov, Dmitry Yu.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schultz, Brian D.] Int Technol Ctr, Raleigh, NC 27617 USA. RP Simakov, EI (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Shchegolkov, Dmitry/0000-0002-0721-3397; Simakov, Evgenya/0000-0002-7483-1152 FU U.S. Department of Energy FX The authors gratefully acknowledge the support of the U.S. Department of Energy through the LANL LDRD Program. We also thank Dr. Sergey Kurennoy for useful discussions of simulations, Felix Martinez for technical support of the experiment, and Taylor Martinez and Katherine Alano for administrative and procurement support. NR 22 TC 4 Z9 4 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 104701 DI 10.1063/1.3488376 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NL UT WOS:000283753400036 PM 21034104 ER PT J AU White, AD McHale, GB Goerz, DA Speer, RD AF White, Adam D. McHale, G. Brent Goerz, David A. Speer, Ron D. TI Faraday rotation data analysis with least-squares elliptical fitting SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FIBER CURRENT SENSORS; OPTICAL-FIBER AB A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the method is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3470126] C1 [White, Adam D.; McHale, G. Brent; Goerz, David A.; Speer, Ron D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP White, AD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Lynn Veeser (Los Alamos National Laboratory) and Bruce Marshall (NSTec, Special Technologies Laboratory) for substantial contributions toward resolving numerous technical issues we faced. We would like to thank Lynn Veeser in particular for his assistance in developing this paper. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 11 TC 0 Z9 0 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 103108 DI 10.1063/1.3470126 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NL UT WOS:000283753400008 PM 21034076 ER PT J AU Masanet, E Matthews, HS AF Masanet, Eric Matthews, H. Scott TI Exploring Environmental Applications and Benefits of Information and Communication Technology Introduction to the Special Issue SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Editorial Material ID ENERGY C1 [Masanet, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Matthews, H. Scott] Carnegie Mellon Univ, Green Design Inst, Pittsburgh, PA 15213 USA. RP Masanet, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Bldg 90R4000, Berkeley, CA 94720 USA. EM ermasanet@lbl.gov RI Masanet, Eric /I-5649-2012 NR 16 TC 11 Z9 12 U1 2 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1088-1980 J9 J IND ECOL JI J. Ind. Ecol. PD OCT PY 2010 VL 14 IS 5 SI SI BP 687 EP 691 DI 10.1111/j.1530-9290.2010.00285.x PG 5 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 673VQ UT WOS:000283692700001 ER PT J AU Masanet, E AF Masanet, Eric TI Energy Benefits of Electronic Controls at Small and Medium Sized U.S. Manufacturers SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Masanet, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Bldg 90R4000, Berkeley, CA 94720 USA. EM ermasanet@lbl.gov RI Masanet, Eric /I-5649-2012 NR 3 TC 7 Z9 7 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1088-1980 J9 J IND ECOL JI J. Ind. Ecol. PD OCT PY 2010 VL 14 IS 5 SI SI BP 696 EP 702 DI 10.1111/j.1530-9290.2010.00286.x PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 673VQ UT WOS:000283692700003 ER PT J AU Garcia-Sciveres, M Gilchriese, M Haber, C Heinemann, B Mueller, T AF Garcia-Sciveres, M. Gilchriese, M. Haber, C. Heinemann, B. Mueller, T. TI System concepts for doublet tracking layers SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY FEB 03-05, 2010 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab DE Trigger concepts and systems (hardware and software); Detector design and construction technologies and materials; Electronic detector readout concepts (solid-state) AB For a future Super Large Hadron Collider (SLHC) all silicon trackers with real time triggering capability are under consideration. A doublet structure, consisting of axial strip layers spaced close by in radius, is a natural configuration for transverse momentum triggering in the similar to 10-20 GeV/c range. Such structures are studied here in simulation in order to understand possible rejection power and data rates. Highly integrated multi-modular, "stave" structures have been under study as a general solution to the construction and design of a large silicon tracker. As a practical implementation of doublet trigger layers, staves are investigated here and found to offer certain simple technical extensions and advantages for this application. C1 [Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Heinemann, B.; Mueller, T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Haber, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM chhaber@lbl.gov NR 11 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2010 VL 5 AR C10001 DI 10.1088/1748-0221/5/10/C10001 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 675AZ UT WOS:000283797200018 ER PT J AU Lipton, R AF Lipton, Ronald TI 3D technology for intelligent trackers SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY FEB 03-05, 2010 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab DE Trigger concepts and systems (hardware and software); Front-end electronics for detector readout; VLSI circuits; Digital electronic circuits ID CHIP AB At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding. C1 Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Lipton, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL USA. EM lipton@fnal.gov NR 11 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2010 VL 5 AR C10006 DI 10.1088/1748-0221/5/10/C10006 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 675AZ UT WOS:000283797200013 ER PT J AU Ke, YH Zhang, WH Quackenbush, LJ AF Ke, Yinghai Zhang, Wenhua Quackenbush, Lindi J. TI Active Contour and Hill Climbing for Tree Crown Detection and Delineation SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Article ID REGENERATING CONIFEROUS FORESTS; RESOLUTION AERIAL IMAGERY; ALGORITHM AB This paper presents a new approach for individual tree crown detection and delineation that is applicable under various imaging conditions. The approach extracts crown area using a region-based active contour model and then detects tree tops within the crown area by considering both spectral and shape characteristics of the crown. The detected tree tops allow subsequent clustering of crown pixels using a new hill-climbing algorithm. We tested the approach on a Norway spruce stand using three types of high spatial resolution imagery: an Emerge natural color vertical aerial image, an off-nadir Quick Bird panchromatic image. and a natural color digital orthoimage. In comparison to the published region growing algorithm, our approach improved tree crown detection by over 10 percent for all three types of imagery, and provided accurate tree crown diameter estimation, which has utility in tree volume estimation, species composition, and forest health analysis. C1 [Ke, Yinghai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ke, Yinghai; Zhang, Wenhua; Quackenbush, Lindi J.] SUNY Coll Environm Sci & Forestry, Dept Environm Resources & Forest Engn, Syracuse, NY 13210 USA. RP Ke, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Yinghai.Ke@pnl.gov NR 29 TC 22 Z9 24 U1 0 U2 6 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD OCT PY 2010 VL 76 IS 10 BP 1169 EP 1181 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 662HU UT WOS:000282799100008 ER PT J AU Yantasee, W Rutledge, RD Chouyyok, W Sukwarotwat, V Orr, G Warner, CL Warner, MG Fryxell, GE Wiacek, RJ Timchalk, C Addleman, RS AF Yantasee, Wassana Rutledge, Ryan D. Chouyyok, Wilaiwan Sukwarotwat, Vichaya Orr, Galya Warner, Cynthia L. Warner, Marvin G. Fryxell, Glen E. Wiacek, Robert J. Timchalk, Charles Addleman, R. Shane TI Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE nanoporous; mesoporous; SAMMS; thiol; iminodiacetic acid; biocompatibility; heavy-metal chelation; sorbent; ion exchange; detoxification ID SELF-ASSEMBLED MONOLAYERS; DRUG-DELIVERY SYSTEM; MESOPOROUS SUPPORTS SAMMS; CONTROLLED-RELEASE; ANTICANCER DRUGS; NATURAL-WATERS; PORE-SIZE; NANOPARTICLES; MCM-41; CANCER AB Surface-functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS), has previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems, suggesting that they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials' biocompatibility, and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e., blood, urine, etc.) Consequentially, thiol-functionalized SAMMS was further analyzed to assess the material's performance under a number of different biologically relevant conditions (i.e., variable pH and ionic strength) to gauge any potentially negative effects resulting from interaction with the sorbent, such as cellular toxicity or the removal of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus nontoxic. The results show that organic ligand functionalized nanoporous silica could be a valuable material for a range of detoxification therapies and potentially other biomedical applications. C1 [Yantasee, Wassana] OHSU Sch Med, Dept Biomed Engn, Portland, OR 97239 USA. [Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yantasee, W (reprint author), OHSU Sch Med, Dept Biomed Engn, Portland, OR 97239 USA. EM yantasee@bme.ogi.edu; shane.addleman@pnl.gov FU National Institute of Environmental Health Sciences [R21 ES015620]; National Institute of Allergy and Infectious Disease [R01-AI074064, R01-AI080502] FX The work was supported by the National Institute of Environmental Health Sciences (grant R21 ES015620) and the National Institute of Allergy and Infectious Disease (Grants R01-AI074064 and R01-AI080502). The research was performed, in part, at the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at PNNL. The authors thank View Koonsiripaiboon, Jarupa Kanlayanatham, Joseph D. Davidson, Dr. George A Porter, Dr. Worapon Kiatkittipong, Dr. Joongjai Panpranot, and Dr. Karla Thrall for their contributions. NR 89 TC 48 Z9 48 U1 6 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2010 VL 2 IS 10 BP 2749 EP 2758 DI 10.1021/am100616b PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 670XP UT WOS:000283463700015 PM 20939537 ER PT J AU Mauldin, CE Piliego, C Poulsen, D Unruh, DA Woo, C Ma, BW Mynar, JL Frechet, JMJ AF Mauldin, Clayton E. Piliego, Claudia Poulsen, Daniel Unruh, David A. Woo, Claire Ma, Biwu Mynar, Justin L. Frechet, Jean M. J. TI Axial Thiophene-Boron(subphthalocyanine) Dyads and Their Application in Organic Photovoltaics SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE boron(subphthalocyanine); organic photovoltaic; oligothiophene; semiconductor; photoluminescence ID SUBPHTHALOCYANINES; CELLS AB We report the synthesis and characterization of boron(subphthalocyanine) derivatives with bithiophene and quaterthiophene as axial ligands, i.e., thiophene-subphthalocyanine dyads (nT-SubPcs), and their application in organic photovoltaic cells (OPVs). Thin films of nT-SubPcs prepared via solution processing can act as the electron donor in bilayer OPVs with evaporated C(60) as the electron acceptor. The photophyscial and morphological properties of the nT-SubPcs are studied to rationalize OPV device parameters. The single-crystal X-ray structure is solved for two dyads to show the molecular structures in the solid state, and UV-vis spectroscopy and fluorescence spectroscopy are used to characterize the effect of conjugated thiophene ligands on the photophysical properties, i.e., absorption and photoluminescence quantum yield. Cyclic voltammetry, density functional theory (DFT) calculations, and low-temperature photoluminescence spectra show that photoluminescence yields depend on the overall flexibility of the SubPc derivatives and not on the oxidation potential or electronic relationship of the ligand and macrocycle molecular orbitals. We show with grazing-incidence X-ray scattering and atomic force microscopy (AFM) that careful choice of ligand structure can improve the crystallinity of thin films that leads to a relative increase in short-circuit current in OPV device. Our work clearly demonstrates that SubPcs can be used as light-harvesting chromophores in a matrix of a crystalline organic semiconductor for OPVs. C1 [Mauldin, Clayton E.; Piliego, Claudia; Poulsen, Daniel; Unruh, David A.; Woo, Claire; Ma, Biwu; Frechet, Jean M. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mauldin, Clayton E.; Piliego, Claudia; Poulsen, Daniel; Unruh, David A.; Woo, Claire; Mynar, Justin L.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM BWMa@lbl.gov; frechet@berkeley.edu RI Ma, Biwu/B-6943-2012; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-ACO2-05CH11231]; DOE FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy, under Contract DE-ACO2-05CH11231. Portions of this work (device characterization) were performed at the Molecular Foundry supported by DOE under the same Contract number. Other portions of this work were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the DOE Office of Basic Energy Sciences. NR 17 TC 37 Z9 37 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2010 VL 2 IS 10 BP 2833 EP 2838 DI 10.1021/am100516a PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 670XP UT WOS:000283463700026 ER PT J AU Wang, XH Wang, X Fernandez, R Ocola, L Yan, MD La Rosa, A AF Wang, Xiaohua Wang, Xin Fernandez, Rodolfo Ocola, Leonidas Yan, Mingdi La Rosa, Andres TI Electric-Field-Assisted Dip-Pen Nanolithography on Poly(4-vinylpyridine) (P4VP) Thin Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE cross-linked P4VP thin film; protonation; electric-field-assisted; erasable patterns; dip-pen nanolithography ID ATOMIC-FORCE MICROSCOPE; ELECTROSTATIC NANOLITHOGRAPHY; POLYMER; INK; AFM; OLIGONUCLEOTIDES; NANOWIRES; RESONANCE; SURFACES AB Dip-pen nanolithography (DPN) has attracted increased attention for its ability to generate nanometer-scale patterns on solid surface using an "ink"-coated atomic force microscope (AFM) tip. In contrast to this conventional anchoring-molecules procedure, nanopatterns can also be created by triggering the structural response of the proper substrate. In one approach, the delivery of acidic buffer from the tip into a poly(4-vinylpyridine) (P4VP) thin film (while the tip is being laterally moved, in a raster fashion, along a preprogrammed pattern) leads to the polymer swelling in response to the local protonation. This practice, however, has suffered from a lack of consistency due to the potentially many factors influencing the pattern formation. Herein we report that a more reliable strategy for well controlling the protonation process results when applying an electric held between the AFM tip and the sample. We demonstrate the improved capabilities of the electric-field-assisted DPN method towards reproducibly and reliably fabricating nanostructures by taking advantage of the responsive characteristics (i.e. swelling) of P4VP. Our work includes a systematic study of pattern fabrication under different patterning parameters (mainly the applied bias and contact force) and, very important, provides evidence of the reversible characteristic of the pattern formation process. C1 [Wang, Xin; Yan, Mingdi] Portland State Univ, Dept Chem, Portland, OR 97201 USA. [Wang, Xiaohua; Fernandez, Rodolfo; La Rosa, Andres] Portland State Univ, Dept Phys, Portland, OR 97201 USA. [Ocola, Leonidas] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Yan, MD (reprint author), Portland State Univ, Dept Chem, Portland, OR 97201 USA. EM yanm@pdx.edu; andres@pdx.edu RI Wang, Xin/A-4751-2012 FU Oregon Nanoscience and Microtechnologies Institute [N00014-08-1-1237]; National Institutes of General-Medical Science (NIGMS) under NIH [R01GM080295, 2R15GM066279] FX A.LR. acknowledges support from the Oregon Nanoscience and Microtechnologies Institute through Grant N00014-08-1-1237. Xin Wang and M. Yan thank the financial supports from the National Institutes of General-Medical Science (NIGMS) under NIH Awards R01GM080295 and 2R15GM066279. NR 36 TC 9 Z9 9 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2010 VL 2 IS 10 BP 2904 EP 2909 DI 10.1021/am1005964 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 670XP UT WOS:000283463700036 ER PT J AU Harper, JC Khirpin, CY Carnes, EC Ashley, CE Lopez, DM Savage, T Jones, HDT Davis, RW Nunez, DE Brinker, LM Kaehr, B Brozik, SM Brinker, CJ AF Harper, Jason C. Khirpin, Constantine Y. Carnes, Eric C. Ashley, Carlee E. Lopez, DeAnna M. Savage, Travis Jones, Howland D. T. Davis, Ryan W. Nunez, Dominique E. Brinker, Lina M. Kaehr, Bryan Brozik, Susan M. Brinker, C. Jeffrey TI Cell-Directed Integration into Three-Dimensional Lipid-Silica Nanostructured Matrices SO ACS NANO LA English DT Article DE sol-gel; mesoporous silica; biomaterials; cell encapsulation/entrapment; cell-directed integration; evaporation-induced self-assembly ID SOL-GEL ENCAPSULATION; SACCHAROMYCES-CEREVISIAE; IMMOBILIZATION; BACTERIA; PERSPECTIVES; IMAGES; MICROENCAPSULATION; BIOMOLECULES; ENTRAPMENT; BIOSENSORS AB We report a unique approach in which living cells direct their integration into 3D solid-state nanostructures. Yeast cells deposited on a weakly condensed lipid/silica thin film mesophase actively reconstruct the surface to create a fully 3D bio/nano interface, composed of localized lipid bilayers enveloped by a lipid/silica mesophase, through a self-catalyzed silica condensation process. Remarkably, this integration process selects exclusively for living cells over the corresponding apoptotic cells (those undergoing programmed cell death), via the development of a pH gradient, which catalyzes silica deposition and the formation of a coherent interface between the cell and surrounding silica matrix. Added long-chain lipids or auxiliary nanocomponents are localized within the pH gradient, allowing the development of complex active and accessible bio/nano interfaces not achievable by other synthetic methods. Overall, this approach provides the first demonstration of active cell-directed integration into a nominally solid-state three-dimensional architecture. It promises a new means to integrate "bio" with "nano" into platforms useful to study and manipulate cellular behavior at the individual cell level and to interface living organisms with electronics, photonics, and fluidics. C1 [Harper, Jason C.; Khirpin, Constantine Y.; Carnes, Eric C.; Ashley, Carlee E.; Savage, Travis; Nunez, Dominique E.; Brinker, Lina M.; Brozik, Susan M.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Harper, Jason C.; Lopez, DeAnna M.; Jones, Howland D. T.; Davis, Ryan W.; Kaehr, Bryan; Brozik, Susan M.; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Brozik, SM (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM smbrozi@sandia.gov; cjbrink@sandia.gov FU Defense Treat Reduction Agency (DTRA) [B0844671]; DoE NNSA Office for Nonproliferation Research and Development [NA-22]; Air Force Office of Science and Research (AFOSR); Sandia's Lab; DoE Office of Science Basic Energy Sciences Division of Materials Science and Engineering; Center for Integrated Nanotechnologies, a U.S. Department of Energy Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Michael R. Keenan, Mark Van Benthem, and David K. Melgaard for their contributions in the development of the MCR algorithms and software. We also thank Michael B. Sinclair for use of the hyperspectral confocal microscope. This work was funded by the Defense Treat Reduction Agency (DTRA) Chem. Bio. Basic Research Program Grant B0844671, DoE NNSA Office for Nonproliferation Research and Development (NA-22), the Air Force Office of Science and Research (AFOSR), Sandia's Lab Directed Research and Development program, and the DoE Office of Science Basic Energy Sciences Division of Materials Science and Engineering. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 59 TC 17 Z9 17 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 5539 EP 5550 DI 10.1021/nn101793u PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700011 PM 20849120 ER PT J AU Tayebi, N Zhang, YG Chen, RJ Tran, QA Chen, R Nishi, Y Ma, Q Rao, V AF Tayebi, Noureddine Zhang, Yuegang Chen, Robert J. Tran, Quan Chen, Rong Nishi, Yoshio Ma, Qing Rao, Valluri TI An Ultraclean Tip-Wear Reduction Scheme for Ultrahigh Density Scanning Probe-Based Data Storage SO ACS NANO LA English DT Article DE nanotribology; wear; probe-based storage; ferroelectric media ID NANOSCALE; FRICTION; HETEROSTRUCTURES; NANOTECHNOLOGY AB Probe-based memory devices using ferroelectric media have the potential to achieve ultrahigh data-storage densities under high write-read speeds. However, the high-speed scanning operations over a device lifetime of 5-10 years, which corresponds to a probe tip sliding distance of 5-10 km, can cause the probe tip to mechanically wear, critically affecting its write-read resolution. Here, we show that the long distance tip-wear endurance issue can be resolved by introducing a thin water layer at the tip-media interface-thin enough to form a liquid crystal. By modulating the force at the tip-surface contact, this water crystal layer can act as a viscoelastic material which reduces the stress level on atomic bonds taking part in the wear process. Under our optimized environment, a platinum-iridium probe tip can retain its write-read resolution over 5 km of sliding at a 5 mm/s velocity on a smooth ferroelectric film. We also demonstrate a 3.6 Tbit/inch(2) storage density over a 1 x 1 mu m(2) area, which is the highest density ever written on ferroelectric films over such a large area. C1 [Tayebi, Noureddine; Zhang, Yuegang; Chen, Robert J.; Tran, Quan; Chen, Rong; Ma, Qing; Rao, Valluri] Intel Corp, Santa Clara, CA 95054 USA. [Tayebi, Noureddine; Nishi, Yoshio] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, YG (reprint author), Intel Corp, 2200 Mission Coll Blvd, Santa Clara, CA 95054 USA. EM yzhang5@lbl.gov RI Chen, Rong/C-9775-2011; Zhang, Y/E-6600-2011 OI Chen, Rong/0000-0001-7371-1338; Zhang, Y/0000-0003-0344-8399 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX Part of Y.Z.'s work was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. NR 29 TC 10 Z9 10 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 5713 EP 5720 DI 10.1021/nn1013512 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700032 PM 20929239 ER PT J AU Hu, YS Jeon, J Seok, TJ Lee, S Hafner, JH Drezek, RA Choo, H AF Hu, Ying S. Jeon, Jaeseok Seok, Tae J. Lee, Seunghyun Hafner, Jason H. Drezek, Rebekah A. Choo, Hyuck TI Enhanced Raman Scattering from Nanoparticle-Decorated Nanocone Substrates: A Practical Approach to Harness In-Plane Excitation SO ACS NANO LA English DT Article DE Raman scattering; SEM; nanocone substrate; gold nanoparticles; surface plasmon; plasmon hybridization; in-plane excitation ID GOLD NANOPARTICLES; METALLIC NANOPARTICLE; CLUSTER ARRAYS; FILM SYSTEM; SPECTROSCOPY; SERS; SURFACES; NANOSTRUCTURES; ASSEMBLIES; NANOSHELLS AB We investigate surface-enhanced Raman scattering (SERS) from gold-coated silicon germanium nanocone substrates that are decorated with 30-nm spherical gold nanoparticles (AuNPs). Finite-element simulations suggest that individual nanocones generate stronger electromagnetic enhancement with axial polarization polarization parallel to the vertical axis of the nanocones) than with transverse polarization (i.e., polarization in the plane of the nanocone substrate), whereas the excitation in a typical Raman microscope is mainly polarized in the transverse plane. We introduce a practical approach to improve the SERS performance of the substrate by filling the valleys between nanocones with AuNPs. Simulations reveal an enhanced electric field at the nanoscale junctions formed between AuNPs and nanocones, and we explain this lateral coupling with a hybridization model for a particle-film system. We further experimentally verify the added enhancement by measuring SERS from trans-1,2-bi-(4-pyridyl) ethylene molecules absorbed onto the substrates. We report over one order-of-magnitude increase in SERS activities with the AuNP decoration (compared to the nanocone substrate without AuNPs) and achieve a spatially averaged enhancement factor of 1.78 x 10(8) at 785-nm excitation. Understanding and implementing the enhancing mechanism of structured metallic surfaces decorated with plasmonic nanoparticles open possibilities to substantially improve the SERS performance of the existing process-engineered substrates. C1 [Choo, Hyuck] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hu, Ying S.; Drezek, Rebekah A.] Rice Univ, Dept Bioengn, Houston, TX 77005 USA. [Hafner, Jason H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Hafner, Jason H.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Drezek, Rebekah A.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Jeon, Jaeseok; Seok, Tae J.; Choo, Hyuck] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Choo, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM hchoo@lbl.gov RI Lee, Seunghyun/A-1192-2009; Drezek, Rebekah/A-5101-2012; Hafner, Jason/A-7959-2008 OI Hafner, Jason/0000-0002-6943-4232 FU Welch Foundation [C-1598]; DOE [DE-FG02-97ER25308]; DARPA; NSF [EIA-0216467] FX The authors would like to thank P. Nordlander for discussion on the plasmon hybridization in the particle-film system, J. Bokor for discussion on polarization effects in confocal setups, A. Zayak for discussion on the chemical enhancement, A. Schwartzberg for the Raman scan, and S. Noelck for the preparation of the manuscript. This work was financially supported by the Welch Foundation Grant C-1598, DOE DE-FG02-97ER25308 and DARPA SERS S&T Program. The computational work was supported by the Shared University Grid at Rice University funded by NSF Grant EIA-0216467. Y. Hu acknowledges support from the DOE CSGF program. NR 54 TC 26 Z9 26 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 5721 EP 5730 DI 10.1021/nn101352h PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700033 PM 20836500 ER PT J AU Takahashi, T Takei, K Adabi, E Fan, ZY Niknejad, AM Javey, A AF Takahashi, Toshitake Takei, Kuniharu Adabi, Ehsan Fan, Zhiyong Niknejad, Ali M. Javey, Ali TI Parallel Array InAs Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics SO ACS NANO LA English DT Article DE nanowires; flexible electronics; printed; plastic; radio frequency devices ID FIELD-EFFECT TRANSISTORS; MOBILITY; GHZ; HETEROSTRUCTURES; TRANSPARENT; PERFORMANCE; CIRCUITRY; SCALE AB The radio frequency response of InAs nanowire array transistors on mechanically flexible substrates is characterized. For the first time, GHz device operation of nanowire arrays is demonstrated, despite the relatively long channel lengths of similar to 1.5 mu m used in this work. Specifically, the transistors exhibit an impressive maximum frequency of oscillation, f(max) similar to 1.8 GHz, and a cutoff frequency, f(t) similar to 1 GHz. The high-frequency response of the devices is due to the high saturation velocity of electrons in high-mobility InAs nanowires. The work presents a new platform for flexible, ultrahigh frequency devices with potential applications in high-performance digital and analog circuitry. C1 [Takahashi, Toshitake; Takei, Kuniharu; Adabi, Ehsan; Fan, Zhiyong; Niknejad, Ali M.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Takahashi, Toshitake; Takei, Kuniharu; Fan, Zhiyong; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Takahashi, Toshitake; Takei, Kuniharu; Fan, Zhiyong; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Fan, Zhiyong/C-4970-2012; Javey, Ali/B-4818-2013; OI Fan, Zhiyong/0000-0002-5397-0129 FU MARCO/MSD Focus Center Research Program; Berkeley Sensors and Actuator Center; NSF; Lawrence Berkeley National Laboratory; World Class University at Sunchon National University FX This work was partially funded by MARCO/MSD Focus Center Research Program, Berkeley Sensors and Actuator Center, and NSF CAREER Award. The synthesis part of this work was supported by a LDRD from Lawrence Berkeley National Laboratory. A.J. acknowledges a support from the World Class University program at Sunchon National University. We acknowledge Paul Leu for help with the mechanical simulations. NR 38 TC 56 Z9 56 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 5855 EP 5860 DI 10.1021/nn1018329 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700051 PM 20845916 ER PT J AU Ivanov, SA Achermann, M AF Ivanov, S. A. Achermann, M. TI Spectral and Dynamic Properties of Excitons and Biexcitons in Type-II Semiconductor Nanocrystals SO ACS NANO LA English DT Article DE nanocrystals; quantum dots; type-II; time-resolved spectroscopy; dynamics; biexcitons; Auger recombination ID CORE-SHELL NANOCRYSTALS; QUANTUM DOTS; CARRIER RELAXATION; OPTICAL GAIN; HETEROSTRUCTURES; ENERGY; SPECTROSCOPY; CONFINEMENT; REGIMES AB Using time-resolved photoluminescence spectroscopy, we analyze single and multiexciton emission energies and decay dynamics of CdS/ZnSe core/shell nanocrystals (NCs). The NCs exhibit a characteristic type-II band alignment that leads to spatially separated charges; this effect is at the origin of long radiative exciton lifetimes, repulsive biexciton interaction energies, and reduced Auger recombination efficiencies. We determine these properties as a function of ZnSe shell thickness and find that the exciton emission energies and the decay times depend little on this parameter. In contrast, the spectral and dynamic properties of biexcitons vary strongly with the shell thickness. The considerable shell dependence of the biexciton decay lets us conclude that the associated Auger process involves the excitation of holes localized in the ZnSe shell. In NCs with thick shells, the large blue shift of the biexciton emission energy is mainly caused by Coulomb repulsion between electrons localized in the CdS core. The different sensitivity of exciton and multiexciton characteristics on the ZnSe shell thickness provides a unique opportunity to tune them independently. C1 [Achermann, M.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Ivanov, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Achermann, M.] Lucerne Univ Appl Sci & Arts, CH-6048 Horw, Switzerland. RP Achermann, M (reprint author), Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. EM marc.achermann@hslu.ch RI Ivanov, Sergei/B-5505-2011; Achermann, Marc/A-1849-2011 OI Achermann, Marc/0000-0002-3939-9309 FU United States Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We would like to thank V.I. Klimov for stimulating discussions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a United States Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (contract DE-AC52-06NA25396) and Sandia National Laboratories (contract DE-AC04-94AL85000). NR 27 TC 25 Z9 25 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 5994 EP 6000 DI 10.1021/nn101357q PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700068 PM 20873722 ER PT J AU Stephanopoulos, N Tong, GJ Hsiao, SC Francis, MB AF Stephanopoulos, Nicholas Tong, Gary J. Hsiao, Sonny C. Francis, Matthew B. TI Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells SO ACS NANO LA English DT Article DE viral capsids; photodynamic therapy; porphyrins; aptamers; targeted delivery ID POLYESTER DENDRITIC SYSTEMS; PROTEIN CAGE ARCHITECTURES; DRUG-DELIVERY; SINGLET OXYGEN; GENETIC-CODE; TUMOR-CELLS; DNA APTAMER; THERAPY; PROBES; NANOPARTICLES AB Bacteriophage MS2 was used to construct a targeted, multivalent photodynamic therapy vehicle for the treatment of Jurkat leukemia T cells. The self-assembling spherical virus capsid was modified on the interior surface with up to 180 porphyrins capable of generating cytotoxic singlet oxygen upon illumination. The exterior of the capsid was modified with similar to 20 copies of a Jurkat-specific aptamer using an oxidative coupling reaction targeting an unnatural amino acid. The capsids were able to target and selectively kill more than 76% of the Jurkat cells after only 20 min of illumination. Capsids modified with a control DNA strand did not target Jurkat cells, and capsids modified with the aptamer were found to be specific for Jurkat cells over U266 cells (a control B cell line). The doubly modified capsids were also able to kill Jurkat cells selectively even when mixed with erythrocytes, suggesting the possibility of using our system to target blood-borne cancers or other pathogens in the blood supply. C1 [Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu FU Office of Science, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; DoD [BC016995] FX Stipend support for N.S. was provided for by the Director, Office of Science, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The basic studies for targeted treatment of cancer cells were funded by the DoD Breast Cancer Research Program Grant BC016995. NR 64 TC 89 Z9 92 U1 6 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 6014 EP 6020 DI 10.1021/nn1014769 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700070 PM 20863095 ER PT J AU Borisevich, A Ovchinnikov, OS Chang, HJ Oxley, MP Yu, P Seidel, J Eliseev, EA Morozovska, AN Ramesh, R Pennycook, SJ Kalinin, SV AF Borisevich, AlbinaY. Ovchinnikov, Oleg S. Chang, Hye Jung Oxley, Mark P. Yu, Pu Seidel, Jan Eliseev, Eugine A. Morozovska, Anna N. Ramesh, Ramamoorthy Pennycook, Stephen J. Kalinin, Sergei V. TI Mapping Octahedral Tilts and Polarization Across a Domain Wall in BiFeO3 from Z-Contrast Scanning Transmission Electron Microscopy Image Atomic Column Shape Analysis SO ACS NANO LA English DT Article DE ferroelectric domain walls; bismuth ferrite; scanning transmission electron microscopy; principal component analysis ID SOLID-SOLUTION SYSTEM; THERMODYNAMIC THEORY; FERROELECTRIC-FILMS; PEROVSKITES; CRYSTALS; SCALE AB Oxygen octahedral tilts underpin the functionality of a large number of perovskite-based materials and heterostructures with competing order parameters. We show how a precise analysis of atomic column shapes in Z-contrast scanning transmission electron microscopy images can reveal polarization and octahedral tilt behavior across uncharged and charged domain walls in BiFeO3. This method is capable of visualizing octahedral tilts to much higher thicknesses than phase contrast imaging. We find that the octahedral tilt transition across a charged domain wall is atomically abrupt, while the associated polarization profile is diffuse (1.5-2 nm). Ginzburg-Landau theory then allows the relative contributions of polarization and the structural order parameters to the wall energy to be determined. C1 [Borisevich, AlbinaY.; Chang, Hye Jung; Oxley, Mark P.; Pennycook, Stephen J.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ovchinnikov, Oleg S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Oxley, Mark P.] Vanderbilt Univ, Dept Phys, Nashville, TN 37240 USA. [Yu, Pu; Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Eliseev, Eugine A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, Kiev, Ukraine. [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Semicond Phys, Kiev, Ukraine. RP Borisevich, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM albinab@ornl.gov RI Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Borisevich, Albina/B-1624-2009; Yu, Pu/F-1594-2014 OI Kalinin, Sergei/0000-0001-5354-6152; Borisevich, Albina/0000-0002-3953-8460; FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences of the United States Department of Energy; ORNL FX This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences of the United States Department of Energy (A.B., H.J.C., S.J.P., and S.V.K.). O.O. was supported by ORNL HERE program. The authors also acknowledge invaluable advice from Dr. Alexander Tselev (UT and ORNL) and helpful discussions with Prof. Ekhard Salje (Cambridge University). NR 40 TC 66 Z9 67 U1 7 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 6071 EP 6079 DI 10.1021/nn1011539 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700077 PM 20919690 ER PT J AU McGuire, JA Sykora, M Robel, I Padilha, LA Joo, J Pietryga, JM Klimov, VI AF McGuire, John A. Sykora, Milan Robel, Istvan Padilha, Lazaro A. Joo, Jin Pietryga, Jeffrey M. Klimov, Victor I. TI Spectroscopic Signatures of Photocharging due to Hot-Carrier Transfer in Solutions of Semiconductor Nanocrystals under Low-Intensity Ultraviolet Excitation SO ACS NANO LA English DT Article DE PbSe nanocrystals; charge separation; charged exciton; trapping; photoluminescence; carrier multiplication; Auger recombination ID CADMIUM SELENIDE NANOCRYSTALS; COLLOIDAL QUANTUM DOTS; PBSE NANOCRYSTALS; FLUORESCENCE INTERMITTENCY; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; MULTIPLICATION; RELAXATION; EMISSION; PHOTOIONIZATION AB We show that excitation of solutions of well-passivated PbSe semiconductor nanocrystals (NCs) with ultraviolet (3.1 eV) photons can produce long-lived charge-separated states in which the NC core is left with a nonzero net charge. Since this process is not observed for lower-energy (1.5 eV) excitation, we ascribe it to hot-carrier transfer to some trap site outside the NC. Photocharging leads to bleaching of steady-state absorption, partial quenching of emission, and additional fast time scales in carrier dynamics due to Auger decay of charged single- and multiexciton states. The degree of photocharging, f, saturates at a level that varies from 5 to 15% depending on the sample. The buildup of the population of charged NCs is extremely slow indicating very long, tens of seconds, lifetimes of these charge-separated states. Based on these time scales and the measured onset of saturation of fat excitation rates around 0,05-1 photon per NC per ms, we determine that the probability of charging following a photon absorption event is of the order of 10(-4) to 10(-3). The results of these studies have important implications for the understanding of photophysical properties of NCs, especially in the case of time-resolved measurements of carrier multiplication. C1 [Robel, Istvan; Padilha, Lazaro A.; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Div Chem, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Padilha, Lazaro/B-5930-2011; Robel, Istvan/D-4124-2011; Padilha, Lazaro/G-1523-2013; McGuire, John/C-3380-2015; OI Robel, Istvan/0000-0002-9738-7728; McGuire, John/0000-0002-0682-0953; Klimov, Victor/0000-0003-1158-3179 FU United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences (BES); Chemical Sciences, Biosciences and Geosciences Division of BES, U.S. DOE; Los Alamos FX V.I.K, MS., and J.M.P. acknowledge support of the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences (BES). J.A.M. and J.J. were supported by the Chemical Sciences, Biosciences and Geosciences Division of BES, U.S. DOE. L.A.P. is supported by Los Alamos LDRD program. NR 35 TC 54 Z9 54 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 6087 EP 6097 DI 10.1021/nn1016296 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700079 PM 20939512 ER PT J AU Dileo, RA Castiglia, A Ganter, MJ Rogers, RE Cress, CD Raffaelle, RP Landi, BJ AF DiLeo, Roberta A. Castiglia, Anthony Ganter, Matthew J. Rogers, Reginald E. Cress, Cory D. Raffaelle, Ryne P. Landi, Brian J. TI Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries SO ACS NANO LA English DT Article DE lithium ion batteries; carbon nanotubes; free-standing anodes; germanium anodes; titanium contacts ID ELECTROCHEMICAL LI INSERTION; FIELD-EFFECT TRANSISTORS; CATALYTIC DECOMPOSITION; WORK FUNCTION; METAL; ENERGY; INTERCALATION; ELECTRODES; RESISTANCE; EMISSION AB Carbon nanotubes are being considered for adoption in lithium ion batteries as both a current collector support for high-capacity active materials (replacing traditional metal foils) and as free-standing electrodes where they simultaneously store lithium ions. The necessity to establish good electrical contact to these novel electrode designs is critical for success. In this work, application of nickel and titanium as both separable and thin film electrical contacts to free-standing single-wall carbon nanotube (SWCNT) electrodes is shown to dramatically enhance both the reversible lithium ion capacity and rate capability in comparison with stainless steel. Scanning electron microscopy showed that evaporation of Ni and Ti can effectively coat the SWCNT bundles in a bulk electrode which is capable of providing an improved electrical contact. A thin film of titanium emerged as the preferred electrical contact promoting the highest capacity ever measured for a SWCNT free-standing electrode of 1250 mAh/g. In addition, the titanium contacting approach demonstrated a 5-fold improvement in lithium ion capacity at extraction rates greater than 1C for a high-energy density Ge-SWCNT electrode. The overall performance improvement with Ti contacts is attributed to a lower contact resistance, nanoscale "wetting" of SWCNT bundles to improve contact uniformity, and effective electron coupling between Ti and SWCNTs due to work function-energy level alignment. The experimental results provide the basis for a Ragone analysis (power vs energy parameters), whereby Ge-SWCNT-Ti anodes paired with a LiFePO(4) cathode can lead to a 60% improvement over conventional graphite anodes in both power and energy density for a complete battery. C1 [Landi, Brian J.] Rochester Inst Technol, Rochester, NY 14623 USA. Natl Renewable Energy Lab, Golden, CO USA. USN, Res Lab, Washington, DC 20375 USA. RP Landi, BJ (reprint author), Rochester Inst Technol, 156 Lomb Mem Dr, Rochester, NY 14623 USA. EM brian.landi@rit.edu RI Cress, Cory/A-8673-2009; Rogers Jr, Reginald/F-4757-2012; OI Cress, Cory/0000-0001-7563-6693 FU U.S. Government; Lockheed Martin; GAANN; NRL FX The authors acknowledge financial support from the U.S. Government and Lockheed Martin. R.A.D. acknowledges graduate student funding from a GAANN fellowship through the RIT Microsystems Engineering PhD program. C.D.C. acknowledges financial support from the NRL Karles Distinguished Scholar Fellowship Program. The authors would like to thank Dr. Sean Rommel and David Pawlik for their assistance with the use of the LEO EVO 50 microscope, Tom Mastrangelo for his experimental assistance with the SWCNTs, and Jack Alvarenga and Chris Schauerman for their helpful discussions regarding this work. NR 90 TC 37 Z9 37 U1 3 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 6121 EP 6131 DI 10.1021/nn1018494 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700083 PM 20857949 ER PT J AU Lalander, CH Zheng, Y Dhuey, S Cabrini, S Bach, U AF Lalander, Cecilia H. Zheng, Yuanhui Dhuey, Scott Cabrini, Stefano Bach, Udo TI DNA-Directed Self-Assembly of Gold Nanoparticles onto Nanopatterned Surfaces: Controlled Placement of Individual Nanoparticles into Regular Arrays SO ACS NANO LA English DT Article DE nanopattern; DNA-directed; templated; self-assembly; gold nanoparticles; arrays ID DIP-PEN NANOLITHOGRAPHY; GENERATED TEMPLATES; METAL NANOPARTICLES; OPTICAL-PROPERTIES; NANOCRYSTAL; SPECTROSCOPY; PATTERNS; NANOSTRUCTURES; SUPERLATTICES; PERSPECTIVES AB A method for the templated DNA-directed self-assembly of individual gold nanoparticles (AuNPs) into discrete nanostructures is described. The templating nanostructures consisted of a linear configuration of six metal dots with a center-to-center dot distance of 55 nm, fabricated by means of electron beam lithography. The 40 nm DNA-capped AuNPs were immobilized onto this templating nanostructure to produce a linear configuration of six adjacent AuNPs. The geometry of the templating nanostructure was found to be critically important for the successful direction of a single nanoparticle onto individual adsorption sites. For optimized template structures the immobilization efficiency of nanoparticles onto the individual adsorption sites was found to be 80%. The nonspecific association of nanoparticles with specifically adsorbed nanoparticles and the between adsorption of nanoparticles, bridging two individual adsorption sites, were the two main defects observed in the immobilized assemblies. Less than 1% of all surface confined AuNPs adsorbed nonspecifically in the areas between the self-assembled regular arrays. C1 [Lalander, Cecilia H.; Bach, Udo] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Zheng, Yuanhui; Bach, Udo] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Dhuey, Scott; Cabrini, Stefano] Lawrence Berkeley Natl Labs, Mol Foundry, Berkeley, CA 94720 USA. RP Bach, U (reprint author), Monash Univ, Sch Chem, Wellington Rd, Clayton, Vic 3800, Australia. EM udo.bach@sci.monash.edu.au RI Bach, Udo/F-3880-2012 FU Australian Research Council [DP DP0665223, LE0883019] FX The authors would like to thank the Australian Research Council for their generous financial support by providing an Australian Research Fellowship as well as project (DP DP0665223) and equipment support (LE0883019) to U.B. as well as for the provision of lab space through the ARC Centre of Excellence for Electromaterials Science (ACES). The authors would also like to thank S. Watkins (Commonwealth Scientific and Industrial Research Organisation, CSIRO, Australia), S. Hsiao (Monash University), T. Bus (University of California, Berkeley), and B. Harteneck (Lawrence Berkeley National Laboratories, Berkeley) for experimental assistance. The authors would further like to express their special thanks to the Molecular Foundry (Lawrence Berkeley National Laboratories, Berkeley) for generously supporting this project by providing free access to its facilities (user projects 142: DNA-directed nanofabrication). The authors, moreover, acknowledge use of facilities within the Monash Center for Electron Microscopy and the Centers provision of scientific and technical assistance. Finally, the authors would like to acknowledge the ARC for providing equipment support through LIEF (LE0883019). NR 54 TC 57 Z9 57 U1 5 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD OCT PY 2010 VL 4 IS 10 BP 6153 EP 6161 DI 10.1021/nn101431k PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 670UV UT WOS:000283453700087 PM 20932055 ER PT J AU Petrova, T Ginell, S Mitschler, A Kim, Y Lunin, VY Joachimiak, G Cousido-Siah, A Hazemann, I Podjarny, A Lazarski, K Joachimiak, A AF Petrova, Tatiana Ginell, Stephan Mitschler, Andre Kim, Youngchang Lunin, Vladimir Y. Joachimiak, Grazyna Cousido-Siah, Alexandra Hazemann, Isabelle Podjarny, Alberto Lazarski, Krzysztof Joachimiak, Andrzej TI X-ray-induced deterioration of disulfide bridges at atomic resolution SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE radiation damage; disulfide bridges; atomic resolution; porcine pancreatic elastase ID RADIATION-DAMAGE; PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS; CRYOGENIC TEMPERATURES; ACTIVE-SITE; SYNCHROTRON-RADIATION; ULTRAHIGH-RESOLUTION; CRYSTALLOGRAPHY; ELECTRON; ABSORPTION AB Overall and site-specific X-ray-induced damage to porcine pancreatic elastase was studied at atomic resolution at temperatures of 100 and 15 K. The experiments confirmed that irradiation causes small movements of protein domains and bound water molecules in protein crystals. These structural changes occur not only at 100 K but also at temperatures as low as 15 K. An investigation of the deterioration of disulfide bridges demonstrated the following. (i) A decrease in the occupancy of S gamma atoms and the appearance of new cysteine rotamers occur simultaneously. (ii) The occupancy decrease is observed for all S gamma atoms, while new rotamers arise for some of the cysteine residues; the appearance of new conformations correlates with the accessibility to solvent. (iii) The sum of the occupancies of the initial and new conformations of a cysteine residue is approximately equal to the occupancy of the second cysteine residue in the bridge. (iv) The most pronounced changes occur at doses below 1.4 x 107 Gy, with only small changes occurring at higher doses. Comparison of the radiation-induced changes in an elastase crystal at 100 and 15 K suggested that the dose needed to induce a similar level of deterioration of the disulfide bonds and atomic displacements at 15 K to those seen at 100 K is more than two times higher. C1 [Petrova, Tatiana; Ginell, Stephan; Kim, Youngchang; Joachimiak, Grazyna; Lazarski, Krzysztof; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Petrova, Tatiana; Lunin, Vladimir Y.] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142290, Russia. [Mitschler, Andre; Cousido-Siah, Alexandra; Hazemann, Isabelle; Podjarny, Alberto] ULP, CNRS, INSERM, Dept Biol Struct & Genom,IGBMC, F-67404 Illkirch Graffenstaden, France. RP Joachimiak, A (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@anl.gov RI Petrova, Tatiana/N-1578-2013; Lunin, Vladimir/O-2506-2013; OI Petrova, Tatiana/0000-0002-8032-2629; Lunin, Vladimir/0000-0003-1235-1206; Podjarny, Alberto/0000-0002-7685-1077 FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Centre National de la Recherche Scientifique (CNRS); Institut National de la Sante et de la Recherche Medicale; Hopital Universitaire de Strasbourg (H.U.S.); Russian Foundation for Basic Research [10-04-00254]; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors wish to thank the members of the Structural Biology Center at Argonne National Laboratory for their help with data collection on the 19-ID beamline. This work was supported by the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357, by the Centre National de la Recherche Scientifique (CNRS), by the Institut National de la Sante et de la Recherche Medicale and the Hopital Universitaire de Strasbourg (H.U.S.) and by the Russian Foundation for Basic Research (grant 10-04-00254). The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 57 TC 13 Z9 13 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2010 VL 66 BP 1075 EP 1091 DI 10.1107/S0907444910033986 PN 10 PG 17 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 667BK UT WOS:000283167400005 PM 20944241 ER PT J AU Millett, JCF Stirk, SM Bourne, NK Gray, GT AF Millett, J. C. F. Stirk, S. M. Bourne, N. K. Gray, G. T., III TI On the behaviour of the magnesium alloy, AZ61 to one-dimensional shock loading SO ACTA MATERIALIA LA English DT Article DE Magnesium alloys; Impact behaviour; Shock loading; Dislocation mobility; Twinning ID STACKING-FAULT ENERGY; CU-AL ALLOYS; LATERAL STRESS; DISLOCATION DENSITY; MANGANIN GAUGES; TUNGSTEN ALLOY; SHEAR-STRENGTH; PEAK PRESSURE; MG ALLOY; DEFORMATION AB The behaviour of the magnesium alloy AZ61 during one-dimensional shock loading has been investigated in terms of the Hugoniot (shock-induced equation of state) and the shear strength variation in terms of variation with impact stress and pulse duration. The Hugoniot has been shown to be near identical with the similar AZ31, as would be expected with related dilute alloy systems. The shear strength has been observed to increase with applied shock stress, in common with many other materials. The shear strength has also been observed to increase with time behind the shock front. It has been suggested that this be due to twinning early in the deformation process, followed by dislocation based at later stages. Crown Copyright (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved. C1 [Millett, J. C. F.; Stirk, S. M.; Bourne, N. K.] AWE, Reading RG7 4PR, Berks, England. [Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Millett, JCF (reprint author), AWE, Reading RG7 4PR, Berks, England. EM Jeremy.Millett@awe.co.uk NR 43 TC 14 Z9 14 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 17 BP 5675 EP 5682 DI 10.1016/j.actamat.2010.06.042 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 651IW UT WOS:000281922400015 ER PT J AU Nixon, ME Lebensohn, RA Cazacu, O Liu, C AF Nixon, Michael E. Lebensohn, Ricardo A. Cazacu, Oana Liu, Cheng TI Experimental and finite-element analysis of the anisotropic response of high-purity alpha-titanium in bending SO ACTA MATERIALIA LA English DT Article DE Twinning; alpha-Titanium; Bent beams; Orthotropy; Elastoplastic model ID ALLOY AB In this paper, we present results of four-point bending tests performed on beams of high-purity alpha-titanium material. These tests have been performed at room temperature for different beam configurations and loading orientations with respect to the orthotropy axes of the material. Digital image correlation was used to determine local strains in the deformed beams. Experimental results compare very well with the predictions of finite-element simulations obtained using the elastic/plastic model developed by Nixon et al. (2010) [12]. Specifically, we compare local deformations and the cross-sections of each beam for all loading configurations. We show that the model predicts with great accuracy the tension compression asymmetry and the evolving anisotropy of the material. The experimentally observed upward shift of the neutral axis, as well as the rigidity of the response along the hard to deform c-axes are very well described by the proposed model. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cazacu, Oana] Univ Florida, Dept Mech & Aerosp Engn, REEF, Shalimar, FL 32539 USA. [Nixon, Michael E.] USAF, Res Lab, Munit Directorate, Eglin AFB, FL 32542 USA. [Lebensohn, Ricardo A.; Liu, Cheng] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. RP Cazacu, O (reprint author), Univ Florida, Dept Mech & Aerosp Engn, REEF, 1350 N Poquito Rd, Shalimar, FL 32539 USA. EM nixon@eglin.af.mil; lebenso@lanl.gov; cazacu@reef.ufl.edu RI Lebensohn, Ricardo/A-2494-2008; Cazacu, Oana/L-4635-2016 OI Lebensohn, Ricardo/0000-0002-3152-9105; Cazacu, Oana/0000-0002-2499-9096 NR 16 TC 17 Z9 17 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 17 BP 5759 EP 5767 DI 10.1016/j.actamat.2010.06.051 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 651IW UT WOS:000281922400023 ER PT J AU Leist, T Webber, KG Jo, W Aulbach, E Rodel, J Prewitt, AD Jones, JL Schmidlin, J Hubbard, CR AF Leist, Thorsten Webber, Kyle G. Jo, Wook Aulbach, Emil Roedel, Juergen Prewitt, Anderson D. Jones, Jacob L. Schmidlin, Josh Hubbard, Camden R. TI Stress-induced structural changes in La-doped BiFeO3-PbTiO3 high-temperature piezoceramics SO ACTA MATERIALIA LA English DT Article DE Piezoelectricity; Ferroelectncity; Neutron diffraction ID MORPHOTROPIC PHASE-BOUNDARY; LEAD-ZIRCONATE-TITANATE; SOLID-SOLUTION; PIEZOELECTRIC CERAMICS; ELECTRICAL-PROPERTIES; CRYSTALLINE SOLUTIONS; X-RAY; DIFFRACTION; TEXTURE; SYSTEM AB High-temperature piezoelectric polycrystalline ceramics of the system (1 - x)(Bi1-yLay)FeO3-xPbTiO(3) (BF-PT), which are mixed phase in their consolidated state, have been investigated by in situ neutron diffraction during the application of uniaxial compressive stress. It is suggested that the achievable strain in BF-PT is largely generated by straining of the rhombohedral phase. The results of the neutron diffraction measurements are compared and discussed with respect to the measured macroscopic ferroelastic constitutive behavior for various compositions of BF-PT. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd All rights reserved. C1 [Leist, Thorsten; Webber, Kyle G.; Jo, Wook; Aulbach, Emil; Roedel, Juergen] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. [Prewitt, Anderson D.; Jones, Jacob L.] Univ Florida, Gainesville, FL 32611 USA. [Schmidlin, Josh; Hubbard, Camden R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Leist, T (reprint author), Tech Univ Darmstadt, Inst Mat Sci, Petersenstr 23, D-64287 Darmstadt, Germany. RI Jones, Jacob/A-8361-2008; Prewitt, Anderson/D-1258-2011; Webber, Kyle/B-1453-2013; Jo, Wook/G-7025-2011 OI Webber, Kyle/0000-0002-1283-7874; Jo, Wook/0000-0002-7158-5654 FU Deutsche Forschungsgemeinschaft [RO 954/20]; US National Science Foundation [DMR-0746902]; US Department of the Army [W911NF-09-1-0435]; US Department of Energy [DE-AC05-00OR22725]; Division of Scientific User Facilities, DOE Office of Basic Energy Science FX This work was supported by the Deutsche Forschungsgemeinschaft under RO 954/20. The authors acknowledge the support of the US National Science Foundation under award DMR-0746902 and the US Department of the Army under award W911NF-09-1-0435. The experiments at ORNL were enabled through an Oak Ridge Associated Universities (ORAU) Powe Junior Faculty Enhancement Award and the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract number DE-AC05-00OR22725. The neutron diffraction measurements were funded by the Division of Scientific User Facilities, DOE Office of Basic Energy Science. The High Flux Isotope Reactor is operated at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. The authors appreciate the technical assistance of Dr Jaime Fernandez-Baca for discussion on the WAND instrument and help in allocating the beamtime for this instrument. NR 34 TC 16 Z9 16 U1 3 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 18 BP 5962 EP 5971 DI 10.1016/j.actamat.2010.07.012 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 659HR UT WOS:000282558100009 ER PT J AU Mendez, PF Tello, KE Lienert, TJ AF Mendez, Patricio F. Tello, Karem E. Lienert, Thomas J. TI Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding SO ACTA MATERIALIA LA English DT Article DE Friction stir welding, High-temperature deformation, High-speed deformation, Aluminum alloys; Steels ID MATERIAL FLOW; STAINLESS-STEEL; THERMOMECHANICAL ANALYSIS; NUMERICAL-SIMULATION; 3-DIMENSIONAL HEAT; HOT DEFORMATION; ALUMINUM-ALLOYS; PROCESS MODEL; PART I; TEMPERATURE AB This paper presents a coupled phenomenological model of heat transfer and plastic flow around the pin in friction stir welding (FSW). The approach is analogous to the boundary layer analysis in fluid mechanics, and is based on the methodology of scaling. The results are a set of novel closed-form expressions for the maximum temperature reached in the process, the thickness of the shear layer, the shear stress around the pin, the torque and the thermal effect of the shoulder. The model presented focuses on the most common conditions encountered in the practice of FSW, which involve relatively slow translation velocities, relatively high rotation velocities and thin shear layers. The ultimate purpose of this model is to provide simple and accurate expressions useful for providing a temperature and strain rate context for metallurgical analysis of FSW and for the selection of process parameters when using FSW to join novel alloys. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd All rights reserved C1 [Mendez, Patricio F.] Univ Alberta, Edmonton, AB T6G 2V4, Canada. [Tello, Karem E.] Colorado Sch Mines, Golden, CO 80401 USA. [Tello, Karem E.] Univ Tecn Federico Santa Maria, Dept Ciencia Mat, Valparaiso, Chile. [Lienert, Thomas J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mendez, PF (reprint author), Univ Alberta, 9107 116th St, Edmonton, AB T6G 2V4, Canada. EM pmendez@ualberta.ca OI , /0000-0001-6730-1690; Tello, Karem/0000-0002-1453-4770 FU National Science Foundation [DMI-0547649]; Natural Sciences and Engineering Research Council of Canada [372104-09]; CONICYT, Government of Chile FX This work was supported by the National Science Foundation CAREER Award DMI-0547649 "Innovation in Materials Processing Using Scaling Principles," by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant #372104-09 and a CONICYT Graduate Fellowship Abroad from the Government of Chile. P.M. gratefully acknowledges insightful conversations about FSW with Prof. A. Reynolds (University of South Carolina), Prof. A. Gerlich (University of Alberta), Prof. C.J. Van Tyne (Colorado School of Mines), and raw data on FSW from Prof T. Debroy (Penn State). NR 61 TC 23 Z9 26 U1 0 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 18 BP 6012 EP 6026 DI 10.1016/j.actamat.2010.07.019 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 659HR UT WOS:000282558100014 ER PT J AU Bei, H Yang, Y Viswanathan, GB Rawn, CJ George, EP Tiley, J Chang, YA AF Bei, H. Yang, Y. Viswanathan, G. B. Rawn, C. J. George, E. P. Tiley, J. Chang, Y. A. TI Formation, stability and crystal structure of the sigma phase in Mo-Re-Si alloys SO ACTA MATERIALIA LA English DT Article DE sigma phase; Mo alloys; Silicides; Thermodynamics; Phase diagram ID B ALLOYS; FRACTURE-TOUGHNESS; SYSTEM; MOLYBDENUM; BEHAVIOR; MATRIX; ENGINE AB The formation, stability and crystal structure of the a phase in Mo-Re-Si alloys were investigated. Guided by thermodynamic calculations, six critically selected alloys were are melted and annealed at 1600 degrees C for 150 h. Their as-cast and annealed microstructures, including phase fractions and distributions, the compositions of the constituent phases and the crystal structure of the sigma phase were analyzed by thermodynamic modeling coupled with experimental characterization by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and transmission electron microscopy. Two key findings resulted from this work. One is the large homogeneity range of the sigma phase region, extending from binary Mo-Re to ternary Mo-Re-Si. The other is the formation of a sigma phase in Mo-rich alloys either through the peritectic reaction of liquid + Mo(ss) -> sigma or primary solidification. These findings are important in understanding the effects of Re on the microstructure and providing guidance on the design of Mo-Re-Si alloys (C) 2010 Acta Materialia Inc Published by Elsevier Ltd All rights reserved C1 [Rawn, C. J.; George, E. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yang, Y.; Chang, Y. A.] CompuTherm LLC, Madison, WI 53719 USA. [Viswanathan, G. B.; Tiley, J.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Rawn, C. J.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Chang, Y. A.] Univ Wisconsin, Madison, WI 53705 USA. RP Bei, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI George, Easo/L-5434-2014; Yang, Ying/E-5542-2017; OI Yang, Ying/0000-0001-6480-2254; Bei, Hongbin/0000-0003-0283-7990 FU Air Force Office of Scientific Research [FA 9550-09-C-0048, IAN 14B583903]; Division of Materials Sciences and Engineering, US Department of Energy FX This research was sponsored by the Air Force Office of Scientific Research Contract No. FA 9550-09-C-0048 through the STTR program with Dr. Joan Fuller as the program manager. Work at ORNL was supported by the AFOSR through the Work-for-Others Program, IAN 14B583903 (H.B.), and the Division of Materials Sciences and Engineering, US Department of Energy (E.P.G.). We thank Cecil Carmichael and Larry Walker for experimental support. NR 30 TC 4 Z9 4 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 18 BP 6027 EP 6034 DI 10.1016/j.actamat.2010.07.020 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 659HR UT WOS:000282558100015 ER PT J AU Williams, JJ Flom, Z Amell, AA Chawla, N Xiao, X De Carlo, F AF Williams, J. J. Flom, Z. Amell, A. A. Chawla, N. Xiao, X. De Carlo, F. TI Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography SO ACTA MATERIALIA LA English DT Article DE Metal matrix composite; X-ray synchrotron, X-ray tomography; Particle fracture, Void growth ID ADVANCED-PHOTON-SOURCE; 3D MICROSTRUCTURE VISUALIZATION; 3-DIMENSIONAL CHARACTERIZATION; BEAMLINE 2-BM; GROWTH; MICROTOMOGRAPHY; COALESCENCE; POROSITY; INTERMETALLICS; HOLOTOMOGRAPHY AB Metal matrix composites (MMCs) have a combination of high strength, high stiffness, and low density The damage behavior of MMCs has been studied extensively by a combination of traditional mechanical testing, microstructural characterization, and post-experiment fractographic analysis. X-ray tomography is an excellent technique that eliminates destructive cross-sectioning, and allows for superior resolution and image quality with minimal sample preparation. In this work, we have carried out a detailed investigation of the damage behavior of SiC particle reinforced 2080 Al alloy matrix composites by X-ray synchrotron tomography This work is unique, relative to the existing work in the literature, because It: (a) focuses on a technologically relevant MMC system (2080/SiCp), (b) uses a combination of image analysis techniques to enable visualization and damage characterization, and (c) entails a significant amount of quantitative and statistical analyses of particle fracture and void growth in the composite. A statistically significant number of particles and volume of the composite were characterized, enabling a meaningful and realistic interpretation of the results. Based on this, a detailed understanding of the micromechanisms of fracture and the quantitative influence of particle size and aspect ratio were obtained. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Williams, J. J.; Flom, Z.; Amell, A. A.; Chawla, N.] Arizona State Univ, Sch Mech Aerosp Chem & Mat Engn, Fulton Sch Engn, Tempe, AZ 85287 USA. [Xiao, X.; De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chawla, N (reprint author), Arizona State Univ, Sch Mech Aerosp Chem & Mat Engn, Fulton Sch Engn, Tempe, AZ 85287 USA. EM nchawla@asu.edu RI Chawla, Nikhilesh/A-3433-2008 OI Chawla, Nikhilesh/0000-0002-4478-8552 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH 11357]; University of Barcelona FX Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH 11357. A.A.A. acknowledges financial support through a fellowship from the University of Barcelona during her stay at Arizona State University. N.C. thanks Prof. K.K. Chawla, University of Alabama at Birmingham, for discussions and comments on the manuscript. NR 35 TC 43 Z9 43 U1 5 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2010 VL 58 IS 18 BP 6194 EP 6205 DI 10.1016/j.actamat.2010.07.039 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 659HR UT WOS:000282558100032 ER PT J AU Haider, Q Liu, LC AF Haider, Q. Liu, Lon-Chang TI ETA-MESIC NUCLEUS AND COSY-GEM DATA SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT International Symposium on Mesic Nuclei CY JUN 16, 2010 CL Jagellonian Univ, Krakow, POLAND SP Jagellonian Univ HO Jagellonian Univ ID BOUND STATE; SEARCH AB The experimental data of the COSY-GEM Collaboration for the recoil-free transfer reaction p ((27)Al,(3)He)pi p'X, leading to the formation of bound state of eta (eta) meson in (25)Mg nucleus, is reanalyzed in this paper. In particular, predicted values of binding energy and half-width of the eta-mesic nucleus (25)Mg(eta) given by different theoretical approaches, are compared with the ones obtained from the experimental missing mass spectrum. It is found that the spectrum can be explained reasonably well if interference effect of another process, where eta is not bound in (25)Mg but is scattered by the nucleus and emerge as a pion, is taken into account. The data also indicate that the interaction between N* (1535) and a nucleus is attractive in nature. C1 [Haider, Q.] Fordham Univ, Dept Phys, Bronx, NY 10458 USA. [Liu, Lon-Chang] Los Alamos Natl Lab, Div Theoret, Grp T2, Los Alamos, NM 87545 USA. RP Haider, Q (reprint author), Fordham Univ, Dept Phys, Bronx, NY 10458 USA. EM haider@fordham.edu NR 10 TC 0 Z9 0 U1 0 U2 0 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD OCT PY 2010 VL 41 IS 10 BP 2231 EP 2238 PG 8 WC Physics, Multidisciplinary SC Physics GA 671OT UT WOS:000283516100006 ER PT J AU Piasecki, W Zarzycki, P Charmas, R AF Piasecki, Wojciech Zarzycki, Piotr Charmas, Robert TI Adsorption of alkali metal cations and halide anions on metal oxides: prediction of Hofmeister series using 1-pK triple layer model SO ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY LA English DT Article DE Hofmeister series; Ion adsorption; Metal oxides; 1-pK model ID MONOVALENT ELECTROLYTE IONS; PRIMARY CHARGING BEHAVIOR; ELECTRICAL DOUBLE-LAYER; WATER INTERFACE; SURFACE; (HYDR)OXIDES; PARAMETERS; SOLVATION; AFFINITY; BINDING AB Adsorption of electrolyte ions on metal oxides significantly affects the interfacial charge distribution. The general procedure for the prediction of surface charge on oxides in salt solutions was given by Sverjensky for the 2-pK Triple Layer Model (2-pK TLM) (Sverjensky, Geochim. Cosmochim. Acta 69:225-257, 2005). Based on his parameters values and by assuming parameters transferability (Piasecki, J. Colloid Interface Sci. 302:389-395, 2006) we have predicted the adsorption constants for three monovalent ions (Rb(+), F(-), Br(-)) for eight oxides within the framework of the 1-pK Triple Layer Model (1-pK TLM). The obtained parameters values along with the previously reported ones (Piasecki, J. Colloid Interface Sci. 302:389-395, 2006) allowed us to compare the adsorption affinities of alkali metal cations and halide anions, and construct the following Hofmeister series for the cations (Cs(+)a parts per thousand Rb(+)a parts per thousand K(+)< Na(+)< Li(+)) and for the anions (F(-)a parts per thousand << Cl(-)a parts per thousand Br(-)< I(-)) for investigated oxides. The same lyotropic series was predicted by the 2-pK TLM. It indicates that Hofmeister series is invariable during parameter transfer between surface complexation models. C1 [Piasecki, Wojciech] Josef Pilsudski Univ Phys Educ Warsaw, Fac Phys Educ Biala Podlaska, Dept Biochem, PL-21500 Biala Podlaska, Poland. [Zarzycki, Piotr] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Charmas, Robert] State Coll Comp Sci & Business Adm, Lomza, Poland. RP Piasecki, W (reprint author), Josef Pilsudski Univ Phys Educ Warsaw, Fac Phys Educ Biala Podlaska, Dept Biochem, 2 Akad St, PL-21500 Biala Podlaska, Poland. EM wojciech.piasecki@awf-bp.edu.pl OI Zarzycki, Piotr/0000-0003-3891-7159 NR 27 TC 3 Z9 3 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5607 J9 ADSORPTION JI Adsorpt.-J. Int. Adsorpt. Soc. PD OCT PY 2010 VL 16 IS 4-5 BP 295 EP 303 DI 10.1007/s10450-010-9245-y PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 652BW UT WOS:000281976700013 ER PT J AU Subramania, G Lee, YJ Fischer, AJ AF Subramania, Ganapathi Lee, Yun-Ju Fischer, Arthur J. TI Silicon-Based Near-Visible Logpile Photonic Crystal SO ADVANCED MATERIALS LA English DT Article ID SPONTANEOUS EMISSION; LIGHT-EMISSION; QUANTUM-DOT; WAVELENGTHS; NANOCAVITY; GAP AB A nanocavity structure is embedded inside a silicon logpile photonic crystal that demonstrates tunable absorption behavior at near visible wavelengths well beyond the absorption edge of silicon. This is due to silicon's indirect bandgap resulting in a relatively slow increase in the absorption of silicon with decreasing wavelength. The results open up the possibility of utilizing the wide, complete three dimensional photonic gap enabled by the large refractive index of silicon to create three dimensional photonic crystal based devices well into the visible regime. C1 [Subramania, Ganapathi; Lee, Yun-Ju; Fischer, Arthur J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gssubra@sandia.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Carlos Sanchez for assisting with nanofabrication and Michael Busse for help with thin film characterization. Fabrication of the PC and a portion of structural and optical characterization was performed under Sandia's Laboratory Directed Research and Development (LDRD) and a portion of structural and optical characterization and data analysis was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Sandia National Laboratories is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 27 TC 10 Z9 10 U1 0 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD OCT 1 PY 2010 VL 22 IS 37 BP 4180 EP + DI 10.1002/adma.201001965 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 670AL UT WOS:000283392000012 PM 20803766 ER PT J AU Kang, QJ Lichtner, PC Janecky, DR AF Kang, Qinjun Lichtner, Peter C. Janecky, David R. TI Lattice Boltzmann Method for Reacting Flows in Porous Media SO ADVANCES IN APPLIED MATHEMATICS AND MECHANICS LA English DT Article DE Reactive flows; lattice Boltzmann method; porous media; pore scale ID NAVIER-STOKES EQUATION; NUMERICAL SIMULATIONS; PARTICULATE SUSPENSIONS; CHEMICAL-REACTIONS; BIOFILM GROWTH; BGK MODELS; DISSOLUTION; SYSTEMS; FLUID; PRECIPITATION AB We review recent developments in lattice Boltzmann method for reacting flows in porous media. We present the lattice Boltzmann approaches for incompressible flow, solute transport and chemical reactions in both the pore space and at the fluid/solid interfaces. We discuss in detail the methods to update solid phase when significant mass transfer between solids and fluids is involved due to dissolution and/or precipitation. Applications in different areas are presented and perspectives of applying this method to a few important fields are discussed. C1 [Kang, Qinjun; Lichtner, Peter C.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Janecky, David R.] Los Alamos Natl Lab, Ecol & Air Qual Grp, Los Alamos, NM 87545 USA. RP Kang, QJ (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. EM qkang@lanl.gov; lichtrier@lanl.gov; janecky@lanl.gov RI Kang, Qinjun/A-2585-2010; OI Kang, Qinjun/0000-0002-4754-2240; Janecky, David/0000-0001-9072-8326 FU Los Alamos National Laboratory [20100025DR]; UC [UCD-09-15] FX This work was supported by LDRD project 20100025DR sponsored by Los Alamos National Laboratory and by UC Lab Fees Research Project UCD-09-15. NR 58 TC 31 Z9 32 U1 6 U2 51 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 2070-0733 EI 2075-1354 J9 ADV APPL MATH MECH JI Adv. Appl. Math. Mech. PD OCT PY 2010 VL 2 IS 5 BP 545 EP 563 DI 10.4208/aamm.10-10S02 PG 19 WC Mathematics, Applied; Mechanics SC Mathematics; Mechanics GA 708ZJ UT WOS:000286402500003 ER PT J AU Jantzen, C Johnson, A Read, D Stegemann, JA AF Jantzen, C. Johnson, A. Read, D. Stegemann, J. A. TI Cements in waste management SO ADVANCES IN CEMENT RESEARCH LA English DT Article ID CALCIUM SILICATE HYDRATE; AQUEOUS SOLUBILITY DIAGRAMS; PORTLAND-CEMENT; STABILIZATION SYSTEMS; ETTRINGITE STRUCTURE; SORPTION MECHANISMS; MINERALS; SELENATE; PHASES; ZINC AB Cement has been used extensively in nuclear and hazardous waste disposal for many years. Early attempts to incorporate constituents of high-level radioactive wastes during the clinkering stage had limitations due to the high processing temperatures employed and have now been superseded by low-temperature applications for less active and non-radioactive, industrial waste. Retention mechanisms for key heavy metals and metalloid ions in the cement matrix are reviewed and are shown to be irreversible in the majority of cases, provided a degree of physical durability is maintained. Quality control is often lacking, however, and there is an urgent need to establish performance standards and protocols analogous to those in the construction sector. C1 [Jantzen, C.] Savannah River Natl Lab, Aiken, SC USA. [Jantzen, C.; Read, D.] Univ Aberdeen, Dept Chem, Aberdeen, Scotland. [Johnson, A.] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dubendorf, Switzerland. [Read, D.] Great Bookham, Enterpris, Surrey, England. [Stegemann, J. A.] UCL, Dept Civil Environm & Geomat Engn, London, England. RP Jantzen, C (reprint author), Savannah River Natl Lab, Aiken, SC USA. RI Stegemann, Julia/C-5927-2008 OI Stegemann, Julia/0000-0002-4491-8222 NR 54 TC 9 Z9 9 U1 1 U2 14 PU ICE PUBL PI LONDON PA 40 MARSH WALL, 2 FL, LONDON E14 9TP, ENGLAND SN 0951-7197 J9 ADV CEM RES JI Adv. Cem. Res. PD OCT PY 2010 VL 22 IS 4 BP 225 EP 231 DI 10.1680/adcr.2010.22.4.225 PG 7 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA 653LO UT WOS:000282093100006 ER PT J AU Bazarov, AV van Sluis, M Hines, WC Bassett, E Beliveau, A Campeau, E Mukhopadhyay, R Lee, WJ Melodyev, S Zaslavsky, Y Lee, L Rodier, F Chicas, A Lowe, SW Benhattar, J Ren, B Campisi, J Yaswen, P AF Bazarov, Alexey V. van Sluis, Marjolein Hines, William C. Bassett, Ekaterina Beliveau, Alain Campeau, Eric Mukhopadhyay, Rituparna Lee, Won Jae Melodyev, Sonya Zaslavsky, Yuri Lee, Leonard Rodier, Francis Chicas, Agustin Lowe, Scott W. Benhattar, Jean Ren, Bing Campisi, Judith Yaswen, Paul TI p16INK4a-mediated suppression of telomerase in normal and malignant human breast cells SO AGING CELL LA English DT Article DE heterochromatin; histone methylation; hTERT; INK4a; senescence ID EMBRYONIC STEM-CELLS; REVERSE-TRANSCRIPTASE EXPRESSION; RETINOBLASTOMA TUMOR-SUPPRESSOR; MAMMARY EPITHELIAL-CELLS; HISTONE H3 LYSINE-27; CELLULAR SENESCENCE; HTERT GENE; HETEROCHROMATIN FORMATION; DEVELOPMENTAL REGULATORS; DIFFERENTIAL ROLES AB P>The cyclin-dependent kinase inhibitor p16INK4a (CDKN2A) is an important tumor suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal. C1 [Yaswen, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA. [Bazarov, Alexey V.; Zaslavsky, Yuri] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA. [Lee, Leonard; Ren, Bing] Univ Calif San Diego, Ludwig Inst Canc Res, San Diego, CA 92103 USA. [Rodier, Francis; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. [Chicas, Agustin; Lowe, Scott W.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Benhattar, Jean] Univ Lausanne, Inst Pathol, CH-1011 Lausanne, Switzerland. RP Yaswen, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Mailstop 977R250,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM P_Yaswen@lbl.gov FU Flight Attendant Medical Research Institute [032122]; Komen for the Cure Research Grant [BCTR0707231]; National Institutes of Health [AG09909, AG17242]; Office of Energy Research, Office of Health and Biological Research, US Department of Energy [DE-AC03-76SF00098]; Komen for the Cure Postdoctoral Fellowship [0707408] FX This work was supported by a Flight Attendant Medical Research Institute Young Clinical Investigator Award No. 032122 (AVB), a Komen for the Cure Research Grant No. BCTR0707231 (AVB), National Institutes of Health grants AG09909 and AG17242 (JC) and the Office of Energy Research, Office of Health and Biological Research, US Department of Energy under Contract No. DE-AC03-76SF00098 (PY, JC). CH was supported by a Komen for the Cure Postdoctoral Fellowship No. 0707408. NR 46 TC 14 Z9 17 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1474-9718 J9 AGING CELL JI Aging Cell PD OCT PY 2010 VL 9 IS 5 BP 736 EP 746 DI 10.1111/j.1474-9726.2010.00599.x PG 11 WC Cell Biology; Geriatrics & Gerontology SC Cell Biology; Geriatrics & Gerontology GA 651AQ UT WOS:000281897400007 PM 20569236 ER PT J AU Brake, MR Segalman, DJ AF Brake, M. R. Segalman, D. J. TI Nonlinear Model Reduction of von Karman Plates Under Quasi-Steady Fluid Flow SO AIAA JOURNAL LA English DT Article ID CHARACTERISTIC CONSTRAINT MODES; ROTATING FLEXIBLE STRUCTURES; FINITE-ELEMENT; PANEL FLUTTER; DYNAMICS; SYSTEMS; OSCILLATIONS; CONTINUATION; VIBRATION AB A reduced-order model for von Karimin plates, using a method of quadratic components, is presented in this paper. The method of quadratic components postulates the full kinematics of the plate as consisting of a combination of linear and quadratic components. This reduced model is then discretized in space with a Galerkin approximation and in time with an implicit integration scheme. The plate is coupled with a fluid flowing over it at a supersonic speed using a quasi-steady pressure model commonly referred to as piston theory. A static loading example is used to validate the model reduction of the plate with respect to other numerical and approximate solutions. The limit cycles of the plate coupled with piston theory are calculated via a cyclic method, and the results from parameter studies are compared to classical results. A previously unexplored regime of the limit cycle amplitudes is investigated; a second, coexisting, limit cycle is found that yields a discontinuity in the limit cycle amplitudes at a critical dynamic pressure. C1 [Brake, M. R.; Segalman, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800,MS 0346, Albuquerque, NM 87185 USA. FU U S Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U S Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL85000 The authors gratefully acknowledge the support of their colleagues, especially Matthew Barone NR 31 TC 8 Z9 8 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD OCT PY 2010 VL 48 IS 10 BP 2339 EP 2347 DI 10.2514/1.J05037 PG 9 WC Engineering, Aerospace SC Engineering GA 660VX UT WOS:000282675700015 ER PT J AU Amou'ou, GF Perelson, AS Vaidya, NK Shaw, GM Montefiori, DC AF Amou'ou, G. Fouda Perelson, A. S. Vaidya, N. K. Shaw, G. M. Montefiori, D. C. TI Decrease in the Ratio of Infectious to Total Virions During Acute HIV-1 Infection SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Amou'ou, G. Fouda; Montefiori, D. C.] Duke Univ, Med Ctr, Durham, NC USA. [Perelson, A. S.; Vaidya, N. K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Shaw, G. M.] Univ Alabama, Sch Med, Birmingham, AL USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A13 EP A13 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200029 ER PT J AU Bar, KJ Decker, JM Ganusov, VV Li, H McLellan, JS Yang, Y Pavlicek, JW Keele, BF Gao, F Perelson, AS Kwong, PD Hahn, BH Shaw, GM AF Bar, K. J. Decker, J. M. Ganusov, V. V. Li, H. McLellan, J. S. Yang, Y. Pavlicek, J. W. Keele, B. F. Gao, F. Perelson, A. S. Kwong, P. D. Hahn, B. H. Shaw, G. M. TI Molecular targets and potency of HIV-1 neutralization revealed by dynamic assessment of transmitted/founder virus antibody recognition and escape SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Bar, K. J.; Decker, J. M.; Li, H.; Hahn, B. H.; Shaw, G. M.] Univ Alabama, Birmingham, AL USA. [Ganusov, V. V.] Univ Tennessee, Knoxville, TN USA. [McLellan, J. S.; Yang, Y.; Kwong, P. D.] NIAID, NIH, Bethesda, MD 20892 USA. [Pavlicek, J. W.; Gao, F.] Duke Univ, Med Ctr, Durham, NC USA. [Keele, B. F.] SAIC Frederick, Frederick, MD USA. [Perelson, A. S.] Los Alamos Natl Lab, Los Alamos, NM USA. RI McLellan, Jason/A-6874-2010 NR 0 TC 1 Z9 1 U1 0 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A11 EP A12 PG 2 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200026 ER PT J AU Basu, D Kraft, CS Hraber, PT Schaefer, M Hawkins, PA Chomba, E Mulenga, J Allen, S Manigart, O Hunter, E AF Basu, D. Kraft, C. S. Hraber, P. T. Schaefer, M. Hawkins, P. A. Chomba, E. Mulenga, J. Allen, S. Manigart, O. Hunter, E. TI Frequency and Viral Dynamics of HIV-1 Superinfection in a Zambian Subtype C Cohort SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Basu, D.; Kraft, C. S.; Schaefer, M.; Hawkins, P. A.; Allen, S.; Hunter, E.] Emory Univ, Atlanta, GA 30322 USA. [Hraber, P. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Chomba, E.; Mulenga, J.] Zambia Emory HIV Res Project, Lusaka, Zambia. [Manigart, O.] Rwanda Zambia HIV Res Grp, Projet San Francisco, Kigali, Rwanda. NR 0 TC 0 Z9 0 U1 1 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A147 EP A148 PG 2 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200380 ER PT J AU Chen, Y Yang, H Zhang, T Huang, X Xu, X Korber, B Montefiori, D Gao, F Wu, H AF Chen, Y. Yang, H. Zhang, T. Huang, X. Xu, X. Korber, B. Montefiori, D. Gao, F. Wu, H. TI Limited introductions and genetic variation of HIV-1 in a MSM cohort in China SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Chen, Y.; Gao, F.] Duke Univ, Duke Human Vaccine Inst, Durham, NC USA. [Yang, H.; Zhang, T.; Huang, X.; Wu, H.] Capital Med Univ, Beijing Youan Hosp, Beijing, Peoples R China. [Xu, X.] Univ Oxford, Oxford, England. [Korber, B.] Los Alamos Natl Lab, Los Alamos, NM USA. [Montefiori, D.] Duke Univ, Dept Surg, Durham, NC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A144 EP A144 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200371 ER PT J AU Ferrari, G Korber, B Turnbull, E Liu, MK Goonetilleke, N Salazar, J Betts, M Gray, CM Roederer, M McMichael, A Weinhold, K AF Ferrari, G. Korber, B. Turnbull, E. Liu, M. K. Goonetilleke, N. Salazar, J. Betts, M. Gray, C. M. Roederer, M. McMichael, A. Weinhold, K. CA CHAVI 001 Team TI High magnitude and multifunctionality epitope-specific CD8+T-cell responses are associated are associated with selection of escape mutants in acute HIV infection SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Ferrari, G.; Weinhold, K.] Duke Univ, Med Ctr, Durham, NC USA. [Korber, B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Turnbull, E.] Univ Oxford, Jenner Inst, Compton, England. [Liu, M. K.; Goonetilleke, N.; McMichael, A.] Univ Oxford, Weatherall Inst Mol Med, Oxford, England. [Salazar, J.] Univ Alabama, Birmingham, AL USA. [Betts, M.] Univ Penn, Philadelphia, PA 19104 USA. [Gray, C. M.] Natl Inst Communicable Dis, Dept HIV Immunol, Johannesburg, South Africa. [Roederer, M.] NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA. NR 0 TC 1 Z9 1 U1 0 U2 2 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A5 EP A6 PG 2 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200011 ER PT J AU Ganusov, VV Goonetilleke, N Korber, B Shaw, GM McMichael, A Perelson, AS AF Ganusov, V. V. Goonetilleke, N. Korber, B. Shaw, G. M. McMichael, A. Perelson, A. S. TI Quantifying factors determining the rate of CTL escape and reversion during acute and chronic phases of HIV infection SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Ganusov, V. V.] Univ Tennessee, Knoxville, TN USA. [Goonetilleke, N.; McMichael, A.] Univ Oxford, Oxford, England. [Korber, B.; Perelson, A. S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Shaw, G. M.] Univ Alabama, Birmingham, AL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A72 EP A72 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200176 ER PT J AU Geonnotti, AR Gnanakaran, S Daniels, MG Bhattacharya, T Lapedes, A Korber, B Montefiori, DC AF Geonnotti, A. R. Gnanakaran, S. Daniels, M. G. Bhattacharya, T. Lapedes, A. Korber, B. Montefiori, D. C. TI Computationally identified mutations suspected to cause gp120 charge inversion and gp41-mediated allosteric effects impact IgG1b12 susceptibility SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Geonnotti, A. R.; Montefiori, D. C.] Duke Univ, Durham, NC USA. [Gnanakaran, S.; Daniels, M. G.; Bhattacharya, T.; Lapedes, A.; Korber, B.] Los Alamos Natl Lab, Los Alamos, NM USA. RI Bhattacharya, Tanmoy/J-8956-2013 OI Bhattacharya, Tanmoy/0000-0002-1060-652X NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A27 EP A27 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200065 ER PT J AU Murphy, MK Foley, BT Gnanakaran, S Derdeyn, CA AF Murphy, M. K. Foley, B. T. Gnanakaran, S. Derdeyn, C. A. TI Subtype-Specific Variation within the Alpha2 Helix of Subtypes A-D Human Immunodeficiency Virus Type 1 Envelope Proteins SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Murphy, M. K.; Derdeyn, C. A.] Emory Univ, Atlanta, GA 30322 USA. [Foley, B. T.; Gnanakaran, S.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A145 EP A145 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200373 ER PT J AU Sethi, A Derdeyn, C Korber, B Gnanakaran, G AF Sethi, A. Derdeyn, C. Korber, B. Gnanakaran, G. TI Role of allostery in immune escape: Antibody access modulated by spatially distant residues in gp120 SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Derdeyn, C.] Emory Univ, Atlanta, GA 30322 USA. [Sethi, A.; Korber, B.; Gnanakaran, G.] Los Alamos Natl Labs, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A76 EP A76 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200186 ER PT J AU Yusim, K David-Fung, E Maljkovic-Berry, I Szinger, J Korber, BT AF Yusim, K. David-Fung, E. Maljkovic-Berry, I. Szinger, J. Korber, B. T. TI New tools on HIV escape within Los Alamos HIV database SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT AIDS Vaccine 2010 CY SEP 28-OCT 01, 2010 CL Atlanta, GA C1 [Yusim, K.; David-Fung, E.; Maljkovic-Berry, I.; Szinger, J.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD OCT PY 2010 VL 26 IS 10 BP A72 EP A73 PG 2 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 665OC UT WOS:000283044200178 ER PT J AU Flanagan, G Kulynych, G Parks, C AF Flanagan, George Kulynych, George Parks, Cecil TI Resource Letter FuNP-1: The Future of Nuclear Power SO AMERICAN JOURNAL OF PHYSICS LA English DT Review DE fission reactors; nuclear power; nuclear power stations AB This Resource Letter is intended to summarize the status of nuclear power in the world today, prospects of significant expansion of nuclear power over the next several decades, the planning of and forecasts for the addition of new power reactors, and issues surrounding the addition of these new reactors. Owing to the breadth of this subject, the list of references includes journal articles, web pages, and reports to guide the reader on the subject. The subject of nuclear power and its related issues are dynamic, so the most current information is likely to be found on reputable websites. (C) 2010 American Association of Physics Teachers. [DOI: 10.1119/1.3446850] C1 [Flanagan, George; Kulynych, George; Parks, Cecil] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Flanagan, G (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. OI Parks, Cecil/0000-0003-0323-8447 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 0 TC 0 Z9 0 U1 3 U2 6 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD OCT PY 2010 VL 78 IS 10 BP 981 EP 989 DI 10.1119/1.3446850 PG 9 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 649MP UT WOS:000281775700001 ER PT J AU Icenhower, JP Qafoku, NP Zachara, JM Martin, WJ AF Icenhower, Jonathan P. Qafoku, Nikolla P. Zachara, John M. Martin, Wayne J. TI THE BIOGEOCHEMISTRY OF TECHNETIUM: A REVIEW OF THE BEHAVIOR OF AN ARTIFICIAL ELEMENT IN THE NATURAL ENVIRONMENT SO AMERICAN JOURNAL OF SCIENCE LA English DT Review ID RAY-ABSORPTION SPECTROSCOPY; SPENT NUCLEAR-FUEL; FISSION REACTORS; HUMIC SUBSTANCES; MICROBIAL REDUCTION; LONG-TERM; CONTAMINATED AQUIFER; REOXIDATION BEHAVIOR; RADIOACTIVE ISOTOPES; ESTUARINE SEDIMENTS AB Interest in the chemistry of technetium has only increased since its discovery in 1937, mainly because of the large and growing inventory of (99)Tc generated during fission of (235)U, its environmental mobility in oxidizing conditions, and its potential radiotoxicity. For every ton of enriched uranitun fuel (3% (235)U) that is consumed at a typical burn-up rate, nearly 1 kg of (99)Tc is generated. Thus, the mass of (99)Tc produced since 1993 has nearly quadrupled, and the pace of generation will likely increase if more emphasis is placed on nuclear power to slow the accumulation of atmospheric greenhouse gases. In order to gain a comprehensive understanding of the interaction of (99)Tc and the natural environment, we review the sources of (99)Tc in the nuclear fuel cycle and its biogeochemical behavior. We include an evaluation of the use of Re as a chemical analog of Tc, as well as a summary of the redox potential, sorption, colloidal behavior, and interaction of humic substances with Tc, and the potential for re-oxidation and remobilization of Tc(IV). What emerges is a more complicated picture of Tc behavior than that of an easily tractable transition of Tc(VII) to Tc(IV) with consequent immobilization. Reducing conditions (+200 to +100 mVE(n),) and the presence of Fe(II) sorbed onto Fe(III) (oxy)hydroxides will bring the mobile Tc(VII) species to a lower oxidation state and will form the relatively insoluble Tc(IV)O(2) center dot nH(2)O, but even as a solid, equilibrium concentrations of aqueous Tc are nearly a factor of 20 x above the EPA set drinking water standards. However, sequestration of Tc(IV) into Fe (111)-bearing phases, such as goethite, iron-bearing phyllosilicates and, perhaps, siderite, may ameliorate concerns over the mobility of Tc. A key factor, elucidated through experiment, in retarding the mobility of Tc in the environment is isolation from exposure to oxygen. One way to achieve isolation from oxygen occurs when Tc is locked in a crystallographic position in a solid phase. C1 [Icenhower, Jonathan P.; Qafoku, Nikolla P.; Zachara, John M.; Martin, Wayne J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Icenhower, JP (reprint author), VSI LLC, 12100 Hiram Clarke Rd, Houston, TX 77045 USA. EM jonathan@vsianalytics.com RI Icenhower, Jonathan/E-8523-2011; OI Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy-Environmental Management, Office of Groundwater and Soil Remediation; Pacific Northwest National Laboratory [DE-AC06-76RL01830] FX This work was greatly improved by reviews conducted by Drs. Dawn Wellman, Dan Kaplan, Kath Morris, Matt Marshall and Thomas Albrecht-Schmitt. Funding for this project was provided by the U.S. Department of Energy-Environmental Management, Office of Groundwater and Soil Remediation. This work was conducted at Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RL01830. NR 195 TC 32 Z9 32 U1 7 U2 69 PU AMER JOURNAL SCIENCE PI NEW HAVEN PA YALE UNIV, PO BOX 208109, NEW HAVEN, CT 06520-8109 USA SN 0002-9599 J9 AM J SCI JI Am. J. Sci. PD OCT PY 2010 VL 310 IS 8 BP 721 EP 752 DI 10.2475/08.2010.02 PG 32 WC Geosciences, Multidisciplinary SC Geology GA 711GT UT WOS:000286575800002 ER PT J AU Xu, WQ Parise, JB Hanson, J AF Xu, Wenqian Parise, John B. Hanson, Jonathan TI (H3O)Fe(SO4)(2) formed by dehydrating rhomboclase and its potential existence on Mars SO AMERICAN MINERALOGIST LA English DT Article DE Rhomboclase; sulfate; hydrate; humidity; Mars; ferric sulfate ID X-RAY-DIFFRACTION; IRON MOUNTAIN; THERMODYNAMIC PROPERTIES; SULFATE SALTS; NEGATIVE PH; IN-SITU; CALIFORNIA; MINERALS; REFINEMENT; DRAINAGE AB Rhomboclase, (H5O2)Fe(SO4)(2)center dot 2H(2)O, transforms to a solid crystalline phase, (H3O)Fe(SO4)(2), upon dehydration. The structure of (H3O)Fe(SO4)(2) is found to be the same as a recently reported structure determined from single-crystal diffraction by Peterson et al. (2009), who synthesized the same compound using a hydrothermal method. The phase boundary between rhomboclase and (H3O)Fe(SO4)(2) as a function of temperature (7) and relative humidity (RH) was determined by environment-controlled in situ X-ray diffraction (XRD) method. The stability of (H3O)Fe(SO4)(2) against rhomboclase was further evaluated under a simulated martian condition (constant 50% RH, -20 degrees C, 6 mbar CO2). Both phases remained after 14 days with no observable transition. This result suggests that hydrate ferric sulfate minerals might not respond to diurnal RH fluctuation under the extremely slowed kinetics expected on the martian surface. C1 [Xu, Wenqian; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hanson, Jonathan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. RP Xu, WQ (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM wenqian.xu@stonybrook.edu RI Xu, Wenqian/M-5906-2013 FU NASA [MFRP07-0022]; U.S. Department of Energy, Division of Materials Sciences and Divisions of Chemical Sciences [DE-AC02-98CH10886] FX The authors appreciate Juraj Majzlan and an anonymous reviewer's helpful comments to strengthen the manuscript. The authors also appreciate the support front NASA grant MFRP07-0022. Part of this research was carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. Department of Energy, Division of Materials Sciences and Divisions of Chemical Sciences, through contract no. DE-AC02-98CH10886. NR 30 TC 4 Z9 4 U1 0 U2 9 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD OCT PY 2010 VL 95 IS 10 BP 1408 EP 1412 DI 10.2138/am.2010.3470 PG 5 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 655KF UT WOS:000282248200005 ER PT J AU Moffet, RC Henn, T Laskin, A Gilles, MK AF Moffet, Ryan C. Henn, Tobias Laskin, Alexander Gilles, Mary K. TI Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge SO ANALYTICAL CHEMISTRY LA English DT Article ID RAMAN MICROSPECTROSCOPIC ANALYSIS; MEXICO-CITY; ATMOSPHERIC PARTICLES; MASS-SPECTROMETRY; SINGLE; SOOT; TRANSMISSION; MICROSCOPY; MICROANALYSIS; SPECTROSCOPY AB We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles. C1 [Laskin, Alexander] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Moffet, Ryan C.; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Henn, Tobias] Univ Wurzburg, Dept Phys, D-97074 Wurzburg, Germany. RP Laskin, A (reprint author), Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM Alexander.laskin@pnl.gov; mkgilles@lbl.gov RI Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 FU Department of Energy's office of Biological and Environmental Research; Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-ACO2-05CH11231]; Battelle Memorial Institute [DE-AC06-76RL0] FX The authors gratefully acknowledge financial support provided by the Atmospheric Science Program of the Department of Energy's office of Biological and Environmental Research. R. C. Moffet acknowledges additional financial support from a Lawrence Berkeley National Laboratory Seaborg Fellowship. The STXM/NEXAFS particle analysis was performed at beamlines 11.0.2 and 5.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. Graduate student Meagan Moore and Prof. Kim Prather at U.C. San Diego are gratefully acknowledged for preparing the sea salt sample. The assistance and support of T. Tyliszczak and A. L. D. Kilcoyne with these instruments is greatly appreciated. The work at the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No, DE-ACO2-05CH11231. The SEM/EDX particle analysis was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL0. T.H. acknowledges the student exchange program between the University of Wurzburg and U. C. Berkeley (curator Professor A. Forchel, Wiirzburg and NSF IGERT program at UCB, Grant DGE-0333455, Nanoscale Science and Engineering From Building Blocks to Functional Systems). NR 46 TC 39 Z9 39 U1 7 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 7906 EP 7914 DI 10.1021/ac1012909 PG 9 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400008 PM 20879799 ER PT J AU Zelenyuk, A Imre, D Earle, M Easter, R Korolev, A Leaitch, R Liu, P Macdonald, AM Ovchinnikov, M Strapp, W AF Zelenyuk, Alla Imre, Dan Earle, Michael Easter, Richard Korolev, Alexei Leaitch, Richard Liu, Peter Macdonald, Anne Marie Ovchinnikov, Mikhail Strapp, Walter TI In Situ Characterization of Cloud Condensation Nuclei, Interstitial, and Background Particles Using the Single Particle Mass Spectrometer, SPLAT II SO ANALYTICAL CHEMISTRY LA English DT Article ID AEROSOL-PARTICLES; LASER-ABLATION; SIZE; INSTRUMENT; CHEMISTRY; CLOSURE AB The aerosol indirect effect remains the most uncertain aspect of climate change modeling, calling for characterization of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of our single particle mass spectrometer (SPLAT II) operated in dual data acquisition mode to simultaneously measure particle number concentrations, density, asphericity, and individual particle size and quantitative composition, with temporal resolution better than 60 s, thus yielding all the required properties to definitively characterize the aerosol cloud interaction in this exemplary case. We find that particles are composed of oxygenated organics, many mixed with sulfates, biomass burning particles, some with sulfates, and processed sea-salt. Cloud residuals are found to contain more sulfates than background particles, explaining their higher efficiency to serve as cloud condensation nuclei (CCN). Additionally, CCN sulfate content increased with time due to in-cloud droplet processing. A comparison between the size distributions of background, CCN, and interstitial particles shows that while nearly all CCN particles are larger than 100 nm, over 80% of interstitial particles are smaller than 100 nm. We conclude that for this cloud, particle size is the controlling factor on aerosol activation into cloud-droplets, with higher sulfate content playing a secondary role. C1 [Zelenyuk, Alla; Easter, Richard; Ovchinnikov, Mikhail] Pacific NW Natl Lab, Richland, WA 99354 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. [Earle, Michael; Korolev, Alexei; Leaitch, Richard; Liu, Peter; Macdonald, Anne Marie; Strapp, Walter] Environm Canada, Toronto, ON M3H 5T4, Canada. RP Zelenyuk, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM alla.zelenyuk@pnl.gov FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research (OBER); Battelle Memorial Institute [DE-AC06-76RL0 1830] FX This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (OBER). SPLAT IT was developed with support by Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Bio-sciences and the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's OBER at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. DOE by the Battelle Memorial Institute under Contract No. DE-AC06-76RL0 1830. Special thanks to Charlette Geffen, Steve Chan, and Ashley Williamson who gave us the Opportunity to participate in ISDAC. We thank James Ewing, John Flubbe, the crews of Convair 580 and G-1 aircrafts, and the whole ISDAC team for their incredible help in making SPLAT II aircraft compatible and for their help during the 1SDAC field campaign. ISDAC was supported by the U.S. DOE Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, the DOE Atmospheric Sciences Program, the National Research Council of Canada, and Environment Canada. Some of the data were obtained from the ARM program archive, sponsored by DOE OBER Environmental Science Division. NR 32 TC 34 Z9 34 U1 0 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 7943 EP 7951 DI 10.1021/ac1013892 PG 9 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400013 PM 20718425 ER PT J AU Roach, PJ Laskin, J Laskin, A AF Roach, Patrick J. Laskin, Julia Laskin, Alexander TI Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION ELECTROSPRAY-IONIZATION; BIOMASS BURNING AEROSOLS; FULVIC-ACIDS; CHEMICAL-COMPOSITION; MEXICO-CITY; REAL-TIME; RESOLUTION; SECONDARY; OLIGOMERS; IDENTIFICATION AB Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry (HR-MS) is a promising approach for the detailed, molecular-level chemical characterization of atmospheric organic aerosols (OA) collected in laboratory and field experiments. The nano-DESI technique possesses distinct advantages of technical simplicity, enhanced sensitivity, and signal stability. In nano-DESI, analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without sample preparation. Stable signals achieved using nano-DESI make it possible to obtain high-quality HR-MS data both for laboratory-generated and field-collected OA using only a small amount of material (<10 ng). Furthermore, nano-DESI enables the efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena. C1 [Roach, Patrick J.; Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnl.gov; Alexander.Laskin@pnl.gov RI Laskin, Alexander/I-2574-2012; Laskin, Julia/H-9974-2012 OI Laskin, Alexander/0000-0002-7836-8417; Laskin, Julia/0000-0002-4533-9644 FU W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL); U.S. Department of Energy's Office of Biological and Environmental Research; Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. DOE FX The research was supported by the intramural research and development program of the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research. EMSL is located at the Pacific Northwest National Laboratory (PNNL) operated by Battelle for the U.S. DOE. Patrick Roach acknowledges the support from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. DOE. NR 58 TC 59 Z9 60 U1 3 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 7979 EP 7986 DI 10.1021/ac101449p PG 8 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400018 PM 20666445 ER PT J AU Bateman, AP Nizkorodov, SA Laskin, J Laskin, A AF Bateman, Adam P. Nizkorodov, Sergey A. Laskin, Julia Laskin, Alexander TI High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water-Soluble Organic Aerosols Collected with a Particle into Liquid Sampler SO ANALYTICAL CHEMISTRY LA English DT Article ID MOLECULAR CHARACTERIZATION; CHEMICAL-COMPOSITION; RURAL LOCATIONS; NEW-YORK; ATMOSPHERIC PARTICLES; UNITED-STATES; OLIGOMERS; FINE; NITRATE; CARBON AB This work demonstrates the utility of a particle-into-liquid sampler (PILS), a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols, for the analysis of water-soluble organic aerosol (OA) using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m(3) Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak abundances, types of detectable compounds, average O/C ratios, and organic mass to organic carbon ratios, the resulting high-resolution mass spectra were essentially identical for the PUS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in the ESI mass spectra.. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water-soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA. C1 [Bateman, Adam P.; Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA. [Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Nizkorodov, SA (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA. EM nizkorod@uci.edu; Alexander.Laskin@pnl.gov RI Laskin, Julia/H-9974-2012; Bateman, Adam/G-2804-2015; Laskin, Alexander/I-2574-2012; Nizkorodov, Sergey/I-4120-2014 OI Laskin, Julia/0000-0002-4533-9644; Bateman, Adam/0000-0003-3514-0727; Laskin, Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052 FU NSF [ATM-0831518]; W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL); Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); DOE FX The UCI group acknowledges support provided by the NSF Atmospheric Chemistry program, Grant ATM-0831518. The PNNL group acknowledges support provided by the intramural research and development program of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and funding by the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE). A.P.B. acknowledges sponsorship provided by the DOE Global Change Education Program. NR 63 TC 27 Z9 27 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 8010 EP 8016 DI 10.1021/ac1014386 PG 7 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400021 PM 20809606 ER PT J AU Shvartsburg, AA Clemmer, DE Smith, RD AF Shvartsburg, Alexandre A. Clemmer, David E. Smith, Richard D. TI Isotopic Effect on Ion Mobility and Separation of lsotopomers by High-Field Ion Mobility Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID GAS-PHASE SEPARATIONS; RESOLUTION; FAIMS AB Distinguishing and separating isotopic molecular variants is important across many scientific fields. However, discerning such variants, especially those producing no net mass difference, has been challenging. For example, single-stage mass spectrometry is broadly employed to analyze isotopes but is blind to isotopic isomers (isotopomers) and, except at very high resolution, species of the same nominal mass (isobars). Here, we report separation of isotopic ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field asymmetric waveform IMS (FAIMS). The effect is not based on the different reduced masses of ion-gas molecule pairs previously theorized to cause isotopic separations in conventional IMS, but appears related to the details of energetic ion-molecule collisions in strong electric fields. The observed separation qualitatively depends on the gas composition and may be improved using gas mixtures. Isotopic shifts depend on the position of the labeled site, which allows its localization and contains information about the ion geometry, potentially enabling a new approach to molecular structure characterization. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Clemmer, David E.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH NCRR [RR 18522]; DoE Office of Biological and Environmental Research FX We thank Drs. Stephen Valentine, Keqi Tang, David Koppenaal, and David Atkinson for discussions. This research was supported by NIH NCRR (Grant RR 18522 to R.D.S.). The work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility at PNNL sponsored by the DoE Office of Biological and Environmental Research. NR 23 TC 13 Z9 13 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 8047 EP 8051 DI 10.1021/ac101992d PG 5 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400027 PM 20815340 ER PT J AU Morreel, K Kim, H Lu, FC Dima, O Akiyama, T Vanholme, R Niculaes, C Goeminne, G Inze, D Messens, E Ralph, J Boerjan, W AF Morreel, Kris Kim, Hoon Lu, Fachuang Dima, Oana Akiyama, Takuya Vanholme, Ruben Niculaes, Claudiu Goeminne, Geert Inze, Dirk Messens, Eric Ralph, John Boerjan, Wout TI Mass Spectrometry-Based Fragmentation as an Identification Tool in Lignomics SO ANALYTICAL CHEMISTRY LA English DT Article ID O-METHYLTRANSFERASE; LIGNIN BIOSYNTHESIS; NEGATIVE-IONS; ELECTROSPRAY-IONIZATION; DOWN-REGULATION; POPLAR XYLEM; REVEALS; METABOLOMICS; METABOLISM; OLIGOLIGNOLS AB The ensemble of all phenolics for which the biosynthesis is coregulated with lignin biosynthesis, i.e., metabolites from the general phenylpropanoid, monolignol, and (neo)-lignan biosynthetic pathways and their derivatives, as well as the lignin oligomers, is coined the lignome. In lignifying tissues, the lignome comprises a significant portion of the metabolome. However, as is true for metabolomics in general, the structural elucidation of unknowns represents the biggest challenge in characterizing the lignome. To minimize the necessity to purify unknowns for NMR analysis, it would be desirable to be able to extract structural information from liquid chromatography-mass spectrometry data directly. However, mass spectral libraries for metabolomics are scarce, and no libraries exist for the lignome. Therefore, elucidating the gas-phase fragmentation behavior of the major bonding types encountered in lignome-associated molecules would considerably advance the systematic characterization of the lignome. By comparative MS" analysis of a series of molecules belonging to the beta-aryl ether, benzodioxane, phenylcoumaran, and resinol groups, we succeeded in annotating typical fragmentations for each of these bonding structures as well as fragmentations that enabled the identification of the aromatic units involved in each bonding structure. Consequently, this work lays the foundation for a detailed characterization of the lignome in different plant species, mutants, and transgenics and for the MS-based sequencing of lignin oligomers and (neo)lignans. C1 [Morreel, Kris; Dima, Oana; Vanholme, Ruben; Niculaes, Claudiu; Goeminne, Geert; Inze, Dirk; Messens, Eric; Boerjan, Wout] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Morreel, Kris; Dima, Oana; Vanholme, Ruben; Niculaes, Claudiu; Goeminne, Geert; Inze, Dirk; Messens, Eric; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Akiyama, Takuya] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Tokyo 1138657, Japan. RP Morreel, K (reprint author), VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM kris.morreel@psb.vib-ugent.be; wout.boerjan@psb.vib-ugent.be OI Boerjan, Wout/0000-0003-1495-510X; Inze, Dirk/0000-0002-3217-8407 FU Research Foundation-Flanders [G.0352.05N, G.0637.07]; Stanford University; Ghent University [174PZA05]; DOE Great Lakes Bioenergy Research Center; DOE Office of Science [BER DE-FC02-07ER64494] FX The authors thank Paul Schatz (US Dairy Forage Research Center, USDA-Agricultural Research Service, Madison, WI) for the synthesis of S-propan-1-ol and S-propan-2-ol and Tsutomu Ishikawa (Chiba University, Chiba, Japan) for providing nitidanin. This work was supported by grants from the Research Foundation-Flanders (Grants G.0352.05N and G.0637.07), by the Stanford University Global Climate and Energy Project (Towards New Degradable Lignin Types), by the Multidisciplinary Research Project "Biotechnology for a sustainable economy" of Ghent University, and the "Bijzondere Onderzoeksfonds-Zware Apparatuur" of Ghent University for the FTICR-MS instrument (Grant)174PZA05). H.K., F.L., and J.R. were funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 34 TC 54 Z9 55 U1 2 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 8095 EP 8105 DI 10.1021/ac100968g PG 11 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400033 PM 20795635 ER PT J AU Shvartsburg, AA Creese, AJ Smith, RD Cooper, HJ AF Shvartsburg, Alexandre A. Creese, Andrew J. Smith, Richard D. Cooper, Helen J. TI Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ELECTRON-TRANSFER DISSOCIATION; GAS-PHASE SEPARATIONS; HYDROPHILIC INTERACTION CHROMATOGRAPHY; MASS-SPECTROMETRY; PROTEIN-PHOSPHORYLATION; ISOBARIC PHOSPHOPEPTIDES; SACCHAROMYCES-CEREVISIAE; CAPTURE DISSOCIATION; SIZE PARAMETERS; TRYPTIC DIGEST AB Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Creese, Andrew J.; Cooper, Helen J.] Univ Birmingham, Coll Life & Environm Sci, Sch Biosci, Birmingham B15 2TT, W Midlands, England. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012; Creese, Andrew/C-8221-2014 OI Smith, Richard/0000-0002-2381-2349; FU U.S. Department of Energy Office of Biological and Environmental Research (DoE/BER); NIH National Center for Research Resources [RR18522]; Wellcome Trust [074131] FX We thank Heather Brewer, Therese Clauss, and Ron Moore for experimental help, and Dr. Errol Robinson, Dr. Feng Yang, Dr. Vlad Petyuk, and Professor Steven Gygi for discussions of peptide phosphorylation and its MS characterization. Portions of this research were supported by the U.S. Department of Energy Office of Biological and Environmental Research (DoE/BER), NIH National Center for Research Resources (RR18522), and the Wellcome Trust (074131). Work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility at PNNL sponsored by DoE-BER. NR 56 TC 45 Z9 45 U1 1 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 8327 EP 8334 DI 10.1021/ac101878a PG 8 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400063 PM 20843012 ER PT J AU Krenkova, J Lacher, NA Svec, F AF Krenkova, Jana Lacher, Nathan A. Svec, Frantisek TI Control of Selectivity via Nanochemistry: Monolithic Capillary Column Containing Hydroxyapatite Nanoparticles for Separation of Proteins and Enrichment of Phosphopeptides SO ANALYTICAL CHEMISTRY LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; EXCHANGE STATIONARY PHASES; POROUS POLYMER MONOLITHS; PHOSPHOPROTEOME ANALYSIS; AFFINITY-CHROMATOGRAPHY; ION CHROMATOGRAPHY; SURFACE-CHEMISTRY; IN-LINE; ELECTROCHROMATOGRAPHY; PRECONCENTRATION AB New monolithic capillary columns with embedded commercial hydroxyapatite nanoparticles have been developed and used for protein separation and selective enrichment of phosphopeptides. The rod-shaped hydroxyapatite nanoparticles were incorporated into the poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) monolith by simply admixing them in the polymerization mixture followed by in situ polymerization. The effect of percentages of monomers and hydroxyapatite nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. We found that the loading capacity of the monolith is on par with other hydroxyapatite separation media. However, the speed at which these columns can be used is higher due to the fast mass transport. The function of the monolithic columns was demonstrated with the separations of a model mixture of proteins including ovalbumin, myoglobin, lysozyme, and cytochrome c as well as a monoclonal antibody and its aggregates with protein A. Selective enrichment and MALDI/MS characterization of phosphopeptides fished-out from complex peptide mixtures of ovalbumin, alpha-casein, and beta-casein digests were also achieved using the hydroxyapatite monolith. C1 [Krenkova, Jana; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Lacher, Nathan A.] Pfizer BioTherapeut Pharmaceut Sci R&D, Analyt R&D, Chesterfield, MO 63017 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Pfizer Inc. FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support of J.K. by Pfizer Inc. is gratefully acknowledged. NR 55 TC 87 Z9 91 U1 11 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2010 VL 82 IS 19 BP 8335 EP 8341 DI 10.1021/ac1018815 PG 7 WC Chemistry, Analytical SC Chemistry GA 655NT UT WOS:000282257400064 PM 20806887 ER PT J AU Cao, Y Gohar, Y Broeders, CHM AF Cao, Yan Gohar, Yousry Broeders, Cornelis H. M. TI MCNPX Monte Carlo burnup simulations of the isotope correlation experiments in the NPP Obrigheim SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE MCNPX; Burnup; Isotope correlation experiment ID CROSS-SECTION AB This paper describes the simulation work of the Isotope Correlation Experiment (ICE) using the MCNPX Monte Carlo computer code package. The Monte Carlo simulation results are compared with the ICE-Experimental measurements for burnup up to 30 GWD/t. The comparison shows the good capabilities of the MCNPX computer code package for predicting the depletion of the uranium fuel and the buildup of the plutonium isotopes in a PWR thermal reactor. The Monte Carlo simulation results show also good agreements with the experimental data for calculating several long-lived and stable fission products. However, for the americium and curium actinides, it is difficult to judge the predication capabilities for these actinides due to the large uncertainties in the ICE-Experimental data. In the MCNPX numerical simulations, a pin cell model is utilized to simulate the fuel lattice of the nuclear power reactor. Temperature dependent libraries based on JEFF3.1 nuclear data files are utilized for the calculations. In addition, temperature dependent libraries based ENDF/B-VII nuclear data files are utilized and the obtained results are very close to the JEFF3.1 results, except for similar to 10% differences in the prediction of the minor actinide isotopes buildup. Published by Elsevier Ltd. C1 [Cao, Yan; Gohar, Yousry] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Broeders, Cornelis H. M.] Forschungszentrum Karlsruhe, Inst Neutron Phys & Reactor Technol, D-76021 Karlsruhe, Germany. RP Cao, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, Bldg 208,9700 S Cass Ave, Argonne, IL 60439 USA. EM ycao@anl.gov NR 14 TC 4 Z9 4 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD OCT PY 2010 VL 37 IS 10 BP 1321 EP 1328 DI 10.1016/j.anucene.2010.05.015 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 638ZA UT WOS:000280938500008 ER PT J AU Linger, JG Adney, WS Darzins, A AF Linger, Jeffrey G. Adney, William S. Darzins, Al TI Heterologous Expression and Extracellular Secretion of Cellulolytic Enzymes by Zymomonas mobilis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PRODUCTIVITY ETHANOL FERMENTATIONS; SIMULTANEOUS SACCHARIFICATION; ESCHERICHIA-COLI; ENDOGLUCANASE GENE; CELLULOSIC BIOMASS; CELLULASE GENE; FUEL ETHANOL; BIOLOGY; STRAIN; CONSTRUCTION AB Development of the strategy known as consolidated bioprocessing (CBP) involves the use of a single microorganism to convert pretreated lignocellulosic biomass to ethanol through the simultaneous production of saccharolytic enzymes and fermentation of the liberated monomeric sugars. In this report, the initial steps toward achieving this goal in the fermentation host Zymomonas mobilis were investigated by expressing heterologous cellulases and subsequently examining the potential to secrete these cellulases extracellularly. Numerous strains of Z. mobilis were found to possess endogenous extracellular activities against carboxymethyl cellulose, suggesting that this microorganism may harbor a favorable environment for the production of additional cellulolytic enzymes. The heterologous expression of two cellulolytic enzymes, E1 and GH12 from Acidothermus cellulolyticus, was examined. Both proteins were successfully expressed as soluble, active enzymes in Z. mobilis although to different levels. While the E1 enzyme was less abundantly expressed, the GH12 enzyme comprised as much as 4.6% of the total cell protein. Additionally, fusing predicted secretion signals native to Z. mobilis to the N termini of E1 and GH12 was found to direct the extracellular secretion of significant levels of active E1 and GH12 enzymes. The subcellular localization of the intracellular pools of cellulases revealed that a significant portion of both the E1 and GH12 secretion constructs resided in the periplasmic space. Our results strongly suggest that Z. mobilis is capable of supporting the expression and secretion of high levels of cellulases relevant to biofuel production, thereby serving as a foundation for developing Z. mobilis into a CBP platform organism. C1 [Linger, Jeffrey G.; Darzins, Al] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Adney, William S.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Darzins, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM Al.Darzins@NREL.gov NR 48 TC 49 Z9 52 U1 1 U2 17 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 19 BP 6360 EP 6369 DI 10.1128/AEM.00230-10 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 653ZA UT WOS:000282136700004 PM 20693448 ER PT J AU Tripathi, SA Olson, DG Argyros, DA Miller, BB Barrett, TF Murphy, DM McCool, JD Warner, AK Rajgarhia, VB Lynd, LR Hogsett, DA Caiazza, NC AF Tripathi, Shital A. Olson, Daniel G. Argyros, D. Aaron Miller, Bethany B. Barrett, Trisha F. Murphy, Daniel M. McCool, Jesse D. Warner, Anne K. Rajgarhia, Vineet B. Lynd, Lee R. Hogsett, David A. Caiazza, Nicky C. TI Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ARCHAEON THERMOCOCCUS-KODAKARAENSIS; ESCHERICHIA-COLI; TRANSFORMATION SYSTEM; CELLULOSE UTILIZATION; POSITIVE SELECTION; ALPHA-TOXIN; INACTIVATION; ETHANOL; GROWTH; YIELD AB We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The Delta pyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes the enzyme phosphotransacetylase. The C. thermocellum Delta pta strain did not produce acetate. These results are the first examples of targeted homologous recombination and metabolic engineering in C. thermocellum, a microbe that holds an exciting and promising future in the biofuel industry and development of sustainable energy resources. C1 [Tripathi, Shital A.; Olson, Daniel G.; Argyros, D. Aaron; Miller, Bethany B.; Barrett, Trisha F.; Murphy, Daniel M.; McCool, Jesse D.; Warner, Anne K.; Rajgarhia, Vineet B.; Lynd, Lee R.; Hogsett, David A.; Caiazza, Nicky C.] Mascoma Corp, Hanover, NH 03755 USA. [Olson, Daniel G.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Tripathi, Shital A.; Olson, Daniel G.; Argyros, D. Aaron; Miller, Bethany B.; Barrett, Trisha F.; Murphy, Daniel M.; McCool, Jesse D.; Warner, Anne K.; Rajgarhia, Vineet B.; Lynd, Lee R.; Hogsett, David A.; Caiazza, Nicky C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Caiazza, NC (reprint author), Mascoma Corp, 67 Etna Rd,Suite 300, Hanover, NH 03755 USA. EM ncaiazza@mascoma.com RI Olson, Daniel/F-2058-2011; Lynd, Lee/N-1260-2013 OI Olson, Daniel/0000-0001-5393-6302; Lynd, Lee/0000-0002-5642-668X FU Mascoma Corporation; BioEnergy Science Center (BESC); Oak Ridge National Laboratory; U.S. Department of Energy (DOE) Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science FX This research was supported by Mascoma Corporation, a grant from the BioEnergy Science Center (BESC), and Oak Ridge National Laboratory, a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 43 TC 96 Z9 99 U1 4 U2 30 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 19 BP 6591 EP 6599 DI 10.1128/AEM.01484-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 653ZA UT WOS:000282136700030 PM 20693441 ER PT J AU Raber, E Burklund, A AF Raber, Ellen Burklund, Alison TI Decontamination Options for Bacillus anthracis-Contaminated Drinking Water Determined from Spore Surrogate Studies SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BIOLOGICAL WARFARE AGENTS; SUBTILIS SPORES; PERSISTENCE; MECHANISMS; BACTERIA AB Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus), (ii) spore concentration in suspension (10(2) and 10(6) spores/ml), (iii) chemical characteristics of the decontaminant (sodium dichloro-S-triazinetrione dihydrate [Dichlor], hydrogen peroxide, potassium peroxymonosulfate [Oxone], sodium hypochlorite, and VirkonS), (iv) decontaminant concentration (0.01% to 5%), and (v) exposure time to decontaminant (10 min to 1 h). Results from 138 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5% and Dichlor or sodium hypochlorite at a concentration of 2% were highly effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and a more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting the EPA biocide standard of greater than a 6-log kill after a 10-min exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS and Oxone were less effective as decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for a biocide, although they were found to be as effective for concentrations of 10(2) spores/ml. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult. C1 [Raber, Ellen] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Burklund, Alison] Athenian Sch, Danville, CA 94506 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, L-179, Livermore, CA 94550 USA. EM raber1@llnl.gov FU Athenian School, Danville, CA FX We are grateful for the generosity of Joe Dalmasso, from Apex Laboratories, Apex, NC, for donating spores and culturing equipment and for his advice regarding test procedures and data interpretation. We thank the Athenian School, Danville, CA, for its support of this work and for allowing the use of its facilities and equipment. We are grateful for help from Gloria Murphy, Lawrence Livermore National Laboratory, Livermore, CA, for providing valuable information that helped us in the laboratory work. We especially thank Robert Kirvel for technical writing assistance in preparing the manuscript. NR 27 TC 14 Z9 14 U1 0 U2 20 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 19 BP 6631 EP 6638 DI 10.1128/AEM.01136-10 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 653ZA UT WOS:000282136700034 PM 20709855 ER PT J AU Masukawa, H Inoue, K Sakurai, H Wolk, CP Hausinger, RP AF Masukawa, Hajime Inoue, Kazuhito Sakurai, Hidehiro Wolk, C. Peter Hausinger, Robert P. TI Site-Directed Mutagenesis of the Anabaena sp. Strain PCC 7120 Nitrogenase Active Site To Increase Photobiological Hydrogen Production SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID AZOTOBACTER-VINELANDII NITROGENASE; FEMO-COFACTOR-BINDING; IRON-MOLYBDENUM COFACTOR; STEADY-STATE KINETICS; PROTEIN ALPHA-SUBUNIT; MOFE-PROTEIN; SUBSTRATE INTERACTION; N-2 REDUCTION; NH3 FORMATION; HD FORMATION AB Cyanobacteria use sunlight and water to produce hydrogen gas (H(2)), which is potentially useful as a clean and renewable biofuel. Photobiological H(2) arises primarily as an inevitable by-product of N(2) fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme is localized to the microaerobic environment of heterocysts, a highly differentiated subset of the filamentous cells. In an effort to increase H(2) production by this strain, six nitrogenase amino acid residues predicted to reside within 5 angstrom of the FeMo-co were mutated in an attempt to direct electron flow selectively toward proton reduction in the presence of N(2). Most of the 49 variants examined were deficient in N(2)-fixing growth and exhibited decreases in their in vivo rates of acetylene reduction. Of greater interest, several variants examined under an N(2) atmosphere significantly increased their in vivo rates of H(2) production, approximating rates equivalent to those under an Ar atmosphere, and accumulated high levels of H(2) compared to the reference strains. These results demonstrate the feasibility of engineering cyanobacterial strains for enhanced photobiological production of H(2) in an aerobic, nitrogen-containing environment. C1 [Masukawa, Hajime; Hausinger, Robert P.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Masukawa, Hajime; Wolk, C. Peter; Hausinger, Robert P.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Masukawa, Hajime; Inoue, Kazuhito; Sakurai, Hidehiro] Kanagawa Univ, Res Inst Photobiol Hydrogen Prod, Kanagawa 2591293, Japan. [Inoue, Kazuhito] Kanagawa Univ, Dept Biol Sci, Kanagawa 2591293, Japan. [Sakurai, Hidehiro] Waseda Univ, Dept Biol, Shinjuku Ku, Tokyo 1698050, Japan. [Wolk, C. Peter] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Wolk, C. Peter] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Hausinger, Robert P.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Hausinger, RP (reprint author), Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. EM hausinge@msu.edu OI Hausinger, Robert/0000-0002-3643-2054 FU Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; JSPS [16.9494] FX This study was supported by the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and by Grants-in-Aid for Scientific Research from JSPS (16.9494, to H. M.). NR 57 TC 24 Z9 25 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 20 BP 6741 EP 6750 DI 10.1128/AEM.01056-10 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 659VM UT WOS:000282595100005 PM 20709836 ER PT J AU Cardenas, E Wu, WM Leigh, MB Carley, J Carroll, S Gentry, T Luo, J Watson, D Gu, BH Ginder-Vogel, M Kitanidis, PK Jardine, PM Zhou, JZ Criddle, CS Marsh, TL Tiedje, JM AF Cardenas, Erick Wu, Wei-Min Leigh, Mary Beth Carley, Jack Carroll, Sue Gentry, Terry Luo, Jian Watson, David Gu, Baohua Ginder-Vogel, Matthew Kitanidis, Peter K. Jardine, Philip M. Zhou, Jizhong Criddle, Craig S. Marsh, Terence L. Tiedje, James M. TI Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CONTAMINATED SUBSURFACE SEDIMENTS; IN-SITU BIOSTIMULATION; U(VI) REDUCTION; SP NOV.; AQUIFER; BIOREMEDIATION; NITRATE; GROUNDWATER; BIOREDUCTION; REOXIDATION AB Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 mu M and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. C1 [Cardenas, Erick; Leigh, Mary Beth; Marsh, Terence L.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Wu, Wei-Min; Luo, Jian; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Criddle, Craig S.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Carley, Jack; Carroll, Sue; Gentry, Terry; Watson, David; Gu, Baohua; Jardine, Philip M.; Zhou, Jizhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Marsh, TL (reprint author), Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. EM marsht@msu.edu; tiedjej@msu.edu RI Gu, Baohua/B-9511-2012; Watson, David/C-3256-2016 OI Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy's Office of Science [DE-FG02-97ER62469, DE-FG02-97ER64398]; U.S. National Science Foundation; [C05-00OR22725] FX This study was funded by the U.S. Department of Energy's Office of Science under grants DE-FG02-97ER62469 and DE-FG02-97ER64398 for the microbial studies and grant C05-00OR22725 for the field work. Mary Beth Leigh was supported by a U.S. National Science Foundation postdoctoral fellowship. NR 49 TC 38 Z9 38 U1 2 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2010 VL 76 IS 20 BP 6778 EP 6786 DI 10.1128/AEM.01097-10 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 659VM UT WOS:000282595100009 PM 20729318 ER PT J AU Weiss, ND Stickel, JJ Wolfe, JL Nguyen, QA AF Weiss, Noah D. Stickel, Jonathan J. Wolfe, Jeffrey L. Nguyen, Quang A. TI A Simplified Method for the Measurement of Insoluble Solids in Pretreated Biomass Slurries SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Pretreatment; Fraction insoluble solids; Biomass; Lignocellulosic ethanol; Corn stover ID LIGNOCELLULOSIC BIOMASS AB The biochemical conversion of cellulosic biomass to liquid transportation fuels includes the breakdown of biomass into its soluble, fermentable components. Pretreatment, the initial step in the conversion process, results in heterogeneous slurry comprised of both soluble and insoluble biomass components. For the purpose of tracking the progress of the conversion process, it is important to be able to accurately measure the fraction of insoluble biomass solids in the slurry. The current standard method involves separating the solids from the free liquor and then repeatedly washing the solids to remove the soluble fraction, a laborious and tedious process susceptible to operator variations. In this paper, we propose an alternative method for calculating the fraction of insoluble solids which does not require a washing step. The proposed method involves measuring the dry matter content of the whole slurry as well as the dry matter content in the isolated liquor fraction. We compared the two methods using three different pretreated biomass slurry samples and two oven-drying techniques for determining dry matter content, an important measurement for both methods. We also evaluated a large set of fraction insoluble solids data collected from previously analyzed pretreated samples. The proposed new method provided statistically equivalent results to the standard washing method when an infrared balance was used for determining dry matter content in the controlled measurement experiment. Similarly, in the large historical data set, there was no statistical difference shown between the wash and no-wash methods. The new method is offered as an alternative method for determining the fraction of insoluble solids. C1 [Weiss, Noah D.; Stickel, Jonathan J.; Wolfe, Jeffrey L.; Nguyen, Quang A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov FU US Department of Energy FX This work was funded by the US Department of Energy through the Office of the Biomass Program. We would like to thank our NREL colleagues David Templeton, Ed Wolfrum, and Chris Scarlata for helpful discussions regarding analysis of the data. NR 7 TC 15 Z9 15 U1 0 U2 1 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD OCT PY 2010 VL 162 IS 4 BP 975 EP 987 DI 10.1007/s12010-009-8806-6 PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 637TP UT WOS:000280841900006 PM 19838648 ER PT J AU Fata, SN AF Fata, S. Nintcheu TI Semi-analytic treatment of nearly-singular Galerkin surface integrals SO APPLIED NUMERICAL MATHEMATICS LA English DT Article DE Galerkin approximation; Nearly-singular integrals; Singular integrals; Hyper-singular integrals; Boundary element method; Potential theory ID BOUNDARY-ELEMENT INTEGRALS; SINH TRANSFORMATION; POTENTIAL PROBLEMS; BEM COLLOCATION; QUADRATURE AB On utilizing piecewise linear test and interpolation functions over flat triangles, three semi-analytic techniques for evaluating nearly-singular surface integrals of potential theory are developed and investigated in the context of a three-dimensional Galerkin approximation In all procedures, the inner surface integral is calculated exactly via recursive expressions defined over the edges of the integration triangle In addition, the proposed methods respectively employ a Duffy transformation, sinh transformations, and polynomial transformations to weaken or smooth out near singularities, followed by a standard product Gauss-Legendre quadrature rule to compute the outer boundary integral Numerical experiments and comparisons of the proposed approaches are Included to provide more insight into the performance of these techniques Computational tests have demonstrated that the algorithm based on a Duffy transformation is the most efficient and effective method for dealing with nearly-singular as well as well-separated integrals. (C) 2010 IMACS Published by Elsevier BV All rights reserved C1 Oak Ridge Natl Lab, Div Comp Sci & Math, Oak Ridge, TN 37831 USA. RP Fata, SN (reprint author), Oak Ridge Natl Lab, Div Comp Sci & Math, POB 2008,MS 6367, Oak Ridge, TN 37831 USA. FU Office of Advanced Scientific Computing Research, U.S. Department of Energy with UT-Battelle, LLC [DE-AC05-00OR22725] FX This work was supported by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 21 TC 7 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9274 J9 APPL NUMER MATH JI Appl. Numer. Math. PD OCT PY 2010 VL 60 IS 10 BP 974 EP 993 DI 10.1016/j.apnum.2010.06.003 PG 20 WC Mathematics, Applied SC Mathematics GA 648MA UT WOS:000281696900002 ER PT J AU Beck, KM Joly, AG Hess, WP AF Beck, Kenneth M. Joly, Alan G. Hess, Wayne P. TI Effect of surface charge on laser-induced neutral atom desorption SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID EXCITATION; MGO; ENERGIES; CRYSTALS; STATES AB When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges (Barth and Henry in J. Phys. Chem. C 113:247, 2009). In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures (Stoneham et al. in Appl. Phys. A 69:S81, 1999). We report here that such surface charging strongly impacts neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single-crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution. C1 [Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Beck, KM (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Div Chem & Mat Sci, POB 999, Richland, WA 99352 USA. EM kenneth.beck@pnl.gov FU Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences of the Office of Basic Energy Sciences FX The authors were supported by the Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences of the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle. Experiments were performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy user facility operated by the office of Biological and Environmental Research. The authors would also like to thank Prof.s Alexander L. Shluger and Peter V. Sushko, and Dr. Matthew Wolf for insightful and encouraging discussions. NR 20 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD OCT PY 2010 VL 101 IS 1 BP 61 EP 64 DI 10.1007/s00339-010-5758-1 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 666EX UT WOS:000283097300011 ER PT J AU Dunn, MJ Masri, AR AF Dunn, M. J. Masri, A. R. TI A comprehensive model for the quantification of linear and nonlinear regime laser-induced fluorescence of OH under A(2)I (+)a pound dagger(XI)-I-2 (1,0) excitation SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID ATMOSPHERIC-PRESSURE FLAMES; ROTATIONAL ENERGY-TRANSFER; TURBULENT-DIFFUSION FLAMES; SHOCK-TUBE; HYDROXIDE CONCENTRATIONS; COMBUSTION ENVIRONMENT; DILOGARITHM FUNCTION; C2H6/O2/N2 FLAMES; REAL ARGUMENT; GROUND-STATE AB An analytic model termed the 'integrated quasi-steady-state' (IQSS) model for the comprehensive quantification of both linear and nonlinear regime laser-induced fluorescence (LIF) is presented. The IQSS model is optimized for the hydroxyl radical (OH), subject to nanosecond A(2)I (+)a pound dagger(XI)-I-2 (1,0) excitation at pressures close to atmospheric. The IQSS model is particularly relevant to experimental conditions where the LIF signal is both spectrally and temporally integrated, such as in planar laser-induced fluorescence experiments. The IQSS model is based around a quasi-steady-state solution to a four-level rate-equation approximation of the OH molecule; this quasi-steady-state solution is then integrated with a triangular functional form for both the spatial and temporal variations to produce an analytic solution. In order to accurately predict LIF in the nonlinear regime, it is shown that both the temporal and the spatial variations of the laser pulse-or 'wings' of the laser pulse-must be adequately accounted for in the LIF model formulation. The IQSS model is successfully verified against detailed numerical simulations for variations in the laser irradiance, quenching environment and temperature. Experimentally, the IQSS model is successfully validated by comparing the predicted and measured OH LIF vs. irradiance dependence in the product gases of a methane-air laminar flame. C1 [Dunn, M. J.; Masri, A. R.] Univ Sydney, Sch Aerosp Mech & Mech Engn, Sydney, NSW 2006, Australia. RP Dunn, MJ (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 E Ave, Livermore, CA 94551 USA. EM mjdunn@sandia.gov FU Australian research council FX This work was supported by the Australian research council. Discussions and constructive comments from Prof. J.W. Daily and Dr. T.S. Settersten during the early stages of this work are gratefully acknowledged. NR 66 TC 9 Z9 9 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD OCT PY 2010 VL 101 IS 1-2 BP 445 EP 463 DI 10.1007/s00340-010-4129-0 PG 19 WC Optics; Physics, Applied SC Optics; Physics GA 661AL UT WOS:000282694300055 ER PT J AU Dejoie, C Martinetto, P Dooryhee, E Van Elslande, E Blanc, S Bordat, P Brown, R Porcher, F Anne, M AF Dejoie, Catherine Martinetto, Pauline Dooryhee, Eric Van Elslande, Elsa Blanc, Sylvie Bordat, Patrice Brown, Ross Porcher, Florence Anne, Michel TI Association of Indigo with Zeolites for Improved Color Stabilization SO APPLIED SPECTROSCOPY LA English DT Article DE Indigo; Zeolite; Pigment; Raman spectroscopy; Ultraviolet-visible spectroscopy; Reflectance ID MAYA BLUE PIGMENT; RAMAN-SPECTROSCOPY; DYE; PHOTOCHEMISTRY; PALYGORSKITE; DIFFRACTION; MATRICES; SURFACE AB The durability of an organic color and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidizing conditions, using Raman and ultraviolet-visible (UV-Vis) spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In the absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions or the guest indigo molecule is the key factor. The evidence for the high color stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment. C1 [Dejoie, Catherine; Martinetto, Pauline; Dooryhee, Eric; Anne, Michel] CNRS, UPR 2940, Inst Neel, F-38042 Grenoble 9, France. [Dooryhee, Eric] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Van Elslande, Elsa] CNRS, Ctr Rech & Restaurat Musees France, F-75001 Paris, France. [Blanc, Sylvie; Bordat, Patrice; Brown, Ross] CNRS, Inst Pluridisciplinaire Rech Environm & Mat, F-64053 Pau 9, France. [Porcher, Florence] UHP CNRS, Fac Sci, Lab Cristallog Resonnance Magnet & Modelisat, F-54506 Vandoeuvre Les Nancy, France. [Porcher, Florence] CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. RP Martinetto, P (reprint author), CNRS, UPR 2940, Inst Neel, 25 Ave Martyrs,BP 166, F-38042 Grenoble 9, France. EM pauline.martinetto@grenoble.cnrs.fr RI dooryhee, eric/D-6815-2013 FU Region Rhone-Alpes FX Colorimetric measurements at the C2RMF Paris benefited from the support of J.-J. Ezrati. Marine Cotte provided assistance for the infrared studies at the ID21-ESRF beamline (Grenoble). J. Kreisel and O. Chaix (LMGP Grenoble) helped with the Raman analyses and Ph. de Parseval (LMTG Toulouse) provided support for the microprobe analyses. C.D. acknowledges the CIBLE and MACODEV grants from Region Rhone-Alpes. NR 44 TC 5 Z9 5 U1 1 U2 16 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD OCT PY 2010 VL 64 IS 10 BP 1131 EP 1138 PG 8 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 663AN UT WOS:000282855500009 PM 20925983 ER PT J AU Mathew, PA Tschudi, W Sartor, D Beasley, J AF Mathew, Paul A. Tschudi, William Sartor, Dale Beasley, James TI Cleanroom Energy Efficiency SO ASHRAE JOURNAL LA English DT Article C1 [Mathew, Paul A.; Tschudi, William; Sartor, Dale] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beasley, James] Int SEMATECH Mfg Initiat, Austin, TX USA. RP Mathew, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU California Energy Commission (CEC) FX This article was based on a self-benchmarking guide developed for the New York State Energy Research and Development Authority (NYSERDA) and previous benchmarking studies supported by the California Energy Commission (CEC). The Fabs21 database was developed for the International SEMAT-ECH Manufacturing Initiative (ISMI). NR 6 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD OCT PY 2010 VL 52 IS 10 BP 24 EP + PG 6 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 665GG UT WOS:000283022800012 ER PT J AU Dieckmann, J Cooperman, A Brodrick, J AF Dieckmann, John Cooperman, Alissa Brodrick, James TI What are the Benefits and Pitfalls Personal Ventilation SO ASHRAE JOURNAL LA English DT Article C1 [Cooperman, Alissa] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD OCT PY 2010 VL 52 IS 10 BP 70 EP + PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 665GG UT WOS:000283022800015 ER PT J AU Buitink, S Scholten, O Bacelar, J Braun, R de Bruyn, AG Falcke, H Singh, K Stappers, B Strom, RG al Yahyaoui, R AF Buitink, S. Scholten, O. Bacelar, J. Braun, R. de Bruyn, A. G. Falcke, H. Singh, K. Stappers, B. Strom, R. G. al Yahyaoui, R. TI Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astroparticle physics; neutrinos; methods: data analysis; methods: observational; radiation mechanisms: non-thermal ID COSMIC-RAYS; EMISSION; SHOWERS; PULSES; CHARGE; LIMITS; MOON AB Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit. C1 [Buitink, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Buitink, S.; Falcke, H.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scholten, O.; Singh, K.; al Yahyaoui, R.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Bacelar, J.] ASML Netherlands BV, NL-5500 AH Veldhoven, Netherlands. [Braun, R.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [de Bruyn, A. G.] Univ Groningen, Kapteyn Inst, NL-9747 AA Groningen, Netherlands. [de Bruyn, A. G.; Falcke, H.; Strom, R. G.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Stappers, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Strom, R. G.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. RP Buitink, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM sbuitink@lbl.gov RI Falcke, Heino/H-5262-2012 OI Falcke, Heino/0000-0002-2526-6724 NR 38 TC 16 Z9 16 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2010 VL 521 AR A47 DI 10.1051/0004-6361/201014104 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679GW UT WOS:000284150900108 ER PT J AU Arnaboldi, C Beeman, JW Cremonesi, O Gironi, L Pavan, M Pessina, G Pirro, S Previtali, E AF Arnaboldi, C. Beeman, J. W. Cremonesi, O. Gironi, L. Pavan, M. Pessina, G. Pirro, S. Previtali, E. TI CdWO4 scintillating bolometer for Double Beta Decay: Light and heat anticorrelation, light yield and quenching factors SO ASTROPARTICLE PHYSICS LA English DT Article DE Double Beta Decay; Bolometers; CdWO4; Quenching factor ID RELATIVE EFFICIENCY FACTOR; GERMANIUM DETECTORS; NEUTRINO MASS; CUORICINO; SEARCHES; RECOILS; EVENTS AB We report the performances of a 0.51 kg CdWO4 scintillating bolometer to be used for future Double Beta Decay Experiments. The simultaneous readout of the heat and the scintillation light allows to discriminate between different interacting particles aiming at the disentanglement and the reduction of background contribution, key issue for next generation experiments. We will describe the observed anticorrelation between the heat and the light signal and we will show how this feature can be used in order to increase the energy resolution of the bolometer over the entire energy spectrum, improving up to a factor 2.6 on the 2615 key line of (TI)-T-208. The detector was tested in a 433 h background measurement that permitted to estimate extremely low internal trace contaminations of Th-232 and U-238. The light yield gamma/beta, alpha's and neutrons is presented. Furthermore we developed a method in order to correctly evaluate the absolute thermal quenching factor of alpha-particles in scintillating bolometers. (C) 2010 Elsevier B.V. All rights reserved. C1 [Arnaboldi, C.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Gironi, L.; Pavan, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pirro, S (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. EM Stefano.Pirro@mib.infn.it RI Gironi, Luca/P-2860-2016; OI Gironi, Luca/0000-0003-2019-0967; pavan, maura/0000-0002-9723-7834; Pessina, Gianluigi Ezio/0000-0003-3700-9757 FU INFN FX The results reported here have been obtained in the framework of the Bolux R&D Experiment funded by INFN, aiming at the optimization of a cryogenic DBD Experiment for a next generation experiment. Thanks are due to E. Tatananni, A. Rotilio, A. Corsi and B. Romualdi for continuous and constructive help in the overall setup construction. Finally, we are especially grateful to Maurizio Perego for his invaluable help in the development and improvement of the Data Acquisition software. NR 31 TC 49 Z9 49 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD OCT PY 2010 VL 34 IS 3 BP 143 EP 150 DI 10.1016/j.astropartphys.2010.06.009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 658NF UT WOS:000282496000001 ER PT J AU Poznanski, D Nugent, PE Filippenko, AV AF Poznanski, Dovi Nugent, Peter E. Filippenko, Alexei V. TI TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; distance scale; supernovae: general ID HUBBLE DIAGRAM AB We revisit the observed correlation between the H beta and Fe II velocities for Type II-P supernovae (SNe II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km s(-1). Using this correlation, we re-analyze the publicly available sample of SNe II-P compiled by D'Andrea et al. and find a Hubble diagram with an intrinsic scatter of 11% in distance, which is nearly as tight as that measured before their sample is added to the existing set. The larger scatter reported in their work is found to be systematic, and most of it can be alleviated by measuring the H beta rather than Fe II velocities, due to the low signal-to-noise ratios and early epochs at which many of the optical spectra were obtained. Their sample, while supporting the mounting evidence that SNe II-P are good cosmic rulers, is biased toward intrinsically brighter objects and is not a suitable set to improve upon SN II-P correlation parameters. This will await a dedicated survey. C1 [Poznanski, Dovi; Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Poznanski, Dovi; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Poznanski, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dovi@berkeley.edu FU Einstein Fellowship; US Department of Energy [DE-FG02-06ER06-04]; National Science Foundation [AST-0908886]; TABASGO Foundation FX We thank C. D'Andrea and his collaborators for making the SDSS-II data on SNe II-P available to the community, and J. S. Bloom for useful advice. D. P. is supported by an Einstein Fellowship. We acknowledge support from the US Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program under contract DE-FG02-06ER06-04. A. V. F. is also grateful for funding from the National Science Foundation grant AST-0908886 and the TABASGO Foundation. NR 11 TC 18 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 1 PY 2010 VL 721 IS 2 BP 956 EP 959 DI 10.1088/0004-637X/721/2/956 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TP UT WOS:000282193600004 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Bottcher, M Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Daniel, MK Dickherber, R Ergin, T Falcone, A Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Nagai, T Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pizlo, F Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Varlotta, A Vassiliev, VV Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Boettcher, M. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Daniel, M. K. Dickherber, R. Ergin, T. Falcone, A. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Nagai, T. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pizlo, F. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI VERITAS OBSERVATIONS OF A VERY HIGH ENERGY gamma-RAY FLARE FROM THE BLAZAR 3C 66A (vol 693, pg L104, 2009) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Correction C1 [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Gibbs, K.; Kildea, J.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Boettcher, M.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Gall, D.; Pizlo, F.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Acciari, VA (reprint author), Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Galway, Ireland. EM jperkins@cfa.harvard.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010 OI Daniel, Michael/0000-0002-8053-7910 NR 3 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L203 EP L204 DI 10.1088/2041-8205/721/2/L203 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200027 ER PT J AU Gnedin, NY AF Gnedin, Nickolay Y. TI EFFECT OF COSMIC ULTRAVIOLET BACKGROUND ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: formation; methods: numerical; stars: formation ID LY-ALPHA SYSTEMS; IONIZING-RADIATION; LOCAL-SOURCES; MATTER; GAS; PHYSICS AB The effect of the cosmic UV background on star formation in high-redshift galaxies is explored by means of high-resolution cosmological simulations. The simulations include star formation, three-dimensional radiative transfer, and a highly detailed interstellar medium model, and reach spatial resolution sufficient to resolve formation sites for molecular clouds. In the simulations, the local radiation field in the Lyman-Werner band around star-forming molecular clouds dominates over the cosmic UV background by a factor of 100, similarly to the interstellar radiation field in the Milky Way and in a few high-redshift galaxies for which measurements exist. The cosmic UV background in the Lyman-Werner band, therefore, is essentially irrelevant for star formation in normal galaxies. C1 [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Gnedin, NY (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM gnedin@fnal.gov FU DOE at Fermila; NSF [AST-0908063]; NASA [NNX-09AJ54G]; Fermilab, Kavli Institute for Cosmological Physics; University of Chicago FX I am grateful to Andrey Kravtsov for comprehensive comments and enlightening discussion, and the anonymous referee for the constructive criticism that greatly improved the original manuscript. This work was supported in part by the DOE at Fermilab, by the NSF grant AST-0908063, and by the NASA grant NNX-09AJ54G. The simulations used in this work have been performed on the Joint Fermilab - KICP Supercomputing Cluster, supported by grants from Fermilab, Kavli Institute for Cosmological Physics, and the University of Chicago. This work made extensive use of the HEALPix spherical tessellation package and the NASA Astrophysics Data System and arXiv.org preprint server. NR 28 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L79 EP L81 DI 10.1088/2041-8205/721/2/L79 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200001 ER PT J AU Hueso, R Wesley, A Go, C Perez-Hoyos, S Wong, MH Fletcher, LN Sanchez-Lavega, A Boslough, MBE De Pater, I Orton, GS Simon-Miller, AA Djorgovski, SG Edwards, ML Hammel, HB Clarke, JT Noll, KS Yanamandra-Fisher, PA AF Hueso, R. Wesley, A. Go, C. Perez-Hoyos, S. Wong, M. H. Fletcher, L. N. Sanchez-Lavega, A. Boslough, M. B. E. De Pater, I. Orton, G. S. Simon-Miller, A. A. Djorgovski, S. G. Edwards, M. L. Hammel, H. B. Clarke, J. T. Noll, K. S. Yanamandra-Fisher, P. A. TI FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID IMPACT; FIREBALL; RATES AB Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10(15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm(-3). Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes. C1 [Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.] Univ Basque Country, Bilbao 48013, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW 2582, Australia. [Go, C.] Univ San Carlos, Dept Phys, Cebu, Philippines. [Wong, M. H.; De Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fletcher, L. N.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Boslough, M. B. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Orton, G. S.; Yanamandra-Fisher, P. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simon-Miller, A. A.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Djorgovski, S. G.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Edwards, M. L.] AURA, Gemini Observ, La Serena 603, Chile. [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Clarke, J. T.] Boston Univ, Boston, MA 02215 USA. [Noll, K. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Hueso, R (reprint author), Univ Basque Country, Bilbao 48013, Spain. EM ricardo.hueso@ehu.es RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Clarke, John/C-8644-2013; Perez-Hoyos, Santiago/L-7543-2014; OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X FU Spanish MICIIN [AYA2009-10701]; FEDER; Grupos Gobierno Vasco [IT-464-07]; Glasstone Science Fellowship; NASA [NAS 5-26555]; NSF [AST-0909182]; Ajax Foundation; HST [GO/DD-12119]; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina); W. M. Keck Foundation; Planetary Astronomy Program. FX This work was supported by the Spanish MICIIN project AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. L.N.F. was supported by a Glasstone Science Fellowship at the University of Oxford. G.S.O. and P.A.Y.-F. acknowledge support from NASA grants to the Jet Propulsion Laboratory, California Institute of Technology. S.G.D. acknowledges a partial support from the NSF grant AST-0909182 and from the Ajax Foundation. We thank J. Harrington for discussions and A. Stephens, C. Trujillo, J. Radomski, T. Greathouse, M. Richter, and C. Tsang for obtaining part of the ground-based observations. This work was partially based on observations from the following telescopes. (1) HST (program GO/DD-12119), with support provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. (2) TRECS and NIRI at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). (3) VLT/VISIR at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. (4) NIRC2 at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. (5) TEXES at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement n infinity NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 26 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 1 PY 2010 VL 721 IS 2 BP L129 EP L133 DI 10.1088/2041-8205/721/2/L129 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TB UT WOS:000282192200012 ER PT J AU Wingenter, OW Elliott, SM Blake, DR AF Wingenter, Oliver W. Elliott, Scott M. Blake, Donald R. TI New Directions: Restoring the westerly winds in the Southern Hemisphere: Climate's lever SO ATMOSPHERIC ENVIRONMENT LA English DT Editorial Material ID IRON ENRICHMENT; DIMETHYL SULFIDE; OCEAN; WATERS; CIRCULATION; SULFUR; CYCLE; CO2 C1 [Wingenter, Oliver W.] New Mexico Inst Min & Technol, Geophys Res Ctr, Socorro, NM 87801 USA. [Wingenter, Oliver W.] New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA. [Elliott, Scott M.] Los Alamos Natl Lab, Climate Ocean Sea Ice Modeling Project, Los Alamos, NM 87545 USA. [Blake, Donald R.] Univ Calif Irvine, Dept Chem & Earth Syst Sci, Irvine, CA 92697 USA. RP Wingenter, OW (reprint author), New Mexico Inst Min & Technol, Geophys Res Ctr, Socorro, NM 87801 USA. EM oliver@nmt.edu NR 26 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD OCT PY 2010 VL 44 IS 31 BP 3866 EP 3868 DI 10.1016/j.atmosenv.2010.05.029 PG 3 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 650UL UT WOS:000281878000015 ER PT J AU Qian, Y Gong, DY Leung, R AF Qian, Yun Gong, Daoyi Leung, Ruby TI Light rain events change over North America, Europe, and Asia for 1973-2009 SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE light rain; North America; Europe; Asia ID PRECIPITATION; TRENDS; VARIABILITY; CYCLE AB Analysis of daily precipitation data reveals diverse long-term trends of light rain events in North America (NA), Europe (EU), and Asia (AS), but overall a decreasing trend is found from 1973-2009, especially over East Asia, where a remarkable shift from light to heavy rain events has been observed. Although it has been argued that global warming may lead to a shift from light to heavy rain, regionally little correspondence is found between light rain trends and temperature/precipitable water (PW) trends. This argues for the need to include other factors such as atmospheric circulation and aerosol changes that affect regional rain rates and cloud processes. Copyright (C) 2010 Royal Meteorological Society C1 [Qian, Yun] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA. [Gong, Daoyi] Beijing Normal Univ, Beijing 100875, Peoples R China. RP Qian, Y (reprint author), Pacific NW Natl Lab, Climate Phys Grp, 3200 Q Ave, Richland, WA 99352 USA. EM Yun.Qian@pnl.gov RI qian, yun/E-1845-2011 FU US DOE's Office of Science Biological and Environmental Research under China Ministry of Science and Technology on regional climate research; US DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; NSFC in China [40975043]; [2007BAC29B02] FX We thank Qiang Fu and Celeste Johanson for providing the MSU temperature data. This research is sponsored by the US DOE's Office of Science Biological and Environmental Research under a bilateral agreement with the China Ministry of Science and Technology on regional climate research. PNNL is operated for the US DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. This research was also partly supported by projects 2007BAC29B02 and NSFC-40975043 in China. NR 17 TC 16 Z9 17 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD OCT-DEC PY 2010 VL 11 IS 4 BP 301 EP 306 DI 10.1002/asl.298 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 691FM UT WOS:000285065700009 ER PT J AU Chen, XW Lawoko, M van Heiningen, A AF Chen, Xiaowen Lawoko, Martin van Heiningen, Adriaan TI Kinetics and mechanism of autohydrolysis of hardwoods SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biorefinery; Autohydrolysis; Kinetics; Mechanism; Continuous mixed batch reactor ID WOOD; XYLAN; HEMICELLULOSE; HYDROLYSIS; CHEMISTRY; BIOMASS AB Autohydrolysis using water is a promising method to extract hemicelluloses from wood prior to pulping in order to make co-products such as ethanol and acetic acid besides pulp. Many studies have been carried out on the kinetics and mechanism of autohydrolysis using batch reactors. The present study was performed in a continuous mixed flow reactor where the wood chips are retained in a basket inside the reactor. This reactor is well suited to determine intrinsic kinetics of hemicellulose dissolution because the dissolved products are rapidly removed from the reactor, thus minimizing further hydrolysis and degradation of the hemicelluloses in solution. The xylan removal rate follows an S-shaped behavior. GPC analysis of the continuously removed extract shows that the dissolved xylan oligomers have a DP smaller than about 25. Lignin-free xylan oligomers and cellulose oligomers are the major components dissolved in the initial stage of autohydrolysis, while xylan covalently bound to lignin (i.e. an LCC) is the major component removed during the later stage of autohydrolysis. The molecular weight of the dissolved components decreases with time in the second stage. The kinetics of xylan removal are explained in terms of a mechanism based on recent knowledge of the ultrastructure of the cell fibre wall. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Chen, Xiaowen] Natl Renewable Energy Lab, Natl Biol Ctr, Golden, CO 80401 USA. [Lawoko, Martin; van Heiningen, Adriaan] Univ Maine, Orono, ME 04469 USA. RP Chen, XW (reprint author), Natl Renewable Energy Lab, Natl Biol Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM Xiaowen.Chen@nrel.gov RI chen, xiaowen/H-4823-2014 NR 28 TC 54 Z9 57 U1 1 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD OCT PY 2010 VL 101 IS 20 BP 7812 EP 7819 DI 10.1016/j.biortech.2010.05.006 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 631IP UT WOS:000280340300017 PM 20541933 ER PT J AU Lau, MW Dale, BE AF Lau, Ming W. Dale, Bruce E. TI Effect of primary degradation-reaction products from Ammonia Fiber Expansion (AFEX)-treated corn stover on the growth and fermentation of Escherichia coli KO11 SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cellulosic ethanol; Fermentation; AFEX pretreatment; Escherichia coli; Acetate ID ETHANOL-PRODUCTION; FUEL ETHANOL; BIOMASS; PRETREATMENT; INHIBITION; DETOXIFICATION; TECHNOLOGIES; BACTERIA; YEASTS; XYLOSE AB The primary degradation-reaction products (DRP) identified in Ammonia Fiber Expansion (AFEX)-pretreated corn stover are acetate, lactate, 4-hydroxybenzaldehyde (4HBD) and acetamide. The effects of these products at a broad concentration range were tested on Escherichia coli KO11, a strain engineered for cellulosic ethanol production. Fermentations using glucose or xylose as the sole carbohydrate source and a sugar mixture of glucose and xylose were conducted to determine how these products and sugar selection affected fermentation performance. Co-fermentation of the sugar mixture exhibited the lowest overall ethanol productivity compared to single-sugar fermentations and was more susceptible to inhibition. Metabolic ethanol yield increased with the increasing initial concentration of acetate. Although these degradation-reaction products (with exception of acetamide) are generally perceived to be inhibitory, organic acids and 4-hydroxybenzaldehyde at low levels stimulated fermentation. Adaptation of cells to these products prior to fermentation increased overall fermentation rate. Published by Elsevier Ltd. C1 [Lau, Ming W.; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, DOE Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA. RP Dale, BE (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, DOE Great Lakes Bioenergy Res Ctr, 3900 Collins Rd, Lansing, MI 48910 USA. EM bdale@egr.msu.edu FU US Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) [DE-FC02-07ER64494] FX This work was financially supported by US Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) Grant DE-FC02-07ER64494. Thanks to the members of the Biomass Conversion Research Laboratory (BCRL) at Michigan State University. We acknowledge Lijun Chen of the Michigan State University Mass Spectrometry Core for assistance in LC/MS/MS analyses. NR 33 TC 15 Z9 15 U1 2 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD OCT PY 2010 VL 101 IS 20 BP 7849 EP 7855 DI 10.1016/j.biortech.2010.04.076 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 631IP UT WOS:000280340300022 PM 20627718 ER PT J AU Jansson, C Wullschleger, SD Kalluri, UC Tuskan, GA AF Jansson, Christer Wullschleger, Stan D. Kalluri, Udaya C. Tuskan, Gerald A. TI Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering SO BIOSCIENCE LA English DT Article DE bioenergy crops; carbon sequestration; genetic engineering; phytosequestration ID LIFE-CYCLE ASSESSMENT; PHOTOSYNTHETIC LIGHT; HIGH-TEMPERATURE; OVER-EXPRESSION; PHOTOSYSTEM-II; CLIMATE-CHANGE; HYBRID POPLAR; RICE HYBRIDS; GRAIN-YIELD; SEQUESTRATION AB Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel greenhouse gas (GHG) emissions and sequestering C in the soil through extensive root systems. Carbon captured in plant biomass can also contribute to C sequestration through the deliberate addition of biochar to soil, wood burial, or the use of durable plant products. Increasing our understanding of plant, microbial, and soil biology, and harnessing the benefits of traditional genetics and genetic engineering, will help us fully realize the GHG mitigation potential of phytosequestration. C1 [Jansson, Christer] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wullschleger, Stan D.; Kalluri, Udaya C.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Kalluri, Udaya C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Jansson, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM cgjansson@lbl.gov RI KALLURI, UDAYA/A-6218-2011; Tuskan, Gerald/A-6225-2011; Wullschleger, Stan/B-8297-2012; OI Tuskan, Gerald/0000-0003-0106-1289; Wullschleger, Stan/0000-0002-9869-0446; KALLURI, UDAYA/0000-0002-5963-8370 FU US Department of Energy (DOE) [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; DOE Office of Science, Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX This work was supported in part by US Department of Energy (DOE) Contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory, and in part by the DOE Office of Science, Biological and Environmental Research sponsored projects "Genome-Enabled Discovery of Carbon Sequestration Genes in Populus" and the "Consortium for Carbon Sequestration in Terrestrial Ecosystems." The Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the DOE. We would like to thank the reviewers for constructive criticism and comments. NR 80 TC 46 Z9 47 U1 5 U2 46 PU AMER INST BIOLOGICAL SCI PI WASHINGTON PA 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA SN 0006-3568 J9 BIOSCIENCE JI Bioscience PD OCT PY 2010 VL 60 IS 9 BP 685 EP 696 DI 10.1525/bio.2010.60.9.6 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 657NP UT WOS:000282419700006 ER PT J AU Igathinathane, C Womac, AR Sokhansanj, S AF Igathinathane, C. Womac, A. R. Sokhansanj, S. TI Corn stalk orientation effect on mechanical cutting SO BIOSYSTEMS ENGINEERING LA English DT Article ID WHEAT-STRAW; MOISTURE; SWITCHGRASS; SHEAR AB Research efforts that increase the efficiency of size reduction of biomass can lead to a significant energy saving. This paper deals with the determination of the effect of sample orientation with respect to cutting element and quantify the possible cutting energy reduction, utilising dry corn stalks as the test material (15%-20% wet basis). To evaluate the mechanical cutting characteristics of corn stalks, a Warner-Bratzler device was modified by replacing its blunt edged cutting element with one having a 30 degrees single bevel sharp knife edge. Cutting force-deformation characteristics obtained with a universal testing machine were analysed to evaluate the orientation effects at perpendicular (90 degrees), inclined (45 degrees), and parallel (0 degrees) orientations on internodes and nodes for cutting force, energy, ultimate stress, and specific energy of corn stalks. The corn stalks cutting force-displacement characteristics were found to differ with orientation, and internode and node material difference. Overall, the peak failure force, and the total cutting energy of inter-nodes and nodes varied significantly (P < 0.05) with stalk cross-sectional area. The specific energy values (total energy per unit cut area) of dry corn stalk internodes ranged from 11.3 to 23.5 kN m(-1), and nodes from 8.6 to 14.0 kN m(-1). The parallel orientation (along grain) compared to perpendicular (across grain) produced a significant reduction of the cutting stress and the specific energy to one-tenth or better for internodes, and to about one-fifth for nodes. Published by Elsevier Ltd on behalf of IAgrE. C1 [Igathinathane, C.] N Dakota State Univ, Dept Agr & Biosyst Engn, Fargo, ND 58102 USA. [Igathinathane, C.; Womac, A. R.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Igathinathane, C (reprint author), N Dakota State Univ, Dept Agr & Biosyst Engn, 1221 Albrecht Blvd, Fargo, ND 58102 USA. EM Igathinathane.Cannayen@ndsu.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 FU USDA-NRCS [68-3A75-4-136]; USDA-DOE-USDA Biomass Research and Development Initiative [DE-PA36-04GO94002] FX Funding for this research derived in part from the USDA-NRCS Grant Agreement 68-3A75-4-136 and USDA-DOE-USDA Biomass Research and Development Initiative DE-PA36-04GO94002. This financial support is gratefully acknowledged. We highly appreciate the fabrication help by Mr. Craig A. Wagoner, Lab Machinist, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA. NR 30 TC 12 Z9 17 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1537-5110 J9 BIOSYST ENG JI Biosyst. Eng. PD OCT PY 2010 VL 107 IS 2 BP 97 EP 106 DI 10.1016/j.biosystemseng.2010.07.005 PG 10 WC Agricultural Engineering; Agriculture, Multidisciplinary SC Agriculture GA 670AX UT WOS:000283393300004 ER PT J AU Kaddoum, L Magdeleine, E Waldo, GS Joly, E Cabantous, S AF Kaddoum, Lara Magdeleine, Eddy Waldo, Geoffrey S. Joly, Etienne Cabantous, Stephanie TI One-step split GFP staining for sensitive protein detection and localization in mammalian cells SO BIOTECHNIQUES LA English DT Article DE epitope tagging; protein localization; split GFP; green fluorescent protein; intracellular staining; protein fragment complementation ID GREEN FLUORESCENT PROTEIN; RETT-SYNDROME; IN-VIVO; MECP2; RAS; MEMBRANE; DYNAMICS AB Although epitope tags are useful to detect intracellular proteins and follow their localization with antibodies, background and nonspecific staining often remain problematic. We describe a simple assay based on the split GFP complementation system. Proteins tagged with the 15 amino acid GFP 11 fragment are detected with a solution of the recombinant nonfluorescent complementary GFP 1-10 fragment to reconstitute a fluorescent GFP. In contrast to antibody-based staining methods, this one-step assay presents high specificity and very low background of fluorescence, thus conferring higher signal-to-noise ratios. We demonstrate that this new application of the split GFP tagging system facilitates detection of proteins displaying various subcellular localizations using flow cytometry and microscopy analysis. C1 [Cabantous, Stephanie] Univ Toulouse 3, INSERM, U563, Dept Innovat Therapeut & Oncol Mol,Inst Claudius, F-31052 Toulouse, France. [Kaddoum, Lara; Magdeleine, Eddy; Joly, Etienne] IPBS, CNRS, F-31077 Toulouse, France. [Kaddoum, Lara; Magdeleine, Eddy; Joly, Etienne; Cabantous, Stephanie] Univ Toulouse 3, IPBS, F-31052 Toulouse, France. [Waldo, Geoffrey S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Cabantous, S (reprint author), Univ Toulouse 3, INSERM, U563, Dept Innovat Therapeut & Oncol Mol,Inst Claudius, 24 Rue Pont St Pierre, F-31052 Toulouse, France. EM joly@ipbs.fr; cabantous.stephanie@claudi-usregaud.fr RI Joly, Etienne/A-5644-2009 OI Joly, Etienne/0000-0002-7264-2681 FU Association Francaise du Syndrome de Rett (AFSR); Fondation pour la Recherche Medicale (FRM) FX We are grateful to Evert Haanappel for his help with fitting kinetics curves, Christine Bordier for helping with fluorescence microscopy, and Denis Hudrisier and Jean Denis Pedelacq for helpful discussions. This work was supported by Association Francaise du Syndrome de Rett (AFSR) and Fondation pour la Recherche Medicale (FRM). NR 20 TC 19 Z9 21 U1 0 U2 13 PU BIOTECHNIQUES OFFICE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD OCT PY 2010 VL 49 IS 4 BP 727 EP + DI 10.2144/000113512 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 726KB UT WOS:000287719200008 PM 20964633 ER PT J AU Zhou, W Xu, Y Schuttler, HB AF Zhou, Wen Xu, Ying Schuettler, Heinz-Bernd TI Cellulose Hydrolysis in Evolving Substrate Morphologies III: Time-Scale Analysis SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE cellulose hydrolysis; substrate morphology; mathematical model; time-scale analysis; degree of synergy ID MICROCRYSTALLINE CELLULOSE; ENZYMATIC-HYDROLYSIS; TRICHODERMA-REESEI; ADSORPTION-KINETICS; SYNERGISM; MODEL; VIRIDE; SACCHARIFICATION; ENDOGLUCANASES; EXOGLUCANASES AB We present a time-scale analysis for the enzymatic hydrolysis of solid cellulosic substrates, based on our recently developed kinetic model (Zhou et al., 2009a, Biotechnol Bioeng 104:261-274; Zhou et al., 2009b, Biotechnol Bioeng 104:275-289) which incorporates both enzymatic chain fragmentation and hydrolytic time evolution of the solid substrate morphology. Analytical order-of-magnitude. estimates of the relevant single-layer chain depolymerization times are first discussed. These time-scale estimates for pure and mixed enzyme systems can be employed to calculate the degree of synergy between endo- and exo-acting enzymes in a mixed enzyme system. By the way of a quasi-steady-state approximation which allows for a greatly simplified analytical solution of the model, we also explain the origin and give order-of-magnitude estimates of the two characteristic hydrolysis time scales which arise in this model when the solid substrate morphology is taken into account. These analytically derived time-scale relations explain how the embedding of cellulose chains in a solid substrate acts as a crucial rate-limiting factor and results in a substantial slowing down of the hydrolytic conversion process, compared to a hypothetical substrate of immediately enzyme-accessible, isolated chains. The analytical time-scale results are verified by numerical simulations and compared to experimental observations. Biotechnol. Bioeng. 2010;107: 224-234. (c) 2010 Wiley Periodicals, Inc. C1 [Schuettler, Heinz-Bernd] Univ Georgia, Dept Phys & Astron, Athens, Greece. [Zhou, Wen; Xu, Ying] BESC, DOE, Oak Ridge, TN USA. [Zhou, Wen; Xu, Ying] Univ Georgia, Inst Bioinformat, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, Greece. RP Schuttler, HB (reprint author), Univ Georgia, Dept Phys & Astron, Athens, Greece. EM xyn@bmb.uga.edu; hbs@physast.uga.edu FU U.S. Department of Energy [4000063512]; National Science Foundation [NSF/DBI-0354771, NSF/ITR-IIS-0407204, NSF/DBI-0542119, NSF/CCF0621700]; Office of Biological and Environmental Research in the DOE Office of Science FX We acknowledge the U.S. Department of Energy (grant # 4000063512) and the National Science Foundation (grant #: NSF/DBI-0354771, NSF/ITR-IIS-0407204, NSF/DBI-0542119, and NSF/CCF0621700) for financial support. We also acknowledge computing support from the University of Georgia Research Computing Center. The BioEnergy Science Center is supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 29 TC 15 Z9 15 U1 0 U2 7 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD OCT 1 PY 2010 VL 107 IS 2 BP 224 EP 234 DI 10.1002/bit.22814 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 650NY UT WOS:000281857500004 PM 20518068 ER PT J AU Wenger, KH Freeman, JD Fulzele, S Immel, DM Powell, BD Molitor, P Chao, YJ Gao, HS Elsalanty, M Hamrick, MW Isales, CM Yu, JC AF Wenger, Karl H. Freeman, James D. Fulzele, Sadanand Immel, David M. Powell, Brian D. Molitor, Patrick Chao, Yuh J. Gao, Hong-Sheng Elsalanty, Mohammed Hamrick, Mark W. Isales, Carlos M. Yu, Jack C. TI Effect of whole-body vibration on bone properties in aging mice SO BONE LA English DT Article DE Whole-body vibration; Computed tomography; Bone biomechanics; Aging; Femur ID FREQUENCY MECHANICAL STIMULI; VASTUS LATERALIS OXYGENATION; LOW-MAGNITUDE; LOW-LEVEL; MUSCLE PERFORMANCE; POSTURAL CONTROL; CONTROLLED-TRIAL; VERTICAL JUMP; LONG-TERM; STRENGTH AB Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration - 0.5 and 1.5 g - were applied at 32 Hz to CB57BL/6 male mice (n = 9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p = 0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p <= 0.05). These findings suggest that some benefits of WBV found in previous studies of young and mature rodent models may extend to an aging population. Density parameters indicated 0.5 g was more effective than 1.5g. Serological markers, by contrast, favored 1.5g. while biomechanically and histologically the results were mixed. Although the purported anabolic effect of WBV on bone homeostasis may depend on location and the parameter of interest, this emerging therapy at a minimum does not appear to compromise bone health by the measures studied here. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wenger, Karl H.; Fulzele, Sadanand; Hamrick, Mark W.; Isales, Carlos M.] Med Coll Georgia, Dept Orthopaed Surg, Augusta, GA 30912 USA. [Wenger, Karl H.; Elsalanty, Mohammed; Isales, Carlos M.; Yu, Jack C.] Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. [Hamrick, Mark W.] Med Coll Georgia, Dept Cell Biol & Anat, Augusta, GA 30912 USA. [Yu, Jack C.] Med Coll Georgia, Dept Surg, Sect Plast Surg, Augusta, GA 30912 USA. [Elsalanty, Mohammed] Med Coll Georgia, Dept Oral & Maxillofacial Surg, Augusta, GA 30912 USA. [Chao, Yuh J.; Gao, Hong-Sheng] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Immel, David M.] Savannah River Natl Lab, Nondestruct Engn Sect, Engineered Equipment & Syst Dept, Savannah, GA USA. RP Wenger, KH (reprint author), MCG Orthopaed Surg, CB 2509,1459 Laney Walker Blvd, Augusta, GA 30912 USA. EM kwenger@mcg.edu RI Gao, Hongsheng/G-2460-2010; Isales, Carlos/J-9902-2013; Hamrick, Mark/K-1131-2016 OI Isales, Carlos/0000-0002-4480-3484; FU Medical College of Georgia School of Medicine, Department of Orthopaedic Surgery and Section of Plastic Surgery FX This work was financially supported by the Medical College of Georgia School of Medicine, Department of Orthopaedic Surgery and Section of Plastic Surgery. The authors wish to thank: 1) Greg White, MCG Laboratory Equipment Services, for machining expertise and mechanical design consultation; 2) Eddie Estochen, Savannah River National Laboratory, for accelerometer testing support; and 3) David H. Pashley, DMD, MCG School of Dentistry, for mechanical testing resources. NR 55 TC 20 Z9 22 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD OCT PY 2010 VL 47 IS 4 BP 746 EP 755 DI 10.1016/j.bone.2010.07.014 PG 10 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 651NZ UT WOS:000281935700005 PM 20638490 ER PT J AU Nobre, C Brasseur, GP Shapiro, MA Lahsen, M Brunet, G Busalacchi, AJ Hibbard, K Seitzinger, S Noone, K Ometto, JP AF Nobre, Carlos Brasseur, Guy P. Shapiro, Melvyn A. Lahsen, Myanna Brunet, Gilbert Busalacchi, Antonio J. Hibbard, Kathy Seitzinger, Sybil Noone, Kevin Ometto, Jean P. TI ADDRESSING THE COMPLEXITY OF THE EARTH SYSTEM SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID NITROGEN DEPOSITION; CLIMATE-CHANGE; ANTHROPOGENIC NITROGEN; AMAZON DEFORESTATION; CARBON-CYCLE; MODEL; PREDICTION; IMPACT; OCEAN; FORESTS C1 [Nobre, Carlos; Lahsen, Myanna; Ometto, Jean P.] Natl Inst Space Res INPE, Ctr Earth Syst Sci, Sao Jose Dos Campos, SP, Brazil. [Brasseur, Guy P.] Climate Serv Ctr, Hamburg, Germany. [Brasseur, Guy P.; Shapiro, Melvyn A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Shapiro, Melvyn A.] Univ Bergen, Inst Geophys, Bergen, Norway. [Brunet, Gilbert] WMO WWRP Joint Sci Comm, Montreal, PQ, Canada. [Brunet, Gilbert] Environm Canada, Meteorol Res Div, Montreal, PQ, Canada. [Busalacchi, Antonio J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Hibbard, Kathy] Pacific NW Lab, Seattle, WA USA. [Hibbard, Kathy] Earth Syst Off, IGBP Anal Integrat & Modeling, Boulder, CO USA. [Seitzinger, Sybil; Noone, Kevin] IGBP, Stockholm, Sweden. [Noone, Kevin] Univ Stockholm, Stockholm, Sweden. RP Nobre, C (reprint author), Av Astronautas 1-758, BR-12227010 Sao Jose Dos Campos, SP, Brazil. EM carlos.nobre@inpe.br RI Ometto, Jean/B-3351-2013; Lahsen, Myanna/E-3697-2013 NR 46 TC 13 Z9 14 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD OCT PY 2010 VL 91 IS 10 BP 1389 EP 1396 DI 10.1175/2010BAMS3012.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680BK UT WOS:000284206300005 ER PT J AU Taylor, SR Arrowsmith, SJ Anderson, DN AF Taylor, Steven R. Arrowsmith, Stephen J. Anderson, Dale N. TI Detection of Short Time Transients from Spectrograms Using Scan Statistics SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID QUARRY BLASTS; P-VALUES; DISCRIMINATION; IDENTIFICATION; EXPLOSIONS; ARRAYS; PHASE AB We present a methodology for the detection of small, impulsive signal transients using time-frequency spectrograms closely related to the emerging field of scan statistics. In local monitoring situations, single-channel detection of small explosions can be difficult due to the complicated nature of the local noise field. Small, impulsive signals are manifest as vertical stripes on spectrograms and are enhanced on grayscale representations using vertical detection masks. Bitmap images are formed where pixels above a defined threshold are set to one. A short-duration large bandwidth signal will have a large number of illuminated bits in the column corresponding to its arrival time. We form the marginal distribution of bit counts as a function of time, n(i), by summing columnwise over frequency. For each time window we perform a hypothesis test, H(0) : signal + noise, by defining a probability model expected when a signal is present. This model is Bernoulli for signal versus no signal with probability of signal = rho(1). We assume that n(i) follows the binomial distribution and compute a probability of detection (represented as a p value) for a given rho(1). We apply the spectrogram detector to 1 hr of single-channel acoustic data containing a signal from a 1 lb chemical surface explosion recorded at 3.1 km distance and compare performance with a short-term average to long-term average (STA/LTA) detector. Both detectors are optimized through grid search and successfully detect the acoustic arrival from the 1 lb explosion. However, 70% more false detections are observed for STA/LTA than for the spectrogram detector. At great range, attenuation properties of the earth reduce the effectiveness of the spectrogram detector relative to STA/LTA. Data fusion techniques using multiple channels from a network are shown to reduce the number of false detections. C1 [Taylor, Steven R.] Rocky Mt Geophys, Los Alamos, NM 87544 USA. [Arrowsmith, Stephen J.; Anderson, Dale N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taylor, SR (reprint author), Rocky Mt Geophys, 167 Piedra Loop, Los Alamos, NM 87544 USA. EM srt-rmg@comcast.net; arrows@lanl.gov; dand@lanl.gov FU DOE [DE-FG02-07ER84740] FX Steven Taylor was funded by DOE SBIR Grant No. DE-FG02-07ER84740. Megan Resor provided assistance with spectrogram and STA/LTA computations. Helpful comments from Robert Shumway are appreciated. NR 32 TC 7 Z9 7 U1 0 U2 10 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD OCT PY 2010 VL 100 IS 5A BP 1940 EP 1951 DI 10.1785/0120100017 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 652KK UT WOS:000282005100007 ER PT J AU Ford, SR Dreger, DS Walter, WR AF Ford, Sean R. Dreger, Douglas S. Walter, William R. TI Network Sensitivity Solutions for Regional Moment-Tensor Inversions SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID WAVE-FORM INVERSION; SOURCE PARAMETERS; SEISMOGRAMS; EARTHQUAKES; EXPLOSIONS AB Well-resolved moment-tensor solutions reveal information about the sources of seismic waves. In this paper, we introduce a new way of assessing confidence in the regional full moment-tensor inversion via the introduction of the network sensitivity solution (NSS). The NSS takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The NSS compares both a hypothetical pure source (for example, an explosion or an earthquake) and the actual data with several thousand sets of synthetic data from a uniform distribution of all possible sources. The comparison with a hypothetical pure source provides the theoretically best-constrained source-type distribution for a given set of stations; and with it, one can determine whether further analysis with the data is warranted. The NSS that employs the actual data gives a direct comparison of all other source types with the best-fit source. In this way, one can choose a threshold level of fit in which the solution is comfortably constrained. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site. Sources that fit comparably well to a hypothetical pure explosion recorded with no noise at the JUNCTION data stations have a large volumetric component and are not described well by a double-couple (DC) source. The NSS using the real data from JUNCTION is even more tightly constrained to an explosion because the data contain some energy that precludes fitting with any type of deviatoric source. We also calculate the NSS for the October 2006 North Korea test and a nearby earthquake, where the station coverage is poor and the event magnitude is small. The earthquake solution is very well fit by a DC source, and the best-fit solution to the nuclear test (M(w) 4.1) is dominantly explosion. C1 [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dreger, Douglas S.] Berkeley Seismol Lab, Berkeley, CA 94720 USA. RP Ford, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sean@llnl.gov RI Walter, William/C-2351-2013; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Ford, Sean/0000-0002-0376-5792 FU Department of Energy [DE-FC52-06NA27324]; LLNL [DE-AC52-07NA27344] FX We thank Mike Pasyanos for his editing suggestions during an internal review. This is Lawrence Livermore National Laboratory (LLNL) Contribution LLNL-JRNL-413738 and BSL Contribution 10-05. Portions of this work were prepared by University of California, Berkeley, under Department of Energy Contract DE-FC52-06NA27324, and by LLNL under Contract DE-AC52-07NA27344. NR 25 TC 17 Z9 18 U1 1 U2 6 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD OCT PY 2010 VL 100 IS 5A BP 1962 EP 1970 DI 10.1785/0120090140 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 652KK UT WOS:000282005100009 ER PT J AU Lienkaemper, JJ Williams, PL Guilderson, TP AF Lienkaemper, James J. Williams, Patrick L. Guilderson, Thomas P. TI Evidence for a Twelfth Large Earthquake on the Southern Hayward Fault in the Past 1900 Years SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID FRANCISCO BAY-REGION; C-14 DATA; CALIFORNIA; RECORD; MODEL; SLIP AB We present age and stratigraphic evidence for an additional paleoearthquake at the Tyson Lagoon site. The acquisition of 19 additional radiocarbon dates and the inclusion of this additional event has resolved a large age discrepancy in our earlier earthquake chronology. The age of event E10 was previously poorly constrained, thus increasing the uncertainty in the mean recurrence interval (RI), a critical factor in seismic hazard evaluation. Reinspection of many trench logs revealed substantial evidence suggesting that an additional earthquake occurred between E10 and E9 within unit u45. Strata in older u45 are faulted in the main fault zone and overlain by scarp colluviums in two locations. We conclude that an additional surface-rupturing event (E9.5) occurred between E9 and E10. Since 91 A. D. (+/- 40 yr, 1 sigma), 11 paleoearthquakes preceded the M 6: 8 earthquake in 1868, yielding a mean RI of 161 +/- 65 yr (1 sigma, standard deviation of recurrence intervals). However, the standard error of the mean (SEM) is well determined at +/- 10 yr. Since similar to 1300 A. D., the mean rate has increased slightly, but is indistinguishable from the overall rate within the uncertainties. Recurrence for the 12-event sequence seems fairly regular: the coefficient of variation is 0.40, and it yields a 30-yr earthquake probability of 29%. The apparent regularity in timing implied by this earthquake chronology lends support for the use of time-dependent renewal models rather than assuming a random process to forecast earthquakes, at least for the southern Hayward fault. C1 [Lienkaemper, James J.] US Geol Survey 977, Menlo Pk, CA 94025 USA. [Williams, Patrick L.] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Lienkaemper, JJ (reprint author), US Geol Survey 977, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM jlienk@usgs.gov FU USGS [9939-0KR02]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The USGS National Earthquake Hazard Reduction Program (9939-0KR02 and the 1868 Earthquake Commemoration Project) funded the investigation. Thanks to Tom Brocher, who enthusiastically supported the improved dating of event E10. We thank reviewers Suzanne Hecker, Tom Fumal, Kate Scharer, and Glenn Biasi for detailed and thoughtful reviews that greatly improved the paper. A portion of this work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 23 TC 21 Z9 22 U1 0 U2 5 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD OCT PY 2010 VL 100 IS 5A BP 2024 EP 2034 DI 10.1785/0120090129 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 652KK UT WOS:000282005100014 ER PT J AU DeMots, RL Novak, JM Gaines, KF Gregor, AJ Romanek, CS Soluk, DA AF DeMots, Rachel L. Novak, James M. Gaines, Karen F. Gregor, Aaron J. Romanek, Christopher S. Soluk, Daniel A. TI Tissue-diet discrimination factors and turnover of stable carbon and nitrogen isotopes in white-footed mice (Peromyscus leucopus) SO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE LA English DT Article ID MOUSE-TISSUES; CONSUMER-DIET; AVIAN BLOOD; FRACTIONATION; DELTA-N-15; ECOLOGY; MAMMALS; REPLACEMENT; ASSUMPTIONS; ENRICHMENT AB Stable isotope analysis has become an increasingly valuable tool in investigating animal ecology. Here we document the turnover rates for carbon in the liver, muscle, and whole blood tissue, as well as the tissue-diet discrimination values for carbon and nitrogen isotopes in the liver, whole blood, muscle, and hair, of the white-footed mouse (Peromyscus leucopus (Rafinesque, 1818)). A 168-day diet-switching experiment was conducted with a laboratory population of white-footed mice. The delta(13)C values for all tissues deviated less than 1% from those of the diet except for whole blood, which had a slightly higher tissue-diet discrimination factor of 1.8%. All tissues were enriched in (15)N by approximately 3% relative to the diet except for liver tissue, which was 4.5% higher than the dietary delta(15)N value. Turnover rates for tissues of white-footed mice were ranked liver > whole blood > muscle. The half-lives calculated for liver tissue differed significantly between the two diet switches performed in this experiment. We demonstrate that there is potential for variation in tissue-diet discrimination values and tissue turnover rates between even closely related species. These findings highlight the importance of determining species-specific estimates of these parameters prior to the use of stable isotope analysis in field investigations of animal ecology. C1 [DeMots, Rachel L.; Gregor, Aaron J.; Soluk, Daniel A.] Univ S Dakota, Dept Biol, Vermillion, SD 57069 USA. [Novak, James M.; Gaines, Karen F.] Eastern Illinois Univ, Dept Biol Sci, Charleston, IL 61920 USA. [Romanek, Christopher S.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP DeMots, RL (reprint author), Univ S Dakota, Dept Biol, 414 E Clark St, Vermillion, SD 57069 USA. EM rachel.demots@usd.edu RI Soluk, Daniel/F-1797-2011 FU Missouri River Institute; University of South Dakota FX We thank the Savannah River Ecological Laboratory for the use of laboratory facilities. This study was funded in part by the Missouri River Institute and the University of South Dakota. NR 41 TC 20 Z9 20 U1 11 U2 36 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4301 J9 CAN J ZOOL JI Can. J. Zool.-Rev. Can. Zool. PD OCT PY 2010 VL 88 IS 10 BP 961 EP 967 DI 10.1139/Z10-063 PG 7 WC Zoology SC Zoology GA 668XE UT WOS:000283307300003 ER PT J AU Lee, JS Mayes, RT Luo, HM Dai, S AF Lee, Je Seung Mayes, Richard T. Luo, Huimin Dai, Sheng TI Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions SO CARBON LA English DT Article ID POROUS GRAPHITIC CARBON; MESOPOROUS CARBONS; NANOPARTICLES; SOLVENTS; SILICA; NANOSTRUCTURES; CHROMATOGRAPHY; DEHYDRATION; TEMPLATE; SYSTEM AB A mesoporous carbon has been synthesized by an ionothermal carbonization of glucose or fructose at low temperature under ambient pressure. The success of this ionothermal approach was based on the suppressed solvent volatility and latent acidity of a protic ionic liquid. The carbonaceous material obtained can be applied to conformal carbon coatings and carbon composite fabrications. Published by Elsevier Ltd. C1 [Lee, Je Seung; Mayes, Richard T.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Dai, Sheng/K-8411-2015; Mayes, Richard/G-1499-2016 OI Dai, Sheng/0000-0002-8046-3931; Mayes, Richard/0000-0002-7457-3261 FU Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy with Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This research was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 35 TC 23 Z9 23 U1 3 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD OCT PY 2010 VL 48 IS 12 BP 3364 EP 3368 DI 10.1016/j.carbon.2010.05.027 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 639BN UT WOS:000280945900008 ER PT J AU Kalugin, NG Kalichava, I Fallt, J Del Barga, C Cooper, C Duque, JG Gonzales, E Doorn, SK Shaner, EA Gin, AV AF Kalugin, Nikolai G. Kalichava, Irakli Fallt, James Del Barga, Christopher Cooper, Chad Duque, Juan G. Gonzales, Edward Doorn, Stephen K. Shaner, Eric A. Gin, Aaron V. TI The characterization of non-planar graphene nanowires with an Omega shape cross-section SO CARBON LA English DT Article ID CARBON NANOTUBES; RAMAN-SPECTROSCOPY; GRAPHITE; NANORIBBONS; SCATTERING AB We report on SEM, AFM, and Raman identification of non-planar several monolayer-thick graphene nanostructures with curved shapes. During mechanical exfoliation we obtained graphene flakes with nanowire/nanotube-like objects (diameters between 8 and 35 nm) with cross-sectional profile reminiscent of the Greek capital letter omega (Omega). The curved shapes of these objects were confirmed by AFM and SEM imaging. Non-planar Omega - nanostructures open up new possibilities for graphene electron energy band engineering. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kalugin, Nikolai G.; Kalichava, Irakli; Fallt, James; Del Barga, Christopher; Cooper, Chad] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. [Duque, Juan G.; Doorn, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Gonzales, Edward; Shaner, Eric A.; Gin, Aaron V.] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Gonzales, Edward; Shaner, Eric A.; Gin, Aaron V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kalugin, NG (reprint author), New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. EM nkalugin@nmt.edu RI Duque, Juan/G-2657-2010 FU NASA; UCDRD FX We gratefully acknowledge support from the NASA NM Space Grant Consortium program, and from the LANL-NMT MOU program supported by UCDRD. We are thankful to Dr. P. Zhang and Dr. T. Pietrass for experimental assistance. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 30 TC 2 Z9 5 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD OCT PY 2010 VL 48 IS 12 BP 3405 EP 3411 DI 10.1016/j.carbon.2010.05.035 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 639BN UT WOS:000280945900014 ER PT J AU Ganguly, K McRury, ID Goodwin, PM Morgan, RE Auge, WK AF Ganguly, Kumkum McRury, Ian D. Goodwin, Peter M. Morgan, Roy E. Auge, Wayne K., II TI Native Chondrocyte Viability during Cartilage Lesion Progression: Normal to Surface Fibrillation SO CARTILAGE LA English DT Article DE cartilage; chondrocyte; viability; fibrillated; partial thickness AB Objective: Early surgical intervention for articular cartilage disease is desirable before full-thickness lesions develop. As early intervention treatments are designed, native chondrocyte viability at the treatment site before intervention becomes an important parameter to consider. The purpose of this study is to evaluate native chondrocyte viability in a series of specimens demonstrating the progression of articular cartilage lesions to determine if the chondrocyte viability profile changes during the evolution of articular cartilage disease to the level of surface fibrillation. Design: Osteochondral specimens demonstrating various degrees of articular cartilage damage were obtained from patients undergoing knee total joint replacement. Three groups were created within a patient harvest based on visual and tactile cues commonly encountered during surgical intervention: group 1, visually and tactilely intact surfaces; group 2, visually intact, tactilely soft surfaces; and group 3, surface fibrillation. Confocal laser microscopy was performed following live/dead cell viability staining. Results: Groups 1 to 3 demonstrated viable chondrocytes in all specimens, even within the fibrillated portions of articular cartilage, with little to no evidence of dead chondrocytes. Chondrocyte viability profile in articular cartilage does not appear to change as disease lesion progresses from normal to surface fibrillation. Conclusions: Fibrillated partial-thickness articular cartilage lesions are a good therapeutic target for early intervention. These lesions retain a high profile of viable chondrocytes and are readily diagnosed by visual and tactile cues during surgery. Early intervention should be based on matrix failure rather than on more aggressive procedures that further corrupt the matrix and contribute to chondrocyte necrosis of contiguous untargeted cartilage. C1 [Ganguly, Kumkum] Los Alamos Natl Lab, Div B, Los Alamos, NM USA. [McRury, Ian D.; Morgan, Roy E.; Auge, Wayne K., II] NuOrtho Surg Inc, Fall River, MA USA. [Goodwin, Peter M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. [Auge, Wayne K., II] Ctr Orthopaed & Sports Performance Res Inc, Santa Fe, NM 87505 USA. RP Auge, WK (reprint author), Ctr Orthopaed & Sports Performance Res Inc, 936 Vista Jemez Court, Santa Fe, NM 87505 USA. EM infocospr@aol.com FU Center for Integrated Nanotechnologies, United States Department of Energy, Office of Basic Energy Sciences User Facility, Los Alamos National Laboratory, Los Alamos, New Mexico [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Physicians Medical Center, Santa Fe, New Mexico; New Mexico Small Business Grant Program [WNM700, RO31]; Los Alamos National Laboratory; Los Alamos, New Mexico; NuOrtho Surgical, Inc., Fall River, Massachusetts FX The work was performed at the Center for Integrated Nanotechnologies, United States Department of Energy, Office of Basic Energy Sciences User Facility, Los Alamos National Laboratory, Los Alamos, New Mexico (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000) and Physicians Medical Center, Santa Fe, New Mexico. This study was supported by the New Mexico Small Business Grant Program WNM700, RO31, Los Alamos National Laboratory, Los Alamos, New Mexico, and by NuOrtho Surgical, Inc., Fall River, Massachusetts. NR 50 TC 3 Z9 3 U1 1 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1947-6035 EI 1947-6043 J9 CARTILAGE JI Cartilage PD OCT PY 2010 VL 1 IS 4 BP 306 EP 311 DI 10.1177/1947603510373918 PG 6 WC Orthopedics SC Orthopedics GA V36MY UT WOS:000209217100007 PM 26069561 ER PT J AU Burton, PD Peterson, EJ Boyle, TJ Datye, AK AF Burton, Patrick D. Peterson, Eric J. Boyle, Timothy J. Datye, Abhaya K. TI Synthesis of High Surface Area ZnO(0001) Plates as Novel Oxide Supports for Heterogeneous Catalysts SO CATALYSIS LETTERS LA English DT Article DE ZnO(0001); High surface area ZnO; Controlled morphology oxide support ID ZINC-OXIDE; METHANOL SYNTHESIS; ZNO; REACTIVITY; MORPHOLOGY; ACID; PD AB We demonstrate a technique to prepare high surface area ZnO powders that preferentially favor a plate-like morphology, exposing the (0001)/(000 (1) over bar) facets. A solution-based synthetic route was used to decompose zinc acetate in the presence of amine and citrate ions to block the (0001)/(000 (1) over bar) facets and favor growth from the pyramid planes. The ZnO platelets remained stable upon heating to 250 degrees C as evidenced by electron diffraction patterns. The high surface area (75 m(2)/g) and surface energetics of the (0001) plane make these powders suitable as supports for heterogeneous catalysts. C1 [Burton, Patrick D.; Peterson, Eric J.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. EM datye@unm.edu OI Datye, Abhaya/0000-0002-7126-8659 FU United States Department of Energy Office of Basic Energy Science, Division of Chemical Sciences, (University of New Mexico) [DE-FG02-05ER15712]; (Sandia National Laboratories), Division of Material Science [DE-AC0494AL85000] FX This work has been supported by the United States Department of Energy Office of Basic Energy Science, Division of Chemical Sciences under contract number DE-FG02-05ER15712 (University of New Mexico), and DE-AC0494AL85000 (Sandia National Laboratories), Division of Material Science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy. NR 28 TC 10 Z9 10 U1 3 U2 37 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD OCT PY 2010 VL 139 IS 1-2 BP 26 EP 32 DI 10.1007/s10562-010-0405-1 PG 7 WC Chemistry, Physical SC Chemistry GA 653KZ UT WOS:000282091500004 ER PT J AU Haynes, DJ Campos, A Berry, DA Shekhawat, D Roy, A Spivey, JJ AF Haynes, Daniel J. Campos, Andrew Berry, David A. Shekhawat, Dushyant Roy, Amitava Spivey, James J. TI Catalytic partial oxidation of a diesel surrogate fuel using an Ru-substituted pyrochlore SO CATALYSIS TODAY LA English DT Article DE Partial oxidation; Reforming; Ruthenium; Pyrochlore; Fuel processing; Diesel ID CONTACT TIME REACTORS; NEAR-EDGE STRUCTURE; X-RAY-DIFFRACTION; N-TETRADECANE; HIGHER HYDROCARBONS; SYNTHESIS GAS; IN-SITU; RUTHENIUM CATALYSTS; SUPPORTED RUTHENIUM; REFORMING CATALYSTS AB Results from previous studies [D. J. Haynes, D. A. Berry, D. Shekhawat, J. J. Spivey, Catal. Today, doi:10.1016/j.cattod.2008.05.014; D. J. Haynes, D. A. Berry, D. Shekhawat, J. J. Spivey, Catal. Today 136 (2008) 206-213] show that Rh metal (2 wt%) substituted into a lanthanum-strontium-zirconate pyrochlore is highly active for the CPOX of surrogate diesel fuel compounds and their mixtures into synthesis gas for fuel cells. However, availability and cost of Rh suggests that it may not be optimal for widespread commercialized applications, and that other, cheaper metals should be investigated. To that end, a potentially lower cost ruthenium substituted pyrochlore catalyst (LSRuZ) was compared to a traditional supported Ru/gamma-Al(2)O(3) catalyst in the partial oxidation of a diesel surrogate fuel. Characterization results from XRD showed that the pre- and post-CPOX samples of LSRuZ catalysts consisted of two phases-the main La(2)Zr(2)O(7) pyrochlore phase as well as a defect SrZrO(3) perovskite phase. TPR results demonstrated that Ru atoms substituted into the pyrochlore structure were accessible to the gas-phase and were reducible. The substituted Ru had a higher reduction temperature compared to Ru/gamma-Al(2)O(3) (53 degrees C increase), likely due to interaction with neighboring metal ions in the pyrochlore. XANES spectra on substituted Ru showed the majority of Ru was in the 4+ oxidation state (but not in the RuO(2) phase) and was more likely substituted in the pyrochlore than the perovskite phase. Activity testing demonstrated that both catalysts produce equilibrium yields during initial 1 h CPOX of n-tetradecane only. However, after addition of 5 wt% 1-methylnaphthalene and dibenzothiophene to the feed, Ru/gamma-Al(2)O(3) deactivated immediately and was unable to recover activity once the contaminants were removed from the feed (irreversible deactivation). Conversely, the yields of LSRuZ dropped slightly, but remained steady over the 2 h when the contaminants were present, and almost recovered to pre-contaminant levels when the contaminants were removed. Carbon formation was directly linked to loss of activity. Post-run temperature programmed oxidation results showed that Ru/gamma-Al(2)O(3) had significantly more carbon on/around the active metal compared to the LSRuZ. (C) 2009 Elsevier B.V. All rights reserved. C1 [Haynes, Daniel J.; Berry, David A.; Shekhawat, Dushyant] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Haynes, Daniel J.] Parsons, South Pk, PA 15129 USA. [Haynes, Daniel J.; Campos, Andrew; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. [Roy, Amitava] Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA. RP Haynes, DJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Daniel.Haynes@pp.netl.doe.gov; Acampo2@lsu.edu; David.Berry@netl.doe.gov; Dushyant.Shekhawat@netl.doe.gov; Reroy@lsu.edu; jjspivey@lsu.edu FU National Energy Technology Laboratory [AC26-04NT41817 subtask 41817.610.01.01] FX This work was performed in support of the National Energy Technology Laboratory's on-going research in fuel processing, under contract # DE-AC26-04NT41817 subtask 41817.610.01.01. The authors would also like to gratefully acknowledge Donald Floyd for his invaluable contributions to this work in performing the experiments, and LSU's CAMD synchrotron facility for providing beam time. NR 47 TC 36 Z9 36 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 1 PY 2010 VL 155 IS 1-2 BP 84 EP 91 DI 10.1016/j.cattod.2009.03.025 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 653PX UT WOS:000282110200012 ER PT J AU Florez, E Gomez, T Liu, P Rodriguez, JA Illas, F AF Florez, Elizabeth Gomez, Tatiana Liu, Ping Rodriguez, Jose A. Illas, Francesc TI Hydrogenation Reactions on Au/TiC(001): Effects of Au-C Interactions on the Dissociation of H-2 SO CHEMCATCHEM LA English DT Article DE carbides; gold; hydrogenation; supported catalysts; surface chemistry ID ACTIVE-SITES; ADSORPTION; MOLECULES; SURFACE; APPROXIMATION; ACTIVATION; TIC(111); SOLIDS; GOLD C1 [Florez, Elizabeth; Gomez, Tatiana; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Florez, Elizabeth; Gomez, Tatiana; Illas, Francesc] Univ Barcelona, IQTCUB, E-08028 Barcelona, Spain. [Gomez, Tatiana] Univ Andres Bello, Fac Ecol & Recursos Nat, Dept Quim, Santiago, Chile. [Liu, Ping; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Illas, Francesc] ICREA, Barcelona 08010, Spain. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550 FU Spanish MICINN [FIS2008-02238]; Generalitat de Catalunya [2009SGR1041, XRQTC]; US Department of Energy, Chemical Sciences Division FX Financial support has been provided by Spanish MICINN grants FIS2008-02238 and in part by Generalitat de Catalunya (grants 2009SGR1041 and XRQTC) and "Programa de sostenibilidad 2009-2010" of U de A. Computational time has been generously provided by the Barcelona Supercomputing Center. The research carried out at BNL was supported by the US Department of Energy, Chemical Sciences Division. NR 25 TC 27 Z9 27 U1 4 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD OCT PY 2010 VL 2 IS 10 BP 1219 EP 1222 DI 10.1002/cctc.201000190 PG 4 WC Chemistry, Physical SC Chemistry GA 672ZM UT WOS:000283627200005 ER PT J AU Liu, XB Chen, Q Wang, M Pan, N Guo, ZY AF Liu, Xiong-Bin Chen, Qun Wang, Moran Pan, Ning Guo, Zeng-Yuan TI Multi-dimensional effect on optimal network structure for fluid distribution SO CHEMICAL ENGINEERING AND PROCESSING LA English DT Article DE Fluid distribution; Network structure optimization; Minimal pressure drop; Heating and cooling system ID CONSTRUCTAL DISTRIBUTOR; TREE NETWORKS; PUMPING POWER; HEAT-TRANSFER; SCALING LAWS; FLOW; DESIGN; OPTIMIZATION AB Optimization of a fluid distributing tube network plays a critical role in the operation efficiency and energy conservation of a cooling system In this paper we analyze the effect of multi-dimension on the structure of a fluid distributing tube network for cooling heat-generating and then seek the optimal fluid structure with minimal pressure drop for a given total volume of the tube network The theoretical results show that the pressure drop of a laminar flow in the tube network reaches the minimum when the cubic value of the parent tube diameter equals to the sum of those of the daughter tube diameter consistent with Murray s law Furthermore it is advantageous to have a higher dimension structure in network arrangement when the number of heat generation units Increases i e network performance improves by adopting a two dimensional and even three-dimensional format as the number of units grows (C) 2010 Elsevier B V All rights reserved C1 [Liu, Xiong-Bin; Chen, Qun; Guo, Zeng-Yuan] Tsinghua Univ, Dept Mech Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China. [Chen, Qun; Pan, Ning] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Wang, Moran] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Chen, Q (reprint author), Tsinghua Univ, Dept Mech Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China. RI Wang, Moran/A-1150-2010; Pan, Ning/B-1315-2008; 柳, 雄斌/H-7429-2016 OI Pan, Ning/0000-0002-8772-2596; 柳, 雄斌/0000-0002-6954-8547 FU Postdoctoral Scientific Fund of China [200902080]; National Key Fundamental R&D Program of China [G2007CB206901] FX This work was financially supported by the Postdoctoral Scientific Fund of China (Grant No 200902080) and the National Key Fundamental R&D Program of China (Grant No G2007CB206901) NR 20 TC 7 Z9 9 U1 2 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0255-2701 J9 CHEM ENG PROCESS JI Chem. Eng. Process. PD OCT PY 2010 VL 49 IS 10 BP 1038 EP 1043 DI 10.1016/j.cep.2010.07.006 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 685ZI UT WOS:000284666200007 ER PT J AU Tucker, JM Dyar, MD Schaefer, MW Clegg, SM Wiens, RC AF Tucker, J. M. Dyar, M. D. Schaefer, M. W. Clegg, S. M. Wiens, R. C. TI Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis SO CHEMICAL GEOLOGY LA English DT Article DE LIBS; Quantitative analysis; Elemental analysis; Bulk analysis; ChemCam; Mars ID MASS ABSORPTION-COEFFICIENTS; SPECTROCHEMICAL ANALYSIS; REAL-TIME; LIBS; POWER; SPECTRA; SAMPLES; DESIGN; SYSTEM AB Laser-induced breakdown spectroscopy (LIBS) is demonstrated as a quantitative technique for geochemical analysis. This study demonstrates the applicability of LIBS to bulk elemental analysis of igneous rock powders. LIBS spectra of 100 igneous rocks with highly varying compositions were acquired at 9 m standoff distance under Mars atmospheric conditions. LIBS spectra were modeled using partial least squares regressions to predict major element compositions. A series of comparative tests determined the most effective methodologies for preprocessing of spectral and compositional data, and choice of calibration set. In the best cases, calculated 1-sigma errors are 1.6 wt.% SiO2, 1.5 wt.% Al2O3, 0.4 wt.% TiO2, 1.2 wt.% Fe2O3T, 1.6 wt.% MgO, 0.02 wt.% MnO, 1.1 wt.% CaO, 0.5 wt.% Na2O, 0.2 wt.% P2O5, and 0.4 wt.% K2O, with totals near 100%. The largest improvement came as a result of scaling the elemental distributions to equalize the ranges of variability. Optimal predictions for this data set were produced with calibration set compositions input as weight % oxides and not atomic fractions. Predictions were also improved when calibration sets represented the smallest range of compositional variability possible, and completely encompassed the compositional range encountered. Multiple calibration sets relevant to different rock types are preferred over a single all-encompassing calibration set. Baseline removal and transforming spectral data by their first derivative do not improve predictions and can even have negative effects. These results are directly applicable to spectra that will be acquired by the ChemCam experiment on Mars Science Laboratory, but also apply more broadly to terrestrial LIBS applications. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tucker, J. M.; Dyar, M. D.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Schaefer, M. W.] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA. [Clegg, S. M.; Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tucker, JM (reprint author), Mt Holyoke Coll, Dept Astron, 50 Coll St, S Hadley, MA 01075 USA. EM jtucker@mtholyoke.edu; mdyar@mtholyoke.edu; mws@lsu.edu; sclegg@lanl.gov; rwiens@lanl.gov OI Clegg, Sam/0000-0002-0338-0948 FU NASA [NNG06GH35G, NNX09AL21G]; LANL FX We are grateful for support from NASA grants NNG06GH35G and NNX09AL21G, and from LANL internal funding. We also thank Professor Bradley Schaefer of Louisiana State University and Marco Carmosino of Hampshire College for their assistance and the anonymous reviewers for their helpful comments. NR 41 TC 53 Z9 53 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD OCT PY 2010 VL 277 IS 1-2 BP 137 EP 148 DI 10.1016/j.chemgeo.2010.07.016 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 663CX UT WOS:000282861700011 ER PT J AU Wheatley, PS Allan, PK Teat, SJ Ashbrook, SE Morris, RE AF Wheatley, Paul S. Allan, Phoebe K. Teat, Simon J. Ashbrook, Sharon E. Morris, Russell E. TI Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites SO CHEMICAL SCIENCE LA English DT Article ID METAL-ORGANIC FRAMEWORKS; HYDROTHERMAL SYNTHESIS; EMERGING APPLICATIONS; MOLECULAR-SIEVES; FLUORIDE MEDIA; SOLVENTS; MECHANISM; TEMPLATE; AGENTS AB The first genuine ionothermal synthesis of siliceous zeolites MFI and TON has been accomplished by utilising the ionic liquid 1-butyl-3-methyl imidazolium bromide/hydroxide as both solvent and structure directing agent. C1 [Wheatley, Paul S.; Allan, Phoebe K.; Ashbrook, Sharon E.; Morris, Russell E.] Univ St Andrews, EaStChem Sch Chem, St Andrews KY16 9ST, Fife, Scotland. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Morris, RE (reprint author), Univ St Andrews, EaStChem Sch Chem, St Andrews KY16 9ST, Fife, Scotland. EM rem1@st-and.ac.uk RI Morris, Russell/G-4285-2010; Ashbrook, Sharon/A-7960-2010 OI Morris, Russell/0000-0001-7809-0315; FU EPSRC; Royal Society; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the EPSRC for funding. R.E.M is a Wolfson Royal Society Merit Award Holder. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 35 Z9 39 U1 4 U2 85 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 J9 CHEM SCI JI Chem. Sci. PD OCT 1 PY 2010 VL 1 IS 4 BP 483 EP 487 DI 10.1039/c0sc00178c PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 671DQ UT WOS:000283480900009 ER PT J AU Han, JB Wang, JK AF Han Jiabin Wang Jingkang TI Caffeine Crystallization Induction Time Measurements Using Laser Scattering Technique and Correlation to Surface Tension in Water and Ethanol SO CHINESE JOURNAL OF CHEMICAL ENGINEERING LA English DT Article DE caffeine; induction time; crystallization; surface tension AB Caffeine nucleation induction times were measured at 30 degrees C and 40 degrees C in water and ethanol solvents employing laser light absorption technique. Supersaturation concentrations and liquid/solid phase surface tensions were calculated from crystallization induction times using classic homogeneous nucleation theory. Induction time and surface tension decreased at higher temperature. C1 [Han Jiabin; Wang Jingkang] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Han Jiabin] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Han, JB (reprint author), Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. EM jhan@lanl.gov NR 11 TC 2 Z9 3 U1 3 U2 14 PU CHEMICAL INDUSTRY PRESS PI BEIJING PA NO. 3 HUIXINLI CHAOYANGQU, BEIJING 100029, PEOPLES R CHINA SN 1004-9541 J9 CHINESE J CHEM ENG JI Chin. J. Chem. Eng. PD OCT PY 2010 VL 18 IS 5 BP 767 EP 769 PG 3 WC Engineering, Chemical SC Engineering GA 682GH UT WOS:000284388900009 ER PT J AU Deng, HX Jiang, XD Xiang, X Sun, K Yuan, XD Zheng, WG Gao, F Zu, XT AF Deng Hong-Xiang Jiang Xiao-Dong Xiang Xia Sun Kai Yuan Xiao-Dong Zheng Wan-Guo Gao Fei Zu Xiao-Tao TI General formula for phonon-assisted n-photon absorption in solids SO CHINESE PHYSICS B LA English DT Article DE general formula; phonon-assisted photons absorption; n order perturbation technique; diagram approach; intense laser ID LASER-INDUCED DAMAGE; ION-IMPLANTATION; FUSED-SILICA; THIN-FILMS; ELECTRONS; GEL AB A general formula for phonon-assisted n-photon absorption in solids is obtained by (n+1)-th order perturbation technique. The complicated calculation process for transition element of n-photon absorption is simply demonstrated by a diagram approach that is proposed in this work. We find that the transition element for the n-photon absorption has a simple form, i.e., it is just the first term of the n-th order fist kind Bessel function. C1 [Deng Hong-Xiang; Jiang Xiao-Dong; Xiang Xia; Yuan Xiao-Dong; Zu Xiao-Tao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Jiang Xiao-Dong; Yuan Xiao-Dong; Zheng Wan-Guo] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China. [Sun Kai] Univ Michigan, Dept Mat Engn & Sci, Ann Arbor, MI 48109 USA. [Gao Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM jiangxdong@163.com; xtzu@uestc.edu.cn RI Gao, Fei/H-3045-2012; ye, xin/K-2615-2014 FU National High Technology Research and Development Program of China (863 Program) [2007AA804233, 2008AA804050]; Fundamental Research Funds for the Central Universities [ZYGX2009J046, ZYGX2009X007] FX Project supported by the National High Technology Research and Development Program of China (863 Program) (Grant Nos. 2007AA804233 and 2008AA804050) and by the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2009J046 and ZYGX2009X007). NR 18 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 J9 CHINESE PHYS B JI Chin. Phys. B PD OCT PY 2010 VL 19 IS 10 AR 107801 DI 10.1088/1674-1056/19/10/107801 PG 11 WC Physics, Multidisciplinary SC Physics GA 663XN UT WOS:000282923600090 ER PT J AU Struckmeier, U Lucassen, A Hansen, N Wada, T Peters, N Kohse-Hoinghaus, K AF Struckmeier, U. Lucassen, A. Hansen, N. Wada, T. Peters, N. Kohse-Hoeinghaus, K. TI Demonstration of a burner for the investigation of partially premixed low-temperature flames SO COMBUSTION AND FLAME LA English DT Article DE Low-temperature combustion; Mass spectrometry; Methane flame; Preheated combustion ID BEAM MASS-SPECTROMETRY; ELECTRON-IMPACT IONIZATION; CHEMICAL KINETIC-MODELS; MILD COMBUSTION; CROSS-SECTIONS; SPECIES CONCENTRATIONS; PARTIAL OXIDATION; METHANE; DIESEL; MOLECULES AB A burner, which stabilizes near-one-dimensional low-temperature flames at atmospheric pressure, was designed to access the combustion regime near 1500 K for quantitative species diagnostics. Combustion temperatures between 1300 and 1800 K in argon-diluted methane-oxygen flames were achieved by preheating the burner and adapting the inert gas flow. Mass spectrometry with electron ionization was used to determine mole fractions profiles of reactants, products, and intermediates. Combustion parameters were varied including stoichiometry, diluent mole fraction and preheat temperature. Mole fraction profiles resemble those taken in regular premixed flat flames. A number of C(1)- and C(2)-intermediates as well as some oxygenated species were identified. Higher-mass species (m/z > 42) were not detected in the low-temperature methane-oxygen flames which contain 90% argon in the cold gases. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Struckmeier, U.; Lucassen, A.; Kohse-Hoeinghaus, K.] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Hansen, N.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Wada, T.; Peters, N.] Rhein Westfal TH Aachen, Inst Tech Verbrennung, D-52056 Aachen, Germany. RP Kohse-Hoinghaus, K (reprint author), Univ Bielefeld, Dept Chem, Univ Str 25, D-33615 Bielefeld, Germany. EM kkh@pc1.uni-bielefeld.de RI Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Lucassen, Arnas/G-3803-2013 OI Lucassen, Arnas/0000-0003-2967-2030 FU Deutsche Forschungsgemeinschaft [SFB 686, TP B3] FX The authors acknowledge generous support by Deutsche Forschungsgemeinschaft within the Collaborative Research Center SFB 686, TP B3. They wish to thank Christoph Dreyer for contributing to some aspects of selected experiments, and Harald Waterbor for technical support. Helpful discussions with Kai Moshammer and Patrick Osswald on experimental procedures are gratefully acknowledged. NR 64 TC 13 Z9 13 U1 4 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2010 VL 157 IS 10 BP 1966 EP 1975 DI 10.1016/j.combustflame.2010.02.002 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 643YR UT WOS:000281337800015 ER PT J AU Veloo, PS Wang, YL Egolfopoulos, FN Westbrook, CK AF Veloo, Peter S. Wang, Yang L. Egolfopoulos, Fokion N. Westbrook, Charles K. TI A comparative experimental and computational study of methanol, ethanol, and n-butanol flames SO COMBUSTION AND FLAME LA English DT Article DE Flame propagation; Flame extinction; Alcohols; Kinetic models ID HIGHER-ALCOHOL/GASOLINE BLENDS; PARTICLE IMAGE VELOCIMETRY; DIRECTED RELATION GRAPH; SINGLE-CYLINDER ENGINE; TERT-BUTYL ALCOHOL; THERMAL-DECOMPOSITION; PREMIXED FLAMES; CLOSTRIDIUM-ACETOBUTYLICUM; CHEMICAL-KINETICS; DIMETHYL ETHER AB Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Egolfopoulos, FN (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM egolfopo@usc.edu RI Veloo, Peter/G-1196-2010; OI Veloo, Peter/0000-0003-1135-4018; Egolfopoulos, Fokion/0000-0002-7115-5304 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198] FX This material is based upon work supported as part of the CEFRC, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198. The discussions with Professor Hai Wang on the kinetics of the oxygenate fuels are greatly appreciated. NR 64 TC 158 Z9 162 U1 14 U2 110 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD OCT PY 2010 VL 157 IS 10 BP 1989 EP 2004 DI 10.1016/j.combustflame.2010.04.001 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 643YR UT WOS:000281337800017 ER PT J AU Cliffe, KA Hall, EJC Houston, P Phipps, ET Salinger, AG AF Cliffe, K. Andrew Hall, Edward J. C. Houston, Paul Phipps, Eric T. Salinger, Andrew G. TI Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Bifurcation theory; Bratu problem; a posteriori error estimation; adaptivity; discontinuous Galerkin methods ID ELLIPTIC EIGENVALUE PROBLEMS; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATIONS; NUMERICAL COMPUTATION; NONLINEAR PROBLEMS; BRANCH-POINTS; EQUATIONS AB This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator. C1 [Cliffe, K. Andrew; Hall, Edward J. C.; Houston, Paul] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England. [Phipps, Eric T.; Salinger, Andrew G.] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA. RP Houston, P (reprint author), Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England. EM Andrew.Cliffe@nottingham.ac.uk; Edward.Hall@nottingham.ac.uk; Paul.Houston@nottingham.ac.uk; etphipp@sandia.gov; agsalin@sandia.gov FU EPSRC [EP/E013724, EP/F01340X] FX KAC, PH, and EJCH gratefully acknowledge the financial support of the EPSRC under the grant EP/E013724. In addition, all of the authors acknowledge the support of the EPSRC under the grant EP/F01340X. NR 34 TC 5 Z9 5 U1 0 U2 4 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD OCT PY 2010 VL 8 IS 4 BP 845 EP 865 DI 10.4208/cicp.290709.120210a PG 21 WC Physics, Mathematical SC Physics GA 644TV UT WOS:000281405100007 ER PT J AU T-Thienprasert, J Limpijumnong, S Janotti, A Van de Walle, CG Zhang, L Du, MH Singh, DJ AF T-Thienprasert, J. Limpijumnong, S. Janotti, A. Van de Walle, C. G. Zhang, L. Du, M. -H. Singh, D. J. TI Vibrational signatures of O-Te and O-Te-V-Cd in CdTe: A first-principles study SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 5th Conference of the Asian-Consortium-on-Computational-Materials-Science (ACCMS-5) CY SEP 09-11, 2009 CL Hanoi, VIETNAM SP Natl Fdn Sci & Technol, Int Ctr Theoret Phys, Asian Pacif Ctr Theoret Phys, Vietnam Acad Sci & Technol, Vietnam Natl Univ (Hanoi & HochiMinh), Saigon Inst Computat Sci & Technol, Hanoi Univ Technol, Inst Phys, Accelrys Software Inc DE Local vibrational mode; Density functional calculations; Fourier transform infrared; CdTe; Oxygen ID ULTRASOFT PSEUDOPOTENTIALS; METALS AB Chen et al. [Phys. Rev. Lett. 96 (2006) 035508] experimentally observed vibrational signatures related to defects in oxygen-doped CdTe using ultrahigh resolution Fourier transform infrared (FTIR) spectroscopy. They observed an absorption peak at 350 cm(-1). In addition, for samples grown under certain conditions, they observed two higher frequency peaks (1097 and 1108 cm(-1)) at low temperature that merged into one at room-temperature. They attributed the low-frequency peak (350 cm(-1)) to the vibration of O-Te and the two higher frequency peaks to the vibrational modes of a O-Te-V-Cd complex. Subsequently, they reported similar modes around 1100 cm(-1) in O-doped CdSe [Phys. Rev. Lett. 101 (2008) 195502] which were attributed to an O-Se-V-Cd complex. We employed first-principles DFT calculations to calculate the vibrational modes of O-Te and O-Te-V-Cd complex in CdTe. Our calculations show that the 350 cm(-1) mode is consistent with O-Te. However, the frequencies of the modes around 1100 cm(-1) are more than twice the expected frequencies for O-Te-V-Cd complexes in CdTe (or O-Se-V-Cd in CdSe), indicating that the O-Te-V-Cd complex cannot be the cause of the observed 1100 cm(-1) modes. A search for a new defect model is in order. (C) 2010 Elsevier B.V. All rights reserved. C1 [Limpijumnong, S.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Limpijumnong, S.] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Janotti, A.; Van de Walle, C. G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Zhang, L.; Du, M. -H.; Singh, D. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [T-Thienprasert, J.] Kasetsart Univ, Dept Phys, Bangkok 10900, Thailand. [T-Thienprasert, J.] Commiss Higher Educ, ThEP Ctr, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand. RP Limpijumnong, S (reprint author), Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. EM sukit@sut.ac.th RI Zhang, Lijun/F-7710-2011; Van de Walle, Chris/A-6623-2012; Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012; T-Thienprasert, Jiraroj/A-2093-2011; Janotti, Anderson/F-1773-2011 OI Van de Walle, Chris/0000-0002-4212-5990; Du, Mao-Hua/0000-0001-8796-167X; Janotti, Anderson/0000-0001-5028-8338 NR 23 TC 4 Z9 4 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD OCT PY 2010 VL 49 IS 4 SU 1 BP S242 EP S245 DI 10.1016/j.commatsci.2010.01.024 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 696TR UT WOS:000285464800019 ER PT J AU Anitescu, M Tasora, A AF Anitescu, Mihai Tasora, Alessandro TI An iterative approach for cone complementarity problems for nonsmooth dynamics SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS LA English DT Article DE Iterative methods; Cone complementarity problems; LCP; Complementarity; Contacts; Multibody ID BODY CONTACT PROBLEMS; DIFFERENTIAL VARIATIONAL-INEQUALITIES; STIFF MULTIBODY DYNAMICS; TIME-STEPPING METHOD; COULOMB-FRICTION; MECHANICAL SYSTEMS; RIGID BODIES; CONVERGENCE; SIMULATION; JOINTS AB Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns. C1 [Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Tasora, Alessandro] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. RP Anitescu, M (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anitescu@mcs.anl.gov; tasora@ied.unipr.it RI Tasora, Alessandro/G-2592-2010 FU U.S. Department of Energy [W-31-109-ENG-38] FX We thank Paul Tseng for technical discussions concerning block coordinate descent methods. We are profoundly grateful to the two referees and to Dan Negrut for their constructive comments. Mihai Anitescu was supported by Contract No. W-31-109-ENG-38 of the U.S. Department of Energy. NR 42 TC 33 Z9 34 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0926-6003 J9 COMPUT OPTIM APPL JI Comput. Optim. Appl. PD OCT PY 2010 VL 47 IS 2 BP 207 EP 235 DI 10.1007/s10589-008-9223-4 PG 29 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA 648ML UT WOS:000281698100002 ER PT J AU Boulos, MNK Sanfilippo, AP Corley, CD Wheeler, S AF Boulos, Maged N. Kamel Sanfilippo, Antonio P. Corley, Courtney D. Wheeler, Steve TI Social Web mining and exploitation for serious applications: Technosocial Predictive Analytics and related technologies for public health, environmental and national security surveillance SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE LA English DT Article DE Social Web; Web 2.0; Disease surveillance; Technosocial Predictive Analytics ID PSYCHOLOGY; INTERNET AB This paper explores Technosocial Predictive Analytics (TPA) and related methods for Web "data mining" where users' posts and queries are garnered from Social Web ("Web 2.0") tools such as blogs, micro-blogging and social networking sites to form coherent representations of real-time health events. The paper includes a brief introduction to commonly used Social Web tools such as mashups and aggregators, and maps their exponential growth as an open architecture of participation for the masses and an emerging way to gain insight about people's collective health status of whole populations. Several health related tool examples are described and demonstrated as practical means through which health professionals might create clear location specific pictures of epidemiological data such as flu outbreaks. (C) 2010 Elsevier Ireland Ltd. All rights reserved. C1 [Boulos, Maged N. Kamel] Univ Plymouth, Fac Hlth, Plymouth PL4 8AA, Devon, England. [Sanfilippo, Antonio P.; Corley, Courtney D.] Pacific NW Natl Lab, Techno Social Predict Analyt Initiat, Richland, WA 99352 USA. [Wheeler, Steve] Univ Plymouth, Fac Educ, Plymouth PL4 8AA, Devon, England. RP Boulos, MNK (reprint author), Univ Plymouth, Fac Hlth, Room 05,3 Portland Villas, Plymouth PL4 8AA, Devon, England. EM mnkamelboulos@plymouth.ac.uk; antonio.sanfilippo@pnl.gov; Courtney.Corley@pnl.gov; S.Wheeler@plymouth.ac.uk RI Kamel Boulos, Maged/B-3728-2013; Sanfilippo, Antonio/B-6743-2016 OI Kamel Boulos, Maged/0000-0003-2400-6303; Sanfilippo, Antonio/0000-0001-7097-4562 NR 29 TC 26 Z9 26 U1 5 U2 30 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0169-2607 J9 COMPUT METH PROG BIO JI Comput. Meth. Programs Biomed. PD OCT PY 2010 VL 100 IS 1 BP 16 EP 23 DI 10.1016/j.cmpb.2010.02.007 PG 8 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Biomedical; Medical Informatics SC Computer Science; Engineering; Medical Informatics GA 657DB UT WOS:000282391500002 PM 20236725 ER PT J AU Breslau, JA Fu, GY AF Breslau, J. A. Fu, G. Y. TI Implementation of an implicit shear Alfven operator in the M3D code SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Magnetohydrodynamics; Finite elements ID SIMULATION; MAGNETOHYDRODYNAMICS; STELLARATORS; FLUID AB A new pair of linear operators is introduced into the partially implicit but largely explicit time advance algorithm for the MHD equations in the M3D code. These operators jointly render the algorithm implicit with respect to propagation of the shear Alfven wave to leading order. As a result, the maximum stable time step is increased by up to a factor of three for many practical applications. The additional computational cost is trivial for the linear mode of operation and adds only approximately 30% additional execution time per step for nonlinear calculations. (c) 2010 Elsevier B.V. All rights reserved. C1 [Breslau, J. A.; Fu, G. Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Breslau, JA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jbreslau@pppl.gov FU U.S. Department of Energy (DOE) [DE-AC02-76CH03073] FX The authors would like to thank S. Jardin, W. Park, and H. Strauss for useful discussions on this topic. This work supported by U.S. Department of Energy (DOE) Contract No. DE-AC02-76CH03073. NR 15 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2010 VL 181 IS 10 BP 1661 EP 1670 DI 10.1016/j.cpc.2010.06.003 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 651RU UT WOS:000281945600001 ER PT J AU Carson, JP Einstein, DR Minard, KR Fanucchi, MV Wallis, CD Corley, RA AF Carson, James P. Einstein, Daniel R. Minard, Kevin R. Fanucchi, Michelle V. Wallis, Christopher D. Corley, Richard A. TI High resolution lung airway cast segmentation with proper topology suitable for computational fluid dynamic simulations SO COMPUTERIZED MEDICAL IMAGING AND GRAPHICS LA English DT Article DE Image segmentation; Airway segmentation; Computational fluid dynamics; Lung cast; Monkey; Rat; Topology; Branching; MRI ID TREE; DEPOSITION; ALGORITHM; REPAIR; LINES; FLOW AB Developing detailed lung airway models is an important step towards understanding the respiratory system. While modern imaging and airway casting approaches have dramatically improved the potential detail of such models, challenges have arisen in image processing as the demand for greater detail pushes the image processing approaches to their limits. Airway segmentations with proper topology have neither loops nor invalid voxel-to-voxel connections. Here we describe a new technique for segmenting airways with proper topology and apply the approach to an image volume generated by magnetic resonance imaging of a silicone cast created from an excised monkey lung. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Carson, James P.; Einstein, Daniel R.; Minard, Kevin R.; Corley, Richard A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fanucchi, Michelle V.] Univ Alabama Birmingham, Birmingham, AL 35294 USA. [Wallis, Christopher D.] Univ Calif Davis, Air Qual Res Ctr, Davis, CA 95616 USA. RP Carson, JP (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P7-58, Richland, WA 99352 USA. EM james.carson@pnl.gov FU NIEHS [PO1 ES011617]; NIHLB [RO1 HL073598] FX We thank Rick Jacob for helpful comments. Funding for this work was provided by NIEHS PO1 ES011617 and NIHLB RO1 HL073598. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 17 TC 19 Z9 20 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0895-6111 J9 COMPUT MED IMAG GRAP JI Comput. Med. Imaging Graph. PD OCT PY 2010 VL 34 IS 7 BP 572 EP 578 DI 10.1016/j.compmedimag.2010.03.001 PG 7 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 651RT UT WOS:000281945500005 PM 20382502 ER PT J AU Enos, DG AF Enos, D. G. TI Understanding the Atmospheric Degradation of Noble Metal-Plated Connector Materials SO CORROSION LA English DT Article DE atmospheric corrosion; Battelle Class 2; connectors; gold-plated copper; sulfidation ID COPPER; CORROSION; CONTACTS AB The current level of understanding of the atmospheric environmental degradation of gold-plated copper with and without a nickel underplate (and related materials) has limited the effectiveness of mathematical models aimed at predicting device lifetime/reliability. Efforts to understand this phenomenon have focused primarily on modeling the impact of the degradation (e.g.. change in contact resistance). Variability of in-service exposure conditions (e.g.. temperature. humidity, gaseous. and particulate contamination) coupled with the variety of metals of interest and environmental barriers in place (i.e., gaskets, connector geometry. sealants. etc.) hinders the effective application of such empirically based models. The goal of the research presented here was to develop a detailed understanding of the processes that govern the initiation. propagation, and stifling of corrosion/sulfidation sites on noble metal-plated alloys of relevance to electronic connectors. such that current and future process models may be refined to capture accurately the impact of atmospheric corrosion. Gold-plated copper coupons with and without a nickel underplate were exposed to a Battelle Class 2 (ASTM B845 Method G) mixed flowing gas environment. Selected regions of each specimen were mapped optically, cataloging the various corrosion sites located on the surface. A series of sites that were identified as being in various stages of their development were then cross-sectioned using a focused ion beam. Through this study, a qualitative description of the physical manifestation of each stage of the life cycle of an individual defect site that has undergone atmospheric corrosion in gold-plated copper with and without a nickel underplate has been developed. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Enos, DG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dgenos@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author gratefully acknowledges technical support provided by M. Rye, who performed the FIB cross sections and SEM images presented in this paper, as well as K. Zavadil, for productive technical discussions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 14 TC 0 Z9 0 U1 1 U2 8 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD OCT PY 2010 VL 66 IS 10 AR 105003 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 665NL UT WOS:000283042400003 ER PT J AU Kedem, N Edri, E Kokotov, M Cohen, H Bendikov, T Popovitz-Biro, R von Huth, P Ginley, D Hodes, G AF Kedem, Nir Edri, Eran Kokotov, Michael Cohen, Hagai Bendikov, Tatyana Popovitz-Biro, Ronit von Huth, Palle Ginley, David Hodes, Gary TI Effect of Sb Ions on the Morphology of Chemical Bath-Deposited ZnO Films and Application to Nanoporous Solar Cells SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ZINC-OXIDE FILMS; AQUEOUS-SOLUTION; GROWTH AB Low concentrations (0.1-1% of the Zn concentration) of Sb ions in an alkaline ZnO chemical bath deposition solution were found to lead to pronounced changes in the ZnO film morphology. The tapered nanorods obtained in the absence of Sb become flat-topped and more closely packed when SI.) is present, and the nanorod diameter changes, the direction of these changes depending on other bath parameters. An initial compact layer that was comprised of very small nanocrystals is formed. Sb was found to be present in the Films, mostly in the compact initial layer. We postulate that initial Sb-rich nuclei promote ZnO nucleation but retard subsequent ZnO crystal growth. As the Sb concentration (relative to the Zn) in the bath drops. ZnO nanorods can then grow, but with altered morphology because of preferential adsorption of the low levels of Sb in solution on (002) ZnO crystal faces. These films were found to be very suitable for solid state semiconductor-sensitized solar cells. Such cells normally require a separate deposition an blocking compact layer before the nanoporous layer, The initial in situ compact layer in our films is very efficient for this purpose, giving much more reproducible performance. C1 [Kedem, Nir; Edri, Eran; Kokotov, Michael; Hodes, Gary] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Cohen, Hagai; Bendikov, Tatyana; Popovitz-Biro, Ronit; von Huth, Palle] Weizmann Inst Sci, Dept Chem Res Support, IL-76100 Rehovot, Israel. [Ginley, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hodes, G (reprint author), Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. EM gary.hodes@weizmann.ac.il RI Edri, Eran/G-8630-2014; Edri, Eran/Q-9801-2016 OI Edri, Eran/0000-0003-4593-6489; Edri, Eran/0000-0003-4593-6489 FU U.S.-Israel Binational Science Foundation; Alternative Energy Research Initiative (AERI) FX This work was supported by the U.S.-Israel Binational Science Foundation and the Alternative Energy Research Initiative (AERI). We thank Dr. Yishay Feldman for the help with XRD analysis and Dr. Arye Tishbee for conducting the ICP-MS analyses. The electron microscopy studies were conducted at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging at the Weizmann Institute of Science. We acknowledge the Harold Perlman family's historic generosity. NR 15 TC 9 Z9 10 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2010 VL 10 IS 10 BP 4442 EP 4448 DI 10.1021/cg.100636j PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 658ZQ UT WOS:000282535800037 ER PT J AU Bettinger, RL Barton, L Morgan, C Chen, FH Wang, H Guilderson, TP Ji, DX Zhang, DJ AF Bettinger, Robert L. Barton, Loukas Morgan, Christopher Chen, Fahu Wang, Hui Guilderson, Thomas P. Ji, Duxue Zhang, Dongju TI The Transition to Agriculture at Dadiwan, People's Republic of China SO CURRENT ANTHROPOLOGY LA English DT Article ID EAST-ASIA; PLEISTOCENE; HOLOCENE; ORIGINS; DOMESTICATION; CHRONOLOGY; PATTERNS; POTTERY; DESERT; MODEL C1 [Bettinger, Robert L.] Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA. Univ Alaska, Dept Anthropol, Fairbanks, AK 99775 USA. Utah State Univ, Dept Sociol Social Work & Anthropol, Logan, UT 84322 USA. Lanzhou Univ, Key Lab W Chinas Environm Syst MOE, Lanzhou 730000, Peoples R China. Gansu Prov Inst Cultural Rel & Archaeol, Lanzhou 730000, Peoples R China. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. Archaeol Inst Shenzhen, Shenzhen 518028, Peoples R China. RP Bettinger, RL (reprint author), Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA. EM rlbettinger@ucdavis.edu RI Chen, Fahu/E-9491-2010; Chen, Fahu/B-2788-2011 NR 51 TC 21 Z9 22 U1 0 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0011-3204 J9 CURR ANTHROPOL JI Curr. Anthropol. PD OCT PY 2010 VL 51 IS 5 BP 703 EP 714 DI 10.1086/655982 PG 12 WC Anthropology SC Anthropology GA 655VD UT WOS:000282281300006 ER PT J AU McNamara, LA AF McNamara, Laura A. TI Under Construction: Making Homeland Security at the Local Level SO CURRENT ANTHROPOLOGY LA English DT Book Review C1 [McNamara, Laura A.] Sandia Natl Labs, Computat Comp Informat & Math Ctr, Albuquerque, NM 87185 USA. RP McNamara, LA (reprint author), Sandia Natl Labs, Computat Comp Informat & Math Ctr, POB 5800, Albuquerque, NM 87185 USA. EM lamcnam@sandia.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0011-3204 J9 CURR ANTHROPOL JI Curr. Anthropol. PD OCT PY 2010 VL 51 IS 5 BP 716 EP 717 PG 2 WC Anthropology SC Anthropology GA 655VD UT WOS:000282281300008 ER PT J AU Zeng, WQ Melotto, M He, SY AF Zeng, Weiqing Melotto, Maeli He, Sheng Yang TI Plant stomata: a checkpoint of host immunity and pathogen virulence SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID INNATE IMMUNITY; GUARD-CELLS; SCLEROTINIA-SCLEROTIORUM; NITRIC-OXIDE; OXALIC-ACID; FUSICOCCIN; CLOSURE; PENETRATION; PERCEPTION; EVOLUTION AB Stomata are microscopic pores formed by pairs of guard cells in the epidermis of terrestrial plants; they are essential for gas exchange with the environment and controlling water loss. Accordingly, plants regulate stomatal aperture in response to environmental conditions, such as relative humidity, CO(2) concentration, and light intensity. Stomatal openings are also a major route of pathogen entry into the plant and plants have evolved mechanisms to regulate stomatal aperture as an immune response against bacterial invasion. In this review, we highlight studies that begin to elucidate signaling events involved in bacterium-triggered stomatal closure and discuss how pathogens may have exploited environmental conditions or, in some cases, have evolved virulence factors to actively counter stomatal closure to facilitate invasion. C1 [Zeng, Weiqing; He, Sheng Yang] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. [Melotto, Maeli] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. [He, Sheng Yang] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP He, SY (reprint author), Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. EM hes@msu.edu FU National Institutes of Health [5R01AI068718]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-91ER20021] FX We thank Karen Bird for editing and members of the S. Y. H. lab for their comments on the manuscript. We also thank National Institutes of Health (5R01AI068718) and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-91ER20021) for funding support. NR 31 TC 63 Z9 70 U1 7 U2 45 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD OCT PY 2010 VL 21 IS 5 BP 599 EP 603 DI 10.1016/j.copbio.2010.05.006 PG 5 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 673YO UT WOS:000283700300004 PM 20573499 ER PT J AU Elkins, JG Raman, B Keller, M AF Elkins, James G. Raman, Babu Keller, Martin TI Engineered microbial systems for enhanced conversion of lignocellulosic biomass SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID CLOSTRIDIUM-ACETOBUTYLICUM ATCC-824; DOCKERIN-CONTAINING ENZYMES; CEREVISIAE CELL-SURFACE; SACCHAROMYCES-CEREVISIAE; DESIGNER CELLULOSOMES; CHIMERIC SCAFFOLDINS; ETHANOL-PRODUCTION; BINDING MODULE; CELLULASE; MINICELLULOSOMES AB In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost-effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and industrialists working at the very cutting edge of the field. Although a diverse range of bacteria and fungi possess the enzymatic machinery capable of hydrolyzing plant-derived polymers, none discovered so far meet the requirements for an industrial strength biocatalyst for the direct conversion of biomass to combustible fuels. Synthetic biology combined with a better fundamental understanding of enzymatic cellulose hydrolysis at the molecular level is enabling the rational engineering of microorganisms for utilizing cellulosic materials with simultaneous conversion to fuel. C1 [Elkins, James G.; Raman, Babu; Keller, Martin] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Keller, M (reprint author), Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM kellerm@ornl.gov RI Keller, Martin/C-4416-2012; Elkins, James/A-6199-2011 OI Elkins, James/0000-0002-8052-5688 FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; UT-Battelle LLC for the U.S. D.O.E. [DE-AC05-00OR22725] FX We gratefully acknowledge funding from the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. D.O.E. under contract no. DE-AC05-00OR22725. NR 52 TC 53 Z9 54 U1 0 U2 37 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD OCT PY 2010 VL 21 IS 5 BP 657 EP 662 DI 10.1016/j.copbio.2010.05.008 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 673YO UT WOS:000283700300013 PM 20579868 ER PT J AU Zhang, YHP Sun, JB Zhong, JJ AF Zhang, Y-H Percival Sun, Jibin Zhong, Jian-Jiang TI Biofuel production by in vitro synthetic enzymatic pathway biotransformation SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID 2,5-DIKETO-D-GLUCONIC ACID REDUCTASE; CLOSTRIDIUM-THERMOCELLUM; ALCOHOL-DEHYDROGENASE; CATALYTIC CONVERSION; COFACTOR SPECIFICITY; HIGH-YIELD; BIOMASS; HYDROCARBONS; CHEMICALS; ETHANOL AB Cell-free synthetic pathway biotransformation (SyPaB) is the implementation of complicated biochemical reactions by in vitro assembling a number of enzymes or their complexes and coenzymes. Assembly of numerous enzymes without cellular membrane, gene regulation, or undesired pathway can circumvent some of the obstacles to modifying living microorganisms. Several synthetic pathways for the production of liquid biofuels - alcohols and hydrocarbon precursors (polyols) as well as gaseous biofuel - hydrogen have been presented. The present constraints to SyPaB include the lack of stable enzymes as Lego-like building blocks, the different optimal reaction conditions for individual enzyme, and the use of costly labile coenzymes. It is expected that high-yield SyPaB will be an important platform for producing low-cost biofuels and biochemicals. C1 [Zhang, Y-H Percival] Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y-H Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y-H Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Sun, Jibin] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin Airport Econ Area, Tianjin 300308, Peoples R China. [Zhong, Jian-Jiang] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Key Lab Microbial Metab MOE, Shanghai 200240, Peoples R China. RP Zhang, YHP (reprint author), Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Zhong, Jian-Jiang/D-8707-2012 OI Zhong, Jian-Jiang/0000-0002-2265-9338 FU Air Force Office of Scientific Research; MURI; USDA Biodesign and Bioprocess Center; DuPont Young Faculty Award FX This work was supported mainly by the Air Force Office of Scientific Research and MURI, and partially by USDA Biodesign and Bioprocess Center and the DuPont Young Faculty Award to YPZ. NR 46 TC 44 Z9 46 U1 4 U2 34 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD OCT PY 2010 VL 21 IS 5 BP 663 EP 669 DI 10.1016/j.copbio.2010.05.005 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 673YO UT WOS:000283700300014 PM 20566280 ER PT J AU Ciais, P Canadell, JG Luyssaert, S Chevallier, F Shvidenko, A Poussi, Z Jonas, M Peylin, P King, AW Schulze, ED Piao, SL Rodenbeck, C Peters, W Breon, FM AF Ciais, Philippe Canadell, Josep G. Luyssaert, Sebastiaan Chevallier, Frederic Shvidenko, Anatoly Poussi, Zegbeu Jonas, Matthias Peylin, Philippe King, Anthony Wayne Schulze, Ernest-Detlef Piao, Shilong Roedenbeck, Christian Peters, Wouter Breon, Francois-Marie TI Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting? SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Review ID CO2 SOURCES; DIOXIDE EXCHANGE; TRANSPORT; INVERSION; BALANCE; FLUXES; SENSITIVITY; EMISSIONS AB We estimate the northern hemisphere (NH) terrestrial carbon sink by comparing four recent atmospheric inversions with land-based C accounting data for six large northern regions. The mean NH terrestrial CO(2) sink from the inversion models is 1.7 Pg C year(-1) over the period 2000-2004. The uncertainty of this estimate is based on the typical individual (1-sigma) precision of one inversion (0.9 Pg C year(-1)) and is consistent with the min-max range of the four inversion mean estimates (0.8 Pg C year(-1)). Inversions agree within their uncertainty for the distribution of the NH sink of CO(2) in longitude, with Russia being the largest sink. The land-based accounting estimate of NH carbon sink is 1.7 Pg C year(-1) for the sum of the six regions studied. The 1-sigma uncertainty of the land-based estimate (0.3 Pg C year(-1)) is smaller than that of atmospheric inversions, but no independent land-based flux estimate is available to derive a 'between accounting model' uncertainty. Encouragingly, the top-down atmospheric and the bottom-up land-based methods converge to consistent mean estimates within their respective errors, increasing the confidence in the overall budget. These results also confirm the continued critical role of NH terrestrial ecosystems in slowing down the atmospheric accumulation of anthropogenic CO(2). C1 [Ciais, Philippe; Luyssaert, Sebastiaan; Chevallier, Frederic; Poussi, Zegbeu; Peylin, Philippe; Breon, Francois-Marie] UVSQ, CEA, CNRS, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Canadell, Josep G.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. [Shvidenko, Anatoly; Jonas, Matthias] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [King, Anthony Wayne] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37931 USA. [Schulze, Ernest-Detlef; Roedenbeck, Christian] Max Planck Inst Biogeochem, D-07701 Jena, Germany. [Piao, Shilong] Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. [Piao, Shilong] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China. [Peters, Wouter] Wageningen Univ, Dept Meteorol & Air Qual, Wageningen, Netherlands. RP Ciais, P (reprint author), UVSQ, CEA, CNRS, Lab Sci Climat & Environm, Gif Sur Yvette, France. EM philippe.ciais@lsce.ipsl.fr RI Peters, Wouter/B-8305-2008; Luyssaert, Sebastiaan/F-6684-2011; Canadell, Josep/E-9419-2010; Schulze, Ernst-Detlef/K-9627-2014; Vuichard, Nicolas/A-6629-2011; Chevallier, Frederic/E-9608-2016; Shvidenko, Anatoly/I-1505-2016; Breon, Francois-Marie/M-4639-2016 OI Peters, Wouter/0000-0001-8166-2070; Luyssaert, Sebastiaan/0000-0003-1121-1869; Canadell, Josep/0000-0002-8788-3218; Chevallier, Frederic/0000-0002-4327-3813; Shvidenko, Anatoly/0000-0001-7640-2151; Breon, Francois-Marie/0000-0003-2128-739X FU European Commission [212196] FX This manuscript is a contribution to the synthesis efforts of the Global Carbon Project and to the development of the REgional Carbon Cycle Assessment and Processes (RECCAP). The study benefited from the Seventh Research Framework Programme of the European Commission (grant agreement No 212196, COCOS). NR 45 TC 28 Z9 28 U1 3 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN SUST JI Curr. Opin. Environ. Sustain. PD OCT PY 2010 VL 2 IS 4 BP 225 EP 230 DI 10.1016/j.cosust.2010.06.008 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 675DE UT WOS:000283805300004 ER PT J AU Canadell, JG Ciais, P Dhakal, S Dolman, H Friedlingstein, P Gurney, KR Held, A Jackson, RB Le Quere, C Malone, EL Ojima, DS Patwardhan, A Peters, GP Raupach, MR AF Canadell, Josep G. Ciais, Philippe Dhakal, Shobhakar Dolman, Han Friedlingstein, Pierre Gurney, Kevin R. Held, Alex Jackson, Robert B. Le Quere, Corinne Malone, Elizabeth L. Ojima, Dennis S. Patwardhan, Anand Peters, Glen P. Raupach, Michael R. TI Interactions of the carbon cycle, human activity, and the climate system: a research portfolio SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Review ID ATMOSPHERIC CO2 GROWTH; OCEAN ACIDIFICATION; LAND-USE; EMISSIONS; DIOXIDE; DEFORESTATION; SENSITIVITY; FORESTS; BALANCE; IMPACT AB There has never been a greater need for delivering timely and policy-relevant information on the magnitude and evolution of the human-disturbed carbon cycle. In this paper, we present the main thematic areas of an ongoing global research agenda and prioritize future needs based on relevance for the evolution of the carbon climate human system. These include firstly, the delivery of routine updates of global and regional carbon budgets, including its attribution of variability and trends to underlying drivers; secondly, the assessment of the magnitude of the carbon climate feedback; and thirdly, the exploration of pathways to climate stabilization and their uncertainties. Underpinning much of this research is the optimal deployment of a global carbon monitoring system that includes biophysical and socio-economic components. C1 [Canadell, Josep G.; Raupach, Michael R.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. [Ciais, Philippe; Friedlingstein, Pierre] UVSQ, CEA, CNRS, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Dhakal, Shobhakar] Natl Inst Environm Studies, Global Carbon Froject, Tsukuba, Ibaraki, Japan. [Dolman, Han] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Hydrol & Geoenvironm Sci, Amsterdam, Netherlands. [Friedlingstein, Pierre] Univ Bristol, Dept Earth Sci, QUEST, Bristol, Avon, England. [Gurney, Kevin R.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Gurney, Kevin R.] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Jackson, Robert B.] Duke Univ, Dept Biol, Durham, NC USA. [Jackson, Robert B.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Le Quere, Corinne] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Le Quere, Corinne] British Antarctic Survey, Cambridge CB3 0ET, England. [Malone, Elizabeth L.] Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD USA. [Ojima, Dennis S.] John H Heinz Ctr, Washington, DC USA. [Ojima, Dennis S.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Patwardhan, Anand] IIT, SJ Mehta Sch Management, Mumbai, Maharashtra, India. [Peters, Glen P.] Ctr Int Climate & Environm Res, Oslo, Norway. RP Canadell, JG (reprint author), CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. EM pep.canadell@csiro.au RI Held, Andre/A-4672-2011; Canadell, Josep/E-9419-2010; Peters, Glen/B-1012-2008; Dhakal, Shobhakar/J-2797-2013; Ojima, Dennis/C-5272-2016; Friedlingstein, Pierre/H-2700-2014; Le Quere, Corinne/C-2631-2017; OI Canadell, Josep/0000-0002-8788-3218; Peters, Glen/0000-0001-7889-8568; Le Quere, Corinne/0000-0003-2319-0452; Dolman, A.J./0000-0003-0099-0457 FU Australian Climate Change Science Program (ACCSP); Department of Climate Change and Energy Efficiency; Bureau of Meteorology; CSIRO FX JGC and MRR acknowledge and thank the support of the Australian Climate Change Science Program (ACCSP) for the Global Carbon Project office in Canberra. The ACCSP is funded jointly by the Department of Climate Change and Energy Efficiency, the Bureau of Meteorology, and CSIRO. NR 58 TC 24 Z9 26 U1 2 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD OCT PY 2010 VL 2 IS 4 BP 301 EP 311 DI 10.1016/j.cosust.2010.08.003 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 675DE UT WOS:000283805300016 ER PT J AU de Jonge, MD Vogt, S AF de Jonge, Martin D. Vogt, Stefan TI Hard X-ray fluorescence tomography - an emerging tool for structural visualization SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID COMPUTED-TOMOGRAPHY; SYNCHROTRON-RADIATION; IMAGE-RECONSTRUCTION; PHASE-CONTRAST; MICROPROBE; CELLS; MICROTOMOGRAPHY; ABSORPTION; NANOTOMOGRAPHY; MICROSCOPE AB Hard X-ray fluorescence microscopy is well-suited to in-situ investigations of trace metal distributions within whole, unstained, biological tissue, with sub-parts-per-million detection achievable in whole cells The high penetration of X-rays indicates the use of X-ray fluorescence tomography for structural visualization and recent measurements have realised sub-500-nm tomography on a 10-mu m cell Limitations of present approaches impact the duration of an experiment and imaging fidelity Developments in X-ray resolution, detector speed cryogenic environments and the incorporation of auxiliary signals are being pursued within the synchrotron community Several complementary approaches to X-ray fluorescence tomography will be routinely available to the biologist in the near future We discuss these approaches and review applications of biological relevance C1 [de Jonge, Martin D.] Australian Synchrotron, Clayton, Vic 3168, Australia. [Vogt, Stefan] Argonne Natl Lab, Argonne, IL 61439 USA. RP de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. RI de Jonge, Martin/C-3400-2011; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 NR 62 TC 51 Z9 52 U1 1 U2 32 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD OCT PY 2010 VL 20 IS 5 BP 606 EP 614 DI 10.1016/j.sbi.2010.09.002 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 686DL UT WOS:000284676900011 PM 20934872 ER PT J AU Larabell, CA Nugent, KA AF Larabell, Carolyn A. Nugent, Keith A. TI Imaging cellular architecture with X-rays SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID DIFFRACTION MICROSCOPY; BIOLOGICAL SPECIMENS; ELECTRON TOMOGRAPHY; SPATIAL-RESOLUTION; YEAST-CELLS; RECONSTRUCTION AB X-ray imaging of biological samples is progressing rapidly In this paper we review the progress to date in high-resolution imaging of cellular architecture In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge We then review the new ideas based on coherent diffraction These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics have the capacity to provide substantially better spatial resolution than zone plate-based methods C1 [Larabell, Carolyn A.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94158 USA. [Larabell, Carolyn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Larabell, Carolyn A.] UCSF, Natl Ctr Xray Tomog, Berkeley, CA 94720 USA. [Nugent, Keith A.] Univ Melbourne, ARC Ctr Excellence Coherent Xray Sci, Sch Phys, Melbourne, Vic 3010, Australia. RP Larabell, CA (reprint author), Univ Calif San Francisco, Dept Anat, 1550 4th St, San Francisco, CA 94158 USA. RI Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 FU National Center for Research Resources [RR019664]; National Institute of General Medical Sciences [GM070445]; National Institutes of Health; US Department of Energy Office of Biological and Environmental Research [DE AC02 05CH11231]; Australian Research Council FX The authors thank Dr Mark Le Gros for his assistance with this manuscript and Dr Maho Uchida for help with preparation of the figures CAL acknowledges the support of the National Center for Research Resources (RR019664) and the National Institute of General Medical Sciences (GM070445) both of the National Institutes of Health and the US Department of Energy Office of Biological and Environmental Research (Contract No DE AC02 05CH11231) KAN acknowledges the support of the Australian Research Council through its Centres of Excellence and Federation Fellowships programs NR 47 TC 63 Z9 63 U1 1 U2 22 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD OCT PY 2010 VL 20 IS 5 BP 623 EP 631 DI 10.1016/j.sbi.2010.08.008 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 686DL UT WOS:000284676900013 PM 20869868 ER PT J AU Miller, LM Dumas, P AF Miller, Lisa M. Dumas, Paul TI From structure to cellular mechanism with infrared microspectroscopy SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID PROTEIN SECONDARY STRUCTURE; ALZHEIMERS-DISEASE; MICRO-SPECTROSCOPY; IR SPECTROSCOPY; STEM-CELLS; SYNCHROTRON; SPECTRA; TISSUE; SCRAPIE; DIFFERENTIATION AB Current efforts in structural biology aim to integrate structural information within the context of cellular organization and function X-rays and infrared radiation stand at opposite ends of the electromagnetic spectrum and act as complementary probes for achieving this goal Intense and bright beams are produced by synchrotron radiation, and are efficiently used in the wavelength domain extending from hard X-rays to the far-infrared (or THz) regime While X-ray crystallography provides exquisite details on atomic structure, Fourier transform infrared microspectroscopy (FTIRM) is emerging as a spectroscopic probe and imaging tool for correlating molecular structure to biochemical dynamics and function In this manuscript, the role of synchrotron FTIRM in bridging the gap towards 'functional biology is discussed based upon recent achievements, with a critical assessment of the contributions to biological and biomedical research C1 [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Dumas, Paul] SOLEIL Synchrotron, Gif Sur Yvette, France. RP Miller, LM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. FU NIGMS NIH HHS [R01 GM066873] NR 60 TC 49 Z9 49 U1 1 U2 20 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD OCT PY 2010 VL 20 IS 5 BP 649 EP 656 DI 10.1016/j.sbi.2010.07.007 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 686DL UT WOS:000284676900016 PM 20739176 ER PT J AU Wilson, SE Steinberg, DK Chu, FLE Bishop, JKB AF Wilson, S. E. Steinberg, D. K. Chu, F. -L. E. Bishop, J. K. B. TI Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers SO DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS LA English DT Article DE Biomarkers; Fatty acids; Feeding ecology; Mesopelagic zone; North Pacific Ocean; Zooplankton ID PARTICULATE ORGANIC-MATTER; DEEP SARGASSO SEA; MARINE SNOW; TWILIGHT ZONE; MEGANYCTIPHANES-NORVEGICA; VERTICAL-DISTRIBUTION; REGIONAL-VARIATIONS; LIPID-COMPOSITION; OYASHIO REGION; LIFE-CYCLE AB Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (> 51 mu m) composition in the mesopelagic zone (base of euphotic zone -1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at 1(2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100-300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments, have important consequences for the quality and quantity of organic material available to deeper pelagic and benthic food webs, and for organic matter sequestration. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wilson, S. E.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Steinberg, D. K.; Chu, F. -L. E.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA. [Bishop, J. K. B.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bishop, J. K. B.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wilson, SE (reprint author), Monterey Bay Aquarium Res Inst, 7700 Sandholdt Rd, Moss Landing, CA 95039 USA. EM sewilson@mbari.org OI Wilson, Stephanie/0000-0002-1280-5506 FU US National Science Foundation NSF [OCE-0324402]; Department of Energy, Office of Science, Biological and Environmental Research FX Our thanks to the captains and crews of the R/V Kilo Moana and R/V Roger Revelle for their assistance during the VERTIGO cruises. Thanks to Ken Buesseler for his leadership in VERTIGO and for his help at sea. We are very grateful to Elizabeth Canuel and Eric Lund for their excellent advice on all things lipid. Joe Cope, Vincent Encomio, Toru Kobari, Carl Lamborg, Elizabeth Lerberg, Jennifer Podbesek, and Todd Wood also provided help with sample collections or processing. The comments of four anonymous reviewers improved the manuscript. This study was supported by grants from the US National Science Foundation NSF OCE-0324402 (Biological Oceanography) to D.K.S, and by the Department of Energy, Office of Science, Biological and Environmental Research Program to J.K.B.B. This paper is Contribution no. 3099 from the Virginia Institute of Marine Science. NR 89 TC 9 Z9 9 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0637 J9 DEEP-SEA RES PT I JI Deep-Sea Res. Part I-Oceanogr. Res. Pap. PD OCT PY 2010 VL 57 IS 10 BP 1278 EP 1294 DI 10.1016/j.dsr.2010.07.005 PG 17 WC Oceanography SC Oceanography GA 667PR UT WOS:000283206600011 ER PT J AU Lin, JF Mao, Z Yavas, H Zhao, JY Dubrovinsky, L AF Lin, Jung-Fu Mao, Zhu Yavas, Hasan Zhao, Jiyong Dubrovinsky, Leonid TI Shear Wave anisotropy of textured hcp-Fe in the Earth's inner core SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Earth's inner core; elastic properties; iron; seismology; high pressure ID NORMAL-MODE CONSTRAINTS; CENTERED-CUBIC IRON; HIGH-PRESSURE; ELASTIC-ANISOTROPY; FREE OSCILLATIONS; SEISMIC EVIDENCE; TRAVEL-TIMES; GPA; SPECTROSCOPY; TEMPERATURE AB Many seismological studies have confirmed that Vp travels 3-4% faster along the rotation axis of the Earth than along the equatorial plane in the inner core, indicating that the inner core is elastically anisotropic. However, seismic and mineral physics observations of the polarized Vs are still emerging. Thus far, the Vs anisotropy of the constitute iron crystals at relevant pressures of the Earth's core has remained mostly theoretical mainly because of the technical difficulties involved in measuring reliable Vs velocities of iron crystals. Here we have measured azimuthal Vs anisotropy of highly textured hcp-Fe at high pressures using nuclear resonant inelastic X-ray scattering, a technique sensitive to Vs, in a diamond anvil cell. Our results show that the azimuthal Vs is 2-4% faster along the crystallographic c axis than along the a axis at 158 GPa and 172 GPa. If one describes the Vp anisotropy of the inner core as a result of the textured hcp-Fe crystals, it is conceivable that azimuthal and polarized Vs anisotropies with a magnitude of a few percent also exist in the region. Since Vp and Vs of candidate iron phases behave quite differently in theoretical predictions, our results here indicate that future seismic observations of the Vs and Vp anisotropies of the inner core thus hold the key to deciphering the causes for the seismic and dynamic signatures as well as constitute iron phase(s) of the region. Published by Elsevier B.V. C1 [Lin, Jung-Fu; Mao, Zhu] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. [Yavas, Hasan; Zhao, Jiyong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yavas, Hasan] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Dubrovinsky, Leonid] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. RP Lin, JF (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. RI Lin, Jung-Fu/B-4917-2011; Yavas, Hasan/A-7164-2014; Mao, Zhu/A-9015-2015 OI Yavas, Hasan/0000-0002-8940-3556; FU DOE-BES [DE-AC02-06CH11357]; US National Science Foundation [EAR-0838221]; Energy Frontier Research at Extreme Environments (EFree) of the Energy Frontier Research Centers (EFRCs); Carnegie/DOE Alliance Center (CDAC); COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 06-49658] FX We acknowledge XOR-3 and GSECARS of the Advanced Photon Source (APS) at the Argonne National Laboratory (ANL) for providing synchrotron and optical facilities. We appreciate H. Scott, V.V. Prapapenka and I. Kantor for their assistance in X-ray diffraction experiments. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. J.F.L. and Z M acknowledge support from the US National Science Foundation (EAR-0838221), Energy Frontier Research at Extreme Environments (EFree) of the Energy Frontier Research Centers (EFRCs), and the Carnegie/DOE Alliance Center (CDAC) H Y. was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658 We thank E.E. Alp, W. Sturhahn, S Grand, E. Garnero, and C. Jacobs for helpful discussions. NR 44 TC 14 Z9 14 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 1 PY 2010 VL 298 IS 3-4 BP 361 EP 366 DI 10.1016/j.epsl.2010.08.006 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 674OL UT WOS:000283756600010 ER PT J AU Liao, HG Wu, H Wang, J Liu, J Jiang, YX Sun, SG Lin, YH AF Liao, Hong-gang Wu, Hong Wang, Jun Liu, Jun Jiang, Yan-Xia Sun, Shi-Gang Lin, Yuehe TI Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized on Graphene-CTAB-Ionic Liquid Nanocomposite Film SO ELECTROANALYSIS LA English DT Article DE Functionalized graphene sheets; Ionic liquids; Direct electrochemistry; Myoglobin; Electrocatalysis ID FUNCTIONALIZED GRAPHENE; HEME-PROTEINS; CARBON NANOTUBES; GRAPHITE OXIDE; SHEETS; ELECTRODES; COMPOSITE; DNA AB This paper describes the direct electrochemistry and electrocatalysis of myoglobin immobilized on graphene-cetylramethylammonium bromide (CTAB)-ionic liquid nanocomposite film on a glassy carbon electrode. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemistry. It was found that the high surface area of graphene was helpful for immobilizing more proteins and the nanocomposite film could provide a favorable microenvironment for MB to retain its native structure and activity and to achieve reversible. direct electron transfer reaction at an electrode. The ionic liquid may play dual roles here: it keeps the protein's activity and improves stability of the nanocomposite film; it also serves as a binder between protein and electrode, therefore, enhancing the electron transfer between the protein and the electrode. The nanocomposite films also exhibit good stability and catalytic activities for the electrocatalytic reduction of H(2)O(2). C1 [Liao, Hong-gang; Wu, Hong; Wang, Jun; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liao, Hong-gang; Jiang, Yan-Xia; Sun, Shi-Gang] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Jiang, Yan-Xia/G-4661-2010; Lin, Yuehe/D-9762-2011; SKL, PCOSS/D-4395-2013; Sun, S.G./G-3408-2010; Liao, hong-gang/M-2476-2015 OI Lin, Yuehe/0000-0003-3791-7587; FU PNNL's Laboratory Directed Research and Development Program; National Natural Science Foundation of China [20833005, 0042-K16332]; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research; China Scholarship Council; PNNL FX This work was done at Pacific Northwest National Laboratory (PNNL) and was supported by PNNL's Laboratory Directed Research and Development Program. It was also supported partially by the National Natural Science Foundation of China (No. 20833005, 0042-K16332). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. The characterization was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Hong-gang Liao would like to acknowledge the fellowship from the China Scholarship Council and the fellowship from PNNL to perform this work at PNNL. The authors would like to acknowledge Dr. Aksay at Princeton University for providing graphene for this work. NR 28 TC 16 Z9 18 U1 1 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1040-0397 J9 ELECTROANAL JI Electroanalysis PD OCT PY 2010 VL 22 IS 19 BP 2297 EP 2302 DI 10.1002/elan.201000044 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 668MW UT WOS:000283275100022 ER PT J AU Kim, Y Buchheit, RG Kotula, PG AF Kim, Youngseok Buchheit, R. G. Kotula, P. G. TI Effect of alloyed Cu on localized corrosion susceptibility of Al-Cu solid solution alloys-Surface characterization by XPS and STEM SO ELECTROCHIMICA ACTA LA English DT Article DE Aluminum; Al-Cu alloys; Pitting; Dealloying; STEM; XPS ID MELTING POINT ELEMENTS; BINARY ALUMINUM-ALLOYS; AQUEOUS HF SOLUTION; THIN-FILMS; INTERGRANULAR CORROSION; SPUTTERED ALUMINUM; AL2CUMG; DISSOLUTION; ACTIVATION; MECHANISM AB Cu additions to Al alloys decrease pitting susceptibility provided that the Cu is retained solid solution In this study, a range of electrochemical, surface analytical and election microscopy characterization experiments were carried out with Al-Cu solid solution alloys to understand the origins of this inhibiting effect Potential-controlled electrochemical polarization experiments carried out in dilute chloride solutions show that stimulation of alloy dissolution without inducing passive film breakdown significantly ennobles a subsequently measured pitting potential. Similar effects are not observed with high-purity Al or Al-Zn solid solution samples The ennobling effect is more difficult to detect in large area electrodes clue to pit initiation triggered by defects and inclusions that are more regularly encountered in larger electrodes X-ray photoelectron spectroscopy of Al-Cu solid solution samples reveals no Cu enrichment above detection limits However, scanning transmission electron microscopy and spectral imaging of specially prepared Al-Cu needle-type samples shows that Cu is enriched at the alloy interface by a range of exposure regimens including those that induce pitting These results suggest the possibility of local Cu enrichment at incipient pit sites by metastable pitting, which can contribute to an ennoblement of the critical pitting potential under certain circumstances (C) 2010 Elsevier Ltd All rights reserved. C1 [Kim, Youngseok; Buchheit, R. G.] Ohio State Univ, Dept Mat Sci & Engn, Fontana Corros Ctr, Columbus, OH 43210 USA. [Kotula, P. G.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. RP Buchheit, RG (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Fontana Corros Ctr, 477 Watts Hall,2041 Coll Rd, Columbus, OH 43210 USA. RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU Sandia National Laboratories; Department of Energy FX The authors gratefully acknowledge the financial support provided by Sandia National Laboratories and the Department of Energy Basic Energy Science Program. The authors would also like to express there appreciation to N A. Missert for technical support related to electrochemical measurements and STEM sample preparation research and also thanks John J Hren and R.G Copeland for their technical support for STEM sample preparation. NR 33 TC 9 Z9 9 U1 3 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 1 PY 2010 VL 55 IS 24 BP 7367 EP 7375 DI 10.1016/j.electacta.2010.06.069 PG 9 WC Electrochemistry SC Electrochemistry GA 660DJ UT WOS:000282619300032 ER EF