FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Schwartzberg, AM Aloni, S Kuykendall, T Schuck, PJ Urban, JJ AF Schwartzberg, Adam M. Aloni, Shaul Kuykendall, Tevye Schuck, P. James Urban, Jeffrey J. TI Optical cavity characterization in nanowires via self-generated broad-band emission SO OPTICS EXPRESS LA English DT Article ID 2-PHOTON ABSORPTION; ZNO NANOWIRE; GAN; LUMINESCENCE; LIGHT; PHOTOLUMINESCENCE; PULSES; ARRAYS; LASERS AB Broadband white light is of great spectroscopic value and would be a powerful tool for nanoscale spectroscopy, however, generation and direction of white light on this length scale remains challenging. Here, we demonstrate the generation of broadband white light in sub-wavelength diameter Gallium Nitride (GaN) wires by coincident one-and two-photon absorption mediated via defect states. This generation of broadband,. white. light enables single-nanowire interferometric measurements of the nanowires themselves via analysis of the Fabry-Perot fringes that overlay the entirety of the emission spectrum. The quality factor and finesse of individual nanowire cavities were measured and calculated to be 186 +/- 88 and 3.05 +/- 0.6 respectively, averaged over 20 individual wires. This work presents a new, simple approach for the generation and direction of broad band white light at sub-diffraction limit length scales, ideal for translating classical white light spectroscopies to higher spatial resolutions then previously achieved. (C) 2011 Optical Society of America C1 [Schwartzberg, Adam M.; Aloni, Shaul; Kuykendall, Tevye; Schuck, P. James; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Schwartzberg, AM (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM JJUrban@LBL.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 4 Z9 4 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 25 PY 2011 VL 19 IS 9 BP 8903 EP 8911 DI 10.1364/OE.19.008903 PG 9 WC Optics SC Optics GA 762NJ UT WOS:000290485900102 PM 21643143 ER PT J AU Li, ZY Ma, YF Huang, R Singh, RJ Gu, JQ Tian, Z Han, JG Zhang, WL AF Li, Zhongyang Ma, Yingfang Huang, Ran Singh, Ranjan Gu, Jianqiang Tian, Zhen Han, Jiaguang Zhang, Weili TI Manipulating the plasmon-induced transparency in terahertz metamaterials SO OPTICS EXPRESS LA English DT Article ID ELECTROMAGNETICALLY-INDUCED TRANSPARENCY; RESONANCE; ANALOG AB Coupling between superradiant and subradiant mode resonators in a metamaterial unit cell plays an important role in observing the sharp transparency peak due to destructive interference between the resonators. This effect is enhanced as the resonators are brought closer to each other in a conventional planar arrangement. We present a novel coupling scheme of planar terahertz metamaterial to tune the plasmon-induced transparency peak by physically varying the distance between the superradiant and the subradiant resonators in such a way that the transparency peak begins to disappear as the coupled resonators are brought closer than a critical separation distance. The effect is attributed to the disappearance of the resonant behavior of the subradiant resonator in a closely coupled regime. The simple planar design presented here demonstrates a scheme to manipulate the electromagnetically induced transparency-like behavior in terahertz metamaterials and this could lead to the development of unique slow light devices for terahertz applications. (C) 2011 Optical Society of America C1 [Li, Zhongyang; Ma, Yingfang; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili] Tianjin Univ, Ctr Terahertz Waves, Tianjin, Peoples R China. [Li, Zhongyang; Ma, Yingfang; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili] Tianjin Univ, Minist Educ, Key Lab Optoelect Informat & Tech Sci, Coll Precis Instrument & Optoelect Engn, Tianjin, Peoples R China. [Huang, Ran; Singh, Ranjan; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, ZY (reprint author), Tianjin Univ, Ctr Terahertz Waves, Tianjin, Peoples R China. EM jiaghan@tju.edu.cn; weili.zhang@okstate.edu RI Singh, Ranjan/B-4091-2010; Zhang, Weili/C-5416-2011; Tian, Zhen/D-8707-2015 OI Singh, Ranjan/0000-0001-8068-7428; Zhang, Weili/0000-0002-8591-0200; Tian, Zhen/0000-0002-2861-4325 FU National Natural Science Foundation of China (NSFC) [61028011, 61007034, 60977064]; U.S. National Science Foundation; Tianjin Sci-Tech Program [09ZCKFGX01500, 10JCYBJC01400]; MOE of China [B07014] FX This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61028011, 61007034, and 60977064), the U.S. National Science Foundation, the Tianjin Sci-Tech Program (Grant Nos. 09ZCKFGX01500 and 10JCYBJC01400), and the MOE 111 Program of China (Grant No. B07014). NR 29 TC 85 Z9 89 U1 4 U2 67 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 25 PY 2011 VL 19 IS 9 BP 8912 EP 8919 DI 10.1364/OE.19.008912 PG 8 WC Optics SC Optics GA 762NJ UT WOS:000290485900103 PM 21643144 ER PT J AU Coquard, L Rainovski, G Pietralla, N Ahn, T Bettermann, L Carpenter, MP Janssens, RVF Leske, J Lister, CJ Moller, O Moller, T Rother, W Werner, V Zhu, S AF Coquard, L. Rainovski, G. Pietralla, N. Ahn, T. Bettermann, L. Carpenter, M. P. Janssens, R. V. F. Leske, J. Lister, C. J. Moeller, O. Moeller, T. Rother, W. Werner, V. Zhu, S. TI O(6)-symmetry breaking in the gamma-soft nucleus Xe-126 and its evolution in the light stable xenon isotopes SO PHYSICAL REVIEW C LA English DT Article ID BOSON MODEL; STATES; O(6) AB Low-lying collective states in Xe-126 have been investigated via the C-12(Xe-126, Xe-126*) projectile Coulomb excitation reaction at 399 MeV. The. decays were detected with the Gammasphere array. Coulomb excitation cross sections relative to the 2(1)(+) state were obtained. Twenty-two absolute E2 transition strengths have been deduced. An sd-interacting boson model (IBM-1) fit agrees well with the new experimental data. This makes a quantitative test of O(6)-symmetry breaking in Xe-126 possible. The measured absolute B(E2) values indicate a preservation of O(5) symmetry, while the O(6) symmetry is broken. The evolution of O(6)-symmetry breaking and of O(5)-symmetry conservation in the Xe-124,Xe-126,Xe-128 isotopic chain is discussed. C1 [Coquard, L.; Rainovski, G.; Pietralla, N.; Ahn, T.; Leske, J.; Moeller, O.; Moeller, T.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Rainovski, G.] Sofia Univ St Kliment Ohridski, Fac Phys, BG-1164 Sofia, Bulgaria. [Ahn, T.; Werner, V.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Bettermann, L.; Rother, W.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Carpenter, M. P.; Janssens, R. V. F.; Lister, C. J.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Coquard, L (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. RI Carpenter, Michael/E-4287-2015; Ahn, Tan/C-9158-2016; Rainovski, Georgi/A-3450-2008; Werner, Volker/C-1181-2017 OI Carpenter, Michael/0000-0002-3237-5734; Ahn, Tan/0000-0003-2249-7399; Rainovski, Georgi/0000-0002-1729-0249; Werner, Volker/0000-0003-4001-0150 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-91ER-40609]; DFG [Pi 393/2-2, SFB 634]; German-Bulgarian exchange program [D/08/02055, DO02-25]; Bulgarian NSF [DO 02-219]; Helmholtz International Center for FAIR FX We would like to thank the staff at ANL for their support during the experiments and A. Poves, F. Iachello, J. Jolos, J. Jolie, A. Dewald, and P. von Brentano for discussions. G. R. was supported by the Alexander von Humboldt Foundation. This work was partially supported by the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 and No. DE-FG02-91ER-40609, by the DFG under Grants No. Pi 393/2-2 and No. SFB 634, by the German-Bulgarian exchange program under Grants No. D/08/02055 and No. DO02-25, by the Bulgarian NSF under Contract No. DO 02-219, and by the Helmholtz International Center for FAIR. NR 26 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 25 PY 2011 VL 83 IS 4 AR 044318 DI 10.1103/PhysRevC.83.044318 PG 8 WC Physics, Nuclear SC Physics GA 758JT UT WOS:000290161400005 ER PT J AU Shaughnessy, DT Gangarosa, LM Schliebe, B Umbach, DM Xu, ZL MacIntosh, B Knize, MG Matthews, PP Swank, AE Sandler, RS DeMarini, DM Taylor, JA AF Shaughnessy, Daniel T. Gangarosa, Lisa M. Schliebe, Barbara Umbach, David M. Xu, Zongli MacIntosh, Beth Knize, Mark G. Matthews, Peggy P. Swank, Adam E. Sandler, Robert S. DeMarini, David M. Taylor, Jack A. TI Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt SO PLOS ONE LA English DT Article ID HETEROCYCLIC AROMATIC-AMINES; URINARY MUTAGENICITY; BRUSSELS-SPROUTS; CANCER-RISK; SALMONELLA MUTAGENICITY; METABOLIZING ENZYMES; FECAL MUTAGENICITY; STRAND BREAKS; GROUND-BEEF; CONSUMPTION AB Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100 degrees C) or high temperature (250 degrees C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis. C1 [Shaughnessy, Daniel T.; Taylor, Jack A.] Natl Inst Environm Hlth Sci, Mol Carcinogenesis Lab, NIH, DHHS, Res Triangle Pk, NC 27709 USA. [Gangarosa, Lisa M.; Schliebe, Barbara; Sandler, Robert S.] Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC USA. [Umbach, David M.] Natl Inst Environm Hlth Sci, Biostat Branch, NIH, DHHS, Res Triangle Pk, NC USA. [Xu, Zongli; Taylor, Jack A.] Natl Inst Environm Hlth Sci, Epidemiol Branch, NIH, DHHS, Res Triangle Pk, NC USA. [MacIntosh, Beth] Univ N Carolina, Clin & Translat Res Ctr, Chapel Hill, NC USA. [Knize, Mark G.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Div, Livermore, CA USA. [Matthews, Peggy P.; Swank, Adam E.; DeMarini, David M.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. RP Shaughnessy, DT (reprint author), Natl Inst Environm Hlth Sci, Mol Carcinogenesis Lab, NIH, DHHS, Res Triangle Pk, NC 27709 USA. EM taylor@niehs.nih.gov OI xu, zongli/0000-0002-9034-8902; taylor, jack/0000-0001-5303-6398 FU National Center of Research Resources, National Institutes of Health [M01RR00046, UL1RR025747]; National Institute of Environmental Health Sciences, NIH, DHHS; U.S. EPA; NIEHS FX This project was supported in part by grants M01RR00046 and/or UL1RR025747 from the National Center of Research Resources, National Institutes of Health, which supports the Clinical and Translational Research Center at the University of North Carolina at Chapel Hill. This research was also supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH, DHHS as well as by the U.S. EPA. D. T. Shaughnessy acknowledges support from an NIEHS Intramural Research Training Award. This study is registered in clinicaltrials. gov number NCT00340743. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 48 TC 16 Z9 17 U1 0 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 25 PY 2011 VL 6 IS 4 AR e18707 DI 10.1371/journal.pone.0018707 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756MU UT WOS:000290016800019 PM 21541030 ER PT J AU Feria, L Rodriguez, JA Jirsak, T Illas, F AF Feria, Leticia Rodriguez, Jose A. Jirsak, Tomas Illas, Francesc TI Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Toward a new family of DeSO(x) catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE DeSO(x); Au nanoparticles; Cu nanoparticles; TiC; XPS; DFT ID TRANSITION-METAL CARBIDES; ABSORPTION FINE-STRUCTURE; AUGMENTED-WAVE METHOD; CU NANOPARTICLES; ADSORPTION; SURFACES; CHEMISTRY; CU(111); SULFUR; GOLD AB Experiments carried out under well-controlled conditions and density functional theory (DFT)-based calculations evidence that Cu and Au nanoparticles supported on a TiC(0 0 1) surface are quite active for the dissociation of the SO2 molecule. The Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems cleave both S-O bonds of SO2 at a temperature of 150 K, displaying a reactivity much larger than that of TiC(0 0 1) or extended surfaces of bulk copper and gold. The origin of the high activity of the Cu/TiC(0 0 1) and Au/TiC(0 0 1) systems lies on the interaction between the C atoms of the substrate and the metal atoms of the supported particle, which results in a large polarization of its electron density. Experiments and theory consistently indicate that the Cu/TiC system is more active toward SO2 dissociation than the Au/TiC system. This type of systems may provide alternative and efficient DeSO(x) catalysts. (C) 2011 Elsevier Inc. All rights reserved. C1 [Feria, Leticia; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Feria, Leticia; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Rodriguez, Jose A.; Jirsak, Tomas] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011 OI Illas, Francesc /0000-0003-2104-6123 FU US Department of Energy (Chemical Sciences Division) [DE-AC02-98CH10886]; Divisions of Chemical and Materials Science of the US Department of Energy; ICyTDF; Spanish MICINN [FIS2008-02238/FIS]; Generalitat de Catalunya [2009SGR1041]; XRQTC FX The authors are grateful to K. Nakamura (Tokyo Institute of Technology) for facilitating the TiC(0 0 1) crystal on which the experiments described in this article were performed. The research carried out at Brookhaven National Laboratory was supported by the US Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). The National Synchrotron Light Source is supported by the Divisions of Chemical and Materials Science of the US Department of Energy. L.F. is grateful to ICyTDF for a Postdoctoral Fellowship and F.I. acknowledges financial support through Spanish MICINN grant FIS2008-02238/FIS, through the "2009 ICREA Academia" prize for excellence in research and, in part, from Generalitat de Catalunya grants 2009SGR1041 and XRQTC. Generous allocation of computational time on the Marenostrum supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 46 TC 18 Z9 18 U1 0 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD APR 25 PY 2011 VL 279 IS 2 BP 352 EP 360 DI 10.1016/j.jcat.2011.02.004 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 755HN UT WOS:000289919800013 ER PT J AU Michel, P Divol, L Town, RPJ Rosen, MD Callahan, DA Meezan, NB Schneider, MB Kyrala, GA Moody, JD Dewald, EL Widmann, K Bond, E Kline, JL Thomas, CA Dixit, S Williams, EA Hinkel, DE Berger, RL Landen, OL Edwards, MJ MacGowan, BJ Lindl, JD Haynam, C Suter, LJ Glenzer, SH Moses, E AF Michel, P. Divol, L. Town, R. P. J. Rosen, M. D. Callahan, D. A. Meezan, N. B. Schneider, M. B. Kyrala, G. A. Moody, J. D. Dewald, E. L. Widmann, K. Bond, E. Kline, J. L. Thomas, C. A. Dixit, S. Williams, E. A. Hinkel, D. E. Berger, R. L. Landen, O. L. Edwards, M. J. MacGowan, B. J. Lindl, J. D. Haynam, C. Suter, L. J. Glenzer, S. H. Moses, E. TI Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility SO PHYSICAL REVIEW E LA English DT Article ID ENERGY-TRANSFER; LASER-BEAMS; X-RAYS; PLASMAS AB By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large-scale hohlraum experiments with two tunable wavelengths and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry. C1 [Michel, P.; Divol, L.; Town, R. P. J.; Rosen, M. D.; Callahan, D. A.; Meezan, N. B.; Schneider, M. B.; Moody, J. D.; Dewald, E. L.; Widmann, K.; Bond, E.; Thomas, C. A.; Dixit, S.; Williams, E. A.; Hinkel, D. E.; Berger, R. L.; Landen, O. L.; Edwards, M. J.; MacGowan, B. J.; Lindl, J. D.; Haynam, C.; Suter, L. J.; Glenzer, S. H.; Moses, E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kyrala, G. A.; Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Michel, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Michel, Pierre/J-9947-2012; OI Kline, John/0000-0002-2271-9919 FU Lawrence Livermore National Laboratory under US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 31 Z9 31 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD APR 25 PY 2011 VL 83 IS 4 AR 046409 DI 10.1103/PhysRevE.83.046409 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 758GV UT WOS:000290153000013 PM 21599318 ER PT J AU Moore, HM Kelly, AB Jewell, SD McShane, LM Clark, DP Greenspan, R Hayes, DF Hainaut, P Kim, P Mansfield, EA Potapova, O Riegman, P Rubinstein, Y Seijo, E Somiari, S Watson, P Weier, HU Zhu, C Vaught, J AF Moore, Helen M. Kelly, Andrea B. Jewell, Scott D. McShane, Lisa M. Clark, Douglas P. Greenspan, Renata Hayes, Daniel F. Hainaut, Pierre Kim, Paula Mansfield, Elizabeth A. Potapova, Olga Riegman, Peter Rubinstein, Yaffa Seijo, Edward Somiari, Stella Watson, Peter Weier, Heinz-Ulrich Zhu, Claire Vaught, Jim TI Biospecimen Reporting for Improved Study Quality (BRISQ) SO CANCER CYTOPATHOLOGY LA English DT Article DE BRISQ; best practices; biobank; biospecimen; human; quality; research; guidelines ID APPROACHING CLINICAL PROTEOMICS; FUTURE FIELDS; CURRENT STATE; CANCER; TISSUE AB Human biospecimens are subjected to collection, processing, and storage that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research that uses human tissues, it is crucial that information on the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications on biospecimen-related research and to help reassure patient contributors and the advocacy community that their contributions are valued and respected. Cancer (Cancer Cytopathol) 2011;119:92-101. Published 2011 by the American Cancer Society.* C1 [Clark, Douglas P.] Johns Hopkins Univ Hosp, Dept Pathol, Baltimore, MD 21287 USA. [Moore, Helen M.; Vaught, Jim] Natl Canc Inst, Off Biorepositories & Biospecimen Res, Bethesda, MD USA. [Kelly, Andrea B.] Rose Li & Associates Inc, Bethesda, MD USA. [Jewell, Scott D.] Van Andel Res Inst, Program Biospecimen Sci, Grand Rapids, MI USA. [McShane, Lisa M.] NCI, Div Canc Treatment & Diag, Biometr Res Branch, Bethesda, MD 20892 USA. [Greenspan, Renata] Henry M Jackson Fdn Adv Mil Med, US Mil Canc Inst, Rockville, MD USA. [Hayes, Daniel F.] Univ Michigan, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA. [Hainaut, Pierre] World Hlth Org, IARC, Lyon, France. [Kim, Paula] Paula Kim Inc, TRAC, Solana Beach, CA USA. [Mansfield, Elizabeth A.] US Dept HHS, Ctr Devices & Radiol Hlth, US FDA, Silver Spring, MD USA. [Potapova, Olga] Cureline Inc, San Francisco, CA USA. [Riegman, Peter] Erasmus MC Tissue Bank, Dept Pathol, Rotterdam, Netherlands. [Rubinstein, Yaffa] NIH, Off Rare Dis Res, Bethesda, MD 20892 USA. [Seijo, Edward] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA. [Somiari, Stella] Windber Res Inst, Windber, PA USA. [Watson, Peter] British Columbia Canc Agcy, Vancouver Isl Ctr, Victoria, BC, Canada. [Weier, Heinz-Ulrich] US DOE, Div Life Sci, Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zhu, Claire] NCI, Canc Prevent Div, Bethesda, MD 20892 USA. RP Clark, DP (reprint author), Johns Hopkins Univ Hosp, Dept Pathol, 600 N Wolfe St,PATH 406, Baltimore, MD 21287 USA. EM dclark@jhmi.edu RI Hainaut, Pierre /B-6018-2012 OI Hainaut, Pierre /0000-0002-1303-1610 FU National Cancer Institute, National Institutes of Health [HHSN261200800001E] FX This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. NR 11 TC 62 Z9 62 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1934-662X EI 1934-6638 J9 CANCER CYTOPATHOL JI Cancer Cytopathol. PD APR 25 PY 2011 VL 119 IS 2 BP 92 EP 101 DI 10.1002/cncy.20147 PG 10 WC Oncology; Pathology SC Oncology; Pathology GA 751SB UT WOS:000289636800004 PM 21433001 ER PT J AU Takeda, M Hiratsuka, T Ito, K Finsterle, S AF Takeda, M. Hiratsuka, T. Ito, K. Finsterle, S. TI An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Diffusion experiment; Anisotropic diffusion; Sorption; Axisymmetric analytical model; Analytical solution; Inverse analysis ID IN-SITU DIFFUSION; OPALINUS CLAY FORMATION; CALLOVO-OXFORDIAN CLAY; MONT-TERRI; SATURATED SOIL; TRACER; MODEL; CS+ AB Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and. Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks. (C) 2011 Elsevier B.V. All rights reserved. C1 [Takeda, M.; Hiratsuka, T.; Ito, K.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058567, Japan. [Finsterle, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Takeda, M (reprint author), Natl Inst Adv Ind Sci & Technol, Higashi 1-1-1,Cent 7, Tsukuba, Ibaraki 3058567, Japan. EM mikio-takeda@aist.go.jp RI Finsterle, Stefan/A-8360-2009 OI Finsterle, Stefan/0000-0002-4446-9906 FU U.S. Dept. of Energy [DE-AC02-05CH11231] FX The authors wish to thank Keisuke Maekawa and JAEA for providing the mudstone samples. The constructive comments by three anonymous reviewers and the associate editor are greatly appreciated. The authors also wish to thank Boris Faybishenko and Ian Charles Bourg (LBNL) for the fruitful comments and discussions. The last co-author was supported by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 6 Z9 7 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD APR 25 PY 2011 VL 123 IS 3-4 BP 114 EP 129 DI 10.1016/j.jconhyd.2010.12.012 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 742XR UT WOS:000288979100004 PM 21288593 ER PT J AU Cassagne, N Pimont, F Dupuy, JL Linn, RR Marell, A Oliveri, C Rigolot, E AF Cassagne, Nathalie Pimont, Francois Dupuy, Jean-Luc Linn, Rodman R. Marell, Anders Oliveri, Chloe Rigolot, Eric TI Using a fire propagation model to assess the efficiency of prescribed burning in reducing the fire hazard SO ECOLOGICAL MODELLING LA English DT Article DE Mediterranean fuel complexes; Prescribed burning; Fuel dynamics; FIRETEC; Fire behaviour ID FUEL-BREAK; LANDSCAPE; FOREST; VEGETATION; DYNAMICS; SPREAD; SIMULATION; SHRUBLANDS; MANAGEMENT; REGIMES AB We examined how fire hazard was affected by prescribed burning and fuel recovery over the first six years following treatment. Eight common Mediterranean fuel complexes managed by means of prescribed burning in limestone Provence (South-Eastern France) were studied, illustrating forest and woodland, garrigue and grassland situations. The coupled atmosphere-wildfire behaviour model FIRETEC was used to simulate fire behaviour (ROS, intensity) in these complex vegetations. The temporal threshold related to the effectiveness of prescribed burning in reducing the fire hazard was assessed from derivated fuel dynamics after treatment. The study showed that prescribed burning treatment was effective for the first two years in most of the Mediterranean plant communities analysed. Thereafter, all forests and shrublands were highly combustible with a fire line intensity of more than 5000 kW/m except for pine stands with or without oak (medium intensity of 2000 kW m(-1) 3 years after treatment). Low fire line intensity (900 kW m(-1)) was obtained for grassland which was entirely treatment-independent since the resprouter hemicryptophyte, Brachypodium retusum, is highly resilient to fire. Fire behaviour was greatly affected by fuel load accumulation of Quercus ilex in woodland, and by standing necromass of Rosmannus officinalis in treated garrigue. Pure pine stands with shrub strata similar to garrigue showed a lower fire intensity due to wind speed decrease at ground level under tree canopy, underlining the advantage of maintaining a proportion of canopy cover in strategic fuel-break zones. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cassagne, Nathalie; Pimont, Francois; Dupuy, Jean-Luc; Marell, Anders; Oliveri, Chloe; Rigolot, Eric] Ecol Forets Mediterraneennes URFM, INRA UR629, F-84914 Avignon, France. [Linn, Rodman R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Marell, Anders] UR EFNO, CEMAGREF, F-45290 Nogent Sur Vernisson, France. RP Cassagne, N (reprint author), Ecol Forets Mediterraneennes URFM, INRA UR629, Site Agroparc, F-84914 Avignon, France. EM nathalie.cassagne@avignon.inra.fr RI Marell, Anders/B-5521-2008 OI Marell, Anders/0000-0002-3328-4834 FU European Commission [FP6-018505] FX This study was partially funded by the European Commission as part of the FIREPARADOX research programme (contract FP6-018505), and we wish to thank Los Alamos National Laboratory Institutional Computing Resources for the computations involved in this study. NR 81 TC 11 Z9 11 U1 6 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD APR 24 PY 2011 VL 222 IS 8 BP 1502 EP 1514 DI 10.1016/j.ecolmodel.2011.02.004 PG 13 WC Ecology SC Environmental Sciences & Ecology GA 754BV UT WOS:000289827500017 ER PT J AU Shi, XY Mao, JF Thornton, PE Hoffman, FM Post, WM AF Shi, Xiaoying Mao, Jiafu Thornton, Peter E. Hoffman, Forrest M. Post, Wilfred M. TI The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FRESH-WATER DISCHARGE; UNITED-STATES; CARBON-DIOXIDE; STREAMFLOW; TRENDS; RUNOFF; CYCLE; RESPONSES; MODEL; BASIN AB We investigated how climate, rising atmospheric CO2 concentration, increasing anthropogenic nitrogen deposition and land use change influenced continental river flow over the period 1948-2004 using the Community Land Model version 4 (CLM4) with coupled river transfer model (RTM), a global river routing scheme. The model results indicate that the global mean river flow shows significant decreasing trend and climate forcing likely functions as the dominant controller of the downward trend during the study period. Nitrogen deposition and land use change account for about 5% and 2.5% of the decrease in simulated global scale river flow, respectively, while atmospheric CO2 accounts for an upward trend. However, the relative role of each driving factor is heterogeneous across regions in our simulations. The trend in river flow for the Amazon River basin is primarily explained by CO2, while land use change accounts for 27.4% of the downward trend in river flow for the Yangtze rive basin. Our simulations suggest that to better understand the trends of river flow, it is not only necessary to take into account the climate, but also to consider atmospheric composition, carbon-nitrogen interaction and land use change, particularly for regional scales. Citation: Shi, X., J. Mao, P. E. Thornton, F. M. Hoffman, and W. M. Post (2011), The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow, Geophys. Res. Lett., 38, L08704, doi: 10.1029/2011GL046773. C1 [Shi, Xiaoying; Mao, Jiafu; Thornton, Peter E.; Post, Wilfred M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Shi, XY (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM shix@ornl.gov RI Hoffman, Forrest/B-8667-2012; Thornton, Peter/B-9145-2012; Mao, Jiafu/B-9689-2012; Post, Wilfred/B-8959-2012; Shi, Xiaoying/C-4447-2012 OI Hoffman, Forrest/0000-0001-5802-4134; Thornton, Peter/0000-0002-4759-5158; Mao, Jiafu/0000-0002-2050-7373; Shi, Xiaoying/0000-0001-8994-5032 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research FX This study was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 44 TC 29 Z9 29 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 23 PY 2011 VL 38 AR L08704 DI 10.1029/2011GL046773 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 754LH UT WOS:000289855600003 ER PT J AU Zhang, GX Burgos, WD Senko, JM Bishop, ME Dong, HL Boyanov, MI Kemner, KM AF Zhang, Gengxin Burgos, William D. Senko, John M. Bishop, Michael E. Dong, Hailiang Boyanov, Maxim I. Kemner, Kenneth M. TI Microbial reduction of chlorite and uranium followed by air oxidation SO CHEMICAL GEOLOGY LA English DT Article DE Smectites; Phyllosilicates; Uraninite; Iron reduction ID METAL-REDUCING BACTERIUM; U(VI) REDUCTION; CLAY-MINERALS; QUANTITATIVE ASSAY; FE(III) OXIDES; DISSOLUTION; SORPTION; U(IV); IRON; SPECIATION AB To evaluate the stability of biogenic nanoparticulate U(IV) in the presence of an Fe(II)-rich iron-bearing phyllosilicate, we examined the reduction of structural Fe(III) in chlorite CCa-2 and uranium(VI) by Shewanella oneidensis MR-1, and the reoxidation of these minerals (after pasteurization) via the introduction of oxygen. Bioreduction experiments were conducted with combinations of chlorite. U(VI), and anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify the reduction of U(VI) by chemically-reduced chlorite-associated Fe(II), the oxidation of nanoparticulate U(IV) by unaltered structural Fe(III) in chlorite, and the sorption of U(VI) to chlorite, to elucidate interactions between U(VI)/U(IV) and Fe(II)/Fe(III)-chlorite. Solids were characterized by X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy to confirm Fe and U reduction and reoxidation. U(VI) enhanced the reduction of structural Fe(III) in chlorite and nanoparticulate U(IV) was oxidized by structural Fe(Ill) in chlorite, demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to chlorite-Fe(III). Abiotic reduction of U(VI) by chlorite-associated Fe(II) was very slow compared to biological U(VI) reduction. The rate of nanoparticulate U(IV) oxidation by dissolved oxygen increased in the presence of chlorite-associated Fe(II), but the extent of U(IV) oxidation decreased as compared to no-chlorite controls. In identical experiments conducted with bioreduced suspensions of nanoparticulate U(IV) and nontronite (another iron-bearing phyllosilicate), the rate of U(IV) oxidation by dissolved oxygen increased in the presence of nontronite-associated Fe(II). In summary, we found that structural Fe(III) in chlorite delayed the onset of U(VI) loss from solution, while chlorite-associated Fe(II) enhanced the oxidation rate of U(IV) by dissolved oxygen, indicating that chlorite-associated Fe(II) could not protect nanoparticulate U(IV) from oxygen intrusion but instead increased the oxidation rate of U(IV). (C) 2011 Elsevier B.V. All rights reserved. C1 [Burgos, William D.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Zhang, Gengxin] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China. [Senko, John M.] Univ Akron, Dept Geol & Environm Sci, Akron, OH 44325 USA. [Bishop, Michael E.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Boyanov, Maxim I.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Burgos, WD (reprint author), Penn State Univ, Dept Civil & Environm Engn, 212 Sackett Bldg, University Pk, PA 16802 USA. EM wdb3@psu.edu RI Bishop, Michael/K-7622-2012; ID, MRCAT/G-7586-2011 FU Office of Science (BER), U.S. Department of Energy (DOE) [DE-SC0005333]; National Science Foundation [CHE-0431328]; U.S. DOE [DE-AC02-06CH11357]; U.S. DOE, Office of Science; MRCAT/EnviroCAT member institutions; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by the Subsurface Biogeochemical Research (SBR) Program, Office of Science (BER), U.S. Department of Energy (DOE) grant no. DE-SC0005333 to The Pennsylvania State University, and by the National Science Foundation under grant no. CHE-0431328. ANL contributions were supported, in part, by the ANL Subsurface Science Scientific Focus Area project, which is part of the SBR Program of BER, U.S. DOE under contract DE-AC02-06CH11357. Use of the MRCAT/EnviroCAT sector at the Advanced Photon Source (APS) was supported by the U.S. DOE, Office of Science and the MRCAT/EnviroCAT member institutions. We thank S. D. Kelly, B. Ravel, and the MRCAT/EnviroCAT staff for assistance with XAS data collection at the MRCAT/EnviroCAT. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 52 TC 19 Z9 19 U1 8 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD APR 22 PY 2011 VL 283 IS 3-4 BP 242 EP 250 DI 10.1016/j.chemgeo.2011.01.021 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 754AC UT WOS:000289822000013 ER PT J AU Kaszuba, JP Viswanathan, HS Carey, JW AF Kaszuba, John P. Viswanathan, Hari S. Carey, J. William TI Relative stability and significance of dawsonite and aluminum minerals in geologic carbon sequestration SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HIGH-TEMPERATURE SOLUBILITY; IN-SITU MEASUREMENTS; THERMODYNAMIC PROPERTIES; SYDNEY-BASIN; IONIC-STRENGTH; CO2 STORAGE; DIOXIDE; SYSTEM; SPECIATION; BOEHMITE AB Computer simulations predict dawsonite, NaAlCO(3)(OH)(2), will provide long-term mineral sequestration of anthropogenic CO(2) whereas dawsonite rarely occurs in nature or in laboratory experiments that emulate a carbon repository. Resolving this discrepancy is important to determining the significance of dawsonite mineralization to the long-term security of geologic carbon sequestration. This study is an equilibrium-based experimental and modeling evaluation of underlying causes for inconsistencies between predicted and observed dawsonite stability. Using established hydrothermal methods, 0.05 molal NaHCO(3) aqueous solution and synthetic dawsonite were reacted for 18.7 days (449.2 hours) at 50 degrees C, 20 MPa. Temperature was increased to 75 degrees C and the experiment continued for an additional 12.3 days (295.1 hours). Incongruent dissolution yielded a dawsonite-gibbsite-nordstrandite assemblage. Geochemical simulations using Geochemist's Workbench and the resident database thermo. com. V8.R6(+) incorrectly predicted a dawsonite-diaspore assemblage and underestimated dissolved aluminum by roughly 100 times. Higher aqueous aluminum concentrations in the experiment suggest that dawsonite or diaspore is less stable than predicted. Simulations employing an alternate database, thermo.dat, correctly predict dawsonite and dawsonite-gibbsite assemblages at 50 and 75 degrees C, respectively, although dissolved aluminum concentrations are still two to three times lower than experimentally measured values. Correctly reproducing dawsonite solubility in standard geochemical simulations requires an as yet undeveloped internally consistent thermodynamic database among dawsonite, gibbsite, boehmite, diaspore, aqueous aluminum complexes and other Al-phases such as albite and kaolinite. These discrepancies question the ability of performance assessment models to correctly predict dawsonite mineralization in a sequestration site. Citation: Kaszuba, J. P., H. S. Viswanathan, and J. W. Carey (2011), Relative stability and significance of dawsonite and aluminum minerals in geologic carbon sequestration, Geophys. Res. Lett., 38, L08404, doi: 10.1029/2011GL046845. C1 [Viswanathan, Hari S.; Carey, J. William] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Kaszuba, John P.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Kaszuba, John P.] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA. RP Kaszuba, JP (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. FU Los Alamos National Laboratory; UW School of Energy Resources FX We acknowledge Thomas Carpenter for his able assistance in the hydrothermal lab, Ren Guan for dawsonite synthesis and XRD analysis, and Dale Counce for aqueous analyses. T. Meuzelaar and G. Thyne reviewed an earlier version of this paper. Laboratory work was funded by the LDRD program of Los Alamos National Laboratory. J. P. Kaszuba's work in data analysis and manuscript preparation was supported by the UW School of Energy Resources. NR 45 TC 17 Z9 17 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 22 PY 2011 VL 38 AR L08404 DI 10.1029/2011GL046845 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 754LD UT WOS:000289855200001 ER PT J AU de Koning, CA Gosling, JT Skoug, RM Steinberg, JT Lin, RP Wang, LH AF de Koning, Curt A. Gosling, J. T. Skoug, Ruth M. Steinberg, John T. Lin, Robert P. Wang, Linghua TI Electron distributions during the solar electron burst of 22 March 2002 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WIND SPACECRAFT; ENERGY; PLASMA; EVENTS AB A compilation of various spacecraft measurements made over the last 30 years suggests that the pitch angle distribution ( PAD) width of a solar electron burst may have a complex energy signature. To date, no study has considered the PAD width over a broad energy range during a single solar electron burst. Here we use Wind 3DP data to examine the energy dependence of the PAD width between 100 eV to 100 keV during the solar electron burst of 22 March 2002. We find that the PAD width during this event varied nonmonotonically with energy, with a minimum in the width-energy profiles often being observed between 10 and 20 keV. In addition, we find time periods during and after the burst when the PAD width-energy profile had a distinct maximum or protuberance below 10 keV. The times at which the protuberance appeared were coincident with Type III radio events. This suggests that the protuberance in the width-energy profiles may be a manifestation of electron scattering by the electron/electron instability, as previously predicted by simulations. C1 [de Koning, Curt A.] NOAA, Space Environm Ctr, Boulder, CO 80305 USA. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Skoug, Ruth M.; Steinberg, John T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lin, Robert P.; Wang, Linghua] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP de Koning, CA (reprint author), NOAA, Space Environm Ctr, Mail Code W NP9,325 Broadway, Boulder, CO 80305 USA. EM curt.a.dekoning@noaa.gov RI Wang, Linghua/C-4938-2014 OI Wang, Linghua/0000-0001-7309-4325 FU NSF SHINE [ATM-0852216]; NASA [NNG05G355G] FX We thank Peter Gary for insightful and helpful discussions. Work at NOAA/SWPC was supported by NSF SHINE grant ATM-0852216. Work at the University of Colorado at Boulder was supported by NASA SR&T grant NNG05G355G. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy with support from NASA's ACE program. NR 21 TC 0 Z9 0 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 22 PY 2011 VL 116 AR A04110 DI 10.1029/2010JA015863 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754LG UT WOS:000289855500001 ER PT J AU Liemohn, MW Ilie, R Ganushkina, NY Ridley, AJ Kozyra, JU Thomsen, MF Borovsky, JE AF Liemohn, Michael W. Ilie, Raluca Ganushkina, Natalia Y. Ridley, Aaron J. Kozyra, Janet U. Thomsen, Michelle F. Borovsky, Joseph E. TI Testing the necessity of transient spikes in the storm time ring current drivers SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID 17 APRIL 2002; ELECTRIC-FIELD DESCRIPTION; PARKER-SCKOPKE RELATION; ART. NO. 1151; PLASMA SHEET; SOLAR-WIND; INNER MAGNETOSPHERE; MAGNETIC STORMS; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC STORMS AB Inner magnetospheric numerical simulations of the 17 April 2002 storm are conducted to explore the importance of transient spikes in the driving parameters at controlling the strength of the storm time ring current. The two main factors considered in this study are convection electric field strength and nightside plasma boundary condition. These quantities were smoothed and/or despiked across intervals of 20-180 min. It is found that the spikes contribute linearly to the ring current total energy content. Exceptions to this finding include too much resulting ring current after despiking or smoothing (relative to a linear response). This indicates that at best the relationship is linear and, if the timing of transient spikes in one driving parameter is not coincident with high values in the other main driving parameter, then the response is sublinear (that is, the transient spikes could be less effective than long-time duration increases in the input parameters). C1 [Liemohn, Michael W.; Ganushkina, Natalia Y.; Ridley, Aaron J.; Kozyra, Janet U.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ilie, Raluca; Thomsen, Michelle F.; Borovsky, Joseph E.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. [Ganushkina, Natalia Y.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI Liemohn, Michael/H-8703-2012; Ilie, Raluca/A-9291-2013; Ganushkina, Natalia/K-6314-2013; Ridley, Aaron/F-3943-2011 OI Liemohn, Michael/0000-0002-7039-2631; Ridley, Aaron/0000-0001-6933-8534 FU U.S. government; NASA; NSF; FMI (in particular the Academy of Finland); U.S. sponsors FX The authors would like to thank the U.S. government for sponsoring this research, in particular NASA and NSF through various research grants. Support for N.Y.G. was provided by both FMI (in particular the Academy of Finland) and U.S. sponsors. The authors also thank the Kyoto World Data Center and NASA's CDAWeb for providing access to the Dst and solar wind data. NR 122 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 22 PY 2011 VL 116 AR A04226 DI 10.1029/2010JA015914 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 754LG UT WOS:000289855500002 ER PT J AU Gharaibeh, MF Aguilar, A Covington, AM Emmons, ED Scully, SWJ Phaneuf, RA Muller, A Bozek, JD Kilcoyne, ALD Schlachter, AS Alvarez, I Cisneros, C Hinojosa, G AF Gharaibeh, M. F. Aguilar, A. Covington, A. M. Emmons, E. D. Scully, S. W. J. Phaneuf, R. A. Mueller, A. Bozek, J. D. Kilcoyne, A. L. D. Schlachter, A. S. Alvarez, I. Cisneros, C. Hinojosa, G. TI Photoionization measurements for the iron isonuclear sequence Fe3+, Fe5+, and Fe7+ SO PHYSICAL REVIEW A LA English DT Article ID ELECTRON-IMPACT IONIZATION; CROSS-SECTION; HIGH-RESOLUTION; SHELL PHOTOIONIZATION; 3P PHOTOABSORPTION; IONS; SPECTROSCOPY; RESONANCE; CA+; EXCITATION AB Cross sections for single photoionization of Fe3+, Fe5+, and Fe7+ ions were measured at spectral resolutions of 0.04, 0.15, and 0.13 eV, respectively, by merging mass-and charge-selected ion beams with a beam of monochromatized synchrotron undulator radiation. The measurements span photon energy ranges beginning at the ionization thresholds and extending several tens of electron volts to include the most important resonant contributions due to 3p-nd transitions to autoionizing states. The photoion yield spectra are characterized by narrow resonances and also broad features in Fe3+ and Fe5+ that are believed to result from unresolved fast super-Coster-Kronig transitions following 3p-3d excitation. Absolute photoionization cross-section measurements were also performed using ion beams containing undetermined fractions of ions in their ground and metastable states. A Rydberg series attributed to 3p-nd transitions from the (2)G(1) metastablestate in Fe3+ was identified. The data are compared with recently published measurements on Fe3+ and Fe5+ using a similar technique at lower spectral resolution. C1 [Gharaibeh, M. F.; Aguilar, A.; Covington, A. M.; Emmons, E. D.; Scully, S. W. J.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Mueller, A.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Bozek, J. D.; Kilcoyne, A. L. D.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Alvarez, I.; Cisneros, C.; Hinojosa, G.] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. RP Gharaibeh, MF (reprint author), Jordan Univ Sci & Technol, Dept Phys, Irbid 22110, Jordan. EM phaneuf@unr.edu RI Muller, Alfred/A-3548-2009; Bozek, John/E-9260-2010; Kilcoyne, David/I-1465-2013 OI Muller, Alfred/0000-0002-0030-6929; Bozek, John/0000-0001-7486-7238; FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-03ER15424]; Office of Basic Energy Sciences, US Department of Energy [DE-AC03-76SF0098]; Deutsche Forschungsgemeinschaft; CONACYT, Mexico FX This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Grant No. DE-FG02-03ER15424. Additional funding was provided by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC03-76SF0098, by the Deutsche Forschungsgemeinschaft, and by CONACYT, Mexico. NR 50 TC 5 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD APR 22 PY 2011 VL 83 IS 4 AR 043412 DI 10.1103/PhysRevA.83.043412 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 757RQ UT WOS:000290105800009 ER PT J AU Rees, JM Paul, ES Riley, MA Simpson, J Ayangeakaa, AD Boston, HC Carpenter, MP Chiara, CJ Garg, U Hartley, DJ Janssens, RVF Judson, DS Kondev, FG Lauritsen, T Lumley, NM Matta, J Nolan, PJ Ollier, J Petri, M Revill, JP Riedinger, LL Rigby, SV Unsworth, C Wang, X Zhu, S AF Rees, J. M. Paul, E. S. Riley, M. A. Simpson, J. Ayangeakaa, A. D. Boston, H. C. Carpenter, M. P. Chiara, C. J. Garg, U. Hartley, D. J. Janssens, R. V. F. Judson, D. S. Kondev, F. G. Lauritsen, T. Lumley, N. M. Matta, J. Nolan, P. J. Ollier, J. Petri, M. Revill, J. P. Riedinger, L. L. Rigby, S. V. Unsworth, C. Wang, X. Zhu, S. TI Non-yrast positive-parity structures in the gamma-soft nucleus Er-156 SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL STATES; BETA-VIBRATIONS; DEFORMED-NUCLEI; DOUBLE VACUUM; TRIAXIALITY; SPECTRA; GD-154; MODEL; N=88 AB Weakly populated band structures have been established in Er-156 at low to medium spins, following the Cd-114(Ca-48,6n gamma) reaction at 215 MeV. High-fold gamma-ray coincidence data were recorded in a high-statistics experiment with the Gammasphere spectrometer. Bands built on the second 0(+) and 2(+) (gamma-vibrational) states have been established. A large energy staggering between the even-and odd-spin members of the gamma-vibrational band suggests a gamma-soft nature of this nucleus. An additional band is discussed as being based on a rotationally aligned (vh(9/2), f(7)/(2))(2) structure, coexisting with the systematically observed, more favorable (v(i13/2))(2) aligned structure seen in this mass region. C1 [Rees, J. M.; Paul, E. S.; Boston, H. C.; Judson, D. S.; Nolan, P. J.; Revill, J. P.; Rigby, S. V.; Unsworth, C.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Riley, M. A.; Wang, X.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Simpson, J.; Ollier, J.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Ayangeakaa, A. D.; Garg, U.; Matta, J.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lumley, N. M.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Petri, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Paul, ES (reprint author), Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. EM esp@ns.ph.liv.ac.uk RI Carpenter, Michael/E-4287-2015; Ayangeakaa, Akaa/F-3683-2015; Petri, Marina/H-4630-2016 OI Carpenter, Michael/0000-0002-3237-5734; Ayangeakaa, Akaa/0000-0003-1679-3175; Petri, Marina/0000-0002-3740-6106 FU US National Science Foundation [PHY-0756474, PHY-0554762, PHY-0754674]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834, DE-AC02-05CH11231, DE-FG02-96ER40983]; United Kingdom Science and Technology Facilities Council (STFC); State of Florida FX The authors acknowledge Paul Morrall for preparing the targets, and the ATLAS operations staff for the beam support. This work has been supported in part by the US National Science Foundation under Grants No. PHY-0756474 (FSU), No. PHY-0554762 (USNA), and No. PHY-0754674 (UND), the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40834 (UMD), No. DE-AC02-05CH11231 (LBL), and No. DE-FG02-96ER40983 (UTK), the United Kingdom Science and Technology Facilities Council (STFC), and by the State of Florida. NR 43 TC 7 Z9 7 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 22 PY 2011 VL 83 IS 4 AR 044314 DI 10.1103/PhysRevC.83.044314 PG 7 WC Physics, Nuclear SC Physics GA 758JR UT WOS:000290161200001 ER PT J AU Aoki, Y Arthur, R Blum, T Boyle, PA Brommel, D Christ, NH Dawson, C Flynn, JM Izubuchi, T Jin, XY Jung, C Kelly, C Li, M Lichtl, A Lightman, M Lin, MF Mawhinney, RD Maynard, CM Ohta, S Pendleton, BJ Sachrajda, CT Scholz, EE Soni, A Wennekers, J Zanotti, JM Zhou, R AF Aoki, Y. Arthur, R. Blum, T. Boyle, P. A. Broemmel, D. Christ, N. H. Dawson, C. Flynn, J. M. Izubuchi, T. Jin, X-Y. Jung, C. Kelly, C. Li, M. Lichtl, A. Lightman, M. Lin, M. F. Mawhinney, R. D. Maynard, C. M. Ohta, S. Pendleton, B. J. Sachrajda, C. T. Scholz, E. E. Soni, A. Wennekers, J. Zanotti, J. M. Zhou, R. CA RBC Collaboration UKQCD Collaboration TI Continuum limit physics from 2+1 flavor domain wall QCD SO PHYSICAL REVIEW D LA English DT Article ID LATTICE QCD; RENORMALIZATION; MASSES; OPERATORS; TOPOLOGY; FERMIONS; MODEL AB We present physical results obtained from simulations using 2 + 1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a(-1) = 1.73(3) GeV and a(-1) = 2.28(3) GeV]. On the coarser lattice, with 24(3) x 64 x 16 points (where the 16 corresponds to L-s, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 32(3) x 64 x 16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290-420 MeV (225-420 MeV for partially quenched pions). We use the masses of the pi and K mesons and the Omega baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for f(pi), the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include f(pi) = 124(2)(stat)(5)(syst) MeV, f(K)/f(pi) = 1.204(7)(25) where f(K) is the kaon decay constant, m(s)((MS) over bar) (2 GeV) = (96.2 +/- 2.7) MeV and m(s)((MS) over bar) (2 GeV) (3.59 +/- 0.21) MeV (m(s)/m(ud) = 26.8 +/- 1.4) where m(s) and m(ud) are the mass of the strange quark and the average of the up and down quark masses, respectively, [Sigma((MS) over bar) (2 GeV)(1/3) = 256(6) MeV, where Sigma is the chiral condensate, the Sommer scale r(0) = 0.487(9) fm and r(1) = 0.333(9) fm. C1 [Aoki, Y.; Blum, T.; Izubuchi, T.; Lichtl, A.; Ohta, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Arthur, R.; Boyle, P. A.; Kelly, C.; Pendleton, B. J.; Wennekers, J.; Zanotti, J. M.] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. [Blum, T.; Zhou, R.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Broemmel, D.; Flynn, J. M.; Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Broemmel, D.] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany. [Christ, N. H.; Jin, X-Y.; Li, M.; Lightman, M.; Mawhinney, R. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Dawson, C.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Lin, M. F.] Yale Univ, Dept Phys, Sloane Phys Lab, New Haven, CT 06511 USA. [Maynard, C. M.] Univ Edinburgh, Sch Phys, EPCC, Edinburgh EH9 3JZ, Midlothian, Scotland. [Ohta, S.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, S.] Sokendai Grad Univ Adv Studies, Dept Particle & Nucl Phys, Hayama, Kanagawa 2400193, Japan. [Scholz, E. E.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Zanotti, James/H-8128-2012; zhou, ran/O-6309-2014; Jin, Xiao-Yong/R-7694-2016; OI Zanotti, James/0000-0002-3936-1597; zhou, ran/0000-0002-0640-1820; Jin, Xiao-Yong/0000-0002-2346-6861; Flynn, Jonathan/0000-0002-6280-1677; Pendleton, Brian/0000-0003-4419-8621 FU UK STFC [ST/H008888/1, ST/G000522/1, ST/G000557/1]; U.S. DOE [DE-FG02-92ER40716, DE-FG02-92ER40699, DE-AC02-98CH10886]; BAGEL; UKHADRON; JSPS [21540289]; EU [MRTN-CT-2006-035482 (Flavianet)]; DFG [SFB/TR 55]; Research Executive Agency of the European Union [PITN-GA-2009-238353 (ITN STRONGnet)] FX The calculations reported here were performed on the QCDOC computers [80-82] at Columbia University, Edinburgh University, and at the Brookhaven National Laboratory (BNL). At BNL, the QCDOC computers of the RIKEN-BNL Research Center and the USQCD Collaboration were used. Most important were the computer resources of the Argonne Leadership Class Facility (ALCF) provided under the Incite Program of the U. S. DOE. The very large-scale capability of the ALCF was critical for carrying out the challenging calculations reported here. We also thank the University of Southampton for access to the Iridis computer system used in the calculations of the nonperturbative renormalization factors (with support from UK STFC Grant No. ST/H008888/1). The software used includes: the CPS QCD codes http://qcdoc.phys.columbia.edu/chulwoo/index.html, supported in part by the U.S. DOE SciDAC program; the BAGEL http://www.ph.ed.ac.uk/ paboyle/bagel/Bagel.html assembler kernel generator for many of the high-performance optimized kernels [25]; and the UKHADRON codes. Y. A. is partially supported by JSPS Kakenhi Grant No. 21540289. R. A., P. A. B., B. J. P., and J. M. Z. were partially supported by UK STFC Grant No. ST/G000522/1. T. B. and R. Z. were supported by U.S. DOE Grant No. DE-FG02-92ER40716. D. B., J. M. F., and C. T. S. were partially supported by UK STFC Grant No. ST/G000557/1 and by EU Contract No. MRTN-CT-2006-035482 (Flavianet). N. H. C., M. L., and R. D. M. were supported by U.S. DOE Grant No. DE-FG02-92ER40699. C. J., T. I., and A. S. are partially supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. E. E. S. is partly supported by DFG SFB/TR 55 and by the Research Executive Agency of the European Union under Grant No. PITN-GA-2009-238353 (ITN STRONGnet). NR 77 TC 111 Z9 112 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 22 PY 2011 VL 83 IS 7 AR 074508 DI 10.1103/PhysRevD.83.074508 PG 72 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757TH UT WOS:000290110100003 ER PT J AU Ellis, J Olive, KA Savage, C Spanos, VC AF Ellis, John Olive, Keith A. Savage, Christopher Spanos, Vassilis C. TI Neutrino fluxes from nonuniversal Higgs mass LSP annihilations in the Sun SO PHYSICAL REVIEW D LA English DT Article ID NEUTRALINO DARK-MATTER; HIGH-ENERGY NEUTRINOS; LARGE TAN-BETA; RELIC DENSITY; UNDERGROUND DETECTORS; MINIMAL SUPERGRAVITY; PARAMETER SPACE; SOFT TERMS; LIGHT; MSSM AB We extend our previous studies of the neutrino fluxes expected from neutralino LSP annihilations inside the Sun to include variants of the minimal supersymmetric extension of the Standard Model (MSSM) with squark, slepton and gaugino masses constrained to be universal at the GUT scale, but allowing one or two nonuniversal supersymmetry breaking parameters contributing to the Higgs masses (NUHM1,2). As in the constrained MSSM (CMSSM) with universal Higgs masses, there are large regions of the NUHM parameter space where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate, and there are also large regions where the capture rate is not dominated by spin-dependent LSP-proton scattering. The spectra possible in the NUHM are qualitatively similar to those in the CMSSM. We calculate neutrino-induced muon fluxes above a threshold energy of 10 GeV, appropriate for the IceCube/DeepCore detector, for points where the NUHM yields the correct cosmological relic density for representative choices of the NUHM parameters. We find that the IceCube/DeepCore detector can probe regions of the NUHM parameter space in addition to analogues of the focus point strip and the tip of the coannihilation strip familiar from the CMSSM. These include regions with enhanced Higgsino-gaugino mixing in the LSP composition, that occurs where neutralino mass eigen-states cross over. On the other hand, rapid-annihilation funnel regions in general yield neutrino fluxes that are unobservably small. C1 [Ellis, John] CERN, Div TH, Dept Phys, CH-1211 Geneva 23, Switzerland. [Ellis, John] Kings Coll London, Dept Phys, Theoret Phys & Cosmol Grp, London WC2R 2LS, England. [Olive, Keith A.] Univ Minnesota, Sch Phys & Astron, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Olive, Keith A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Olive, Keith A.] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Savage, Christopher] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Spanos, Vassilis C.] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. RP Ellis, J (reprint author), CERN, Div TH, Dept Phys, CH-1211 Geneva 23, Switzerland. EM John.Ellis@cern.ch; olive@physics.umn.edu; savage@fysik.su.se; xspanos@inp.demokritos.gr RI Ellis, John/J-2222-2012 OI Ellis, John/0000-0002-7399-0813 FU DOE [DE-FG02-94ER-40823, DE-AC02-76SF00515]; Stanford Institute for Theoretical Physics; Swedish Research Council (VR) through the Oskar Klein Centre; Marie Curie International Reintegration [SUSYDM-PHEN, MIRG-CT-2007-203189] FX The work of K. A. O. was supported in part by DOE Grant No. DE-FG02-94ER-40823. K. A. O. also thanks SLAC (supported by the DOE under Contract No. DE-AC02-76SF00515) and the Stanford Institute for Theoretical Physics for their hospitality and support while this work was being finished. C. S. is grateful for financial support from the Swedish Research Council (VR) through the Oskar Klein Centre and thanks the William I. Fine Theoretical Physics Institute at the University of Minnesota, where part of this work was performed, for its hospitality. C. S. also thanks M. Danninger for useful discussions regarding IceCube/DeepCore. The work of V. C. S. was supported by Marie Curie International Reintegration Grant No. SUSYDM-PHEN, MIRG-CT-2007-203189. NR 99 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 22 PY 2011 VL 83 IS 8 AR 085023 DI 10.1103/PhysRevD.83.085023 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757UC UT WOS:000290112200005 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Petzold, A Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Garzia, I Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Buenger, C Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Lewis, P Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Petzold, A. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Buenger, C. Hartmann, T. Leddig, T. Schroder, H. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for CP violation in the decay D-+/- -> K-S(0)pi(+/-) SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY AB We report on a search for CP violation in the decay D-+/- -> K-S(0)pi(+/-) using a data set corresponding to an integrated luminosity of 469 fb(-1) collected with the BABAR detector at the PEP-II asymmetric energy e(+)e(-) storage rings. The CP- violating decay rate asymmetry A(CP) is determined to be (-0.44 +/- 0: 13(stat) +/- 0.10(syst))%, consistent with zero at 2.7 sigma and with the standard model prediction of (-0.332 +/- 0.006)%. This is currently the most precise measurement of this parameter. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.; Lanceri, L.; Vitale, L.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Petzold, A.; Spaan, B.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Pompili, A.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, Univ Paris 06, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Hartmann, T.; Leddig, T.; Schroder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.] So Methodist Univ, Dallas, TX 75275 USA. [Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Kravchenko, Evgeniy/F-5457-2015; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rizzo, Giuliana/A-8516-2015; OI White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 15 TC 15 Z9 15 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 22 PY 2011 VL 83 IS 7 AR 071103 DI 10.1103/PhysRevD.83.071103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757TH UT WOS:000290110100001 ER PT J AU Grinyer, GF Bazin, D Gade, A Tostevin, JA Adrich, P Bowen, MD Brown, BA Campbell, CM Cook, JM Glasmacher, T McDaniel, S Navratil, P Obertelli, A Quaglioni, S Siwek, K Terry, JR Weisshaar, D Wiringa, RB AF Grinyer, G. F. Bazin, D. Gade, A. Tostevin, J. A. Adrich, P. Bowen, M. D. Brown, B. A. Campbell, C. M. Cook, J. M. Glasmacher, T. McDaniel, S. Navratil, P. Obertelli, A. Quaglioni, S. Siwek, K. Terry, J. R. Weisshaar, D. Wiringa, R. B. TI Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO CALCULATIONS; EXOTIC NUCLEI; STATES AB Absolute cross sections have been determined following single neutron knockout reactions from (10)Be and (10)C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for (10)Be and by 40% to 50% for (10)C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects. C1 [Grinyer, G. F.; Bazin, D.; Gade, A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Obertelli, A.; Siwek, K.; Terry, J. R.; Weisshaar, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Tostevin, J. A.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Navratil, P.; Quaglioni, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Grinyer, GF (reprint author), GANIL, CEA DSM CNRS IN2P3, Bvd Henri Becquerel, F-14076 Caen, France. EM grinyer@ganil.fr RI Gade, Alexandra/A-6850-2008; Glasmacher, Thomas/H-9673-2014; Wiringa, Robert/M-4970-2015 OI Gade, Alexandra/0000-0001-8825-0976; Glasmacher, Thomas/0000-0001-9436-2448; FU National Science Foundation [PHY-0606007, PHY-0758099]; United Kingdom Science and Technology Facilities Council (STFC) [ST/F012012]; U.S. Department of Energy Office of Nuclear Physics [DE-AC02-06CH11357]; SciDAC [DE-FC02-07ER41457]; LLNL [DE-AC52-07NA27344]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX The authors would like to acknowledge the insight and stimulus contributed by the late Professor Gregers Hansen to the proposal for this study. This work was supported by the National Science Foundation under Grants No. PHY-0606007 and No. PHY-0758099, the United Kingdom Science and Technology Facilities Council (STFC) under Grant No. ST/F012012, the U.S. Department of Energy Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and SciDAC Grant No. DE-FC02-07ER41457, and by LLNL under Contract No. DE-AC52-07NA27344. G. F. G. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 31 TC 21 Z9 21 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 22 PY 2011 VL 106 IS 16 AR 162502 DI 10.1103/PhysRevLett.106.162502 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OL UT WOS:000290097500005 PM 21599362 ER PT J AU Hashimoto, M He, RH Testaud, JP Meevasana, W Moore, RG Lu, DH Yoshida, Y Eisaki, H Devereaux, TP Hussain, Z Shen, ZX AF Hashimoto, M. He, R. -H. Testaud, J. P. Meevasana, W. Moore, R. G. Lu, D. H. Yoshida, Y. Eisaki, H. Devereaux, T. P. Hussain, Z. Shen, Z. -X. TI Reaffirming the d(x2-y2) Superconducting Gap Using the Autocorrelation Angle-Resolved Photoemission Spectroscopy of Bi1.5Pb0.55Sr1.6La0.4CuO6+delta SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUASI-PARTICLE INTERFERENCE; UNDERDOPED BI2212; BI2SR2CACU2O8+DELTA; PSEUDOGAP; SPECTRA; STATES AB Knowledge of the gap function is important to understand the pairing mechanism for high-temperature (T-c) superconductivity. However, Fourier transform scanning tunneling spectroscopy (FT STS) and angle-resolved photoemission spectroscopy (ARPES) in the cuprates have reported contradictory gap functions, with FT-STS results deviating strongly from a canonical d(x2-y2) form. By applying an "octet model" analysis to autocorrelation ARPES, we reveal that a contradiction occurs because the octet model does not consider the effects of matrix elements and the pseudogap. This reaffirms the canonical d(x2-y2) superconducting gap around the node, which can be directly determined from ARPES. Further, our study suggests that the FT-STS reported fluctuating superconductivity around the node at far above Tc is not necessary to explain the existence of the quasiparticle interference at low energy. C1 [Hashimoto, M.; Moore, R. G.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Hashimoto, M.; He, R. -H.; Testaud, J. P.; Meevasana, W.; Moore, R. G.; Devereaux, T. P.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Hashimoto, M.; He, R. -H.; Testaud, J. P.; Meevasana, W.; Moore, R. G.; Devereaux, T. P.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Hashimoto, M.; He, R. -H.; Testaud, J. P.; Meevasana, W.; Moore, R. G.; Devereaux, T. P.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Hashimoto, M.; He, R. -H.; Testaud, J. P.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Meevasana, W.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Yoshida, Y.; Eisaki, H.] AIST, Nanoelect Res Inst, Ibaraki 3058568, Japan. RP Hashimoto, M (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RI He, Ruihua/A-6975-2010 FU SGF; Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515] FX We thank W.-S. Lee, A. Fujimori, P. Hirschfeld, D. Scalapino, E. Abrahams, and S. Kivelson for helpful discussions and Y. Li for experimental assistance on SQUID measurements. R.-H. H. thanks the SGF for financial support. This work is supported by the Department of Energy, Office of Basic Energy Science under Contract No. DE-AC02-76SF00515. NR 27 TC 8 Z9 8 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 22 PY 2011 VL 106 IS 16 AR 167003 DI 10.1103/PhysRevLett.106.167003 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OL UT WOS:000290097500013 PM 21599403 ER PT J AU Ren, Y Kaye, SM Mazzucato, E Guttenfelder, W Bell, RE Domier, CW LeBlanc, BP Lee, KC Luhmann, NC Smith, DR Yuh, H AF Ren, Y. Kaye, S. M. Mazzucato, E. Guttenfelder, W. Bell, R. E. Domier, C. W. LeBlanc, B. P. Lee, K. C. Luhmann, N. C., Jr. Smith, D. R. Yuh, H. TI Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONFINEMENT; PLASMA; MODES AB In this Letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k(perpendicular to)rho(s) less than or similar to 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of 2 decrease in the plasma effective thermal diffusivity. C1 [Ren, Y.; Kaye, S. M.; Mazzucato, E.; Guttenfelder, W.; Bell, R. E.; LeBlanc, B. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Domier, C. W.; Lee, K. C.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Smith, D. R.] Univ Wisconsin, Madison, WI 53706 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Ren, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466, DE-FG0299ER54518] FX The author would like to thank the NSTX team for the excellent technical support for this work. This work was supported by the U.S. Department of Energy under Contracts No. DE-AC02-09CH11466 and No. DE-FG0299ER54518. NR 15 TC 24 Z9 24 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 22 PY 2011 VL 106 IS 16 AR 165005 DI 10.1103/PhysRevLett.106.165005 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OL UT WOS:000290097500009 PM 21599377 ER PT J AU Wu, G More, KL Johnston, CM Zelenay, P AF Wu, Gang More, Karren L. Johnston, Christina M. Zelenay, Piotr TI High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt SO SCIENCE LA English DT Article ID FUEL-CELL CATHODE; CARBON NANOTUBES; ACTIVE-SITES; CATALYSTS; ADSORPTION AB The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within similar to 60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%). C1 [Wu, Gang; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [More, Karren L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov RI Wu, Gang/E-8536-2010; Johnston, Christina/A-7344-2011; Nabae, Yuta/B-2406-2013; Thandavarayan, Maiyalagan/C-5716-2011; More, Karren/A-8097-2016 OI Wu, Gang/0000-0003-4956-5208; Nabae, Yuta/0000-0002-9845-382X; Thandavarayan, Maiyalagan/0000-0003-3528-3824; More, Karren/0000-0001-5223-9097 FU Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy (DOE); Los Alamos National Laboratory; DOE Office of Basic Energy Sciences FX We thank R. Adzic, Y. S. Kim, J. Chlistunoff, F. Garzon, R. Mukundan, H. Chung, and S. Conradson for stimulating discussions. Supported by the Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy (DOE) through the Fuel Cell Technologies Program, and by Los Alamos National Laboratory through the Laboratory-Directed Research and Development Program. Microscopy research was supported by the Oak Ridge National Laboratory's SHaRE User Facility, sponsored by the DOE Office of Basic Energy Sciences. The authors have filed a patent through Los Alamos National Laboratory on the catalysts described herein. NR 33 TC 1378 Z9 1401 U1 260 U2 1486 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 22 PY 2011 VL 332 IS 6028 BP 443 EP 447 DI 10.1126/science.1200832 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 753NG UT WOS:000289784900037 PM 21512028 ER PT J AU Frase, H Smith, CA Toth, M Champion, MM Mobashery, S Vakulenko, SB AF Frase, Hilary Smith, Clyde A. Toth, Marta Champion, Matthew M. Mobashery, Shahriar Vakulenko, Sergei B. TI Identification of Products of Inhibition of GES-2 beta-Lactamase by Tazobactam by X-ray Crystallography and Spectrometry SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID TRANS-ENAMINE INTERMEDIATE; CLASS-A CARBAPENEMASE; CRYSTAL-STRUCTURE; RESOLUTION; SHV-1; INACTIVATION; RESISTANT; MECHANISM; INSIGHTS; VARIANT AB The GES-2 beta-lactamase is a class A carbapenemase, the emergence of which in clinically important bacterial pathogens is a disconcerting development as the enzyme confers resistance to carbapenem antibiotics. Tazobactam is a clinically used inhibitor of class A beta-lactamases, which inhibits the GES-2 enzyme effectively, restoring susceptibility to beta-lactam antibiotics. We have investigated the details of the mechanism of inhibition of the GES-2 enzyme by tazobactam. By the use of UV spectrometry, mass spectroscopy, and x-ray crystallography, we have documented and identified the involvement of a total of seven distinct GES-2 center dot tazobactam complexes and one product of the hydrolysis of tazobactam that contribute to the inhibition profile. The x-ray structures for the GES-2 enzyme are for both the native (1.45 angstrom) and the inhibited complex with tazobactam (1.65 angstrom). This is the first such structure of a carbapenemase in complex with a clinically important beta-lactam inhibitor, shedding light on the structural implications for the inhibition process. C1 [Smith, Clyde A.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Frase, Hilary; Toth, Marta; Champion, Matthew M.; Mobashery, Shahriar; Vakulenko, Sergei B.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Smith, CA (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM csmith@slac.stanford.edu; svakulen@nd.edu FU National Science Foundation [CHE-0741793] FX This work was supported by National Science Foundation Grant CHE-0741793. NR 61 TC 12 Z9 12 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD APR 22 PY 2011 VL 286 IS 16 BP 14396 EP 14409 DI 10.1074/jbc.M110.208744 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 750NW UT WOS:000289556200061 PM 21345789 ER PT J AU Cheng, B Chen, ZG Zhang, CL Ruan, RH Dong, T Hu, BF Guo, WT Miao, SS Zheng, P Luo, JL Xu, G Dai, PC Wang, NL AF Cheng, B. Chen, Z. G. Zhang, C. L. Ruan, R. H. Dong, T. Hu, B. F. Guo, W. T. Miao, S. S. Zheng, P. Luo, J. L. Xu, G. Dai, Pengcheng Wang, N. L. TI Three-dimensionality of band structure and a large residual quasiparticle population in Ba0.67K0.33Fe2As2 as revealed by c-axis polarized optical measurements SO PHYSICAL REVIEW B LA English DT Article ID CHARGE DYNAMICS; CUO2 PLANES; LA2-XSRXCUO4; REFLECTIVITY; SPECTRA AB We report on a c-axis polarized optical measurement on a Ba0.67K0.33Fe2As2 single crystal. We find that the c-axis optical response is significantly different from that of high-T-c cuprates. The experiments reveal an anisotropic three-dimensional (3D) optical response with the absence of the Josephson plasma edge in R(omega) in the superconducting state. Furthermore, different from the ab-plane optical response, a large residual quasiparticle population down to T similar to 1/5T(c) was observed in the c-axis polarized reflectance measurement. We elaborate that there exist horizontal nodes for the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity. C1 [Cheng, B.; Chen, Z. G.; Ruan, R. H.; Dong, T.; Hu, B. F.; Guo, W. T.; Miao, S. S.; Zheng, P.; Luo, J. L.; Xu, G.; Dai, Pengcheng; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, C. L.; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Cheng, B (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RI Dai, Pengcheng /C-9171-2012; Chen, Zhiguo/B-9192-2015 OI Dai, Pengcheng /0000-0002-6088-3170; Chen, Zhiguo/0000-0002-8242-4784 FU National Science Foundation of China; Chinese Academy of Sciences; Ministry of Science and Technology of China; U.S. Department of Energy, Division of Materials Science, Basic Energy Sciences [DOE DE-FG02-05ER46202] FX We thank X. Dai, H. Ding, Z. Fang, J. P. Hu, D. H. Lee, C. Ren, L. Shan, X. G. Wen, and L. Yu for useful discussions. This work is supported by the National Science Foundation of China, the Chinese Academy of Sciences, the 973 project of the Ministry of Science and Technology of China, and the U.S. Department of Energy, Division of Materials Science, Basic Energy Sciences, through Grant No. DOE DE-FG02-05ER46202. NR 31 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 22 PY 2011 VL 83 IS 14 AR 144522 DI 10.1103/PhysRevB.83.144522 PG 5 WC Physics, Condensed Matter SC Physics GA 784HM UT WOS:000292147700012 ER PT J AU Kantner, CLS Langner, MC Siemons, W Blok, JL Koster, G Rijnders, AJHM Ramesh, R Orenstein, J AF Kantner, C. L. S. Langner, M. C. Siemons, W. Blok, J. L. Koster, G. Rijnders, A. J. H. M. Ramesh, R. Orenstein, J. TI Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS AB We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15 K of the Curie temperature, which is similar to 150 K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin-flip time. In agreement with our observations, the model yields a demagnetization time that is inversely proportional to T - T-c. We also make a direct comparison of the spin-flip rate and the Gilbert damping coefficient, showing that their ratio is very close to k(B)T(c), indicating a common origin for these phenomena. C1 [Kantner, C. L. S.; Langner, M. C.; Ramesh, R.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kantner, C. L. S.; Langner, M. C.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Siemons, W.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Blok, J. L.; Koster, G.; Rijnders, A. J. H. M.] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. RP Kantner, CLS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Siemons, Wolter/B-3808-2011; Koster, Gertjan/H-3800-2011; Orenstein, Joseph/I-3451-2015 OI Koster, Gertjan/0000-0001-5478-7329; FU US Department of Energy, Office of Science [DE-AC02-05CH1123] FX This research was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-05CH1123. NR 15 TC 7 Z9 7 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 22 PY 2011 VL 83 IS 13 AR 134432 DI 10.1103/PhysRevB.83.134432 PG 6 WC Physics, Condensed Matter SC Physics GA 784FX UT WOS:000292142900001 ER PT J AU Lee, JS Sadowski, JT Jang, H Park, JH Kim, JY Hu, J Wu, R Kao, CC AF Lee, J. -S. Sadowski, J. T. Jang, H. Park, J. -H. Kim, J. -Y. Hu, J. Wu, R. Kao, C. -C. TI Interfacial nanostructure induced spin-reorientation transition in Ni/Fe/Ni/W(110) SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SURFACE ANISOTROPIES; CIRCULAR-DICHROISM; FILMS AB We investigated the mechanism of the spin-reorientation transition (SRT) in the Ni/Fe/Ni/W(110) system using in situ low-energy electron microscopy, x-ray magnetic circular dichroism measurements, and first principles electronic structure calculations. We discovered that the growth of Fe on a flat Ni film on a W (110) crystal resulted in the formation of nanosized particles, instead of a uniform monolayer of Fe as commonly assumed. This interfacial nanostructure leads to a change of the system's dimensionality from two-dimensional- to three-dimensional-like, which simultaneously weakens the dipolar interaction and enhances the spin-orbit coupling in the system and drives the observed SRT. C1 [Lee, J. -S.; Kao, C. -C.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Jang, H.; Park, J. -H.] Pohang Univ Sci & Technol, C CCMR, Pohang 790784, South Korea. [Jang, H.; Park, J. -H.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Park, J. -H.] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Kim, J. -Y.] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. [Hu, J.; Wu, R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Lee, JS (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RI Hu, Jun/H-4311-2012; Wu, Ruqian/C-1395-2013; OI Wu, Ruqian/0000-0002-6156-7874; Sadowski, Jerzy/0000-0002-4365-7796 FU US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Creative Initiative Center for c_CCMR [2009-0081576]; WCU [R31-2008-000-10059-0]; MEST [2010-00471]; POSTECH; MOST; DOE [DE-FG02-05ER46237] FX NSLS and research at the Center for Functional Nanomaterials, BNL, are supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. POSTECH is supported by the National Creative Initiative Center for c_CCMR (2009-0081576), WCU program (R31-2008-000-10059-0), and Leading Foreign Research Institute Recruitment program (2010-00471) through NRF funded by MEST. PAL is supported by POSTECH and MOST. Work at the University of California, Irvine is supported by DOE grant DE-FG02-05ER46237. Calculations were performed on parallel computers at NERSC. NR 23 TC 3 Z9 3 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 22 PY 2011 VL 83 IS 14 AR 144420 DI 10.1103/PhysRevB.83.144420 PG 5 WC Physics, Condensed Matter SC Physics GA 784HM UT WOS:000292147700008 ER PT J AU Sassa, Y Radovic, M Mansson, M Razzoli, E Cui, XY Pailhes, S Guerrero, S Shi, M Willmott, PR Granozio, FM Mesot, J Norman, MR Patthey, L AF Sassa, Y. Radovic, M. Mansson, M. Razzoli, E. Cui, X. Y. Pailhes, S. Guerrero, S. Shi, M. Willmott, P. R. Granozio, F. Miletto Mesot, J. Norman, M. R. Patthey, L. TI Ortho-II band folding in YBa2Cu3O7-delta films revealed by angle-resolved photoemission SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; YBA2CU3O6+X; SURFACE AB We present an angle-resolved photoelectron spectroscopy study of YBa2Cu3O7-delta films in situ grown by pulsed laser deposition. We have successfully produced underdoped surfaces with ordered oxygen vacancies within the CuO chains resulting in a clear ortho-II band folding of the Fermi surface. This indicates that order within the CuO chains affects the electronic properties of the CuO2 planes. Our results highlight the importance of having not only the correct surface carrier concentration, but also a very well ordered and clean surface in order that photoemission data on this compound be representative of the bulk. C1 [Sassa, Y.; Mansson, M.; Mesot, J.] ETH, Neutron Scattering Lab, CH-8093 Zurich, Switzerland. [Radovic, M.; Razzoli, E.; Cui, X. Y.; Shi, M.; Willmott, P. R.; Patthey, L.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Radovic, M.; Mansson, M.; Razzoli, E.; Mesot, J.] Ecole Polytech Fed Lausanne, Lab Synchrotron & Neutron Spect, CH-1015 Lausanne, Switzerland. [Mansson, M.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Pailhes, S.] Univ Lyon 1, CNRS, UMR 5586, Lab PMCN, F-69622 Villeurbanne, France. [Guerrero, S.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Granozio, F. Miletto] Complesso Univ Monte S Angelo, CNR SPIN, I-80126 Naples, Italy. [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sassa, Y (reprint author), ETH, Neutron Scattering Lab, CH-8093 Zurich, Switzerland. EM yasmine.sassa@psi.ch; luc.patthey@psi.ch RI Norman, Michael/C-3644-2013; Mansson, Martin/C-1134-2014; Sassa, Yasmine/F-3362-2017 OI Mansson, Martin/0000-0002-3086-9642; FU Swiss National Science Foundation; MaNEP; Foundation BLANCEFLOR Boncompagni-Ludovisi nee Bildt; US DOE, Office of Science [DE-AC02-06CH11357] FX We are grateful to Andrea Damascelli for valuable discussions, as well as Christian M. Schleputz for his support. This research was supported by the Swiss National Science Foundation, MaNEP, and the Foundation BLANCEFLOR Boncompagni-Ludovisi nee Bildt. M.N. was supported by the US DOE, Office of Science, under Contract No. DE-AC02-06CH11357. NR 24 TC 11 Z9 11 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 22 PY 2011 VL 83 IS 14 AR 140511 DI 10.1103/PhysRevB.83.140511 PG 4 WC Physics, Condensed Matter SC Physics GA 784HM UT WOS:000292147700001 ER PT J AU Allport, PP Affolder, AA Anghinolfi, F Bates, R Betancourt, C Buttar, C Carter, JR Casse, G Chen, H Chilingarov, A Civera, JV Clark, A Colijn, AP Dabrowski, W Dawson, N DeWilde, B Dhawan, S Dressnandt, N Dwuznik, M Eklund, L Fadeyev, V Farthouat, P Ferrere, D Fox, H French, R Gallop, B Garcia, C Gerling, M Gibson, M Gilchriese, M Sevilla, SG Goodrick, M Greenall, A Grillo, AA Haber, CH Hessey, NP Holt, R Hommels, LBA Jakobs, K Jones, TJ Kaplon, J Kierstead, J Koffeman, E Kohler, M Lacasta, C la Marra, D Li, Z Lindgren, S Lynn, D Maddock, P Mahboubi, K Martinez-McKinney, F Matheson, J Maunu, R McCarthy, R Newcomer, M Nickerson, R O'Shea, V Paganis, S Parzefall, U Pernecker, S Phillips, P Poltorak, K Puldon, D Robinson, D Sadrozinski, HFW Santoyo, D Sattari, S Schamberger, D Seiden, A Sutcliffe, P Swientek, K Tsionou, D Tyndel, M Unno, Y Viehhauser, G Villani, EG Von Wilpert, J Wastie, R Weber, M Weidberg, A Wiik, L Wiimut, I Wormald, M Wright, J Xu, D AF Allport, P. P. Affolder, A. A. Anghinolfi, F. Bates, R. Betancourt, C. Buttar, C. Carter, J. R. Casse, G. Chen, H. Chilingarov, A. Civera, J. V. Clark, A. Colijn, A. P. Dabrowski, W. Dawson, N. DeWilde, B. Dhawan, S. Dressnandt, N. Dwuznik, M. Eklund, L. Fadeyev, V. Farthouat, P. Ferrere, D. Fox, H. French, R. Gallop, B. Garcia, C. Gerling, M. Gibson, M. Gilchriese, M. Sevilla, S. Gonzalez Goodrick, M. Greenall, A. Grillo, A. A. Haber, C. H. Hessey, N. P. Holt, R. Hommels, L. B. A. Jakobs, K. Jones, T. J. Kaplon, J. Kierstead, J. Koffeman, E. Koehler, M. Lacasta, C. la Marra, D. Li, Z. Lindgren, S. Lynn, D. Maddock, P. Mahboubi, K. Martinez-McKinney, F. Matheson, J. Maunu, R. McCarthy, R. Newcomer, M. Nickerson, R. O'Shea, V. Paganis, S. Parzefall, U. Pernecker, S. Phillips, P. Poltorak, K. Puldon, D. Robinson, D. Sadrozinski, H. F. -W. Santoyo, D. Sattari, S. Schamberger, D. Seiden, A. Sutcliffe, P. Swientek, K. Tsionou, D. Tyndel, M. Unno, Y. Viehhauser, G. Villani, E. G. Von Wilpert, J. Wastie, R. Weber, M. Weidberg, A. Wiik, L. Wiimut, I. Wormald, M. Wright, J. Xu, D. TI Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE Modules; p-Bulk silicon; Hybrids; Noise; Charge collection ID SEMICONDUCTOR TRACKER; MICROSTRIP SENSORS; STRIP DETECTORS; SILICON; PERFORMANCE AB The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed "stave" concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support. Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5 mu m pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US. We present results of the first 20 chip ABCN25 ASIC hybrids for these sensors, results of the first prototype 5120 strip module built with 40 ABCN25 read-out ASICs, and the status of the hybrids and modules being developed for the ATLAS tracker upgrade stave programme. (C) 2010 Elsevier B.V. All rights reserved. C1 [Allport, P. P.; Affolder, A. A.; Casse, G.; Greenall, A.; Jones, T. J.; Sutcliffe, P.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.; Wiik, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.; Wiik, L.] Instrumentat Div, Upton, NY 11973 USA. [Carter, J. R.; Goodrick, M.; Hommels, L. B. A.; Robinson, D.; Wormald, M.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Anghinolfi, F.; Farthouat, P.; Kaplon, J.; Poltorak, K.; Wastie, R.; Weidberg, A.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Jakobs, K.; Koehler, M.; Mahboubi, K.; Parzefall, U.; Weber, M.; Wiimut, I.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; la Marra, D.; Pernecker, S.; Wright, J.] Univ Geneva, Sect Phys, CH-1211 Geneva, Switzerland. [Bates, R.; Buttar, C.; Eklund, L.; O'Shea, V.; Puldon, D.; Xu, D.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Unno, Y.] High Energy Accelerator Org, KEK, INPS, Tsukuba, Ibaraki 3050801, Japan. [Dabrowski, W.; Dwuznik, M.; Swientek, K.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Chilingarov, A.; Fox, H.] Univ Lancaster, Dept Geog, Lancaster LA1 4YB, England. [Gilchriese, M.; Haber, C. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Colijn, A. P.; Hessey, N. P.; Koffeman, E.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Nickerson, R.; Viehhauser, G.] Univ Oxford, DWB, Dept Phys, Oxford OX1 3RH, England. [Dressnandt, N.; Newcomer, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gallop, B.; Gibson, M.; Holt, R.; Matheson, J.; Phillips, P.; Tyndel, M.; Villani, E. G.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Betancourt, C.; Dawson, N.; Fadeyev, V.; Gerling, M.; Grillo, A. A.; Lindgren, S.; Maddock, P.; Martinez-McKinney, F.; Sadrozinski, H. F. -W.; Sattari, S.; Seiden, A.; Von Wilpert, J.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [French, R.; Paganis, S.; Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [DeWilde, B.; Maunu, R.; McCarthy, R.; Schamberger, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Civera, J. V.; Garcia, C.; Lacasta, C.; Santoyo, D.] UVEG, IFIC, Ctr Mixto, CSIC, Valencia 46071, Spain. [Dhawan, S.] Yale Univ, Dept Phys, New Haven, CT USA. RP Allport, PP (reprint author), Univ Liverpool, Oliver Lodge Lab, Dept Phys, Oxfort St, Liverpool L69 7ZE, Merseyside, England. EM philip.patrick.allport@cern.ch RI Eklund, Lars/C-7709-2012; O'Shea, Val/G-1279-2010; OI O'Shea, Val/0000-0001-7183-1205; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993 NR 15 TC 15 Z9 15 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S90 EP S96 DI 10.1016/j.nima.2010.04.091 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400016 ER PT J AU Arai, Y Miyoshi, T Unno, Y Tsuboyama, T Terada, S Ikegami, Y Ichimiya, R Kohriki, T Tauchi, K Ikemoto, Y Fujita, Y Uchida, T Hara, K Miyake, H Kochiyama, M Sega, T Hanagaki, K Hirose, M Uchida, J Onuki, Y Horii, Y Yamamoto, H Tsuru, T Matsumoto, H Ryu, SG Takashima, R Takeda, A Ikeda, H Kobayashi, D Wada, T Nagata, H Hatsui, T Kudo, T Taketani, A Kameshima, T Hirono, T Yabashi, M Furukawa, Y Battaglia, M Denes, P Vu, C Contarato, D Giubilato, P Kim, TS Ohno, M Fukuda, K Kurachi, I Okihara, M Kuriyama, N Motoyoshi, M AF Arai, Y. Miyoshi, T. Unno, Y. Tsuboyama, T. Terada, S. Ikegami, Y. Ichimiya, R. Kohriki, T. Tauchi, K. Ikemoto, Y. Fujita, Y. Uchida, T. Hara, K. Miyake, H. Kochiyama, M. Sega, T. Hanagaki, K. Hirose, M. Uchida, J. Onuki, Y. Horii, Y. Yamamoto, H. Tsuru, T. Matsumoto, H. Ryu, S. G. Takashima, R. Takeda, A. Ikeda, H. Kobayashi, D. Wada, T. Nagata, H. Hatsui, T. Kudo, T. Taketani, A. Kameshima, T. Hirono, T. Yabashi, M. Furukawa, Y. Battaglia, M. Denes, P. Vu, C. Contarato, D. Giubilato, P. Kim, T. S. Ohno, M. Fukuda, K. Kurachi, I. Okihara, M. Kuriyama, N. Motoyoshi, M. TI Development of SOI pixel process technology SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE SOI; Pixel; X-ray imaging; Particle tracking AB A silicon-on-insulator (SOI) process for pixelated radiation detectors is developed. It is based on a 0.2 mu M CMOS fully depleted (FD-)SOI technology. The SOI wafer is composed of a thick, high-resistivity substrate for the sensing part and a thin Si layer for CMOS circuits. Two types of pixel detectors, one integration-type and the other counting-type, are developed and tested. We confirmed good sensitivity for light, charged particles and X-rays for these detectors. For further improvement on the performance of the pixel detector, we have introduced a new process technique called buried p-well (BPW) to suppress back gate effect. We are also developing vertical (3D) integration technology to achieve much higher density. (C) 2010 Elsevier B.V. All rights reserved. C1 [Arai, Y.; Miyoshi, T.; Unno, Y.; Tsuboyama, T.; Terada, S.; Ikegami, Y.; Ichimiya, R.; Kohriki, T.; Tauchi, K.; Ikemoto, Y.; Fujita, Y.; Uchida, T.] High Energy Accelerator Org, Inst Particle & Nucl Studies, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hara, K.; Miyake, H.; Kochiyama, M.; Sega, T.] Univ Tsukuba, Inst Sci, Tsukuba, Ibaraki 3058577, Japan. [Hanagaki, K.; Hirose, M.; Uchida, J.] Osaka Univ, Osaka 5600043, Japan. [Onuki, Y.; Horii, Y.; Yamamoto, H.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Tsuru, T.; Matsumoto, H.; Ryu, S. G.] Kyoto Univ, Sakyo Ku, Kyoto 6068502, Japan. [Takashima, R.; Takeda, A.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Ikeda, H.; Kobayashi, D.; Wada, T.; Nagata, H.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. [Hatsui, T.; Kudo, T.; Taketani, A.; Kameshima, T.; Hirono, T.; Yabashi, M.; Furukawa, Y.] RIKEN, Sayo, Hyogo 6795148, Japan. [Battaglia, M.; Denes, P.; Vu, C.; Contarato, D.; Giubilato, P.; Kim, T. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ohno, M.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Fukuda, K.; Kurachi, I.] Oki Semicond Co Ltd, Tokyo 1938550, Japan. [Okihara, M.; Kuriyama, N.] Oki Semicond Miyagi Co Ltd, Ohira, Miyagi 9813693, Japan. [Motoyoshi, M.] ZyCube Co Ltd, Midori Ku, Kanagawa 2268510, Japan. RP Arai, Y (reprint author), High Energy Accelerator Org, Inst Particle & Nucl Studies, KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. EM yasuo.arai@kek.jp RI Hatsui, Takaki/J-4429-2014; Yabashi, Makina/A-2832-2015; Taketani, Atsushi/E-1803-2017; OI Hatsui, Takaki/0000-0001-8144-3484; Yabashi, Makina/0000-0002-2472-1684; Taketani, Atsushi/0000-0002-4776-2315; Giubilato, Piero/0000-0003-4358-5355 NR 10 TC 54 Z9 55 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S31 EP S36 DI 10.1016/j.nima.2010.04.081 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400006 ER PT J AU Bohm, J Mikestikova, M Affolder, AA Allport, PP Bates, R Betancourt, C Brown, H Buttar, C Carter, JR Casse, G Chen, H Chilingarov, A Cindro, V Clark, A Dawson, N DeWilde, B Doherty, F Dolezal, Z Eklund, L Fadeyev, V Ferrere, D Fox, H French, R Garcia, C Gerling, M Sevilla, SG Gorelov, I Greenall, A Grillo, AA Hara, K Hatano, H Hoeferkamp, M Hommels, LBA Ikegami, Y Jakobs, K Kierstead, J Kodys, P Kohler, M Kohriki, T Krambergen, G Lacasta, C Li, Z Lindgren, S Lynn, D Maddock, P Mandic, I Garcia, SMI Martinez-McKinney, F Maunu, R McCarthy, R Metcalfe, J Mikuz, M Minano, M Mitsui, S O'Shea, V Paganis, S Parzefall, U Puldon, D Robinson, D Sadrozinski, HFW Sattari, S Schamberger, D Seidel, S Seiden, A Soldevila, U Terada, S Toms, K Tsionou, D Unno, Y Von Wilpert, J Wormald, M Wright, J Yamada, M AF Bohm, J. Mikestikova, M. Affolder, A. A. Allport, P. P. Bates, R. Betancourt, C. Brown, H. Buttar, C. Carter, J. R. Casse, G. Chen, H. Chilingarov, A. Cindro, V. Clark, A. Dawson, N. DeWilde, B. Doherty, F. Dolezal, Z. Eklund, L. Fadeyev, V. Ferrere, D. Fox, H. French, R. Garcia, C. Gerling, M. Sevilla, S. Gonzalez Gorelov, I. Greenall, A. Grillo, A. A. Hara, K. Hatano, H. Hoeferkamp, M. Hommels, L. B. A. Ikegami, Y. Jakobs, K. Kierstead, J. Kodys, P. Koehler, M. Kohriki, T. Krambergen, G. Lacasta, C. Li, Z. Lindgren, S. Lynn, D. Maddock, P. Mandic, I. Marti i Garcia, S. Martinez-McKinney, F. Maunu, R. McCarthy, R. Metcalfe, J. Mikuz, M. Minano, M. Mitsui, S. O'Shea, V. Paganis, S. Parzefall, U. Puldon, D. Robinson, D. Sadrozinski, H. F. -W. Sattari, S. Schamberger, D. Seidel, S. Seiden, A. Soldevila, U. Terada, S. Toms, K. Tsionou, D. Unno, Y. Von Wilpert, J. Wormald, M. Wright, J. Yamada, M. TI Evaluation of the bulk and strip characteristics of large area n-in-p silicon sensors intended for a very high radiation environment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE Silicon; Micro-strip; ATLAS ID upgrade; SLHC; Leakage current; Depletion voltage; Electrical characteristics; Coupling capacitance; Inter-strip capacitance; Inter-strip resistance AB The ATLAS collaboration R&D group "Development of n-in-p Silicon Sensors for very high radiation environment" has developed single-sided p-type 9.75 cm x 9.75 cm sensors with an n-type readout strips having radiation tolerance against the 10(15) 1-MeV neutron equivalent (n(eq))/cm(2) fluence expected in the Super Large Hadron Collider. The compiled results of an evaluation of the bulk and strip parameter characteristics of 19 new non-irradiated sensors manufactured by Hamamatsu Photonics are presented in this paper. It was verified in detail that the sensors comply with the technical specifications required before irradiation. The reverse bias voltage dependence of various parameters, frequency dependence of tested capacitances, and strip scans of more than 23,000 strips as a test of parameter uniformity and strip quality over the whole sensor area have been carried out at Stony Brook University, Cambridge University, University of Geneva, and Academy of Sciences of CR and Charles University in Prague. No openings, shorts, or pinholes were observed on all tested strips, confirming the high quality of sensors made by Hamamatsu Photonics. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bohm, J.; Mikestikova, M.] Acad Sci CR, Inst Phys, Prague 18221 8, Czech Republic. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Instrumentat Div, Upton, NY 11973 USA. [Carter, J. R.; Hommels, L. B. A.; Robinson, D.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Jakobs, K.; Koehler, M.; Parzefall, U.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; O'Shea, V.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ikegami, Y.; Kohriki, T.; Terada, S.; Unno, Y.] High Energy Accelerator Org, Inst Particle & Nucl Studies, KEK, Tsukuba, Ibaraki 3050801, Japan. [Chilingarov, A.; Fox, H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Affolder, A. A.; Allport, P. P.; Brown, H.; Casse, G.; Greenall, A.; Wormald, M.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cindro, V.; Krambergen, G.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. [Cindro, V.; Krambergen, G.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 8, Czech Republic. [Betancourt, C.; Dawson, N.; Fadeyev, V.; Gerling, M.; Grillo, A. A.; Lindgren, S.; Maddock, P.; Martinez-McKinney, F.; Sadrozinski, H. F. -W.; Sattari, S.; Seiden, A.; Von Wilpert, J.; Wright, J.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [French, R.; Paganis, S.; Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [DeWilde, B.; Maunu, R.; McCarthy, R.; Puldon, D.; Schamberger, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Hara, K.; Hatano, H.; Mitsui, S.; Yamada, M.] Univ Tsukuba, Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Minano, M.; Soldevila, U.] UVEG, IFIC, Ctr Mixto, CSIC, Valencia 46071, Spain. RP Bohm, J (reprint author), Acad Sci CR, Inst Phys, Slovance 2, Prague 18221 8, Czech Republic. EM bohm@fzu.cz RI Marti-Garcia, Salvador/F-3085-2011; Eklund, Lars/C-7709-2012; O'Shea, Val/G-1279-2010; Mikestikova, Marcela/H-1996-2014; Gorelov, Igor/J-9010-2015; OI O'Shea, Val/0000-0001-7183-1205; Mikestikova, Marcela/0000-0003-1277-2596; Gorelov, Igor/0000-0001-5570-0133; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993 NR 7 TC 16 Z9 16 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S104 EP S110 DI 10.1016/j.nima.2010.04.093 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400018 ER PT J AU Garcia-Sciveres, M Arutinov, D Barbero, M Beccherle, R Dube, S Elledge, D Fleury, J Fougeron, D Gensolen, F Gnani, D Gromov, V Hemperek, T Karagounis, M Kluit, R Kruth, A Mekkaoui, A Menouni, M Schipper, JD AF Garcia-Sciveres, M. Arutinov, D. Barbero, M. Beccherle, R. Dube, S. Elledge, D. Fleury, J. Fougeron, D. Gensolen, F. Gnani, D. Gromov, V. Hemperek, T. Karagounis, M. Kluit, R. Kruth, A. Mekkaoui, A. Menouni, M. Schipper, J. -D. TI The FE-I4 pixel readout integrated circuit SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE Pixel detector; ATLAS upgrades; High luminosity; 130 nm ID CHIP AB A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garcia-Sciveres, M.; Dube, S.; Elledge, D.; Gnani, D.; Mekkaoui, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fleury, J.] Lab Accelerateur Lineaire, F-91405 Orsay, France. [Arutinov, D.; Barbero, M.; Hemperek, T.; Karagounis, M.; Kruth, A.] Univ Bonn, D-5300 Bonn, Germany. [Fougeron, D.; Gensolen, F.; Menouni, M.] Ctr Phys Particules Marseille, Marseille, France. [Gromov, V.; Kluit, R.; Schipper, J. -D.] Natl Inst Subatomaire Fys, Amsterdam, Netherlands. [Beccherle, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mgarcia-sciveres@bl.gov RI Gnani, Dario/J-6426-2012; OI Gnani, Dario/0000-0003-0464-9176; Kruth, Andre/0000-0002-6273-8778 NR 11 TC 98 Z9 99 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S155 EP S159 DI 10.1016/j.nima.2010.04.101 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400026 ER PT J AU Hara, K Affolder, AA Allport, PP Bates, R Betancourt, C Bohm, J Brown, H Buttar, C Carter, JR Casse, G Chen, H Chilingarov, A Cindro, V Clark, A Dawson, N DeWilde, B Doherty, F Dolezal, Z Eklund, L Fadeyev, V Ferrere, D Fox, H French, R Garcia, C Gerling, M Sevilla, SG Gorelov, I Greenall, A Grillo, AA Hamasaki, N Hatano, H Hoeferkamp, M Hommels, LBA Ikegami, Y Jakobs, K Kierstead, J Kodys, P Kohler, M Kohriki, T Kramberger, G Lacasta, C Li, Z Lindgren, S Lynn, D Maddock, P Mandic, I Martinez-McKinney, F Garcia, SMI Maunu, R McCarthy, R Metcalfe, J Mikestikova, M Mikuz, M Minano, M Mitsui, S O'Shea, V Parzefall, U Sadrozinski, HFW Schamberger, D Seiden, A Terada, S Paganis, S Robinson, D Puldon, D Sattari, S Seidel, S Takahashi, Y Toms, K Tsionou, D Unno, Y Von Wilpert, J Wormald, M Wright, J Yamada, M AF Hara, K. Affolder, A. A. Allport, P. P. Bates, R. Betancourt, C. Bohm, J. Brown, H. Buttar, C. Carter, J. R. Casse, G. Chen, H. Chilingarov, A. Cindro, V. Clark, A. Dawson, N. DeWilde, B. Doherty, F. Dolezal, Z. Eklund, L. Fadeyev, V. Ferrere, D. Fox, H. French, R. Garcia, C. Gerling, M. Sevilla, S. Gonzalez Gorelov, I. Greenall, A. Grillo, A. A. Hamasaki, N. Hatano, H. Hoeferkamp, M. Hommels, L. B. A. Ikegami, Y. Jakobs, K. Kierstead, J. Kodys, P. Koehler, M. Kohriki, T. Kramberger, G. Lacasta, C. Li, Z. Lindgren, S. Lynn, D. Maddock, P. Mandic, I. Martinez-McKinney, F. Marti i Garcia, S. Maunu, R. McCarthy, R. Metcalfe, J. Mikestikova, M. Mikuz, M. Minano, M. Mitsui, S. O'Shea, V. Parzefall, U. Sadrozinski, H. F. -W. Schamberger, D. Seiden, A. Terada, S. Paganis, S. Robinson, D. Puldon, D. Sattari, S. Seidel, S. Takahashi, Y. Toms, K. Tsionou, D. Unno, Y. Von Wilpert, J. Wormald, M. Wright, J. Yamada, M. TI Testing of bulk radiation damage of n-in-p silicon sensors for very high radiation environments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE p-Bulk silicon; Microstrip; Charge collection; Radiation damage ID MICROSTRIP SENSORS; DETECTORS; IRRADIATION AB We are developing n(+)-in-p, p-bulk and n-readout, microstrip sensors, fabricated by Hamamatsu Photonics, as a non-inverting radiation hard silicon detector for the ATLAS tracker upgrade at the super-LHC (sLHC) proposed facility. The bulk radiation damage after neutron and proton irradiations is characterized with the leakage current, charge collection and full depletion voltage. The detectors should provide acceptable signal, signal-to-noise ratio exceeding 15, after the integrated luminosity of 6000 fb(-1), which is twice the sLHC integrated luminosity goal. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hara, K.; Hamasaki, N.; Hatano, H.; Mitsui, S.; Takahashi, Y.; Yamada, M.] Univ Tsukuba, Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Instrumentat Div, Upton, NY 11973 USA. [Carter, J. R.; Hommels, L. B. A.; Robinson, D.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Jakobs, K.; Koehler, M.; Parzefall, U.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez] Univ Geneva, Sect Phys, CH-1211 Geneva, Switzerland. [Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; O'Shea, V.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ikegami, Y.; Kohriki, T.; Terada, S.; Unno, Y.] High Energy Accelerator Org, KEK, INPS, Tsukuba, Ibaraki 3050801, Japan. [Chilingarov, A.; Fox, H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Affolder, A. A.; Allport, P. P.; Brown, H.; Casse, G.; Greenall, A.; Wormald, M.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 8, Czech Republic. [Bohm, J.; Mikestikova, M.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Betancourt, C.; Dawson, N.; Fadeyev, V.; Gerling, M.; Grillo, A. A.; Lindgren, S.; Maddock, P.; Martinez-McKinney, F.; Sadrozinski, H. F. -W.; Seiden, A.; Sattari, S.; Von Wilpert, J.; Wright, J.] UC Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [French, R.; Paganis, S.; Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [DeWilde, B.; Maunu, R.; McCarthy, R.; Schamberger, D.; Puldon, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Minano, M.] UVEG, IFIC, Ctr Mixto, CSIC, Valencia 46071, Spain. RP Hara, K (reprint author), Univ Tsukuba, Sch Pure & Appl Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan. EM hara@hep.px.tsukuba.ac.jp RI Gorelov, Igor/J-9010-2015; Marti-Garcia, Salvador/F-3085-2011; Eklund, Lars/C-7709-2012; O'Shea, Val/G-1279-2010; Mikestikova, Marcela/H-1996-2014 OI Gorelov, Igor/0000-0001-5570-0133; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993; O'Shea, Val/0000-0001-7183-1205; Mikestikova, Marcela/0000-0003-1277-2596 NR 13 TC 26 Z9 26 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S83 EP S89 DI 10.1016/j.nima.2010.04.090 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400015 ER PT J AU Lindgren, S Affolder, AA Allport, PP Bates, R Betancourt, C Bohm, J Brown, H Buttar, C Carter, JR Casse, G Chen, H Chilingarov, A Cindro, V Clark, A Dawson, N DeWilde, B Doherty, F Dolezal, Z Eklund, L Fadeyev, V Ferrerre, D Fox, H French, R Garcia, C Gerling, M Sevilla, SG Gorelov, I Greenall, A Grillo, AA Hamasaki, N Hara, K Hatano, H Hoeferkamp, M Hommels, LBA Ikegami, Y Jakobs, K Kierstead, J Kodys, P Kohler, M Kohriki, T Kramberger, G Lacasta, C Li, Z Lynn, D Maddock, P Mandic, I Martinez-McKinney, F Garcia, SM Maunu, R McCarthy, R Metcalfe, J Mikestikova, M Mikuz, M Minano, M Mitsui, S O'Shea, V Parzefall, U Sadrozinski, HFW Schamberger, D Seiden, A Terada, S Paganis, S Robinson, D Puldon, D Sattari, S Seidel, S Toms, K Tsionou, D Unno, Y Von Wilpert, J Wormald, M Wright, J Yamada, M AF Lindgren, S. Affolder, A. A. Allport, P. P. Bates, R. Betancourt, C. Bohm, J. Brown, H. Buttar, C. Carter, J. R. Casse, G. Chen, H. Chilingarov, A. Cindro, V. Clark, A. Dawson, N. DeWilde, B. Doherty, F. Dolezal, Z. Eklund, L. Fadeyev, V. Ferrerre, D. Fox, H. French, R. Garcia, C. Gerling, M. Sevilla, S. Gonzalez Gorelov, I. Greenall, A. Grillo, A. A. Hamasaki, N. Hara, K. Hatano, H. Hoeferkamp, M. Hommels, L. B. A. Ikegami, Y. Jakobs, K. Kierstead, J. Kodys, P. Koehler, M. Kohriki, T. Kramberger, G. Lacasta, C. Li, Z. Lynn, D. Maddock, P. Mandic, I. Martinez-McKinney, F. Martii Garcia, S. Maunu, R. McCarthy, R. Metcalfe, J. Mikestikova, M. Mikuz, M. Minano, M. Mitsui, S. O'Shea, V. Parzefall, U. Sadrozinski, H. F. -W. Schamberger, D. Seiden, A. Terada, S. Paganis, S. Robinson, D. Puldon, D. Sattari, S. Seidel, S. Toms, K. Tsionou, D. Unno, Y. Von Wilpert, J. Wormald, M. Wright, J. Yamada, M. TI Testing of surface properties pre-rad and post-rad of n-in-p silicon sensors for very high radiation environment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE p-Bulk silicon; Surface damage; Charge collection; Punch-through voltage ID MICROSTRIP SENSORS; DETECTORS AB We are developing n(+)-in-p, p-bulk and n-readout, microstrip sensors as a non-inverting radiation hard silicon detector for the ATLAS Tracker Upgrade at the super LHC experiment. The surface radiation damages of the sensors fabricated by Hamamatsu Photonics are characterized on the interstrip capacitance, interstrip resistance and punch-through protection evolution. The detector should provide acceptable strip isolation, exceeding the input impedance of the signal readout chip similar to 1 k Omega, after the integrated luminosity of 6 ab(-1) which is twice the luminosity goal. Published by Elsevier B.V. C1 [Lindgren, S.; Betancourt, C.; Dawson, N.; Fadeyev, V.; Gerling, M.; Grillo, A. A.; Maddock, P.; Martinez-McKinney, F.; Sadrozinski, H. F. -W.; Seiden, A.; Sattari, S.; Von Wilpert, J.; Wright, J.] UC Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Instrumentat Div, Upton, NY 11973 USA. [Carter, J. R.; Hommels, L. B. A.; Robinson, D.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Jakobs, K.; Koehler, M.; Parzefall, U.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Clark, A.; Ferrerre, D.; Sevilla, S. Gonzalez] Univ Geneva, Sect Phys, CH-1211 Geneva, Switzerland. [Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; O'Shea, V.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ikegami, Y.; Kohriki, T.; Terada, S.; Unno, Y.] High Energy Accelerator Org, KEK, INPS, Tsukuba, Ibaraki 3050801, Japan. [Chilingarov, A.; Fox, H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Affolder, A. A.; Allport, P. P.; Brown, H.; Casse, G.; Greenall, A.; Wormald, M.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, Jozef Stefan Inst, Ljubljana 61000, Slovenia. [Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 8, Czech Republic. [Bohm, J.; Mikestikova, M.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [French, R.; Paganis, S.; Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [DeWilde, B.; Maunu, R.; McCarthy, R.; Schamberger, D.; Puldon, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Hamasaki, N.; Hara, K.; Hatano, H.; Mitsui, S.; Yamada, M.] Univ Tsukuba, Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Garcia, C.; Lacasta, C.; Martii Garcia, S.; Minano, M.] UVEG, IFIC, Ctr Mixto, CSIC, Valencia 46071, Spain. RP Betancourt, C (reprint author), UC Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. EM cbetanco@ucsc.edu RI Eklund, Lars/C-7709-2012; Marti-Garcia, Salvador/F-3085-2011; O'Shea, Val/G-1279-2010; Mikestikova, Marcela/H-1996-2014; Gorelov, Igor/J-9010-2015; OI O'Shea, Val/0000-0001-7183-1205; Mikestikova, Marcela/0000-0003-1277-2596; Gorelov, Igor/0000-0001-5570-0133; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993 NR 7 TC 17 Z9 17 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S111 EP S117 DI 10.1016/j.nima.2010.04.094 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400019 ER PT J AU Lipton, R AF Lipton, Ronald TI 3D detector and electronics integration technologies: Applications to ILC, SLHC, and beyond SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE SOI; 3D electronics; Vertex detectors; Vertical integration ID SENSORS AB The application of vertically integrated (3D) electronics to particle physics has been explored by the our group for the past several years. We have successfully designed the first vertically integrated demonstrator chip for ILC vertex detection in the three-tier MIT-Lincoln Labs process. We have also studied sensor integration with electronics through oxide bonding and silicon-on-insulator technology. This paper will discuss the status of these studies and prospects for future work. Published by Elsevier B.V. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lipton, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lipton@fnal.gov NR 14 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S160 EP S163 DI 10.1016/j.nima.2010.04.102 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400027 ER PT J AU Spieler, H AF Spieler, Helmuth TI Low noise electronics in practical applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE Electronic noise; Pulse shaping; Cross-talk; Low-frequency noise; Position-sensitive detectors; Bolometer; SQUID; Multiplexing ID APEX-SZ AB The parameters essential to achieving low electronic noise are well established, but in practical applications many details are often ignored. A common challenge is to optimally use an existing IC in measurements for which it was not specifically designed, e.g. radiation damage tests where not just individual noise contributions, but also pulse shaping characteristics are affected. The relevant parameters must be evaluated to determine whether the change in signal-to-noise ratio originates in the detector, the electronics, or both. Another critical parameter in multi-electrode position sensing detectors is the input impedance, which sets the cross-talk between adjacent electrodes. Published data often do not include the required information, but to some extent the key electronics parameters necessary to derive changes in detector characteristics can be measured in situ. The paper discusses examples with differing requirements, such as detectors subject to radiation damage, long-strip position-sensitive systems, and as an extreme example ultra low-noise cryogenic bolometer arrays. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Spieler, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM spieler@LBL.gov NR 8 TC 4 Z9 4 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S149 EP S154 DI 10.1016/j.nima.2010.04.100 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400025 ER PT J AU Unno, Y Affolder, AA Allport, PP Bates, R Betancourt, C Bohm, J Brown, H Buttar, C Carter, JR Casse, G Chen, H Chilingarov, A Cindro, V Clark, A Dawson, N DeWilde, B Dolezal, Z Eklund, L Fadeyev, V Ferrere, D Fox, H French, R Garcia, C Gerling, M Sevilla, SG Gorelov, I Greenall, A Grillo, AA Hamasaki, N Hara, K Hatano, H Hoeferkamp, M Hommels, LBA Ikegami, Y Jakobs, K Kamada, S Kierstead, J Kodys, P Kohler, M Kohriki, T Kramberger, G Lacasta, C Li, Z Lindgren, S Lynn, D Mikestikova, M Maddock, P Mandic, I Garcia, SMI Martinez-McKinney, F Maunu, R McCarthy, R Metcalfe, J Mikuz, M Minano, M Mitsui, S O'Shea, V Paganis, S Parzefall, U Puldon, D Robinson, D Sadrozinski, HFW Sattari, S Schamberger, D Seidel, S Seiden, A Terada, S Toms, K Tsionou, D Von Wilpert, J Wormald, M Wright, J Yamada, M Yamamura, K AF Unno, Y. Affolder, A. A. Allport, P. P. Bates, R. Betancourt, C. Bohm, J. Brown, H. Buttar, C. Carter, J. R. Casse, G. Chen, H. Chilingarov, A. Cindro, V. Clark, A. Dawson, N. DeWilde, B. Dolezal, Z. Eklund, L. Fadeyev, V. Ferrere, D. Fox, H. French, R. Garcia, C. Gerling, M. Sevilla, S. Gonzalez Gorelov, I. Greenall, A. Grillo, A. A. Hamasaki, N. Hara, K. Hatano, H. Hoeferkamp, M. Hommels, L. B. A. Ikegami, Y. Jakobs, K. Kamada, S. Kierstead, J. Kodys, P. Kohler, M. Kohriki, T. Kramberger, G. Lacasta, C. Li, Z. Lindgren, S. Lynn, D. Mikestikova, M. Maddock, P. Mandic, I. Marti i Garcia, S. martinez-McKinney, F. Maunu, R. McCarthy, R. Metcalfe, J. Mikuz, M. Minano, M. Mitsui, S. O'Shea, V. Paganis, S. Parzefall, U. Puldon, D. Robinson, D. Sadrozinski, H. F. -W. Sattari, S. Schamberger, D. Seidel, S. Seiden, A. Terada, S. Toms, K. Tsionou, D. Von Wilpert, J. Wormald, M. Wright, J. Yamada, M. Yamamura, K. TI Development of n-on-p silicon sensors for very high radiation environments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Symposium on the Development and Application of Semiconductor Tracking Detectors CY AUG 29-SEP 01, 2009 CL Int Conf Ctr, Hiroshima, JAPAN HO Int Conf Ctr DE Silicon; Sensor; Microstrip; p-type; n-in-p; ATLAS; SLHC; Radiation damage ID MICROSTRIP SENSORS AB We have developed a novel and highly radiation-tolerant n-in-p silicon microstrip sensor for very high radiation environments such as in the Super Large Hadron Collider. The sensors are designed for a fluence of 1 x 10(15) neq/cm(2) and are fabricated from p-type, FZ, 6 in. (150 mm) wafers onto which we lay out a single 9.75 cm x 9.75 cm large-area sensor and several 1 cm x 1 cm miniature sensors with various n-strip isolation structures. By evaluating the sensors both pre- and post-irradiation by protons and neutrons, we find that the full depletion voltage evolves to approximately 800 V and that the n-strip isolation depends on the p(+) concentration. In addition, we characterize the interstrip resistance, interstrip capacitance and the punch-through-protection (PTP) voltage. The first fabrication batch allowed us to identify the weak spots in the PTP and the stereo strip layouts. By understanding the source of the weakness, the mask was modified accordingly. After modification, the follow-up fabrication batches and the latest fabrication of about 30 main sensors and associated miniature sensors have shown good performance, with no sign of microdischarge up to 1000 V. (C) 2010 Elsevier B.V. All rights reserved. C1 [Unno, Y.; Ikegami, Y.; Kohriki, T.; Terada, S.] High Energy Accelerator Org KEK, Inst Particle & Nucl Study, Tsukuba, Ibaraki 3050801, Japan. [Chen, H.; Kierstead, J.; Li, Z.; Lynn, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Carter, J. R.; Hommels, L. B. A.; Robinson, D.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Jakobs, K.; Kohler, M.; Parzefall, U.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Bates, R.; Buttar, C.; Eklund, L.; O'Shea, V.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Chilingarov, A.; Fox, H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Affolder, A. A.; Allport, P. P.; Brown, H.; Casse, G.; Greenall, A.; Wormald, M.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.] Jozef Stefan Inst, Expt Particle Phys Dept, SI-1001 Ljubljana, Slovenia. [Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Bohm, J.; Mikestikova, M.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Betancourt, C.; Dawson, N.; Fadeyev, V.; Gerling, M.; Grillo, A. A.; Lindgren, S.; Maddock, P.; martinez-McKinney, F.; Sadrozinski, H. F. -W.; Sattari, S.; Seiden, A.; Von Wilpert, J.; Wright, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys SCIPP, Santa Cruz, CA 95064 USA. [French, R.; Paganis, S.; Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [DeWilde, B.; Maunu, R.; McCarthy, R.; Puldon, D.; Schamberger, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Hamasaki, N.; Hara, K.; Hatano, H.; Mitsui, S.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Minano, M.] Ctr Mixt Univ Valencia CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Kamada, S.; Yamamura, K.] Hamamatsu Photon KK, Div Solid State, Higashi Ku, Hamamatsu, Shizuoka 4358558, Japan. RP Unno, Y (reprint author), High Energy Accelerator Org KEK, Inst Particle & Nucl Study, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. EM yoshinobu.unno@kek.jp RI Gorelov, Igor/J-9010-2015; Marti-Garcia, Salvador/F-3085-2011; Eklund, Lars/C-7709-2012; O'Shea, Val/G-1279-2010; Mikestikova, Marcela/H-1996-2014 OI Gorelov, Igor/0000-0001-5570-0133; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993; O'Shea, Val/0000-0001-7183-1205; Mikestikova, Marcela/0000-0003-1277-2596 NR 8 TC 39 Z9 39 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 SU 1 BP S24 EP S30 DI 10.1016/j.nima.2010.04.080 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 774WB UT WOS:000291416400005 ER PT J AU Fu, QA Yang, JL Wang, XB AF Fu, Qiang Yang, Jinlong Wang, Xue-Bin TI On the Electronic Structures and Electron Affinities of the m-Benzoquinone (BQ) Diradical and the o-, p-BQ Molecules: A Synergetic Photoelectron Spectroscopic and Theoretical Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUADRATIC CONFIGURATION-INTERACTION; COUPLED-CLUSTER SINGLES; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS; STATES; SPECTRUM; DENSITY; ANIONS; QUINONE; TRIPLET AB Electron affinity (EA) is an important molecular property relevant to the electronic structure, chemical reactivity, and stability of a molecule. A detailed understanding of the electronic structures and EAs of benzoquinone (BQ) molecules can help rationalize their critical roles in a wide range of applications, from biological: photosynthesis to energy, conversion;processes. In this Article, We report a systematic spectroscopic probe on the electronic structures and EAs of all three isomers-o-, m-, and p-BQ-employing photodetachment photoelectron spectroscopy (PES) and ab initio electronic structure calculations. The PES spectra of the three BQ(O-) radical anions were taken at several photon energies under low-temperature conditions. Similar spectral patterns were observed for both o- and p-BQ(O-), each revealing a broad ground-state feature and a large band gap followed by well-resolved excited states peaks. The EAs of o- and p-BQ were determined to be 1.90 and 1.85 eV with singlet-triplet band gaps of 1.68 and 2.32 eV, respectively. In contrast, the spectrum of m.BQ(O-) is distinctly different from its two congeners with no dear band gap and a much higher EA (2.89 eV). Accompanied theoretical study confirms the experimental EAs and band gaps. The calculations further unravel a triplet ground state for m-BQ in contrast to the singlet ground states for both o- and p-BQ, The diradical nature of M-BQ which is consistent with its non-Kekule structure, is primarily, responsible for the observed high EA and helps explain its nonexistence in bulk materials. C1 [Fu, Qiang; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. RP Yang, JL (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. EM jlyang@ustc.edu.cn; xuebin.wang@pnl.gov RI Fu, Qiang/A-2557-2011; Yang, Jinlong/D-3465-2009 OI Fu, Qiang/0000-0002-6682-8527; Yang, Jinlong/0000-0002-5651-5340 FU U.S. Department of Energy (DOE), Office of:Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830]; National Natural Science Foundation of China [50721091, 20803071, 20873129]; National Key Basic Research Program [2006CB922004]; USTC-HP HPC Project; SCCAS; Shanghai Supercomputer Center FX The experimental work was supported by the U.S. Department of Energy (DOE), Office of:Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract No: DE-AC05-76RL01830. The computational work was supported by the National Natural Science Foundation of China (Grant Nos. 50721091, 20803071, and 20873129), the National Key Basic Research Program (2006CB922004), the USTC-HP HPC Project, SCCAS, and Shanghai Supercomputer Center, NR 59 TC 29 Z9 29 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 EI 1520-5215 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 21 PY 2011 VL 115 IS 15 BP 3201 EP 3207 DI 10.1021/jp1120542 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 748PN UT WOS:000289403000003 PM 21449549 ER PT J AU Vila, FD Jach, T Elam, WT Rehr, JJ Denlinger, JD AF Vila, Fernando D. Jach, Terrence Elam, W. T. Rehr, John J. Denlinger, J. D. TI X-ray Emission Spectroscopy of Nitrogen-Rich Compounds SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRONIC-STRUCTURE; DENSITY; ABSORPTION; SPECTRA; APPROXIMATION; DECOMPOSITION; NUCLEOBASES; MICROSCOPY; SCATTERING; RESOLUTION AB Nonresonant X-ray emission spectroscopy was used to compare the nitrogen-rich compounds ammonium nitrate, trinitrotoluene, and cyclotrimethylene-trinitramine. They are representative of crystalline and molecular structures of special importance in industrial and military applications. The spectral signature of each substance was analyzed and correlated with features in the electronic structure of the systems. This analysis Was accomplished by means of theoretical simulations of the emission spectra and a detailed examination of the molecular orbitals and densities of states. We find that the two theoretical methods used (frozen-orbital density functional theory and real-space Green's function simulations), account semiquantitatively for the observed spectra and are able to predict features arising from distinct chemical complexes. A comparison of the calculations and the data provides inight into the electronic contributions of specific molecular orbitals, as well as the features due to bandlike behavior. With some additional refinements, these methods could be used as an alternative to reference compounds. C1 [Vila, Fernando D.; Rehr, John J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Jach, Terrence] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Elam, W. T.] Univ Washington, Appl Phys Lab, Seattle, WA 98195 USA. [Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Vila, FD (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. FU Office of Naval Research [N00014-05-1-0843]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-97ER45623]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Office of Naval Research under grant N00014-05-1-0843 (W.T.E. and F.D.V.) and in part by the U.S. Department of Energy, Office of Basic Energy Sciences grant DE-FG02-97ER45623 (J.J.R). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 11 Z9 11 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 21 PY 2011 VL 115 IS 15 BP 3243 EP 3250 DI 10.1021/jp108539v PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 748PN UT WOS:000289403000008 PM 21452848 ER PT J AU Takahashi, LK Zhou, J Kostko, O Golan, A Leone, SR Ahmed, M AF Takahashi, Lynelle K. Zhou, Jia Kostko, Oleg Golan, Amir Leone, Stephen R. Ahmed, Musahid TI Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ADVANCED LIGHT-SOURCE; TOF-SIMS; LASER POSTIONIZATION; CHEMICAL-DYNAMICS; HIGH-RESOLUTION; SECONDARY-ION; IONIZATION; MOLECULES; BIOSYNTHESIS; POLYMER AB The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam,(TDMB) mass spectrometry (MS), 25 keV Bi(3)(+) secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV +/- 0.05 eV for coniferyl alcohol and < 7.4 eV for both, sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging MS of biomolecules are discussed. C1 [Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Takahashi, Lynelle K.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ahmed, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, MS6R-2100,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MAhmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009 OI Kostko, Oleg/0000-0003-2068-4991 FU Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Corey Foster for his ongoing technical support of the TOF.SIMS V instrument. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 14 Z9 14 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 21 PY 2011 VL 115 IS 15 BP 3279 EP 3290 DI 10.1021/jp111437e PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 748PN UT WOS:000289403000012 PM 21410275 ER PT J AU Sivaramakrishnan, R Su, MC Michael, JV Klippenstein, SJ Harding, LB Ruscic, B AF Sivaramakrishnan, R. Su, M-C Michael, J. V. Klippenstein, S. J. Harding, L. B. Ruscic, B. TI Shock Tube and Theoretical Studies on the Thermal Decomposition of Propane: Evidence for a Roaming Radical Channel SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ACTIVE THERMOCHEMICAL TABLES; TRANSITION-STATE THEORY; EVALUATED KINETIC-DATA; RATE CONSTANTS; HIGH-TEMPERATURE; CHEMICAL-KINETICS; METHYL RADICALS; AB-INITIO; COMBUSTION CHEMISTRY; PREDICTIVE THEORY AB The thermal decomposition of propane has been studied using both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for propane have been measured at high temperatures behind reflected shock waves using high-sensitivity H-ARAS detection and CH(3) optical absorption. The two major dissociation channels at high temperature are C(3)H(8) -> CH(3) + C(2)H(5) (eq 1a) and C(3)H(8) -> CH(4) + C(2)H(4) (eq 1b). Ultra high-sensitivity ARAS detectior of H-atoms produced from the decomposition of the product, C2H5, in (la), allowed measurements of both the total decomposition rate constants, k(total), and the branching to radical products, k(1a)/k(total). Theoretical analyses indicate that the molecular products are formed exclusively through the roaming radical mechanism and that radical products are formed exclusively through channel la. The experiments were performed over the temperature range 1417-1819 K and gave a minor contribution of (10 +/- 8%) due to roaming. A multipass CH(3) absorption diagnostic using a Zn resonance lamp was also developed and characterized in this work using the thermal decomposition of CH(3)I as a reference reaction. The measured rate constants, for CH3I decomposition agreed with earlier determinations from this laboratory that were;based on I-atom ARAS measurements. This CH3 diagnostic Was then used to detect radicals from channel la allowing lower temperature (1202-1543 K) measurements of k(1a) to be determined. Variable reaction coordinate transition state theory. was used to Predict the high pressure limits for Channel (la) and other bond fission reactions in C(3)H(8). Conventional transition state theory calculations were also used to estimate rate constants for other tight transition state processes. These calculations predict a negligible contribution (< 1%) from all other bond fission and tight transition state processes, indicating that the bond fission channel (1a) and the roaming channel (1b) are indeed the only active channels at the temperature and pressure ranges of the present experiments. The predicted reaction exo- and endothermicities are in excellent agreement with the current version of the Active Thermochemical Tables. Master equation calculations incorporating these transition state theory results yield predictions for the temperature and pressure dependence of the dissociation rate constants for channel 1a. The final theoretical results reliably reproduce the measured dissociation rate constants that are reported here and in the literature. The experimental data are well reproduced over the 500-2500 K and 1 x 10(-4) to 100 bar range(errors of similar to 15% or less) by the following Troe parameters for Ar as the bath gas: k(infinity) = 1.55 x 10(24)T(-2.034) exp (-45 490/T) s(-1), k(0) = 7.92 x 10(53)T(-16.67) exp(-50 380/T) cm(3)s(-1), and F(c) = 0.190 exp (-T/3091) + 0.810 exp(-T/128) + exp(-8829/T). C1 [Sivaramakrishnan, R.; Su, M-C; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010; Ruscic, Branko/A-8716-2008; OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; Ruscic, Branko/0000-0002-4372-6990; Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357, 2009 ANL 59044] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under contract no. DE-AC02-06CH11357 as part of the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry, FWP# 2009 ANL 59044. NR 83 TC 29 Z9 30 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 21 PY 2011 VL 115 IS 15 BP 3366 EP 3379 DI 10.1021/jp2006205 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 748PN UT WOS:000289403000019 PM 21446707 ER PT J AU Gresham, GL Dinescu, A Benson, MT Van Stipdonk, MJ Groenewold, GS AF Gresham, Garold L. Dinescu, Adriana Benson, Michael T. Van Stipdonk, Michael J. Groenewold, Gary S. TI Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands Using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COLLISION-INDUCED DISSOCIATION; SIDEROPHORE DESFERRIOXAMINE-B; EFFECTIVE CORE POTENTIALS; HEAVY-METAL SORPTION; GAS-PHASE; SOLVENT-EXTRACTION; VIBRATIONAL SPECTROSCOPY; RADIOACTIVE-WASTES; AQUEOUS-SOLUTION; FLAVESCENS JG-9 AB Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula [UO2(NO3)(amide)(n=2,3)](+); however, singly charged complexes containing the amide conjugate base and reduced uranyl UO2+ were also formed as were several doubly charged species. The formamide experiment produced the greatest diversity of species resulting from weaker amide binding, leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed lower, abundance do ably charged complexes, but augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that interligand repulsion distorts the amide ligands out of the uranyl equatorial plane and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands. C1 [Gresham, Garold L.; Dinescu, Adriana; Benson, Michael T.; Groenewold, Gary S.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. [Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67208 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83402 USA. EM gary.groenewold@inl.gov RI Benson, Michael/B-8855-2017 OI Benson, Michael/0000-0003-4927-614X FU U.S. Department of Energy [DE-AC-07-99ID13727]; National Science Foundation [CAREER-0239800]; Kansas Technology Enterprise Corporation/Kansas NSF; U.S. Department of Energy through the INL FX The INL authors acknowledge support by the U.S. Department of Energy, Environmental Systems Research Program, under contract DE-AC-07-99ID13727. M.V.S. acknowledges support for this work by a grant from the National Science Foundation (CAREER-0239800), a First Award from the Kansas Technology Enterprise Corporation/Kansas NSF EPSCoR program, and a subcontract from the U.S. Department of Energy through the INL. The authors would like to thank T. Crain, A Custer, and J. S. Barklund for their assistance in generating the ESI data. NR 77 TC 10 Z9 10 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 21 PY 2011 VL 115 IS 15 BP 3497 EP 3508 DI 10.1021/jp109665a PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 748PN UT WOS:000289403000027 PM 21449598 ER PT J AU Alphei, LD Grabow, JU Petrov, AN Mawhorter, R Murphy, B Baum, A Sears, TJ Yang, TZ Rupasinghe, PM McRaven, CP Shafer-Ray, NE AF Alphei, Lukas D. Grabow, Jens-Uwe Petrov, A. N. Mawhorter, Richard Murphy, Benjamin Baum, Alexander Sears, Trevor J. Yang, T. Zh. Rupasinghe, P. M. McRaven, C. P. Shafer-Ray, N. E. TI Precision spectroscopy of the (PbF)-Pb-207-F-19 molecule: Implications for measurement of P-odd and T-odd effects SO PHYSICAL REVIEW A LA English DT Article ID ELECTRIC-DIPOLE MOMENT; TRANSFORM MICROWAVE SPECTROMETER; PBF; BEAM AB Here we report precision microwave spectroscopy of pure rotational transitions of the (PbF)-Pb-207-F-19 isotopologue. We use these data to make predictions of the sensitivity of the molecule to P-odd, T-even and P-odd, T-odd effects. C1 [Alphei, Lukas D.; Grabow, Jens-Uwe] Gottfried Wilhelm Leibniz Univ, Lehrgebiet A, Inst Phys Chem & Elektrochem, D-30167 Hannover, Germany. [Petrov, A. N.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Petrov, A. N.] St Petersburg State Univ, Inst Phys, St Petersburg 198904, Russia. [Mawhorter, Richard; Murphy, Benjamin; Baum, Alexander] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, T. Zh.; Rupasinghe, P. M.; McRaven, C. P.; Shafer-Ray, N. E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. RP Alphei, LD (reprint author), Gottfried Wilhelm Leibniz Univ, Lehrgebiet A, Inst Phys Chem & Elektrochem, D-30167 Hannover, Germany. RI Sears, Trevor/B-5990-2013; Petrov, Alexander/I-7865-2013 OI Sears, Trevor/0000-0002-5559-0154; Petrov, Alexander/0000-0003-1342-3160 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, and Biosciences; National Science Foundation [NSF-0855431]; Deutsche Forschungsgemeinschaft (DFG); Land Niedersachsen; RFBR [09-03-01034]; Pomona College FX Work by T.J.S. at Brookhaven National Laboratory was performed under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. Work by N.E.S.-R. was performed with support from National Science Foundation Award No. NSF-0855431. J.-U.G. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) and the Land Niedersachsen. A.N.P. acknowledges RFBR Grant No. 09-03-01034. R.J.M appreciates financial support from Pomona College. NR 43 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD APR 21 PY 2011 VL 83 IS 4 AR 040501 DI 10.1103/PhysRevA.83.040501 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 757RL UT WOS:000290105300001 ER PT J AU Bhattacharjee, J Neaton, JB AF Bhattacharjee, J. Neaton, J. B. TI Interfacing carbon nanotubes of arbitrary chiralities into linear heterojunctions SO PHYSICAL REVIEW B LA English DT Article ID INTRAMOLECULAR JUNCTIONS; THERMAL-CONDUCTIVITY; ELECTRONIC TRANSPORT; SYSTEMS AB Motivated by recent advances in synthesis and characterization of carbon nanotube (CNT) heterojunctions, we introduce a systematic approach for obtaining atomic geometries that connect two carbon nanotubes of different chiralities. Using our approach, it is straightforward to construct atomic interface geometries between two single-walled CNT's of arbitrary chiralities arranged at different orientations and angles. Our method generalizes existing approaches and is readily applicable to joining domains of graphene nanoribbons as well. As an example, we focus on linear heterojunctions, and we postulate the minimum number of simple topological defects required at the interface, and the preferred spatial arrangements, to obtain maximally linear heterojunctions given any two arbitrary chiralities. We also provide a physical picture of the defect structure of the resultant interface geometries using the results of classical force-field simulations. C1 [Bhattacharjee, J.; Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Bhattacharjee, J.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. RP Bhattacharjee, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RI Neaton, Jeffrey/F-8578-2015 OI Neaton, Jeffrey/0000-0001-7585-6135 FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation through Network for Computational Nanotechnology (NCN) FX J.B. thanks the National Institute for Science Education and Research (NISER) and the Department of Atomic Energy of the Government of India for generous support. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources required for this work were partially provided by NERSC. We also acknowledge the National Science Foundation for support through the Network for Computational Nanotechnology (NCN). NR 22 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 21 PY 2011 VL 83 IS 16 AR 165432 DI 10.1103/PhysRevB.83.165432 PG 7 WC Physics, Condensed Matter SC Physics GA 757UT UT WOS:000290113900008 ER PT J AU Dudek, JJ Edwards, RG Peardon, MJ Richards, DG Thomas, CE AF Dudek, Jozef J. Edwards, Robert G. Peardon, Michael J. Richards, David G. Thomas, Christopher E. CA Hadron Spectrum Collaboration TI Phase shift of isospin-2 pi pi scattering from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID GEV-C; MATRIX; SYSTEM AB Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the Luscher technique. In this letter, as a trial of the method, we report on the extraction of the nonresonant phase-shift for S and D-wave pi pi isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum. C1 [Dudek, Jozef J.; Edwards, Robert G.; Richards, David G.; Thomas, Christopher E.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Peardon, Michael J.] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland. RP Dudek, JJ (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org FU DOE under Jefferson Science Associates, LLC. [AC05-06OR23177]; Science Foundation Ireland [07/RFP/PHYF168] FX We thank our colleagues within the Hadron Spectrum Collaboration. Chroma [23] and GPU-code from Clark et al. [24,25] were used to perform this work on clusters at Jefferson Laboratory using time provided by the USQCD Initiative. This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Laboratory. M. P. is supported by Science Foundation Ireland under research Grant No. 07/RFP/PHYF168 NR 25 TC 38 Z9 38 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 21 PY 2011 VL 83 IS 7 AR 071504 DI 10.1103/PhysRevD.83.071504 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757TF UT WOS:000290109900001 ER PT J AU Keller, D Hicks, K Adhikari, KP Adhikari, KP Adikaram, D Aghasyan, M Amarian, M Baghdasaryan, H Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Bennett, RP Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Casey, L Cole, PL Contalbrigo, M Crede, V D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dickson, R Djalali, C Doughty, D Dupre, R Egiyan, H El Alaoui, A El Fassi, L Eugenio, P Fedotov, G Fegan, S Forest, TA Gabrielyan, MY Gavalian, G Gevorgyan, N Giovanetti, KL Girod, FX Gohn, W Golovatch, E Gothe, RW Graham, L Guidal, M Guegan, B Hafidi, K Hakobyan, H Hanretty, C Holtrop, M Ilieva, Y Ireland, DG Isupov, EL Jawalkar, SS Jenkins, D Jo, HS Joo, K Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Konczykowski, P Kubarovsky, V Kuleshov, SV Kuznetsov, V Lu, HY MacGregor, IJD Markov, N McAndrew, J McKinnon, B Meyer, CA Micherdzinska, AM Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Ni, A Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Pappalardo, LL Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Raue, BA Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Schott, D Schumacher, RA Seder, E Seraydaryan, H Sharabian, YG Smith, ES Smith, GD Sober, DI Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Taiuti, M Tang, W Taylor, CE Vernarsky, B Vineyard, MF Voutier, E Weinstein, LB Watts, DP Wood, MH Zachariou, N Zana, L Zhao, B Zhao, ZW AF Keller, D. Hicks, K. Adhikari, K. P. Adhikari, K. P. Adikaram, D. Aghasyan, M. Amarian, M. Baghdasaryan, H. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Bennett, R. P. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Casey, L. Cole, P. L. Contalbrigo, M. Crede, V. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dickson, R. Djalali, C. Doughty, D. Dupre, R. Egiyan, H. El Alaoui, A. El Fassi, L. Eugenio, P. Fedotov, G. Fegan, S. Forest, T. A. Gabrielyan, M. Y. Gavalian, G. Gevorgyan, N. Giovanetti, K. L. Girod, F. X. Gohn, W. Golovatch, E. Gothe, R. W. Graham, L. Guidal, M. Guegan, B. Hafidi, K. Hakobyan, H. Hanretty, C. Holtrop, M. Ilieva, Y. Ireland, D. G. Isupov, E. L. Jawalkar, S. S. Jenkins, D. Jo, H. S. Joo, K. Khandaker, M. Khetarpal, P. Kim, A. Kim, W. Klein, A. Klein, F. J. Konczykowski, P. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Lu, H. Y. MacGregor, I. J. D. Markov, N. McAndrew, J. McKinnon, B. Meyer, C. A. Micherdzinska, A. M. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Ni, A. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pappalardo, L. L. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Raue, B. A. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Schott, D. Schumacher, R. A. Seder, E. Seraydaryan, H. Sharabian, Y. G. Smith, E. S. Smith, G. D. Sober, D. I. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tang, W. Taylor, C. E. Vernarsky, B. Vineyard, M. F. Voutier, E. Weinstein, L. B. Watts, D. P. Wood, M. H. Zachariou, N. Zana, L. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Electromagnetic decay of the Sigma(0)(1385) to Lambda gamma SO PHYSICAL REVIEW D LA English DT Article ID QUARK-MODEL; RADIATIVE DECAYS; HYPERONS; BARYONS; STRANGENESS; DECUPLET AB The electromagnetic decay Sigma(0)(1385) -> Lambda gamma was studied using the CLAS detector at the Thomas Jefferson National Accelerator Facility. A real photon beam with a maximum energy of 3.8 GeV was incident on a proton target, producing an exclusive final state of K+Sigma*(0). We report the decay widths ratio Sigma(0)(1385) -> Lambda gamma/Sigma(0)(1385) -> Lambda pi(0) = 1.42 +/- 0.12(stat)(-0.07)(+0.11)(sys)%. This ratio is larger than most theoretical predictions by factors ranging from 1.5-3, but is consistent with the only other experimental measurement. From the reported ratio we calculate the partial width and electromagnetic transition magnetic moment for Sigma(0)(1385) -> Lambda gamma. C1 [Keller, D.; Hicks, K.; Daniel, A.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Biselli, A. S.; Dey, B.; Dickson, R.; Lu, H. Y.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Girod, F. X.; Konczykowski, P.; Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Seder, E.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Gabrielyan, M. Y.; Khetarpal, P.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Taiuti, M.] Univ Genoa, Sharon, PA 16146 USA. [Briscoe, W. J.; Ilieva, Y.; Micherdzinska, A. M.; Munevar, E.; Strakovsky, I. I.; Strauch, S.; Zachariou, N.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Forest, T. A.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Pappalardo, L. L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Aghasyan, M.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; De Vita, R.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Guegan, B.; Jo, H. S.; Niccolai, S.; Pisano, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, A.; Kim, W.; Kuznetsov, V.; Ni, A.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, CNRS IN2P3, INPG, LPSC, Grenoble, France. [Gavalian, G.; Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Adhikari, K. P.; Adhikari, K. P.; Adikaram, D.; Amarian, M.; Baghdasaryan, H.; Bennett, R. P.; Careccia, S. L.; Gavalian, G.; Klein, A.; Seraydaryan, H.; Sharabian, Y. G.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Kubarovsky, V.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Golovatch, E.; Isupov, E. L.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Fedotov, G.; Gothe, R. W.; Graham, L.; Ilieva, Y.; Strauch, S.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Egiyan, H.; Girod, F. X.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Raue, B. A.; Smith, E. S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Ireland, D. G.; MacGregor, I. J. D.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Baghdasaryan, H.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA. [Jawalkar, S. S.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Gevorgyan, N.; Hakobyan, H.; Paremuzyan, R.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Keller, D (reprint author), Ohio Univ, Athens, OH 45701 USA. RI El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Adikaram, Dasuni/D-1539-2016; Adikaram, D/H-7128-2016; MacGregor, Ian/D-4072-2011; Ireland, David/E-8618-2010; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013 OI Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X FU Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; U.S. Department of Energy [DE-AC05-84ER40150]; National Science Foundation; UK Science and Technology Facilities Council (STFC); Scottish Universities Physics Alliance (SUPA); National Research Foundation of Korea FX The authors thank the staff of the Thomas Jefferson National Accelerator Facility who made this experiment possible. This work was supported in part by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the U.S. Department of Energy, the National Science Foundation, the UK Science and Technology Facilities Council (STFC), the Scottish Universities Physics Alliance (SUPA), and the National Research Foundation of Korea. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-84ER40150. NR 33 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 21 PY 2011 VL 83 IS 7 AR 072004 DI 10.1103/PhysRevD.83.072004 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757TF UT WOS:000290109900002 ER PT J AU Yu, XW Pribiag, VS Acremann, Y Tulapurkar, AA Tyliszczak, T Chou, KW Brauer, B Li, ZP Lee, OJ Gowtham, PG Ralph, DC Buhrman, RA Stohr, J AF Yu, X. W. Pribiag, V. S. Acremann, Y. Tulapurkar, A. A. Tyliszczak, T. Chou, K. W. Braeuer, B. Li, Z. -P. Lee, O. J. Gowtham, P. G. Ralph, D. C. Buhrman, R. A. Stoehr, J. TI Images of a Spin-Torque-Driven Magnetic Nano-Oscillator SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS; VORTICES AB We present the first space- and time-resolved images of the spin-torque-induced steady-state oscillation of a magnetic vortex in a spin-valve nanostructure. We find that the vortex structure in a nanopillar is considerably more complicated than the 2D idealized structure often-assumed, which has important implications for the driving efficiency. The sense of the vortex gyration is uniquely determined by the vortex core polarity, confirming that the spin-torque acts as a source of negative damping even in such a strongly nonuniform magnetic system. The orbit radius is similar to 10 nm, in agreement with micromagnetic simulations. C1 [Pribiag, V. S.; Li, Z. -P.; Lee, O. J.; Gowtham, P. G.; Ralph, D. C.; Buhrman, R. A.] Cornell Univ, Ithaca, NY 14853 USA. [Yu, X. W.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Acremann, Y.; Tulapurkar, A. A.; Braeuer, B.; Stoehr, J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Tyliszczak, T.; Chou, K. W.] Adv Light Source, Berkeley, CA 94720 USA. RP Pribiag, VS (reprint author), Cornell Univ, Ithaca, NY 14853 USA. FU US Department of Energy, Office of Basic Energy Sciences; ALS; Office of Naval Research; Army Research Office; NSF through its NSEC; NSF FX The x-ray work was performed at the Advanced Light Source in Berkeley which, like the work of the SLAC/Stanford authors, is supported by the US Department of Energy, Office of Basic Energy Sciences. X. W. Y. acknowledges support from the ALS. The Cornell authors acknowledge support from the Office of Naval Research, the Army Research Office, and the NSF through its NSEC program. The research was performed in part at the Cornell NanoScale Facility, which is supported by the NSF. NR 26 TC 33 Z9 33 U1 0 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 21 PY 2011 VL 106 IS 16 AR 167202 DI 10.1103/PhysRevLett.106.167202 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OI UT WOS:000290097100011 PM 21599407 ER PT J AU Du, SY Germann, TC Francisco, JS Peterson, KA Yu, HG Lyons, JR AF Du, Shiyu Germann, Timothy C. Francisco, Joseph S. Peterson, Kirk A. Yu, Hua-Gen Lyons, James R. TI The kinetics study of the S + S-2 -> S-3 reaction by the chaperone mechanism SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MASS-INDEPENDENT FRACTIONATION; OZONE FORMATION; OXYGEN ATOMS; BASIS-SETS; AB-INITIO; SULFUR; ATMOSPHERE; VENUS; MECHANISM; RECOMBINATION AB The recombination of S atoms has been found to be stepwise from the smallest unit, the elemental S atom, to the most abundant molecule S-8. The reaction between S + S-2 -> S-3 has not been reported either experimentally or by theory, but may be a key intermediate step in the formation of sulfur aerosols in low-O-2 atmospheres. In this work, the kinetics of this reaction is reported with Ar gas used as the chaperone molecule in the production of S-3 via two complex intermediates: SAr + S-2 and S2Ar + S. Quasi-classical and classical trajectory methods are used. The rate constant of the S + S-2 + Ar -> S-3 + Ar reaction is determined to be 2.66 x 10(-33) cm(6) mol(-1) s(-1) at 298.15 K. The temperature dependence of the reaction is found to be 2.67 x 10(-33) exp[143.56(1/T-1/298.15)]. The second-order rate constant of S + S-2 -> S-3 is 6.47 x 10(-14) cm(3) molecule(-1) s(-1) at 298.15 K and the Arrhenius-type rate constant is calculated to be 6.25 x 10(-14) exp[450.15(1/T-1/298.15)] cm(3) molecule(-1) s(-1). This work provides a rate coefficient for a key intermediate species in studies of sulfur formation in the modern Venus atmosphere and the primitive Earth atmosphere, for which assumed model rate coefficients have spanned nearly 4 orders of magnitude. Although a symmetry-induced mass-independent isotope effect is not expected for a chaperone mechanism, the present work is an important step toward evaluating whether mass-independence is expected for thiozone formation as is observed for ozone formation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3572226] C1 [Du, Shiyu; Germann, Timothy C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Peterson, Kirk A.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Yu, Hua-Gen] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lyons, James R.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Du, SY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM francisc@purdue.edu RI Yu, Hua-Gen/N-7339-2015; OI Germann, Timothy/0000-0002-6813-238X FU U.S. Department of Energy [DE-AC02-98CH10886] FX H.G.Y. was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 50 TC 2 Z9 2 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2011 VL 134 IS 15 AR 154508 DI 10.1063/1.3572226 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 754FM UT WOS:000289840200029 PM 21513396 ER PT J AU Duffin, AM Schwartz, CP England, AH Uejio, JS Prendergast, D Saykally, RJ AF Duffin, Andrew M. Schwartz, Craig P. England, Alice H. Uejio, Janel S. Prendergast, David Saykally, Richard J. TI pH-dependent x-ray absorption spectra of aqueous boron oxides SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BORATE ION-PAIRS; K-EDGE XANES; BORIC-ACID; POLYBORATE EQUILIBRIA; B-11 NMR; SPECTROSCOPY; COORDINATION; DISSOCIATION; POLYANIONS; CONSTANTS AB Near edge x-ray absorption fine structure (NEXAFS) spectra at the boron K-edge were measured for aqueous boric acid, borate, and polyborate ions, using liquid microjet technology, and compared with simulated spectra calculated from first principles density functional theory in the excited electron and core hole (XCH) approximation. Thermal motion in both hydrated and isolated molecules was incorporated into the calculations by sampling trajectories from quantum mechanics/molecular mechanics simulations at the experimental temperature. The boron oxide molecules exhibit little spectral change upon hydration, relative to mineral samples. Simulations reveal that water is arranged nearly isotropically around boric acid and sodium borate, but the calculations also indicate that the boron K-edge NEXAFS spectra are insensitive to hydrogen bonding, molecular environment, or salt interactions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3574838] C1 [Duffin, Andrew M.; Schwartz, Craig P.; England, Alice H.; Uejio, Janel S.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Duffin, Andrew M.; Schwartz, Craig P.; England, Alice H.; Uejio, Janel S.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94618 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu OI England, Alice/0000-0001-7698-8156 FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy through LBNL Chemical Sciences Division [AC02-05CH11231]; Molecular Foundry FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the LBNL Chemical Sciences Division and the Molecular Foundry. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. NR 36 TC 10 Z9 10 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2011 VL 134 IS 15 AR 154503 DI 10.1063/1.3574838 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 754FM UT WOS:000289840200024 PM 21513391 ER PT J AU Parkhill, JA Azar, J Head-Gordon, M AF Parkhill, John A. Azar, Julian Head-Gordon, Martin TI The formulation and performance of a perturbative correction to the perfect quadruples model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COUPLED-CLUSTER ENERGIES; QUANTUM-CHEMISTRY; NUCLEAR REACTIONS; UNIFIED THEORY; WAVE-FUNCTION; EQUATION; IMPLEMENTATION; SINGLES; PACKAGE; SYSTEMS AB A recently published alternative hierarchy of coupled-cluster approximations is reformulated as a perturbative correction. A single variant, a model for the total electronic energy based on the perfect quadruples model, is explored in detail. The computational scaling of the method developed is the same as canonical second order Moller-Plesset perturbation theory (fifth order in the number of molecular orbitals), but its accuracy competes with the high-accuracy, high-cost standard CCSD(T), even when the latter is allowed to break spin-symmetry. The variation presented can be implemented without explicit calculation and storage of the most expensive energy contributions, thereby improving the range of systems which can be treated. The performance and scaling of the method are demonstrated with calculations on the water, fluorine, and oxirane molecules, and compared to the parent model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582729] C1 [Parkhill, John A.; Azar, Julian; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Parkhill, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM john.parkhill@gmail.com; julianazar2323@berkeley.edu; mhg@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the (U.S.) Department of Energy (DOE) [DE-AC0376SF00098]; SciDac Program FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the (U.S.) Department of Energy (DOE) under Contract No. DE-AC0376SF00098, and by a grant from the SciDac Program. NR 44 TC 8 Z9 8 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2011 VL 134 IS 15 AR 154112 DI 10.1063/1.3582729 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 754FM UT WOS:000289840200013 PM 21513380 ER PT J AU Huse, N Cho, H Hong, K Jamula, L de Groot, FMF Kim, TK McCusker, JK Schoenlein, RW AF Huse, Nils Cho, Hana Hong, Kiryong Jamula, Lindsey de Groot, Frank M. F. Kim, Tae Kyu McCusker, James K. Schoenlein, Robert W. TI Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HIGH-SPIN STATE; CHARGE-TRANSFER; WATER AB We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)(3))](2+), where the ultrafast spin state conversion of the metal ion, initiated by metal-to-ligand charge transfer excitation, is directly measured using the intrinsic spin state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase. C1 [Huse, Nils; Cho, Hana; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Cho, Hana; Hong, Kiryong; Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Pusan 609735, South Korea. [Cho, Hana; Hong, Kiryong; Kim, Tae Kyu] Pusan Natl Univ, Chem Inst Funct Mat, Pusan 609735, South Korea. [Jamula, Lindsey; McCusker, James K.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [de Groot, Frank M. F.] Univ Utrecht, Dept Chem, NL-3584 Utrecht, Netherlands. RP Huse, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM nhuse@lbl.gov; tkkim@pusan.ac.kr RI de Groot, Frank/A-1918-2009; Schoenlein, Robert/D-1301-2014; KIM, TAE KYU/A-8737-2016; Institute (DINS), Debye/G-7730-2014; Huse, Nils/A-5712-2017 OI Schoenlein, Robert/0000-0002-6066-7566; KIM, TAE KYU/0000-0002-9578-5722; Huse, Nils/0000-0002-3281-7600 FU Office of Science, Office of Basic Energy Sciences, the Chemical Sciences, Geosciences, and Biosciences Division under the Department of Energy [AC02-05CH11231, DE-FG02-01ER15282]; Ministry of Education, Science and Technology [2009-0068446, 2010-0006570]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, the Chemical Sciences, Geosciences, and Biosciences Division under the Department of Energy, Contract No. DE-AC02-05CH11231 (N.H., H.C., and R.W.S.) and Grant No. DE-FG02-01ER15282 (J.K.M.), as well as the Basic Science Research Program 2009-0068446 and 2010-0006570 through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (T.K.K.). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 95 Z9 95 U1 10 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD APR 21 PY 2011 VL 2 IS 8 BP 880 EP 884 DI 10.1021/jz200168m PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 754BA UT WOS:000289824800007 PM 26295622 ER PT J AU Chappell, HE Hughes, BK Beard, MC Nozik, AJ Johnson, JC AF Chappell, Helen E. Hughes, Barbara K. Beard, Matthew C. Nozik, Arthur J. Johnson, Justin C. TI Emission Quenching in PbSe Quantum Dot Arrays by Short-Term Air Exposure SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; SOLAR-CELLS; RELAXATION; CORE/SHELL; DYE AB Clear evidence for two emitting states in PbSe nanocrystals (NCs) has been observed. The flow of population between these two states as temperature increases is interrupted by the presence of nonradiative trap states correlated with the exposure of the NC film to air. Quenching of the higher energy emission begins after only seconds of exposure, with the effect saturating after several days. Unlike short-term oxygen related effects in solution, the emission quenching appears to be irreversible, signaling a distinction between surface reactivity in NCs in films and that in solution. The origin of the two emissive centers and the impact of trapping on other NC film properties (e.g., electron/hole mobilities) remain important issues to be resolved. C1 [Chappell, Helen E.; Hughes, Barbara K.; Beard, Matthew C.; Nozik, Arthur J.; Johnson, Justin C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chappell, Helen E.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hughes, Barbara K.; Nozik, Arthur J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM justin.johnson@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI BEARD, MATTHEW/0000-0002-2711-1355 FU NSF; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-AC36-08GO28308] FX We thank Joey Luther for assistance with sample preparation. H.E.C acknowledges support from the NSF Graduate Research Fellows Program. This work was supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Contract No. DE-AC36-08GO28308 to NREL. NR 27 TC 35 Z9 35 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD APR 21 PY 2011 VL 2 IS 8 BP 889 EP 893 DI 10.1021/jz2001979 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 754BA UT WOS:000289824800009 PM 26295624 ER PT J AU Worsley, MA Olson, TY Lee, JRI Willey, TM Nielsen, MH Roberts, SK Pauzauskie, PJ Biener, J Satcher, JH Baumann, TF AF Worsley, Marcus A. Olson, Tammy Y. Lee, Jonathan R. I. Willey, Trevor M. Nielsen, Michael H. Roberts, Sarah K. Pauzauskie, Peter J. Biener, Juergen Satcher, Joe H., Jr. Baumann, Theodore F. TI High Surface Area, sp(2)-Cross-Linked Three-Dimensional Graphene Monoliths SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ELECTRICAL-CONDUCTIVITY; CARBON AEROGELS; LAYER GRAPHENE; SINGLE-LAYER; GRAPHITE; SHEETS; FILMS AB Developing three-dimensional (3D) graphene assemblies with properties similar to these individual graphene sheets is a promising strategy for graphene-based electrodes. Typically, the synthesis of 3D graphene assemblies relies on van der Waals forces for holding the grapheme sheets together, resulting in bulk properties that do not reflect those reported for individual graphene sheets. Here, we report the use of sol gel chemistry to introduce chemical bonding between the graphene sheets and control the bulk properties of graphene-based aerogels. Adjusting synthetic parameters allows a wide range of control over surface area, pore volume, and pore size, as well as the nature of the chemical cross-links (sp(2) vs sp(3)). The bulk properties of the graphene-based aerogels represent a significant step toward realizing the propeities of individual graphene sheets in a 3D assembly with surface areas approaching the theoretical value of an individual sheet. C1 [Worsley, Marcus A.; Olson, Tammy Y.; Lee, Jonathan R. I.; Willey, Trevor M.; Nielsen, Michael H.; Roberts, Sarah K.; Pauzauskie, Peter J.; Biener, Juergen; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Worsley, Marcus/G-2382-2014; Nielsen, Michael/D-1881-2015; Willey, Trevor/A-8778-2011; Pauzauskie, Peter/A-1316-2014 OI Worsley, Marcus/0000-0002-8012-7727; Willey, Trevor/0000-0002-9667-8830; FU LLNL [10-LW-045]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. DOE at LBNL [DE-AC03-76SF00098]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy FX Project 10-LW-045 was funded by the LDRD Program at LLNL. The work conducted at the Advanced Light Source waa supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. DOE under Contract No. DE-AC03-76SF00098 at LBNL. The authors thank the ALS staff, particularly Wanli Yang, for their assistance during the course of these experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 33 TC 100 Z9 104 U1 16 U2 152 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD APR 21 PY 2011 VL 2 IS 8 BP 921 EP 925 DI 10.1021/jz200223x PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 754BA UT WOS:000289824800014 PM 26295629 ER PT J AU Ferroni, L Koch, V AF Ferroni, L. Koch, V. TI Mean-field approach to flavor susceptibilities with a vector interaction SO PHYSICAL REVIEW C LA English DT Article ID ELLIPTIC FLOW; MATTER; MODEL; FLUCTUATIONS AB We show that flavor-diagonal and off-diagonal susceptibilities of light quarks at vanishing chemical potential can be calculated consistently assuming the baryon density and isospin density dependence of QCD to be expressed by a vector-isoscalar and a vector-isovector coupling, respectively. At the mean-field level, their expression depends only on the effective medium-dependent couplings and quark thermodynamic potential. The strength of the couplings can be then estimated from the model using lattice QCD data as an input. C1 [Ferroni, L.; Koch, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Ferroni, L.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Ferroni, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; Helmholtz International Center FX This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and by the Helmholtz International Center for FAIR within the framework of the LOEWE program (Landesoffensive zur Entwicklung Wissenschaftlich-Okonomischer Exzellenz) launched by the State of Hesse. NR 49 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 21 PY 2011 VL 83 IS 4 AR 045205 DI 10.1103/PhysRevC.83.045205 PG 7 WC Physics, Nuclear SC Physics GA 758JP UT WOS:000290161000004 ER PT J AU Kwan, E Rusev, G Adekola, AS Donau, F Hammond, SL Howell, CR Karwowski, HJ Kelley, JH Pedroni, RS Raut, R Tonchev, AP Tornow, W AF Kwan, E. Rusev, G. Adekola, A. S. Doenau, F. Hammond, S. L. Howell, C. R. Karwowski, H. J. Kelley, J. H. Pedroni, R. S. Raut, R. Tonchev, A. P. Tornow, W. TI Discrete deexcitations in U-235 below 3 MeV from nuclear resonance fluorescence SO PHYSICAL REVIEW C LA English DT Article ID MAGNETIC DIPOLE STRENGTH; ACTINIDE NUCLEI; SCATTERING; EXCITATIONS; PHOTOEXCITATION; DELBRUCK; TH-232; DY-163 AB Gamma-ray transitions in U-235 were measured using the (gamma,gamma') reaction below 3 MeV. The nuclear-resonance-fluorescence experiment was carried out at the High-Intensity gamma-ray Source facility using nearly monoenergetic and circularly polarized photon beams. More than 20 transitions corresponding to deexcitations to the ground state and low-lying levels in U-235 were observed. The integrated cross sections to the excited levels and intensities of branching transitions were deduced. The experimental results are compared with predictions from a quasiparticle random-phase approximation in a deformed basis. C1 [Kwan, E.; Rusev, G.; Howell, C. R.; Raut, R.; Tonchev, A. P.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Kwan, E.; Rusev, G.; Adekola, A. S.; Hammond, S. L.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Pedroni, R. S.; Raut, R.; Tonchev, A. P.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Adekola, A. S.; Hammond, S. L.; Karwowski, H. J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Doenau, F.] Forschungszentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Kelley, J. H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Pedroni, R. S.] N Carolina Agr & Tech State Univ, Dept Phys, Greensboro, NC 27411 USA. RP Kwan, E (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. FU DHS; DOE [2008-DN-077-ARI010, 2008-DN-077-ARI014, DE-FG02-97ER41033, DE-FG02-97ER41] FX The authors would like to thank LANL and in particular R. O. Nelson for loaning us the 235U targets and J. R. Tompkins for his assistance during the measurements. This work was supported in part by the DHS and DOE under Grants No. 2008-DN-077-ARI010, No. 2008-DN-077-ARI014, No. DE-FG02-97ER41033, and No. DE-FG02-97ER41. NR 35 TC 25 Z9 25 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 21 PY 2011 VL 83 IS 4 AR 041601 DI 10.1103/PhysRevC.83.041601 PG 5 WC Physics, Nuclear SC Physics GA 758JP UT WOS:000290161000001 ER PT J AU Sun, C Wu, YK AF Sun, C. Wu, Y. K. TI Theoretical and simulation studies of characteristics of a Compton light source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GAMMA-RAY BEAMS; STORAGE-RING; POLARIZATION AB Compton scattering of a laser beam with a relativistic electron beam has been used to generate intense, highly polarized and nearly monoenergetic x-ray or gamma-ray beams at many facilities. The ability to predict the spatial, spectral, and temporal characteristics of a Compton gamma-ray beam is crucial for the optimization of the operation of a Compton light source as well as for the applications utilizing the Compton beam. In this paper, we present two approaches, one based upon analytical calculations and the other based upon Monte Carlo simulations, to study the Compton scattering process for various electron and laser-beam parameters as well as different gamma-beam collimation conditions. These approaches have been successfully applied to characterize Compton gamma-ray beams, after being benchmarked against experimental results at the High Intensity Gamma-ray Source (HI gamma S) facility at Duke University. C1 Duke Univ, Dept Phys, Durham, NC 27708 USA. Triangle Univ Nucl Lab, DFELL, Durham, NC 27708 USA. RP Sun, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM CCSun@lbl.gov FU U.S. Department of Defense [FA9550-04-01-0086]; U.S. Department of Energy, Office of Nuclear Physics [DE-FG02-97ER41033] FX This work is supported in part by the U.S. Department of Defense MFEL Program as administered by the AROSR under Contract No. FA9550-04-01-0086 and by the U.S. Department of Energy, Office of Nuclear Physics under Grant No. DE-FG02-97ER41033. NR 26 TC 34 Z9 35 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR 21 PY 2011 VL 14 IS 4 AR 044701 DI 10.1103/PhysRevSTAB.14.044701 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 758IO UT WOS:000290158000001 ER PT J AU Sushko, ML Liu, J AF Sushko, Maria L. Liu, Jun TI Surfactant Two-Dimensional Self-Assembly under Confinement SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID COPOLYMER THIN-FILMS; DENSITY-FUNCTIONAL THEORY; SYMMETRIC DIBLOCK COPOLYMER; MONTE-CARLO-SIMULATION; MEAN SPHERICAL MODEL; BLOCK-COPOLYMERS; PHASE-BEHAVIOR; POLYELECTROLYTE SOLUTIONS; THERMODYNAMIC PROPERTIES; CYLINDRICAL CONFINEMENT AB Confinement-induced structural rearrangements in supported self-assembled surfactant layers in aqueous salt solutions are investigated using classical density functional theory. The systematic study of the influence of the nature of electrolyte revealed that 2:1 electrolyte stabilizes the hemicylindrical configuration of ionic surfactant layers, while a confinement-induced transition to a tilted monolayer configuration was found in symmetric 1:1 and 2:2 electrolytes. On the basis of this study, we formulate a general model for the energetics of structural rearrangements in supported surfactant layers. This model provides a basis for directed self-assembly of surfactant templates with desired structure and stability for scalable synthesis of nanocomposite functional materials, templated crystal growth, and biomolecule adsorption. C1 [Sushko, Maria L.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sushko, ML (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM maria.sushko@pnl.gov RI Sushko, Maria/C-8285-2014 OI Sushko, Maria/0000-0002-7229-7072 FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; Battelle [DE-AC05-76RL01830] FX The development of the cDFT software is supported by the Laboratory-Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The study of surfactant self-assembly in confined environment is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 64 TC 4 Z9 4 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 21 PY 2011 VL 115 IS 15 BP 4322 EP 4328 DI 10.1021/jp2003497 PG 7 WC Chemistry, Physical SC Chemistry GA 748PO UT WOS:000289403100007 PM 21443214 ER PT J AU Assary, RS Redfern, PC Greeley, J Curtiss, LA AF Assary, Rajeev S. Redfern, Paul C. Greeley, Jeffrey Curtiss, Larry A. TI Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALPHA-D-GLUCOPYRANOSE; BETA-D-GLUCOPYRANOSE; B3LYP/6-311++G-ASTERISK-ASTERISK LEVEL; CATALYTIC CONVERSION; HIGH-TEMPERATURE; BIOMASS; DEHYDRATION; GLUCOSE; FUELS; WATER AB Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (I-IMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large, about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved. C1 [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Greeley, Jeffrey; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Evanston, IL 60208 USA. RP Assary, RS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM assary@anl.gov; curtiss@anl.gov RI Surendran Assary, Rajeev/E-6833-2012 OI Surendran Assary, Rajeev/0000-0002-9571-3307 FU U.S. Department of Energy [DE-AC0206CH11357]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; EMSL; ANL Laboratory Computing Resource Center (LCRC); ANL Center for Nanoscale Materials FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357. This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. We gratefully acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, the ANL Laboratory Computing Resource Center (LCRC), and the ANL Center for Nanoscale Materials. NR 41 TC 47 Z9 49 U1 5 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 21 PY 2011 VL 115 IS 15 BP 4341 EP 4349 DI 10.1021/jp1104278 PG 9 WC Chemistry, Physical SC Chemistry GA 748PO UT WOS:000289403100009 PM 21443225 ER PT J AU Kathmann, SM Kuo, IFW Mundy, CJ Schenter, GK AF Kathmann, Shawn M. Kuo, I-Feng William Mundy, Christopher J. Schenter, Gregory K. TI Understanding the Surface Potential of Water SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIQUID-VAPOR INTERFACE; FREE-ENERGIES; WORK FUNCTION; ELECTROSTATIC POTENTIALS; MOLECULAR-DYNAMICS; ELECTROLYTE; DIFFRACTION; SOLVATION; CLUSTERS; CRYSTAL AB We have resolved the inconsistency in quantifying the surface potential at the liquid vapor interface when using explicit ab initio electronic charge density and effective atomic partial charge models of liquid water. This is related, in part, to the fact that the resulting electric potentials from partial-charge models and ab initio charge distributions are quite different except for those regions of space between the molecules. We show that the electrostatic surface potential from a quantum mechanical charge distribution compares well to high-energy electron diffraction and electron holography measurements, as opposed to the comparison with electrochemical measurements. We suggest that certain regions of space be excluded when comparing computed surface potentials with electrochemical measurements. This work describes a novel interpretation of ab initio computed surface potentials through high-energy electron holography measurements as useful benchmarks toward a better understanding of electrochemistry. C1 [Kathmann, Shawn M.; Mundy, Christopher J.; Schenter, Gregory K.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Kuo, I-Feng William] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM shawn.kathmann@pnl.gov RI Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We gratefully acknowledge helpful discussions with Dr. Kevin Leung (at Sandia National Laboratory, Albuquerque, New Mexico) and Prof. Yan Levin (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil). This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences program and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. They also acknowledge the state-of-the-art facilities at PNNL; namely, the 1500 CPU Linux cluster consisting of 2.33 GHz Clovertown chips (NWice) housed in EMSL. Part of this work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with some computer resources being provided by Livermore Computing. PNNL is operated by Battelle for the US Department of Energy. NR 54 TC 78 Z9 79 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 21 PY 2011 VL 115 IS 15 BP 4369 EP 4377 DI 10.1021/jp1116036 PG 9 WC Chemistry, Physical SC Chemistry GA 748PO UT WOS:000289403100012 PM 21449605 ER PT J AU Leu, BM Sage, JT Silvernail, NJ Scheidt, WR Alatas, A Alp, EE Sturhahn, W AF Leu, Bogdan M. Sage, J. Timothy Silvernail, Nathan J. Scheidt, W. Robert Alatas, Ahmet Alp, Ercan E. Sturhahn, Wolfgang TI Bulk Modulus of a Protein Active-Site Mimic SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RESONANCE VIBRATIONAL SPECTROSCOPY; X-RAY-SCATTERING; SUPEROXIDE-DISMUTASE; MODEL COMPOUNDS; PORPHYRINS; IRON; DYNAMICS; COMPRESSIBILITY; FLUCTUATIONS; ENVIRONMENT AB Flexibility is an important property of porphyrins, both natural and synthetic. We applied two synchrotron-based techniques, nuclear resonance vibrational spectroscopy and inelastic X-ray scattering, to quantify this property by measuring the bulk modulus of a protein active-site mimic [chloro(octaethylporphyrinato)iron(III] and the resilience of the iron environment. Their values are 6.95 +/- 0.24 GPa and 15.4 +/- 0.5 N/m, respectively. C1 [Leu, Bogdan M.; Alatas, Ahmet; Alp, Ercan E.; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Silvernail, Nathan J.; Scheidt, W. Robert] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM leu@aps.anl.gov RI Leu, Bogdan/J-9952-2015 OI Leu, Bogdan/0000-0003-2020-0686 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [PHY-0545787]; University of Chicago under contract with the U.S. Department of Energy, Office of Science FX We thank Prof. Stephen M. Durbin for the help provided during the NRVS measurements. Work at the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Generous support for the NRVS experiments was provided by the National Science Foundation (PHY-0545787). Argonne National Laboratory is operated by The University of Chicago under contract with the U.S. Department of Energy, Office of Science. NR 59 TC 5 Z9 5 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 21 PY 2011 VL 115 IS 15 BP 4469 EP 4473 DI 10.1021/jp112007z PG 5 WC Chemistry, Physical SC Chemistry GA 748PO UT WOS:000289403100024 PM 21434623 ER PT J AU Beckham, GT Crowley, MF AF Beckham, Gregg T. Crowley, Michael F. TI Examination of the alpha-Chitin Structure and Decrystallization Thermodynamics at the Nanoscale SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FAMILY 18 CHITINASE; CRYSTAL-STRUCTURE PREDICTION; CARBOHYDRATE-BINDING MODULE; SERRATIA-MARCESCENS; MOLECULAR-DYNAMICS; RECALCITRANT POLYSACCHARIDES; CELLULOSE HYDROLYSIS; BETA-CHITIN; I-BETA; PROCESSIVITY AB Chitin is the primary structural material of insect and crustacean exoskeletons and fungal and algal cell walls, and as such it is the one of the most abundant biological materials on Earth. Chitin forms linear polymers of beta 1,4-linked-N-acetyl-D-glucosamine (GlcNAc), and in Nature, enzyme cocktails deconstruct chitin to GlcNAc. The mechanism of chitin deconstruction, like that of cellulose deconstruction, has been under investigation due to its importance in the global carbon cycle and in production of renewable and sustainable products from biological matter. To further understand the nanoscale properties of chitin, here we simulate crystals of a-chitin, which is the most prevalent form in Nature. We find excellent agreement with the recently reported crystal structure and we report the salient features of the simulations related to crystalline stability. We also compute the thermodynamic work required to peel individual chains from a-chitin surfaces, which a chitinase enzyme must conduct to deconstruct chitin. Compared with previous simulations of native plant cellulose I beta, alpha-chitin exhibits higher decrystallization work for chains in the middle of surfaces and similar work for chains on the edges of crystals. Unlike cellulose, the free energy profile is dominated by a single bifurcated hydrogen bond between chains formed by the GlcNAc side chains and the O6 atoms on the primary alcohol group. This study highlights the molecular features of chitin that make it such a tough, recalcitrant material, and provides a key thermodynamic parameter in our quantitative understanding of how enzymes contribute to the turnover of carbohydrates in the biosphere. C1 [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80202 USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80202 USA. [Beckham, Gregg T.] Renewable & Sustainable Energy Inst, Boulder, CO 80302 USA. [Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80202 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80202 USA. EM gregg.beckham@nrel.gov RI crowley, michael/A-4852-2013 OI crowley, michael/0000-0001-5163-9398 FU National Science Foundation [MCB090159]; DOE Office of EERE [DE-AC36-08GO28308] FX Computer time was provided by the TACC Ranger cluster under the National Science Foundation Teragrid Grant MCB090159 and by the NREL Computational Sciences Center supported by the DOE Office of EERE under Contract Number DE-AC36-08GO28308. We acknowledge use of Alan Grossfield's WHAM code. All figures were made with VMD 1.8.7.59 We thank James Matthews, Yannick Bomble, Michael Himmel, and Baron Peters for helpful discussions. NR 59 TC 26 Z9 26 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 21 PY 2011 VL 115 IS 15 BP 4516 EP 4522 DI 10.1021/jp200912q PG 7 WC Chemistry, Physical SC Chemistry GA 748PO UT WOS:000289403100029 PM 21452798 ER PT J AU Baca, AJ Montgomery, JM Cambrea, LR Moran, M Johnson, L Yacoub, J Truong, TT AF Baca, Alfred J. Montgomery, Jason M. Cambrea, Lee R. Moran, Mark Johnson, Linda Yacoub, Jeanine Truong, Tu T. TI Optimization of Nanopost Plasmonic Crystals for Surface Enhanced Raman Scattering SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SILVER ELECTRODE; REFRACTIVE-INDEX; SPECTROSCOPY; ARRAYS; NANOHOLE; EXCITATION; MOLECULES; PYRIDINE; SPECTRA AB We present experimental and theoretical studies of a type of Surface Enhanced Raman Scattering (SERS) substrate composed of a metal coated square array of nanopost structures formed via soft nanoimprinting. These SERS substrates exhibit higher SERS intensities in comparison to those obtained with the corresponding square array of nanowell structures with similar spatial layouts and demonstrate multiple analyte detection using SERS. Three dimensional finite-difference time domain (3D-FDTD) simulations qualitatively capture the key features of these systems and suggest a route to the fabrication of optimized, highly efficient SERS substrates in s lico. Collectively, the ease of fabrication high sensitivities and predictable responses suggest an attractive route to SERS substrates for portable chemical warfare agent detection, environment monitors, and other applications. C1 [Baca, Alfred J.; Cambrea, Lee R.; Moran, Mark; Johnson, Linda] USN, NAVAIR NAWCWD, Res & Intelligence Dept, Chem Branch, China Lake, CA 93555 USA. [Montgomery, Jason M.; Yacoub, Jeanine] Florida So Coll, Dept Chem, Lakeland, FL 33801 USA. [Truong, Tu T.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Baca, AJ (reprint author), USN, NAVAIR NAWCWD, Res & Intelligence Dept, Chem Branch, China Lake, CA 93555 USA. EM alfred.baca@navy.mil RI Truong, Tu/E-7029-2011 FU NAVAIR; Office of Science of the U.S. Department of Energy [DE AC02-05CH11231]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the NAVAIR Independent Applied Research (TAR) program managed by Scott Munro. The computational portion of this research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE AC02-05CH11231. A.J.B. would like to thank Prof. John A. Rogers for generously donating masters used in this work. J.M M. and J.Y. would like to thank Jeffrey M. McMahon for his parallel 3D FDTD code. A.J.B. would like to thank Dan Connor for SEM measurements and Drs. M.J. Roberts and G. Ostrom and Mr. Tyler A. Cain for helpful discussions. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 36 TC 12 Z9 12 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 21 PY 2011 VL 115 IS 15 BP 7171 EP 7178 DI 10.1021/jp109066c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 748PP UT WOS:000289403200004 ER PT J AU Sivasankar, N Frei, H AF Sivasankar, N. Frei, H. TI Direct Observation of Kinetically Competent Surface Intermediates upon Ethylene Hydroformylation over Rh/Al2O3 under Reaction Conditions by Time-Resolved Fourier Transform Infrared Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FT-IR SPECTROSCOPY; CO HYDROGENATION; CARBON-MONOXIDE; HIGH-PRESSURE; OXIDATIVE ADDITION; RH/SIO2 CATALYSTS; C2H4 HYDROGENATION; PT/AL2O3 CATALYST; TEMPERATURE; MECHANISM AB Time resolved Fourier transform infrared (FTIR) spectroscopy with milli- second resolution (rapid scan technique) has been employed to detect multiple kinetically relevant surface intermediates in heterogeneous catalytic hydroformylation of ethylene over alumina supported Rh nanoparticles at 443 K (1 atm total pressure). While corresponding single component C2H4 hydrogenation over Rh/Al2O3 nanoparticle catalysts yields ethane, no hydrogenation of transient ethyl-intermediate is observed in the presence of CO Hence, complete product selectivity is observed with respect to branching between hydroformylation and direct ethylene hydrogenation to ethane. Surface ethyl intermediate (C2H5Rh: 2876, 2855, 1190 cm(-1)) is converted to propionyl intermediate (C2H5C(=O)Rh: 2869. 1675 cm(-1)) by reaction with CO with a time constant of 2.7 s. The spectral assignments of propionyl were confirmed by the observation of C-13 shifts. Hydrogenation of propionyl to propionaldehyde with its characteristic C=O (1737 cm(-1); C-13=O at 1696 cm(-1)) and aldehyde C-H absorption (2715 cm(-1)) is the rate-limiting step and proceeds with a time constant of 4.4s. This is the first time-resolved observation of consecutive elementary steps of heterogeneous catalytic hydrocarbon conversion under reaction conditions. C1 [Sivasankar, N.; Frei, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM HMFrei@lbl.gov RI zhang, huidong/B-5667-2011 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 16 Z9 16 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 21 PY 2011 VL 115 IS 15 BP 7545 EP 7553 DI 10.1021/jp112391n PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 748PP UT WOS:000289403200048 ER PT J AU Deskins, NA Rousseau, R Dupuis, M AF Deskins, N. Aaron Rousseau, Roger Dupuis, Michel TI Distribution of Ti3+ Surface Sites in Reduced TiO2 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; OXYGEN VACANCIES; ELECTRONIC STATES; TITANIUM-DIOXIDE; PLUS U; TIO2(110); DEFECTS; RUTILE; OXIDE AB We describe a DFT+U study of the (110) rutile surface with oxygen vacancies (O-v's)(2) Oxygen vacancies leave behind two excess unpaired electrons per O-v, leading formally to the formation of two Ti3+ ions. We investigate the location of the Ti3+ ions within the first three surface layers. In total, we obtained 49 unique solutions of possible Ti3+ pairs, to examine the stability of all Ti type (e.g., five-coordinated surface Ti, six-coordinated surface Ti, subsurface sites etc). Our results show that subsurface sites are preferred but that many configurations are close in energy within up to 0.3-0.4 eV of each other. In contrast to findings in previous work, we show that sites directly adjacent to the O-v's are unstable. Analysis of out results show that the two Ti3+ ions within a pair behave independently of each other, as there are little electronic interactions between the excess electrons associated with these sites. We also examined the migration of Ti3+ sites from the surface into the bulk and find the surface locations to be preferred by similar to 0.5 eV relative to the bulk. Our systematic results provide a comprehensive picture of excess electrons that indicates that they are not trapped or localized at specific sites but are distributed across several sites due to nearly degenerate Ti3(+) states. C1 [Deskins, N. Aaron] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. [Rousseau, Roger; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Deskins, NA (reprint author), Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. EM nadeskins@wpi.edu RI Deskins, Nathaniel/H-3954-2012; Rousseau, Roger/C-3703-2014 FU U.S. Department of Energy, Office of Biological and Environmental Research; U.S. Department of Energy, Office of Basic Energy Sciences FX We wish to thank Zdenek Dohnalek, Igor Lyubinetsky, and Greg Kimmel at Pacific Northwest National Laboratory for insightful discussions. Computer time was provided by the National Energy Research Scientific Computing Center, a U.S. Department of Energy User Facility, and by the Environmental Molecular Science Laboratory, a User Facility sponsored by the U.S. Department of Energy, Office of Biological and Environmental Research. The Environmental Molecular Science Laboratory is located at Pacific Northwest National Laboratory in Richland, WA. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. Funding was provided by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 59 TC 95 Z9 96 U1 9 U2 136 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 21 PY 2011 VL 115 IS 15 BP 7562 EP 7572 DI 10.1021/jp2001139 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 748PP UT WOS:000289403200050 ER PT J AU Kim, H Nakamura, J Shao, HY Nakamura, Y Akiba, E Chapman, KW Chupas, PJ Proffen, T AF Kim, Hyunjeong Nakamura, Jin Shao, Huaiyu Nakamura, Yumiko Akiba, Etsuo Chapman, Karena W. Chupas, Peter J. Proffen, Thomas TI Local Structural Evolution of Mechanically Alloyed Mg50Co50 Using Atomic Pair Distribution Function Analysis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHASE-TRANSFORMATION; HIGH-RESOLUTION; HYDROGEN; COBALT; DETECTOR; METALS AB Milling-time-dependent local structural evolution of mechanically alloyed Mg50Co50 was investigated by the atomic pair distribution function analysis using both neutron and synchrotron X-ray powder diffraction data. The initial powder mixture was composed of three phases: hexagonal close-packed (hcp) Mg, hcp Co, and face-centered cubic (fcc) Co. As milling progressed, rather rapid reduction in crystallite sizes of hcp Mg and hcp Co along with the formation of the Mg50Co50 phase was observed. Meanwhile, size reduction in the fcc Co phase was found to be relatively gradual, accompanied by heavy strain. Mg50Co50 forms at the early stage of milling and bears an amorphous nature. C1 [Kim, Hyunjeong; Nakamura, Jin; Shao, Huaiyu; Nakamura, Yumiko; Akiba, Etsuo] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058565, Japan. [Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Kim, H (reprint author), Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Cent 5-2,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. EM hj.kim@aist.go.jp RI Lujan Center, LANL/G-4896-2012; Chapman, Karena/G-5424-2012; Shao, Huaiyu/L-9252-2015; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU New Energy and Industrial Technology Development Organization (NEDO); DOE Office of Basic Energy Sciences [DE-AC52-06NA25396]; U.S. DOE [DE-AC02-06CH11357] FX We thank Kevin Beyer, Katherine Page, and Joan Siewenie for help with the experiments. H.K. thanks Kouji Sakaki and Saishun Yamazaki for help in using RIETAN-FP and Junko Matsuda and Itoko Matsumoto for useful discussions. This work was partly supported by the New Energy and Industrial Technology Development Organization (NEDO) under Advanced Fundamental Research Project on Hydrogen Storage Materials (HYDRO-STAR). Work performed at the Lujan Neutron Scattering Center was funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 30 TC 6 Z9 6 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 21 PY 2011 VL 115 IS 15 BP 7723 EP 7728 DI 10.1021/jp111711c PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 748PP UT WOS:000289403200069 ER PT J AU Wong, BM Lacina, D Nielsen, IMB Graetz, J Allendorf, MD AF Wong, Bryan M. Lacina, David Nielsen, Ida M. B. Graetz, Jason Allendorf, Mark D. TI Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LEWIS BASE-ADDUCTS; TERTIARY-AMINES; AMMONIA ALANE; AB-INITIO; CHEMISTRY; ALUMINUM; ALH3; GALLANE; DIMETHYLETHYLAMINE; TRIMETHYLAMINE AB Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board-methods; however almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4 (MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH3-nRn (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane and tetrahydrofuran (THF). Monomer, bis and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of Delta G degrees for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system. C1 [Wong, Bryan M.; Nielsen, Ida M. B.; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Lacina, David; Graetz, Jason] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU U.S. Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-98CH1-886] FX This work was supported by the U.S. Department of Energy Fuel Cell Technologies Program through the Sandia Metal Hydride Center of Excellence. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. D.L. and J.G. acknowledge support from the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-98CH1-886. NR 37 TC 19 Z9 19 U1 5 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 21 PY 2011 VL 115 IS 15 BP 7778 EP 7786 DI 10.1021/jp112258s PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 748PP UT WOS:000289403200076 ER PT J AU Johnson, PB Bahadori, AA Eckerman, KF Lee, C Bolch, WE AF Johnson, Perry B. Bahadori, Amir A. Eckerman, Keith F. Lee, Choonsik Bolch, Wesley E. TI Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID MU-CT IMAGES; BONE-MARROW; DOSIMETRY; PROTECTION; SPONGIOSA; EXPOSURE AB A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue. C1 [Johnson, Perry B.; Bahadori, Amir A.; Bolch, Wesley E.] Univ Florida, Gainesville, FL 32611 USA. [Eckerman, Keith F.] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. [Lee, Choonsik] NCI, Radiat Epidemiol Branch, Bethesda, MD 20892 USA. RP Bolch, WE (reprint author), Univ Florida, Gainesville, FL 32611 USA. EM wbolch@ufl.edu RI Lee, Choonsik/C-9023-2015 OI Lee, Choonsik/0000-0003-4289-9870 FU National Cancer Institute [R01 CA116743, R01 CA96441]; US Department of Energy [DE-FG07-06ID14773] FX This research was supported in part by grants R01 CA116743 and R01 CA96441 with the National Cancer Institute, and by grant DE-FG07-06ID14773 with the US Department of Energy. NR 18 TC 30 Z9 33 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD APR 21 PY 2011 VL 56 IS 8 BP 2347 EP 2365 DI 10.1088/0031-9155/56/8/002 PG 19 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 749PL UT WOS:000289480700003 PM 21427484 ER PT J AU Maramraju, SH Smith, SD Junnarkar, SS Schulz, D Stoll, S Ravindranath, B Purschke, ML Rescia, S Southekal, S Pratte, JF Vaska, P LWoody, C Schlyer, DJ AF Maramraju, Sri Harsha Smith, S. David Junnarkar, Sachin S. Schulz, Daniela Stoll, Sean Ravindranath, Bosky Purschke, Martin L. Rescia, Sergio Southekal, Sudeepti Pratte, Jean-Francois Vaska, Paul LWoody, Craig Schlyer, David J. TI Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID MR-COMPATIBLE PET; POSITRON-EMISSION-TOMOGRAPHY; RAT-BRAIN; HYBRID PET/MRI; SCANNER; DETECTOR; SYSTEM; ACQUISITION; FIELD; FEASIBILITY AB We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [C-11]raclopride and 2-deoxy-2-[F-18]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI. C1 [Maramraju, Sri Harsha; Ravindranath, Bosky; Vaska, Paul; Schlyer, David J.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Smith, S. David; Schulz, Daniela; Vaska, Paul; Schlyer, David J.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Junnarkar, Sachin S.; Rescia, Sergio] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Stoll, Sean; Purschke, Martin L.; LWoody, Craig] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Southekal, Sudeepti] Brigham & Womens Hosp, Boston, MA 02115 USA. [Pratte, Jean-Francois] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. RP Maramraju, SH (reprint author), SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. EM schlyer@bnl.gov RI Rescia, Sergio/D-8604-2011; Schulz, Daniela/H-5625-2011; Southekal, Sudeepti/E-6100-2015 OI Rescia, Sergio/0000-0003-2411-8903; Southekal, Sudeepti/0000-0002-5540-5000 FU US Department of Energy [DE-AC02-98CH10886]; BNL; State University of New York at Stony Brook FX The authors would like to thank William Lenz for building tube assemblies, custom-made MRI coils and the rat-head holder, Joe Gatz for building the mouse holder and Joseph Carrion for assisting in preparing and injecting the mice. They also thank the personnel at BNL's PET center and Cyclotron for providing radioisotopes for our studies. This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy as collaboration between BNL and the State University of New York at Stony Brook. NR 56 TC 46 Z9 47 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD APR 21 PY 2011 VL 56 IS 8 BP 2459 EP 2480 DI 10.1088/0031-9155/56/8/009 PG 22 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 749PL UT WOS:000289480700010 PM 21441651 ER PT J AU Richardson, E Akiba, Y Anderson, N Bickley, AA Chujo, T Cole, BA Esumi, S Haggerty, JS Hanks, J Hemmick, TK Hutchison, M Ikeda, Y Inaba, M Jia, J Lynch, D Miake, Y Mignerey, AC Niida, T O'Brien, E Pak, R Shimomura, M Stankus, PW Todoroki, T Watanabe, K Wei, R Xie, W Zajc, WA Zhang, C AF Richardson, E. Akiba, Y. Anderson, N. Bickley, A. A. Chujo, T. Cole, B. A. Esumi, S. Haggerty, J. S. Hanks, J. Hemmick, T. K. Hutchison, M. Ikeda, Y. Inaba, M. Jia, J. Lynch, D. Miake, Y. Mignerey, A. C. Niida, T. O'Brien, E. Pak, R. Shimomura, M. Stankus, P. W. Todoroki, T. Watanabe, K. Wei, R. Xie, W. Zajc, W. A. Zhang, C. TI A reaction plane detector for PHENIX at RHIC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Paddle; Heavy-ions; Reaction plane; PHENIX; RHIC ID QUARK-GLUON PLASMA; COLLISIONS; COLLABORATION; PERSPECTIVE; PHOBOS AB A plastic scintillator paddle detector with embedded fiber light guides and photomultiplier tube readout, referred to as the Reaction Plane Detector (RXNP), was designed and installed in the PHENIX experiment prior to the 2007 run of the Relativistic Heavy Ion Collider (RHIC). The RXNP's design is optimized to accurately measure the reaction plane (RP) angle of heavy-ion collisions, where, for mid-central root S-NN = 200 GeV Au + Au collisions, it achieved a 2nd harmonic RP resolution of similar to 0.75, which is a factor of similar to 2 greater than PHENIX's previous capabilities. This improvement was accomplished by locating the RXNP in the central region of the PHENIX experiment, where, due to its large coverage in pseudorapidity (1.0 < vertical bar eta vertical bar < 2.8) and phi (2 pi), it is exposed to the high particle multiplicities needed for an accurate RP measurement. To enhance the observed signal, a 2-cm Pb converter is located between the nominal collision region and the scintillator paddles, allowing neutral particles produced in the heavy-ion collisions to contribute to the signal through conversion electrons. This paper discusses the design, operation and performance of the RXNP during the 2007 RHIC run. (C) 2011 Elsevier B.V. All rights reserved. C1 [Richardson, E.; Anderson, N.; Hutchison, M.; Mignerey, A. C.] Univ Maryland, College Pk, MD 20742 USA. [Haggerty, J. S.; Jia, J.; Lynch, D.; O'Brien, E.; Pak, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Bickley, A. A.] Univ Colorado, Boulder, CO 80309 USA. [Cole, B. A.; Hanks, J.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Cole, B. A.; Hanks, J.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Stankus, P. W.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Akiba, Y.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Xie, W.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Jia, J.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hemmick, T. K.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Miake, Y.; Niida, T.; Shimomura, M.; Todoroki, T.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. RP Richardson, E (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM ericr@umd.edu RI Mignerey, Alice/D-6623-2011 NR 29 TC 17 Z9 17 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2011 VL 636 IS 1 BP 99 EP 107 DI 10.1016/j.nima.2011.01.034 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 745QI UT WOS:000289180300012 ER PT J AU Podlesnyak, A Ehlers, G Frontzek, M Sefat, AS Furrer, A Strassle, T Pomjakushina, E Conder, K Demmel, F Khomskii, DI AF Podlesnyak, A. Ehlers, G. Frontzek, M. Sefat, A. S. Furrer, A. Straessle, Th. Pomjakushina, E. Conder, K. Demmel, F. Khomskii, D. I. TI Effect of carrier doping on the formation and collapse of magnetic polarons in lightly hole-doped La1-xSrxCoO3 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-STATE TRANSITION; PHASE-SEPARATION; LACOO3 AB We investigate the doping dependence of the nanoscale electronic and magnetic inhomogeneities in the hole-doping range 0.002 <= x <= 0.1 of cobalt based perovskites, La1-xSrxCoO3. Using single-crystal inelastic neutron scattering and magnetization measurements we show that the lightly doped system exhibits magnetoelectronic phase separation in the form of spin-state polarons. Higher hole doping leads to a decay of spin-state polarons in favor of larger scalemagnetic clusters, due to competing ferromagnetic correlations of Co3+ ions which are formed by neighboring polarons. The present data give evidence for two regimes of magnetoelectronic phase separation in this system: (i) x less than or similar to 0.05, dominated by ferromagnetic intrapolaron interactions, and (ii) x greater than or similar to 0.05, dominated by Co3+ -Co3+ intracluster interactions. Our conclusions are in good agreement with a recently proposed model of the phase separation in cobalt perovskites [C. He et al., Europhys. Lett. 87, 27006 (2009)]. C1 [Podlesnyak, A.; Ehlers, G.; Frontzek, M.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Sefat, A. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Furrer, A.; Straessle, Th.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Pomjakushina, E.; Conder, K.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Demmel, F.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Khomskii, D. I.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. RP Podlesnyak, A (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM podlesnyakaa@ornl.gov RI Instrument, CNCS/B-4599-2012; Frontzek, Matthias/C-5146-2012; Podlesnyak, Andrey/A-5593-2013; Ehlers, Georg/B-5412-2008; Sefat, Athena/R-5457-2016 OI Frontzek, Matthias/0000-0001-8704-8928; Podlesnyak, Andrey/0000-0001-9366-6319; Ehlers, Georg/0000-0003-3513-508X; Sefat, Athena/0000-0002-5596-3504 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy [DE-AC05-00OR22725]; NCCR FX The authors thank N. Baranov for fruitful discussions. This work is partly based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Switzerland, and the ISIS facility, UK. This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Research at ORNL is partly sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. ORNL is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the US Department of Energy. The authors are grateful for the local support staff at SNS, ISIS, and PSI. The work of E.P. was partly supported by the NCCR program MaNEP. NR 39 TC 15 Z9 15 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 21 PY 2011 VL 83 IS 13 AR 134430 DI 10.1103/PhysRevB.83.134430 PG 8 WC Physics, Condensed Matter SC Physics GA 784FS UT WOS:000292142300009 ER PT J AU Usman, ITM Yates, KA Moore, JD Morrison, K Pecharsky, VK Gschneidner, KA Verhagen, T Aarts, J Zverev, VI Robinson, JWA Witt, JDS Blamire, MG Cohen, LF AF Usman, I. T. M. Yates, K. A. Moore, J. D. Morrison, K. Pecharsky, V. K. Gschneidner, K. A. Verhagen, T. Aarts, J. Zverev, V. I. Robinson, J. W. A. Witt, J. D. S. Blamire, M. G. Cohen, L. F. TI Evidence for spin mixing in holmium thin film and crystal samples SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTOR-FERROMAGNET STRUCTURES; ANDREEV REFLECTION; TRIPLET SUPERCURRENTS; MAGNETIC STRUCTURES; POLARIZATION; TRANSITION; METALS; FIELD; CRO2 AB In a number of recent experiments, holmium has been shown to promote spin-triplet pairing when in proximity to a spin-singlet superconductor. The condition for the support of spin-triplet pairing is that the ferromagnet should have an inhomogeneous magnetic state at the interface with the superconductor. Here we use Andreev reflection spectroscopy to study the properties of single ferromagnet/superconductor interfaces formed of holmium and niobium, as a function of the contact resistance of the junction between them. We find that both single-crystal and c-axis-oriented thin-film holmium show unusual behavior for low junction contact resistance, characteristic of spin-mixing-type properties, which are thought necessary to underpin spin-triplet formation. We also explore whether this signature is observed when the junction is formed of Ni0.19Pd0.81 and niobium. C1 [Usman, I. T. M.; Yates, K. A.; Moore, J. D.; Morrison, K.; Cohen, L. F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. [Pecharsky, V. K.; Gschneidner, K. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Verhagen, T.; Aarts, J.] Leiden Inst Phys, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Zverev, V. I.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia. [Robinson, J. W. A.; Witt, J. D. S.; Blamire, M. G.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Usman, ITM (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, Prince Consort Rd, London SW7 2AZ, England. RI morrison, kelly/G-5249-2013; Zverev, Vladimir/D-9196-2014; Verhagen, Tim/G-5651-2014 OI morrison, kelly/0000-0001-5672-3310; Zverev, Vladimir/0000-0002-6977-2143; Verhagen, Tim/0000-0001-7703-221X FU UK EPSRC [EP/F016271/1, EPSRC EP/F016611/1]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering with Iowa State University [DE-AC02-07CH11358]; AMT&C Group Ltd., UK FX This work was supported by the UK EPSRC (Grant No. EP/F016271/1 and EPSRC EP/F016611/1). Work at Ames Laboratory is supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358 with Iowa State University. V.I.Z. acknowledges support by the AMT&C Group Ltd., UK. NR 45 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 21 PY 2011 VL 83 IS 14 AR 144518 DI 10.1103/PhysRevB.83.144518 PG 6 WC Physics, Condensed Matter SC Physics GA 784HH UT WOS:000292147000004 ER PT J AU Jing, C Kanareykin, A Power, JG Conde, M Liu, W Antipov, S Schoessow, P Gai, W AF Jing, C. Kanareykin, A. Power, J. G. Conde, M. Liu, W. Antipov, S. Schoessow, P. Gai, W. TI Experimental Demonstration of Wakefield Acceleration in a Tunable Dielectric Loaded Accelerating Structure SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report on a collinear wakefield experiment using the first tunable dielectric loaded accelerating structure. By introducing an extra layer of nonlinear ferroelectric, which has a dielectric constant sensitive to temperature and dc bias, the frequency of a dielectric loaded accelerating structure can be tuned. During the experiment, the energy of a witness bunch at a fixed delay with respect to the drive beam was measured while the temperature of the structure was scanned over a 50 degrees C range. The energy change corresponded to a change of more than half of the nominal structure wavelength. C1 [Jing, C.; Kanareykin, A.; Antipov, S.; Schoessow, P.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Jing, C.; Power, J. G.; Conde, M.; Liu, W.; Antipov, S.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Jing, C (reprint author), Euclid Techlabs LLC, 5900 Harper Rd, Solon, OH 44139 USA. FU Department of Energy [DE-FG02-07ER84822]; Department of Energy, Office of High Energy Physics [W-31-109-ENG-38] FX The work is supported by the Department of Energy SBIR program under Contractor No. DE-FG02-07ER84822, and by the Department of Energy, Office of High Energy Physics, under the Contract No. W-31-109-ENG-38. NR 13 TC 4 Z9 4 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 21 PY 2011 VL 106 IS 16 AR 164802 DI 10.1103/PhysRevLett.106.164802 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OI UT WOS:000290097100003 PM 21599371 ER PT J AU Winterrose, ML Mauger, L Halevy, I Yue, AF Lucas, MS Munoz, JA Tan, H Xiao, Y Chow, P Sturhahn, W Toellner, TS Alp, EE Fultz, B AF Winterrose, M. L. Mauger, L. Halevy, I. Yue, A. F. Lucas, M. S. Munoz, J. A. Tan, H. Xiao, Y. Chow, P. Sturhahn, W. Toellner, T. S. Alp, E. E. Fultz, B. TI Dynamics of iron atoms across the pressure-induced Invar transition in Pd3Fe SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR RESONANT SCATTERING; AUGMENTED-WAVE METHOD; DENSITY-OF-STATES; FE-PT; MAGNETIC-MOMENTS; BULK MODULUS; X-RAY; ALLOYS; FE72PT28; PHONONS AB The Fe-57 phonon partial density of states (PDOS) in L1(2)-ordered Pd3Fe was studied at high pressures by nuclear resonant inelastic x-ray scattering (NRIXS) measurements and density functional theory (DFT) calculations. The NRIXS spectra showed that the stiffening of the 57Fe PDOS with decreasing volume was slower from 12 to 24GPa owing to the pressure-induced Invar transition in Pd3Fe, with a change from a high-moment ferromagnetic (FM) state to a low-moment (LM) state observed by nuclear forward scattering. Force constants obtained from fitting to a Born-von Karman model showed a relative softening of the first-nearest-neighbor (1NN) Fe-Pd longitudinal force constants at the magnetic transition. For the FM low-pressure state, the DFT calculations gave a PDOS and 1NN longitudinal force constants in good agreement with experiment, but discrepancies for the high-pressure LM state suggest the presence of short-range magnetic order. C1 [Winterrose, M. L.; Mauger, L.; Halevy, I.; Yue, A. F.; Lucas, M. S.; Munoz, J. A.; Tan, H.; Fultz, B.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Xiao, Y.; Chow, P.] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Sturhahn, W.; Toellner, T. S.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Winterrose, ML (reprint author), CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. RI Munoz, Jorge/C-8427-2011 FU NSF [DMR-0520547]; Department of Energy; DOE NNSA; DOE BES [DE-AC02-06CH11357] FX We thank Brandon Keith, Jiao Lin, Chen Li, and Michael McKerns for software development and assistance. We thank Kun Woo Kim for assistance with the low-temperature NFS measurements. We thank Olivier Delaire and Max Kresch for helpful discussions. This work benefitted from the DANSE software developed under NSF Award No. DMR-0520547. This work was supported by the Department of Energy through the Carnegie-DOE Alliance Center, funded by the Department of Energy through the Stewardship Sciences Academic Alliance Program. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE NNSA, DOE BES, and NSF. Use of the APS was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 55 TC 2 Z9 2 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 20 PY 2011 VL 83 IS 13 AR 134304 DI 10.1103/PhysRevB.83.134304 PG 8 WC Physics, Condensed Matter SC Physics GA 813YW UT WOS:000294407600003 ER PT J AU Teweldeberhan, AM Bonev, SA AF Teweldeberhan, A. M. Bonev, S. A. TI Structural and thermodynamic properties of liquid Na-Li and Ca-Li alloys at high pressure SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; LITHIUM; EFFICIENT; SODIUM; MODEL AB The thermodynamic, electronic, and structural properties of liquid Na-Li and Ca-Li alloys at high pressure have been studied using ab initio molecular dynamics simulations. Gibbs free energies of pure Na, Ca, Li, and their mixtures (Na-Li and Ca-Li) are computed from vibrational density of states to determine the mixing-demixing behavior of the alloys. The computed electronic and structural properties of the mixtures with different concentrations are compared with the pure liquids up to around 265 GPa and 2000 K. C1 [Teweldeberhan, A. M.; Bonev, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bonev, S. A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. RP Teweldeberhan, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU NSERC; LLNL [DE-AC52- 07NA27344]; ACEnet FX This work is supported by ACEnet, LLNL, and NSERC. Work at LLNL is prepared under Contract No. DE-AC52- 07NA27344. The authors would also like to thank ACEnet, LC, and WestGrid for providing computational facilities. NR 35 TC 11 Z9 11 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 20 PY 2011 VL 83 IS 13 AR 134120 DI 10.1103/PhysRevB.83.134120 PG 6 WC Physics, Condensed Matter SC Physics GA 773JZ UT WOS:000291304600002 ER PT J AU Jacobsen, B Matzel, J Hutcheon, ID Krot, AN Yin, QZ Nagashima, K Ramon, EC Weber, PK Ishii, HA Ciesla, FJ AF Jacobsen, Benjamin Matzel, Jennifer Hutcheon, Ian D. Krot, Alexander N. Yin, Qing-Zhu Nagashima, Kazuhide Ramon, Erick C. Weber, Peter K. Ishii, Hope A. Ciesla, Fred J. TI FORMATION OF THE SHORT-LIVED RADIONUCLIDE Cl-36 IN THE PROTOPLANETARY DISK DURING LATE-STAGE IRRADIATION OF A VOLATILE-RICH RESERVOIR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; meteorites, meteors, meteoroids; nuclear reactions, nucleosynthesis, abundances; protoplanetary disks ID EARLY SOLAR-SYSTEM; REFRACTORY INCLUSIONS; ABUNDANCE RATIOS; ATOMIC-WEIGHT; EXTINCT CL-36; AL-26; ALLENDE; ORIGIN; CHONDRULES; METEORITES AB Short-lived radionuclides (SLRs) in the early solar system provide fundamental insight into protoplanetary disk evolution. We measured the Cl-36-S-36-isotope abundance in wadalite (<15 mu m), a secondary chlorine-bearing mineral found in calcium-aluminum-rich inclusions (CAIs) in the Allende CV chondrite, to decipher the origin of the SLR Cl-36 (tau(1/2) similar to 3 x 10(5) yr) in the early solar system. Its presence, initial abundance, and the noticeable decoupling from Al-26 raise serious questions about the origin of SLRs. The inferred initial Cl-36 abundance for wadalite, corresponding to a Cl-36/Cl-35 ratio of (1.81 +/- 0.13) x 10(-5), is the highest Cl-36 abundance ever reported in any early solar system material. The high level of 36Cl in wadalite and the absence of Al-26 (Al-26/Al-27 <= 3.9 x 10(-6)) in co-existing grossular (1) unequivocally support the production of Cl-36 by late-stage solar energetic particle irradiation in the protoplanetary disk and (2) indicates that the production of Cl-36, recorded by wadalite, is unrelated to the origin of Al-26 and other SLRs (Be-10, Mn-53) recorded by primary minerals of CAIs and chondrules. We infer that Cl-36 was largely produced by irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the region in which the CV chondrite parent asteroid accreted while the Sun was a weak T Tauri star. Subsequently, Cl-36 accreted into the Allende CV chondrite together with condensed water ices. C1 [Jacobsen, Benjamin; Yin, Qing-Zhu] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Jacobsen, Benjamin; Matzel, Jennifer; Hutcheon, Ian D.; Ramon, Erick C.; Weber, Peter K.] Lawrence Livermore Natl Lab, Div Chem Sci, Glenn T Seaborg Inst, Livermore, CA 94550 USA. [Matzel, Jennifer; Hutcheon, Ian D.; Ishii, Hope A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Krot, Alexander N.; Nagashima, Kazuhide] Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Ciesla, Fred J.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Jacobsen, B (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, Glenn T Seaborg Inst, Livermore, CA 94550 USA. EM jacobsen5@llnl.gov RI Yin, Qing-Zhu/B-8198-2009 OI Yin, Qing-Zhu/0000-0002-4445-5096 FU NASA [NAG5-10610, NNX07AI81G, NAG5-4212, NNX08AG57G, NNX09AC93G, NNH04AB47I]; Glenn Seaborg Institute; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Larry Nittler for a constructive review. This work was supported by NASA Grants NAG5-10610 and NNX07AI81G (A. N. Krot, P.I.), NAG5-4212 (K. Keil, P.I.), NNX08AG57G and NNX09AC93G (Q.-Z. Yin, P.I.), and NNH04AB47I (I. D. Hutcheon, P.I.) and by the Glenn Seaborg Institute. This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 26 TC 19 Z9 19 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2011 VL 731 IS 2 AR L28 DI 10.1088/2041-8205/731/2/L28 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797LB UT WOS:000293128100007 ER PT J AU Gu, Y Sun, W Wang, GF Fang, N AF Gu, Yan Sun, Wei Wang, Gufeng Fang, Ning TI Single Particle Orientation and Rotation Tracking Discloses Distinctive Rotational Dynamics of Drug Delivery Vectors on Live Cell Membranes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD NANOPARTICLES; TAT PEPTIDE; NANORODS; LOCALIZATION; TRANSDUCTION; FLUORESCENCE; MICROSCOPY; SENSORS; SURFACE AB Engineered nanoparticles have emerged as potentially revolutionary drug and gene delivery vectors. Using rod-shaped gold nanoparticles as a model, we studied for the first time the rotational dynamics of nanoparticle vectors on live cell membranes and its impact on the fate of these nanoparticle vectors. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at 200 frames/s under a differential interference contrast microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charges. Specific surface functional groups and the availability of receptors on cell membranes also contribute to the rotational dynamics. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. C1 [Fang, Ning] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011; Gu, Yan/B-5014-2014; Gu, Yan/P-1419-2014 OI Gu, Yan/0000-0001-6677-6432 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC02-07CH11358] FX This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358. NR 34 TC 40 Z9 41 U1 1 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 20 PY 2011 VL 133 IS 15 BP 5720 EP 5723 DI 10.1021/ja200603x PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 760XP UT WOS:000290358200028 PM 21438558 ER PT J AU Kilgore, UJ Roberts, JAS Pool, DH Appel, AM Stewart, MP DuBois, MR Dougherty, WG Kassel, WS Bullock, RM DuBois, DL AF Kilgore, Uriah J. Roberts, John A. S. Pool, Douglas H. Appel, Aaron M. Stewart, Michael P. DuBois, M. Rakowski Dougherty, William G. Kassel, W. Scott Bullock, R. Morris DuBois, Daniel L. TI [Ni((P2N2C6H4X)-N-Ph)(2)](2+) Complexes as Electrocatalysts for H-2 Production: Effect of Substituents, Acids, and Water on Catalytic Rates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGENASE ACTIVE-SITE; 2ND COORDINATION SPHERE; FE-ONLY HYDROGENASE; MOLECULAR CATALYSTS; PROTON RELAYS; H BOND; HYDRIDE; REDUCTION; BASES; DIHYDROGEN AB A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni((P2N2C6H4X)-N-Ph)(2)](BF4)(2) ((P2N2C6H4X)-N-Ph = 1,5-di(para-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH2P(O)(OEt)(2), Br, and CF3) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni((P2N2C6H4Me)-N-Ph)(2)](BF4)(2) and [Ni((P2N2C6H4OMe)-N-Ph)(2)] (BF4)(2) are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile with potentials that are increasingly cathodic as the electron-donating character of X is increased. Each of these complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple. The catalytic rates generally increase as the electron-donating character of X is decreased, and this electronic effect results in the favorable but unusual situation of obtaining higher catalytic rates as overpotentials are decreased. Catalytic studies using acids with a range of plc values reveal that turnover frequencies do not correlate with substrate acid plc values but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni((P2NC6H4CH2P(O))-N-Ph)((OEt)2)(2))(2)](BF4)(2) using [(DMF)H]+OTf- as the acid and with added water, a turnover frequency of 1850 s(-1) was obtained. C1 [Kilgore, Uriah J.; Roberts, John A. S.; Pool, Douglas H.; Appel, Aaron M.; Stewart, Michael P.; DuBois, M. Rakowski; Bullock, R. Morris; DuBois, Daniel L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Chem & Mat Sci Div, Richland, WA 99352 USA. [Dougherty, William G.; Kassel, W. Scott] Villanova Univ, Dept Chem, Villanova, PA 19085 USA. RP Roberts, JAS (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Chem & Mat Sci Div, POB 999,K2-57, Richland, WA 99352 USA. EM john.roberts@pnl.gov; daniel.dubois@pnl.gov RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Appel, Aaron/0000-0002-5604-1253 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We thank the reviewers for very helpful comments on the presentation of these results. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 70 TC 191 Z9 191 U1 6 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 20 PY 2011 VL 133 IS 15 BP 5861 EP 5872 DI 10.1021/ja109755f PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 760XP UT WOS:000290358200057 PM 21438562 ER PT J AU Freund, A Patil, CK Campisi, J AF Freund, Adam Patil, Christopher K. Campisi, Judith TI p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype SO EMBO JOURNAL LA English DT Article DE aging; cancer; inflammation; NF-kappa B; tumour suppression ID ACTIVATED PROTEIN-KINASE; ONCOGENE-INDUCED SENESCENCE; NF-KAPPA-B; INFLAMMATORY CYTOKINE SECRETION; PRIMARY HUMAN FIBROBLASTS; P38 MAP KINASE; CELLULAR SENESCENCE; TUMOR SUPPRESSION; REPLICATIVE SENESCENCE; PREMATURE SENESCENCE AB Cellular senescence suppresses cancer by forcing potentially oncogenic cells into a permanent cell cycle arrest. Senescent cells also secrete growth factors, proteases, and inflammatory cytokines, termed the senescence-associated secretory phenotype (SASP). Much is known about pathways that regulate the senescence growth arrest, but far less is known about pathways that regulate the SASP. We previously showed that DNA damage response (DDR) signalling is essential, but not sufficient, for the SASP, which is restrained by p53. Here, we delineate another crucial SASP regulatory pathway and its relationship to the DDR and p53. We show that diverse senescence-inducing stimuli activate the stress-inducible kinase p38MAPK in normal human fibroblasts. p38MAPK inhibition markedly reduced the secretion of most SASP factors, constitutive p38MAPK activation was sufficient to induce an SASP, and p53 restrained p38MAPK activation. Further, p38MAPK regulated the SASP independently of the canonical DDR. Mechanistically, p38MAPK induced the SASP largely by increasing NF-kappa B transcriptional activity. These findings assign p38MAPK a novel role in SASP regulation-one that is necessary, sufficient, and independent of previously described pathways. The EMBO Journal (2011) 30, 1536-1548. doi:10.1038/emboj.2011.69; Published online 11 March 2011 Subject Categories: signal transduction; genome stability & dynamics C1 [Freund, Adam; Patil, Christopher K.; Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA. [Freund, Adam] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Freund, Adam; Patil, Christopher K.; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Buck Inst Age Res, 8001 Redwood Blvd, Novato, CA 94945 USA. EM jcampisi@buckinstitute.org FU National Institutes of Health [AG09909, AG017242, AG25901]; National Science Foundation; Larry L Hillblom Foundation FX We thank Drs Eisuke Nishida (Kyoto University) for the pSRalpha-myc-MKK6-EE vector, Pierre Desprez (California Pacific Medical Center) for critically reading the manuscript, and Shruti Waghray for technical assistance. This work was supported by grants from the National Institutes of Health (AG09909, AG017242, and AG25901, JC), a National Science Foundation Graduate Research Fellowship (AF), and a fellowship from the Larry L Hillblom Foundation (CP). NR 66 TC 190 Z9 197 U1 2 U2 28 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD APR 20 PY 2011 VL 30 IS 8 BP 1536 EP 1548 DI 10.1038/emboj.2011.69 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 760EG UT WOS:000290306300014 PM 21399611 ER PT J AU Foley, RJ Andersson, K Bazin, G de Haan, T Ruel, J Ade, PAR Aird, KA Armstrong, R Ashby, MLN Bautz, M Benson, BA Bleem, LE Bonamente, M Brodwin, M Carlstrom, JE Chang, CL Clocchiatti, A Crawford, TM Crites, AT Desai, S Dobbs, MA Dudley, JP Fazio, GG Forman, WR Garmire, G George, EM Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Murray, SS Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Saro, A Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Story, K Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zenteno, A AF Foley, R. J. Andersson, K. Bazin, G. de Haan, T. Ruel, J. Ade, P. A. R. Aird, K. A. Armstrong, R. Ashby, M. L. N. Bautz, M. Benson, B. A. Bleem, L. E. Bonamente, M. Brodwin, M. Carlstrom, J. E. Chang, C. L. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dobbs, M. A. Dudley, J. P. Fazio, G. G. Forman, W. R. Garmire, G. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Murray, S. S. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zenteno, A. TI DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z > 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: clusters: individual (SPT-CL J2106-5844); galaxies: evolution; galaxies: formation; large-scale structure of universe ID SOUTH-POLE TELESCOPE; IRAC SHALLOW SURVEY; GALAXY CLUSTER; X-RAY; SPECTROSCOPIC CONFIRMATION; VELOCITY DISPERSIONS; ENVIRONMENT; EXTRACTION; PRECISION; REDSHIFTS AB Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z > 1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev-Zel'dovich (SZ) effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. Very Large Telescope and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132(-0.003)(+0.002). Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 +/- 0.03. These redshifts are consistent with the galaxy colors found in optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster having a core-excluded temperature of T-X = 11.0(-1.9)(+2.6) keV and a luminosity (within r(500)) of L-X(0.5-2.0 keV) = (13.9 +/- 1.0) x 10(44) erg s(-1). The combined mass estimate from measurements of the SZ effect and X-ray data is M-200 = (1.27 +/- 0.21) x 10(15) h(70)(-1) M-circle dot. The discovery of such amassive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of Lambda CDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg(2) SPT survey region and that only one such galaxy cluster is expected in the entire sky. C1 [Foley, R. J.; Ashby, M. L. N.; Brodwin, M.; Fazio, G. G.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Andersson, K.; Bazin, G.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.; Bautz, M.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Ruel, J.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Armstrong, R.; Desai, S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bonamente, M.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Desai, S.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Garmire, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, VP62, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Padin, S.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Foley, RJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM rfoley@cfa.harvard.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Stark, Antony/0000-0002-2718-9996; Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation [ANT-0638937, PHY-0114422, AST-1009012, AST-1009649, MRI-0723073]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA [12800071, 12800088, NAS8-03060]; JPL/Caltech; Chandra X-ray Observatory Center; NASA Office of Space Science; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; Excellence Cluster Universe; DFG [TR33]; Clay Fellowship; KICP Fellowship; W.M. Keck Foundation; Pennsylvania State University [2834-MIT-SAO-4018]; Basal CATA PFB [06/09]; FONDAP [15010003]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This work is based in part on observations obtained with the Spitzer Space Telescope (PID 60099), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile. Support for X-ray analysis was provided by NASA through Chandra Project Numbers 12800071 and 12800088 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Observations from VLT programs 086.A-0741 and 286.A-5021 were included in this work. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. R.J.F. is supported by a Clay Fellowship. B. A. B. is supported by a KICP Fellowship, support for M. Brodwin was provided by the W.M. Keck Foundation, M. Bautz acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. A.C. acknowledges the support of grants Basal CATA PFB 06/09 and FONDAP No. 15010003. M.D. acknowledges support from an Alfred P. Sloan Research Fellowship, W.F. and C.J. acknowledge support from the Smithsonian Institution, and B.S. acknowledges support from the Brinson Foundation. NR 58 TC 81 Z9 82 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2011 VL 731 IS 2 AR 86 DI 10.1088/0004-637X/731/2/86 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753MM UT WOS:000289779600009 ER PT J AU Kamenetzky, J Glenn, J Maloney, PR Aguirre, JE Bock, JJ Bradford, CM Earle, L Inami, H Matsuhara, H Murphy, EJ Naylor, BJ Nguyen, HT Zmuidzinas, J AF Kamenetzky, J. Glenn, J. Maloney, P. R. Aguirre, J. E. Bock, J. J. Bradford, C. M. Earle, L. Inami, H. Matsuhara, H. Murphy, E. J. Naylor, B. J. Nguyen, H. T. Zmuidzinas, J. TI THE DENSE MOLECULAR GAS IN THE CIRCUMNUCLEAR DISK OF NGC 1068 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 1068); galaxies: ISM; galaxies: Seyfert; ISM: molecules ID ACTIVE GALACTIC NUCLEUS; STAR-FORMATION; GALAXY NUCLEI; NGC-1068; EMISSION; HCN; CO; SPECTROSCOPY; CHEMISTRY; LINE AB We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurementswith those previously published and considering the specific geometry of this Seyfert 2 galaxy, we conduct amulti-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H-2 number densities 10(4.2)-10(4.9) cm(-3). Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray-dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus. C1 [Kamenetzky, J.; Glenn, J.; Maloney, P. R.; Earle, L.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80303 USA. [Aguirre, J. E.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Bock, J. J.; Bradford, C. M.; Naylor, B. J.; Nguyen, H. T.; Zmuidzinas, J.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Earle, L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Inami, H.; Matsuhara, H.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Murphy, E. J.] Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Kamenetzky, J (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, 389-UCB, Boulder, CO 80303 USA. OI Kamenetzky, Julia/0000-0001-7877-7942 FU NASA [NAGS-11911, NAGS-12788]; NSF [AST-0239270, AST-087990]; Research Corporation Award [RI0928]; Caltech Millikan fellowship; JPL Director's fellowship; NRAO FX We thank the anonymous referee for a thorough and constructive report, and we also express our gratitude to the staff at the Caltech Submillimeter Observatory. We acknowledge the following grants and fellowships in support of this work: NASA SARA grants NAGS-11911 and NAGS-12788, an NSF Career grant AST-0239270, and a Research Corporation Award RI0928 to J.G.; a Caltech Millikan fellowship and JPL Director's fellowship to C.M.B.; an NRAO Jansky fellowship and NSF grant AST-087990 to J.E.A.; a NASA GSRP fellowship to L.E.; and an NSF GRFP fellowship to J.K. NR 46 TC 23 Z9 23 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2011 VL 731 IS 2 AR 83 DI 10.1088/0004-637X/731/2/83 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753MM UT WOS:000289779600006 ER PT J AU Kovac, K Porciani, C Lilly, SJ Marinoni, C Guzzo, L Cucciati, O Zamorani, G Iovino, A Oesch, P Bolzonella, M Peng, Y Meneux, B Zucca, E Bardelli, S Carollo, CM Contini, T Kneib, JP Le Fevre, O Mainieri, V Renzini, A Scodeggio, M Bongiorno, A Caputi, K Coppa, G de la Torre, S de Ravel, L Finoguenov, A Franzetti, P Garilli, B Kampczyk, P Knobel, C Lamareille, F Le Borgne, JF Le Brun, V Maier, C Mignoli, M Pello, R Perez-Montero, E Pozzetti, L Ricciardelli, E Silverman, JD Tanaka, M Tasca, LAM Tresse, L Vergani, D Abbas, U Bottini, D Cappi, A Cassata, P Cimatti, A Fumana, M Koekemoer, AM Leauthaud, A Maccagni, D McCracken, HJ Memeo, P Scaramella, R Scoville, NZ AF Kovac, K. Porciani, C. Lilly, S. J. Marinoni, C. Guzzo, L. Cucciati, O. Zamorani, G. Iovino, A. Oesch, P. Bolzonella, M. Peng, Y. Meneux, B. Zucca, E. Bardelli, S. Carollo, C. M. Contini, T. Kneib, J. -P. Le Fevre, O. Mainieri, V. Renzini, A. Scodeggio, M. Bongiorno, A. Caputi, K. Coppa, G. de la Torre, S. de Ravel, L. Finoguenov, A. Franzetti, P. Garilli, B. Kampczyk, P. Knobel, C. Lamareille, F. Le Borgne, J. -F. Le Brun, V. Maier, C. Mignoli, M. Pello, R. Perez-Montero, E. Pozzetti, L. Ricciardelli, E. Silverman, J. D. Tanaka, M. Tasca, L. A. M. Tresse, L. Vergani, D. Abbas, U. Bottini, D. Cappi, A. Cassata, P. Cimatti, A. Fumana, M. Koekemoer, A. M. Leauthaud, A. Maccagni, D. McCracken, H. J. Memeo, P. Scaramella, R. Scoville, N. Z. TI THE NONLINEAR BIASING OF THE zCOSMOS GALAXIES UP TO z similar to 1 FROM THE 10k SAMPLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: statistics ID DARK-MATTER HALOES; LARGE-SCALE BIAS; VLT DEEP SURVEY; REDSHIFT SURVEY; LUMINOSITY DEPENDENCE; COSMOLOGICAL SIMULATIONS; OCCUPATION DISTRIBUTION; COSMOS FIELD; HYDRODYNAMIC SIMULATIONS; COLOR DEPENDENCE AB We use the zCOSMOS galaxy overdensity field to study the biasing of galaxies in the COSMOS field. By comparing the probability distribution function of the galaxy density contrast delta(g) to the lognormal approximation of the mass density contrast delta, we obtain the mean biasing function b(delta, z, R) between the galaxy and matter overdensity fields and its second moments (b) over cap and (b) over tilde. Over the redshift interval 0.4 < z < 1 the conditional mean function = b(delta, z, R)delta is of a characteristic shape, requiring nonlinear biasing in the most overdense and underdense regions. Taking into account the uncertainties due to cosmic variance, we do not detect any significant evolution in the function, but we do detect a significant redshift evolution in the linear biasing parameter (b) over cap from 1.23 +/- 0.11 at z similar to 0.55 to 1.62 +/- 0.14 at z similar to 0.75, for a luminosity-complete sample of M-B < -20 - z galaxies. The (b) over cap parameter does not change significantly with smoothing scale between 8 and 12 h(-1) Mpc, but increases systematically with luminosity (at 2 sigma-3 sigma significance between the M-B < -20.5 - z and M-B < -20 - z samples). The nonlinearity parameter (b) over tilde/(b) over cap is offset from unity by at most 2%, with an uncertainty of the same order. The (b) over tilde/(b) over cap parameter does not show any significant redshift evolution, dependence on the smoothing scale or on the luminosity. By matching the linear bias of galaxies to the halo bias, we infer that the M-B < -20 - z galaxies reside in dark matter halos with a characteristic mass of about (2.6-5.6) x 10(12) M-circle dot with a small dependence on the adopted bias-mass relation. Our detailed error analysis and comparison with previous studies lead us to conclude that cosmic variance is the main contributor to the differences in the linear bias measured from different surveys. While our results support the general picture of biased galaxy formation up to z similar to 1, the fine-tuning of the galaxy formation models is still limited by the restrictions of the current spectroscopic surveys at these redshifts. C1 [Kovac, K.; Porciani, C.; Lilly, S. J.; Oesch, P.; Peng, Y.; Carollo, C. M.; Caputi, K.; Kampczyk, P.; Knobel, C.; Maier, C.; Silverman, J. D.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Porciani, C.] Argelander Inst Astron, D-53121 Bonn, Germany. [Marinoni, C.] Ctr Phys Theor, Marseille, France. [Guzzo, L.; Iovino, A.; de la Torre, S.] INAF Osservatorio Astron Brera, Milan, Italy. [Cucciati, O.; Kneib, J. -P.; Le Fevre, O.; de la Torre, S.; de Ravel, L.; Le Brun, V.; Tasca, L. A. M.; Tresse, L.; Abbas, U.; Cassata, P.] Lab Astrophys Marseille, Marseille, France. [Zamorani, G.; Bolzonella, M.; Zucca, E.; Bardelli, S.; Coppa, G.; Mignoli, M.; Pozzetti, L.; Vergani, D.; Cappi, A.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Meneux, B.; Bongiorno, A.; Finoguenov, A.] Max Planck Inst Extraterr Phys, D-84571 Garching, Germany. [Meneux, B.] Univ Sternwarte, D-81679 Munich, Germany. [Contini, T.; Lamareille, F.; Le Borgne, J. -F.; Pello, R.; Perez-Montero, E.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Mainieri, V.; Tanaka, M.] European So Observ, D-85748 Garching, Germany. [Renzini, A.] INAF Osservatorio Astron Padova, Padua, Italy. [Scodeggio, M.; de la Torre, S.; Franzetti, P.; Garilli, B.; Tasca, L. A. M.; Bottini, D.; Fumana, M.; Maccagni, D.; Memeo, P.] INAF IASF Milano, Milan, Italy. [Ricciardelli, E.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Abbas, U.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Cassata, P.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Leauthaud, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McCracken, H. J.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Scaramella, R.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Scoville, N. Z.] CALTECH, Pasadena, CA 91125 USA. RP Kovac, K (reprint author), ETH, Inst Astron, CH-8093 Zurich, Switzerland. EM kovac@phys.ethz.ch RI Bardelli, Sandro/O-9369-2015; Cappi, Alberto/O-9391-2015; Mignoli, Marco/O-9426-2015; Bolzonella, Micol/O-9495-2015; Pello, Roser/G-4754-2010; Le Fevre, Olivier/G-7389-2011; Kneib, Jean-Paul/A-7919-2015; Zucca, Elena/O-9396-2015; OI Bardelli, Sandro/0000-0002-8900-0298; Cappi, Alberto/0000-0002-9200-7167; Mignoli, Marco/0000-0002-9087-2835; Bolzonella, Micol/0000-0003-3278-4607; bottini, dario/0000-0001-6917-041X; Fumana, Marco/0000-0001-6787-5950; Kneib, Jean-Paul/0000-0002-4616-4989; Zucca, Elena/0000-0002-5845-8132; Iovino, Angela/0000-0001-6958-0304; Pozzetti, Lucia/0000-0001-7085-0412; Bongiorno, Angela/0000-0002-0101-6624; Scodeggio, Marco/0000-0002-2282-5850; Franzetti, Paolo/0000-0002-6986-0127; Vergani, Daniela/0000-0003-0898-2216; Scaramella, Roberto/0000-0003-2229-193X; Oesch, Pascal/0000-0001-5851-6649; Garilli, Bianca/0000-0001-7455-8750; Koekemoer, Anton/0000-0002-6610-2048 FU Swiss National Science Foundation; ASI [ASI/COFIS/WP3110I/026/07/0] FX We thank Annalisa Pillepich for useful discussions. We also thank M. G. Kitzbichler and S. D. M. White for providing the mock catalogs (Kitzbichler & White 2007). This work has been supported in part by a grant from the Swiss National Science Foundation and an ASI grant ASI/COFIS/WP3110I/026/07/0. NR 97 TC 14 Z9 14 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2011 VL 731 IS 2 AR 102 DI 10.1088/0004-637X/731/2/102 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753MM UT WOS:000289779600025 ER PT J AU Marriage, TA Juin, JB Lin, YT Marsden, D Nolta, MR Partridge, B Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lupton, RH Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Page, LA Parker, L Quintana, H Reid, B Sehgal, N Sherwin, BD Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Warne, R Wilson, G Wollack, E Zhao, Y AF Marriage, Tobias A. Baptiste Juin, Jean Lin, Yen-Ting Marsden, Danica Nolta, Michael R. Partridge, Bruce Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John William Felipe Barrientos, L. Battistelli, Elia S. Bond, John R. Brown, Ben Burger, Bryce Chervenak, Jay Das, Sudeep Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fisher, Ryan P. Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Handel Hughes, David Hughes, John P. Infante, Leopoldo Irwin, Kent D. Kaul, Madhuri Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lupton, Robert H. Martocci, Krista Mauskopf, Phil Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Page, Lyman A. Parker, Lucas Quintana, Hernan Reid, Beth Sehgal, Neelima Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Warne, Ryan Wilson, Grant Wollack, Ed Zhao, Yue TI THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: active; radio continuum: galaxies; surveys ID SOUTH-POLE TELESCOPE; ZELDOVICH POWER SPECTRUM; GALAXY CLUSTERS; SOURCE CATALOG; RADIO-SOURCES; SOURCE COUNTS; SKY SURVEY; ANISOTROPY; FIELD; SZ AB We report on extragalactic sources detected in a 455 deg(2) map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low-redshift X-ray-selected galaxy clusters. Estimates of the radio to millimeter-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of alpha(5-20) = -0.07 +/- 0.06, alpha(20-148) = -0.39 +/- 0.04, and alpha(5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C-Sync = (2.8 +/- 0.3) x 10(-6) mu K-2. C1 [Marriage, Tobias A.; Lin, Yen-Ting; Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Lupton, Robert H.; Spergel, David N.; Trac, Hy] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Baptiste Juin, Jean; Lin, Yen-Ting; Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo; Quintana, Hernan] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Marsden, Danica; Devlin, Mark J.; Dicker, Simon R.; Kaul, Madhuri; Klein, Jeff; Limon, Michele; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Nolta, Michael R.; Bond, John R.; Hajian, Amir; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Appel, John William; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Lau, Judy M.; Limon, Michele; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Reid, Beth; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Zhao, Yue] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Brown, Ben; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Doriese, W. Bertrand; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt; Moodley, Kavilan] Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Handel Hughes, David] INAOE, Puebla, Mexico. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lau, Judy M.; Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, Judy M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, Michele] Columbia Astrophys Lab, New York, NY 10027 USA. [Martocci, Krista; Switzer, Eric R.] Lab Astrophys & Space Res, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Reid, Beth] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Reid, Beth] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Thornton, Robert] W Chester Univ, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, Grant] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Marriage, TA (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. RI Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; Klein, Jeffrey/E-3295-2013 OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Limon, Michele/0000-0002-5900-2698; Tucker, Carole/0000-0002-1851-3918; Huffenberger, Kevin/0000-0001-7109-0099; FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX08AH30G]; FONDECYT [3085031]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; U.S. Department of Energy [DE-AC3-76SF00515]; CONICYT; MECESUP; Fundacion Andes; Rhodes Trust; NSF Physics Frontier Center [PHY-0114422]; World Premier International Research Center Initiative, MEXT, Japan FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto.; T.M. was supported through NASA grant NNX08AH30G. J.B.J. was supported by the FONDECYT grant 3085031. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H. Q. and L. I. acknowledge partial support from FONDAP Centro de Astrofisica. N.S. is supported by the U.S. Department of Energy contract to SLAC no. DE-AC3-76SF00515. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. R. H. was supported by the Rhodes Trust. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The ACT data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACT Web site (http://www.physics.princeton.edu/act/). NR 48 TC 54 Z9 54 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2011 VL 731 IS 2 AR 100 DI 10.1088/0004-637X/731/2/100 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753MM UT WOS:000289779600023 ER PT J AU Beane, SR Chang, E Detmold, W Joo, B Lin, HW Luu, TC Orginos, K Parreno, A Savage, MJ Torok, A Walker-Loud, A AF Beane, S. R. Chang, E. Detmold, W. Joo, B. Lin, H. W. Luu, T. C. Orginos, K. Parreno, A. Savage, M. J. Torok, A. Walker-Loud, A. CA NPLQCD Collaboration TI Evidence for a Bound H Dibaryon from Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCATTERING LENGTHS; NUCLEON-SCATTERING; STATES AB We present evidence for the existence of a bound H dibaryon, an I = 0, J = 0, s = -2 state with valence quark structure uuddss, at a pion mass of m(pi) similar to 389 MeV. Using the results of lattice QCD calculations performed on four ensembles of anisotropic clover gauge-field configurations, with spatial extents of L similar to 2.0, 2.5, 3.0, and 3.9 fm at a spatial lattice spacing of b(s) similar to 0.123 fm, we find an H dibaryon bound by B(infinity)(H) = 16.6 +/- 2.1 +/- 4.6 MeV at a pion mass of m(pi) similar to 389 MeV. C1 [Beane, S. R.] Univ Bern, Inst Theoret Phys, Albert Einstein Zentrum Fundamentale Phys, CH-3012 Bern, Switzerland. [Beane, S. R.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Chang, E.; Parreno, A.] Univ Barcelona, Dept Estructura & Constituents Mat, ICC, E-08028 Barcelona, Spain. [Detmold, W.; Orginos, K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Detmold, W.; Joo, B.; Orginos, K.] Jefferson Lab, Newport News, VA 23606 USA. [Lin, H. W.; Savage, M. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Luu, T. C.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94551 USA. [Torok, A.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Walker-Loud, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Beane, SR (reprint author), Univ Bern, Inst Theoret Phys, Albert Einstein Zentrum Fundamentale Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. OI Detmold, William/0000-0002-0400-8363 FU Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. DOE [DE-AC02-05CH11231] FX The work of A. W.-L. was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 31 TC 137 Z9 138 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 162001 DI 10.1103/PhysRevLett.106.162001 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400005 PM 21599356 ER PT J AU Cho, BI Engelhorn, K Correa, AA Ogitsu, T Weber, CP Lee, HJ Feng, J Ni, PA Ping, Y Nelson, AJ Prendergast, D Lee, RW Falcone, RW Heimann, PA AF Cho, B. I. Engelhorn, K. Correa, A. A. Ogitsu, T. Weber, C. P. Lee, H. J. Feng, J. Ni, P. A. Ping, Y. Nelson, A. J. Prendergast, D. Lee, R. W. Falcone, R. W. Heimann, P. A. TI Electronic Structure of Warm Dense Copper Studied by Ultrafast X-Ray Absorption Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID 3D TRANSITION-METALS; DYNAMICS AB We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary. C1 [Cho, B. I.; Engelhorn, K.; Feng, J.; Falcone, R. W.; Heimann, P. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Correa, A. A.; Ogitsu, T.; Ping, Y.; Nelson, A. J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Weber, C. P.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Lee, H. J.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Cho, BI (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Cho, Byoung-ick/A-6294-2011 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences Division [DE-AC03-76SF00098, DE-AC02-05CH11231]; U.S. DOE SSAA [DE-FG52-06NA26212]; U.S. DOE [DE-AC52-07NA27344]; LLNL LDRD [08-ERD-005] FX The authors acknowledge helpful discussions with E. Henestroza, A. Ng, and J. Cao, and calculations by K. Gilmore. This work was performed at LBNL under the auspices of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences Division Contracts No. DE-AC03-76SF00098 and No. DE-AC02-05CH11231, at the University of California, Berkeley under the auspices of the U.S. DOE SSAA program Contract No. DE-FG52-06NA26212 and at LLNL under the auspices of the U.S. DOE Contract No. DE-AC52-07NA27344 and the LLNL LDRD program project No. 08-ERD-005. NR 25 TC 48 Z9 48 U1 1 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 167601 DI 10.1103/PhysRevLett.106.167601 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400024 PM 21599412 ER PT J AU Larin, I McNulty, D Clinton, E Ambrozewicz, P Lawrence, D Nakagawa, I Prok, Y Teymurazyan, A Ahmidouch, A Asratyan, A Baker, K Benton, L Bernstein, AM Burkert, V Cole, P Collins, P Dale, D Danagoulian, S Davidenko, G Demirchyan, R Deur, A Dolgolenko, A Dzyubenko, G Ent, R Evdokimov, A Feng, J Gabrielyan, M Gan, L Gasparian, A Gevorkyan, S Glamazdin, A Goryachev, V Gyurjyan, V Hardy, K He, J Ito, M Jiang, L Kashy, D Khandaker, M Kingsberry, P Kolarkar, A Konchatnyi, M Korchin, A Korsch, W Kowalski, S Kubantsev, M Kubarovsky, V Li, X Martel, P Matveev, V Mecking, B Milbrath, B Minehart, R Miskimen, R Mochalov, V Mtingwa, S Overby, S Pasyuk, E Payen, M Pedroni, R Ritchie, B Rodrigues, TE Salgado, C Shahinyan, A Sitnikov, A Sober, D Stepanyan, S Stephens, W Underwood, J Vasiliev, A Vishnyakov, V Wood, M Zhou, S AF Larin, I. McNulty, D. Clinton, E. Ambrozewicz, P. Lawrence, D. Nakagawa, I. Prok, Y. Teymurazyan, A. Ahmidouch, A. Asratyan, A. Baker, K. Benton, L. Bernstein, A. M. Burkert, V. Cole, P. Collins, P. Dale, D. Danagoulian, S. Davidenko, G. Demirchyan, R. Deur, A. Dolgolenko, A. Dzyubenko, G. Ent, R. Evdokimov, A. Feng, J. Gabrielyan, M. Gan, L. Gasparian, A. Gevorkyan, S. Glamazdin, A. Goryachev, V. Gyurjyan, V. Hardy, K. He, J. Ito, M. Jiang, L. Kashy, D. Khandaker, M. Kingsberry, P. Kolarkar, A. Konchatnyi, M. Korchin, A. Korsch, W. Kowalski, S. Kubantsev, M. Kubarovsky, V. Li, X. Martel, P. Matveev, V. Mecking, B. Milbrath, B. Minehart, R. Miskimen, R. Mochalov, V. Mtingwa, S. Overby, S. Pasyuk, E. Payen, M. Pedroni, R. Ritchie, B. Rodrigues, T. E. Salgado, C. Shahinyan, A. Sitnikov, A. Sober, D. Stepanyan, S. Stephens, W. Underwood, J. Vasiliev, A. Vishnyakov, V. Wood, M. Zhou, S. CA PrimEx Collaboration TI New Measurement of the pi(0) Radiative Decay Width SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRAL PION; LIFETIME; NUCLEI AB High precision measurements of the differential cross sections for pi(0) photoproduction at forward angles for two nuclei, C-12 and Pb-208, have been performed for incident photon energies of 4.9-5.5 GeV to extract the pi(0) -> gamma gamma decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The pi(0) -> gamma gamma decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Gamma(pi(0) -> gamma gamma) = 7.82 +/- 0.14(stat) +/- 0.17(syst) eV. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current Particle Data Group average of this fundamental quantity, and it is consistent with current theoretical predictions. C1 [Larin, I.; Ambrozewicz, P.; Ahmidouch, A.; Benton, L.; Danagoulian, S.; Demirchyan, R.; Gasparian, A.; Hardy, K.; Mtingwa, S.; Overby, S.; Payen, M.; Pedroni, R.; Underwood, J.] N Carolina A&T State Univ Greensboro, Greensboro, NC 27411 USA. [Larin, I.; Asratyan, A.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Evdokimov, A.; Goryachev, V.; Kubantsev, M.; Matveev, V.; Sitnikov, A.; Vishnyakov, V.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [McNulty, D.; Prok, Y.; Bernstein, A. M.; Kingsberry, P.; Kowalski, S.] MIT, Cambridge, MA 02139 USA. [Clinton, E.; Lawrence, D.; Martel, P.; Miskimen, R.; Wood, M.] Univ Massachusetts, Amherst, MA 01003 USA. [Lawrence, D.; Burkert, V.; Deur, A.; Ent, R.; Gyurjyan, V.; Ito, M.; Kashy, D.; Kubarovsky, V.; Mecking, B.; Pasyuk, E.; Stepanyan, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Nakagawa, I.; Teymurazyan, A.; Gabrielyan, M.; Kolarkar, A.; Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. [Nakagawa, I.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Baker, K.] Hampton Univ, Hampton, VA 23606 USA. [Cole, P.; Dale, D.] Idaho State Univ, Pocatello, ID 83209 USA. [Collins, P.; Pasyuk, E.; Ritchie, B.] Arizona State Univ, Tempe, AZ 85287 USA. [Feng, J.; Gan, L.; Jiang, L.; Li, X.] Univ N Carolina, Wilmington, NC 28403 USA. [Feng, J.; Jiang, L.; Zhou, S.] Chinese Inst Atom Energy, Beijing, Peoples R China. [Gevorkyan, S.; Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Gevorkyan, S.] Joint Inst Nucl Res, Dubna 141980, Russia. [Glamazdin, A.; Konchatnyi, M.; Korchin, A.] Kharkov Inst Phys & Technol, Kharkov, Ukraine. [He, J.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Khandaker, M.; Kingsberry, P.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Kubantsev, M.] Northwestern Univ, Evanston, IL 60208 USA. [Milbrath, B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Minehart, R.; Stephens, W.] Univ Virginia, Charlottesville, VA 22094 USA. [Mochalov, V.; Vasiliev, A.] Inst High Energy Phys, Protvino, Russia. [Rodrigues, T. E.] Univ Sao Paulo, Sao Paulo, Brazil. [Sober, D.] Catholic Univ Amer, Washington, DC 20064 USA. RP Gasparian, A (reprint author), N Carolina A&T State Univ Greensboro, Greensboro, NC 27411 USA. EM gasparan@jlab.org RI Korchin, Alexander/J-4910-2016; OI Korchin, Alexander/0000-0001-7947-170X; Glamazdin, Alexander/0000-0002-4172-7324 FU National Science Foundation [PHY-0079840]; U.S. Department of Energy [DE-AC05-84ER40150] FX We acknowledge the invaluable contributions of the Accelerator and Physics Divisions at Jefferson Lab which made this experiment possible. We thank the Hall B engineering staff for their critical contributions in all stages of this experiment. Theoretical support provided by Jose Goity throughout this project is gratefully acknowledged. This project was supported in part by the National Science Foundation under a Major Research Instrumentation grant (PHY-0079840). The Southern Universities Research Association (SURA) operated Jefferson Lab under U.S. Department of Energy Contract No. DE-AC05-84ER40150 during this work. NR 22 TC 32 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 162303 DI 10.1103/PhysRevLett.106.162303 PG 5 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400009 PM 21599360 ER PT J AU Ma, GL Wang, XN AF Ma, Guo-Liang Wang, Xin-Nian TI Jets, Mach Cones, Hot Spots, Ridges, Harmonic Flow, Dihadron, and gamma-Hadron Correlations in High-Energy Heavy-Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID MODEL AB Within the AMPT Monte Carlo model, fluctuations in the initial transverse parton density are shown to lead to harmonic flows. The net back-to-back dihadron azimuthal correlation after subtraction of contributions from harmonic flows still has a double peak that is independent of the initial geometric triangularity and unique to the jet-induced Mach cone and expanding hot spots distorted by radial flow. The longitudinal structure of hot spots also leads to a nearside ridge in dihadron correlation with a large rapidity gap. By successively randomizing the azimuthal angle of the transverse momenta and positions of initial partons, one can isolate the effects of jet-induced medium excitation and expanding hot spots on the dihadron azimuthal correlation. The double peaks in the net dihadron and gamma-hadron correlation are quantitatively different since the later is caused only by jet-induced Mach cone. C1 [Ma, Guo-Liang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Wang, Xin-Nian] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Nucl Sci Div MS 70R0319, Berkeley, CA 94720 USA. RP Ma, GL (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC of China [10705044, 10975059, 11035009]; Chinese Academy of Sciences [KJCX2-EW-N01]; U.S. DOE [DE-AC02-05CH11231] FX This work is supported by the NSFC of China under Projects No. 10705044, No. 10975059, No. 11035009, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KJCX2-EW-N01 and by the U.S. DOE under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. NR 26 TC 62 Z9 62 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 162301 DI 10.1103/PhysRevLett.106.162301 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400007 PM 21599358 ER PT J AU Morris, JR Bei, H Pharr, GM George, EP AF Morris, J. R. Bei, H. Pharr, G. M. George, E. P. TI Size Effects and Stochastic Behavior of Nanoindentation Pop In SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRAIN GRADIENT PLASTICITY; INDENTATION AB A statistical model for pop in initiated at preexisting dislocations during nanoindentation is developed to explain size-dependent pop-in stresses. To verify theoretical predictions of this model, experiments were performed on single-crystal Mo, utilizing indenter radii that vary by over 3 orders of magnitude. The stress where plastic deformation begins ranges from the theoretical strength in small volumes, to 1 order of magnitude lower in larger volumes. An intermediate regime shows wide variability in the stress to initiate plastic deformation. Our theory accurately reproduces the experimental cumulative probability distributions, and predicts a scaling behavior that matches experimental behavior. C1 [Morris, J. R.; Bei, H.; Pharr, G. M.; George, E. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Morris, J. R.; Pharr, G. M.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Morris, JR (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI George, Easo/L-5434-2014; Morris, J/I-4452-2012; OI Morris, J/0000-0002-8464-9047; Bei, Hongbin/0000-0003-0283-7990 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 19 TC 58 Z9 58 U1 6 U2 77 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 165502 DI 10.1103/PhysRevLett.106.165502 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400016 PM 21599381 ER PT J AU Roither, S Xie, XH Kartashov, D Zhang, L Schoffler, M Xu, HL Iwasaki, A Okino, T Yamanouchi, K Baltuska, A Kitzler, M AF Roither, Stefan Xie, Xinhua Kartashov, Daniil Zhang, Li Schoeffler, Markus Xu, Huailiang Iwasaki, Atsushi Okino, Tomoya Yamanouchi, Kaoru Baltuska, Andrius Kitzler, Markus TI High Energy Proton Ejection from Hydrocarbon Molecules Driven by Highly Efficient Field Ionization SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTENSE LASER FIELDS; COULOMB EXPLOSION; IONS; DYNAMICS; PICOSECOND; PULSES AB We investigated the ejection of energetic protons from a series of polyatomic hydrocarbon molecules exposed to 790 nm 27 fs laser pulses. Using multiparticle coincidence imaging we were able to decompose the observed proton energy spectra into the contributions of individual fragmentation channels. It is shown that the molecules can completely fragment already at relatively low peak intensities of a few 10(14) W/cm(2), and that the protons are ejected in a concerted Coulomb explosion from unexpectedly high charge states. The observations are in agreement with enhanced ionization taking place at many C-H bonds in parallel. C1 [Roither, Stefan; Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Schoeffler, Markus; Baltuska, Andrius; Kitzler, Markus] Vienna Univ Technol, Photon Inst, A-1040 Vienna, Austria. [Xu, Huailiang; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru] Univ Tokyo, Dept Chem, Sch Sci, Tokyo 1130033, Japan. [Schoeffler, Markus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Roither, S (reprint author), Vienna Univ Technol, Photon Inst, A-1040 Vienna, Austria. EM markus.kitzler@tuwien.ac.at RI Xie, Xinhua/C-1783-2008; Schoeffler, Markus/B-6261-2008; Okino, Tomoya/N-5366-2015 OI Xie, Xinhua/0000-0002-1964-4370; Schoeffler, Markus/0000-0001-9214-6848; Okino, Tomoya/0000-0002-4579-0355 FU Austrian Science Fund (FWF) [I274-N16, P21463-N22]; Japanese Society for the Promotion of Science (JSPS) [09035011-000061] FX Discussions with R. J. Levis and M. Y. Ivanov are gratefully acknowledged. This work was partly financed by the Austrian Science Fund (FWF), grants I274-N16 and P21463-N22, and the Japanese Society for the Promotion of Science (JSPS) (No. 09035011-000061). M. S. thanks the Humboldt Foundation. NR 24 TC 27 Z9 27 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2011 VL 106 IS 16 AR 163001 DI 10.1103/PhysRevLett.106.163001 PG 4 WC Physics, Multidisciplinary SC Physics GA 757OD UT WOS:000290096400010 PM 21599363 ER PT J AU Grames, J Suleiman, R Adderley, PA Clark, J Hansknecht, J Machie, D Poelker, M Stutzman, ML AF Grames, J. Suleiman, R. Adderley, P. A. Clark, J. Hansknecht, J. Machie, D. Poelker, M. Stutzman, M. L. TI Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID MOLECULES; ATOMS AB GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun. C1 [Grames, J.; Suleiman, R.; Adderley, P. A.; Clark, J.; Hansknecht, J.; Machie, D.; Poelker, M.; Stutzman, M. L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Grames, J (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. FU U.S. DOE [DE-AC05-06OR23177]; DOE Office of High Energy Physics; Americas Region ILC RD program FX Many people not listed as authors helped interpret results related to lifetime dependence on radial position of the drive laser beam and limiting the active area of the photocathode, including: M. Baylac, B. Dunham, P. Hartmann, R. Kazimi, J. S. Price, P. Rutt, C. K. Sinclair, and M. Steigerwald. This paper was authored by Jefferson Science Associates under U.S. DOE Contract No. DE-AC05-06OR23177 and with funding from the DOE Office of High Energy Physics and the Americas Region ILC R&D program. NR 21 TC 9 Z9 12 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR 20 PY 2011 VL 14 IS 4 AR 043501 DI 10.1103/PhysRevSTAB.14.043501 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 758IJ UT WOS:000290157500001 ER PT J AU Kliewer, CJ Gao, Y Seeger, T Patterson, BD Farrow, RL Settersten, TB AF Kliewer, Christopher J. Gao, Yi Seeger, Thomas Patterson, Brian D. Farrow, Roger L. Settersten, Thomas B. TI Quantitative one-dimensional imaging using picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy SO APPLIED OPTICS LA English DT Article ID TEMPERATURE-MEASUREMENTS; SCATTERING THERMOMETRY; CARS GENERATION; N-2; O-2; AIR; FLAMES AB We employ picosecond dual-broadband pure-rotational coherent anti-Stokes Raman spectroscopy (CARS) in a one-dimensional (1D) imaging configuration. Temperature and O-2:N-2 concentration ratios are measured along a 1D line of up to 12mm in length. The images consist of up to 330 individual rotational CARS (RCARS) spectra, corresponding to 330 spatially resolved volume elements in the probe volume. Signal levels are sufficient for the collection of single-laser-pulse images at temperatures of up to approximately 1200 K and shot-averaged images at flame temperatures, demonstrated at 2100 K. The precision of picosecond pure-rotational 1D imaging CARS is assessed by acquiring a series of 100 single-laser-pulse images in a heated flow of N-2 from 410 K-1200 K and evaluating a single volume element for temperature in each image. Accuracy is demonstrated by comparing temperatures from the evaluated averaged spectra to thermocouple readings in the heated flow. Deviations from the thermocouple of <30 K in the evaluated temperature were found at up to 1205 K. Accuracy and single-shot precision are compared to those reported for single-point nanosecond dual-broadband pure-RCARS and nanosecond 1D vibrational CARS. (C) 2011 Optical Society of America C1 [Kliewer, Christopher J.; Patterson, Brian D.; Farrow, Roger L.; Settersten, Thomas B.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Gao, Yi] Univ Erlangen Nurnberg, Lehrstuhl Tech Thermodynamk, D-91058 Erlangen, Germany. [Gao, Yi] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol, D-91058 Erlangen, Germany. [Seeger, Thomas] Univ Siegen, Lehrstuhl Tech Thermodynam, D-57076 Siegen, Germany. RP Kliewer, CJ (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94551 USA. EM cjkliew@sandia.gov RI Seeger, Thomas/C-3951-2017; Settersten, Thomas/B-3480-2009; Kliewer, Christopher/E-4070-2010 OI Seeger, Thomas/0000-0002-9145-5910; Settersten, Thomas/0000-0002-8017-0258; Kliewer, Christopher/0000-0002-2661-1753 NR 34 TC 15 Z9 15 U1 2 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 20 PY 2011 VL 50 IS 12 BP 1770 EP 1778 DI 10.1364/AO.50.001770 PG 9 WC Optics SC Optics GA 752VM UT WOS:000289723600017 PM 21509070 ER PT J AU Shkrob, IA Tisch, AR Marin, TW Muntean, JV Kaminski, MD Kropf, AJ AF Shkrob, Ilya A. Tisch, Angela R. Marin, Timothy W. Muntean, John V. Kaminski, Michael D. Kropf, A. Jeremy TI Surface Modified, Collapsible Controlled Pore Glass Materials for Sequestration and Immobilization of Trivalent Metal Ions SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS SAMMS; SOLID-STATE; COMPLEXES; SILICA; EXTRACTION; SORBENTS; ACID; GADOLINIUM(III); TEMPERATURE AB We report a one-pot method for sequestration, containment, and immobilization of lanthanide (Ln) ions from dilute aqueous waste streams. The approach is based on the use of collapsible, surface modified controlled pore glass (CPG) nanomaterials. We present several approaches for a single-step chemical modification of 3-propylaminated CPGs that yield highly efficient Ln-extracting materials with distribution coefficients exceeding 10000 mL/g. The resulting Ln complexes were studied using X-ray absorption, magnetic resonance, and time-resolved luminescence spectroscopies. One of these CPG materials involving an imidodi(methanediphosphate) moiety demonstrated high extraction efficacy, significant ionic radius sensitivity, and exceptional tolerance to masking agents, which is conducive to its use for removal of traces of radionuclide ions from aqueous TALSPEAK raffinate (trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous complexes process used in processing of spent nuclear fuel). The glass loaded with the extracted metal ions can be calcined and sintered at 1100 degrees C, yielding fused material that buries Ln ions in the vitreous matrix. This processing temperature is significantly lower than 1700 degrees C that is required for direct vitrification of lanthanide oxides in high-silica glass. X-ray absorption spectroscopy and acid leaching tests indicate that the immobilized ions are isolated and dispersed in the fused glass matrix. Thus, the method integrates Ln ions into the glass network. The resulting glass can be used for temporary storage or as the source of silica for production of borosilicate waste forms that are used for long-term disposal of high level radioactive waste. C1 [Shkrob, Ilya A.; Tisch, Angela R.; Marin, Timothy W.; Muntean, John V.; Kaminski, Michael D.; Kropf, A. Jeremy] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI BM, MRCAT/G-7576-2011 FU Department of Energy, Office of Nuclear Energy's Fuel Cycle Research and Development Separations and Waste Campaign [AN 1015030401, FTAN11SW090] FX The authors gratefully acknowledge the work of collaborators and those providing support, technical guidance, and review: W. Ebert, A. Guelis, Y. Tsai, S. Naik, D. Gracszyk, L. Soderholm, J. Schlueter, S. Skanthakumar, and other colleagues at Argonne. Programmatic guidance provided by T. Todd and J. Vienna is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy, Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Financial support from the Department of Energy, Office of Nuclear Energy's Fuel Cycle Research and Development Separations and Waste Campaign, Contracts No. AN 1015030401 and FTAN11SW090, is gratefully acknowledged. NR 41 TC 5 Z9 5 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 20 PY 2011 VL 50 IS 8 BP 4686 EP 4696 DI 10.1021/ie102494r PG 11 WC Engineering, Chemical SC Engineering GA 747SY UT WOS:000289341200053 ER PT J AU Snezhko, A AF Snezhko, Alexey TI Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID FIELD-STRUCTURED COMPOSITES; NANOCRYSTAL SUPERLATTICES; CAPILLARY INTERACTIONS; FARADAY INSTABILITY; BIAXIAL FIELD; HARD-SPHERE; CRYSTALS; NANOPARTICLES; PARTICLES; FILMS AB Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM snezhko@anl.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357. NR 81 TC 20 Z9 20 U1 2 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 20 PY 2011 VL 23 IS 15 AR 153101 DI 10.1088/0953-8984/23/15/153101 PG 21 WC Physics, Condensed Matter SC Physics GA 745VZ UT WOS:000289199800001 PM 21436505 ER PT J AU Colella, P Dorr, MR Hittinger, JAF Martin, DF AF Colella, P. Dorr, M. R. Hittinger, J. A. F. Martin, D. F. TI High-order, finite-volume methods in mapped coordinates SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Finite-volume method; High-order discretization; Mapped grids; Hyperbolic and elliptic partial differential equations ID DIFFERENCE; SCHEMES; MESHES; GRIDS; PPM AB We present an approach for constructing finite-volume methods for flux-divergence forms to any order of accuracy defined as the image of a smooth mapping from a rectangular discretization of an abstract coordinate space. Our approach is based on two ideas. The first is that of using higher-order quadrature rules to compute the flux averages over faces that generalize a method developed for Cartesian grids to the case of mapped grids. The second is a method for computing the averages of the metric terms on faces such that freestream preservation is automatically satisfied. We derive detailed formulas for the cases of fourth-order accurate discretizations of linear elliptic and hyperbolic partial differential equations. For the latter case, we combine the method so derived with Runge-Kutta time discretization and demonstrate how to incorporate a high-order accurate limiter with the goal of obtaining a method that is robust in the presence of discontinuities and underresolved gradients. For both elliptic and hyperbolic problems, we demonstrate that the resulting methods are fourth-order accurate for smooth solutions. (C) 2011 Elsevier Inc. All rights reserved. C1 [Dorr, M. R.; Hittinger, J. A. F.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Colella, P.; Martin, D. F.] Lawrence Livermore Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Hittinger, JAF (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, 7000 E Ave L-561, Livermore, CA 94550 USA. EM pcolella@lbl.gov; dorr1@llnl.gov; hittinger1@llnl.gov; dfmartin@llnl.gov FU Office of Advanced Scientific Computing Research of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-422807] FX Research supported by the Office of Advanced Scientific Computing Research of the US Department of Energy under Contract Number DE-AC02-05CH11231.; This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-422807. NR 22 TC 30 Z9 30 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD APR 20 PY 2011 VL 230 IS 8 BP 2952 EP 2976 DI 10.1016/j.jcp.2010.12.044 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 739AS UT WOS:000288684900010 ER PT J AU McMurray, MA Bertin, A Garcia, G Lam, L Nogales, E Thorner, J AF McMurray, Michael A. Bertin, Aurelie Garcia, Galo, III Lam, Lisa Nogales, Eva Thorner, Jeremy TI Septin Filament Formation Is Essential in Budding Yeast SO DEVELOPMENTAL CELL LA English DT Article ID SACCHAROMYCES-CEREVISIAE; CELL-CYCLE; MAMMALIAN SEPTINS; PROTEIN-KINASE; CDC42P GTPASE; ORGANIZATION; RING; COMPARTMENTALIZATION; CYTOKINESIS; PHOSPHORYLATION AB Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10 Delta and cdc11 Delta cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize nonseptin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but "cap" Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells. C1 [McMurray, Michael A.; Bertin, Aurelie; Garcia, Galo, III; Lam, Lisa; Nogales, Eva; Thorner, Jeremy] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Biochem & Mol Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Thorner, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Biochem & Mol Biol, Berkeley, CA 94720 USA. EM jthorner@berkeley.edu FU NIH [GM86603, GM21841]; Jane Coffin Childs Post-doctoral Fellowship [61-1357]; NSF; Agouron Foundation; DOE Office of Biological & Environmental Research; Howard Hughes Medical Institute FX Supported by NIH K99 grant GM86603 (to M.A.M.), Jane Coffin Childs Post-doctoral Fellowship 61-1357 (to A.B.), an NSF Predoctoral Fellowship (to G.G.), the Agouron Foundation, DOE Office of Biological & Environmental Research, and Howard Hughes Medical Institute (to E.N.), and NIH R01 grant GM21841 (to J.T.). We thank Ho-leung Ng and Thomas C. Alber for their interest, advice, and material assistance. NR 45 TC 63 Z9 65 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 J9 DEV CELL JI Dev. Cell PD APR 19 PY 2011 VL 20 IS 4 BP 540 EP 549 DI 10.1016/j.devcel.2011.02.004 PG 10 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 755JC UT WOS:000289924700015 PM 21497764 ER PT J AU Berman, GP Chumak, AA AF Berman, G. P. Chumak, A. A. TI Influence of external fields and environment on the dynamics of a phase-qubit-resonator system SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM; CIRCUIT; PHOTON; STATES AB We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown. C1 [Berman, G. P.; Chumak, A. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chumak, A. A.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev 28, Msp, Ukraine. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B213, Los Alamos, NM 87545 USA. EM gpb@lanl.gov FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) FX We are grateful to V. I. Tsifrinovich, D. I. Kamenev, and D. Kinion for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and was funded by the Office of the Director of National Intelligence (ODNI) and Intelligence Advanced Research Projects Activity (IARPA). NR 30 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD APR 19 PY 2011 VL 83 IS 4 AR 042322 DI 10.1103/PhysRevA.83.042322 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 757QW UT WOS:000290103800003 ER PT J AU Hooper, D Linden, T AF Hooper, Dan Linden, Tim TI Gamma rays from the Galactic center and the WMAP haze SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE-ANISOTROPY-PROBE; FOREGROUND EMISSION AB Recently, an analysis of data from the Fermi Gamma Ray Space Telescope has revealed a flux of gamma rays concentrated around the inner 0.5 degrees of the Milky Way, with a sharply peaked spectrum at 2-4 GeV. Interpreted as the products of annihilating dark matter, this implies a dark matter particle with mass between 7.3 and 9.2 GeV annihilating primarily to charged leptons. This is comparable to the mass range required to fit signals reported by CoGeNT and DAMA/LIBRA. In addition to gamma rays, dark matter is predicted to produce energetic electrons and positrons which emit synchrotron while propagating through the galactic magnetic field. In this letter, we calculate the flux and spectrum of this synchrotron emission and compare the results to measurements from the WMAP satellite. We find that a sizable flux of hard synchrotron emission is predicted in this scenario, and that this can easily account for the observed intensity, spectrum, and morphology of the "WMAP haze.'' C1 [Hooper, Dan; Linden, Tim] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Linden, Tim] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy; NASA [NAG5-10842]; Fermilab Fellowship in Theoretical Physics FX We would like to thank Greg Dobler for valuable discussions. This work has been supported by the U.S. Department of Energy and by NASA Grant No. NAG5-10842. T.L. is supported by a Fermilab Fellowship in Theoretical Physics. NR 27 TC 43 Z9 43 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 19 PY 2011 VL 83 IS 8 AR 083517 DI 10.1103/PhysRevD.83.083517 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757TV UT WOS:000290111500004 ER PT J AU Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Cheng, CH Doll, DA Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Petzold, A Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Munerato, M Negrini, M Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Simi, G Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Blount, NL Brau, J Frey, R Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Buenger, C Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Lewis, P Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Robertson, SH Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Alam, MS Ernst, JA Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Osipenkov, I. L. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Cheng, C. H. Doll, D. A. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Petzold, A. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Simi, G. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Blount, N. L. Brau, J. Frey, R. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Robertson, S. H. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Alam, M. S. Ernst, J. A. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of the mass and width of the D-s1(2536)(+) meson SO PHYSICAL REVIEW D LA English DT Article ID SIMULATION; DECAY; QCD AB The decay width and mass of the D-s1(2536)(+) meson are measured via the decay channel D-s1(+) -> (D*+KS0) using 385 fb(-1) of data recorded with the BABAR detector in the vicinity of the Gamma(4S) resonance at the PEP-II asymmetric-energy electron-positron collider. The result for the decay width is Gamma(D-s1(+)) = 92 +/- 0.03(stat.) +/- 0.04(syst.) MeV. For the mass, a value of m(D-s1(+)) = 2535.08 +/- 0.01(stat.) +/- 0.15(syst.) MeV/c(2) is obtained. The mass difference between the D-s1(+) and the D*+ is measured to be m(D-s1(+)) - m(D*+) = 524.83 +/- 0.01(stat.) +/- 0.04(syst.) MeV/c(2), representing a significant improvement compared to the current world average. The unnatural spin-parity assignment for the D-s1(+) meson is confirmed. C1 [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.; Osipenkov, I. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Petzold, A.; Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.; Adye, T.] Univ Rostock, D-18051 Rostock, Germany. [Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Robertson, S. H.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.; Bellis, M.] So Methodist Univ, Dallas, TX 75275 USA. [Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012 OI Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti, Simone/0000-0002-6385-3508; Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Martinelli, Maurizio/0000-0003-4792-9178; Carpinelli, Massimo/0000-0002-8205-930X; Lanceri, Livio/0000-0001-8220-3095; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455 FU US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 33 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 19 PY 2011 VL 83 IS 7 AR 072003 DI 10.1103/PhysRevD.83.072003 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757SZ UT WOS:000290109300001 ER PT J AU Wohling, T Vrugt, JA AF Woehling, Thomas Vrugt, Jasper A. TI Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data SO WATER RESOURCES RESEARCH LA English DT Article ID SOIL HYDRAULIC-PROPERTIES; SOLUTE TRANSPORT PARAMETERS; UNSATURATED POROUS-MEDIA; OUTFLOW EXPERIMENTS; INVERSE ESTIMATION; OPTIMIZATION ALGORITHMS; HYDROLOGIC MODEL; FLOW; CONDUCTIVITY; MULTISTEP AB In the past two decades significant progress has been made toward the application of inverse modeling to estimate the water retention and hydraulic conductivity functions of the vadose zone at different spatial scales. Many of these contributions have focused on estimating only a few soil hydraulic parameters, without recourse to appropriately capturing and addressing spatial variability. The assumption of a homogeneous medium significantly simplifies the complexity of the resulting inverse problem, allowing the use of classical parameter estimation algorithms. Here we present an inverse modeling study with a high degree of vertical complexity that involves calibration of a 25 parameter Richards'-based HYDRUS-1D model using in situ measurements of volumetric water content and pressure head from multiple depths in a heterogeneous vadose zone in New Zealand. We first determine the trade-off in the fitting of both data types using the AMALGAM multiple objective evolutionary search algorithm. Then we adopt a Bayesian framework and derive posterior probability density functions of parameter and model predictive uncertainty using the recently developed differential evolution adaptive metropolis, DREAM(ZS) adaptive Markov chain Monte Carlo scheme. We use four different formulations of the likelihood function each differing in their underlying assumption about the statistical properties of the error residual and data used for calibration. We show that AMALGAM and DREAMZS can solve for the 25 hydraulic parameters describing the water retention and hydraulic conductivity functions of the multilayer heterogeneous vadose zone. Our study clearly highlights that multiple data types are simultaneously required in the likelihood function to result in an accurate soil hydraulic characterization of the vadose zone of interest. Remaining error residuals are most likely caused by model deficiencies that are not encapsulated by the multilayer model and can not be accessed by the statistics and likelihood function used. The utilization of an explicit autoregressive error model of the remaining error residuals does not work well for the water content data with HYDRUS-1D prediction uncertainty bounds that become unrealistically large. C1 [Woehling, Thomas] Lincoln Ventures Ltd, Ruakura Res Ctr, Hamilton 324, New Zealand. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil Engn, Irvine, CA 92697 USA. [Woehling, Thomas] Univ Tubingen, Dept Geosci, Water & Earth Sci Syst Res Ctr, Tubingen, Germany. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Wohling, T (reprint author), Lincoln Ventures Ltd, Ruakura Res Ctr, Hamilton 324, New Zealand. EM thomas.woehling@lvl.co.nz RI Vrugt, Jasper/C-3660-2008 FU New Zealand Foundation for Research, Science and Technology (FRST) [8137-ASXS-LVL]; LANL FX This work was funded by the New Zealand Foundation for Research, Science and Technology (FRST) as part of LVL's Groundwater Quality Protection Programme (8137-ASXS-LVL). The second author was supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 78 TC 40 Z9 41 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 19 PY 2011 VL 47 AR W04510 DI 10.1029/2010WR009265 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 754LX UT WOS:000289857200003 ER PT J AU Suen, G Weimer, PJ Stevenson, DM Aylward, FO Boyum, J Deneke, J Drinkwater, C Ivanova, NN Mikhailova, N Chertkov, O Goodwin, LA Currie, CR Mead, D Brumm, PJ AF Suen, Garret Weimer, Paul J. Stevenson, David M. Aylward, Frank O. Boyum, Julie Deneke, Jan Drinkwater, Colleen Ivanova, Natalia N. Mikhailova, Natalia Chertkov, Olga Goodwin, Lynne A. Currie, Cameron R. Mead, David Brumm, Phillip J. TI The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist SO PLOS ONE LA English DT Article ID OUTER-MEMBRANE PROTEINS; BACTEROIDES-SUCCINOGENES; RUMINOCOCCUS-FLAVEFACIENS; SYNERGISTIC INTERACTIONS; SIGNATURE SEQUENCES; ENDOGLUCANASE GENE; CONTINUOUS-CULTURE; RUMINAL BACTERIUM; MOLECULAR-CLONING; ESCHERICHIA-COLI AB Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation. C1 [Suen, Garret; Aylward, Frank O.; Currie, Cameron R.; Mead, David; Brumm, Phillip J.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Suen, Garret; Aylward, Frank O.; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Weimer, Paul J.; Stevenson, David M.] ARS, US Dairy Forage Res Ctr, USDA, Madison, WI USA. [Boyum, Julie; Deneke, Jan; Drinkwater, Colleen; Mead, David] Lucigen Corp, Middleton, WI USA. [Ivanova, Natalia N.; Mikhailova, Natalia; Goodwin, Lynne A.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Chertkov, Olga; Goodwin, Lynne A.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Brumm, Phillip J.] C5 6 Technol, Middleton, WI USA. RP Suen, G (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM pbrumm@c56technologies.com OI Suen, Garret/0000-0002-6170-711X; Ivanova, Natalia/0000-0002-5802-9485 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; USDA ARS [3655-41000-005-00D]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) supporting GS, FOA, CRC, DM, and PJB. This work was also funded by a USDA ARS CRIS project 3655-41000-005-00D supported DMS and PJW. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. All work performed by employees of Lucigen or C5-6 Technologies was performed under and supported by subcontract to the GLBRC. Neither corporation was a funder of the work; no funds of either corporation was used for this research or to support the researchers during performance of this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 97 TC 64 Z9 67 U1 5 U2 37 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 19 PY 2011 VL 6 IS 4 AR e18814 DI 10.1371/journal.pone.0018814 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 752EC UT WOS:000289671100023 PM 21526192 ER PT J AU Sodeye, AII Huang, T Gido, SP Mays, JW AF Sodeye, Akinbode I. Isaacs Huang, Tianzi Gido, Samuel P. Mays, Jimmy W. TI Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties SO POLYMER LA English DT Article DE Block copolymer; Ionomer; Morphology ID ANGLE X-RAY; PROTON-EXCHANGE MEMBRANES; DOUBLE-GRAFT-COPOLYMERS; FUEL-CELL APPLICATIONS; MOLECULAR ARCHITECTURE; IONIC AGGREGATION; BRANCH-POINTS; MORPHOLOGY; METHANOL; IONOMERS AB With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 degrees C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 degrees C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 degrees C. Across the plane of the membrane this sample had half the conductivity of Nation 112 at 60 degrees C. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Huang, Tianzi; Gido, Samuel P.; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sodeye, Akinbode I. Isaacs; Gido, Samuel P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Gido, SP (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM gido@mail.pse.umass.edu; mays@ion.chem.utk.edu RI USAXS, APS/D-4198-2013 FU U. S. Army Research Office [W911NF-10-1-0282]; U. S. National Science Foundation (NSF) [EPS-1004083] FX This work was supported by the U. S. Army Research Office (W911NF-10-1-0282) and the U. S. National Science Foundation (NSF EPS-1004083). NR 49 TC 12 Z9 12 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD APR 19 PY 2011 VL 52 IS 9 BP 1963 EP 1970 DI 10.1016/j.polymer.2011.02.049 PG 8 WC Polymer Science SC Polymer Science GA 753DE UT WOS:000289744400013 ER PT J AU Kong, XQ Schmidt-Rohr, K AF Kong, Xueqian Schmidt-Rohr, Klaus TI Water-polymer interfacial area in Nafion: Comparison with structural models SO POLYMER LA English DT Article DE Nafion; Water-channel model; Hydration ID MEMBRANES; SCATTERING; TRANSPORT; IONOMERS; STATE; ANGLE AB The water polymer interfacial area per volume, S/V, which is reflected in the Porod region of small-angle scattering data, is an important parameter of different models of the Nation fuel cell membrane. Therefore, we have compared published experimental S/V data of Nafion over a wide range of hydration levels with various structural models featuring stiff polymer backbones, in particular the parallel water-channel and the polymer ribbon models. The S/V curve at intermediate hydration levels typical of fuel-cell conditions (ca. 20 vol% water) matches that of the parallel water-channel model with molecular corrugation. At higher hydration levels, i.e. for membranes soaked in water or autoclaved at elevated pressures, the polymer-ribbon model matches the decreasing S/V ratio with increasing water content, while the polymer-bundle model predicts a higher surface area. However, the ribbon or bundle models cannot apply at low hydration (<3 water molecules per Nafion side group), since we show that the interfacial area in this regime must increase strongly with hydration, being determined by the available surface area of the water molecules. The pronounced asymmetry of the plot of S/V vs. water volume fraction is explained in terms of the difference in the diameters of the water molecules and the polymer aggregates. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Schmidt-Rohr, Klaus] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Kong, Xueqian/A-6406-2012 OI Kong, Xueqian/0000-0002-1901-9073 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 16 TC 16 Z9 16 U1 2 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD APR 19 PY 2011 VL 52 IS 9 BP 1971 EP 1974 DI 10.1016/j.polymer.2011.01.020 PG 4 WC Polymer Science SC Polymer Science GA 753DE UT WOS:000289744400014 ER PT J AU Zhuravlev, E Schmelzer, JWP Wunderlich, B Schick, C AF Zhuravlev, Evgeny Schmelzer, Juern W. P. Wunderlich, Bernhard Schick, Christoph TI Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL) SO POLYMER LA English DT Article DE Crystallization; Nucleation; Fast scanning calorimetry ID GLASS-TRANSITION TEMPERATURE; RIGID AMORPHOUS FRACTION; POLYMER CRYSTALLIZATION; HOMOGENEOUS-NUCLEATION; ISOTACTIC POLYPROPYLENE; SUPERFAST CALORIMETRY; BULK POLYMERS; POLYETHYLENE; GROWTH; NANOCALORIMETRY AB The recently developed differential fast scanning calorimetry (DFSC) is used for a new look at the crystal growth of poly(epsilon-caprolactone) (PCL) from 185 K. below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity using heating rates from 50 to 50,000 K/s. The crystal nucleation and crystallization halftimes were determined simultaneously. The obtained halftimes cover a range from 3 x 10(-2) s (nucleation at 215 K) to 3 x 10(9) s (crystallization at 185 K). After attempting to analyze the experiments with the classical nucleation and growth model, developed for systems consisting of small molecules, a new methodology is described which addresses the specific problems of crystallization of flexible linear macromolecules. The key problems which are attempted to be resolved concern the differences between the structures of the various entities identified and their specific role in the mechanism of growth. The structures range from configurations having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms in the temperature range from the glass transition to equilibrium melting for increasingly perfect and larger crystals. The mechanisms and kinetics of growth involve also a detailed understanding of the interaction with the surrounding rigid-amorphous fraction (RAF) in dependence of crystal size and perfection. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhuravlev, Evgeny; Schmelzer, Juern W. P.; Schick, Christoph] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Wunderlich, Bernhard] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Wunderlich, Bernhard] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Schick, C (reprint author), Univ Rostock, Inst Phys, Wismarsche Str 43-45, D-18051 Rostock, Germany. EM christoph.schick@uni-rostock.de RI Schick, Christoph/C-1154-2009 OI Schick, Christoph/0000-0001-6736-5491 FU Deutsche Forschungsgemeinschaft (DFG); European Union FX The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG). EZ acknowledges a European Union funded Marie Curie EST fellowship (ADVATEC). The samples were kindly provided by P. Potschke, Leibniz-Institut fur Polymerforschung Dresden e. V. Dresden, Germany, Teilinstitut Makromolekulare Chemie Abteilung Polymerreaktionen und Blends. NR 66 TC 87 Z9 88 U1 10 U2 82 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD APR 19 PY 2011 VL 52 IS 9 BP 1983 EP 1997 DI 10.1016/j.polymer.2011.03.013 PG 15 WC Polymer Science SC Polymer Science GA 753DE UT WOS:000289744400016 ER PT J AU Arhammar, C Pietzsch, A Bock, N Holmstrom, E Araujo, CM Grasjo, J Zhao, SX Green, S Peery, T Hennies, F Amerioun, S Fohlisch, A Schlappa, J Schmitt, T Strocov, VN Niklasson, GA Wallace, DC Rubensson, JE Johansson, B Ahuja, R AF Arhammar, C. Pietzsch, Annette Bock, Nicolas Holmstroem, Erik Araujo, C. Moyses Grasjo, Johan Zhao, Shuxi Green, Sara Peery, T. Hennies, Franz Amerioun, Shahrad Foehlisch, Alexander Schlappa, Justine Schmitt, Thorsten Strocov, Vladimir N. Niklasson, Gunnar A. Wallace, Duane C. Rubensson, Jan-Erik Johansson, Borje Ahuja, Rajeev TI Unveiling the complex electronic structure of amorphous metal oxides SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE stochastic quench; X-ray absorption spectroscopy; ab initio; coating ID FUNDAMENTAL DEFECT CENTERS; ALUMINUM-OXIDE; THIN-FILMS; HIGH-PURITY; BASIS-SET; AL2O3; EDGE; REFINEMENT; GENERATION; SCATTERING AB Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides. C1 [Arhammar, C.; Johansson, Borje; Ahuja, Rajeev] Royal Inst Technol, Dept Mat & Engn, S-10044 Stockholm, Sweden. [Arhammar, C.; Amerioun, Shahrad] Sandvik Tooling, R&D, S-12680 Stockholm, Sweden. [Arhammar, C.; Araujo, C. Moyses; Hennies, Franz; Rubensson, Jan-Erik; Johansson, Borje; Ahuja, Rajeev] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Pietzsch, Annette; Hennies, Franz] Lund Univ, MAXlab, SE-22100 Lund, Sweden. [Bock, Nicolas; Peery, T.; Wallace, Duane C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Holmstroem, Erik] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Grasjo, Johan; Zhao, Shuxi; Green, Sara; Schlappa, Justine; Niklasson, Gunnar A.] Uppsala Univ, Dept Engn Sci, S-75121 Uppsala, Sweden. [Grasjo, Johan] Uppsala Univ, Dept Pharm, S-75123 Uppsala, Sweden. [Foehlisch, Alexander] Helmholtz Zentrum Berlin Mat & Energie, Inst Methods & Instrumentat Synchrotron Radiat Re, D-12489 Berlin, Germany. [Foehlisch, Alexander] Univ Potsdam, Fak Phys & Astron, D-14476 Potsdam, Germany. [Schmitt, Thorsten; Strocov, Vladimir N.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Arhammar, C (reprint author), Royal Inst Technol, Dept Mat & Engn, S-10044 Stockholm, Sweden. EM cecilia.arhammar@fysik.uu.se RI Hennies, Franz/A-4643-2009; Schmitt, Thorsten/A-7025-2010; Holmstrom, Erik/A-5308-2009; Araujo, Moyses/L-6135-2013 OI Hennies, Franz/0000-0003-3904-1937; Pietzsch, Annette/0000-0001-6964-7425; Niklasson, Gunnar/0000-0002-8279-5163; Alexander, Fohlisch/0000-0003-4126-8233; Holmstrom, Erik/0000-0002-1198-3861; Araujo, Moyses/0000-0001-5192-0016 FU Swedish Research Council; Sandvik Tooling; Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) [1110602]; Europeean Community [FP7/2007-2013, 226716] FX We thank Andreas Blomqvist for providing the software to analyze the structural properties, Bo Lundberg and Sandvik Tooling AB, for additional characterization of the samples and Martin Berglund, Helmholtz-Zentrum fur Materialen und Energie, Berlin. The funding for this project was provided by the Swedish Research Council and Sandvik Tooling. E. H. was funded by the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) Grant 1110602. The spectroscopy part in this work was funded by the Europeean Community's Seventh framework Programme (FP7/2007-2013) under grant agreement No226716. The Swedish National Infrastructure for Computing (SNIC) is acknowledged for providing computational time. The X-ray synchrotron radiation measurements were performed at the ADRESS beamline of the Swiss light source, using the SAXES instrument jointly built by the Paul Scherrer Institute, Switzerland and Polytecnico di Milano, Italy. NR 49 TC 31 Z9 31 U1 4 U2 44 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 19 PY 2011 VL 108 IS 16 BP 6355 EP 6360 DI 10.1073/pnas.1019698108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 752GV UT WOS:000289680400011 ER PT J AU Machesky, M Wesolowski, D Rosenqvist, J Predota, M Vlcek, L Ridley, M Kohli, V Zhang, Z Fenter, P Cummings, PT Lvov, S Fedkin, M Rodriguez-Santiago, V Kubicki, J Bandura, A AF Machesky, Michael Wesolowski, David Rosenqvist, Joergen Predota, Milan Vlcek, Lukas Ridley, Moira Kohli, Vaibhav Zhang, Zhan Fenter, Paul Cummings, Peter T. Lvov, Serguei Fedkin, Mark Rodriguez-Santiago, Victor Kubicki, James Bandura, Andrei TI Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite SO LANGMUIR LA English DT Article ID ELECTRIC DOUBLE-LAYER; DENSITY-FUNCTIONAL THEORY; FORCE-FIELD PARAMETERS; AUGMENTED-WAVE METHOD; METAL-OXIDE SURFACES; WATER INTERFACE; MOLECULAR-DYNAMICS; ION ADSORPTION; SALT-SOLUTIONS; INNER-SPHERE AB Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl2 in NaCl, and trace ZnCl2 in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (E-bulk approximate to 11). Inner-sphere adsorption is also significant for Rb+ and Na+ on neutral surfaces, whereas Cl- binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb+, Na+, and especially Sr2+ are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn2+ are very steep but similar for both oxides, reflective of Zn2+ hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH+ on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable. C1 [Machesky, Michael] Illinois State Water Survey, Champaign, IL 61820 USA. [Wesolowski, David; Rosenqvist, Joergen; Vlcek, Lukas] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Predota, Milan] Univ S Bohemia, Inst Phys & Biophys, Fac Sci, Ceske Budejovice 37005, Czech Republic. [Ridley, Moira] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA. [Kohli, Vaibhav; Fenter, Paul] Argonne Natl Lab, Adv Photon Source, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhang, Zhan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Kubicki, James] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Kubicki, James] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Bandura, Andrei] St Petersburg State Univ, St Petersburg, Russia. RP Machesky, M (reprint author), Illinois State Water Survey, Champaign, IL 61820 USA. EM machesky@illinois.edu RI Zhang, Zhan/A-9830-2008; Predota, Milan/A-2256-2009; Rodriguez-Santiago, Victor/B-7447-2011; Bandura, Andrei/I-2702-2013; Vlcek, Lukas/N-7090-2013; Cummings, Peter/B-8762-2013 OI Zhang, Zhan/0000-0002-7618-6134; Predota, Milan/0000-0003-3902-0992; Rodriguez-Santiago, Victor/0000-0002-8389-5414; Bandura, Andrei/0000-0003-2816-0578; Vlcek, Lukas/0000-0003-4782-7702; Cummings, Peter/0000-0002-9766-2216 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC05-00OR22725]; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation [EAR-9627784]; Ministry of Education of the Czech Republic [ME09062] FX This work was primarily supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the project "Nanoscale complexity at the oxide/water interface" (ERKCC41) under contract DE-AC05-00OR22725, Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. X-ray measurements were performed at the XOR Sector 12, Advanced Photon Source, Argonne National Laboratory, which is supported by the U.S. Department of Energy grant DE-AC02-06CH11357. Some of the rutile titration data were also collected with support from the National Science Foundation (EAR-9627784). M. Predota was also supported by the Ministry of Education of the Czech Republic (ME09062). We thank three anonymous reviewers for their comments, which resulted in a much improved final manuscript. NR 38 TC 15 Z9 15 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 19 PY 2011 VL 27 IS 8 BP 4585 EP 4593 DI 10.1021/la1040163 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 747LJ UT WOS:000289321000043 PM 21417233 ER PT J AU Tang, KH Zhu, LY Urban, VS Collins, AM Biswas, P Blankenship, RE AF Tang, Kuo-Hsiang Zhu, Liying Urban, Volker S. Collins, Aaron M. Biswas, Pratim Blankenship, Robert E. TI Temperature and Ionic Strength Effects on the Chlorosome Light-Harvesting Antenna Complex SO LANGMUIR LA English DT Article ID BACTERIUM CHLOROFLEXUS-AURANTIACUS; CHLOROBIUM-TEPIDUM CHLOROSOMES; GREEN PHOTOSYNTHETIC BACTERIA; BACTERIOCHLOROPHYLL-C; SUPRAMOLECULAR ORGANIZATION; CYTOPLASMIC MEMBRANES; ENERGY-TRANSFER; SCATTERING; LIMICOLA; PROTEIN AB Chlorosomes, the peripheral light-harvesting antenna complex from green photosynthetic bacteria, are the largest and one of the most efficient light-harvesting antenna complexes found in nature. In contrast to other light-harvesting antennas, chlorosomes are constructed from more than 150 000 self-assembled bacteriochlorophylls (BChls) and contain relatively few proteins that play secondary roles. These unique properties have led to chlorosomes as an attractive candidate for developing biohybrid solar cell devices. In this article, we investigate the temperature and ionic strength effects on the viability of chlorosomes from the photosynthetic green bacterium Chloroflexus aurantiacus using small-angle neutron scattering and dynamic light scattering. Our studies indicate that chlorosomes remain intact up to 75 C and that salt induces the formation of large aggregates of chlorosomes. No internal structural changes are observed for the aggregates. The salt-induced aggregation, which is a reversible process, is more efficient with divalent metal ions than with monovalent metal ions. Moreover, with treatment at 98 degrees C for 2 mm, the bulk of the chlorosome pigments are undamaged, while the baseplate is destroyed. Chlorosomes without the baseplate remain rodlike in shape and are 30-40% smaller than with the baseplate attached. Further, chlorosomes are stable from pH 5.5 to 11.0. Together, this is the first time such a range of characterization tools have been used for chlorosomes, and this has enabled elucidation of properties. that are not only important to understanding their functionality but also may be useful in biohybrid devices for effective light harvesting. C1 [Tang, Kuo-Hsiang; Collins, Aaron M.; Blankenship, Robert E.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Tang, Kuo-Hsiang; Collins, Aaron M.; Blankenship, Robert E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Zhu, Liying; Biswas, Pratim] Washington Univ, Dept Energy Environm & Chem Engn, Aerosol & Air Qual Res Lab, St Louis, MO 63130 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Div Chem Sci, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP Blankenship, RE (reprint author), Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. EM blankenship@wustl.edu RI Urban, Volker/N-5361-2015 OI Urban, Volker/0000-0002-7962-3408 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035]; Office of Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX We thank Dr. Sai Venkatesh Pingali at ORNL for SANS beamline assistance. This article is based upon work supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. The SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the DOE, managed by UT-Battelle, LLC, under Contract No.DE-AC05-00OR22725. NR 54 TC 15 Z9 15 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 19 PY 2011 VL 27 IS 8 BP 4816 EP 4828 DI 10.1021/la104532b PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 747LJ UT WOS:000289321000070 PM 21405043 ER PT J AU Nieh, MP Raghunathan, VA Pabst, G Harroun, T Nagashima, K Morales, H Katsaras, J Macdonald, P AF Nieh, Mu-Ping Raghunathan, V. A. Pabst, Georg Harroun, Thad Nagashima, Kazuomi Morales, Hannah Katsaras, John Macdonald, Peter TI Temperature Driven Annealing of Perforations in Bicellar Model Membranes SO LANGMUIR LA English DT Article ID SOLID-STATE NMR; HIGH-RESOLUTION NMR; ORIENTED PHOSPHOLIPID MICELLES; RESIDUAL DIPOLAR COUPLINGS; NUCLEAR-MAGNETIC-RESONANCE; LIQUID-CRYSTALLINE PHASES; FIELD-GRADIENT NMR; LIPID-BILAYERS; TRANSMEMBRANE DOMAIN; CURVATURE ELASTICITY AB Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), P-31 NMR, and H-1 pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. P-31 NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J. 2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, P-31 NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. C1 [Nagashima, Kazuomi; Morales, Hannah; Macdonald, Peter] Univ Toronto, Dept Chem, Mississauga, ON L6J 1J9, Canada. [Nagashima, Kazuomi; Morales, Hannah; Macdonald, Peter] Univ Toronto, Dept Chem & Phys Sci, Mississauga, ON L6J 1J9, Canada. [Nieh, Mu-Ping] Univ Connecticut, Inst Mat Sci, Chem Mat & Biomol Engn Dept, Storrs, CT 06269 USA. [Raghunathan, V. A.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Pabst, Georg] Austrian Acad Sci, Inst Biophys & Nanosyst Res, A-8042 Graz, Austria. [Harroun, Thad] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. [Katsaras, John] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Katsaras, John] Canadian Neutron Beam Ctr, Natl Res Council, Chalk River, ON K0J 1J0, Canada. RP Macdonald, P (reprint author), Univ Toronto, Dept Chem, 3359 Mississauga Rd N, Mississauga, ON L6J 1J9, Canada. EM pm.macdonald@utoronto.ca RI Raghunathan, V./E-5103-2012; Pabst, Georg/I-6919-2015; OI Harroun, Thad/0000-0001-9816-2590; Pabst, Georg/0000-0003-1967-1536; Nieh, Mu-Ping/0000-0003-4462-8716; Katsaras, John/0000-0002-8937-4177 FU Advanced Foods and Materials Network (Networks of Centers of Excellence); NPMR; Natural Science and Engineering Research Council (NSERC) of Canada; University of Toronto FX We thank the Neutron Program for Materials Research (NPMR) for use of the neutron facilities at NRU (Chalk River, Ontario, Canada). J.K. and M.-P.N. acknowledge financial support from the Advanced Foods and Materials Network (Networks of Centers of Excellence) and the NPMR. P.M. thanks the Natural Science and Engineering Research Council (NSERC) of Canada and the University of Toronto for financial support. NR 115 TC 17 Z9 17 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 19 PY 2011 VL 27 IS 8 BP 4838 EP 4847 DI 10.1021/la104750x PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 747LJ UT WOS:000289321000072 PM 21438512 ER PT J AU Mack, NH Bailey, JA Doorn, SK Chen, CA Gau, HM Xu, P Williams, DJ Akhadov, EA Wang, HL AF Mack, Nathan H. Bailey, James A. Doorn, Stephen K. Chen, Chien-An Gau, Han-Mou Xu, Ping Williams, Darrick J. Akhadov, Elshan A. Wang, Hsing-Lin TI Mechanistic Study of Silver Nanoparticle Formation on Conducting Polymer Surfaces SO LANGMUIR LA English DT Article ID ENHANCED RAMAN-SCATTERING; CHEMICAL-DEPOSITION; FACILE SYNTHESIS; SPECTROSCOPY; POLYANILINE; GROWTH; AU AB Conducting polymer (polyaniline) sheets are shown to be active substrates to promote the growth of nanostructured silver thin films with highly tunable morphologies. Using the spontaneous electroless deposition of silver, we show that a range of nanostructured metallic features can be controllably and reproducibly formed over large surface areas. The structural morphology of the resulting metal polymer nanocomposite is demonstrated to be sensitive to experimental parameters such as ion concentration, temperature, and polymer processing and can range from densely packed oblate nanosheets to bulk crystalline metals. The deposition mechanisms are explained using a diffusion-limited aggregation (DLA) model to describe the semi-fractal-like growth of the metal nanostructures. We find these composite films to exhibit strong surface-enhanced Raman (SERS) activity, and the nanostructured features are optimized with respect to SERS activity using a self-assembled monolayer of mercapto-benzoic acid as a model Raman reporter. SERS enhancements are estimated to be on the order of 10(7). Through micro-Raman SERS mapping, these materials are shown to exhibit uniform SEAS responses over macroscopic areas. These metal-polymer nanocomposites benefit from the underlying polymer's processability to yield SERS-active materials of almost limitless shape and size and show significant promise for future SERS-based sensing and detection schemes. C1 [Mack, Nathan H.; Bailey, James A.; Doorn, Stephen K.; Chen, Chien-An; Gau, Han-Mou; Xu, Ping; Williams, Darrick J.; Akhadov, Elshan A.; Wang, Hsing-Lin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, HL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Xu, Ping/I-1910-2013 OI Xu, Ping/0000-0002-1516-4986 FU DOE; Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; National Nanotechnology Enterprise Development Center (NNEDC); U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy, Center for Integrated Nanotechnologies at Sandia National Laboratories [DE-AC04-94AL85000] FX We gratefully acknowledge financial support from Laboratory Directed Research and Development (LDRD), funded under the auspices of the DOE. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering as well as the National Nanotechnology Enterprise Development Center (NNEDC). This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (contract DE-AC52-06NA25396) and Sandia National Laboratories (contract DE-AC04-94AL85000). NR 21 TC 21 Z9 21 U1 6 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 19 PY 2011 VL 27 IS 8 BP 4979 EP 4985 DI 10.1021/la103644j PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 747LJ UT WOS:000289321000089 PM 21434643 ER PT J AU May, SJ Smith, CR Kim, JW Karapetrova, E Bhattacharya, A Ryan, PJ AF May, S. J. Smith, C. R. Kim, J. -W. Karapetrova, E. Bhattacharya, A. Ryan, P. J. TI Control of octahedral rotations in (LaNiO3)(n)/(SrMnO3)(m) superlattices SO PHYSICAL REVIEW B LA English DT Article ID PEROVSKITE; OXIDES AB Oxygen octahedral rotations have been measured in short-period (LaNiO3)(n)/(SrMnO3)(m) superlattices using synchrotron diffraction. The in-plane and out-of-plane bond angles and lengths are found to systematically vary with superlattice composition. Rotations are suppressed in structures with m > n, producing a nearly unrotated form of LaNiO3. Large rotations are present in structures with m < n, leading to reduced bond angles in SrMnO3. The metal-oxygen-metal bond lengths decrease as rotations are reduced, in contrast to behavior previously observed in strained, single-layer films. This result demonstrates that superlattice structures can be used to stabilize nonequilibrium octahedral behavior in a manner distinct from epitaxial strain, providing a novel means to engineer the electronic and ferroic properties of oxide heterostructures. C1 [May, S. J.; Smith, C. R.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [May, S. J.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kim, J. -W.; Karapetrova, E.; Ryan, P. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP May, SJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM smay@drexel.edu RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860 FU US Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Education [P200A100134] FX Work at Argonne was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. C. R. S. is supported by the US Department of Education under the GAANN program (#P200A100134). We are grateful to J. Rondinelli for useful discussions. NR 23 TC 49 Z9 50 U1 2 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 19 PY 2011 VL 83 IS 15 AR 153411 DI 10.1103/PhysRevB.83.153411 PG 4 WC Physics, Condensed Matter SC Physics GA 781ZO UT WOS:000291977100002 ER PT J AU Ran, S Bud'ko, SL Pratt, DK Kreyssig, A Kim, MG Kramer, MJ Ryan, DH Rowan-Weetaluktuk, WN Furukawa, Y Roy, B Goldman, AI Canfield, PC AF Ran, S. Bud'ko, S. L. Pratt, D. K. Kreyssig, A. Kim, M. G. Kramer, M. J. Ryan, D. H. Rowan-Weetaluktuk, W. N. Furukawa, Y. Roy, B. Goldman, A. I. Canfield, P. C. TI Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates SO PHYSICAL REVIEW B LA English DT Article AB We have found a remarkably large response of the transition temperature of CaFe2As2 single crystals grown from excess FeAs to annealing and quenching temperature. Whereas crystals that are annealed at 400 degrees C exhibit a first-order phase transition from a high-temperature tetragonal to a low-temperature orthorhombic and antiferromagnetic state near 170 K, crystals that have been quenched from 960 degrees C exhibit a transition from a high-temperature tetragonal phase to a low-temperature, nonmagnetic, collapsed tetragonal phase below 100 K. By use of temperature-dependent electrical resistivity, magnetic susceptibility, x-ray diffraction, Mossbauer spectroscopy, and nuclear magnetic resonance measurements we have been able to demonstrate that the transition temperature can be reduced in a monotonic fashion by varying the annealing or quenching temperature from 400 degrees to 850 degrees C with the low-temperature state remaining antiferromagnetic for transition temperatures larger than 100 K and becoming collapsed tetragonal, nonmagnetic for transition temperatures below 90 K. This suppression of the orthorhombic-antiferromagnetic phase transition and its ultimate replacement with the collapsed tetragonal, nonmagnetic phase is similar to what has been observed for CaFe2As2 under hydrostatic pressure. Transmission electron microscopy studies indicate that there is a temperature-dependent width of formation of CaFe2As2 with a decreasing amount of excess Fe and As being soluble in the single crystal at lower annealing temperatures. For samples quenched from 960 degrees C there is a fine (of order 10 nm) semiuniform distribution of precipitate that can be associated with an average strain field, whereas for samples annealed at 400 degrees C the excess Fe and As form mesoscopic grains that induce little strain throughout the CaFe2As2 lattice. C1 [Ran, S.; Bud'ko, S. L.; Pratt, D. K.; Kreyssig, A.; Kim, M. G.; Kramer, M. J.; Furukawa, Y.; Roy, B.; Goldman, A. I.; Canfield, P. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Ran, S.; Bud'ko, S. L.; Pratt, D. K.; Kreyssig, A.; Kim, M. G.; Furukawa, Y.; Roy, B.; Goldman, A. I.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Ryan, D. H.; Rowan-Weetaluktuk, W. N.] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Ryan, D. H.; Rowan-Weetaluktuk, W. N.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Ran, S (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014 OI Kim, Min Gyu/0000-0001-7676-454X; FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358]; Natural Sciences and Engineering Research Council of Canada; Fonds Quebecois de la Recherche sur la Nature et les Technologies FX We thank D. Robinson for his excellent technical support of the x-ray diffraction study. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University Under Contract No. DE-AC02-07CH11358. Work at McGill University was supported by grants from the Natural Sciences and Engineering Research Council of Canada and Fonds Quebecois de la Recherche sur la Nature et les Technologies. NR 27 TC 46 Z9 46 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 19 PY 2011 VL 83 IS 14 AR 144517 DI 10.1103/PhysRevB.83.144517 PG 12 WC Physics, Condensed Matter SC Physics GA 781ZA UT WOS:000291975400009 ER PT J AU Sakai, H Tokunaga, Y Kambe, S Lee, HO Sidorov, VA Tobash, PH Ronning, F Bauer, ED Thompson, JD AF Sakai, H. Tokunaga, Y. Kambe, S. Lee, H. -O. Sidorov, V. A. Tobash, P. H. Ronning, F. Bauer, E. D. Thompson, J. D. TI Stabilization of commensurate antiferromagnetism in CePt2In7 by pressure up to 2.4 GPa: In-115 NMR and NQR under zero field SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-STRUCTURE; HEAVY; SUPERCONDUCTIVITY; CERHIN5; CEPD2SI2; STATE AB Zero-field In-115-nuclear magnetic resonance (NMR) has been used to study single crystals of CePt2In7, a heavy-fermion antiferromagnet with a Neel temperature (T-N) of 5.2 K at ambient pressure. Narrow linewidths of In-115-nuclear quadrupolar resonance spectra are observed from each of three crystallographically inequivalent In(1), In(2), and In(3) sites. The NMR spectra under zero field near the 3 nu(Q) line of the orthorhombic In(3) sites are tracked by temperatures down to 1.6 K and by hydrostatic pressures up to 2.4 GPa. These data reveal the coexistence of commensurate and incommensurate antiferromagneic orders at ambient pressure and that the commensurate ordering is stabilized by increasing pressures where bulk superconductivity emerges. C1 [Sakai, H.; Tokunaga, Y.; Kambe, S.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Lee, H. -O.; Sidorov, V. A.; Tobash, P. H.; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sakai, H (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM sakai.hironori@jaea.go.jp RI Bauer, Eric/D-7212-2011 FU JSPS [21750067]; MEXT [20102002]; JAEA; U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Los Alamos LDRD FX We thank N. Tateiwa and Y. Haga for valuable discussions. Work in Japan was supported by the JSPS KAKENHI for Young Scientists (B) (No. 21750067), the MEXT KAKENHI for Scientific Research on Innovative Areas "Heavy Electrons" (No. 20102002), and the Reimei Research Program of JAEA. Work at LANL was performed under the auspices of the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and supported, in part, by the Los Alamos LDRD program. NR 21 TC 13 Z9 13 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 19 PY 2011 VL 83 IS 14 AR 140408 DI 10.1103/PhysRevB.83.140408 PG 4 WC Physics, Condensed Matter SC Physics GA 781ZA UT WOS:000291975400001 ER PT J AU Brezinova, I Collins, LA Ludwig, K Schneider, BI Burgdorfer, J AF Brezinova, Iva Collins, Lee A. Ludwig, Katharina Schneider, Barry I. Burgdoerfer, Joachim TI Wave chaos in the nonequilibrium dynamics of the Gross-Pitaevskii equation SO PHYSICAL REVIEW A LA English DT Article ID DEPENDENT SCHRODINGER-EQUATION; BOSE-EINSTEIN CONDENSATE; ANDERSON LOCALIZATION; GASES; SCHEMES AB The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of nonlinear Schrodinger equations which are known to feature dynamical instability and collapse for attractive nonlinear interactions. We show that the GPE with repulsive nonlinear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials, as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wave functions is to be distinguished from the notion of nonintegrability of nonlinear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics. C1 [Brezinova, Iva; Ludwig, Katharina; Burgdoerfer, Joachim] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Collins, Lee A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schneider, Barry I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. [Schneider, Barry I.] NIST, Electron & Atom Phys Div, Gaithersburg, MD 20899 USA. RP Brezinova, I (reprint author), Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10-136, A-1040 Vienna, Austria. EM iva.brezinova@tuwien.ac.at FU FWF program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; [FWF-SFB 041] FX We thank Julien Armijo, Denis Basko, Philippe Bouyer, Moritz Hiller, Ansgar Jungel, Daniel Matthes, and Markus Oberthaler for helpful discussions and hints on literature. We further thank Dan Horner, Florian Libisch, Stefan Nagele, Renate Pazourek, and especially Johannes Feist for providing valuable input on the numerical part of this work. This work was supported by the FWF program "CoQuS" and by FWF-SFB 041 "ViCoM." Calculations have been performed on the Vienna Scientific Cluster and under Institutional Computing at Los Alamos National Laboratory on the Coyote and Lobo platforms. The Los Alamos Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 60 TC 15 Z9 15 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD APR 18 PY 2011 VL 83 IS 4 AR 043611 DI 10.1103/PhysRevA.83.043611 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 757QM UT WOS:000290102800011 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blocker, C Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Turini, N Ukegawa, F Uozumi, S Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the Forward-Backward Asymmetry in the B -> K-(*) mu(+)mu(-) Decay and First Observation of the B-s(0) -> phi mu(+)mu(-) Decay SO PHYSICAL REVIEW LETTERS LA English DT Article AB We reconstruct the rare decays B+ -> K+ mu(+)mu(-), B-0 -> K*(892)(0) mu(+)mu(-), and B-s(0) -> phi(1020) mu(+)mu(-) in a data sample corresponding to 4.4 fb(-1) collected in p (p) over bar collisions at root s = 1.96 TeV by the CDF II detector at the Tevatron Collider. Using 121 +/- 16 B+ -> K+ mu(+)mu(-) and 101 +/- 12 B-0 -> K-*0 mu(+)mu(-) decays we report the branching ratios. In addition, we report the differential branching ratio and the muon forwardbackward asymmetry in the B+ and B-0 decay modes, and the K-*0 longitudinal polarization fraction in the B-0 decay mode with respect to the squared dimuon mass. These are consistent with the predictions, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the B-s(0) -> phi mu(+)mu(-) decay and measure its branching ratio BR(B-s(0) -> phi mu(+)mu(-)) = [1.44 +/- 0.33 +/- 0.46] x 10(-6) using 27 +/- 6 signal events. This is currently the most rare B-s(0) decay observed. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Mondragon, M. N.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Oksuzian, I.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, CNRS IN2P3, UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nuc Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nuc Trieste Udine, I-33100 Udine, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Naganoma, J.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012 OI Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 16 TC 35 Z9 35 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 18 PY 2011 VL 106 IS 16 AR 161801 DI 10.1103/PhysRevLett.106.161801 PG 7 WC Physics, Multidisciplinary SC Physics GA 757NU UT WOS:000290095300005 ER PT J AU Galtier, E Rosmej, FB Dzelzainis, T Riley, D Khattak, FY Heimann, P Lee, RW Nelson, AJ Vinko, SM Whitcher, T Wark, JS Tschentscher, T Toleikis, S Faustlin, RR Sobierajski, R Jurek, M Juha, L Chalupsky, J Hajkova, V Kozlova, M Krzywinski, J Nagler, B AF Galtier, E. Rosmej, F. B. Dzelzainis, T. Riley, D. Khattak, F. Y. Heimann, P. Lee, R. W. Nelson, A. J. Vinko, S. M. Whitcher, T. Wark, J. S. Tschentscher, T. Toleikis, S. Faeustlin, R. R. Sobierajski, R. Jurek, M. Juha, L. Chalupsky, J. Hajkova, V. Kozlova, M. Krzywinski, J. Nagler, B. TI Decay of Cystalline Order and Equilibration during the Solid-to-Plasma Transition Induced by 20-fs Microfocused 92-eV Free-Electron-Laser Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY; EMISSION; MATTER AB We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16) W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution. C1 [Galtier, E.; Rosmej, F. B.] Univ Paris 04, LULI, UMR 7605, F-75252 Paris 05, France. [Dzelzainis, T.; Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Khattak, F. Y.] Kohat Univ Sci & Technol, Dept Phys, Kohat 26000, Khyber Pakhtunk, Pakistan. [Heimann, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lee, R. W.; Nelson, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vinko, S. M.; Whitcher, T.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Tschentscher, T.] European XFEL, D-22761 Hamburg, Germany. [Toleikis, S.; Faeustlin, R. R.] Deutsch Elektronensynchrotron DESY, D-22603 Hamburg, Germany. [Sobierajski, R.] FOM, Inst Plasma Phys, NL-3430 BE Nieuwegein, Netherlands. [Jurek, M.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Juha, L.; Chalupsky, J.; Hajkova, V.; Kozlova, M.] Inst Phys ASCR, Prague 18221 8, Czech Republic. [Krzywinski, J.; Nagler, B.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosmej, F. B.] Ecole Polytech, LULI, PAPD, F-91128 Palaiseau, France. RP Galtier, E (reprint author), Univ Paris 04, LULI, UMR 7605, Case 128,4 Pl Jussieu, F-75252 Paris 05, France. EM frank.rosmej@upmc.fr RI Sobierajski, Ryszard/E-7619-2012; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; KHATTAK, Fida Younus/L-2404-2015; Vinko, Sam M./I-4845-2013 OI Vinko, Sam M./0000-0003-1016-0975 NR 20 TC 9 Z9 9 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 18 PY 2011 VL 106 IS 16 AR 164801 DI 10.1103/PhysRevLett.106.164801 PG 4 WC Physics, Multidisciplinary SC Physics GA 757NU UT WOS:000290095300008 PM 21599370 ER PT J AU Arsene, I Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Murray, M Natowitz, J Nielsen, BS Nygaard, C Pal, D Qviller, A Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, S AF Arsene, I. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Murray, M. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Qviller, A. Rami, F. Ristea, C. Ristea, O. Rohrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, S. CA BRAHMS Collaboration TI Rapidity dependence of deuteron production in central Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; PHASE-SPACE DENSITY; QUARK-GLUON PLASMA; PARTICLE-PRODUCTION; NUCLEAR COLLISIONS; COALESCENCE MODEL; AU+AU COLLISIONS; BRAHMS EXPERIMENT; CERN SPS; FLOW AB We have measured the distributions of protons and deuterons produced in the 20% most central Au + Au collisions at the Relativistic Heavy-Ion Collider (RHIC) (root s(NN) = 200 GeV) over a very wide range of transverse and longitudinal momentum. Near midrapidity we have also measured the distribution of antiprotons and antideuterons. We present our results in the context of coalescence models. In particular, we extract the "homogeneity volume" and the average phase-space density for protons and antiprotons. Near central rapidity the coalescence parameter B-2(p(T)) and the space-averaged phase-space density < f > (p(T)) are very similar for both protons and antiprotons. For protons we see little variation of either B-2(p(T)) or the space-averaged phase-space density as the rapidity increases from 0 to 3. However, these quantities depend strongly on p(T) at all rapidities. These results are in contrast to data from lower-energy collisions where the proton and antiproton phase-space densities are different at y = 0, and both B-2 and < f > depend strongly on rapidity. C1 [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] Inst Pluridisciplinaire Hubert Curien CRNS IN2P3, Strasbourg, France. [Rami, F.] Univ Strasbourg, Strasbourg, France. [Budick, B.] NYU, New York, NY 10003 USA. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, Smoluchowski Inst Phys, Krakow, Poland. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Zgura, S.] Inst Space Sci, Bucharest, Romania. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX 77843 USA. [Rohrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. RP Arsene, I (reprint author), GSI Darmstadt, ExtreMe Matter Inst EMMI, Darmstadt, Germany. RI Gaardhoje, Jens-Jorgen/F-9008-2011; Christensen, Christian/D-6461-2012; Christensen, Christian Holm/A-4901-2010; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014 OI Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Christensen, Christian/0000-0002-1850-0121; Christensen, Christian Holm/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094 FU Division of Nuclear Physics of the Office of Science of the US Department of Energy [DE-AC02-98-CH10886, DE-FG03-93-ER40773, DE-FG03-96-ER40981, DE-FG02-99-ER41121]; Danish Natural Science Research Council; Research Council of Norway; Polish Ministry of Science and Higher Education [1248/B/H03/2009/36]; Romanian Ministry of Education and Research [81-049/2007 (REEHUC)] FX This work was supported by the Division of Nuclear Physics of the Office of Science of the US Department of Energy under contracts DE-AC02-98-CH10886, DE-FG03-93-ER40773, DE-FG03-96-ER40981, and DE-FG02-99-ER41121, the Danish Natural Science Research Council, the Research Council of Norway, the Polish Ministry of Science and Higher Education (Contract No. 1248/B/H03/2009/36), and the Romanian Ministry of Education and Research Grant No. 81-049/2007 (REEHUC). We thank the staff of the Collider-Accelerator Division at BNL for their excellent and dedicated work to deploy RHIC and their support to the experiment. NR 57 TC 5 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 18 PY 2011 VL 83 IS 4 AR 044906 DI 10.1103/PhysRevC.83.044906 PG 8 WC Physics, Nuclear SC Physics GA 758JG UT WOS:000290159900003 ER PT J AU Schenke, B Jeon, S Gale, C AF Schenke, Bjoern Jeon, Sangyong Gale, Charles TI Hydrodynamic evolution and jet energy loss in Cu plus Cu collisions SO PHYSICAL REVIEW C LA English DT Article ID FRAGMENTATION AB We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (MUSIC) for the bulk evolution and a Monte Carlo simulation (MARTINI) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions. C1 [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Schenke, Bjoern; Jeon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. FU Natural Sciences and Engineering Research Council of Canada; McGill University; US Department of Energy under DOE [DE-AC02-98CH10886]; Brookhaven Science Associates FX B.P.S. thanks Roy Lacey for help with locating the experimental data. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada. B. P. S. gratefully acknowledges support from the Richard H. Tomlinson Postdoctoral program by McGill University. B. P. S. was also supported in part by the US Department of Energy under DOE Contract No. DE-AC02-98CH10886, and by a Lab Directed Research and Development Grant from Brookhaven Science Associates. NR 33 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 18 PY 2011 VL 83 IS 4 AR 044907 DI 10.1103/PhysRevC.83.044907 PG 7 WC Physics, Nuclear SC Physics GA 758JG UT WOS:000290159900004 ER PT J AU Ashley, CE Dunphy, DR Jiang, Z Carnes, EC Yuan, Z Petsev, DN Atanassov, PB Velev, OD Sprung, M Wang, J Peabody, DS Brinker, CJ AF Ashley, Carlee E. Dunphy, Darren R. Jiang, Zhang Carnes, Eric C. Yuan, Zhen Petsev, Dimiter N. Atanassov, Plamen B. Velev, Orlin D. Sprung, Michael Wang, Jin Peabody, David S. Brinker, C. Jeffrey TI Convective Assembly of 2D Lattices of Virus-like Particles Visualized by In-Situ Grazing-Incidence Small-Angle X-Ray Scattering SO SMALL LA English DT Article ID TOBACCO-MOSAIC-VIRUS; NANOCRYSTAL SUPERLATTICES; CONTROLLED THICKNESS; GOLD NANOPARTICLES; RAPID DEPOSITION; COATINGS; FILMS; BACTERIOPHAGE-MS2; INTERFACES; MONOLAYERS AB The rapid assembly of icosohedral virus-like particles (VLPs) into highly ordered (domain size > 600 nm), oriented 2D superlattices directly onto a solid substrate using convective coating is demonstrated. In-situ grazing-incidence small-angle X-ray scattering (GISAXS) is used to follow the self-assembly process in real time to characterize the mechanism of superlattice formation, with the ultimate goal of tailoring film deposition conditions to optimize long-range order. From water, GISAXS data are consistent with a transport-limited assembly process where convective flow directs assembly of VLPs into a lattice oriented with respect to the water drying line. Addition of a nonvolatile solvent (glycerol) modified this assembly pathway, resulting in non-oriented superlattices with improved long-range order. Modification of electrostatic conditions (solution ionic strength, substrate charge) also alters assembly behavior; however, a comparison of in-situ assembly data between VLPs derived from the bacteriophages MS2 and Q beta show that this assembly process is not fully described by a simple Derjaguin-Landau-Verwey-Overbeek model alone. C1 [Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Ashley, Carlee E.; Dunphy, Darren R.; Carnes, Eric C.; Yuan, Zhen; Petsev, Dimiter N.; Atanassov, Plamen B.] Univ New Mexico, NSF Ctr Microengn Mat, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Jiang, Zhang; Sprung, Michael; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Velev, Orlin D.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Peabody, David S.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Brinker, CJ (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM cjbrink@sandia.gov RI Atanassov, Plamen/G-4616-2011; Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU Department of Energy [DE-AC02-06CH11357]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE BES; Air Force Office of Scientific Research [FA 9550-07-1-0054]; National Institutes of Health [PHS 2 PN2 EY016570B]; University of California, San Francisco [NIH P41 RR-01081] FX Use of the APS is supported by the Department of Energy under contract DE-AC02-06CH11357. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Partial support of this work (TMA) was through the DOE BES funding to Sandia, Sandia's Laboratory Directed Research and Development (LDRD) Programs, as well as through Air Force Office of Scientific Research Grant FA 9550-07-1-0054 and the National Institutes of Health through the HIH Roadmap for Medical Research Award number PHS 2 PN2 EY016570B. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081). NR 38 TC 10 Z9 10 U1 3 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD APR 18 PY 2011 VL 7 IS 8 BP 1043 EP 1050 DI 10.1002/smll.201001665 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 756FL UT WOS:000289997000009 PM 21425464 ER PT J AU Armstrong, A Allerman, AA Henry, TA Crawford, MH AF Armstrong, A. Allerman, A. A. Henry, T. A. Crawford, M. H. TI Influence of growth temperature on AlGaN multiquantum well point defect incorporation and photoluminescence efficiency SO APPLIED PHYSICS LETTERS LA English DT Article ID DENSITY-DEPENDENCE; GAN; EMISSION AB The dependence of (Al)GaN/AlGaN multiquantum well (MQWs) optical efficiency and defect incorporation on the growth temperature (T(g)) of the optically active region was investigated. Marked increase in MQW photoluminescence (PL) intensity was observed for increasing T(g). Correspondingly, increasing T(g) also significantly reduced point defect incorporation under QW growth conditions, as determined by deep level optical spectroscopy. It is suggested that enhanced MQW PL with increasing T(g) resulted from improved nonradiative lifetime through reduced nonradiative defect density in the MQW region. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3583448] C1 [Armstrong, A.; Allerman, A. A.; Henry, T. A.; Crawford, M. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Armstrong, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aarmstr@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 12 TC 6 Z9 6 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 162110 DI 10.1063/1.3583448 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700041 ER PT J AU Bailey, CG Forbes, DV Raffaelle, RP Hubbard, SM AF Bailey, Christopher G. Forbes, David V. Raffaelle, Ryne P. Hubbard, Seth M. TI Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; RELAXATION DYNAMICS; EFFICIENCY AB Ten-layer InAs/GaAs quantum dot (QD) solar cells exhibiting enhanced short circuit current (J(sc)) and open circuit voltage (V(oc)) comparable to a control GaAs p-i-n solar cell are reported. 1 sun J(sc) is enhanced by 3.5% compared to that of the GaAs control, while the V(oc) is maintained at 994 mV. Results were achieved using optimized InAs QD coverage and a modified strain balancing technique, resulting in a high QD density (3.6 x 10(10) cm(-2)), uniform QD size (4 x 16 nm(2)), and low residual strain (103 ppm). This enhanced V(oc) is a promising result for the future of InAs QD-enhanced GaAs solar cells. (C) 2011 American Institute of Physics. [doi:10.1063/1.3580765] C1 [Bailey, Christopher G.; Forbes, David V.; Hubbard, Seth M.] Rochester Inst Technol, NanoPower Res Labs, Rochester, NY 14623 USA. [Raffaelle, Ryne P.] Natl Renewable Energy Labs, Golden, CO 80401 USA. RP Bailey, CG (reprint author), Rochester Inst Technol, NanoPower Res Labs, 156 Lomb Mem Dr, Rochester, NY 14623 USA. EM smhsps@rit.edu FU National Science Foundation [DMR-0955752]; Department of Energy [DE-FG36-08GO18012]; National Aeronautics and Space Administration [SAA3-844] FX The authors would like to thank C. D. Cress, at the Naval Research Laboratories, Z. Bittner, C. Mackos, and S. J. Polly, at the NanoPower Research Laboratories as well as staff of the Semiconductor Microsystems Fabrication Laboratory at RIT. This work was supported by the National Science Foundation (Grant No. DMR-0955752), the Department of Energy (Grant No. DE-FG36-08GO18012) and the National Aeronautics and Space Administration (Grant No. SAA3-844). NR 26 TC 107 Z9 107 U1 0 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 163105 DI 10.1063/1.3580765 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700059 ER PT J AU Dayeh, SA Gin, AV Picraux, ST AF Dayeh, S. A. Gin, A. V. Picraux, S. T. TI Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; CORE-SHELL; GE/SI AB A precise level of control over morphology and transport in germanium/silicon core/multishell semiconductor nanowires is attained by interface engineering. Epitaxial in situ growth of such advanced heterostructures is achieved, enabling smooth and crystalline shell quality without ex situ thermal or chemical treatment. Transport simulation predicts such heterostructures with engineered energy band-edges will exhibit enhanced on-currents and transconductances over traditional device designs. Based on this synthesis approach, a 2X improvement in experimental hole mobility, transconductance, and on-currents is demonstrated for heterostructures with smooth surface morphologies compared to those with rough surface morphologies and record normalized on-currents for p-type field effect transistors are achieved. (C) 2011 American Institute of Physics. [doi:10.1063/1.3574537] C1 [Dayeh, S. A.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA. [Gin, A. V.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Dayeh, SA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87544 USA. EM shadi@lanl.gov RI Dayeh, Shadi/H-5621-2012 FU Los Alamos National Laboratory; Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This research was funded in part by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory and performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). NR 21 TC 25 Z9 25 U1 0 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 163112 DI 10.1063/1.3574537 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700066 ER PT J AU Fenning, DP Hofstetter, J Bertoni, MI Hudelson, S Rinio, M Lelievre, JF Lai, B del Canizo, C Buonassisi, T AF Fenning, D. P. Hofstetter, J. Bertoni, M. I. Hudelson, S. Rinio, M. Lelievre, J. F. Lai, B. del Canizo, C. Buonassisi, T. TI Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTICRYSTALLINE SILICON; IMPROVEMENT; IMPURITIES; TRANSITION; SI AB The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi2 precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3575583] C1 [Fenning, D. P.; Bertoni, M. I.; Hudelson, S.; Buonassisi, T.] MIT, Cambridge, MA 02139 USA. [Hofstetter, J.; del Canizo, C.] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. [Rinio, M.] Fraunhofer Inst Solar Energy Syst ISE, Lab & Serv Ctr, D-45884 Gelsenkirchen, Germany. [Lelievre, J. F.] Ctr Tecnol Silicio Solar CENTESIL, Getafe 28905, Spain. [Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fenning, DP (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM dfenning@alum.mit.edu RI Buonassisi, Tonio/J-2723-2012; Lelievre, Jean-Francois/G-8555-2013; OI Fenning, David/0000-0002-4609-9312 FU U.S. Department of Energy [DE-FG36-09GO1900, DE-AC02-06CH11357]; MIT-Spain; Spanish Ministerio de Ciencia e Innovacion [TEC2008-06798-C03-02]; NSF FX This work was supported by the U.S. Department of Energy, Contract No. DE-FG36-09GO1900, the MIT-Spain/La Cambra de Barcelona Seed Fund, and the Spanish Ministerio de Ciencia e Innovacion through Thincells Project No. TEC2008-06798-C03-02. D. P. Fenning and S. Hudelson acknowledge the support of the NSF Graduate Research Fellowship. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 19 TC 23 Z9 23 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 162103 DI 10.1063/1.3575583 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700034 ER PT J AU Hopkins, PE Duda, JC Clark, SP Hains, CP Rotter, TJ Phinney, LM Balakrishnan, G AF Hopkins, Patrick E. Duda, John C. Clark, Stephen P. Hains, Christopher P. Rotter, Thomas J. Phinney, Leslie M. Balakrishnan, Ganesh TI Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces SO APPLIED PHYSICS LETTERS LA English DT Article ID PICOSECOND LIGHT-PULSES; TRANSPORT; THERMOREFLECTANCE; GENERATION; PHONONS; GASB; GAAS AB We report on the thermal boundary conductance across structurally-variant GaSb/GaAs interfaces characterized by different dislocations densities, as well as variably-rough Al/GaSb interfaces. The GaSb/GaAs structures are epitaxially grown using both interfacial misfit (IMF) and non-IMF techniques. We measure the thermal boundary conductance from 100 to 450 K with time-domain thermoreflectance. The thermal boundary conductance across the GaSb/GaAs interfaces decreases with increasing strain dislocation density. We develop a model for interfacial transport at structurally-variant interfaces in which phonon propagation and scattering parallels photon attenuation. We find that this model describes the measured thermal boundary conductances well. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3581041] C1 [Hopkins, Patrick E.; Duda, John C.; Phinney, Leslie M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hopkins, Patrick E.; Duda, John C.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Clark, Stephen P.; Hains, Christopher P.; Rotter, Thomas J.; Balakrishnan, Ganesh] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov RI Duda, John/A-7214-2011; balakrishnan, ganesh/F-7587-2011 FU LDRD office through the Sandia National Laboratories; National Science Foundation; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX P.E.H. is appreciative for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship Program. J.C.D. is appreciative for funding from the National Science Foundation Graduate Research Fellowship Program and the Student Intern Program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 33 TC 38 Z9 38 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 161913 DI 10.1063/1.3581041 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700031 ER PT J AU Levander, AX Liliental-Weber, Z Broesler, R Hawkridge, ME Novikov, SV Foxon, CT Dubon, OD Wu, J Walukiewicz, W Yu, KM AF Levander, A. X. Liliental-Weber, Z. Broesler, R. Hawkridge, M. E. Novikov, S. V. Foxon, C. T. Dubon, O. D. Wu, J. Walukiewicz, W. Yu, K. M. TI Thermal stability of amorphous GaN1-xAsx alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID BAND; GAN AB GaN1-xAsx alloys grown across the composition range by low temperature molecular beam epitaxy have great technological potential for photovoltaic applications owing to their strong absorption coefficient and wide tunability of band gap and band edges. We found that amorphous GaN1-xAsx alloys that are formed for the compositions x, in the range of x similar to 0.3-0.7 are stable up to 700 degrees C. This is surprising since growth of GaN1-xAsx above 400 degrees C results in phase segregation. At annealing temperatures higher than 700 degrees C the alloy phase segregates into GaAs:N and GaN:As. The relative size of the nanocrystals depends on the initial film composition and annealing conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581894] C1 [Levander, A. X.; Liliental-Weber, Z.; Broesler, R.; Hawkridge, M. E.; Dubon, O. D.; Wu, J.; Walukiewicz, W.; Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, A. X.; Broesler, R.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Levander, AX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Wu, Junqiao/G-7840-2011; Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012 OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CBET-0932905]; EPSRC [EP/I004203/1, EP/G046867/1, EP/G030634/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The use of the National Center for Electron Microscopy at Lawrence Berkeley Laboratory is appreciated. Some of the characterization work was supported by National Science Foundation under Grant No. CBET-0932905. The growth work at the University of Nottingham was supported by the EPSRC (Grant Nos. EP/I004203/1, EP/G046867/1, and EP/G030634/1). A. Levander acknowledges the National Science Foundation for financial support. NR 12 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 18 PY 2011 VL 98 IS 16 AR 161902 DI 10.1063/1.3581894 PG 3 WC Physics, Applied SC Physics GA 754GI UT WOS:000289842700020 ER PT J AU Lovejoy, TC Yitamben, EN Heald, SM Ohuchi, FS Olmstead, MA AF Lovejoy, T. C. Yitamben, E. N. Heald, S. M. Ohuchi, F. S. Olmstead, M. A. TI Controlling the growth morphology and phase segregation of Mn-doped Ga2Se3 on Si(001) SO PHYSICAL REVIEW B LA English DT Article ID RAY-ABSORPTION SPECTRA; MAGNETIC SEMICONDUCTOR; ELECTRONIC-STRUCTURE; FERROMAGNETISM; TRANSPORT; OXIDE AB The growth and phase segregation properties of the potential dilute magnetic semiconductor alloy (MnSe)(x)(Ga2/3Se)(1-x) are studied as a function of thickness, Mn concentration, postgrowth annealing, and the presence or absence of undoped Ga2Se3 buffer and capping layers. This system is an unusual case in heteroepitaxy where two-phase MnSe + Ga2Se3 has better lattice matching than the (MnSe)(x)(Ga2/3Se)(1-x) alloy. Despite this peculiarity, this system shows a modified form of Stranski-Krastonow growth: laminar films are observed up to a certain x-dependent critical thickness, above which islands are observed by scanning tunneling microscopy. The island morphology depends on the presence or absence of an undoped Ga2Se3 buffer layer and postgrowth annealing. A kinetically stabilized platelet morphology is observed at the crossover point between laminar and islanded films. Based on Mn and Se K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy, there are two types of Mn in islanded films: Mn that remains doped in the Ga2Se3 but oxidizes upon exposure to air, and Mn that participates in the islands, which are precipitates of the MnSe phase. Consistent with MnO or MnSe, L-edge x-ray absorption on air-exposed films suggests the Mn is in the formal + 2 oxidation state. No L-edge x-ray magnetic circular dichroism signal is observed at 20 K, which may be due to surface effects or to a lack of magnetic order. C1 [Lovejoy, T. C.; Yitamben, E. N.; Olmstead, M. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Lovejoy, T. C.; Yitamben, E. N.; Ohuchi, F. S.; Olmstead, M. A.] Univ Washington, Ctr Nanotechnol, Seattle, WA 98195 USA. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ohuchi, F. S.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Lovejoy, TC (reprint author), Nion Co, 1102 8th St, Kirkland, WA 98033 USA. EM tlovejoy@uw.edu OI Olmstead, Marjorie/0000-0003-4374-0976 FU NSF [DMR-0605601]; IGERT; NSF/NCI through the Center for Nanotechnology at the UW [DGE 0504573]; IBM corporation; DOE [DE-AC03-76SF00098, DE-AC02-06CH11357] FX Work was supported by the NSF Grant No. DMR-0605601. T.C.L. acknowledges support from the IGERT program, NSF/NCI Grant No. DGE 0504573 through the Center for Nanotechnology at the UW. E.N.Y. acknowledges support from IBM corporation. Use of the Advanced Light Source was supported by the DOE under Contract No. DE-AC03-76SF00098, and the authors would like to acknowledge Marco Liberati and Elke Arenholz for their assistance with the L-edge XAS measurements at beamline 6.3.1. Use of the Advanced Photon Source was supported by the DOE under Contract No. DE-AC02-06CH11357. NR 36 TC 1 Z9 1 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 18 PY 2011 VL 83 IS 15 AR 155312 DI 10.1103/PhysRevB.83.155312 PG 12 WC Physics, Condensed Matter SC Physics GA 781ZJ UT WOS:000291976300009 ER PT J AU Huang, B Xiang, HJ Wei, SH AF Huang, Bing Xiang, H. J. Wei, Su-Huai TI Controlling doping in graphene through a SiC substrate: A first-principles study SO PHYSICAL REVIEW B LA English DT Article ID EPITAXIAL GRAPHENE; ELECTRONIC-PROPERTIES; TRANSPORT AB Controlling the type and density of charge carriers by doping is the key step for developing graphene electronics. However, direct doping of graphene is rather a challenge. Based on first-principles calculations, a concept of overcoming doping difficulty in graphene via substrate is reported. We find that doping could be strongly enhanced in epitaxial graphene grown on silicon carbide substrate. Compared to free-standing graphene, the formation energies of the dopants can decrease by as much as 8 eV. The type and density of the charge carriers of epitaxial graphene layer can be effectively manipulated by suitable dopants and surface passivation. More importantly, contrasting to the direct doping of graphene, the charge carriers in epitaxial graphene layer are weakly scattered by dopants due to the spatial separation between dopants and the conducting channel. Finally, we show that a similar idea can also be used to control magnetic properties, for example, induce a half-metallic state in the epitaxial graphene without magnetic impurity doping. C1 [Huang, Bing; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Xiang, H. J.] Fudan Univ, Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. [Xiang, H. J.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Huang, B (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Huang, Bing/D-8941-2011; Xiang, Hongjun/I-4305-2016 OI Huang, Bing/0000-0001-6735-4637; Xiang, Hongjun/0000-0002-9396-3214 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Science Foundation of China FX The work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. The work at Fudan was partially supported by the National Science Foundation of China. NR 26 TC 14 Z9 14 U1 3 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 16 PY 2011 VL 83 IS 16 AR 161405 DI 10.1103/PhysRevB.83.161405 PG 4 WC Physics, Condensed Matter SC Physics GA 757UI UT WOS:000290112800005 ER PT J AU Shin, SY Hwang, CG Sung, SJ Kim, ND Kim, HS Chung, JW AF Shin, S. Y. Hwang, C. G. Sung, S. J. Kim, N. D. Kim, H. S. Chung, J. W. TI Observation of intrinsic intraband pi-plasmon excitation of a single-layer graphene SO PHYSICAL REVIEW B LA English DT Article ID 6H-SIC(0001) SURFACE; DISPERSION; BAND AB We report the energy-momentum dispersion omega(q) of a low-energy intraband pi plasmon arising from Dirac fermions in the conduction band of a single-layer graphene (SLG), not complicated by couplings with other excitations. For a wide range of q (0.39 <= q/k(F) <= 2.36), where k(F) = 0.061 angstrom(-1) is the Fermi wave vector, the intraband plasmon survives through the interband single-particle excitation (SPE) region, and linearly disperses beyond the Landau damping q(c) = 0.90 k(F) asymptotically approaching the boundary of the interband SPE without ever entering the intraband SPE. Such a unique feature is completely distinct from the plasmon of either a multilayer graphene or a normal two-dimensional electron gas, and hence demonstrates another intrinsic nature of Dirac fermions in SLG. C1 [Shin, S. Y.; Sung, S. J.; Kim, H. S.; Chung, J. W.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Hwang, C. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, N. D.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. RP Shin, SY (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. EM jwc@postech.ac.kr FU Korea government (MEST) [R01-2008-000-20020-0]; NCRC [R15-2008-006- 01001 -0] FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST) under Grant No. R01-2008-000-20020-0, and also in part by the NCRC under Grant No. R15-2008-006- 01001 -0. NR 27 TC 27 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 16 PY 2011 VL 83 IS 16 AR 161403 DI 10.1103/PhysRevB.83.161403 PG 4 WC Physics, Condensed Matter SC Physics GA 757UI UT WOS:000290112800003 ER PT J AU Howard, J Uman, MA Biagi, C Hill, D Rakov, VA Jordan, DM AF Howard, J. Uman, M. A. Biagi, C. Hill, D. Rakov, V. A. Jordan, D. M. TI Measured close lightning leader-step electric field-derivative waveforms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSMISSION-LINE MODEL; RETURN-STROKE MODELS; ELECTROMAGNETIC-RADIATION; MAPPING ARRAY; PROPAGATION; PULSES; ONSET AB We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak and becomes dominant as range decreases. The initial peak is often preceded by a "slow front," similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 mu s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m(-1) mu s(-1) (standard deviation (S. D.), 3.7 V m(-1) mu s(-1), N = 103), the mean half-peak width is 33.5 ns (S. D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S. D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA mu s(-1), peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of similar to 3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10(8) m s(-1), with their amplitudes decaying exponentially with a decay height constant of 25 m. C1 [Howard, J.; Uman, M. A.; Biagi, C.; Hill, D.; Rakov, V. A.; Jordan, D. M.] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. RP Howard, J (reprint author), Sandia Natl Labs, MS 0878, Albuquerque, NM 87185 USA. EM ironjoe@ufl.edu RI Rakov, Vladimir/A-8775-2009 OI Rakov, Vladimir/0000-0002-4582-9483 FU DARPA [HR0011-08-1-0088, HR0011-1-10-1-0061]; NSF [ATM 0852869] FX This research was funded in part by DARPA grants HR0011-08-1-0088 and HR0011-1-10-1-0061 and by NSF grant ATM 0852869. NR 28 TC 10 Z9 11 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2011 VL 116 AR D08201 DI 10.1029/2010JD015249 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 751WJ UT WOS:000289648100005 ER PT J AU Zinn, J Close, S Colestock, PL MacDonell, A Loveland, R AF Zinn, J. Close, S. Colestock, P. L. MacDonell, A. Loveland, R. TI Analysis of ALTAIR 1998 meteor radar data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HEAD ECHO DATA; INCOHERENT-SCATTER RADAR; LONG-RANGE TRACKING; HIGH-RESOLUTION; MASS; DECELERATION; PHYSICS AB We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz Advanced Research Project Agency Long-Range Tracking and Identification Radar facility in November 1998. Emphasis is on the absolute velocity measurements and inferences that can be drawn from them regarding the meteoroid masses and mass densities. We find that the 3-D velocity versus altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities versus distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration for meteoroids composed of defined mixtures of mineral constituents. For each of the cases in the data set, we ran the model starting with the measured initial velocity and trajectory inclination and with various trial values of the quantity m rho(2)(s) (initial mass times mass density squared) and then compared the computed deceleration versus altitude curves versus the measured ones. In this way we arrived at the best fit values of the m rho(2)(s) for each of the measured traces. Then further, assuming various trial values of the density rho(s), we compared the computed mass versus altitude curves with similar curves for the same set of meteoroids determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best fit mass densities rho(s) for each of the cases. C1 [Zinn, J.; Colestock, P. L.; Loveland, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Close, S.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [MacDonell, A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Zinn, J (reprint author), Los Alamos Natl Lab, Mail Stop D436, Los Alamos, NM 87545 USA. EM jzinn@lanl.gov NR 41 TC 0 Z9 0 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 16 PY 2011 VL 116 AR A04312 DI 10.1029/2010JA015838 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751VS UT WOS:000289646400001 ER PT J AU Kerisit, S AF Kerisit, Sebastien TI Water structure at hematite-water interfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; X-RAY REFLECTIVITY; SCANNING-TUNNELING-MICROSCOPY; ELECTRIC DOUBLE-LAYER; RUTILE 110 SURFACE; ORTHOCLASE (001)-WATER; ATOMISTIC SIMULATION; AB-INITIO; ALPHA-FE2O3(0001) SURFACE; (010)-WATER INTERFACES AB The atomic-level structure of water at mineral surfaces is an important controlling factor in interfacial reactions such as foreign ion incorporation, crystal growth and dissolution, and redox reactions. Molecular dynamics simulations with four different models based on interatomic potentials have been carried out to determine the atomic-level structure of three hematite-water interfaces. In addition, for each of the three surfaces, different terminations or protonation schemes were considered. The availability of surface X-ray scattering data for the surfaces considered here allowed for an extensive comparison with experimental data. Qualitatively, with the exception of one termination with one model, all models predict the correct arrangement of water molecules at the interface. Quantitatively, the agreement with experimental positions, distances, and layer occupancies is good to excellent, especially given the range of values reported in published experimental studies. Therefore, this study provides further evidence that interatomic potential models can be used to reliably predict the structure of mineral-water interfaces. In addition, molecular simulations are a valuable source of information to complement surface X-ray scattering experiments owing to their ability to directly determine the position of hydrogen atoms and to yield three-dimensional predicted structures at no added cost, as demonstrated in this work. Indeed, the molecular dynamics trajectories were analyzed to determine the surface structural controls on the interfacial water structure. Each of the three surface functional groups present at the surfaces considered in this work, namely, triply-coordinated oxo, doubly-coordinated hydroxo, and singly-coordinated aquo groups, was found to form similar hydrogen bond configurations with adsorbed water molecules at all surfaces. Oxo groups accept long-lasting and linear hydrogen bonds from adsorbed water molecules; hydroxo groups can form hydrogen bonds with other surface functional groups as well as with adsorbed water molecules; and aquo groups normally only donate hydrogen bonds to other surface groups or adsorbed water molecules. Additionally, the majority of adsorbed water molecules were found to adopt multiple configurations and orientations. This information was used to evaluate three-dimensional structural models of the interfaces, which were previously derived experimentally from one-dimensional electron density profiles and steric considerations. (C) 2011 Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov FU US Department of Energy (DOE) through the Office of Basic Energy Sciences; US Department of Energy's Office of Biological and Environmental Research (OBER) FX The author acknowledges Dr. Kevin M. Rosso for financially supporting this research and for providing many insightful comments, which greatly helped improve the paper. The author also acknowledges Prof. Jeffrey G. Catalano and Dr. Piotr Zarzycki for insightful discussions. This research was supported by the US Department of Energy (DOE) through the Office of Basic Energy Sciences-Geosciences program. The computer simulations were performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a National Scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 96 TC 38 Z9 39 U1 5 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2011 VL 75 IS 8 BP 2043 EP 2061 DI 10.1016/j.gca.2011.01.026 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 796EJ UT WOS:000293033100003 ER PT J AU Lorenzi, R Brovelli, S Meinardi, F Lauria, A Chiodini, N Paleari, A AF Lorenzi, R. Brovelli, S. Meinardi, F. Lauria, A. Chiodini, N. Paleari, A. TI Role of sol-gel networking and fluorine doping in the silica Urbach energy SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Silica; Sol-gel; Fluorine; Ultraviolet absorption spectroscopy; Raman Scattering ID ABSORPTION-EDGE; GLASSES; SIO2; DISORDER AB We present the results of the analysis of the ultraviolet (UV) absorption edge of fluorine-modified sol-gel silica. UV transmission data, obtained by means of synchrotron radiation, have been analyzed in the spectral range 7.5-8.5 eV, with a spectral resolution of about 10 meV. Data on silica samples with different F content (from 0 to few 10(-1) mol%) have been analyzed and compared with literature data on quartz and pure synthetic commercial silica. The analysis allows us to discriminate between the effects of the fluorine addition and those ascribable to structural peculiarities of the sol-gel networking. The estimated Urbach energy E(U)(T = 0) ranges between 45 and 55 meV, higher that in crystalline quartz and lower than in commercial synthetic silica. The study of the temperature dependence of E(U)(T) shows that the fluorine modification of the silica network causes the lowering of the static disorder and the widening of the energy gap. However, there is also a relevant effect of the production process, since sol-gel silica samples show lower E(U) values with respect to other types of silica, quite independently of the fluorine content. The analysis of the Raman spectra however shows that the starting amount of fluorine-modified molecular precursor influences the network condensation process, independently of the final fluorine content into the matrix. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lorenzi, R.; Meinardi, F.; Lauria, A.; Chiodini, N.; Paleari, A.] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy. [Meinardi, F.; Paleari, A.] CNISM, Milan, Italy. [Brovelli, S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Lorenzi, R (reprint author), Univ Milano Bicocca, Dept Mat Sci, Via R Cozzi 53, I-20125 Milan, Italy. EM roberto.lorenzi@mater.unimib.it RI Lorenzi, Roberto/D-1916-2014; Lauria, Alessandro/C-5041-2016 OI Lorenzi, Roberto/0000-0002-6199-0971; Lauria, Alessandro/0000-0002-7978-2687 FU European Community [FP7/2007-2013, 226716] FX The research leading to :these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. NR 18 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD APR 15 PY 2011 VL 357 IS 8-9 SI SI BP 1838 EP 1841 DI 10.1016/j.jnoncrysol.2010.12.051 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 803TA UT WOS:000293602900002 ER PT J AU Guo, JC Sun, A Chen, XL Wang, CS Manivannan, A AF Guo, Juchen Sun, Ann Chen, Xilin Wang, Chunsheng Manivannan, Ayyakkannu TI Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy SO ELECTROCHIMICA ACTA LA English DT Article DE Li-ion battery; Silicon anode; Cyclic stability; Carbon nanotube; Electrochemical impedance spectroscopy ID COATED SILICON; ELECTRODES; SI; PERFORMANCE; NANOTUBES; INSERTION; CAPACITY; INTERCALATION; LIMITATIONS; NANOWIRES AB The effects of carbonization process and carbon nanofiber/nanotube additives on the cycling stability of silicon-carbon composite anodes were investigated by monitoring the impedance evolution during charge/discharge cycles with electrochemical impedance spectroscopy (EIS). Three types of Si-C anodes were investigated: the first type consisted of Si nanoparticles incorporated into a network of carbon nanofibers (CNFs) and multi-walled carbon nanotubes (MWNTs), with annealed polymer binder. The second type of Si-C anodes was prepared by further heat treatment of the first Si-C anodes to carbonize the polymer binder. The third Si-C anode was as same as the second one except no CNFs and MWNTs being added. Impedance analysis revealed that the carbonization process stabilized the Si-C anode structure and decreased the charge transfer resistance, thus improving the cycling stability. On the other hand, although the MWNTs/CNFs additives could enhance the electronic conductivity of the Si-C anodes, the induced inhomogeneous structure decreased the integrity of the electrode, resulting in a poor long term cycling stability. Published by Elsevier Ltd. C1 [Guo, Juchen; Sun, Ann; Chen, Xilin; Wang, Chunsheng] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Wang, CS (reprint author), Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. EM cswang@umd.edu RI Wang, Chunsheng/H-5767-2011; Chen, Xilin/A-1409-2012; Manivannan, Ayyakkannu/A-2227-2012 OI Wang, Chunsheng/0000-0002-8626-6381; Manivannan, Ayyakkannu/0000-0003-0676-7918 FU University of Maryland, College Park; Maryland NanoCenter and its NispLab; National Science Foundation FX Financial support from the University of Maryland, College Park is gratefully acknowledged. We also acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the National Science Foundation as a MRSEC Shared Experimental Facility. NR 39 TC 128 Z9 133 U1 18 U2 185 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 15 PY 2011 VL 56 IS 11 BP 3981 EP 3987 DI 10.1016/j.electacta.2011.02.014 PG 7 WC Electrochemistry SC Electrochemistry GA 765GM UT WOS:000290692700032 ER PT J AU Yuan, YF Yu, LQ Wu, HM Yang, JL Chen, YB Guo, SY Tu, JP AF Yuan, Y. F. Yu, L. Q. Wu, H. M. Yang, J. L. Chen, Y. B. Guo, S. Y. Tu, J. P. TI Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni-Zn secondary batteries SO ELECTROCHIMICA ACTA LA English DT Article DE ZnO; Ni-Zn batteries; Surface treatment; Cycling stability ID NI/ZN RECHARGEABLE BATTERY; CALCIUM ZINCATE; ELECTRODE AB Microstructures and electrochemical performances of Bi based compound film-coated ZnO are investigated and compared with those of Ni film-coated ZnO and Bi nanocompound-modified ZnO in order to illuminate the coating effect of Bi based compound film. Bi based compound film is composed of nanoparticles (1-2 nm in diameter) of Bi(6)(NO(3))(4)(OH)(2)O(6), BiO and Bi(2)O(3), containing lots of micropores. In comparison with Bi nanocompound-modified ZnO and Ni film-coated ZnO. Bi based compound film-coated ZnO shows higher discharge capacity and more stable cycling performance. The highest average discharge capacity is as high as 535 mAh g(-1), and the discharge capacity does not obviously decrease during the cycling tests. Cyclic voltammograms indicates that Bi based compound film can limit transfer of H(2)O, OH(-), and enhance electrochemical activity of ZnO. The improvement of cycling performance is due to: (1) the coating film structure avoids the direct contact between ZnO/Zn with the electrolyte, and suppresses the dissolution of ZnO/Zn; (2) the micropores in the film is beneficial to adequate diffusion of H(2)O, OH(-) and zincates ions, leading to high discharge capacity and good cycling performance: (3) the light weight of the film also has a contribution to high specific discharge capacity. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yuan, Y. F.; Yang, J. L.; Chen, Y. B.; Guo, S. Y.] Zhejiang Sci Tech Univ, Coll Machinery & Automat, Hangzhou 310018, Zhejiang, Peoples R China. [Yu, L. Q.] China Univ Petr E China, Coll Phys Sci & Technol, Dongying 257061, Peoples R China. [Wu, H. M.] Argonne Natl Lab, Electrochem Energy Storage Chem Sci & Engn Div, Argonne, IL 60439 USA. [Tu, J. P.] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China. RP Yuan, YF (reprint author), Zhejiang Sci Tech Univ, Coll Machinery & Automat, Hangzhou 310018, Zhejiang, Peoples R China. EM yuanyf@zstu.edu.cn; syiguo@zstu.edu.cn RI l q, Yu/C-9763-2013; liu, yanyang/H-4808-2016; OI Yuan, Y.F./0000-0001-7846-2617 FU National Natural Science Foundation of China [20806093]; Education Department of Zhejiang Province of China [0803076-F]; Science Foundation of Zhejiang Sci-Tech University [0703669-Y] FX This work is supported by the National Natural Science Foundation of China (no. 20806093), Research Projects of Education Department of Zhejiang Province of China (0803076-F) and Science Foundation of Zhejiang Sci-Tech University (0703669-Y). NR 17 TC 21 Z9 23 U1 4 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 15 PY 2011 VL 56 IS 11 BP 4378 EP 4383 DI 10.1016/j.electacta.2011.01.006 PG 6 WC Electrochemistry SC Electrochemistry GA 765GM UT WOS:000290692700090 ER PT J AU Sakamoto, T Barbier, L Barthelmy, SD Cummings, JR Fenimore, EE Gehrels, N Krimm, HA Markwardt, CB Palmer, DM Parsons, AM Sato, G Stamatikos, M Tueller, J AF Sakamoto, T. Barbier, L. Barthelmy, S. D. Cummings, J. R. Fenimore, E. E. Gehrels, N. Krimm, H. A. Markwardt, C. B. Palmer, D. M. Parsons, A. M. Sato, G. Stamatikos, M. Tueller, J. TI Probing the nature of short swift bursts via deep INTEGRAL monitoring of GRB 050925 SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Gamma-ray; Burst ID GAMMA-RAY BURSTS; SGR-1900+14; SGR-1806-20; DISCOVERY; EMISSION; HETE-2; FLARE AB We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: (1) galactic plane (b = -0.1 degrees) localization, (2) 150 ms duration, and (3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in similar to 5 ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H-11 regions (W 58) at the galactic longitude of l = 70 degrees, we also discuss the source frame properties of GRB 050925. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Sakamoto, T.; Cummings, J. R.; Krimm, H. A.; Markwardt, C. B.] CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Parsons, A. M.; Tueller, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sakamoto, T.; Cummings, J. R.] Univ Maryland, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Fenimore, E. E.; Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Markwardt, C. B.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Sato, G.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Stamatikos, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Sakamoto, T (reprint author), CRESST, Greenbelt, MD 20771 USA. EM Taka.Sakamoto@nasa.gov RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 23 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2011 VL 47 IS 8 BP 1346 EP 1352 DI 10.1016/j.asr.2010.08.004 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 758CE UT WOS:000290136700011 ER PT J AU Chaudhry, A Canning, A Boutchko, R Weber, MJ Gronbech-Jensen, N Derenzo, SE AF Chaudhry, A. Canning, A. Boutchko, R. Weber, M. J. Gronbech-Jensen, N. Derenzo, S. E. TI First-principles studies of Ce-doped RE2M2O7 (RE = Y, La; M = Ti, Zr, Hf): A class of nonscintillators SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; INORGANIC SCINTILLATORS; CRYSTAL-GROWTH; BASIS-SET; MHFO3 M; SPECTRA; OXIDE; BA AB Lanthanum and yttrium compounds with composition RE2M2O7 (RE - Y, La; M - Ti, Zr, Hf) have high density and high Z and can be doped with Ce onto the La and Y sites. This makes these compounds good candidates for Ce-activated scintillator gamma-ray detectors particularly for the hafnate systems which have a very high density. There is disagreement in the literature concerning La2Hf2O7:Ce as it has been reported to show both bright as well as no Ce-activated luminescence by different experimental groups. We have performed first-principles electronic structure calculations of these compounds doped with Ce using the pseudopotential method based on the generalized gradient approximation in density functional theory. The positions of the Ce 4f states relative to the valence band maximum and the position of the Ce 5d states relative to the conduction band minimum (CBM) of the host material are determined. We find, unlike Ce-activated La and Y compounds where the CBM is typically of La 5d or Y 4d character, that in these systems the CBM is predominately of d character on the Ti, Zr, Hf atoms. For all these compounds, we also find that the Ce 5d state lies above the CBM which would prevent any luminescence from the Ce site. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3561490] C1 [Chaudhry, A.; Canning, A.; Boutchko, R.; Weber, M. J.; Gronbech-Jensen, N.; Derenzo, S. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chaudhry, A.; Canning, A.; Gronbech-Jensen, N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Canning, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ACanning@lbl.gov FU U.S. Department of Homeland Security; Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Y. Eagleman, E. Bourret-Courchesne, and G. Bizarri for useful discussions during the course of this work. This work was supported by the U.S. Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 59 TC 16 Z9 16 U1 7 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083708 DI 10.1063/1.3561490 PG 7 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000078 ER PT J AU Dreger, ZA Zhou, J Dang, NC Gupta, YM AF Dreger, Z. A. Zhou, J. Dang, N. C. Gupta, Y. M. TI Effect of high pressure on acoustic properties of several polymers: Use of impulsive stimulated light scattering method SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FLUORESCENT DYE MOLECULES; ELASTIC-CONSTANTS; POLY(METHYL METHACRYLATE); BRILLOUIN-SCATTERING; SPECTROSCOPY; STATE; ABSORPTION; EQUATIONS; GRATINGS; OXYGEN AB The acoustic properties of four polymers compressed to high pressures in a diamond anvil cell were determined using the impulsive stimulated light scattering (ISLS) method. Despite the weak scattering efficiency of these polymers, good signal quality was obtained by using a continuous wave probe and an optical heterodyne detection. We provide, for the first time, longitudinal acoustic velocities up to 5 GPa for two thermoplasts: poly(methyl-methacrylate) and poly(styrene), and two elastomers: poly(butadiene) and triblock copolymer of polystyrene-block-polybutadiene-block-polystyrene. The longitudinal acoustic velocities for all of these polymers displayed nonlinear pressure dependence. Despite the significant differences in the initial acoustic velocities these velocities converged above 2.5 GPa. This convergence is associated with the ultimate reduction of free volume in the studied polymers. We explored the possibility of measuring shear acoustic waves in these polymers using ISLS in a depolarized geometry. The data obtained here are important for modeling the response of polymers at extreme conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3564955] C1 [Dreger, Z. A.; Zhou, J.; Dang, N. C.; Gupta, Y. M.] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Dreger, Z. A.; Zhou, J.; Dang, N. C.; Gupta, Y. M.] Washington State Univ, Dept Phys, Pullman, WA 99164 USA. [Dang, N. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dreger, ZA (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. EM dreger@wsu.edu FU ONR-MURI [N000149310369]; DOE [DEFG0397SF21388] FX Dr. K. A. Nelson and Dr. A. A. Maznev are thanked for helpful discussions. This work was supported by ONR-MURI Grant N000149310369 and DOE Grant DEFG0397SF21388. NR 39 TC 6 Z9 6 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083507 DI 10.1063/1.3564955 PG 10 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000031 ER PT J AU Faradzhev, NS Yakshinskiy, BV Starodub, E Madey, TE Hill, SB Grantham, S Lucatorto, TB Yulin, S Vescovo, E Keister, JW AF Faradzhev, Nadir S. Yakshinskiy, Boris V. Starodub, Elena Madey, Theodore E. Hill, Shannon B. Grantham, Steven Lucatorto, Thomas B. Yulin, Sergiy Vescovo, Elio Keister, Jeffrey W. TI Resonance effects in photoemission from TiO2-capped Mo/Si multilayer mirrors for extreme ultraviolet applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ELECTRON-YIELD; RAY STANDING-WAVE; TIO2 THIN-FILMS; CAPPING LAYERS; CONTAMINATION; LITHOGRAPHY; REFLECTION; RADIATION; SPECTRA; OPTICS AB In the unbaked vacuum systems of extreme ultraviolet (EUV) lithography steppers, oxide formation and carbon growth on Mo/Si multilayer mirrors (MLMs) are competing processes leading to reflectivity loss. A major contribution to this mirror degradation is a series of surface reactions that are thought to be driven in large part by photoemitted electrons. In this paper, we focus on the resonance effects in photoemission from Mo/Si MLMs protected by thin TiO2 cap layers. In the vicinity of the resonant energy of the mirror, the energy flux of the EUV radiation forming standing wave oscillates throughout the multilayer stack. As a result, light absorption followed by the emission of photoelectrons becomes a complex process that varies rapidly with depth and photon energy. The electron emission is characterized as a function of the EUV photon energy, the angle of incidence, and the position of the standing wave with respect to the solid/vacuum interface. In our experiments, the position of the standing wave was controlled both by deliberately varying the thickness of the Si terminating layer (of the Mo/Si stack) and by depositing C films of various thicknesses on the TiO2. The experimental data are compared with model simulations to examine the changes in photoemission yield due to the presence of carbon and to the changes in the position of the standing wave. We find that carbon deposition can have a dramatic impact on the yield and, therefore, on the rates of electron mediated reactions at the surface. (C) 2011 American Institute of Physics. [doi:10.1063/1.3575319] C1 [Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Starodub, Elena; Madey, Theodore E.] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Hill, Shannon B.; Grantham, Steven; Lucatorto, Thomas B.] NIST, Gaithersburg, MD 20853 USA. [Yulin, Sergiy] Fraunhofer Inst, Dept Opt Coatings, D-07745 Jena, Germany. [Vescovo, Elio; Keister, Jeffrey W.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Faradzhev, NS (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. EM nadir.faradzhev@nist.gov NR 34 TC 2 Z9 2 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083112 DI 10.1063/1.3575319 PG 8 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000013 ER PT J AU Hooks, DE Ramos, KJ Martinez, AR AF Hooks, Daniel E. Ramos, Kyle J. Martinez, A. Richard TI Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa (vol 100, 024908, 2006) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Hooks, Daniel E.; Ramos, Kyle J.; Martinez, A. Richard] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hooks, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dhooks@lanl.gov NR 2 TC 2 Z9 2 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 089901 DI 10.1063/1.3584774 PG 2 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000253 ER PT J AU Hurley, DH Khafizov, M Shinde, SL AF Hurley, D. H. Khafizov, M. Shinde, S. L. TI Measurement of the Kapitza resistance across a bicrystal interface SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN DIELECTRIC FILMS; THERMAL-CONDUCTIVITY; BEAM-DEFLECTION; HEAT-FLOW; SOLIDS; THERMOREFLECTANCE; MICROSCOPE; THICKNESS; TRANSPORT; DIAMOND AB The Kapitza resistance across a Si bicrystal interface was measured using a pump probe optical technique. This approach, termed time resolved thermal wave microscopy (TRTWM), uses ultrafast laser pulses to image lateral thermal transport in bare semiconductors. The sample geometry is that of a Si bicrystal with the vertically oriented boundary intersecting the sample surface. High resolution transmission electron microscopy of the boundary region revealed a thin SiO2 layer at the interface. By comparing experimental results with a continuum thermal transport model the Kapitza resistance between the Si and SiO2 was estimated to be 2.3 x 10(-9) m(2)K/W. (C) 2011 American Institute of Physics. [doi:10.1063/1.3573511] C1 [Hurley, D. H.; Khafizov, M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Shinde, S. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hurley, DH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov RI Khafizov, Marat/B-3744-2012 OI Khafizov, Marat/0000-0001-8171-3528 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2009INL-FWP1356]; SNL Laboratory FX D.H.H. and M.K. were supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2009INL-FWP1356. The bicrystal fabrication was supported by the SNL Laboratory Directed Research and Development Program. NR 26 TC 21 Z9 21 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083504 DI 10.1063/1.3573511 PG 5 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000028 ER PT J AU Li, JV Levi, DH AF Li, Jian V. Levi, Dean H. TI Determining the defect density of states by temperature derivative admittance spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SCHOTTKY BARRIERS; HETEROJUNCTIONS; JUNCTIONS; TRAPS AB We demonstrate that the temperature derivative admittance spectroscopy method can be used to directly determine the defect density of states. The density of defect states is proportional to the temperature derivative of the capacitance. This method is equivalent to the existing frequency derivative method in principle but possesses certain key advantages for detection of deep levels. To illustrate these advantages, we define the activation energy of a fictitious defect the Arrhenius plot of which extends diagonally across the measurable temperature-frequency range. Below this level (that is, shallower defects), the frequency derivative method is advantageous, and above this level (that is, deeper defects), the temperature derivative method is advantageous. The temperature derivative method allows a wider observation window of defect energy that avoids possible detection failure and facilitates simultaneous observation of multiple defects. For deep defects, it also yields more Arrhenius plot data points and therefore enables more accurate extraction of defect energy and capture cross-sections. In general, the temperature derivative method can avoid system noise at low frequency and is relatively immune to baseline effects due to parasitic circuit effects. (C) 2011 American Institute of Physics. [doi:10.1063/1.3573538] C1 [Li, Jian V.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Li, Jian/B-1627-2016 NR 13 TC 8 Z9 8 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083701 DI 10.1063/1.3573538 PG 6 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000071 ER PT J AU Manley, ME Shapiro, S Li, Q Llobet, A Hagen, ME AF Manley, M. E. Shapiro, S. Li, Q. Llobet, A. Hagen, M. E. TI Lattice dynamical origin of peak thermoelectric performance in AgPbmSbTe2+m observed by inelastic neutron scattering SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MERIT AB Phonon densities of states (DOS) for the high performing thermoelectric material, AgPbmSbTe2+m (LAST-m, m = 16, 18, and 20), were extracted from time-of-flight inelastic neutron scattering measurements. The phonon DOS of LAST-18 differs remarkably from LAST-16 and LAST-20 by exhibiting a dramatic broadening of its acoustic modes that increases on heating. This broadening coincides with a minimum in the thermal conductivity, a maximum in the electrical conductivity and Seebeck coefficient, and a related peak in thermoelectric performance. We argue that the anomalous broadening originates with scattering enhanced by modifications to Te-Ag(Sb) bonds caused by their resonant electronic states falling near the Fermi energy for m = 18. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3581155] C1 [Manley, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shapiro, S.; Li, Q.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Llobet, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hagen, M. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Manley, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM manley3@llnl.gov RI Llobet, Anna/B-1672-2010; Manley, Michael/N-4334-2015 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-98CH10886] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886. NR 22 TC 4 Z9 4 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083722 DI 10.1063/1.3581155 PG 4 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000092 ER PT J AU Murray, CE Ying, A Polvino, SM Noyan, IC Holt, M Maser, J AF Murray, Conal E. Ying, A. Polvino, S. M. Noyan, I. C. Holt, M. Maser, J. TI Nanoscale silicon-on-insulator deformation induced by stressed liner structures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MECHANICAL-STRESS; DIFFRACTION AB Rotation and strain fields were mapped across silicon-on-insulator (SOI) regions induced by overlying stressed Si(3)N(4) features using x-ray nanobeam diffraction. The distribution in SOI tilt exhibited an antisymmetric distribution with a maximum magnitude of 7.9 milliradians, representing one of the first direct measurements of the lattice tilt conducted in situ within buried layers using a spot size of less than 100 nm. The measured rotation distribution corresponds to simulated values generated by boundary element method modeling, indicating that the strain transfer into the underlying SOI primarily induces elastic deformation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579421] C1 [Murray, Conal E.] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Ying, A.; Polvino, S. M.; Noyan, I. C.] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA. [Holt, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Maser, J.] Argonne Natl Lab, Ctr Nanoscale Mat, Adv Photon Source, Argonne, IL 60439 USA. RP Murray, CE (reprint author), IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM conal@us.ibm.com RI Maser, Jorg/K-6817-2013 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-06CH1135] FX The authors would like to thank Dr. Katherine Saenger for the sample manufacture. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH1135. NR 16 TC 10 Z9 10 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083543 DI 10.1063/1.3579421 PG 4 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000067 ER PT J AU Petti, D Cantoni, M Rinaldi, C Brivio, S Bertacco, R Gazquez, J Varela, M AF Petti, D. Cantoni, M. Rinaldi, C. Brivio, S. Bertacco, R. Gazquez, J. Varela, M. TI Sharp Fe/MgO/Ge(001) epitaxial heterostructures for tunneling junctions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GROWTH; CRYSTALLINE; MGO AB We report on the growth of epitaxial Fe/MgO/Ge(001) heterostructures by molecular beam epitaxy. The lowest oxidation and highest sharpness of the MgO/Ge interface, corresponding to a transition layer on the order of one Ge unit cell, is obtained for room temperature growth of the MgO layer followed by annealing in a vacuum at 500 degrees C. In these conditions, the MgO layer grows epitaxially on Ge(001) with the [110] direction parallel to the [100] direction of Ge, at variance with the cube-on-cube growth on Si(001) and GaAs(001). However, in some cases, the cube-on-cube growth mode of MgO on Ge competes with the mode involving a 45 degrees rotation, as revealed by transmission electron microscopy and photoelectron diffraction data on MgO films grown at 300 degrees C without postannealing, and on p-doped Ge substrates. For the Fe overlayer, in all the cases reported, room temperature growth followed by annealing up to 200 degrees C gives rise to a sharp interface and the well-known 45 degrees rotation of the Fe lattice with respect to the MgO lattice. VC 2011 American Institute of Physics. [doi: 10.1063/1.3554834] C1 [Petti, D.; Cantoni, M.; Rinaldi, C.; Brivio, S.; Bertacco, R.] Politecn Milan, Dipartimento Fis, L NESS, I-22100 Como, Italy. [Gazquez, J.] Univ Complutense Madrid, Dept Fis Aplicada 3, E-28040 Madrid, Spain. [Gazquez, J.; Varela, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Petti, D (reprint author), Politecn Milan, Dipartimento Fis, L NESS, Via Anzani 42, I-22100 Como, Italy. EM daniela.petti@mail.polimi.it RI Varela, Maria/E-2472-2014; Brivio, Stefano/H-6696-2014; Petti, Daniela/B-1659-2012; Gazquez, Jaume/C-5334-2012; Rinaldi, Christian/E-7964-2010; Cantoni, Matteo/A-1481-2009; Varela, Maria/H-2648-2012; OI Varela, Maria/0000-0002-6582-7004; Bertacco, Riccardo/0000-0002-8109-9166; BRIVIO, STEFANO/0000-0003-2386-7953; Rinaldi, Christian/0000-0001-6930-211X; Petti, Daniela/0000-0002-9273-1884; Gazquez, Jaume/0000-0002-2561-328X; Cantoni, Matteo/0000-0001-8946-1847 FU Fondazione Cariplo [2007.5095]; Office of Science, Materials Sciences and Engineering Division of the US Department of Energy; European Research Council [239739] FX The authors would like to thank M. Leone for his skillful technical assistance and F. Ciccacci, G. Isella, and S. Bietti for valuable discussions. This work was funded by Fondazione Cariplo via the project MANDIS (Project No. 2007.5095). Research at ORNL (MV) was supported by the Office of Science, Materials Sciences and Engineering Division of the US Department of Energy. J. Gazquez acknowledges financial support from the European Research Council Starting Investigator Award (Grant No. 239739 STEMOX). The authors are thankful to J. T. Luck for STEM specimen preparation and to M. Watanabe for the PCA plug-in for Digital Micrograph. NR 26 TC 13 Z9 13 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 084909 DI 10.1063/1.3554834 PG 7 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000236 ER PT J AU Pham, HH Arman, B Luo, SN Cagin, T AF Pham, Hieu H. Arman, Bedri Luo, S. N. Cagin, Tahir TI Shock compression and spallation of palladium bicrystals with a Sigma 5 grain boundary SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; WAVE AB We investigate an elementary process of shock response of grain boundaries (GBs) using molecular dynamics simulations: shock compression and spallation in Pd bicrystals with a symmetric Sigma 5/(210)/< 100 > GB. The loading direction is normal to GB. An elastic shock may induce the elastic-plastic or two-wave structure at the GB. The GB serves as a wave scattering center for the transverse motion perpendicular to the GB rotation axis and the shock direction: it induces a phase shift of 180 degrees, an increase in the amplitude of the particle velocity, GB sliding and grain orientation distortion. The GB is the preferred nucleation site both for dislocations and voids. Our results suggest that both microstructure and the loading geometry contribute to dynamic response of a solid. (c) 2011 American Institute of Physics. [doi:10.1063/1.3572039] C1 [Pham, Hieu H.; Arman, Bedri; Cagin, Tahir] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA. [Luo, S. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pham, HH (reprint author), Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77845 USA. EM tcagin@che.tamu.edu RI Luo, Sheng-Nian /D-2257-2010; Pham, Hieu/C-6436-2015 OI Luo, Sheng-Nian /0000-0002-7538-0541; FU Office of Naval Research [N000140811054]; DOE LLNS - INSER; LANL FX This work was supported by Office of Naval Research (Grant No. N000140811054), DOE LLNS - INSER project, as well as LANL's ASC and LDRD programs. Computations are performed at the Texas A&M Supercomputing Facility. NR 19 TC 4 Z9 4 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 086107 DI 10.1063/1.3572039 PG 3 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000252 ER PT J AU Ribic, B Burgardt, P DebRoy, T AF Ribic, B. Burgardt, P. DebRoy, T. TI Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALLOYING ELEMENT VAPORIZATION; GAS TUNGSTEN ARCS; FREE-BURNING ARC; STAINLESS-STEEL; MAGNESIUM ALLOY; NUMERICAL-SIMULATION; HEAT-TRANSFER; FLUID-FLOW; TEMPERATURE; CO2-LASERS AB During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552307] C1 [Ribic, B.; DebRoy, T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Burgardt, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP DebRoy, T (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM rtd1@psu.edu RI DebRoy, Tarasankar/A-2106-2010 NR 57 TC 17 Z9 19 U1 4 U2 60 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 083301 DI 10.1063/1.3552307 PG 10 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000019 ER PT J AU Zhou, YG Yang, P Sun, X Wang, ZG Zu, XT Gao, F AF Zhou, Y. G. Yang, P. Sun, X. Wang, Z. G. Zu, X. T. Gao, F. TI First-principles study of the noble metal-doped BN layer SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Intriguing electronic and magnetic properties of boron nitride (BN) layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the bandgap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus, exhibit a magnetic moment of 1.0 mu(B), leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3569725] C1 [Zhou, Y. G.; Wang, Z. G.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Zhou, Y. G.; Yang, P.; Sun, X.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xtzu@uestc.edu.cn; fei.gao@pnl.gov RI Yang, Ping/E-5355-2011; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009; OI Yang, Ping/0000-0003-4726-2860 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830]; Royal Academy of Engineering-Research Exchanges with China; Royal Academy of Engineering-Research Exchanges with India; U. S. Department of Energy's Office of Biological and Environmental Research FX This study was financially supported from the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. X. T. Zu was supported by the Royal Academy of Engineering-Research Exchanges with China and India Awards. A portion of this research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U. S. Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory and operated for DOE by Battelle. NR 17 TC 14 Z9 14 U1 0 U2 39 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2011 VL 109 IS 8 AR 084308 DI 10.1063/1.3569725 PG 4 WC Physics, Applied SC Physics GA 756XB UT WOS:000290047000159 ER PT J AU Szabo, CI Feldman, U Seltzer, S Hudson, LT O'Brien, M Park, HS Seely, JF AF Szabo, Csilla I. Feldman, Uri Seltzer, Stephen Hudson, Lawrence T. O'Brien, Michelle Park, Hye-Sook Seely, John F. TI Efficiency calibrations of cylindrically bent transmission crystals in the 20 to 80 keV x-ray energy range SO OPTICS LETTERS LA English DT Article ID SPECTROGRAPHY AB Two quartz (10-11) crystals were cylindrically bent to a 25: 4 cm radius of curvature and were mounted in identical Cauchois-type transmission spectrometers, and the crystal diffraction efficiencies were measured to 5% absolute accuracy using narrow bandwidth x-ray source fluences in the 20 to 80 keV energy range. The measured integrated reflectivity values were compared to calculations performed using a computational model that accounts for the diffraction geometry of the bent transmission crystal. These crystal calibrations enable the accurate measurement of absolute hard x- ray emission levels from laser- produced plasmas and other laboratory sources. C1 [Seely, John F.] USN, Res Lab, Div Space Sci, Washington, DC 20036 USA. [Park, Hye-Sook] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hudson, Lawrence T.; O'Brien, Michelle] NIST, Gaithersburg, MD 20899 USA. [Szabo, Csilla I.; Feldman, Uri; Seltzer, Stephen] Artep Inc, Ellicott City, MD 21042 USA. RP Seely, JF (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20036 USA. EM john.seely@nrl.navy.mil FU Lawrence Livermore National Laboratory [B591129] FX This work was supported Lawrence Livermore National Laboratory project B591129. The mention of commercial products does not imply endorsement by the U.S. Government or that they are necessarily the best for the application. NR 8 TC 10 Z9 10 U1 2 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD APR 15 PY 2011 VL 36 IS 8 BP 1335 EP 1337 PG 3 WC Optics SC Optics GA 756SH UT WOS:000290034500010 PM 21499348 ER PT J AU Rizzi, J Weitkamp, T Guerineau, N Idir, M Mercere, P Druart, G Vincent, G da Silva, P Primot, J AF Rizzi, Julien Weitkamp, Timm Guerineau, Nicolas Idir, Mourad Mercere, Pascal Druart, Guillaume Vincent, Gregory da Silva, Paulo Primot, Jerome TI Quadriwave lateral shearing interferometry in an achromatic and continuously self-imaging regime for future x-ray phase imaging SO OPTICS LETTERS LA English DT Article ID GRATING INTERFEROMETER AB We present in this Letter a type of quadriwave lateral shearing interferometer for x-ray phase imaging. This device is based on a phase chessboard, and we take advantage of the large spectrum of the source to produce interferograms with a propagation-invariant contrast. Such a grating has been created for hard x-ray interferometry and experimentally tested on a synchrotron beamline at Soleil. (C) 2011 Optical Society of America C1 [Rizzi, Julien; Guerineau, Nicolas; Druart, Guillaume; Vincent, Gregory; Primot, Jerome] Off Natl Etud & Rech Aerosp, F-91761 Palaiseau, France. [Weitkamp, Timm; Mercere, Pascal; da Silva, Paulo] Synchrotron Soleil, Orme Merisiers, F-91192 Gif Sur Yvette, France. [Idir, Mourad] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Rizzi, J (reprint author), Off Natl Etud & Rech Aerosp, Chemin Huniere, F-91761 Palaiseau, France. EM julien.rizzi@onera.fr RI VINCENT, Gregory/A-8140-2012; Weitkamp, Timm/A-8975-2012 OI VINCENT, Gregory/0000-0003-1636-3853; Weitkamp, Timm/0000-0002-0374-0472 FU Triangle de la Physique FX The authors are grateful to L. Ferlazzo, C. Roblin, and P. Bouchon, of the Laboratoire de Photonique et de Nanostructures-CNRS, for their assistance in the fabrication of the grating. The research described here has been supported by Triangle de la Physique. NR 14 TC 24 Z9 24 U1 0 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD APR 15 PY 2011 VL 36 IS 8 BP 1398 EP 1400 PG 3 WC Optics SC Optics GA 756SH UT WOS:000290034500031 PM 21499369 ER PT J AU Horng, J Chen, CF Geng, BS Girit, C Zhang, YB Hao, Z Bechtel, HA Martin, M Zettl, A Crommie, MF Shen, YR Wang, F AF Horng, Jason Chen, Chi-Fan Geng, Baisong Girit, Caglar Zhang, Yuanbo Hao, Zhao Bechtel, Hans A. Martin, Michael Zettl, Alex Crommie, Michael F. Shen, Y. Ron Wang, Feng TI Drude conductivity of Dirac fermions in graphene SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS AB Electrons moving in graphene behave as massless Dirac fermions, and they exhibit fascinating low-frequency electrical transport phenomena. Their dynamic response, however, is little known at frequencies above one terahertz (THz). Such knowledge is important not only for a deeper understanding of the Dirac electron quantum transport, but also for graphene applications in ultrahigh-speed THz electronics and infrared (IR) optoelectronics. In this paper, we report measurements of high-frequency conductivity of graphene from THz to mid-IR at different carrier concentrations. The conductivity exhibits Drude-like frequency dependence and increases dramatically at THz frequencies, but its absolute strength is lower than theoretical predictions. This anomalous reduction of free-electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum rule. C1 [Horng, Jason; Chen, Chi-Fan; Geng, Baisong; Girit, Caglar; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhang, Yuanbo] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Hao, Zhao; Bechtel, Hans A.; Martin, Michael] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Hao, Zhao] Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. [Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Horng, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Girit, Caglar/D-4845-2014; Hao, Zhao/G-2391-2015; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Girit, Caglar/0000-0001-8953-9261; Hao, Zhao/0000-0003-0677-8529; Zettl, Alex/0000-0001-6330-136X; FU US Department of Energy, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Office of Basic Energy Sciences [DE-AC02-05CH11231, DE-AC03-76SF0098]; ONR [N00014-09-1-1066] FX This work was supported by the US Department of Energy, Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, the Office of Basic Energy Sciences under Contract No. DE-AC03-76SF0098 (Materials Science Division) and Contract No. DE-AC02-05CH11231 (Advanced Light Source), and ONR MURI Award No. N00014-09-1-1066. NR 31 TC 206 Z9 207 U1 10 U2 135 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2011 VL 83 IS 16 AR 165113 DI 10.1103/PhysRevB.83.165113 PG 5 WC Physics, Condensed Matter SC Physics GA 757TN UT WOS:000290110700001 ER PT J AU Yedukondalu, N Babu, KR Bheemalingam, C Singh, DJ Vaitheeswaran, G Kanchana, V AF Yedukondalu, N. Babu, K. Ramesh Bheemalingam, Ch. Singh, David J. Vaitheeswaran, G. Kanchana, V. TI Electronic structure, optical properties, and bonding in alkaline-earth halofluoride scintillators: BaClF, BaBrF, and BaIF SO PHYSICAL REVIEW B LA English DT Article ID PBFCL-TYPE COMPOUNDS; HIGH-PRESSURE; PHOTOSTIMULATED LUMINESCENCE; HYDROSTATIC-PRESSURE; CRYSTAL-STRUCTURE; BAFCL; BAFBR; SR; CA; BR AB We report first-principles studies of the structural, electronic, and optical properties of the alkaline-earth halofluorides, BaXF (X = Cl, Br, and I), including pressure dependence of structural properties. The band structures show clear separation of the halogen p derived valence bands into higher binding energy F and lower binding energy X derived manifolds reflecting the very high electronegativity of F relative to the other halogens. Implications of this for bonding and other properties are discussed. We find an anisotropic behavior of the structural parameters especially of BaIF under pressure. The optical properties on the other hand are almost isotropic, in spite of the anisotropic crystal structures. C1 [Yedukondalu, N.; Bheemalingam, Ch.] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. [Babu, K. Ramesh; Vaitheeswaran, G.] Univ Hyderabad, Adv Ctr Res High Energy Mat ACRHEM, Hyderabad 500046, Andhra Pradesh, India. [Singh, David J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Singh, David J.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Kanchana, V.] Indian Inst Technol Hyderabad, Dept Phys, Yeddumailaram 502205, Andhra Pradesh, India. RP Yedukondalu, N (reprint author), Univ Hyderabad, Sch Phys, Prof CR Rao Rd, Hyderabad 500046, Andhra Pradesh, India. EM singhdj@ornl.gov; gvsp@uohyd.ernet.in RI Singh, David/I-2416-2012; Neelam, Yedukondalu/G-7749-2016; CHITTARI, BHEEMALINGAM/K-6907-2016 OI CHITTARI, BHEEMALINGAM/0000-0002-5868-2775 FU University of Hyderabad; AICTE; DRDO through ACRHEM; Department of Energy; Nonproliferation and Verification Research and Development [NA-22] FX N.Y.K. thanks Professor C. S. Sunandana for valuable suggestions and a critical reading of the manuscript. N.Y.K. thanks the University of Hyderabad and AICTE for financial support, and the CMSD, University of Hyderabad, for providing computational facilities. K. R. B. thanks the DRDO through ACRHEM for financial support. Work at ORNL was supported by the Department of Energy, Nonproliferation and Verification Research and Development, NA-22. NR 55 TC 14 Z9 15 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2011 VL 83 IS 16 AR 165117 DI 10.1103/PhysRevB.83.165117 PG 7 WC Physics, Condensed Matter SC Physics GA 757TU UT WOS:000290111400004 ER PT J AU Yanagisawa, C Jung, CK Le, PT Viren, B AF Yanagisawa, C. Jung, C. K. Le, P. T. Viren, B. TI Background study on nu(e) appearance from a nu(mu) beam in very long baseline neutrino oscillation experiments with a large water Cherenkov detector SO PHYSICAL REVIEW D LA English DT Article AB There is a growing interest in very long baseline neutrino oscillation experimentation using an accelerator produced neutrino beam as a machinery to probe the last three unmeasured neutrino oscillation parameters: the mixing angle theta(13), the possible CP violating phase delta(CP) and the mass hierarchy, namely, the sign of Delta m(32)(2). Water Cherenkov detectors such as IMB, Kamiokande and Super-Kamiokande have shown to be very successful at detecting neutrino interactions. Scaling up this technology may continue to provide the required performance for the next generation of experiments. This report presents the latest effort to demonstrate that a next generation (> 100 kton) water Cherenkov detector can be used effectively for the rather difficult task of detecting nu(e)s from the neutrino oscillation nu(mu) -> nu(e) despite the large expected potential background resulting from pi(0)s produced via neutral current interactions. C1 [Yanagisawa, C.; Jung, C. K.; Le, P. T.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Viren, B.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yanagisawa, C.] CUNY, BMCC, Dept Sci, New York, NY 10007 USA. RP Yanagisawa, C (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM chiaki@nngroup.physics.sunysb.edu FU Stony Brook University Office of the Vice President for Research, DOE at Stony Brook University at Brookhaven National Laboratory [DEFG0292ER40697, AC02-98CH10886]; BMCC/the City University of New York [60053-39 40] FX The authors gratefully acknowledge the work of the Super-Kamiokande Collaboration in developing most of the tools used for this analysis. However, the result and its interpretation are the responsibility of the authors of this paper. The work is partially supported by funding from Stony Brook University Office of the Vice President for Research, DOE Grant No. DEFG0292ER40697 at Stony Brook University and DOE Contract No. DE-AC02-98CH10886 at Brookhaven National Laboratory, and the City University of New York PSC-CUNY Research Award Program (Grant No. 60053-39 40) at BMCC/the City University of New York. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 15 PY 2011 VL 83 IS 7 AR 072002 DI 10.1103/PhysRevD.83.072002 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 757SY UT WOS:000290109200003 ER PT J AU Humpula, JF Chundawat, SPS Vismeh, R Jones, AD Balan, V Dale, BE AF Humpula, James F. Chundawat, Shishir P. S. Vismeh, Ramin Jones, A. Daniel Balan, Venkatesh Dale, Bruce E. TI Rapid quantification of major reaction products formed during thermochemical pretreatment of lignocellulosic biomass using GC-MS SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Gas chromatography; Mass spectrometry; AFEX pretreatment; Acetamide; Acetic acid; Furfural; Lignocellulose; Biofuels ID CHROMATOGRAPHY-MASS SPECTROMETRY; ACETIC-ACID; ORGANIC-COMPOUNDS; IDENTIFICATION; HYDROLYSIS; WATER; WOOD AB Accurate quantification of reaction products formed during thermochemical pretreatment of lignocellulosic biomass would lead to a better understanding of plant cell wall deconstruction for production of cellulosic biofuels and biochemicals. However, quantification of some process byproducts, most notably acetamide, acetic acid and furfural, present several analytical challenges using conventional liquid chromatography methods. Therefore, we have developed a high-throughput gas chromatography based mass spectrometric (GC-MS) method in order to quantify relevant compounds without requiring time-consuming sample derivatization prior to analysis. Solvent extracts of untreated, ammonia fiber expansion (AFEX) treated and dilute-acid treated corn stover were analyzed by this method. Biomass samples were extracted with acetone using an automated solvent extractor, serially diluted and directly analyzed using the proposed GC-MS method. Acetone was the only solvent amongst water, methanol and acetonitrile that did not contain detectable background levels of the target compounds or facilitate a buildup of plant-derived residues in the GC injector, which decreased analytical reproducibility. Quantitative results were based on the method of standard addition and external standard calibration curves. (C) 2011 Elsevier B.V. All rights reserved. C1 [Humpula, James F.; Chundawat, Shishir P. S.; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Vismeh, Ramin; Jones, A. Daniel] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Humpula, James F.; Chundawat, Shishir P. S.; Vismeh, Ramin; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr GLBRC, E Lansing, MI 48824 USA. [Vismeh, Ramin; Jones, A. Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Humpula, JF (reprint author), Michigan State Univ, Biomass Convers Res Lab, 3900 Collins Rd,Suite 1045, Lansing, MI 48910 USA. EM humpulaj@egr.msu.edu RI Jones, Arthur/C-2670-2013; OI Jones, Arthur/0000-0002-7408-6690; Chundawat, Shishir/0000-0003-3677-6735 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 23 TC 14 Z9 14 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD APR 15 PY 2011 VL 879 IS 13-14 BP 1018 EP 1022 DI 10.1016/j.jchromb.2011.02.049 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 756IR UT WOS:000290005400030 PM 21444255 ER PT J AU Bozarth, CA Lance, SL Civitello, DJ Glenn, JL Maldonado, JE AF Bozarth, Christine A. Lance, Stacey L. Civitello, David J. Glenn, Julie L. Maldonado, Jesus E. TI Phylogeography of the gray fox (Urocyon cinereoargenteus) in the eastern United States SO JOURNAL OF MAMMALOGY LA English DT Article DE d-loop; eastern United States; gray fox; phylogeography; Pleistocene; Urocyon ID MITOCHONDRIAL-DNA PHYLOGEOGRAPHY; FLYING SQUIRRELS GLAUCOMYS; CONSERVATION GENETICS; POPULATION HISTORY; RED FOXES; BIOGEOGRAPHY; REFUGIA; CONSEQUENCES; EVOLUTION; CLIMATE AB Molecular data have been used to show northward post-Pleistocene range expansions from a refugium in the southeastern United States for several mammal species. Fossil and historical records indicate that gray foxes (Urocyon cinereoargenteus) were not present in the northeastern United States until well after the Pleistocene (ca. 900). To test the hypothesis that gray foxes experienced a post-Pleistocene range expansion we conducted a phylogeographic analysis of gray foxes from across the eastern United States. We sequenced a variable portion of the mitochondria] control region (411 base pairs) from 229 gray fox tissue samples from 15 states, representing the range of all 3 East Coast subspecies. Phylogeographic analyses indicated no clear pattern of genetic structuring of gray fox haplotypes across most of the eastern United States. However, when haplotype frequencies were subdivided into a northeastern and a southern region, we detected a strong signal of differentiation between the Northeast and the rest of the eastern United States. Indicators of molecular diversity and tests for demographic expansion confirmed this division and suggested a very recent expansion of gray foxes into the northeastern states. Our results support the hypothesis that gray foxes 1st colonized the Northeast during a historical period of hemisphere-wide warming, which coincided with the range expansion of deciduous forest. We present the 1st study that analyzes the phylogeographic patterns of the gray fox in the eastern United States. C1 [Bozarth, Christine A.; Maldonado, Jesus E.] Smithsonian Conservat Biol Inst, Ctr Conservat & Evolutionary Genet, Washington, DC 20008 USA. [Maldonado, Jesus E.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20013 USA. George Mason Univ, Dept Environm Sci & Publ Policy, Fairfax, VA 22030 USA. [Lance, Stacey L.; Civitello, David J.] Colby Coll, Dept Biol, Waterville, ME 04901 USA. [Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Civitello, David J.] Indiana Univ, Dept Biol, Bloomington, IN 47401 USA. [Glenn, Julie L.] Univ S Carolina, Dept Biol Sci, Peromyscus Genet Stock Ctr, Columbia, SC 29208 USA. RP Bozarth, CA (reprint author), Smithsonian Conservat Biol Inst, Ctr Conservat & Evolutionary Genet, Washington, DC 20008 USA. EM bozarthc@si.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Savannah River Ecology Laboratory from the United States Department of Energy [DE-FC09-07SR22506]; Colby College Department of Biology; Faculty Student Special Projects Award; IDeA Networks of Biomedical Research Excellence [P20 RR-016463] FX Financial and logistical assistance was provided by the Savannah River Ecology Laboratory through contract DE-FC09-07SR22506 from the United States Department of Energy to the University of Georgia Research Foundation and by the Colby College Department of Biology, the Dean of Faculty Student Special Projects Award, and IDeA Networks of Biomedical Research Excellence grant P20 RR-016463. We thank J. G. Germaine for coordination of sample collection and DNA extraction; J. D. Schrecengost, J. C. Kilgo, K. V. Miller, and H. S. Ray for tissue collection; and G. Syed, F. Hailer, C. Hofman, C. W. Edwards, and L. L. Rockwood for assistance and guidance. Thanks are extended to the many state wildlife officials and trappers who helped us obtain specimens and to 2 anonymous reviewers whose comments greatly improved this manuscript. NR 65 TC 5 Z9 6 U1 0 U2 23 PU ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0022-2372 EI 1545-1542 J9 J MAMMAL JI J. Mammal. PD APR 15 PY 2011 VL 92 IS 2 BP 283 EP 294 DI 10.1644/10-MAMM-A-141.1 PG 12 WC Zoology SC Zoology GA 754PV UT WOS:000289869700003 ER PT J AU Schwenzer, B Kim, S Vijayakumar, M Yang, ZG Liu, J AF Schwenzer, Birgit Kim, Soowhan Vijayakumar, M. Yang, Zhenguo Liu, Jun TI Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Polyaniline; Polypyrrole; Nafion composite membranes; Vanadium diffusivity; Vanadium redox flow battery ID REDOX FLOW BATTERY; METHANOL FUEL-CELLS; ELECTRICITY STORAGE; NAFION MEMBRANES; POLYPYRROLE; CONDUCTIVITY; DEGRADATION; REDUCTION; FILMS; IR AB Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by scanning electron microscopy, infrared and nuclear magnetic resonance spectroscopy. Differences in vanadium ion diffusion through the membranes and in the membranes' area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane. Infrared spectroscopy results suggest that the hydrophobic polymer aggregates in the center of the Nafion channel rather than attaching to the hydrophilic walls containing sulfonic acid groups. This results in a drastically elevated membrane resistance and only slightly decreased vanadium ion diffusion compared to a Nafion membrane. Polyaniline, on the other hand, polymerizes along the sides of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion, polyaniline's greater basicity possibly causing the difference in polymerization behavior. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing a pure Nafion membrane, further confirms the reduced vanadium ion transport through the composite membranes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schwenzer, B (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K2-01, Richland, WA 99352 USA. EM birgit.schwenzer@pnl.gov RI Murugesan, Vijayakumar/C-6643-2011; OI Murugesan, Vijayakumar/0000-0001-6149-1702; Schwenzer, Birgit/0000-0002-7872-1372 FU Office of Electricity (OE Delivery & Energy Reliability) (OE), U.S. Department of Energy (DOE) [57558]; DOE's Office of Biological and Environmental Research (BER); Battelle Memorial Institute for the Department of Energy [DE-AC05-76RL01830] FX The work is supported by the Office of Electricity (OE Delivery & Energy Reliability) (OE), U.S. Department of Energy (DOE) under contract #57558. The NMR work was carried out at the Environmental and Molecular Science Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830. NR 39 TC 40 Z9 41 U1 8 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD APR 15 PY 2011 VL 372 IS 1-2 BP 11 EP 19 DI 10.1016/j.memsci.2011.01.025 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 754CI UT WOS:000289829200002 ER PT J AU Barillas, MK Enick, RM O'Brien, M Perry, R Luebke, DR Morreale, BD AF Barillas, Mary Katharine Enick, Robert M. O'Brien, Michael Perry, Robert Luebke, David R. Morreale, Bryan D. TI The CO2 permeability and mixed gas CO2/H-2 selectivity of membranes composed of CO2-philic polymers SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Carbon dioxide capture; Gas separation membranes; Polymer; Hydrogen; Polyethers; Liquid membrane ID PERMEATION PROPERTIES; BLOCK-COPOLYMERS; CARBON-DIOXIDE; POLYPHOSPHAZENE MEMBRANES; POLY(ETHYLENE OXIDE); POLY(LACTIC ACID); SEPARATION; TRANSPORT; HYDROGEN; DIFFUSION AB The objective of this work was to design polymeric membranes that have very high CO2 permeability and high mixed gas selectivity toward CO2 rather than hydrogen. Therefore the membranes were based on "CO2-philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO2. CO2-philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25 degrees C) and very low CO2/H-2 selectivity of 1.4. CO2-philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH2)(4)O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAD and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO2 and H-2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37 degrees C the PEG-, PTMEG-, GTA- and PDMS-based SLMs exhibited CO2/H-2 selectivity values of similar to 11, 9, 9, and 3.5, respectively, and CO2 permeability values of similar to 800, 900, 1900, and 2000 barrers, respectively. Crosslinked versions of the PEG, PTMEG and PDMS membranes at 37 degrees C exhibited selectivity values of similar to 5, 6, and 3.5, respectively, and CO2 permeability values of similar to 50, 300, and 3000 barrers, respectively. (C) 2011 Elsevier B.V. All rights reserved. C1 [Barillas, Mary Katharine; Enick, Robert M.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [O'Brien, Michael; Perry, Robert] GE Global Res 1 Res Circle, Niskayuna, NY 12309 USA. [Barillas, Mary Katharine; Enick, Robert M.; Luebke, David R.; Morreale, Bryan D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Enick, RM (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, 1249 Benedum Hall,3700 OHara St, Pittsburgh, PA 15261 USA. EM rme@pitt.edu FU National Energy Technology Laboratory [DE-AC26-04NT41817]; DOE [DE-NT0005310] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in carbon capture under the RDS contract DE-AC26-04NT41817. We would like to express our appreciation to Bayer for supporting this work by providing PPG samples and by transforming the PPG and PBG diols into diacetates for SLM testing. GE Global Research is grateful to the DOE for Award DE-NT0005310 under which the PAO was made. NR 44 TC 36 Z9 37 U1 7 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD APR 15 PY 2011 VL 372 IS 1-2 BP 29 EP 39 DI 10.1016/j.memsci.2011.01.028 PG 11 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 754CI UT WOS:000289829200004 ER PT J AU Bedaque, PF Luu, T Platter, L AF Bedaque, Paulo F. Luu, Thomas Platter, Lucas TI Quark mass variation constraints from Big Bang nucleosynthesis SO PHYSICAL REVIEW C LA English DT Article ID FUNDAMENTAL CONSTANTS; NUCLEAR-FORCES; TIME-VARIATION; DEPENDENCE; LIMIT; QCD AB We study the impact on the primordial abundances of light elements created by a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way, we use lattice QCD data and a hierarchy of effective field theories. We find that the measured (4)He abundances put a bound of -1% less than or similar to delta m(q)/m(q) less than or similar to 0.7% on a possible variation of quark masses. The effect of quark mass variations on the deuterium abundances can be largely compensated by changes of the baryon-to-photon ratio eta. Including bounds on the variation of. coming from WMAP results and adding some additional assumptions further narrows the range of allowed values of delta m(q)/m(q). C1 [Bedaque, Paulo F.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Luu, Thomas] Lawrence Livermore Natl Lab, N Sect, Livermore, CA 94551 USA. [Platter, Lucas] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Platter, Lucas] Chalmers, SE-41296 Gothenburg, Sweden. RP Bedaque, PF (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. RI Platter, Lucas/N-3887-2013 OI Platter, Lucas/0000-0001-6632-8250 FU US Department of Energy [DE-FG02-93ER-40762]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; UNEDF SciDAC [DE-FC02-07ER41457]; Department of Energy [DE-FG02-00ER41132] FX We thank T. Cohen for discussions. P.B. was supported by the US Department of Energy under Grant No. DE-FG02-93ER-40762. The work of TL was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the UNEDF SciDAC grant DE-FC02-07ER41457. L.P. was supported by the Department of Energy under Grant Number DE-FG02-00ER41132. NR 38 TC 29 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 15 PY 2011 VL 83 IS 4 AR 045803 DI 10.1103/PhysRevC.83.045803 PG 7 WC Physics, Nuclear SC Physics GA 758JF UT WOS:000290159800003 ER PT J AU Das, T Balatsky, AV AF Das, Tanmoy Balatsky, A. V. TI Two Energy Scales in the Magnetic Resonance Spectrum of Electron and Hole Doped Pnictide Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article AB We argue that a multiband superconductor with sign-changing gaps may have multiple spin resonances. We calculate the RPA-based spin resonance spectra of a pnictide superconductor by using the five-band tight-binding model or angle-resolved photoemission spectroscopy Fermi surface (FS) and experimental values of superconducting gaps. The resonance spectra split in both energy and momenta due to the effects of multiband and multiple gaps in s(+/-) pairing; the higher energy peak appears around the commensurate momenta due to scattering between alpha-FS to gamma/delta-FS pockets. The second resonance is incommensurate, coming from beta-FS to gamma/delta-FS scatterings, and its q vector is doping-dependent and, hence, on the FS topology. Energies of both resonances omega(1,2)(res) are strongly doping-dependent and are proportional to the gap amplitudes at the contributing FSs. C1 [Das, Tanmoy; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Das, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. DOE; BES; LDRD FX We are grateful to A. Christianson, R. S. Markiewicz, and A. Bansil for useful discussions. This work is funded by U.S. DOE, BES, and LDRD. NR 22 TC 22 Z9 22 U1 3 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 15 PY 2011 VL 106 IS 15 AR 157004 DI 10.1103/PhysRevLett.106.157004 PG 4 WC Physics, Multidisciplinary SC Physics GA 757NS UT WOS:000290095000017 PM 21568605 ER PT J AU Ping, EW Pierson, J Wallace, R Miller, JT Fuller, TF Jones, CW AF Ping, Eric W. Pierson, John Wallace, Robert Miller, Jeffrey T. Fuller, Thomas F. Jones, Christopher W. TI On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Diesel; Bio-fuel; Deactivation; Fatty acid; Bio-diesel ID STEARIC-ACID; DIESEL FUEL; MESOPOROUS CARBON; PD/C CATALYST; DEOXYGENATION; BIODIESEL; HYDROCARBONS AB Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 degrees C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ping, Eric W.; Fuller, Thomas F.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Pierson, John; Wallace, Robert] Georgia Inst Technol, Georgia Tech Res Inst, Atlanta, GA 30332 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. EM cjones@chbe.gatech.edu RI ID, MRCAT/G-7586-2011 FU U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; State of Georgia Food Industry Partnership; Georgia Tech Research Institute Agricultural Technology Research; Department of Energy; MRCAT FX The authors acknowledge financial support for this research from The State of Georgia Food Industry Partnership and the Georgia Tech Research Institute Agricultural Technology Research Program. The authors especially thank Dr. Neng Guo for his XAS guidance, Dr. Sunho Choi and Megan Lydon for their microscopy help, Wei Long and Praveen Bollini for XPS assistance, and Dr. Johannes Leisen and Dun-yen Kang for their NMR expertise. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 24 TC 43 Z9 43 U1 6 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD APR 15 PY 2011 VL 396 IS 1-2 BP 85 EP 90 DI 10.1016/j.apcata.2011.01.042 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 752OS UT WOS:000289702600011 ER PT J AU Xiao, XY Montano, GA Edwards, TL Washburn, CM Brozik, SM Wheeler, DR Burckel, DB Polsky, R AF Xiao, Xiaoyin Montano, Gabriel A. Edwards, Thayne L. Washburn, Cody M. Brozik, Susan M. Wheeler, David R. Burckel, D. Bruce Polsky, Ronen TI Lithographically defined 3D nanoporous nonenzymatic glucose sensors SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Porous carbon; Interference lithography; Palladium nanoflowers; Glucose ID POROUS CARBON ELECTRODES; ELECTROOXIDATION ACTIVITY; HYDROGEN ELECTROSORPTION; PLATINUM; PALLADIUM; FABRICATION; GOLD; PD; DEPOSITION; CATALYST AB Nonenzymatic glucose oxidation is demonstrated on highly faceted palladium nanowflower-modified porous carbon electrodes fabricated by interference lithography. Varying electrodeposition parameters were used to control the final shape and morphology of the deposited nanoparticles on the 3D porous carbon which showed a 12 times increase in the electrochemically active surface area over analogous planar electrodes. Extremely fast amperometric glucose responses (achieving 95% of the steady state limiting current in less than 5 s) with a linear range from I to 10 mM and a detection limit of 10 mu M were demonstrated. The unusual surface properties of the pyrolyzed photoresist films produced strongly adhered palladium crystal structures that were stable for hundreds of cycles towards glucose oxidation without noticeable current decay. Published by Elsevier B.V. C1 [Xiao, Xiaoyin; Edwards, Thayne L.; Washburn, Cody M.; Brozik, Susan M.; Wheeler, David R.; Burckel, D. Bruce; Polsky, Ronen] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Montano, Gabriel A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Polsky, R (reprint author), Sandia Natl Labs, Dept Biosensors & Nanomat, POB 5800,MS 0892, Albuquerque, NM 87185 USA. EM rpolsky@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000 and also, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 25 TC 18 Z9 18 U1 0 U2 38 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD APR 15 PY 2011 VL 26 IS 8 BP 3641 EP 3646 DI 10.1016/j.bios.2011.02.020 PG 6 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 754OE UT WOS:000289863900040 PM 21411305 ER PT J AU Lovejoy, KS Purdy, GM Iyer, S Sanchez, TC Robertson, A Koppisch, AT Del Sesto, RE AF Lovejoy, Katherine S. Purdy, Geraldine M. Iyer, Srinivas Sanchez, Timothy C. Robertson, Al Koppisch, Andrew T. Del Sesto, Rico E. TI Tetraalkylphosphonium-Based Ionic Liquids for a Single-Step Dye Extraction/MALDI MS Analysis Platform SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION/IONIZATION-MASS-SPECTROMETRY; MALDI-TOF-MS; QUANTITATIVE-ANALYSIS; LACTIC-ACID; SOLAR-CELLS; MATRIX; SALTS; WATER; CHROMATOGRAPHY; EXTRACTANTS AB Room temperature ionic liquids, or RTILs, based on tetraallcylphosphonium (PR(4)(+)) cations were used as the basis of a platform that enables separation of dyes from textiles, extraction of dyes from aqueous solution, and identification of the dyes by MALDI-MS in a single experimental step for forensic purposes. Ionic liquids were formed with PR(4)(+) cations and ferulate (FA), alpha-cyano-4-hydroxycinnamate (CHCA), and 2,5-dihydroxybenzoate (DHB) anions. The use of tetraallcylphosphonium-based ionic liquids in MALDI-MS allowed detection of small molecule dyes without addition of a traditional solid MALDI matrix. C1 [Iyer, Srinivas; Sanchez, Timothy C.; Koppisch, Andrew T.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Lovejoy, Katherine S.; Purdy, Geraldine M.; Del Sesto, Rico E.] Los Alamos Natl Lab, Mat Phys & Applicat Mat Chem Div MPA MC, Los Alamos, NM 87545 USA. [Robertson, Al] Cytec Canada Inc, Niagara Falls, ON L2E6SS, Canada. RP Koppisch, AT (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop M888, Los Alamos, NM 87545 USA. EM koppisch@lanl.gov; ricod@lanl.gov RI Lovejoy, Katherine/H-5139-2011; OI Lovejoy, Katherine/0000-0002-9606-9453; Sanchez, Timothy/0000-0001-8952-4414 FU Intelligence Community Postdoctoral Research Fellowship; U.S. Department of Energy through the LANL/LDRD FX K.S.L. is supported by an Intelligence Community Postdoctoral Research Fellowship. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD and Postdoctoral Research and Development Programs for this work. NR 60 TC 10 Z9 10 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2011 VL 83 IS 8 BP 2921 EP 2930 DI 10.1021/ac102944w PG 10 WC Chemistry, Analytical SC Chemistry GA 746DV UT WOS:000289223700014 PM 21410201 ER PT J AU Sommer, GJ Mai, JY Singh, AK Hatch, AV AF Sommer, Greg J. Mai, Junyu Singh, Anup K. Hatch, Anson V. TI Microscale lsoelectric Fractionation Using Photopolymerized Membranes SO ANALYTICAL CHEMISTRY LA English DT Article ID IMMOBILIZED PH GRADIENT; PROTEIN-PURIFICATION; MICROFLUIDIC DEVICES; SEPARATION AB In this work, we introduce microscale isoelectric fractionation (mu IF) for isolation and enrichment of molecular species at any desired location in a microfluidic chip. Narrow pH specific polyacrylamide membranes are photopatterned in situ for customizable d(evice fabrication; multiple membranes of precise pH are easily incorporated throughout existing channel layouts. Samples are electrophoretically driven across the membranes such that charged species, for example, proteins and peptides, are rapidly discretized, into fractions based on their isoelectric points (pI) without the use of carrier aimpholytes. This format makes fractions easy to compartmentalize and access for integrated preparative or analytical operations on chip We present and discuss the key design considerations and trade-offs associated with proper system operation and optimal run conditions. Efficient and reproducible fractionation of model fluorescent pI markers and proteins is achieved using single membrane fractionators at pH 6.5 and 5.3 from both buffer and Escherichia coli cell lysate sample conditions. Effective fractionation is also shown using a serial 3-membrane fractionator tailored for isolating analytes-of-interest from high abundance components of serum. We further demonstrate that proteins focused in pH specific bins can be rapidly and efficiently transferred to another location in the same chip without unwanted dilution or dispersive effects. mu IF provides a rapid and versatile option for integrated sample prep or multidimensional analysis, and addresses the glaring proteomic need to isolate trace analytes from high-abundance species in minute volumes of complex samples. C1 [Sommer, Greg J.; Mai, Junyu; Singh, Anup K.; Hatch, Anson V.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94550 USA. RP Sommer, GJ (reprint author), POB 969 MS 9291, Livermore, CA 94550 USA. EM gsommer@sandia.gov FU Sandia's Laboratory; MAID [U01A1075441]; United States Department of Energy [DE-AC0494AL85000] FX The authors would like to thank R. Meagher and Y. Light for providing cell lysate samples. This work was funded by Sandia's Laboratory Directed Research and Development program and MAID #U01A1075441. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the United States Department of Energy under Contract DE-AC0494AL85000. NR 22 TC 9 Z9 9 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2011 VL 83 IS 8 BP 3120 EP 3125 DI 10.1021/ac200073p PG 6 WC Chemistry, Analytical SC Chemistry GA 746DV UT WOS:000289223700039 PM 21417312 ER PT J AU Tsutakawa, SE Classen, S Chapados, BR Arvai, AS Finger, LD Guenther, G Tomlinson, CG Thompson, P Sarker, AH Shen, BH Cooper, PK Grasby, JA Tainer, JA AF Tsutakawa, Susan E. Classen, Scott Chapados, Brian R. Arvai, Andrew S. Finger, L. David Guenther, Grant Tomlinson, Christopher G. Thompson, Peter Sarker, Altaf H. Shen, Binghui Cooper, Priscilla K. Grasby, Jane A. Tainer, John A. TI Human Flap Endonuclease Structures, DNA Double-Base Flipping, and a Unified Understanding of the FEN1 Superfamily SO CELL LA English DT Article ID NUCLEOTIDE EXCISION-REPAIR; SACCHAROMYCES-CEREVISIAE; SUBSTRATE-SPECIFICITY; POLYMERASE-BETA; 3'-FLAP POCKET; BINDING; REPLICATION; EXONUCLEASE; CATALYSIS; PCNA AB Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1: DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100 degrees with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity. C1 [Tomlinson, Christopher G.; Thompson, Peter; Grasby, Jane A.] Univ Sheffield, Dept Chem, Ctr Chem Biol, Krebs Inst, Sheffield S3 7HF, S Yorkshire, England. [Tsutakawa, Susan E.; Finger, L. David; Sarker, Altaf H.; Cooper, Priscilla K.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Classen, Scott] Scripps Res Inst, Phys Biosci Div, La Jolla, CA 92037 USA. [Chapados, Brian R.; Arvai, Andrew S.; Guenther, Grant; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Chapados, Brian R.; Arvai, Andrew S.; Guenther, Grant; Tainer, John A.] Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Finger, L. David; Shen, Binghui] City Hope Natl Med Ctr, Div Radiat Biol, Duarte, CA 91010 USA. [Finger, L. David; Shen, Binghui] City Hope Natl Med Ctr, Beckman Res Inst, Duarte, CA 91010 USA. [Shen, Binghui] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Grasby, JA (reprint author), Univ Sheffield, Dept Chem, Ctr Chem Biol, Krebs Inst, Sheffield S3 7HF, S Yorkshire, England. EM j.a.grasby@sheffield.ac.uk; jat@scripps.edu OI Finger, L. David/0000-0002-2342-9569; Thompson, Peter/0000-0002-4688-3414 FU NIH/NCI [RO1CA081967, R01CA073764, P01 CA092584]; BBSRC [BBF0147321]; ALS [DE-AC02-05CH11231]; DOE; DOE, OBER; NIH; NCRR; Biomedical Technology Program; NIGMS FX Work on FEN1 is supported by the NIH/NCI through RO1CA081967, R01CA073764, and P01 CA092584 (SBDR) and by BBSRC (BBF0147321). Crystal data was collected at the SIBYLS beamline 12.3.1 (ALS, Contract DE-AC02-05CH11231) and beamline 11-1 (SSRL, supported by DOE, OBER, NIH, NCRR, Biomedical Technology Program, and the NIGMS). Morphing movies were produced with CHIMERA (NIH P41 RR-01081). We thank Hong Xu and Chiharu Hitomi for technical assistance and Gareth Williams, James Holton, Mike Pique, Elizabeth Getzoff, David Moiani, Cliff Ng, and Peter Burgers for contributing to the analyses. NR 50 TC 122 Z9 124 U1 7 U2 63 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD APR 15 PY 2011 VL 145 IS 2 BP 198 EP 211 DI 10.1016/j.cell.2011.03.004 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 750MA UT WOS:000289549900010 PM 21496641 ER PT J AU Dzepina, K Cappa, CD Volkamer, RM Madronich, S DeCarlo, PF Zaveri, RA Jimenez, JL AF Dzepina, Katja Cappa, Christopher D. Volkamer, Rainer M. Madronich, Sasha DeCarlo, Peter F. Zaveri, Rahul A. Jimenez, Jose L. TI Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MEXICO-CITY; VOLATILITY; SEMIVOLATILE; TRANSPORT; CAMPAIGN; SIMULATION; CHEMISTRY; EMISSIONS; PLATEAU; EVENT AB In this study, we apply several recently proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at: an altitude of similar to 3.5 km during three days of aging, in a way that is directly comparable to simulations in regional and global models. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using a non-aging SOA parameterization cannot explain the observed SOA concentrations in aged pollution, despite the increasing importance of the low-NO, channel. However, when using an aging SOA parameterization, V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its 0/C is similar to 2 x too low. With the parameterization of Grieshop et al. (2009), the total SOA mass is similar to 2 x too high, but 0/C and volatility are closer to the observations. Heating or dilution cause the evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs dilution. Lifting of the airmass to the free-troposphere during dry convection substantially increases SOA by condensation of semivolatile vapors; this effect is reduced by aging. C1 [Dzepina, Katja; Volkamer, Rainer M.; DeCarlo, Peter F.; Jimenez, Jose L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Dzepina, Katja; Volkamer, Rainer M.; Jimenez, Jose L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [DeCarlo, Peter F.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Dzepina, Katja; Madronich, Sasha] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Cappa, Christopher D.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Zaveri, Rahul A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jimenez, JL (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM jose.jimenez@colorado.edu RI DeCarlo, Peter/B-2118-2008; Jimenez, Jose/A-5294-2008; Madronich, Sasha/D-3284-2015; Dzepina, Katja/A-1372-2014; Volkamer, Rainer/B-8925-2016; OI DeCarlo, Peter/0000-0001-6385-7149; Jimenez, Jose/0000-0001-6203-1847; Madronich, Sasha/0000-0003-0983-1313; Volkamer, Rainer/0000-0002-0899-1369; Zaveri, Rahul/0000-0001-9874-8807 FU NSF [ATM-0449815]; DOE [DE-FG02-08ER64627]; NOAA [NA08OAR4310565]; ASP-NCAR; ACD-NCAR; Dept. Chemistry and Biochemistry of Univ. of Colorado; Particle Chemistry Department of Max Planck Institute for Chemistry FX This research was supported by NSF (Grant ATM-0449815), DOE (BER, ASR Program, grant DE-FG02-08ER64627), and NOAA (Grant NA08OAR4310565). K.Dz. is grateful for fellowships from ASP-NCAR, ACD-NCAR and Dept. Chemistry and Biochemistry of Univ. of Colorado, and for funding from Particle Chemistry Department of Max Planck Institute for Chemistry. We thank A.G. Aiken and J.A. Huffman for providing data, and K. C. Barsanti, C. Cantrell, N.M. Donahue, J. Fast, A. Hodzic, J. Lee-Taylor, J.F. Pankow, and A.L. Robinson for many helpful discussions, and P. Hayes for help with manuscript preparation. NR 35 TC 52 Z9 53 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2011 VL 45 IS 8 BP 3496 EP 3503 DI 10.1021/es103186f PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 747SZ UT WOS:000289341300044 PM 21425791 ER PT J AU Dong, WM Bian, YR Liang, LY Gu, BH AF Dong, Wenming Bian, Yongrong Liang, Liyuan Gu, Baohua TI Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOIL HUMIC SUBSTANCES; X-RAY-ABSORPTION; STABILITY-CONSTANTS; LIGAND-EXCHANGE; REDUCED SULFUR; ALKALINE CONDITIONS; FLORIDA EVERGLADES; ACID COMPLEXES; NATURAL-WATERS; FULVIC-ACIDS AB Ion-exchange techniques have been widely used for determining the conditional stability constants (logK) between dissolved organic matter (DOM) and various metal ions in aqueous solution. An exception is mercuric ion, Hg2+, whose exceedingly strong binding with reduced sulfur or thiol-like functional groups in DOM makes the ion exchange reactions difficult. Using a Hg-selective thiol resin, we have developed a modified ion-exchange technique which overcomes this limitation. This technique allows not only the determination of binding constants between Hg2+ and DOM of varying origins, but also the discrimination of complexes with varying coordination numbers [i.e., 1:1 and 1:2 Hg:thiol-ligand (HgL) complexes]. Measured logK values of four selected DOM isolates varied slightly from 21.9 to 23.6 for 1:1 HgL complexes, and from 30.1 to 31.6 for 1:2 HgL2 complexes. These results suggest similar binding modes that are likely occurring between Hg2+ and key thiolate functional groups in DOM particularly at a relatively low Hg to DOM ratio. Future studies should further elucidate the nature and precise stoichiometries of binding between Hg2+ and DOM at environmentally relevant concentrations. C1 [Dong, Wenming; Bian, Yongrong; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Liang, LY (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM liangl@ornl.gov; gubl@ornl.gov RI Gu, Baohua/B-9511-2012; Liang, Liyuan/O-7213-2014; Dong, Wenming/G-3221-2015 OI Gu, Baohua/0000-0002-7299-2956; Liang, Liyuan/0000-0003-1338-0324; Dong, Wenming/0000-0003-2074-8887 FU Office of Biological and Environmental Research, U.S. Department of Energy (DOE); U.S. DOE [DE-AC05-00OR22725] FX We thank X. Yin and C. Miller for technical assistance in CVAFS analysis of Hg. This work is part of the mercury Science Focus Area (SFA) research program at Oak Ridge National Laboratory sponsored by the Subsurface Biogeochemical Research (SBR) Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE). ORNL is managed by UT- Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. NR 37 TC 40 Z9 42 U1 9 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2011 VL 45 IS 8 BP 3576 EP 3583 DI 10.1021/es104207g PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 747SZ UT WOS:000289341300055 PM 21417367 ER PT J AU Cameron-Smith, P Elliott, S Maltrud, M Erickson, D Wingenter, O AF Cameron-Smith, Philip Elliott, Scott Maltrud, Mathew Erickson, David Wingenter, Oliver TI Changes in dimethyl sulfide oceanic distribution due to climate change SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENHANCED GREENHOUSE CONDITIONS; ANTARCTIC SOUTHERN-OCEAN; CO2 EMISSIONS; PHYTOPLANKTON; DIMETHYLSULFONIOPROPIONATE; ACIDIFICATION; ATMOSPHERE; DYNAMICS; SYSTEM; MODEL AB Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer overmuch of the remote ocean. Here we report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO2 concentrations. We find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associated with reduced DMS emissions at the equator and increased emissions at high latitudes. Citation: Cameron-Smith, P., S. Elliott, M. Maltrud, D. Erickson, and O. Wingenter (2011), Changes in dimethyl sulfide oceanic distribution due to climate change, Geophys. Res. Lett., 38, L07704, doi: 10.1029/2011GL047069. C1 [Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Elliott, Scott; Maltrud, Mathew] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Erickson, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wingenter, Oliver] New Mexico Inst Min & Technol, Geophys Res Ctr, Socorro, NM 87801 USA. [Wingenter, Oliver] New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA. RP Cameron-Smith, P (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave, Livermore, CA 94550 USA. EM pjc@llnl.gov RI Cameron-Smith, Philip/E-2468-2011 OI Cameron-Smith, Philip/0000-0002-8802-8627 FU U.S. DOE; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank two anonymous reviewers for their suggestions. National laboratory authors were supported by the U.S. DOE OBER SciDAC project. Wingenter was supported by the NMIMT Geophysical Research Center. We used the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725. Part of this study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 35 TC 32 Z9 33 U1 2 U2 36 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 15 PY 2011 VL 38 AR L07704 DI 10.1029/2011GL047069 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 751XA UT WOS:000289649800005 ER PT J AU Guiochon, G Gritti, F AF Guiochon, Georges Gritti, Fabrice TI Shell particles, trials, tribulations and triumphs SO JOURNAL OF CHROMATOGRAPHY A LA English DT Review DE Column efficiency; Corasil; Halo; Kinetex; Pellicosil; Pellicular particles; Permaphases; Poroshell; Shell particles; Superficially porous particles; Zipax ID PHASE LIQUID-CHROMATOGRAPHY; SURFACE POROSITY SUPPORTS; MASS-TRANSFER KINETICS; GRADIENT ELUTION CHROMATOGRAPHY; SUPERFICIALLY POROUS PARTICLES; MONODISPERSE SILICA SPHERES; ORGANIC STATIONARY PHASES; FUSED-CORE PARTICLES; RETENTION DATA; BAND PROFILES AB The concept of pellicular particles was imagined by Horvath and Lipsky fifty years ago. They were initially intended for the analysis of macromolecules. Later, shell particles were prepared. The rational behind this concept was to improve column efficiency by shortening the pathways that analyte molecules must travel and, so doing, to improve their mass transfer kinetics. Several brands of superficially porous particles were developed and became popular in the 1970s. However, the major improvements in the manufacturing of high-quality, fully porous particles, that took place in the same time, particularly by making them finer and more homogeneous, hampered the success of shell particles, which eventually disappeared. Recently, the pressing needs to improve analytical throughputs forced particle manufacturers to find a better compromise between the demands for higher column efficiency that require short diffusion paths of analyte molecules in columns and the need for columns that can be operated with the conventional instruments for liquid chromatography, which operate with moderate column back-pressures. This lead to the apparition of a new generation of columns packed with shell particles, which bring chromatographic columns to a level of efficiency undreamed of a few years ago. This evolution is reviewed, the reason that motivated it, and the consequences of their success are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Guiochon, Georges; Gritti, Fabrice] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges; Gritti, Fabrice] Oak Ridge Natl Lab, Div Chem & Analyt Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu FU National Science Foundation [CHE-06-08659]; University of Tennessee; Oak Ridge National Laboratory FX This work was supported in part by grant CHE-06-08659 of the National Science Foundation and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. We thank Tivadar Farkas (Phenomenex, Torrance, USA) for the generous gift of the Kinetex columns used in our work and for fruitful discussions, Jack Kirkland for the generous gift of the Halo and Halo-ES-peptides columns used in our work and for fruitful discussions, and Ron Majors (Agilent, Little Falls, and DE) for the generous gift of the Poroshell120 columns used in our work, for the gift of the last flasks of Zipax packing material, and for fruitful discussions. NR 121 TC 189 Z9 192 U1 6 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD APR 15 PY 2011 VL 1218 IS 15 BP 1915 EP 1938 DI 10.1016/j.chroma.2011.01.080 PG 24 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 747PF UT WOS:000289331200002 PM 21353228 ER PT J AU Cihan, A Tyner, JS AF Cihan, Abdullah Tyner, John S. TI 2-D radial analytical solutions for solute transport in a dual-porosity medium SO WATER RESOURCES RESEARCH LA English DT Article ID BOUNDARY-CONDITIONS; POROUS-MEDIA; BACK-DIFFUSION; AQUITARD; SOILS; CONTAMINANTS; INTERFACE; MATRIX; LAYER; ROCK AB This study presents 2-D analytical solutions for advective solute transport within a macropore with simultaneous radial diffusion into an unbounded soil matrix. Solutions for three conditions are derived: (1) an instantaneous release of solute into a macropore, (2) a constant concentration of solute at the top of a macropore, and (3) a pulse release of solute into a macropore. A system of two governing equations was solved by the Laplace transform method for solute concentration as a function of space and time. Substituting the asymptotic approximations of the modified Bessel functions, we also obtained approximate solutions for all three cases. For instantaneous and pulse-type releases of solutes, the solutes initially diffuse into the soil matrix and then reverse direction away from the matrix as they diminish in the macropore. The matrix behaves as a long-term contaminant source creating long tails in the breakthrough curves. Comparisons between the exact and approximate solutions for all three conditions show that the asymptotic approximations are accurate for relatively short periods of solute movement, with increasing error as time and transport distances increase. The analytical solutions were compared with one set of experimental data and also numerical simulations for contaminant transport in a cylindrical dual-porosity medium. The analytical solutions for case 3 represented the experimental data reported in the literature well. Comparisons with numerical simulations in a two-dimensional cylindrical domain that included dispersion in the macropore and advection in the matrix showed that the error caused by neglecting these two processes was minimal when a relatively low permeability matrix was considered for case 2. C1 [Cihan, Abdullah] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Tyner, John S.] Univ Tennessee, Knoxville, TN 37996 USA. RP Cihan, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 90-1116, Berkeley, CA 94720 USA. EM acihan@lbl.gov; jtyner@utk.edu RI Cihan, Abdullah/D-3704-2015 NR 25 TC 6 Z9 6 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 15 PY 2011 VL 47 AR W04507 DI 10.1029/2009WR008969 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 751XN UT WOS:000289651200001 ER PT J AU Eichberg, MJ Kayser, B Leonard, PW Miljanic, OS Timofeeva, TV Vollhardt, KPC Whitener, GD Yakovenko, A Yu, Y AF Eichberg, Michael J. Kayser, Bernd Leonard, Philip W. Miljanic, Ognjen S. Timofeeva, Tatiana V. Vollhardt, K. Peter C. Whitener, Glenn D. Yakovenko, Andrey Yu, Yong TI Radial (tetracyclopentadienyl)cyclobutadiene pentametals SO INORGANICA CHIMICA ACTA LA English DT Article DE Cyclobutadiene complexes; Cyclopentadienyl complexes; Radial pentanuclear metal complexes; Pd-catalyzed coupling ID MOLECULAR ELECTRONICS; CRYSTAL-STRUCTURES; METAL-COMPLEXES; TRICARBONYL; REACTIVITY; LIGAND; ION AB Radial (tetracyclopentadienyl)cyclobutadiene pentametals have been synthesized by the Pd-catalyzed coupling of cyclopentadienyltin or of (CpM)zinc reagents with (tetraiodocyclobutadiene)iron(tricabonyl). X-ray structural and NMR data reveal that, while these arrays are crowded, the substituents enjoy considerable rotational freedom. The method constitutes a significant complement to currently existing strategies for the construction of persubstituted cyclobutadiene complexes. (C) 2010 Elsevier B.V. All rights reserved. C1 [Eichberg, Michael J.; Kayser, Bernd; Leonard, Philip W.; Miljanic, Ognjen S.; Vollhardt, K. Peter C.; Whitener, Glenn D.; Yu, Yong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Eichberg, Michael J.; Kayser, Bernd; Leonard, Philip W.; Miljanic, Ognjen S.; Vollhardt, K. Peter C.; Whitener, Glenn D.; Yu, Yong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Timofeeva, Tatiana V.; Yakovenko, Andrey] New Mexico Highlands Univ, Dept Nat Sci, Las Vegas, NM 87701 USA. RP Vollhardt, KPC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM kpcv@berkeley.edu FU DFG (Germany); Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy [DE-AC02-05CH11231]; NSF [CHE-0907800]; KPCV; STC MDITR [DMR-0120967]; PREM [DMR-0934212]; TVT FX We thank Professor F.-E. Hong from the National Chung-Hsing University, Taiwan, for helpful correspondence and Professor J. Arnold from U.C. Berkeley for his advice and assistance. B.K. is grateful for a postdoctoral fellowship from the DFG (Germany), M.E. and P.W.L. were NSF, G.D.W. an NSF and Bayer-Miles predoctoral fellows. This investigation was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy, under Contract DE-AC02-05CH11231, and the NSF (CHE-0907800; KPCV; STC MDITR, DMR-0120967, PREM DMR-0934212; TVT). NR 55 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD APR 15 PY 2011 VL 369 IS 1 BP 32 EP 39 DI 10.1016/j.ica.2010.10.004 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 746WO UT WOS:000289279200005 ER PT J AU Soo, HS Sougrati, MT Grandjean, F Long, GJ Chang, CJ AF Soo, Han Sen Sougrati, Moulay T. Grandjean, Fernande Long, Gary J. Chang, Christopher J. TI A seven-coordinate iron platform and its oxo and nitrene reactivity SO INORGANICA CHIMICA ACTA LA English DT Article DE Pentagonal bipyramidal; Seven-coordinate; High-spin iron; Mossbauer spectroscopy; Oxo and nitrene transfer ID INTRAMOLECULAR HYDROGEN-BONDS; NONHEME OXOIRON(IV) COMPLEX; SLOW MAGNETIC-RELAXATION; NEUTRAL-LIGAND COMPLEXES; HIGH-SPIN IRON(II); HIGH-VALENT IRON; ELECTRONIC-STRUCTURE; SPECTROSCOPIC CHARACTERIZATION; BIS(IMINO)PYRIDINE IRON; SUBSTITUTION BEHAVIOR AB We present a new structurally determined seven-coordinate iron platform supported by the tris(2-picolyl)amine ligand 6,6'-(pyridin-2-ylmethylazanediyl)bis(methylene) bis(N-tert-butylpicolinamide) (TPA(2C(O)NHtBu), 3) and its reactivity with oxo and nitrene transfer agents. Oxidation of the pentagonal bipyramidal, seven-coordinate iron(II)-triflate complex [TPA(2C(O)NHtBu)Fe(II)(OTf)][OTf] (4) with PhIO produces the corresponding diiron(III) mu-oxo complex [(TPA(2C(O)NHtBu)Fe(III))(2)(O)][OTf](4) (5). Mossbauer and magnetic measurements on 5 in the solid-state establish antiferromagnetic coupling between its two Fe(III) centers. Reactions of 4 with the nitrene transfer agents PhINTs (Ts = p-MeC6H4SO2) and PhINNs (Ns = p-NO2C6H4SO2) provide the corresponding iron(III)-amide congeners [TPA(2C(O)NHtBu)Fe(III)(NHTs)][OTf](2) (6) and [TPA(2C(O)NHtBu)Fe(III)(NHNs)][OTf](2) (7), respectively, affording a rare pair of isolable Fe(III)-amide compounds formed from nitrene transfer. By characterizing well-defined products in the crystalline form, derived from atom and group transfer to seven-coordinate iron, the collective data provide a starting point for the exploration of high-valent and metal-ligand multiply bonded species supported by approximate pentagonal-type ligand fields. (C) 2010 Elsevier B.V. All rights reserved. C1 [Soo, Han Sen; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Soo, Han Sen; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sougrati, Moulay T.; Grandjean, Fernande] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. [Long, Gary J.] Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM glong@mst.edu; chrischang@berkeley.edu RI Soo Han Sen, Han Sen/B-7016-2011; Sougrati, Moulay Tahar/B-6283-2011 OI Sougrati, Moulay Tahar/0000-0003-3740-2807 FU University of California, Berkeley; Packard and Sloan Foundations; LBNL Chemical Sciences Division [403801]; Fonds National de la Recherche Scientifique, Belgium [9.456595, 1.5.064.05]; National Institutes of Health [1S10RR02239301] FX We thank the University of California, Berkeley, the Packard and Sloan Foundations, and the LBNL Chemical Sciences Division (403801) for funding this work. C.J.C. is an Investigator with the Howard Hughes Medical Institute. F.G. acknowledges the Fonds National de la Recherche Scientifique, Belgium (Grants 9.456595 and 1.5.064.05) for financial support. We thank Dr. Frederick Hollander and Dr. Antonio DiPasquale for expert advice on X-ray crystallography, as well as Mr. Joe Zadrozny and Prof. Jeffrey R. Long for help with magnetic susceptibility measurements. The mass spectrometer used in this study was acquired with support from the National Institutes of Health (1S10RR02239301). NR 98 TC 14 Z9 14 U1 3 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD APR 15 PY 2011 VL 369 IS 1 BP 82 EP 91 DI 10.1016/j.ica.2010.12.040 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 746WO UT WOS:000289279200013 ER PT J AU Harris, TD Soo, HS Chang, CJ Long, JR AF Harris, T. David Soo, Han Sen Chang, Christopher J. Long, Jeffrey R. TI A cyano-bridged (FeReIV)-Re-II(CN)(2) cluster incorporating two high-magnetic anisotropy building units SO INORGANICA CHIMICA ACTA LA English DT Article DE Cyanide; Magnetic anisotropy; Single-molecule magnet; High-spin iron(II) ID SINGLE-MOLECULE-MAGNET; ORBITAL ANGULAR-MOMENTUM; PRUSSIAN BLUE MATERIALS; HIGH-SPIN IRON(II); GROUND-STATE; LINKAGE ISOMERISM; CHAIN COMPOUND; FE-II; COMPLEXES; BEHAVIOR AB The pentagonal bipyramidal high-spin iron(II) complex, [(TPA(2C(O)NHtBu))Fe(CF3SO3)](+), is shown to exhibit a high-anisotropy ground state, with fits to dc magnetization data providing an axial zero-field splitting parameter of D = -7.9 cm (1). The utility of this compound as a building unit is demonstrated, as its reaction with [ReCl4(CN)(2)](2) affords the cyano-bridged dinuclear cluster (TPA(2C(O)NHtBu))FeRCl4(CN)(2). dc magnetic susceptibility measurements reveal intracluster ferromagnetic exchange interactions between Fe-II and Re-IV centers, with J = +3.0 cm (1), giving rise to a spin ground state of S = 7/2. Moreover, fits to dc magnetization data obtained for the FeRe cluster show the presence of strong axial anisotropy, with D = -2.3 cm (1). Finally, variable-frequency ac susceptibility measurements reveal the onset of slow magnetic relaxation at low temperature, suggesting that the FeRe cluster is a single-molecule magnet. (C) 2010 Elsevier B.V. All rights reserved. C1 [Harris, T. David; Soo, Han Sen; Chang, Christopher J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Soo, Han Sen; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu; jlong@cchem.berkeley.edu RI Harris, David/M-9204-2014; Soo Han Sen, Han Sen/B-7016-2011 OI Harris, David/0000-0003-4144-900X; FU Packard foundation; DOE/LBNL [403801]; NSF [CHE-0617063]; Tyco Electronics FX We thank the Packard foundation (C.J.C.), DOE/LBNL (403801 to C.J.C.), and the NSF (CHE-0617063 to J.R.L.) for funding this work. C.J.C. is an Investigator with the Howard Hughes Medical Institute. We further thank Tyco Electronics for providing T.D.H. with a predoctoral fellowship, H. Harman for helpful discussions, and J. Zadrozny for experimental assistance. NR 56 TC 12 Z9 12 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD APR 15 PY 2011 VL 369 IS 1 BP 91 EP 96 DI 10.1016/j.ica.2010.12.010 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 746WO UT WOS:000289279200014 ER PT J AU Thomson, RK Graves, CR Scott, BL Kiplinger, JL AF Thomson, Robert K. Graves, Christopher R. Scott, Brian L. Kiplinger, Jaqueline L. TI Uncovering alternate reaction pathways to access uranium(IV) mixed-ligand aryloxide-chloride and alkoxide-chloride metallocene complexes: Synthesis and molecular structures of (C5Me5)(2)U(O-2,6-(Pr2C6H3)-Pr-i)(Cl) and (C5Me5)(2)U(O-Bu-t)(Cl) SO INORGANICA CHIMICA ACTA LA English DT Article DE Uranium; Alkoxide; Chloride; Oxidative functionalization; Mixed-ligand; Metallocenes ID HYDROCARBYLS; HYDRIDES AB Reaction of the trivalent uranium complex (C5Me5)(2)U(O-2,6-(Pr2C6H3)-Pr-i)(THF) (1) with copper(I) chloride affords the corresponding tetravalent mixed-ligand aryloxide-chloride complex (C5Me5)(2)U(O-2,6-(Pr2C6H3)-Pr-i)(Cl) (2). The oxidative functionalization protocol cannot be extended to the synthesis of (C5Me5)(2)U(O-Bu-t)(Cl) (3) since the corresponding trivalent precursor is not stable. Salt metathesis between (C5Me5)(2)UCl2 and (KOBu)-Bu-t is the method of choice for the preparation of the tetravalent alkoxide-chloride derivative (C5Me5)(2)U(O-Bu-t)(Cl) (3). The X-ray crystal structures of (C5Me5)(2)U (O-2,6-(Pr2C6H3)-Pr-i)(Cl) (2) and (C5Me5)(2)U(O-Bu-t)(Cl) (3) are reported and represent the first structurally characterized uranium(IV) metallocene aryloxide-chloride and alkoxide-chloride complexes, respectively. Both complexes adopt a pseudo-tetrahedral geometry, with a chloride and aryloxide/alkoxide ligand occupying the plane bisecting the metallocene unit. (C) 2011 Elsevier B. V. All rights reserved. C1 [Thomson, Robert K.; Graves, Christopher R.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU Division of Chemical Sciences, Office of Basic Energy Science; Heavy Element Chemistry program; LANL G. T. Seaborg Institute for Transactinium Science; Los Alamos National Laboratory FX For financial support of this work, we acknowledge the Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry program, the LANL G. T. Seaborg Institute for Transactinium Science (postdoctoral fellowships to R. K. T. and C. R. G.) and the Los Alamos National Laboratory LDRD program. NR 19 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD APR 15 PY 2011 VL 369 IS 1 BP 270 EP 273 DI 10.1016/j.ica.2010.12.065 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 746WO UT WOS:000289279200037 ER PT J AU Cho, DW Latham, JA Park, HJ Yoon, UC Langan, P Dunaway-Mariano, D Mariano, PS AF Cho, Dae Won Latham, John A. Park, Hea Jung Yoon, Ung Chan Langan, Paul Dunaway-Mariano, Debra Mariano, Patrick S. TI Regioselectivity of Enzymatic and Photochemical Single Electron Transfer Promoted Carbon-Carbon Bond Fragmentation Reactions of Tetrameric Lignin Model Compounds SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID PEROXIDASE-CATALYZED OXIDATION; ASPEN POPULUS-TREMULOIDES; PHANEROCHAETE-CHRYSOSPORIUM; 3,4-DIMETHOXYBENZYL ALCOHOL; MECHANISM; DEGRADATION; CLEAVAGE; PHTHALIMIDES; PATHWAYS; RADICALS AB New types of tetrameric lignin model compounds, which contain the common beta-O-4 and,beta-1 structural subunits found in natural lignins, have been prepared and carbon carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C C bond cleavage in their beta-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in beta-1 vs beta-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary, formation of an enzyme substrate complex. C1 [Cho, Dae Won; Latham, John A.; Dunaway-Mariano, Debra; Mariano, Patrick S.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Park, Hea Jung; Yoon, Ung Chan] Pusan Natl Univ, Dept Chem, Pusan 609735, South Korea. [Park, Hea Jung; Yoon, Ung Chan] Pusan Natl Univ, Chem Inst Funct Mat, Pusan 609735, South Korea. [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Cho, DW (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM cdw@pusan.ac.kr; mariano@unm.edu RI Langan, Paul/N-5237-2015 OI Langan, Paul/0000-0002-0247-3122 FU U.S. Department of Energy [20080001DR]; National Research Foundation of Korea [2009-0072585] FX This research was supported financially in part by a subcontract to D.D.M. from a U.S. Department of Energy grant to Paul Langan (20080001DR) through the LANL/LDRD program and a National Research Foundation of Korea Grant (2009-0072585) to U.C.Y. Also, we are grateful to David Fox for generously providing the lignin peroxidase used in this effort. NR 39 TC 12 Z9 12 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD APR 15 PY 2011 VL 76 IS 8 BP 2840 EP 2852 DI 10.1021/jo200253v PG 13 WC Chemistry, Organic SC Chemistry GA 745SV UT WOS:000289187300047 PM 21384857 ER PT J AU Hanson, SK Wu, RL Silks, LA AF Hanson, Susan K. Wu, Ruilian Silks, L. A. Pete TI Mild and Selective Vanadium-Catalyzed Oxidation of Benzylic, Allylic, and Propargylic Alcohols Using Air SO ORGANIC LETTERS LA English DT Article ID ENANTIOSELECTIVE AEROBIC OXIDATION; INSULIN MIMETIC AGENT; ALPHA-HYDROXY ESTERS; MOLECULAR-OXYGEN; SECONDARY ALCOHOLS; IONIC LIQUIDS; ALDEHYDES; COMPLEXES; CHEMISTRY; MECHANISM AB Transition metal-catalyzed aerobic alcohol oxidation is an attractive method for the synthesis of carbonyl compounds, but most catalytic systems feature precious metals and require pure oxygen. The vanadium complex (HQ)(2)V(v)(O)(O(I)Pr) (2 mol %, HQ = 8-quinolinate) and NEt(3) (10 mol %) catalyze the oxidation of benzylic, allylic, and propargylic alcohols with air. The catalyst can be easily prepared under air using commercially available reagents and is effective for a wide range of primary and secondary alcohols. C1 [Hanson, Susan K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Hanson, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skhanson@lanl.gov OI Silks, Pete/0000-0002-2993-5630 FU Los Alamos National Laboratory LDRD [ER 20100160] FX This work was supported by Los Alamos National Laboratory LDRD (ER 20100160 and Director's PD Fellowship to S.K.H.). NR 49 TC 69 Z9 71 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD APR 15 PY 2011 VL 13 IS 8 BP 1908 EP 1911 DI 10.1021/ol103107v PG 4 WC Chemistry, Organic SC Chemistry GA 745SU UT WOS:000289187200004 PM 21434606 ER PT J AU Beliveau, A Mott, J Lo, A Chen, E Muschler, J Spencer, V Bissell, MJ AF Beliveau, Alain Mott, Joni Lo, Alvin Chen, Emily Muschler, John Spencer, Virginia Bissell, Mina J. TI Interaction of MMPs with oncogenic signaling: Disruption of dynamic reciprocity and tissue polarity SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Beliveau, Alain] Ctr Hosp Univ Montreal, Montreal, PQ, Canada. [Mott, Joni; Lo, Alvin; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chen, Emily] SUNY Stony Brook, New York, NY USA. [Muschler, John] Calif Pacific Med Ctr, San Francisco, CA USA. [Spencer, Virginia] Life Technol, Frederick, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA SY02-02 DI 10.1158/1538-7445.AM2011-SY02-02 PG 2 WC Oncology SC Oncology GA V43SO UT WOS:000209701303221 ER PT J AU Correia, AL Mori, H Schmitt, FC Bissell, MJ AF Correia, Ana Luisa Mori, Hidetoshi Schmitt, Fernando C. Bissell, Mina J. TI The role of microenvironment in mammary epithelial cell plasticity SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Correia, Ana Luisa; Mori, Hidetoshi; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schmitt, Fernando C.] Univ Porto IPATIMUP, Inst Mol Pathol & Immunol, Oporto, Portugal. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 1494 DI 10.1158/1538-7445.AM2011-1494 PG 1 WC Oncology SC Oncology GA V43SO UT WOS:000209701300222 ER PT J AU Hainfeld, JF O'Connor, MJ Dilmanian, A Slatkin, DN Adams, DJ Smilowitz, HM AF Hainfeld, James F. O'Connor, Michael J. Dilmanian, Avraham Slatkin, Daniel N. Adams, Douglas J. Smilowitz, Henry M. TI Micro-CT enables microlocalization and quantification of Her2-targeted gold nanoparticles within tumor regions SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Hainfeld, James F.; O'Connor, Michael J.; Slatkin, Daniel N.] Nanoprobes Inc, Yaphank, NY USA. [Dilmanian, Avraham] Brookhaven Natl Lab, Upton, NY 11973 USA. [Adams, Douglas J.; Smilowitz, Henry M.] Univ Connecticut, Ctr Hlth, Farmington, CT USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 5329A DI 10.1158/1538-7445.AM2011-5329A PG 1 WC Oncology SC Oncology GA V43SO UT WOS:000209701301196 ER PT J AU Hainfeld, JF Dilmanian, A Zhong, Z Slatkin, DN Kalef-Ezra, JA Smilowitz, HM AF Hainfeld, James F. Dilmanian, Avraham Zhong, Zhong Slatkin, Daniel N. Kalef-Ezra, John A. Smilowitz, Henry M. TI Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Hainfeld, James F.; Slatkin, Daniel N.] Nanoprobes Inc, Yaphank, NY USA. [Dilmanian, Avraham; Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kalef-Ezra, John A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Smilowitz, Henry M.] Univ Connecticut, Ctr Hlth, Farmington, CT USA. NR 0 TC 0 Z9 0 U1 7 U2 7 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 2679 DI 10.1158/1538-7445.AM2011-2679 PG 1 WC Oncology SC Oncology GA V43SO UT WOS:000209701300314 ER PT J AU Jin, HJ Daly, DS Tan, RM White, AM Marks, JR Zangar, RC AF Jin, Hongjun Daly, Don S. Tan, Ruimin White, Amanda M. Marks, Jeffrey R. Zangar, Richard C. TI PTM ELISA microarray for breast cancer biomarker discovery SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Jin, Hongjun; Daly, Don S.; Tan, Ruimin; White, Amanda M.; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Marks, Jeffrey R.] Duke Univ, Med Ctr, Dept Pathol, Durham, NC USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 3182 DI 10.1158/1538-7445.AM2011-3182 PG 1 WC Oncology SC Oncology GA V43SP UT WOS:000209701404406 ER PT J AU Korkola, J Bayani, N Cooper, B Heiser, LM Spellman, PT Feller, HS Wooster, R Gray, JW AF Korkola, James Bayani, Nora Cooper, Brian Heiser, Laura M. Spellman, Paul T. Feller, Heidi S. Wooster, Richard Gray, Joe W. TI Inhibition of HER2 signaling using targeted therapeutics in breast cancer cell lines SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Korkola, James; Bayani, Nora; Cooper, Brian; Heiser, Laura M.; Spellman, Paul T.; Feller, Heidi S.; Gray, Joe W.] Lawrence Berkeley Labs, Berkeley, CA USA. [Wooster, Richard] GlaxoSmithKline, Collegetown, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 639 DI 10.1158/1538-7445.AM2011-639 PG 1 WC Oncology SC Oncology GA V43SP UT WOS:000209701401269 ER PT J AU Ng, S Vaske, C Benz, S Durbin, J Szeto, C Heiser, L Wang, N Korkola, J Bayani, N Spellman, P Gray, JW Haussler, D Stuart, J AF Ng, Sam Vaske, Charlie Benz, Steve Durbin, James Szeto, Chris Heiser, Laura Wang, Nicholas Korkola, Jim Bayani, Nora Spellman, Paul Gray, Joe W. Haussler, David Stuart, Joshua TI Constructing pathway based predictors of cancer clinical outcome SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Ng, Sam; Vaske, Charlie; Benz, Steve; Durbin, James; Szeto, Chris; Haussler, David; Stuart, Joshua] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Heiser, Laura; Wang, Nicholas; Korkola, Jim; Bayani, Nora; Spellman, Paul; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 49 DI 10.1158/1538-7445.AM2011-49 PG 1 WC Oncology SC Oncology GA V43SP UT WOS:000209701400018 ER PT J AU Nguyen, DH Bochaca, II Mao, JH Barcellos-Hoff, MH AF Nguyen, David H. Bochaca, Irineu I. Mao, Jian-Hua Barcellos-Hoff, Mary Helen TI Low dose radiation alters stromal epithelial interactions to enrich for estrogen receptor(ER)alpha-negative stem cells and subsequent ER-negative tumors SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Nguyen, David H.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bochaca, Irineu I.; Barcellos-Hoff, Mary Helen] NYU, New York, NY USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 3326 DI 10.1158/1538-7445.AM2011-3326 PG 2 WC Oncology SC Oncology GA V43SO UT WOS:000209701304075 ER PT J AU Pan, CX Wang, SS White, RD Lara, P Gandara, D Mack, P Li, TH Turteltaub, K Henderson, P AF Pan, Chong-xian Wang, Sisi White, Ralph de Vere Lara, Primo Gandara, David Mack, Philip Li, Tianhong Turteltaub, Kenneth Henderson, Paul TI A Phase 0 microdosing clinical trial to identify chemoresistance SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Pan, Chong-xian; Wang, Sisi; White, Ralph de Vere; Lara, Primo; Gandara, David; Mack, Philip; Li, Tianhong; Henderson, Paul] UC Davis Canc Ctr, Sacramento, CA USA. [Turteltaub, Kenneth] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA LB-403 DI 10.1158/1538-7445.AM2011-LB-403 PG 1 WC Oncology SC Oncology GA V43SP UT WOS:000209701404401 ER PT J AU Sadanandam, A Collisson, EA Olson, P Gibb, WJ Truitt, M Olshen, A Tempero, MA Spellman, PT Hanahan, D Gray, JW AF Sadanandam, Anguraj Collisson, Eric A. Olson, Peter Gibb, William J. Truitt, Morgan Olshen, Adam Tempero, Margaret A. Spellman, Paul T. Hanahan, Douglas Gray, Joe W. TI Molecular subtypes of pancreatic adenocarcinoma with different biological characteristics and therapeutical responses SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Sadanandam, Anguraj; Hanahan, Douglas] Ecole Polytech Fed Lausanne, Swiss Inst Expt Canc Res ISREC, CH-1015 Lausanne, Switzerland. [Collisson, Eric A.; Gibb, William J.; Spellman, Paul T.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Olson, Peter; Truitt, Morgan; Olshen, Adam; Tempero, Margaret A.] Univ Calif San Francisco, San Francisco, CA 94143 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA LB-24 DI 10.1158/1538-7445.AM2011-LB-24 PG 2 WC Oncology SC Oncology GA V43SO UT WOS:000209701305470 ER PT J AU Wang, DJ AF Wang, Daojing TI RNA helicase p68 is a new marker for breast cancer heterogeneity SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Wang, Daojing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA 5110 DI 10.1158/1538-7445.AM2011-5110 PG 2 WC Oncology SC Oncology GA V43SO UT WOS:000209701305262 ER PT J AU Wang, ML Hada, M Pluth, J Anderson, J O'Neill, P Cucinotta, F AF Wang, Minli Hada, Megumi Pluth, Janice Anderson, Jennifer O'Neill, Peter Cucinotta, Francis TI Ionizing radiation can enhance TGF beta induced EMT: Investigation of signatures of cross-talk with the ATM pathway SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Wang, Minli; Hada, Megumi] USRA NASA, Houston, TX USA. [Pluth, Janice] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Anderson, Jennifer; O'Neill, Peter] Univ Oxford, Gray Inst Radiat Oncol & Biol, Oxford, England. [Cucinotta, Francis] NASA Johnson Space Ctr, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD APR 15 PY 2011 VL 71 SU 8 MA LB-50 DI 10.1158/1538-7445.AM2011-LB-50 PG 2 WC Oncology SC Oncology GA V43SO UT WOS:000209701303357 ER PT J AU Andersen, K Mori, H Fata, J Bascom, J Oyjord, T Maelandsmo, GM Bissell, M AF Andersen, Kristin Mori, Hidetoshi Fata, Jimmie Bascom, Jamie Oyjord, Tove Maelandsmo, Gunhild M. Bissell, Mina TI The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis SO DEVELOPMENTAL BIOLOGY LA English DT Article DE S100A4; Mammary gland; Branching; MMP-3; TGF alpha ID CALCIUM-BINDING PROTEIN; EPIDERMAL-GROWTH-FACTOR; E-CADHERIN EXPRESSION; HUMAN BREAST-CANCER; EPITHELIAL-CELLS; TUMOR-CELLS; TRANSCRIPTIONAL REGULATION; PROGNOSTIC-SIGNIFICANCE; COLORECTAL-CANCER; GENE-EXPRESSION AB High levels of the S100 calcium binding protein S100A4 also called fibroblast specific protein 1 (FSP1) have been established as an inducer of metastasis and indicator of poor prognosis in breast cancer. The mechanism by which S100A4 leads to increased cancer aggressiveness has yet to be established: moreover, the function of this protein in normal mammary gland biology has not been investigated. To address the role of S100A4 in normal mammary gland, its spatial and temporal expression patterns and possible function in branching morphogenesis were investigated. We show that the protein is expressed mainly in cells of the stromal compartment of adult humans, and during active ductal development, in pregnancy and in involution of mouse mammary gland. In 3D culture models, topical addition of S100A4 induced a significant increase in the TGF alpha mediated branching phenotype and a concomitant increase in expression of a previously identified branching morphogen, metalloproteinase-3 (MMP-3). These events were found to be dependent on MEK activation. Downregulation of S100A4 using shRNA significantly reduced TGF alpha induced branching and altered E-cadherin localization. These findings provide evidence that S100A4 is developmentally regulated and that it plays a functional role in mammary gland development, in concert with TGF alpha by activating MMP-3, and increasing invasion into the fat pad during branching. We suggest that S100A4-mediated effects during branching morphogenesis provide a plausible mechanism for how it may function in breast cancer progression. (C) 2011 Elsevier Inc. All rights reserved. C1 [Andersen, Kristin; Oyjord, Tove; Maelandsmo, Gunhild M.] Oslo Univ Hosp, Dept Tumor Biol, Inst Canc Res, Radiumhosp, Oslo, Norway. [Andersen, Kristin; Mori, Hidetoshi; Bascom, Jamie; Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Fata, Jimmie] CUNY Coll Staten Isl, Dept Biol, Staten Isl, NY 10314 USA. [Maelandsmo, Gunhild M.] Univ Tromso, Dept Pharm, Fac Hlth Sci, N-9037 Tromso, Norway. RP Andersen, K (reprint author), Oslo Univ Hosp, Dept Tumor Biol, Inst Canc Res, Radiumhosp, Oslo, Norway. EM kristin.andersen@rr-research.no FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH1123]; National Cancer Institute (Bay Area Physical Sciences-Oncology Center, University of California, Berkeley, California) [R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, NCI U54CA143836]; U.S. Department of Defense [W81XWH0810736]; Norwegian Cancer Society [A-05121, PR-2006-0272]; National Program for Research on Functional Genomics [158954/S10]; Norwegian Research Council [174938]; Jeanette and Soren Bothners Legacy FX The authors wish to thank Jamie Inman for providing mouse mammary gland tissue sections. The work from MJB's laboratory is supported by grants from the U.S. Department of Energy, Office of Biological and Environmental Research and Low Dose Radiation Program (contract no. DE-AC02-05CH1123); by National Cancer Institute (awards R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, and NCI U54CA143836-Bay Area Physical Sciences-Oncology Center, University of California, Berkeley, California); and by U.S. Department of Defense (W81XWH0810736). The work was furthermore supported by the Norwegian Cancer Society (grant no A-05121 to KA and PR-2006-0272 to GMM), the National Program for Research on Functional Genomics (#158954/S10) and the Program for Centers for Research-based Innovation (#174938) of the Norwegian Research Council (to G.M.M.), and the Jeanette and Soren Bothners Legacy (to G.M.M.). NR 50 TC 13 Z9 14 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 J9 DEV BIOL JI Dev. Biol. PD APR 15 PY 2011 VL 352 IS 2 BP 181 EP 190 DI 10.1016/j.ydbio.2010.12.033 PG 10 WC Developmental Biology SC Developmental Biology GA 745QH UT WOS:000289180200001 PM 21195708 ER PT J AU Ni, S Wang, YB Liao, XZ Alhajeri, SN Li, HQ Zhao, YH Lavernia, EJ Ringer, SP Langdon, TG Zhu, YT AF Ni, S. Wang, Y. B. Liao, X. Z. Alhajeri, S. N. Li, H. Q. Zhao, Y. H. Lavernia, E. J. Ringer, S. P. Langdon, T. G. Zhu, Y. T. TI Strain hardening and softening in a nanocrystalline Ni-Fe alloy induced by severe plastic deformation SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Severe plastic deformation; Nanocrystalline materials; Strain softening; Strain hardening; Dislocation density ID HIGH-PRESSURE TORSION; MOLECULAR-DYNAMICS SIMULATION; CENTERED-CUBIC METALS; GRAIN-GROWTH; FCC METALS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; TWINS; DISLOCATION; ALUMINUM AB The strain response of an electrochemically deposited nanocrystalline Ni-20 wt.% Fe alloy processed by high-pressure torsion (HPT) was investigated by monitoring changes in hardness. Strain hardening was observed in the very early stage of HPT, followed by strain softening before the onset of a second strain hardening stage. Structural investigations revealed that the two hardening stages were associated with an increase in dislocation density, whereas the strain softening stage was accompanied by a reduction in the dislocation and twin densities, thereby demonstrating the main dependence of hardness on the dislocation density in this material. Grain growth occurred during HPT and its role in the hardness evolution is also discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ni, S.; Wang, Y. B.; Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Alhajeri, S. N.] PAAET, Coll Technol Studies, Dept Mfg Engn, Shuwaikh 70654, Kuwait. [Li, H. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhao, Y. H.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Ringer, S. P.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn & Mat Sci, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27659 USA. RP Liao, XZ (reprint author), Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. EM xiaozhou.liao@sydney.edu.au RI Liao, Xiaozhou/B-3168-2009; Wang, Yanbo/B-3175-2009; Li, Hongqi/B-6993-2008; Ni, Song/E-9484-2011; Lavernia, Enrique/I-6472-2013; Zhu, Yuntian/B-3021-2008; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Ringer, Simon/E-3487-2012; Lujan Center, LANL/G-4896-2012 OI Liao, Xiaozhou/0000-0001-8565-1758; Lavernia, Enrique/0000-0003-2124-8964; Zhu, Yuntian/0000-0002-5961-7422; Ringer, Simon/0000-0002-1559-330X; FU University of Sydney; Australian Research Council [DP0772880]; Los Alamos National Laboratory; Office of Naval Research [N00014-08-1-0405]; National Science Foundation of the United States [DMR-0855009]; U.S. Army Research Office and Army Research Laboratory; China Scholarship Council FX The authors are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project is supported by the Australian Research Council [Grant No. DP0772880 (S.N., Y.B.W., and X.Z.L.)], the LDRD program of Los Alamos National Laboratory(H.Q.L.), the Office of Naval Research [Grant No. N00014-08-1-0405 (Y.H.Z. and E.J.L.)], the National Science Foundation of the United States (Grant No. DMR-0855009, T.G.L.) and the U.S. Army Research Office and Army Research Laboratory (Y.T.Z.). S.N. also appreciates support from the China Scholarship Council. NR 57 TC 34 Z9 34 U1 3 U2 42 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 15 PY 2011 VL 528 IS 9 BP 3398 EP 3403 DI 10.1016/j.msea.2011.01.017 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 738HC UT WOS:000288629900017 ER PT J AU Milhans, J Li, DS Khaleel, M Sun, X Garmestani, H AF Milhans, J. Li, D. S. Khaleel, M. Sun, X. Garmestani, H. TI Prediction of the effective coefficient of thermal expansion of heterogeneous media using two-point correlation functions SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cell; Coefficient of thermal expansion; Statistical continuum mechanics; Correlation function ID OXIDE FUEL-CELL; STATISTICAL CONTINUUM THEORY; EFFECTIVE ELASTIC PROPERTIES; DESIGN; COMPOSITES; BEHAVIOR AB Statistical continuum mechanics is used to predict the coefficient of thermal expansion (CTE) for solid oxide fuel cell glass-ceramic seal materials with different morphology and crystallinity. Two-point correlation functions are utilized to represent the heterogeneous microstructure morphology and phase distribution. The model uses two-point correlation functions in conjunction with local properties to predict the effective CTE. Prediction results are comparable to experimental CTE results. The advantage of using the statistical continuum mechanics model in predicting the effective properties of anisotropic media is shown, using the ability to take the microstructure into consideration. (c) 2011 Elsevier B.V. All rights reserved. C1 [Milhans, J.; Garmestani, H.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Li, D. S.; Khaleel, M.; Sun, X.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Milhans, J (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM jmilhans@gatech.edu OI khaleel, mohammad/0000-0001-7048-0749 FU Battelle Memorial Institute for the United States Department of Energy [DE-AC06-76RL01830]; U.S. Department of Energy's National Energy Technology Laboratory (NETL); Boeing Fellowship FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RL01830. The work summarized in this report was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Funding was additionally provided by the Boeing Fellowship. NR 23 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2011 VL 196 IS 8 SI SI BP 3846 EP 3850 DI 10.1016/j.jpowsour.2010.12.086 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 734RS UT WOS:000288355100021 ER PT J AU Xu, W Viswanathan, VV Wang, DY Towne, SA Xiao, J Nie, ZM Hu, DH Zhang, JG AF Xu, Wu Viswanathan, Vilayanur V. Wang, Deyu Towne, Silas A. Xiao, Jie Nie, Zimin Hu, Dehong Zhang, Ji-Guang TI Investigation on the charging process of Li(2)O(2)-based air electrodes in Li-O(2) batteries with organic carbonate electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-O(2) battery; Li(2)O(2) electrode; Gas chromatography/mass spectroscopy technique; Charging process; Gas evolution; Carbonate electrolyte ID RECHARGEABLE LITHIUM BATTERIES; SURFACE-FILMS; PROPYLENE; IDENTIFICATION; CATALYST AB The charging process of Li(2)O(2)-based air electrodes in Li-O(2) batteries with organic carbonate electrolytes was investigated using in situ gas chromatography/mass spectroscopy (GC/MS) to analyze gas evolution. A mixture of Li(2)O(2)/Fe(3)O(4)/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material, and 1-M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in carbonate-based solvents was used as the electrolyte. We found that Li(2)O(2) was actively reactive to 1-methyl-2-pyrrolidinone and PVDF that were used to prepare the electrode. During the first charging (up to 4.6V), O(2) was the main component in the gases released. The amount of O(2) measured by GC/MS was consistent with the amount of Li(2)O(2) that decomposed during the electrochemical process as measured by the charge capacity, which is indicative of the good chargeability of Li(2)O(2). However, after the cell was discharged to 2.0V in an O(2) atmosphere and then recharged to similar to 4.6V, CO(2) was dominant in the released gases. Further analysis of the discharged air electrodes by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonates and/or Li(2)CO(3)) were the main discharge products. Therefore, compatible electrolytes and electrodes, as well as the electrode-preparation procedures, need to be developed for rechargeable Li-air batteries for long term operation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Hu, Dehong] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnl.gov; jiguang.zhang@pnl.gov RI Hu, Dehong/B-4650-2010; Deyu, Wang/J-9496-2014; OI Hu, Dehong/0000-0002-3974-2963; Xu, Wu/0000-0002-2685-8684 NR 15 TC 165 Z9 168 U1 20 U2 131 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2011 VL 196 IS 8 SI SI BP 3894 EP 3899 DI 10.1016/j.jpowsour.2010.12.065 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 734RS UT WOS:000288355100029 ER PT J AU Asano, E Lenhart, S Protopopescu, V AF Asano, E. Lenhart, S. Protopopescu, V. TI Optimal control of swinging alliances in a parabolic competition model SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Optimal control; Parabolic PDEs; Competition; Cooperation; Opportunistic alliances ID SYSTEMS; EQUATIONS AB A system of parabolic partial differential equations describes the interaction of three populations, modeling a dynamic competition/cooperation scenario. More precisely, two populations are always competing with each other, but the third population can switch the mode of alliance with the other two populations between cooperation and competition. The control is a function measuring the strength and nature of the alliance and the goal is to maximize the population with the swinging alliance while keeping the other two populations close to each other and minimizing the cost of the alliance action. Various scenarios are illustrated with numerical results. (C) 2011 Elsevier Inc. All rights reserved. C1 [Asano, E.] Univ S Florida, Dept Environm Sci Policy & Geog, St Petersburg, FL 33701 USA. [Lenhart, S.] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Lenhart, S.; Protopopescu, V.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Asano, E (reprint author), Univ S Florida, Dept Environm Sci Policy & Geog, St Petersburg, FL 33701 USA. EM easano@mail.usf.edu; lenhart@math.utk.edu NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD APR 15 PY 2011 VL 217 IS 16 BP 6838 EP 6855 DI 10.1016/j.amc.2011.01.029 PG 18 WC Mathematics, Applied SC Mathematics GA 730VW UT WOS:000288064600007 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Wang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, L Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Wang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the Mass Difference between t and (t)over-bar Quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID CPT VIOLATION; MODEL AB We present a direct measurement of the mass difference between t and (t) over bar quarks using t (t) over bar candidate events in the lepton + jets channel, collected with the CDF II detector at Fermilab's 1.96 TeV Tevatron p (p) over bar Collider. We make an event by event estimate of the mass difference to construct templates for top quark pair signal events and background events. The resulting mass difference distribution of data is compared to templates of signals and background using a maximum likelihood fit. From a sample corresponding to an integrated luminosity of 5.6 fb(-1), we measure a mass difference, Delta M-top = M-t - M-(t) over bar = - 3:3 +/- 1.4(stat) +/- 1.0(syst) GeV/c(2), approximately 2 standard deviations away from the CPT hypothesis of zero mass difference. C1 [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Mondragon, M. N.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Livermore, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIS, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Wang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Barnett, B. A.; Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Beretvas, A.; Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Ristori, L.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 28 TC 22 Z9 22 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 14 PY 2011 VL 106 IS 15 AR 152001 DI 10.1103/PhysRevLett.106.152001 PG 7 WC Physics, Multidisciplinary SC Physics GA 750DQ UT WOS:000289525300004 PM 21568546 ER PT J AU Guttenfelder, W Candy, J Kaye, SM Nevins, WM Wang, E Bell, RE Hammett, GW LeBlanc, BP Mikkelsen, DR Yuh, H AF Guttenfelder, W. Candy, J. Kaye, S. M. Nevins, W. M. Wang, E. Bell, R. E. Hammett, G. W. LeBlanc, B. P. Mikkelsen, D. R. Yuh, H. TI Electromagnetic Transport from Microtearing Mode Turbulence SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEARING INSTABILITIES; SIMULATIONS; TOKAMAK; PLASMA AB This Letter presents nonlinear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high-beta discharge in the National Spherical Torus Experiment. The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free-streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport. C1 [Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Nevins, W. M.; Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Guttenfelder, W (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU DOE [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG03-95ER54309, DE-AC52-07NA27344] FX We gratefully acknowledge generous allocations at NERSC and resources of the Oak Ridge Leadership Computing Facility, supported by DOE Contract No. DE-AC05-00OR22725. This work was also supported by DOE Contracts No. DE-AC02-09CH11466, No. DE-FG03-95ER54309, and No. DE-AC52-07NA27344. NR 32 TC 53 Z9 53 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 14 PY 2011 VL 106 IS 15 AR 155004 DI 10.1103/PhysRevLett.106.155004 PG 4 WC Physics, Multidisciplinary SC Physics GA 750DQ UT WOS:000289525300010 PM 21568568 ER PT J AU Jiang, JS Pearson, JE Bader, SD AF Jiang, J. S. Pearson, J. E. Bader, S. D. TI Direct Determination of Energy Level Alignment and Charge Transport at Metal-Alq(3) Interfaces via Ballistic-Electron-Emission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT-EMITTING DEVICES; DIODES; METAL; SPIN; ELECTROLUMINESCENCE; SPINTRONICS; MICROSCOPY; INJECTION; FILMS AB Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier. C1 [Jiang, J. S.; Pearson, J. E.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jiang, JS (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM jiang@anl.gov RI Bader, Samuel/A-2995-2013 FU U.S. Department of Energy Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX Work supported by U.S. Department of Energy Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 27 TC 15 Z9 15 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 14 PY 2011 VL 106 IS 15 AR 156807 DI 10.1103/PhysRevLett.106.156807 PG 4 WC Physics, Multidisciplinary SC Physics GA 750DQ UT WOS:000289525300018 PM 21568598 ER PT J AU Ward, TZ Gai, Z Xu, XY Guo, HW Yin, LF Shen, J AF Ward, T. Z. Gai, Z. Xu, X. Y. Guo, H. W. Yin, L. F. Shen, J. TI Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots SO PHYSICAL REVIEW LETTERS LA English DT Article ID LA0.67CA0.33MNO3 FILMS; THIN-FILMS; ANISOTROPY; MAGNETORESISTANCE; HETEROSTRUCTURES; TEMPERATURE; PERCOLATION; TRANSPORT; BEHAVIOR AB In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots. C1 [Ward, T. Z.; Gai, Z.; Xu, X. Y.; Guo, H. W.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Gai, Z.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37830 USA. [Yin, L. F.; Shen, J.] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Yin, L. F.; Shen, J.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Guo, H. W.; Shen, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Ward, TZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. EM wardtz@ornl.gov; shenj5494@fudan.edu.cn RI Gai, Zheng/B-5327-2012; Ward, Thomas/I-6636-2016 OI Gai, Zheng/0000-0002-6099-4559; Ward, Thomas/0000-0002-1027-9186 FU U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Oak Ridge National Laboratory; U.S. DOE Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. DOE [DE-SC0002136]; National Basic Research Program of China (973 Program) [2011CB921801] FX This effort was supported by the U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Oak Ridge National Laboratory. We also acknowledge partial funding supports from the U.S. DOE Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. DOE Grant No. DE-SC0002136, and the National Basic Research Program of China (973 Program) under Grant No. 2011CB921801. NR 27 TC 18 Z9 18 U1 3 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 14 PY 2011 VL 106 IS 15 AR 157207 DI 10.1103/PhysRevLett.106.157207 PG 4 WC Physics, Multidisciplinary SC Physics GA 750DQ UT WOS:000289525300020 PM 21568612 ER PT J AU Shkrob, IA Marin, TW Chemerisov, SD Wishart, JF AF Shkrob, Ilya A. Marin, Timothy W. Chemerisov, Sergey D. Wishart, James F. TI Radiation Induced Redox Reactions and Fragmentation of Constituent Ions in Ionic Liquids. 1. Anions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTRON-SPIN RESONANCE; METHYLTRIBUTYLAMMONIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; KINETIC CHARACTERISTICS; EXTRACTION SOLVENTS; AROYLOXYL RADICALS; GAMMA-IRRADIATION; PULSE-RADIOLYSIS; STABILITY; MECHANISM; EXCHANGE AB Room temperature ionic liquids (IL) find increasing use for the replacement of organic solvents in practical applications, including their use in solar cells and electrolytes for metal deposition, and as extraction solvents for the reprocessing of spent nuclear fuel. The radiation stability of ILs is an important concern for some of these applications, as previous studies suggested extensive fragmentation of the constituent ions upon irradiation. In the present study, electron paramagnetic resonance (EPR) spectroscopy has been used to identify fragmentation pathways for constituent anions in ammonium, phosphonium, and imidazolium ILs. Many of these detrimental reactions are initiated by radiation-induced redox processes involving these anions. Scission of the oxidized anions is the main fragmentation pathway for the majority of the practically important anions; (internal) proton transfer involving the aliphatic arms of these anions is a competing reaction. For perfluorinated anions, fluoride loss following dissociative electron attachment to the anion can be even more prominent than this oxidative fragmentation. Bond scission in the anion was also observed for NO3- and B(CN)(4)(-) anions and indirectly implicated for BF4- and PF6- anions. Among small anions, CF3SO3- and N(CN)(2)(-) are the most stable. Among larger anions, the derivatives of benzoate and imide anions were found to be relatively stable. This stability is due to suppression of the oxidative fragmentation. For benzoates, this is a consequence of the extensive sharing of unpaired electron density by the pi-system in the corresponding neutral radical; for the imides, this stability could be the consequence of N-N sigma(2)sigma(-1) bond formation involving the parent anion. While fragmentation does not occur for these "exceptional" anions, H atom addition and electron attachment are prominent. Among the typically used constituent anions, aliphatic carboxylates were found to be the least resistant to oxidative fragmentation, followed by (di)alkyl phosphates and alkanesulfonates. The discussion of the radiation stability of ILs is continued in the second part of this study, which examines the fate of organic cations in such liquids. C1 [Shkrob, Ilya A.; Marin, Timothy W.; Chemerisov, Sergey D.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; DOE FX We thank D. M. Bartels, R. A. Crowell, M. L. Dietz, D. C. Stepinski, E. W. Castner, Jr., and K. Takahashi for stimulating discussions, Dr. W. Pitner (Merck KGaA, Darmstadt) for donation of the tetracyanoborate ionic liquids used in this study, and Dr. Marie Thomas for the sample of C6mimBr. The work at Argonne and Brookhaven was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences under contracts Nos. DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. The programmatic support via a DOE SISGR grant "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. NR 74 TC 59 Z9 59 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 14 PY 2011 VL 115 IS 14 BP 3872 EP 3888 DI 10.1021/jp2003062 PG 17 WC Chemistry, Physical SC Chemistry GA 746BI UT WOS:000289215600015 PM 21417237 ER PT J AU Shkrob, IA Marin, TW Chemerisov, SD Hatcher, JL Wishart, JF AF Shkrob, Ilya A. Marin, Timothy W. Chemerisov, Sergey D. Hatcher, Jasmine L. Wishart, James F. TI Radiation Induced Redox Reactions and Fragmentation of Constituent Ions in Ionic Liquids. 2. Imidazolium Cations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GAMMA-IRRADIATION; ELECTRON; REACTIVITY; EXTRACTION; TELESCOPE; STABILITY AB In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2) C(2) sigma sigma*-bound dimer radical cation. In addition to these reactions, when methoxy or C(alpha)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 300 whose radiolytic yield increases with dose (similar to 0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual generation of this polymer accounts for the steady increase in the viscosity of the ILs upon irradiation. Previous studies at lower dose have missed this species due to its wide mass distribution (stretching out to m/z 1600) and broad NMR lines, which make it harder to detect at lower concentrations. Among other observed changes is the formation of water immiscible fractions in hydrophilic ILs and water miscible fractions in hydrophobic ILs. The latter is due to anion fragmentation. The import of these observations for use of ILs as extraction solvents in nuclear cycle separations is discussed. C1 [Shkrob, Ilya A.; Marin, Timothy W.; Chemerisov, Sergey D.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Hatcher, Jasmine L.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; DOE FX We thank D. M. Bartels, R. A. Crowell, S. Dai, M. L. Dietz, E. W. Castner, Jr., and K. Takahashi for stimulating discussions, R. Lowers, J. V. Muntean, S. Naik, and A. R. Tisch for technical assistance, Dr. W. Pitner (Merck KGaA, Darmstadt) for donation of the octylpyridinium tetracyanoborate, and Dr. Marie Thomas for the sample of C6mim Br. The work at Argonne and Brookhaven was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences and Biosciences under contracts Nos. DE-AC02-06CH11357 and DE-AC02-98CH10886, respectively. Programmatic support via a DOE SISGR grant "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. NR 32 TC 53 Z9 53 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 14 PY 2011 VL 115 IS 14 BP 3889 EP 3902 DI 10.1021/jp200305b PG 14 WC Chemistry, Physical SC Chemistry GA 746BI UT WOS:000289215600016 PM 21417369 ER PT J AU Shkrob, IA Marin, TW Dietz, ML AF Shkrob, Ilya A. Marin, Timothy W. Dietz, Mark L. TI On the Radiation Stability of Crown Ethers in Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GAMMA-RADIOLYSIS; EXTRACTION SOLVENTS; 77 K; RADICAL CATIONS; STRONTIUM IONS; HYDRONIUM ION; CYCLIC ETHERS; COMPLEXES; EXCHANGE; WATER AB Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a "radioprotective" effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime. C1 [Shkrob, Ilya A.; Marin, Timothy W.; Dietz, Mark L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Dietz, Mark L.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC-02-06CH11357]; DOE FX We thank V. Feldman, R. Chiarizia, H. Luo, and J. F. Wishart for stimulating discussions and R. Lowers and S. D. Chemerisov for operation of the accelerator. The work at Argonne was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC-02-06CH11357. Support via the DOE SISGR "An Integrated Basic Research Program for Advanced Nuclear Energy, Separations Systems Based on Ionic Liquids" is gratefully acknowledged. NR 70 TC 18 Z9 18 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 14 PY 2011 VL 115 IS 14 BP 3903 EP 3911 DI 10.1021/jp200307h PG 9 WC Chemistry, Physical SC Chemistry GA 746BI UT WOS:000289215600017 PM 21410191 ER PT J AU Marin, TW Shkrob, IA Dietz, ML AF Marin, Timothy W. Shkrob, Ilya A. Dietz, Mark L. TI Hydrogen-Bonding Interactions and Protic Equilibria in Room-Temperature Ionic Liquids Containing Crown Ethers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID EXTRACTION SOLVENTS; FACILITATED TRANSFER; STABILITY-CONSTANTS; GAMMA-IRRADIATION; AQUEOUS-SOLUTION; STRONTIUM IONS; METAL-IONS; RADIATION; 18-CROWN-6; WATER AB Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic Its are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {H(3)O(+)center dot CE}NO(3)(-) complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed. C1 [Marin, Timothy W.; Shkrob, Ilya A.; Dietz, Mark L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Dietz, Mark L.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; DOE FX We thank C. Hussey, J. F. Wishart, S. Dai, and H. Luo, and for stimulating discussions and). Muntean and A. Tisch for technical assistance. The work at Argonne was supported by the US-DOE Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. Programmatic support via the DOE SISGR "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. NR 56 TC 11 Z9 11 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 14 PY 2011 VL 115 IS 14 BP 3912 EP 3918 DI 10.1021/jp201193f PG 7 WC Chemistry, Physical SC Chemistry GA 746BI UT WOS:000289215600018 PM 21434622 ER PT J AU Beckham, GT Matthews, JF Peters, B Bomble, YJ Himmel, ME Crowley, MF AF Beckham, Gregg T. Matthews, James F. Peters, Baron Bomble, Yannick J. Himmel, Michael E. Crowley, Michael F. TI Molecular-Level Origins of Biomass Recalcitrance: Decrystallization Free Energies for Four Common Cellulose Polymorphs SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; CARBOHYDRATE-BINDING MODULE; IONIC LIQUID PRETREATMENT; HYDROGEN-BONDING SYSTEM; IIII CRYSTAL MODELS; TRICHODERMA-REESEI; ENZYMATIC-HYDROLYSIS; CELLOBIOHYDROLASE-I; LIGNOCELLULOSIC BIOMASS AB Cellulose is a crystalline polymer of beta 1,4-D-glucose that is difficult to deconstruct to sugars by enzymes. The recalcitrance of cellulose microfibrils is a function of both the shape of cellulose microfibrils and the intrinsic work required to decrystallize individual chains, the latter of which is calculated here from the surfaces of four crystalline cellulose polymorphs: cellulose I beta, cellulose I alpha, cellulose II, and cellulose IIII. For edge chains, the order of decrystallization work is as follows (from highest to lowest): I beta, I alpha, IIIb and II. For cellulose I beta, we compare chains from three different locations on the surface and find that an increasing number of intralayer hydrogen bonds (from 0 to 2) increases the intrinsic decrystallization work. From these results, we propose a microkinetic model for the deconstruction of cellulose (and chitin) by processive enzymes, which when taken with a previous study [Horn et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 18089] identifies the thermodynamic and kinetic attributes of enzyme and substrate engineering for enhanced cellulose (or chitin) conversion. Overall, this study provides new insights into the molecular interactions that form the structural basis of cellulose, which is the primary building block of plant cell walls, and highlights the need for experimentally determining microfibril shape at the nanometer length scale when comparing conversion rates of cellulose polymorphs by enzymes. C1 [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Beckham, Gregg T.] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Matthews, James F.; Bomble, Yannick J.; Himmel, Michael E.; Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Peters, Baron] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Peters, Baron] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Gregg.Beckham@nrel.gov; Michael.Crowley@nrel.gov RI crowley, michael/A-4852-2013 OI crowley, michael/0000-0001-5163-9398 FU DOE Office of the Biomass; DOE Office of Science ASCR; DOE Office of EERE [DE-AC36-08GO28308]; National Science Foundation [0955502] FX We thank the DOE Office of the Biomass Program and DOE Office of Science ASCR SciDAC program for funding. Computer time was provided by the TACC Ranger cluster under the National Science Foundation Teragrid grant no. MCB090159 and by the NREL Computational Sciences Center supported by the DOE Office of EERE under Contract no. DE-AC36-08GO28308. B.P. is supported by a National Science Foundation CAREER award no. 0955502. We acknowledge Giovanni Bellesia for helpful discussions, use of Alan Grossfield's WHAM code for the construction of the free energy curves and error analysis, and the anonymous reviewers for insightful and helpful comments. All figures and movies of MD trajectories were made with VIVID I.8.6. NR 71 TC 96 Z9 96 U1 5 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 14 PY 2011 VL 115 IS 14 BP 4118 EP 4127 DI 10.1021/jp1106394 PG 10 WC Chemistry, Physical SC Chemistry GA 746BI UT WOS:000289215600040 PM 21425804 ER PT J AU Grest, GS Wang, QF in't Veld, P Keffer, DJ AF Grest, Gary S. Wang, Qifei in't Veld, Pieter Keffer, David J. TI Effective potentials between nanoparticles in suspension SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; MIXTURES; FLUID AB Results of molecular dynamics simulations are presented for the pair distribution function between nanoparticles in an explicit solvent as a function of nanoparticle diameter and interaction strength between the nanoparticle and solvent. The effect of including the solvent explicitly is demonstrated by comparing the pair distribution function of nanoparticles to that in an implicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. The diameter of the nanoparticle is varied from 10 to 25 times that of the solvent for a range of nanoparticle volume fractions. As the strength of the interactions between nanoparticles and the solvent increases, the solvent layer surrounding the nanoparticle is formed which increases the effective radii of the nanoparticles. The pair distribution functions are inverted using the Ornstein-Zernike integral equation to determine an effective pair potential between the nanoparticles mediated by the introduction of an explicit solvent. (C) 2011 American Institute of Physics. [doi:10.1063/1.3578181] C1 [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Qifei; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [in't Veld, Pieter] BASF SE, Polymer Res, D-67056 Ludwigshafen, Germany. RP Grest, GS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gsgrest@sandia.gov RI Keffer, David/C-5133-2014 OI Keffer, David/0000-0002-6246-0286 FU National Science Foundation (NSF) [DGE-0801470]; Sandia National Laboratories; United States Department of Energy (DOE) [DE-AC04-94AL85000] FX This research was partially supported by a grant from the National Science Foundation (NSF) (Grant No. DGE-0801470). This work was made possible by generous allocations of computer time at the New Mexico Computing Application Center (NMCAC). Funding for this work was provided in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (DOE) under Contract No. DE-AC04-94AL85000. NR 26 TC 13 Z9 13 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2011 VL 134 IS 14 AR 144902 DI 10.1063/1.3578181 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 750XU UT WOS:000289582300035 PM 21495769 ER PT J AU Yin, F Lee, SS Abdela, A Vajda, S Palmer, RE AF Yin, Feng Lee, Sungsik Abdela, Ahmed Vajda, Stefan Palmer, Richard E. TI Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SUPPORTED PALLADIUM CATALYSTS; GAS-SHIFT REACTION; AG CLUSTERS; COMPLETE OXIDATION; METHANE OXIDATION; GRAPHITE; COMBUSTION; SURFACES; IMPLANTATION; TEMPERATURES AB The stability of model catalysts based on size-selected Pd clusters supported on graphite surfaces has been explored under realistic conditions for catalytic oxidation of methane at mild temperatures. The experimental results show that aggregated films of nanoparticles are highly unstable, but clusters pinned to the surface in the submonolayer coverage regime are much more stable against sintering. The degree of sintering of the pinned clusters, which does occur, proceeds by the release of clusters from their pinning sites. The suppression of sintering depends on the cluster deposition energy with respect to the pinning threshold. (C)2011 American Institute of Physics. [doi:10.1063/1.3575195] C1 [Yin, Feng; Abdela, Ahmed; Palmer, Richard E.] Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. [Lee, Sungsik] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Sch Engn Appl Sci, Dept Chem Engn, New Haven, CT 06520 USA. RP Yin, F (reprint author), Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. EM R.E.Palmer@bham.ac.uk RI Yin, Feng/O-3327-2013; Palmer, Richard/A-5366-2008 OI Yin, Feng/0000-0003-1785-8831; Palmer, Richard/0000-0001-8728-8083 FU Engineering and Physical Sciences Research Council (EPSRC); University of Birmingham; US Department of Energy, BES-Chemical Sciences, BES-Materials Sciences, and BES-Scientific User Facilities [DE-AC-02-06CH11357]; UChicago Argonne, LLC, Operator of Argonne National Laboratory FX We are grateful to a number of bodies for their financial support of this work. The NPRL work was funded by the Engineering and Physical Sciences Research Council (EPSRC) and the University of Birmingham. The work at Argonne National Laboratory (S. L. and S. V.) was supported by the US Department of Energy, BES-Chemical Sciences, BES-Materials Sciences, and BES-Scientific User Facilities under Contract No. DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. F.Y., A. A. and R. E. P. are grateful for the use of the facilities of the Center for Nanoscale Materials and Advanced Photon Source supported by the same contract. NR 34 TC 19 Z9 20 U1 6 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2011 VL 134 IS 14 AR 141101 DI 10.1063/1.3575195 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 750XU UT WOS:000289582300001 PM 21495735 ER PT J AU Christen, HM Nam, JH Kim, HS Hatt, AJ Spaldin, NA AF Christen, H. M. Nam, J. H. Kim, H. S. Hatt, A. J. Spaldin, N. A. TI Stress-induced R-M-A-M-C-T symmetry changes in BiFeO3 films SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; THIN-FILMS; PHASE; POLARIZATION; CRYSTAL; STRAIN AB Recent reports on epitaxial BiFeO3 films show that the crystal structure changes from nearly rhombohedral ("R like") to nearly tetragonal ("T like") at strains exceeding approximate to-4.5%, with the T-like structure being characterized by a highly enhanced c/a ratio. While both the R-like and the T-like phases are monoclinic, our detailed x-ray diffraction results reveal a symmetry change from M-A and M-C type, respectively, at this R-like-to-T-like transition. Therefore, the ferroelectric polarization is confined to different (pseudocubic) planes in the two phases. By applying additional strain or by modifying the unit-cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the T-like MC phase is reduced, i.e., the system approaches a true tetragonal symmetry. Therefore, in going from bulk to highly strained films, a phase sequence of rhombohedral (R)-to-monoclinic (R-like M-A)-to-monoclinic (T-like M-C)-to-tetragonal (T) is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e., near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results now show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. C1 [Christen, H. M.; Nam, J. H.; Kim, H. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Nam, J. H.] Korea Inst Ceram Engn & Technol, Opt & Elect Ceram Div, Seoul 153801, South Korea. [Kim, H. S.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Hatt, A. J.; Spaldin, N. A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Hatt, A. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Spaldin, N. A.] ETH, Dept Mat, CH-8093 Zurich, Switzerland. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Spaldin, Nicola/A-1017-2010; Christen, Hans/H-6551-2013; Hatt, Alison/B-4652-2010 OI Spaldin, Nicola/0000-0003-0709-9499; Christen, Hans/0000-0001-8187-7469; FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Republic of Korea, Ministry of Knowledge and Economy; Visiting Scientists Program [IAN:16B642601]; US Department of Energy; NSF [DMR-0820404, NIRT-0609377]; UC Santa Barbara under NSF [CHE-0321368]; [DMR-0940420] FX Beatriz Noheda is acknowledged for fruitful conversations. H. S. K. and H. M. C. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. J.H.N. was supported by the Republic of Korea, Ministry of Knowledge and Economy, Visiting Scientists Program, under IAN:16B642601, with the US Department of Energy. N.A.S. and A.J.F. were supported by NSF Grants No. DMR-0820404 and No. NIRT-0609377. Computational resources used include the SGI Altix Cobalt system and the TeraGrid Linux Cluster Mercury at the National Center for Supercomputing Applications under Grant No. DMR-0940420 and CNSI Computer Facilities at UC Santa Barbara under NSF Grant No. CHE-0321368. NR 35 TC 113 Z9 113 U1 9 U2 92 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 14 PY 2011 VL 83 IS 14 AR 144107 DI 10.1103/PhysRevB.83.144107 PG 7 WC Physics, Condensed Matter SC Physics GA 750BC UT WOS:000289517600005 ER PT J AU Johnson, SD Zieve, RJ Cooley, JC AF Johnson, S. D. Zieve, R. J. Cooley, J. C. TI Nonlinear effect of uniaxial pressure on superconductivity in CeCoIn5 SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-FERMION COMPOUNDS; CUPRATE SUPERCONDUCTORS; LIQUID; DIMENSIONALITY; SCATTERING; CECU2SI2; CERHIN5; METALS AB We study single-crystal CeCoIn5 with uniaxial pressure up to 3.97 kbar applied along the c axis. We find a nonlinear dependence of the superconducting transition temperature T-c on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We discuss the temperature dependence in terms of the general trend that T-c decreases in anisotropic heavy-fermion compounds as they move toward three-dimensional behavior. C1 [Johnson, S. D.; Zieve, R. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, SD (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI Cooley, Jason/E-4163-2013 NR 35 TC 2 Z9 2 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 14 PY 2011 VL 83 IS 14 AR 144510 DI 10.1103/PhysRevB.83.144510 PG 4 WC Physics, Condensed Matter SC Physics GA 750BC UT WOS:000289517600008 ER PT J AU Meng, QP Welch, DO Zhu, YM AF Meng, Qingping Welch, David O. Zhu, Yimei TI Oxygen reordering near room temperature in YBa2Cu3O6+x: A thermodynamic model SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; ORDER-DISORDER PHENOMENA; PHASE-TRANSITION; THERMAL-EXPANSION; BASAL-PLANE; CHAIN LAYER; YBA2CU3O7-DELTA; SUPERCONDUCTORS; STATE; HEAT AB We propose a thermodynamic model to explain an unusual phase transformation occurring near room temperature in YBa2Cu3O6+x that greatly affects properties of the superconductor. Based on our model, the material's thermodynamic response functions, specific heat, thermal-expansion coefficient, and elastic compliances are deduced at the critical temperature of the phase transformation. We discuss the change of critical temperature with stress, and analyze the anomaly of specific heat in critical temperature of the phase transformation. C1 [Meng, Qingping; Welch, David O.; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Meng, Qingping] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. RP Meng, QP (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhu@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Science, Material Sciences and Engineering Division [DE-AC02-98CH10886] FX The work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886. NR 62 TC 0 Z9 0 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 14 PY 2011 VL 83 IS 14 AR 144106 DI 10.1103/PhysRevB.83.144106 PG 6 WC Physics, Condensed Matter SC Physics GA 750BC UT WOS:000289517600004 ER PT J AU Noffsinger, J Cohen, ML AF Noffsinger, Jesse Cohen, Marvin L. TI Electron-phonon coupling and superconductivity in double-walled carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID WANNIER FUNCTIONS; DIRAC FERMIONS; TRANSITION; GRAPHENE; ENERGY; ROPES; GAS; C60 AB Using first-principles techniques we study the electronic structure, deformation potentials, and electron-phonon coupling in both single-walled and double-walled carbon nanotubes. Calculations were done for metallic single-walled carbon nanotubes in armchair configurations (5,5) and (10,10). Additionally, we study the effect of concentric multiwalled systems by performing calculations on the double-walled tube (5,5)@(10,10). By comparing the properties of the (5,5) and (10,10) tubes both in isolated and in concentric form arrangements, we are able to investigate the effect on electron-phonon coupling of the double-walled and, consequently, multiwalled carbon nanotube arrangement. No significant increase in total electron-phonon coupling is found in the double-walled tube compared to the single-walled carbon nanotubes within the calculations of the isolated tubes under consideration. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jnoffsinger@berkeley.edu FU National Science Foundation [DMR10-1006184]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy (DOE) [DE-AC02-05CH11231] FX This work was supported by National Science Foundation Grant No. DMR10-1006184 and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy (DOE), under Contract No. DE-AC02-05CH11231. Computational resources were provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 38 TC 9 Z9 9 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 14 PY 2011 VL 83 IS 16 AR 165420 DI 10.1103/PhysRevB.83.165420 PG 5 WC Physics, Condensed Matter SC Physics GA 750BF UT WOS:000289518100013 ER PT J AU Zapf, VS Sengupta, P Batista, CD Nasreen, F Wolff-Fabris, F Paduan, A AF Zapf, V. S. Sengupta, P. Batista, C. D. Nasreen, F. Wolff-Fabris, F. Paduan-Filho, A. TI Magnetoelectric effects in an organometallic quantum magnet SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRICITY; FERROMAGNETISM; MULTIFERROICS; POLARIZATION AB Metal-organic materials constitute a new field in which to search for ferroelectricity and coupling between electricity and magnetism. We observe a magnetic field-induced change in the electric polarization, Delta P(H), that reaches 50 mu C/m(2) in single crystals of NiCl2-4SC(NH2)(2) (DTN). DTN forms a tetragonal structure that breaks inversion symmetry with the electrically polar thiourea molecules [SC(NH2)] all tilted in the same direction along the c axis. The field H induces canted antiferromagnetism of the Ni S = 1 spins between 2 and 12 T and our measurements show that the electric polarization increases monotonically in this range, saturating above 12 T. By modeling the microscopic origin of this magnetoelectric effect, we find that the leading contribution to Delta P comes from the change in the crystal electric field, with a smaller contribution from magnetic exchange striction. The finite value of Delta P induced by magnetostriction results from the polar nature of the thiourea molecules bonded to the Ni atoms, and it is amplified by the softness of these organic molecules. C1 [Zapf, V. S.; Nasreen, F.; Wolff-Fabris, F.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Sengupta, P.] Nanyang Technol Univ, Singapore 639798, Singapore. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nasreen, F.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Paduan-Filho, A.] Univ Sao Paulo, Inst Fis, BR-05508 Sao Paulo, Brazil. RP Zapf, VS (reprint author), Los Alamos Natl Lab, NHMFL, POB 1663, Los Alamos, NM 87545 USA. RI PaduanFilho, Armando/H-2443-2011; Zapf, Vivien/K-5645-2013; Sengupta, Pinaki/B-6999-2011; Batista, Cristian/J-8008-2016 OI Zapf, Vivien/0000-0002-8375-4515; FU US National Science Foundation [DMR901624]; State of Florida; US Department of Energy; CNPq (Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico, Brazil) FX Work at the National High Magnetic Field Laboratory was supported by the US National Science Foundation through Cooperative Grant No. DMR901624, the State of Florida, and the US Department of Energy. A. P. F. acknowledges support from CNPq (Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico, Brazil). NR 32 TC 9 Z9 9 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 14 PY 2011 VL 83 IS 14 AR 140405 DI 10.1103/PhysRevB.83.140405 PG 4 WC Physics, Condensed Matter SC Physics GA 750BC UT WOS:000289517600001 ER PT J AU Loveland, W Vinodkumar, AM Peterson, D Greene, JP AF Loveland, W. Vinodkumar, A. M. Peterson, D. Greene, J. P. TI Synthesis of heavy nuclei using damped collisions: A test SO PHYSICAL REVIEW C LA English DT Article ID FRAGMENT ANGULAR-DISTRIBUTIONS; TARGET RESIDUE MASS; ION REACTIONS; GEV NE-20; GEV C-12; CA-48-INDUCED REACTIONS; CHARGE-DISTRIBUTIONS; HEAVIEST NUCLEI; GEV PROTONS; INTERMEDIATE AB We have measured the angular distributions and production cross sections for the products of the reaction of 859-MeV (E-c.m. = 461.9 MeV) Gd-160 with W-186. We detected fragments that stopped in the 5.775 mg/cm(2) target as well as fragments emerging at 9 degrees-17 degrees, 17 degrees-90 degrees, and 90 degrees-180 degrees. We also made a chemical separation of the Pb isotopes formed in this reaction. An unusually large yield of trans-target reaction products near Z = 79 was observed. We compare these observations with the recent predictions of Zagrebaev and Greiner for this reaction. C1 [Loveland, W.; Vinodkumar, A. M.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. [Peterson, D.; Greene, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Loveland, W (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. RI Attukalathil, Vinodkumar/A-7441-2009 OI Attukalathil, Vinodkumar/0000-0002-8204-7800 FU Office of High Energy and Nuclear Physics, Nuclear Physics Division, US Department of Energy [DE-FG06-97ER41026, DE-AC02-06CH11357] FX We thank R. Pardo and the ATLAS accelerator staff for providing us with high-quality beams during the experiment. We thank Professor V. I. Zagrebaev for helpful comments and for furnishing copies of several figures from his article. This work was supported, in part, by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, US Department of Energy, under Grant No. DE-FG06-97ER41026 and Contract No. DE-AC02-06CH11357. NR 56 TC 21 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 14 PY 2011 VL 83 IS 4 AR 044610 DI 10.1103/PhysRevC.83.044610 PG 6 WC Physics, Nuclear SC Physics GA 750BJ UT WOS:000289518600003 ER PT J AU Navratil, P Quaglioni, S AF Navratil, Petr Quaglioni, Sofia TI Ab initio many-body calculations of deuteron-He-4 scattering and Li-6 states SO PHYSICAL REVIEW C LA English DT Article ID RESONATING-GROUP EQUATION; ALPHA-ELASTIC-SCATTERING; PHASE-SHIFT ANALYSIS; SYSTEM AB We extend the ab initio no-core shell model/resonating-group method (NCSM/RGM) to projectile-target binary-cluster states where the projectile is a deuteron. We discuss the formalism in detail and give algebraic expressions for the integration kernels. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we calculate deuteron-He-4 scattering and investigate Li-6 bound and unbound states. Virtual three-body breakup effects are obtained in an approximated way by including excited pseudostates of the deuteron in the calculation. We compare our results to experiment and to a standard NCSM calculation for Li-6. C1 [Navratil, Petr] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Navratil, Petr; Quaglioni, Sofia] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Navratil, P (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. FU LLNL [DE-AC52-07NA27344]; LLNL LDRD [PLS-09-ERD-020] FX Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. This work was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. Support from the LLNL LDRD Grant No. PLS-09-ERD-020 is acknowledged. NR 36 TC 41 Z9 41 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 14 PY 2011 VL 83 IS 4 AR 044609 DI 10.1103/PhysRevC.83.044609 PG 12 WC Physics, Nuclear SC Physics GA 750BJ UT WOS:000289518600002 ER PT J AU Woodworth, JR Fowler, WE Stoltzfus, BS Stygar, WA Sceiford, ME Mazarakis, MG Anderson, HD Harden, MJ Blickem, JR White, R Kim, AA AF Woodworth, J. R. Fowler, W. E. Stoltzfus, B. S. Stygar, W. A. Sceiford, M. E. Mazarakis, M. G. Anderson, H. D. Harden, M. J. Blickem, J. R. White, R. Kim, A. A. TI COMPACT 810 kA LINEAR TRANSFORMER DRIVER CAVITY SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We are performing experiments with a 92-kV, 810-kA, 74.6-GW linear transformer driver (LTD) cavity. This cavity generates a similar to 100 ns power pulse from DC-charged capacitors in a single step. Our experiments start with an existing 100-kV, 490-kA LTD cavity and are making a number of improvements to it that are aimed at increasing the cavity's peak output power and better understanding its operation. We are making improvements to the gas switches, the capacitors, and the magnetic toroids as well as heavily instrumenting the cavity. These experiments have increased the cavity's output current into a matched load by 65% without increasing its volume. C1 [Woodworth, J. R.; Fowler, W. E.; Stoltzfus, B. S.; Stygar, W. A.; Sceiford, M. E.; Mazarakis, M. G.] Sandia Natl Labs, Dept 1671, Albuquerque, NM 87185 USA. [Anderson, H. D.; Harden, M. J.] Natl Secur Technol, Albuquerque, NM 87123 USA. [Blickem, J. R.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [White, R.] L3 Commun, Pulse Sci Div, San Diego, CA 92111 USA. [Kim, A. A.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RP Woodworth, JR (reprint author), Sandia Natl Labs, Dept 1671, POB 5800, Albuquerque, NM 87185 USA. EM jrwoodw@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DA-AC04-94-AL85000] FX We wish to acknowledge many helpful conversations with Dr. M. E. Savage, Dr. J. J. Leckbee, Dr. B. Oliver, Dr. S. F. Glover, Dr. J. Alexander, and Dr. D. H. McDaniel along with Mr. Y. Molina, Mr. R. Chavez, Mr. R. McKee, Mr. E. F. White, and Mr. S. Tullar at Sandia National Laboratories as well as Mr. J. Ennis and Mr. R. Hartsock at General Atomics Corporation. We also wish to acknowledge helpful conversations with Dr. K. LeChien of the National Nuclear Security Administration. Finally, we are grateful to the members of the RITS-6, Hermes-III, and LTDR accelerator crews for providing help with many small components. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DA-AC04-94-AL85000. NR 19 TC 14 Z9 23 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR 14 PY 2011 VL 14 IS 4 AR 040401 DI 10.1103/PhysRevSTAB.14.040401 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 750EF UT WOS:000289527000001 ER PT J AU Zhao, XC AF Zhao, Xiongce TI Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BIOMEDICAL APPLICATIONS; FULLERENE DERIVATIVES; C-60 DERIVATIVES; DYNAMICS; ADSORPTION; BIOSENSORS; INSERTION; TOXICITY; DELIVERY; WATER AB Molecular dynamics simulations were performed to study the interaction of double-stranded DNA segments with the surfaces of graphene and carbon nanotube arrays in aqueous solution. Several different kinds of self-assembly phenomena were observed. First, it is found that a DNA segment can 'stand up' on the carbon surfaces with its helix axis perpendicular to the surfaces of graphene or nanotube arrays to form a forestlike structure. Second, a DNA segment can also lie on the carbon surface with its axis parallel to the surface if both of its ends can form stable structure with the carbon surfaces. In the latter case, the ending basepairs of the DNA are broken due to severe deformations. Third, it is observed that short DNA segments can concatenate to each other to form a longer DNA when they are placed in the grooves of nanotube bundles. The self-assembly observed in this study usually happens in less than 50 ns. Exploration on the molecular details and self-assembly mechanism indicates the primary driving force is the pi stacking interaction between the ending basepairs of DNA and the carbon rings. This study confirms the dominant role of hydrophobic pi stacking in the interaction between nucleotides and carbon-based nanosurfaces in aqueous environment. C1 [Zhao, Xiongce] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhao, XC (reprint author), NIH, Bldg 10, Bethesda, MD 20892 USA. EM xiongce.zhao@nih.gov RI sriram, dodda/F-1952-2011 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author thanks Peter T. Cummings for many helpful discussions. This research was conducted at the Center for Nano phase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 45 Z9 46 U1 2 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6181 EP 6189 DI 10.1021/jp110013r PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400002 ER PT J AU Sfeir, MY Qian, HF Nobusada, K Jin, R AF Sfeir, Matthew Y. Qian, Huifeng Nobusada, Katsuyuki Jin, Rongchao TI Ultrafast Relaxation Dynamics of Rod-Shaped 25-Atom Gold Nanoclusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID COHERENT EXCITATION; VIBRATIONAL-MODES; ELECTRONIC RELAXATION; TRANSIENT ABSORPTION; OPTICAL-PROPERTIES; METAL PARTICLES; KDA GOLD; CLUSTERS; NANOPARTICLES; SIZE AB We report a femtosecond spectroscopic investigation on the electronic structure and relaxation dynamics of a rod-shaped, 25-atom (Au(25)) nanocluster capped by organic ligands. Broadband femtosecond transient absorption spectra of the cluster show overlapped excited state absorption and ground state bleach signals. Two lifetimes (i.e., 0.8 ps fast component and a 2.4 mu s long component) are identified, with the 0.8 ps component attributed to the fast internal conversion process from LUMO+n to LUMO and the long component to electron relaxation to the ground state. The rod shape of the cluster induces a strong anisotropic response in the transient absorption spectra, from which we deduce that the transition moment is oriented with the long axis of the prolate-shaped cluster. In addition, coherent phonon emission at 26 cm(-1) was observed and results in the modulation of the excited state absorption transition energy. C1 [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Qian, Huifeng; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Nobusada, Katsuyuki] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. RP Sfeir, MY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RI Qian, Huifeng /C-1486-2011; OI Sfeir, Matthew/0000-0001-5619-5722 FU AFOSR; NIOSH; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; [21350018] FX K.N. acknowledges research support by Grant-in-Aid (No. 21350018) and by Next Generation Supercomputer Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan. R.J. acknowledges research support by AFOSR and NIOSH. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 57 TC 33 Z9 33 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6200 EP 6207 DI 10.1021/jp110703e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400005 ER PT J AU Cordones, AA Bixby, TJ Leone, SR AF Cordones, Amy A. Bixby, Teresa J. Leone, Stephen R. TI Evidence for Multiple Trapping Mechanisms in Single CdSe/ZnS Quantum Dots from Fluorescence Intermittency Measurements over a Wide Range of Excitation Intensities SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CADMIUM SELENIDE NANOCRYSTALS; LIGHT-EMITTING-DIODES; POWER-LAW BEHAVIOR; BLINKING STATISTICS; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; EMISSION INTERMITTENCY; WAVELENGTH DEPENDENCE; NANORODS; EMITTERS AB Fluorescence intermittency of single CdSe/ZnS core/shell quantum dot particles is investigated over a wide range of excitation intensities and at two excitation wavelengths. Deviation from previously observed power law behavior in both the on- and off-duration probability distributions is observed at both above the band gap. Increasing the excitation intensity modifies the g I L I ilk excitation wavelengths, one near the band gap and one 350 meV off-duration probability distribution such that the probability of long off-time events decreases, an effect that is observed to saturate at an average number of excitons created per pulse of one, < N > approximate to 1. The on-duration probability distribution is well-described by a power law for short on-time events, crossing over to an exponential distribution for long on-time events. Increasing the excitation intensity induces this crossover to occur at earlier times, saturating at < N > approximate to 2. The different intensity-dependent trends for the on- and off-duration probability distributions are evidence that multiple mechanisms govern the blinking statistics, as no single mechanism can account for the different saturation behaviors of the off and on durations as a function of excitation intensity. These mechanisms are assumed to be one based on a light-induced diffusion of both the excited-state and trap state energies (i.e., diffusion-controlled electron transfer) and one that relies on the absorption of multiple photons (i.e., Auger ionization induced trapping). C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy through the Division of Materials Research [DE-AC02-05CH11231]; Laboratory Directed Research and Development FX The authors gratefully acknowledge financial support by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract no. DE-AC02-05CH11231 through the Division of Materials Research. Partial financial support for T.J.B. was provided by the Laboratory Directed Research and Development program at Lawrence Berkeley National Laboratory. NR 47 TC 30 Z9 30 U1 0 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6341 EP 6349 DI 10.1021/jp2001223 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400023 ER PT J AU Chlistunoff, J AF Chlistunoff, Jerzy TI RRDE and Voltammetric Study of ORR on Pyrolyzed Fe/Polyaniline Catalyst. On the Origins of Variable Tafel Slopes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN-REDUCTION REACTION; FUEL-CELL CATHODE; CARBON NANOFIBER ELECTRODES; FE-BASED CATALYSTS; HIGH-AREA CARBON; ELECTROCHEMICAL REDUCTION; PORPHYRIN CATALYSTS; COMPLEX-FORMATION; METAL-CATALYSTS; MASS-TRANSPORT AB Catalytic activity of heat-treated iron and polyaniline-based oxygen reduction catalysts was studied in aqueous acidic media using the rotating ring disk (RRDE) technique and linear potential scan voltammetry employing stationary electrodes. The stationary voltammograms of the catalyst exhibit the presence of a reversible surface red-ox reaction at 0.647 V vs RHE. It is shown that molecular oxygen reversibly adsorbs on the catalyst surface at potentials more positive than the formal potential of the surface red-ox couple and that the adsorption occurs through either the oxidized form of this couple or an atom in its close proximity. The Tafel plots for oxygen reduction reaction (ORR) exhibit variable slopes ranging from 60 mV dec(-1) at the lowest overpotentials to more than 240 mV dec(-1) at high overpotentials. The kinetic data obtained from the RRDE experiments for various catalyst loadings and from the linear potential scan voltammetry of adsorbed oxygen demonstrate that the high Tafel slopes originate from intrinsic features of the reduction mechanism rather than incomplete catalyst utilization. It is postulated that the surface red-ox couple is Fe-III/Fe-II and that it takes an active part in ORR in the whole range of overpotentials. The proposed ORR mechanism involves a simple mediation by the Fe-III/Fe-II couple at low overpotentials and a concerted process of charge transfer and oxygen-oxygen bond splitting at high overpotentials. C1 Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Chlistunoff, J (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM jerzy@lanl.gov FU U.S. DOE; Advanced Cathode Catalysts project FX Thanks are due to Dr. Gang Wu for providing the catalyst samples and numerous valuable discussions. Financial support from the U.S. DOE Fuel Cell Technologies Program and the Advanced Cathode Catalysts project is gratefully acknowledged. NR 75 TC 52 Z9 52 U1 9 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6496 EP 6507 DI 10.1021/jp108350t PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400044 ER PT J AU Weiss, BM Caldwell, KB Iglesia, E AF Weiss, Brian M. Caldwell, Kyle B. Iglesia, Enrique TI NOx Interactions with Dispersed BaO: Adsorption Kinetics, Chemisorbed Species, and Effects of Oxidation Catalyst Sites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BARIUM OXIDE; STORAGE/REDUCTION CATALYSTS; VIBRATIONAL SPECTROSCOPY; REDUCTION CATALYST; STORAGE CATALYSTS; ELEMENTARY STEPS; NSR CATALYSTS; FT-IR; MODEL; IDENTIFICATION AB Infrared spectra and nitrate and nitrite formation rate data free of transport artifacts provide rigorous evidence for the identity of the adsorbed species and the elementary steps required for adsorption of NO, NO2, and CO2 on BaO/Al2O3 with and without Pt clusters that act as oxidation catalysts. NO/NO2 adsorption occurs via initial formation of nitrites and their subsequent oxidation to nitrates on samples presaturated with carbonates by exposure to CO2. Nitrites form much faster than nitrates at low NO2 pressures via displacement of carbonates and vicinal coadsorption of NO and NO2 molecules. As a result, the dynamics of nitrite formation and of their subsequent oxidation can be independently measured during exposure to NO/NO2 mixtures over a broad temperature range (453-673 K). Nitrites form rapidly upon exposure to NOx, but the presence of CO2 limits equilibrium NOx uptakes because of unfavorable thermodynamics, rendering nitrite formation an impractical strategy for NOx removal from CO2-rich combustion effluent streams. Nitrate thermodynamics is much more favorable, but the rate of nitrite oxidation to nitrates is limited by slow homogeneous NO2 dimerization to N2O4, which acts as the oxidant in nitrite conversion to nitrates on Pt-free Ba/Al2O3. This mechanism is consistent with nitrate formation rates that are second-order in NO2 pressure and essentially independent of NO pressure, sample temperature, and residual coverages of unreacted nitrites. Pt clusters present in close proximity to (but not atomic contact with) nitrite-saturated BaO domains provide a catalytic route for the formation of the N2O4 oxidant required to convert nitrites to stable nitrates and for the effective removal of NOx from CO2-containing streams. Nitrate formation rates on BaO/Pt/Al2O3 are proportional to NO2 pressures, inhibited by NO and proportional to the residual coverage of unreacted nitrites, consistent with rates limited by reactions between N2O4 molecules, in equilibrium with NO2 in steps mediated by Pt surfaces, and nitrites. These detailed kinetic and spectroscopic studies provide mechanistic details previously unavailable about the bifunctional character of NO2 reactions that form stable nitrates on BaO domains and about the essential role of oxidant formation on metal clusters in rendering such adsorption strategies practical for the removal of NOx from CO2-rich streams. C1 [Weiss, Brian M.; Caldwell, Kyle B.; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@cchem.berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Ford Motor Co.; General Motors; Chevron Corp.; Chemical Sciences, Geosciences, Biosciences Division, Office of Basic Energy Sciences, Office of Science US Department of Energy [DE-FG02-03ER15479] FX We acknowledge financial support from The Ford Motor Co., General Motors, the Chevron Corp.; and the Chemical Sciences, Geosciences, Biosciences Division, Office of Basic Energy Sciences, Office of Science US Department of Energy (Grant Number DE-FG02-03ER15479). We are also grateful to Profs. Johannes Lercher (Technical University-Munich) and Raul Lobo (University of Delaware) for helpful technical discussions and insights. We thank Mr. Rajamani Gounder for carefully proofreading the manuscript. NR 42 TC 8 Z9 8 U1 2 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6561 EP 6570 DI 10.1021/jp110604j PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400052 ER PT J AU Jeon, B Sankaranarayanan, SKRS Ramanathan, S AF Jeon, Byoungseon Sankaranarayanan, Subramanian K. R. S. Ramanathan, Shriram TI Atomistic Modeling of Ultrathin Surface Oxide Growth on a Ternary Alloy: Oxidation of Al-Ni-Fe SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; FFT; IMPLEMENTATION; NANOPARTICLES; INTERFACES; ALGORITHM; NIAL(110); CLUSTERS AB By employing variable-charge molecular dynamics, surface oxide film growth on aluminum-nickel-iron alloys has been studied at 300 and 600 K The dynamics of oxidation and oxide growth is strongly dependent on the composition of the initial alloy and the ambient temperature. Higher content of Ni and Fe in Al alloys is found to reduce the oxide growth kinetics; 15% Ni + 15% Fe Al alloy yielded 30-40% less growth at 400 ps oxygen exposure compared to pure Al. We observe dopant segregation, which disrupts the interaction between 0 atoms and Al atoms in the alloy, leading to a nonlinear oxide growth profile in the case of ternary Al-Ni-Fe alloy. Compared to oxidation at 300 K, 30% more oxide layer was yielded at 600 K, due to the elevated temperature. The simulated oxide kinetics indicates that the growth rate of anion surpasses the cation rate with higher sensitivity to the stoichiometry of the base metal substrate. Charge state analysis provides insights into the evolution of cation and anion species as the oxide layer grows. In particular, due to higher correlation, Fe shows a high rate of oxidation when the content is high, whereas the rate of Ni oxidation is consistently low. Density profile analysis suggests the segregation of dopant atoms below the growing ultrathin oxide layer, showing the presence of a layer-by-layer mode of oxide layer even with disordered structure. Coordination number (Z, the number of oxygen atoms around an aluminum atom) of aluminum oxide has been used to identify how the initial oxidation transitions into equilibrated states. Z = 3 is dominant in the early stages of oxidation and at the interface between oxide and bulk substrate, but it transitions quickly to Z = 4 (similar to 45%) and 5 (similar to 35%) as the oxide equilibrates and approaches its self-limiting thickness. Even though growth kinetics is dependent on the base metal stoichiometry, the composition of the oxide microstructure is not significantly affected, primarily segregating dopant elements, i.e., Ni and Fe outside of the oxide layer. C1 [Jeon, Byoungseon; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Jeon, B (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM bjeon@seas.harvard.edu RI Jeon, ByoungSeon/D-2281-2012 FU Office of Naval Research [N00014-10-1-0346] FX This work has been supported by the Office of Naval Research through contract No. N00014-10-1-0346. The computational facilities have been provided by CNS (Center for Nanoscale Systems) - NNIN (National Nanotechnology Infrastructure Network) at Harvard University. NR 37 TC 6 Z9 6 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 14 PY 2011 VL 115 IS 14 BP 6571 EP 6580 DI 10.1021/jp1106845 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 746BG UT WOS:000289215400053 ER PT J AU Abdallah, J Colgan, J Clark, REH Fontes, CJ Zhang, HL AF Abdallah, J., Jr. Colgan, J. Clark, R. E. H. Fontes, C. J. Zhang, H. L. TI A collisional-radiative study of low temperature tungsten plasma SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID IMPURITIES; TRANSITION AB A detailed fine-structure collisional radiative model with thousands of levels is developed to calculate the radiative properties of tungsten plasma in the low temperature range of 1-2 eV and a nominal ITER electron density of 10(14) cm(-3). A large configuration- average model is used to choose the important configurations for the fine-structure model. Calculations including the effect of configuration interaction and cross sections with various levels of approximation are compared. The calculations presented here should be of interest to the continuing efforts to model the radiative losses in large magnetic fusion devices, where relatively cold tungsten is found in the divertor region. C1 [Abdallah, J., Jr.; Colgan, J.; Clark, R. E. H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Clark, R. E. H.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Fontes, C. J.; Zhang, H. L.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Abdallah, J (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM abd@lanl.gov OI Colgan, James/0000-0003-1045-3858 FU US Department of Energy [DE-AC5206NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no DE-AC5206NA25396. NR 23 TC 8 Z9 8 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2011 VL 44 IS 7 AR 075701 DI 10.1088/0953-4075/44/7/075701 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 741WO UT WOS:000288896700021 ER PT J AU Furuta, S Jeng, YM Zhou, LE Huang, L Kuhn, I Bissell, MJ Lee, WH AF Furuta, Saori Jeng, Yung-Ming Zhou, Longen Huang, Lan Kuhn, Irene Bissell, Mina J. Lee, Wen-Hwa TI IL-25 Causes Apoptosis of IL-25R-Expressing Breast Cancer Cells Without Toxicity to Nonmalignant Cells SO SCIENCE TRANSLATIONAL MEDICINE LA English DT Article ID TNF RECEPTOR; INTERLEUKIN-17 FAMILY; MYOEPITHELIAL CELLS; EPITHELIAL-CELLS; IN-VIVO; IL-17E; PROLIFERATION; VASCULATURE; PHENOTYPE; MECHANISM AB As cells differentiate into tissues, the microenvironment that surrounds these cells must cooperate so that properly organized, growth-controlled tissues are developed and maintained. We asked whether substances produced from this collaboration might thwart malignant cells if they arise in the vicinity of normal tissues. Here, we identified six factors secreted by nonmalignant mammary epithelial cells (MECs) differentiating in three-dimensional laminin-rich gels that exert cytotoxic activity on breast cancer cells. Among these, interleukin-25 (IL-25/IL-17E) had the highest anticancer activity without affecting nonmalignant MECs. Apoptotic activity of IL-25 was mediated by differential expression of its receptor, IL-25R, which was expressed in high amounts in tumors from patients with poor prognoses but was low in nonmalignant breast tissue. In response to IL-25, the IL-25R on the surface of breast cancer cells activated caspase-mediated apoptosis. Thus, the IL-25/IL-25R signaling pathway may serve as a new therapeutic target for advanced breast cancer. C1 [Furuta, Saori; Kuhn, Irene; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA. [Furuta, Saori; Jeng, Yung-Ming; Zhou, Longen; Lee, Wen-Hwa] Univ Calif Irvine, Coll Med, Dept Biol Chem, Irvine, CA 92697 USA. [Jeng, Yung-Ming] Natl Taiwan Univ Hosp, Dept Pathol, Taipei 100, Taiwan. [Huang, Lan] Univ Calif Irvine, Coll Med, Dept Phys & Biophys, Irvine, CA 92697 USA. [Huang, Lan] Univ Calif Irvine, Coll Med, Dept Dev, Irvine, CA 92697 USA. [Huang, Lan] Univ Calif Irvine, Coll Med, Dept Cell Biol, Irvine, CA 92697 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov; whlee@uci.edu RI Kuhn, Irene/F-5413-2012; Lee, Wen-Hwa/C-2519-2014; OI JENG, YUNG-MING/0000-0002-3878-4491 FU NIH [RO1CA94170, GM-74830]; National Cancer Institute [R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, U54CA143836]; U.S. Department of Energy [DE-AC02-05CH1123]; U.S. Department of Defense [W81XWH0810736, W81XWH-05-1-0322]; National Health Research Institute in Taiwan FX This work was supported by grants from the NIH (RO1CA94170 to W.-H.L. and GM-74830 to L. H.), the National Cancer Institute (R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, and U54CA143836 to M.J.B.), the U.S. Department of Energy (DE-AC02-05CH1123 to M.J.B.), the U.S. Department of Defense (W81XWH0810736 to M.J.B. and W81XWH-05-1-0322 to S.F.), and a physician scientist award from the National Health Research Institute in Taiwan (to Y.-M.J.). NR 30 TC 22 Z9 23 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1946-6234 J9 SCI TRANSL MED JI Sci. Transl. Med. PD APR 13 PY 2011 VL 3 IS 78 AR 78ra31 DI 10.1126/scitranslmed.3001374 PG 11 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA 795LT UT WOS:000292976400003 PM 21490275 ER PT J AU Zhang, Q Kang, MJ Peterson, RD Feigon, J AF Zhang, Qi Kang, Mijeong Peterson, Robert D. Feigon, Juli TI Comparison of Solution and Crystal Structures of PreQ(1) Riboswitch Reveals Calcium-Induced Changes in Conformation and Dynamics SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESIDUAL DIPOLAR COUPLINGS; APTAMER DOMAIN; RNA STRUCTURE; FREE STATE; NMR; BIOMOLECULES; RESOLUTION; BACTERIA; BINDING; ROLES AB Riboswitches regulate gene expression via specific recognition of cognate metabolites by their aptamer domains, which fold into stable conformations upon ligand binding. However, the recently reported solution and crystal structures of the Bacillus subtilis preQ(1) riboswitch aptamer show small but significant differences, suggesting that there may be conformational heterogeneity in the ligand-bound state. We present a structural and dynamic characterization of this aptamer by solution NMR spectroscopy. The aptamer-preQ(1) complex is intrinsically flexible in solution, with two regions that undergo motions on different time scales. Three residues move in concert on the micro-to-millisecond time scale and may serve as the lid of the preQ(1)-binding pocket. Several Ca2+ ions are present in the crystal structure, one of which binds with an affinity of 47 +/- 2 mu m in solution to a site that is formed only upon ligand binding. Addition of Ca2+ to the aptamer-preQ(1) complex in solution results in conformational changes that account for the differences between the solution and crystal structures. Remarkably, the Ca2+ ions present in the crystal structure, which were proposed to be important for folding and ligand recognition, are not required for either in solution. C1 [Zhang, Qi; Kang, Mijeong; Peterson, Robert D.; Feigon, Juli] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Kang, Mijeong; Peterson, Robert D.; Feigon, Juli] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Feigon, J (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM feigon@mbi.ucla.edu RI Zhang, Qi/E-1722-2011; Zhang, Qi/B-5869-2014 FU DOE; NSF; NIH FX This work was supported by grants from DOE, NSF, and NIH to J.F. Q.Z. is a Baltimore Family Fellow of the Life Sciences Research Foundation. NR 28 TC 36 Z9 36 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 13 PY 2011 VL 133 IS 14 BP 5190 EP 5193 DI 10.1021/ja111769g PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 754CH UT WOS:000289829100008 PM 21410253 ER PT J AU Chen, CL Qi, JH Zuckermann, RN DeYoreo, JJ AF Chen, Chun-Long Qi, Jiahui Zuckermann, Ronald N. DeYoreo, James J. TI Engineered Biomimetic Polymers as Tunable Agents for Controlling CaCO3 Mineralization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE CAPTURE; CRYSTAL-GROWTH; NONBIOLOGICAL POLYMER; CALCITE; BIOMINERALIZATION; KINETICS; WATER; SIMULATION; MOLECULES; CHEMISTRY AB In nature, living organisms use peptides and proteins to precisely control the nucleation and growth of inorganic minerals and sequester CO2 via mineralization of CaCO3. Here we report the exploitation of a novel class of sequence-specific non-natural polymers called peptoids as tunable agents that dramatically control CaCO3 mineralization. We show that amphiphilic peptoids composed of hydrophobic and anionic monomers exhibit both a high degree of control over calcite growth morphology and an unprecedented 23-fold acceleration of growth at a peptoid concentration of only 50 nM, while acidic peptides of similar molecular weight exhibited enhancement factors of only similar to 2 or less. We further show that both the morphology and rate controls depend on peptoid sequence, side-chain chemistry, chain length, and concentration. These findings provide guidelines for developing sequence-specific non-natural polymers that mimic the functions of natural peptides or proteins in their ability to direct mineralization of CaCO3, with an eye toward their application to sequestration of CO2 through mineral trapping. C1 [Chen, Chun-Long; Qi, Jiahui; Zuckermann, Ronald N.; DeYoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Qi, Jiahui] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM RNZuckermann@lbl.gov; JJDeYoreo@lbl.gov RI Chen, Chun-Long/C-8622-2012; Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This work was supported as part of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center, and performed as a User project at the Molecular Foundry, Lawrence Berkeley National Laboratory, both of which are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. NR 32 TC 46 Z9 46 U1 5 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 13 PY 2011 VL 133 IS 14 BP 5214 EP 5217 DI 10.1021/ja200595f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 754CH UT WOS:000289829100014 PM 21417474 ER PT J AU Sun, DZ Gang, O AF Sun, Dazhi Gang, Oleg TI Binary Heterogeneous Superlattices Assembled from Quantum Dots and Gold Nanoparticles with DNA SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTALLIZATION AB Controllable assembly of three-dimensional (3D) superlattices composed of different types of nanoscale objects opens new opportunities for material fabrication. Herein we show the successful assembly of heterogeneous 3D structures from gold nanoparticles (AuNPs) and quantum dots (QDs) using DNA encoding. By applying synchrotron-based small-angle X-ray scattering, we found that AuNPs and QDs are positioned in a body-centered cubic lattice, while each particle type, AuNP and QD, is arranged in a simple-cubic manner. Our studies demonstrate a route for assembly of integrated heterogeneous 3D structures from different nano-objects by DNA-encoded interactions. C1 [Sun, Dazhi; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Sun, Dazhi /H-3625-2011; Sun, Dazhi/F-5144-2013 OI Sun, Dazhi/0000-0001-7553-3141 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research was carried at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We also thank C. Chi for nanoparticle synthesis, D. Nykypanchuk for help with SAXS measurements, and E. Stach for high-resolution TEM imaging of QDs. NR 17 TC 51 Z9 52 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 13 PY 2011 VL 133 IS 14 BP 5252 EP 5254 DI 10.1021/ja111542t PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 754CH UT WOS:000289829100024 PM 21425848 ER PT J AU Yeo, BS Bell, AT AF Yeo, Boon Siang Bell, Alexis T. TI Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL ELECTRODES; WATER OXIDATION; ALKALINE-SOLUTIONS; RAMAN-SPECTROSCOPY; EMISSION MOSSBAUER; SPRAY-PYROLYSIS; THIN-FILMS; CO; ELECTROLYSIS; CATALYST AB Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased for the OER exhibited by similar to 0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for similar to 0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. C1 [Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu RI Yeo, Boon Siang/C-6487-2014; OI Yeo, Boon Siang/0000-0003-1609-0867; Bell, Alexis/0000-0002-5738-4645 FU Helios Solar Energy Research Center [DE-AC02-05CH11231] FX This work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank James K. Wu (Material Sciences Division, Lawrence Berkeley National Laboratory) for fabricating the metal targets, Eric Granlund (College of Chemistry, UC Berkeley) for constructing the electrochemical cell, and Grace Y. Lau (Material Sciences Division, Lawrence Berkeley National Laboratory) for assisting in our initial SEM analysis. NR 52 TC 333 Z9 333 U1 76 U2 510 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 13 PY 2011 VL 133 IS 14 BP 5587 EP 5593 DI 10.1021/ja200559j PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 754CH UT WOS:000289829100061 PM 21413705 ER PT J AU Myers, SC Johannesson, G Simmons, NA AF Myers, S. C. Johannesson, G. Simmons, N. A. TI Global-scale P wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 1. Data set development SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID EARTHS MANTLE; LOCATION; VELOCITY; MODELS; SHEAR; ISC; HETEROGENEITY; CONSTRAINTS; RELOCATION; FAULT AB We extend the Bayesloc seismic multiple-event location algorithm for application to global arrival time data sets. Bayesloc is a formulation of the joint probability distribution spanning multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Stochastic priors may be used to constrain any of the Bayesloc parameters. Markov Chain Monte Carlo sampling is used to draw samples from the joint probability distribution, and the posteriori samples are summarized to infer conventional location parameters such as the hypocenter. The first application of the broad area Bayesloc algorithm is to a data set consisting of all well-recorded events in the Middle East and the most well-recorded events with 5 degrees spatial sampling globally. This sampling strategy is designed to provide the ray coverage needed to determine lithospheric-scale P wave velocity structure in the Middle East using the complementary ray geometry provided by regional (subhorizontal) and teleseismic (subvertical) raypaths and to determine a consistent, albeit lower-resolution, image of global mantle structure. The data set consists of 5401 events and 878,535 P, P-n, pP, sP, and PcP arrivals recorded at 4606 stations. Relocated epicenters are an average of 16 km from bulletin locations. The data set included events that are known to an accuracy of 1 km (a.k.a. GT1) based on nonseismic information. The average distance between GT1 epicenters and our relocated epicenters is 5.6 km. For arrivals labeled P, P-n, and PcP, similar to 92%, similar to 90%, and 96% are properly labeled with probability > 0.9, respectively. Incorrect phase labels are found to be erroneous at rates of 0.6%, 0.2%, 1.6%, and 2.5% for P, P-n, PcP, and depth phases (pP and sP), respectively. Labels found to be incorrect, but not erroneous, were reassigned to another phase label. P and P-n residual standard deviation with respect to ak135 travel times are dramatically reduced from 3.45 s to 1.01 s. The differences between travel time residuals for nearly reciprocal raypaths are significantly reduced from the input event locations, suggesting that Bayesloc relocation improves data set consistency. The reciprocity tests suggest that the dominant contribution to travel time residuals calculated from information provided in global bulletins is location and picks errors, not travel time prediction errors due to 3-D structure. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography and other travel time calibration studies. Simmons et al. (2011) (companion paper) use the Bayesloc-processed data set to develop a 3-Dtomographic image, which further reduces residual standard deviation to 0.50 s. C1 [Myers, S. C.; Simmons, N. A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Myers, SC (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave, Livermore, CA 94550 USA. EM johannesson1@llnl.gov RI Simmons, Nathan/J-9022-2014; Myers, Stephen/K-1368-2014 OI Myers, Stephen/0000-0002-0315-5599 FU NNSA/NA22 FX Funding for this project is provided by the Ground-Based Nuclear Detonation Detection program (Leslie Casey program manager) within NNSA/NA22. We thank our LLNL colleagues for day-to-day interactions and support, and we thank the broader community for motivation. Thanks also to Bill Rodi for frequent reminders about the power of travel time reciprocity as well as wide-ranging conversations on the location problem. The manuscript was improved by comments and suggestions from Lapo Bochi and an anonymous reviewer. NR 43 TC 12 Z9 12 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR 13 PY 2011 VL 116 AR B04304 DI 10.1029/2010JB007967 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 751WD UT WOS:000289647500003 ER PT J AU Simmons, NA Myers, SC Johannesson, G AF Simmons, N. A. Myers, S. C. Johannesson, G. TI Global-scale P wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 2. Tomographic inversion SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID MANTLE TRANSITION ZONE; EARTHS MANTLE; VELOCITY STRUCTURE; SHEAR-VELOCITY; LATERAL VARIATIONS; NORTH-AFRICA; SEISMIC TOMOGRAPHY; GEOPHYSICAL MODEL; SURFACE; EURASIA AB We construct a model of three-dimensional P wave velocity structure in the crust and mantle that is global in extent, but with detailed upper mantle heterogeneities throughout the greater Middle East region. Fully three-dimensional ray tracing is employed to achieve accurate travel time predictions of P and P-n arrivals, requiring the characterization of irregular and discontinuous boundaries. Therefore, we explicitly represent undulating seismic discontinuities in the crust and upper mantle within a spherical tessellation modeling framework. The tessellation-based model architecture is hierarchical in that fine node sampling is achieved by recursively subdividing a base level tessellation. Determining the required node spacing to effectively model a given set of data is problematic, given the uneven sampling of seismic data and the differing wavelengths of actual seismic heterogeneity. To address this problem, we have developed an inversion process called Progressive Multilevel Tessellation Inversion (PMTI) that exploits the hierarchical nature of the tessellation-based design and allows the data to determine the level of model complexity. PMTI serves as an alternative to existing multiresolution approaches and robustly images regional trends while allowing localized details to emerge where resolution is sufficient. To demonstrate our complete modeling concept, we construct a velocity model based on teleseismic P travel time data for global events and regional P-n travel time data for events occurring throughout the Middle East. Input data are a product of the statistical procedure called Bayesloc that simultaneously models all components of a multievent system including event locations, origin times, and arrival times (described in the Myers et al. (2011) companion paper). The initial tomographic image provides a new glimpse of the complex upper mantle velocity anomalies associated with the convergence of the Arabian and Indian plates with Eurasia. More important for event monitoring, the model accurately predicts both teleseismic and regional travel times for events occurring within the Middle East region. C1 [Simmons, N. A.; Myers, S. C.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Simmons, NA (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave, Livermore, CA 94550 USA. EM Simmons27@llnl.gov RI Simmons, Nathan/J-9022-2014; Myers, Stephen/K-1368-2014 OI Myers, Stephen/0000-0002-0315-5599 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344-LLNL-JRNL-452338] FX We thank Lapo Boschi and an anonymous reviewer for their constructive criticisms that greatly improved our paper. We also acknowledge valuable discussions with Guy Masters and other participants of the annual Monitoring Research Reviews. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344-LLNL-JRNL-452338. NR 99 TC 22 Z9 23 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR 13 PY 2011 VL 116 AR B04305 DI 10.1029/2010JB007969 PG 31 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 751WD UT WOS:000289647500004 ER PT J AU Wigmosta, MS Coleman, AM Skaggs, RJ Huesemann, MH Lane, LJ AF Wigmosta, Mark S. Coleman, Andre M. Skaggs, Richard J. Huesemann, Michael H. Lane, Leonard J. TI National microalgae biofuel production potential and resource demand SO WATER RESOURCES RESEARCH LA English DT Article ID CONTERMINOUS UNITED-STATES; BIODIESEL PRODUCTION; ALGAE; PRECIPITATION; TEMPERATURE; FEEDSTOCKS; BIOETHANOL; BIOMASS AB Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220 x 10(9) L yr(-1) of oil, equivalent to 48% of current U. S. petroleum imports for transportation. However, this level of production requires 5.5% of the land area in the conterminous United States and nearly three times the water currently used for irrigated agriculture, averaging 1421 L water per liter of oil. Optimizing the locations for microalgae production on the basis of water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, southeastern seaboard, and Great Lakes shows a 75% reduction in consumptive freshwater use to 350 L per liter of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target and utilizing some 25% of the current irrigation demand. With proper planning, adequate land and water are available to meet a significant portion of the U. S. renewable fuel goals. C1 [Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Huesemann, Michael H.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Lane, Leonard J.] LJ Lane Consulting, Tucson, AZ 85704 USA. RP Wigmosta, MS (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-33, Richland, WA 99352 USA. EM mark.wigmosta@pnl.gov FU Office of the Biomass Program of the U.S. Department of Energy; U.S. Department of Energy [DE-AC06-76RLO 1830] FX We would like to thank J. Yang, Z. Haq, R. Pate, and J. Benemann for numerous discussions of this topic. Support for this research was provided by the Office of the Biomass Program of the U.S. Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. NR 53 TC 53 Z9 53 U1 3 U2 50 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 13 PY 2011 VL 47 AR W00H04 DI 10.1029/2010WR009966 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 751XJ UT WOS:000289650800001 ER PT J AU Borysenko, KM Mullen, JT Li, X Semenov, YG Zavada, JM Nardelli, MB Kim, KW AF Borysenko, K. M. Mullen, J. T. Li, X. Semenov, Y. G. Zavada, J. M. Nardelli, M. Buongiorno Kim, K. W. TI Electron-phonon interactions in bilayer graphene SO PHYSICAL REVIEW B LA English DT Article ID GRAPHITE AB Using calculations from first principles, we demonstrate that intrinsic carrier-phonon scattering in bilayer graphene is dominated by low-energy acoustic (and acousticlike) phonon modes in a framework that bears more resemblance to bulk graphite than to monolayer graphene. The total scattering rate at low to moderate electron energies can be described by a simple two-phonon model in the deformation potential approximation with effective constants D-ac approximate to 15 eV and D-op approximate to 2.8 x 10(8) eV/cm for acoustic and optical phonons, respectively. With much enhanced acoustic phonon scattering, the mobility of intrinsic bilayer graphene is estimated to be significantly smaller than that of the monolayer. C1 [Borysenko, K. M.; Li, X.; Semenov, Y. G.; Zavada, J. M.; Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Mullen, J. T.; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. RP Borysenko, KM (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. EM kwk@ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009 FU DARPA/HRL CERA; ARL; SRC/FCRP FENA; Office of Basic Energy Sciences, US DOE at Oak Ridge National Lab [DE-AC05-00OR22725]; UT-Battelle, LLC.; NSF FX This work was supported, in part, by the DARPA/HRL CERA, ARL, and SRC/FCRP FENA programs. M.B.N. wishes to acknowledge partial support from the Office of Basic Energy Sciences, US DOE at Oak Ridge National Lab under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. J.M.Z. acknowledges support from NSF under the IR/D program. NR 17 TC 28 Z9 28 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 13 PY 2011 VL 83 IS 16 AR 161402 DI 10.1103/PhysRevB.83.161402 PG 4 WC Physics, Condensed Matter SC Physics GA 749ST UT WOS:000289490500003 ER PT J AU Liu, JA Okamoto, S van Veenendaal, M Kareev, M Gray, B Ryan, P Freeland, JW Chakhalian, J AF Liu, Jian Okamoto, S. van Veenendaal, M. Kareev, M. Gray, B. Ryan, P. Freeland, J. W. Chakhalian, J. TI Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; RNIO3 R; PEROVSKITES; OXIDES; SUPERCONDUCTIVITY; DEPENDENCE; INTERFACES AB We investigate the electronic reconstruction in (LaNiO3)(n)/(LaAlO3)(3) (n = 3, 5, and 10) superlattices due to the quantum confinement (QC) by dc transport and resonant soft x-ray absorption spectroscopy. In proximity to the QC limit, a Mott-type transition from an itinerant electron behavior to a localized state is observed. The system exhibits tendency toward charge-order during the transition. Ab initio cluster calculations are in good agreement with the absorption spectra, indicating that the apical ligand hole density is highly suppressed, resulting in a strong modification of the electronic structure. At the dimensional crossover cellular dynamical-mean-field calculations support the emergence of a Mott insulator ground state in the heterostructured ultrathin slab of LaNiO3. C1 [Liu, Jian; Kareev, M.; Gray, B.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Liu, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Okamoto, S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [van Veenendaal, M.; Ryan, P.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Liu, JA (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM jxl026@uark.edu RI Okamoto, Satoshi/G-5390-2011; Liu, Jian/I-6746-2013; Chakhalian, Jak/F-2274-2015 OI Okamoto, Satoshi/0000-0002-0493-7568; Liu, Jian/0000-0001-7962-2547; FU DOD-ARO [0402-17291]; NSF [DMR-0747808]; US Department of Energy, Office of Science [DEAC02-06CH11357]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097] FX The authors acknowledge fruitful discussions with R. Pentcheva, D. Khomskii, A. Millis, and G. A. Sawatzky. J.C. was supported by the DOD-ARO under Grant No. 0402-17291 and the NSF under Grant No. DMR-0747808. Work at the Advanced Photon Source, Argonne, is supported by the US Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. M. v. V. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract DE-FG02-03ER46097. S.O. was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. NR 33 TC 72 Z9 73 U1 1 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 13 PY 2011 VL 83 IS 16 AR 161102 DI 10.1103/PhysRevB.83.161102 PG 4 WC Physics, Condensed Matter SC Physics GA 749ST UT WOS:000289490500002 ER PT J AU Qazilbash, MM Tripathi, A Schafgans, AA Kim, BJ Kim, HT Cai, ZH Holt, MV Maser, JM Keilmann, F Shpyrko, OG Basov, DN AF Qazilbash, M. M. Tripathi, A. Schafgans, A. A. Kim, Bong-Jun Kim, Hyun-Tak Cai, Zhonghou Holt, M. V. Maser, J. M. Keilmann, F. Shpyrko, O. G. Basov, D. N. TI Nanoscale imaging of the electronic and structural transitions in vanadium dioxide SO PHYSICAL REVIEW B LA English DT Article ID MANGANITE THIN-FILM; MOTT TRANSITION; VO2; SCATTERING AB We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addition, we observe a dichotomy between the local electronic and structural transitions. Nanoscale x-ray diffraction reveals local, nonmonotonic switching of the lattice structure, a phenomenon that is not seen in the electronic insulator-to-metal transition mapped by near-field infrared microscopy. C1 [Qazilbash, M. M.; Tripathi, A.; Schafgans, A. A.; Shpyrko, O. G.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kim, Bong-Jun; Kim, Hyun-Tak] ETRI, Met Insulator Transit Ctr, Taejon 305350, South Korea. [Kim, Hyun-Tak] Univ Sci & Technol, Sch Adv Device Technol, Taejon 305333, South Korea. [Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Holt, M. V.; Maser, J. M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Keilmann, F.] Max Planck Inst Quantum Opt, Munich Ctr Adv Photon, D-85748 Garching, Germany. [Keilmann, F.] Ctr NanoSci, D-85748 Garching, Germany. [Qazilbash, M. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Qazilbash, MM (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM mumtaz@wm.edu RI Shpyrko, Oleg/J-3970-2012; Maser, Jorg/K-6817-2013 FU US Department of Energy [DE-FG03-00ER45799]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001805, DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft FX M.M.Q. and D.N.B. acknowledge support from the US Department of Energy under Grant No. DE-FG03-00ER45799. O.G.S. and A.T. acknowledge support by US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0001805. B.-J.K. and H.-T.K. were supported in part by current jump and creative research projects at ETRI. F.K. was supported by Deutsche Forschungsgemeinschaft through Cluster of Excellence Munich-Centre for Advanced Photonics. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 35 TC 53 Z9 53 U1 6 U2 84 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 13 PY 2011 VL 83 IS 16 AR 165108 DI 10.1103/PhysRevB.83.165108 PG 7 WC Physics, Condensed Matter SC Physics GA 749ST UT WOS:000289490500005 ER PT J AU Storchak, VG Brewer, JH Lichti, RL Lograsso, TA Schlagel, DL AF Storchak, Vyacheslav G. Brewer, Jess H. Lichti, Roger L. Lograsso, Thomas A. Schlagel, Deborah L. TI Electron localization into spin-polaron state in MnSi SO PHYSICAL REVIEW B LA English DT Article ID PHASE; FERROMAGNETISM; FLUCTUATIONS; BREAKDOWN; PRESSURE; BEHAVIOR; METALS; BORDER AB Strong electron localization into a bound state has been found in both paramagnetic and ferromagnetic states of the transition metal compound MnSi by muon spin-rotation spectroscopy in magnetic fields up to 7 T and from 2 K to room temperature. This bound state, with a characteristic radius R approximate to 0.4 nm and net spin S = 24 +/- 2, is consistent with confinement of the electron's wave function within roughly one lattice cell of MnSi and is suggested to be a spin polaron. Such spin polarons may form due to a strong exchange interaction between itinerant electrons and the magnetic electrons of Mn ions of the same 3d type; as such, they might affect the peculiar electronic and magnetic properties of MnSi. C1 [Storchak, Vyacheslav G.] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. [Brewer, Jess H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Lichti, Roger L.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Lograsso, Thomas A.; Schlagel, Deborah L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Storchak, VG (reprint author), Russian Res Ctr, Kurchatov Inst, Kurchatov Sq 1, Moscow 123182, Russia. EM mussr@triumf.ca FU NBIC Center of the Kurchatov Institute, NSERC of Canada; US DoE [DE-SC0001769, DE-AC02-07CH11358]; BES Division of Materials Sciences FX This work was supported by the NBIC Center of the Kurchatov Institute, NSERC of Canada, and the US DoE (Contracts No. DE-SC0001769, No. DE-AC02-07CH11358, and BES Division of Materials Sciences). NR 43 TC 14 Z9 15 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 13 PY 2011 VL 83 IS 14 AR 140404 DI 10.1103/PhysRevB.83.140404 PG 4 WC Physics, Condensed Matter SC Physics GA 749SE UT WOS:000289488900001 ER PT J AU Mukhopadhyay, S Ma, WC Janssens, RVF Carpenter, MP Chiara, CJ Chowdhury, P Cullen, DM Hagemann, GB Hartley, DJ Hota, SS Ijaz, QA Khoo, TL Kondev, FG Lakshmi, S Lauritsen, T Marsh, J Riedinger, LL Toh, Y Yadav, RB Zhu, S AF Mukhopadhyay, S. Ma, W. C. Janssens, R. V. F. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Cullen, D. M. Hagemann, G. B. Hartley, D. J. Hota, S. S. Ijaz, Q. A. Khoo, T. L. Kondev, F. G. Lakshmi, S. Lauritsen, T. Marsh, J. Riedinger, L. L. Toh, Y. Yadav, R. B. Zhu, S. TI Quadrupole moment measurements for strongly deformed bands in Hf-171,Hf-172 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; LIFETIME MEASUREMENTS; TRIAXIAL SUPERDEFORMATION; WOBBLING EXCITATIONS; NUCLEI; PHONON; MODE AB A lifetime experiment, using the Doppler-shift attenuation method, has been performed at Gammasphere to measure the transition quadrupole moments Q(t) of strongly deformed bands in Hf-171 and Hf-172. The measured value of Q(t) similar to 9.5 e b for the band labeled ED in Hf-171 strongly supports the recent suggestion that this sequence and several structures with similar properties in neighboring Hf isotopes are associated with a near-prolate shape with a deformation enhanced relative to that of normal deformed structures. The measured values of Q(t) similar to 14 e b for the bands labeled SD1 and SD3 in Hf-172 confirm that these sequences are associated with a prolate superdeformed shape, a property inferred in earlier work from other measured characteristics of the bands. Similar bands in (173) Hf-175 are also likely to be associated with superdeformed shapes. The observations are in contrast to predictions of cranking calculations performed with the ULTIMATE CRANKER code. C1 [Mukhopadhyay, S.; Ma, W. C.; Ijaz, Q. A.; Marsh, J.; Yadav, R. B.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Khoo, T. L.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.; Hota, S. S.; Lakshmi, S.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Cullen, D. M.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Hagemann, G. B.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Toh, Y.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Mukhopadhyay, S (reprint author), Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015 OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-95ER40939, DE-AC02-06CH11357, DE-FG02-96ER40983, DE-FG02-94ER40848]; National Science Foundation [PHY-0854815] FX The authors thank the ANL operation staff at Gammasphere. Special thanks also go to J. P. Greene for target preparation. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Grants Nos. DE-FG02-95ER40939 (MSU), DE-AC02-06CH11357 (ANL), DE-FG02-96ER40983 (UT), and DE-FG02-94ER40848 (UML), as well as by the National Science Foundation under Grant No. PHY-0854815 (USNA). NR 35 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 13 PY 2011 VL 83 IS 4 AR 044311 DI 10.1103/PhysRevC.83.044311 PG 7 WC Physics, Nuclear SC Physics GA 750BI UT WOS:000289518500004 ER PT J AU Nollett, KM Wiringa, RB AF Nollett, Kenneth M. Wiringa, R. B. TI Asymptotic normalization coefficients from ab initio calculations SO PHYSICAL REVIEW C LA English DT Article ID QUANTUM MONTE-CARLO; LIGHT-NUCLEI; FORM-FACTORS; D-STATE; VERTEX CONSTANTS; TRITON; 1P-SHELL; HE-3 AB We present calculations of asymptotic normalization coefficients (ANCs) for one-nucleon removals from nuclear states of mass numbers 3 <= A <= 9. Our ANCs were computed from variational Monte Carlo solutions to the many-body Schrodinger equation with the combined Argonne v(18) two-nucleon and Urbana IX three-nucleon potentials. Instead of computing explicit overlap integrals, we applied a Green function method that is insensitive to the difficulties of constructing and Monte Carlo sampling the long-range tails of the variational wave functions. This method also allows computation of the ANC at the physical separation energy, even when it differs from the separation energy for the Hamiltonian. We compare our results, which for most nuclei are the first ab initio calculations of ANCs, with existing experimental and theoretical results and discuss further possible applications of the technique. C1 [Nollett, Kenneth M.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Nollett, KM (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM nollett@anl.gov RI Wiringa, Robert/M-4970-2015; OI Nollett, Kenneth/0000-0002-0671-320X FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We acknowledge useful discussions with I. Brida, S. C. Pieper, A. M. Mukhamedzhanov, H. Esbensen, and C. R. Brune. This work was supported by the US Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. Calculations were performed on the Fusion computing cluster operated by the Laboratory Computing Resource Center at Argonne. NR 46 TC 32 Z9 32 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 13 PY 2011 VL 83 IS 4 AR 041001 DI 10.1103/PhysRevC.83.041001 PG 5 WC Physics, Nuclear SC Physics GA 750BI UT WOS:000289518500001 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blocker, C Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martincz, M Martincz-Ballarin, R Mastrandrca, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Turini, N Ukegawa, F Uozumi, S Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martincz, M. Martincz-Ballarin, R. Mastrandrca, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the t(t)over-bar production cross section with an in situ calibration of b-jet identification efficiency SO PHYSICAL REVIEW D LA English DT Article ID P(P)OVER-BAR COLLISIONS; COLLIDER DETECTOR; TOP-QUARK; FERMILAB; PHYSICS; TEV AB A measurement of the top-quark pair-production cross section in p (p) over bar collisions at root s = 1.96 TeV using data corresponding to an integrated luminosity of 1.12 fb(-1) collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states ev + jets and mu v+ jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires agreement between the measured cross sections with exactly one and with multiple identified b quarks from the top-quark decays. Assuming a top-quark mass of 175 GeV/c(2), a cross section of 8.5 +/- 0.6(stat) +/- 0.7(syst)pb is measured. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Mondragon, M. N.; Phillips, T. J.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martincz, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martincz-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Anastassov, A.; Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrca, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Naganoma, J.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 27 TC 7 Z9 7 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 13 PY 2011 VL 83 IS 7 AR 071102 DI 10.1103/PhysRevD.83.071102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750BP UT WOS:000289519400001 ER PT J AU Bevan, KH Zhu, WG Guo, H Zhang, ZY AF Bevan, Kirk H. Zhu, Wenguang Guo, Hong Zhang, Zhenyu TI Terminating Surface Electromigration at the Source SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFUSION; CU(111); COPPER; INTERCONNECTS; INTEGRATION; ALLOYS; POINTS AB Based on an extensive search across the periodic table utilizing first-principles density functional theory, we discover phosphorus to be an optimal surface electromigration inhibitor on the technologically important Cu(111) surface-the dominant diffusion pathway in modern nanoelectronics interconnects. Unrecognized thus far, such an inhibitor is characterized by energetically favoring (and binding strongly at) the kink sites of step edges. These properties are determined to generally reside in elements that form strong covalent bonds with substrate metal atoms. This finding sheds new light on the possibility of halting surface electromigration via kink blocking impurities. C1 [Bevan, Kirk H.; Zhu, Wenguang; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bevan, Kirk H.; Guo, Hong] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Bevan, Kirk H.; Guo, Hong] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Zhu, Wenguang; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD HFNL, Hefei 230026, Anhui, Peoples R China. RP Bevan, KH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM kirk.bevan@mcgill.ca RI Zhu, Wenguang/F-4224-2011; Guo, Hong/A-8084-2010 OI Zhu, Wenguang/0000-0003-0819-595X; FU NSERC of Canada; FRQNT of Quebec; CIFAR; U.S.-NSF [DMR-0906025]; U.S.-DOE [DEFG0205ER46209, BES-CMCSN]; NNSF of China [11034006] FX This work was supported in part by NSERC of Canada, FRQNT of Quebec, CIFAR, U.S.-NSF (DMR-0906025), U.S.-DOE (Grants No. DEFG0205ER46209 and No. BES-CMCSN), and NNSF of China (Grant No. 11034006). Computational support was provided by NERSC of U.S.-DOE. NR 32 TC 11 Z9 11 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 13 PY 2011 VL 106 IS 15 AR 156404 DI 10.1103/PhysRevLett.106.156404 PG 4 WC Physics, Multidisciplinary SC Physics GA 750DF UT WOS:000289524200007 PM 21568585 ER PT J AU Pan, W Reno, JL Li, D Brueck, SRJ AF Pan, W. Reno, J. L. Li, D. Brueck, S. R. J. TI Quantum Hall Ferromagnetism in the Presence of Tunable Disorder SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; SKYRMIONS; EXCITATIONS; LIMIT; INTEGER; NU=1 AB In this Letter, we report our recent experimental results on the energy gap of the nu = 1 quantum Hall state (Delta(nu=1)) in a quantum antidot array sample, where the effective disorder potential can be tuned continuously. Delta(nu=1) is nearly constant at small effective disorders, and collapses at a critical disorder. Moreover, in the weak disorder regime, Delta(nu=1) shows a B-total(1/2) dependence in tilted magnetic field measurements, while in the strong disorder regime, Delta(nu=1) is linear in B-total, where B-total is the total magnetic field at nu = 1. We discuss our results within several models involving the quantum Hall ferromagnetic ground state and its interplay with sample disorder. C1 [Pan, W.; Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Li, D.; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87108 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. OI Brueck, Steven/0000-0001-8754-5633 FU DOE Office of Basic Energy Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; University of New Mexico FX We thank Denise Tibbetts and Mike Smith for their excellent technical assistance, and J. A. Simmons, J. K. Jain, H. A. Fertig, M. Berciu, and C. Zhou for helpful discussions. This work was supported by the DOE Office of Basic Energy Sciences. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. A portion of this work was performed at the National High Magnetic Field Laboratory in Tallahassee, Florida. The facilities of the NSF-sponsored NNIN node at the University of New Mexico were used for the antidot array fabrication. NR 31 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 13 PY 2011 VL 106 IS 15 AR 156806 DI 10.1103/PhysRevLett.106.156806 PG 4 WC Physics, Multidisciplinary SC Physics GA 750DF UT WOS:000289524200010 ER PT J AU Fenn, TD Schnieders, MJ Mustyakimov, M Wu, CJ Langan, P Pande, VS Brunger, AT AF Fenn, Timothy D. Schnieders, Michael J. Mustyakimov, Marat Wu, Chuanjie Langan, Paul Pande, Vijay S. Brunger, Axel T. TI Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration SO STRUCTURE LA English DT Article ID D-XYLOSE ISOMERASE; MOLECULAR-DYNAMICS SIMULATIONS; ALDOSE-KETOSE INTERCONVERSION; RESOLUTION CRYSTAL-STRUCTURES; MINOR-GROOVE HYDRATION; PURE-SPERMINE FORM; JOINT X-RAY; B-DNA; PROTEIN STRUCTURES; ATOMIC-RESOLUTION AB Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. C1 [Fenn, Timothy D.; Brunger, Axel T.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Fenn, Timothy D.; Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Schnieders, Michael J.; Pande, Vijay S.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Mustyakimov, Marat; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Wu, Chuanjie] Schrodinger LLC, New York, NY 10036 USA. [Brunger, Axel T.] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA. RP Brunger, AT (reprint author), Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. EM brunger@stanford.edu RI Wu, Chuanjie/B-9210-2008; Langan, Paul/N-5237-2015; OI Wu, Chuanjie/0000-0002-3873-5964; Langan, Paul/0000-0002-0247-3122; Brunger, Axel/0000-0001-5121-2036 FU Office of Environmental Research of the Department of Energy; DOE office of Basic Energy Sciences; NIH-NIGMS [R01GM071939]; NSF [CHE-0535616] FX We thank Aaron Moulin for discussions regarding neutron diffraction and Paul Sigala for comments and suggestions on the initial manuscript. The neutron diffraction data for the Z-DNA and xylose isomerase crystal structures were collected at the Protein Crystallography Station (PCS) at Los Alamos National Laboratory. The PCS is funded by the Office of Environmental Research of the Department of Energy. The PCS is located at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE office of Basic Energy Sciences. M.M. and P.L. were partly supported by an NIH-NIGMS grant (R01GM071939). M.J.S. and V.P.S. were supported by NSF grant CHE-0535616. NR 96 TC 18 Z9 18 U1 1 U2 17 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD APR 13 PY 2011 VL 19 IS 4 BP 523 EP 533 DI 10.1016/j.str.2011.01.015 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 751BN UT WOS:000289592600011 PM 21481775 ER PT J AU Alzamora, M Munevar, J Baggio-Saitovitch, E Bud'ko, SL Ni, N Canfield, PC Sanchez, DR AF Alzamora, M. Munevar, J. Baggio-Saitovitch, E. Bud'ko, S. L. Ni, Ni Canfield, P. C. Sanchez, D. R. TI First-order phase transitions in CaFe2As2 single crystal: a local probe study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MOSSBAUER-SPECTROSCOPY; LAYERED SUPERCONDUCTOR; LAO1-XFXFEAS; COMPOUND; FE-57 AB Fe-57 Mossbauer spectroscopy has been used to investigate the structural and magnetic phase transitions of CaFe2As2 (T-N = 173 K) single crystals. For this compound we found that V-ZZ is positive and parallel to the c-axis of the tetragonal structure. For CaFe2As2 a magnetic hyperfine field B-hf was observed at the Fe-57 nucleus below T-N similar to 173 K. Analysis of the temperature dependence of Bhf data using the Bean-Rodbell model shows that the Fe spins undergo a first-order magnetic transition at similar to 173 K. A collinear antiferromagnetic structure is established below this temperature with the Fe spin lying in the (a, b) plane. Below T-N the paramagnetic fraction of Fe decreases down to 150 K and for lower temperatures all the Fe spins are magnetically ordered. C1 [Alzamora, M.; Munevar, J.; Baggio-Saitovitch, E.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Bud'ko, S. L.; Ni, Ni; Canfield, P. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Ni, Ni; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sanchez, D. R.] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil. RP Alzamora, M (reprint author), Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil. RI Candela, Dalber/G-3636-2012; Canfield, Paul/H-2698-2014; Saitovitch, Elisa/A-6769-2015 FU CNPq; FAPERJ; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; State of Iowa through the Iowa State University FX Support from the Brazilian agencies CNPq and FAPERJ is gratefully acknowledged (Pronex, Pensa Rio, Cientista do Estado). Work at Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. SLB was supported in part by the State of Iowa through the Iowa State University. NR 56 TC 16 Z9 16 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 13 PY 2011 VL 23 IS 14 AR 145701 DI 10.1088/0953-8984/23/14/145701 PG 6 WC Physics, Condensed Matter SC Physics GA 740IQ UT WOS:000288786600012 PM 21430310 ER PT J AU Troc, R Wawryk, R Gofryk, K Gribanov, AV Seropegin, YD AF Troc, R. Wawryk, R. Gofryk, K. Gribanov, A. V. Seropegin, Yu D. TI Physical properties of polycrystalline Sm2PdGe6 and Sm2PtGe6 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TERNARY COMPOUNDS R; TRANSPORT-PROPERTIES; MAGNETIC-PROPERTIES; TB; GD; CU; DY; VALENCE; METALS; EARTH AB The compounds Sm2TGe6 (T = Pd, Pt,) were synthesized and characterized by x-ray diffraction, magnetization, electrical resistivity, thermoelectric power, and specific heat measurements performed in the temperature range 2-300 K. Additional resistivity and thermoelectric power measurements performed down to 0.35 K have not indicated superconductivity. These compounds crystallize in the orthorhombic structure of Ce2NiGe6 type and order antiferromagnetically at 23(1) and 30(1) K, respectively, showing localized magnetism of a Sm3+ ion with a crystal field doublet level being the ground state. Below T-N, the electrical resistivity, the thermoelectric power, and the specific heat are dominated by electron-magnon scattering with an antiferromagnetic spin-wave spectrum typical of anisotropic antiferromagnetic systems. The thermoelectric power, S, achieves medium positive values at high temperatures, indicating a hole domination in electrical transport in both samples. At low temperatures, S changes its sign and becomes negative. At about 10 K a small negative maximum in S(T) occurs for both studied compounds. All the measurements carried out point to well-localized 4f-electrons in these two compounds, being strongly influenced by the crystal-electric-field effect with a significant admixture of two J-multiplets (5/2 and 7/2), typical for Sm-containing compounds. C1 [Troc, R.; Wawryk, R.; Gofryk, K.] Polish Acad Sci, W Trzebiatowski Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland. [Gofryk, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gribanov, A. V.; Seropegin, Yu D.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119899, Russia. RP Troc, R (reprint author), Polish Acad Sci, W Trzebiatowski Inst Low Temp & Struct Res, POB 1410, PL-50950 Wroclaw, Poland. EM R.Troc@int.pan.wroc.pl RI Gofryk, Krzysztof/F-8755-2014; OI Gofryk, Krzysztof/0000-0002-8681-6857 FU Russian Team [RFBR 08-03-01072a] FX The work has been partly carried out under the framework of the Russian Team grant number RFBR 08-03-01072a. NR 30 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 13 PY 2011 VL 23 IS 14 AR 146001 DI 10.1088/0953-8984/23/14/146001 PG 9 WC Physics, Condensed Matter SC Physics GA 740IQ UT WOS:000288786600013 PM 21427478 ER PT J AU Adelberger, EG Garcia, A Robertson, RGH Snover, KA Balantekin, AB Heeger, K Ramsey-Musolf, MJ Bemmerer, D Junghans, A Bertulani, CA Chen, JW Costantini, H Prati, P Couder, M Uberseder, E Wiescher, M Cyburt, R Davids, B Freedman, SJ Gai, M Gazit, D Gialanella, L Imbriani, G Greife, U Hass, M Haxton, WC Itahashi, T Kubodera, K Langanke, K Leitner, D Leitner, M Vetter, P Winslow, L Marcucci, LE Motobayashi, T Mukhamedzhanov, A Tribble, RE Nollett, KM Nunes, FM Park, TS Parker, PD Schiavilla, R Simpson, EC Spitaleri, C Strieder, F Trautvetter, HP Suemmerer, K Typel, S AF Adelberger, E. G. Garcia, A. Robertson, R. G. Hamish Snover, K. A. Balantekin, A. B. Heeger, K. Ramsey-Musolf, M. J. Bemmerer, D. Junghans, A. Bertulani, C. A. Chen, J. -W. Costantini, H. Prati, P. Couder, M. Uberseder, E. Wiescher, M. Cyburt, R. Davids, B. Freedman, S. J. Gai, M. Gazit, D. Gialanella, L. Imbriani, G. Greife, U. Hass, M. Haxton, W. C. Itahashi, T. Kubodera, K. Langanke, K. Leitner, D. Leitner, M. Vetter, P. Winslow, L. Marcucci, L. E. Motobayashi, T. Mukhamedzhanov, A. Tribble, R. E. Nollett, Kenneth M. Nunes, F. M. Park, T. -S. Parker, P. D. Schiavilla, R. Simpson, E. C. Spitaleri, C. Strieder, F. Trautvetter, H. -P. Suemmerer, K. Typel, S. TI Solar fusion cross sections. II. The pp chain and CNO cycles SO REVIEWS OF MODERN PHYSICS LA English DT Article ID ASTROPHYSICAL S-FACTOR; EFFECTIVE-FIELD THEORY; THERMONUCLEAR REACTION-RATES; RADIATIVE-CAPTURE REACTIONS; PROTON-PROTON REACTION; ALPHA ANGULAR-CORRELATIONS; GROUND-STATE STRUCTURE; LOW-ENERGY MEASUREMENT; R-MATRIX ANALYSIS; FEW-BODY NUCLEI AB The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for B-8 solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265. C1 [Adelberger, E. G.; Garcia, A.; Robertson, R. G. Hamish; Snover, K. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Adelberger, E. G.; Garcia, A.; Robertson, R. G. Hamish; Snover, K. A.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Balantekin, A. B.; Heeger, K.; Ramsey-Musolf, M. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bemmerer, D.; Junghans, A.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Bertulani, C. A.] Texas A&M Univ, Dept Phys & Astron, Commerce, TX 75429 USA. [Chen, J. -W.] Natl Taiwan Univ, Dept Phys, Ctr Theoret Sci, Taipei 10617, Taiwan. [Chen, J. -W.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Costantini, H.; Prati, P.] Univ Genoa, I-16146 Genoa, Italy. [Costantini, H.; Prati, P.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Couder, M.; Uberseder, E.; Wiescher, M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Couder, M.; Uberseder, E.; Wiescher, M.] Univ Notre Dame, JINA, Notre Dame, IN 46556 USA. [Cyburt, R.] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Cyburt, R.; Nunes, F. M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Davids, B.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Freedman, S. J.; Haxton, W. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Freedman, S. J.; Haxton, W. C.; Leitner, D.; Leitner, M.; Vetter, P.; Winslow, L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gai, M.] Univ Connecticut, Lab Nucl Sci Avery Point, Groton, CT 06340 USA. [Gai, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Gazit, D.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Gazit, D.; Haxton, W. C.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Gialanella, L.; Imbriani, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Gialanella, L.; Imbriani, G.] Univ Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy. [Greife, U.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Hass, M.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Itahashi, T.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Kubodera, K.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Langanke, K.; Typel, S.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Langanke, K.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Langanke, K.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Marcucci, L. E.] Univ Pisa, Dept Phys E Fermi, I-56127 Pisa, Italy. [Marcucci, L. E.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Motobayashi, T.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Mukhamedzhanov, A.; Tribble, R. E.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Nollett, Kenneth M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Nunes, F. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Park, T. -S.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Park, T. -S.] Sungkyunkwan Univ, BAERI, Suwon 440746, South Korea. [Parker, P. D.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. [Simpson, E. C.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Spitaleri, C.] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy. [Spitaleri, C.] Univ Catania, Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy. [Strieder, F.; Trautvetter, H. -P.] Ruhr Univ Bochum, Inst Expt Phys 3, D-44780 Bochum, Germany. [Suemmerer, K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Typel, S.] Tech Univ Munich, D-85748 Garching, Germany. RP Adelberger, EG (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. RI Gazit, Doron/F-7909-2011; Balantekin, Akif Baha/E-4776-2010; Bemmerer, Daniel/C-9092-2013; Junghans, Arnd/D-4596-2012; Imbriani, Gianluca/B-6072-2015; Spitaleri, Claudio/K-3215-2015; Couder, Manoel/B-1439-2009; OI Chen, Jiunn-Wei/0000-0002-8650-9371; Garcia, Alejandro/0000-0001-6056-6645; Gazit, Doron/0000-0002-0350-3266; Balantekin, Akif Baha/0000-0002-2999-0111; Bemmerer, Daniel/0000-0003-0470-8367; Typel, Stefan/0000-0003-3238-9973; Imbriani, Gianluca/0000-0002-7037-6770; Spitaleri, Claudio/0000-0001-6256-9727; Couder, Manoel/0000-0002-0636-744X; Nollett, Kenneth/0000-0002-0671-320X FU U.S. Department of Energy; U.S. National Science Foundation; Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz Association FX We thank the Institute for Nuclear Theory for hosting and supporting the Solar Fusion II workshop and for providing technical assistance during the writing of this review. We thank A. Champagne, P. Descouvemont, A. Di Leva, and J. Toebbe for their generous help, including many discussions and advice or assistance with fitting. The research described in this review was supported by various agencies including the U.S. Department of Energy, the U.S. National Science Foundation, the Deutsche Forschungsgemeinschaft (cluster of excellence "Origin and Structure of the Universe'' and Grant No. SFB 634) and the Alliance Program EMMI of the Helmholtz Association. NR 381 TC 252 Z9 252 U1 13 U2 76 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD APR 12 PY 2011 VL 83 IS 1 BP 195 EP 245 DI 10.1103/RevModPhys.83.195 PG 51 WC Physics, Multidisciplinary SC Physics GA 757PX UT WOS:000290101300001 ER PT J AU Dodani, SC Domaille, DW Nam, CI Miller, EW Finney, LA Vogt, S Chang, CJ AF Dodani, Sheel C. Domaille, Dylan W. Nam, Christine I. Miller, Evan W. Finney, Lydia A. Vogt, Stefan Chang, Christopher J. TI Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE fluorescent sensor; molecular imaging; mobile metals; transition metal signaling ID AMYOTROPHIC-LATERAL-SCLEROSIS; HIPPOCAMPAL-NEURONS; CELLULAR COPPER; MENKES-DISEASE; LIVING CELLS; METALS; CHEMISTRY; RELEASE; TRAFFICKING; HOMEOSTASIS AB Dynamic fluxes of s-block metals like potassium, sodium, and calcium are of broad importance in cell signaling. In contrast, the concept of mobile transition metals triggered by cell activation remains insufficiently explored, in large part because metals like copper and iron are typically studied as static cellular nutrients and there are a lack of direct, selective methods for monitoring their distributions in living cells. To help meet this need, we now report Coppersensor-3 (CS3), a bright small-molecule fluorescent probe that offers the unique capability to image labile copper pools in living cells at endogenous, basal levels. We use this chemical tool in conjunction with synchotron-based microprobe X-ray fluorescence microscopy (XRFM) to discover that neuronal cells move significant pools of copper from their cell bodies to peripheral processes upon their activation. Moreover, further CS3 and XRFM imaging experiments show that these dynamic copper redistributions are dependent on calcium release, establishing a link between mobile copper and major cell signaling pathways. By providing a small-molecule fluorophore that is selective and sensitive enough to image labile copper pools in living cells under basal conditions, CS3 opens opportunities for discovering and elucidating functions of copper in living systems. C1 [Dodani, Sheel C.; Domaille, Dylan W.; Nam, Christine I.; Miller, Evan W.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nam, Christine I.; Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Finney, Lydia A.; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Finney, Lydia A.; Vogt, Stefan] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU Packard and Sloan Foundations; University of California; Amgen; Astra Zeneca; Novartis; National Institutes of Health [GM 79465, T32 GM066698]; Stauffer graduate fellowship; Department of Energy, Office of Science [DE-AC-02-06CH11357] FX We thank Orapim Tulyathan and Prof. Ehud Isacoff for providing neuronal cultures for preliminary survey studies, and Dr. Bryan Dickinson and Dr. Elizabeth New for help with one of the XRFM experiments. We thank the Packard and Sloan Foundations; the University of California, Berkeley Hellman Faculty Fund; Amgen; Astra Zeneca; Novartis; and the National Institutes of Health (GM 79465) for providing funding for this work. C.J.C. is an Investigator with the Howard Hughes Medical Institute. D. W. D. and E. W. M. were partially supported by a Chemical Biology Training Grant from the National Institutes of Health (T32 GM066698), and E. W. M. acknowledges a Stauffer graduate fellowship. Confocal fluorescence images were acquired at the Molecular Imaging Center at University of California, Berkeley. Work at the Advanced Photon Source was supported by the Department of Energy, Office of Science Contract DE-AC-02-06CH11357. NR 54 TC 91 Z9 91 U1 4 U2 49 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 12 PY 2011 VL 108 IS 15 BP 5980 EP 5985 DI 10.1073/pnas.1009932108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 748SZ UT WOS:000289413600017 PM 21444780 ER PT J AU Sanishvili, R Yoder, DW Pothineni, SB Rosenbaum, G Xu, SL Vogt, S Stepanova, S Makarov, OA Corcoran, S Benn, R Nagarajan, V Smith, JL Fischetti, RF AF Sanishvili, Ruslan Yoder, Derek W. Pothineni, Sudhir Babu Rosenbaum, Gerd Xu, Shenglan Vogt, Stefan Stepanova, Sergey Makarov (Oner Makapob), Oleg A. Corcoran, Stephen Benn, Richard Nagarajan, Venugopalan Smith, Janet L. Fischetti, Robert F. TI Radiation damage in protein crystals is reduced with a micron-sized X-ray beam SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microcrystallography; synchrotron radiation ID DIFFRACTION DATA; MINI-BEAM; MACROMOLECULAR CRYSTALS; SYNCHROTRON-RADIATION; GM/CA-CAT; CRYSTALLOGRAPHY; MICRODIFFRACTION; BEAMLINES; RADDOSE AB Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 mu m) to the smallest (0.84 mu m) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-mu m X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 mu m, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage. C1 [Sanishvili, Ruslan; Yoder, Derek W.; Pothineni, Sudhir Babu; Xu, Shenglan; Stepanova, Sergey; Makarov (Oner Makapob), Oleg A.; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L.; Fischetti, Robert F.] Argonne Natl Lab, Natl Inst Gen Med Sci, Biosci Div, Argonne, IL 60439 USA. [Sanishvili, Ruslan; Yoder, Derek W.; Pothineni, Sudhir Babu; Xu, Shenglan; Stepanova, Sergey; Makarov (Oner Makapob), Oleg A.; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L.; Fischetti, Robert F.] Argonne Natl Lab, Natl Canc Inst, Biosci Div, Collaborat Access Team, Argonne, IL 60439 USA. [Rosenbaum, Gerd] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Vogt, Stefan] Argonne Natl Lab, XRay Sci Div, Argonne, IL 60439 USA. [Smith, Janet L.] Univ Michigan, Life Sci Inst, Dept Biol Chem, Ann Arbor, MI 48109 USA. RP Fischetti, RF (reprint author), Argonne Natl Lab, Natl Inst Gen Med Sci, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rfischetti@anl.gov RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU National Institute of General Medical Sciences [Y1-GM-1104]; National Cancer Institute of the US National Institutes of Health [Y1-CO-1020]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX The authors thank Colin Nave, Elspeth Garman and Liz Duke for helpful discussions. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team is supported by the National Institute of General Medical Sciences (Y1-GM-1104) and the National Cancer Institute (Y1-CO-1020) of the US National Institutes of Health. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract DE-AC02-06CH11357. NR 35 TC 45 Z9 45 U1 0 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 12 PY 2011 VL 108 IS 15 BP 6127 EP 6132 DI 10.1073/pnas.1017701108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 748SZ UT WOS:000289413600043 PM 21444772 ER PT J AU Studer, MH DeMartini, JD Davis, MF Sykes, RW Davison, B Keller, M Tuskan, GA Wyman, CE AF Studer, Michael H. DeMartini, Jaclyn D. Davis, Mark F. Sykes, Robert W. Davison, Brian Keller, Martin Tuskan, Gerald A. Wyman, Charles E. TI Lignin content in natural Populus variants affects sugar release SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID BIOFUEL PRODUCTION; HYBRID POPLAR; FUEL ETHANOL; TENSION WOOD; BIOMASS; PRETREATMENT; BIOSYNTHESIS; EFFICIENCY; TREES; SACCHARIFICATION AB The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production. C1 [Studer, Michael H.; DeMartini, Jaclyn D.; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Studer, Michael H.; DeMartini, Jaclyn D.; Davis, Mark F.; Sykes, Robert W.; Davison, Brian; Keller, Martin; Tuskan, Gerald A.; Wyman, Charles E.] Oak Ridge Natl Lab, BESC BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Davis, Mark F.; Sykes, Robert W.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Plant Syst Biol Grp, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. EM charles.wyman@ucr.edu RI Keller, Martin/C-4416-2012; Davison, Brian/D-7617-2013; Tuskan, Gerald/A-6225-2011; OI Davison, Brian/0000-0002-7408-3609; Tuskan, Gerald/0000-0003-0106-1289; davis, mark/0000-0003-4541-9852 FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science for the BioEnergy Science Center (BESC) FX We thank Karen Huaying Xu (University of California Riverside) for help on the statistical analysis; Kristen Reichel, Steve Thomas, Justin Anderson, Geoffrey Turner, and Angela Ziebell [National Renewable Energy Laboratory (NREL)] for HTP screening of plant cell-wall chemistry traits; Lee Gunter, Sara Jawdy, Nancy English, and Xiaohan Yang [Oak Ridge National Laboratory (ORNL)] and Gancho Slavov and Steve DiFazio (West Virginia University) for sample collection, design, preparation, and shipping; and Susan Holladay (Oak Ridge National Laboratory) for the Laboratory Information Management System data organization. The authors would also like to extend their appreciation to Eugene Nothnagel (University of California Riverside) and Simone Brethauer [Eidgenossiche Technische Hochschule (Switzerland)] for their valuable discussions and insights. Support by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science for the BioEnergy Science Center (BESC) made this research possible. NR 47 TC 225 Z9 234 U1 9 U2 103 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 12 PY 2011 VL 108 IS 15 BP 6300 EP 6305 DI 10.1073/pnas.1009252108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 748SZ UT WOS:000289413600072 PM 21444820 ER PT J AU Liu, YZ Chiaramonti, AN Schreiber, DK Yang, H Parkin, SSP Heinonen, OG Petford-Long, AK AF Liu, Yuzi Chiaramonti, Ann N. Schreiber, Daniel K. Yang, Hyunsoo Parkin, Stuart S. P. Heinonen, Olle G. Petford-Long, Amanda K. TI Effect of annealing and applied bias on barrier shape in CoFe/MgO/CoFe tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; METAL-OXIDE INTERFACES; THERMAL-STABILITY; ROOM-TEMPERATURE; HIGH-RESOLUTION; MAGNETORESISTANCE; MGO; HOLOGRAPHY; FILMS; TEM AB Energy-filtered transmission electron microscopy and electron holography were used to study changes in the MgO tunnel barrier of CoFe/MgO/CoFe magnetic tunnel junctions (MTJs) as a function of annealing and in situ applied electrical bias. Annealing was found to increase the homogeneity and crystallinity of the MgO tunnel barrier. Cobalt, oxygen, and trace amounts of iron diffused into the MgO upon annealing. Annealing also resulted in a reduction of the tunneling barrier height, and decreased the resistance of the annealed MTJ relative to that of the as-grown sample. In situ off-axis electron holography was employed to image the barrier potential profile of a MTJ directly, with the specimen under electrical bias. Varying the bias voltage from -1.5 to +1.5 V was found to change the asymmetry of the barrier potential and decrease the effective barrier width as a result of charge accumulation at the MgO-CoFe interface. C1 [Liu, Yuzi; Chiaramonti, Ann N.; Schreiber, Daniel K.; Heinonen, Olle G.; Petford-Long, Amanda K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Schreiber, Daniel K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Yang, Hyunsoo] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore. [Parkin, Stuart S. P.] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. [Petford-Long, Amanda K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Liu, YZ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yuziliu@anl.gov RI Yang, Hyunsoo/F-5149-2010; Parkin, Stuart/D-2521-2012; Chiaramonti, Ann/E-7459-2013; Petford-Long, Amanda/P-6026-2014; Liu, Yuzi/C-6849-2011; OI Yang, Hyunsoo/0000-0003-0907-2898; Chiaramonti, Ann/0000-0001-9933-3267; Petford-Long, Amanda/0000-0002-3154-8090; Heinonen, Olle/0000-0002-3618-6092 FU US DOE [DE-AC02-06CH11357] FX The authors thank Kenneth D'Aquila for help in fitting the phase-shift curves. Argonne National Laboratory is operated under Contract No. fDE-AC02-06CH11357 by the US DOE. The electron microscopy was accomplished in the Argonne National Laboratory Electron Microscopy Center for Materials Research. NR 67 TC 10 Z9 10 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 12 PY 2011 VL 83 IS 16 AR 165413 DI 10.1103/PhysRevB.83.165413 PG 9 WC Physics, Condensed Matter SC Physics GA 749SR UT WOS:000289490300007 ER PT J AU Ye, F Fishman, RS Fernandez-Baca, JA Podlesnyak, AA Ehlers, G Mook, HA Wang, YQ Lorenz, B Chu, CW AF Ye, Feng Fishman, Randy S. Fernandez-Baca, Jaime A. Podlesnyak, Andrey A. Ehlers, Georg Mook, Herbert A. Wang, Yaqi Lorenz, Bernd Chu, C. W. TI Long-range magnetic interactions in the multiferroic antiferromagnet MnWO4 SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRICITY AB The spin-wave excitations of the multiferroic MnWO4 have been measured in its low-temperature collinear commensurate phase using high-resolution inelastic neutron scattering. These excitations can be well described by a Heisenberg model with competing long-range exchange interactions and a single-ion anisotropy term. The magnetic interactions are strongly frustrated within the zigzag spin chain along the c axis and between chains along the a axis, while the coupling between spin along the b axis is much weaker. The balance of these interactions results in the noncollinear incommensurate spin structure associated with the magnetoelectric effect, and the perturbation of the magnetic interactions leads to the observed rich phase diagrams of the chemically doped materials. This delicate balance can also be tuned by the application of external electric or magnetic fields to achieve magnetoelectric control of this type of materials. C1 [Ye, Feng; Fernandez-Baca, Jaime A.; Podlesnyak, Andrey A.; Ehlers, Georg; Mook, Herbert A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Fishman, Randy S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Fernandez-Baca, Jaime A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Wang, Yaqi; Lorenz, Bernd; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Wang, Yaqi; Lorenz, Bernd; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. RP Ye, F (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM yef1@ornl.gov RI Instrument, CNCS/B-4599-2012; Ye, Feng/B-3210-2010; Podlesnyak, Andrey/A-5593-2013; Fishman, Randy/C-8639-2013; Fernandez-Baca, Jaime/C-3984-2014; Ehlers, Georg/B-5412-2008 OI Ye, Feng/0000-0001-7477-4648; Podlesnyak, Andrey/0000-0001-9366-6319; Fernandez-Baca, Jaime/0000-0001-9080-5096; Ehlers, Georg/0000-0003-3513-508X FU Division of Scientific User Facilities of the Office of Basic Energy Sciences, U.S. Department of Energy; T. L. L. Temple Foundation; J. J. and R. Moores Endowment; state of Texas through TCSUH; US DOE [DE-AC03-76SF00098] FX This work was partially supported by the Division of Scientific User Facilities of the Office of Basic Energy Sciences, U.S. Department of Energy. Work at Houston is supported in part by the T. L. L. Temple Foundation, the J. J. and R. Moores Endowment, and the state of Texas through TCSUH and at LBNL through the US DOE, Contract No. DE-AC03-76SF00098. NR 33 TC 42 Z9 42 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 12 PY 2011 VL 83 IS 14 AR 140401 DI 10.1103/PhysRevB.83.140401 PG 4 WC Physics, Condensed Matter SC Physics GA 749RY UT WOS:000289488300001 ER PT J AU Ollier, J Simpson, J Riley, MA Paul, ES Wang, X Aguilar, A Carpenter, MP Darby, IG Hartley, DJ Janssens, RVF Kondev, FG Lauritsen, T Nolan, PJ Petri, M Rees, JM Rigby, SV Teal, C Thomson, J Unsworth, C Zhu, S Kardan, A Ragnarsson, I AF Ollier, J. Simpson, J. Riley, M. A. Paul, E. S. Wang, X. Aguilar, A. Carpenter, M. P. Darby, I. G. Hartley, D. J. Janssens, R. V. F. Kondev, F. G. Lauritsen, T. Nolan, P. J. Petri, M. Rees, J. M. Rigby, S. V. Teal, C. Thomson, J. Unsworth, C. Zhu, S. Kardan, A. Ragnarsson, I. TI Structure changes in Er-160 from low to ultrahigh spin SO PHYSICAL REVIEW C LA English DT Article ID PARTICLE-HOLE EXCITATIONS; ROTATIONAL BANDS; DETECTOR ARRAYS; NUCLEI; STATES; SPECTROSCOPY; DY-156; TERMINATION; SYSTEMATICS; ALIGNMENT AB A spectroscopic investigation of the gamma decays from excited states in Er-160 has been performed in order to study the changing structural properties exhibited from low spin up toward ultrahigh spin (I similar to 60 h). The nucleus Er-160 was populated by the reaction Cd-116(Ca-48,4n gamma) at a beam energy of 215 MeV, and resulting gamma decays were studied using the Gammasphere spectrometer. New rotational structures and extensions to existing bands were observed, revealing a diverse range of quasiparticle configurations, which are discussed in terms of the cranked shell model. At spins around 50h there is evidence for oblate states close to the yrast line. Three rotational bands that have the characteristics of strongly deformed triaxial structures are observed, marking a return to collectivity at even higher spin. The high-spin data are interpreted within the framework of cranked Nilsson-Strutinsky calculations. C1 [Ollier, J.; Simpson, J.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Riley, M. A.; Wang, X.; Aguilar, A.; Teal, C.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Paul, E. S.; Nolan, P. J.; Petri, M.; Rees, J. M.; Rigby, S. V.; Thomson, J.; Unsworth, C.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Carpenter, M. P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Carpenter, M. P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Kardan, A.] Ferdowsi Univ Mashhad, Fac Sci, Dept Phys, Mashhad, Iran. [Kardan, A.; Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. RP Ollier, J (reprint author), STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RI Carpenter, Michael/E-4287-2015; Petri, Marina/H-4630-2016 OI Carpenter, Michael/0000-0002-3237-5734; Petri, Marina/0000-0002-3740-6106 FU US National Science Foundation [PHY-0756474, PHY-0554762]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834, DE-AC02-05CH11231, DE-FG02-96ER40983]; United Kingdom Science and Technology Facilities Council; Swedish Science Research Council; State of Florida FX The authors acknowledge Paul Morrall for preparing the targets, and the ATLAS operations staff for assistance. This work has been supported in part by the US National Science Foundation under grants No. PHY-0756474 (FSU) and PHY-0554762 (USNA), and the US Department of Energy, Office of Nuclear Physics, under contracts No. DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (UMD), DE-AC02-05CH11231 (LBL), and DE-FG02-96ER40983(UTK), the United Kingdom Science and Technology Facilities Council, the Swedish Science Research Council, and the State of Florida. NR 52 TC 10 Z9 10 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 12 PY 2011 VL 83 IS 4 AR 044309 DI 10.1103/PhysRevC.83.044309 PG 18 WC Physics, Nuclear SC Physics GA 750BH UT WOS:000289518300003 ER PT J AU Balitsky, I AF Balitsky, Ian TI Mellin representation of the graviton bulk-to-bulk propagator in AdS space SO PHYSICAL REVIEW D LA English DT Article AB A Mellin-type representation of the graviton bulk-to-bulk propagator from E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli [Nucl. Phys. B562, 330 (1999)] in terms of the integral over the product of bulk-to-boundary propagators is derived. C1 [Balitsky, Ian] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Balitsky, Ian] Jefferson Lab, Theory Grp, Newport News, VA 23606 USA. RP Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM balitsky@jlab.org FU Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX The author is grateful to J. Penedones for valuable discussions. This work was supported by Contract No. DE-AC05-06OR23177 under which the Jefferson Science Associates, LLC operates the Thomas Jefferson National Accelerator Facility. NR 14 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 12 PY 2011 VL 83 IS 8 AR 087901 DI 10.1103/PhysRevD.83.087901 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750BT UT WOS:000289519900011 ER PT J AU Radyushkin, AV AF Radyushkin, A. V. TI Generalized parton distributions and their singularities SO PHYSICAL REVIEW D LA English DT Article ID VIRTUAL COMPTON-SCATTERING; HARD EXCLUSIVE PROCESSES; DUAL PARAMETRIZATION; ELECTROPRODUCTION; GPDS; QCD; TOMOGRAPHY; NUCLEON; MODEL AB A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function f(beta)/beta rather than with the usual parton density f(beta). This results in a nonintegrable singularity at beta = 0 exaggerated by the fact that f(beta)'s, on their own, have a singular beta(-a) Regge behavior for small beta. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs H(x, xi) that are finite and continuous at the "border point" x = xi. Using a simple input forward distribution, we illustrate implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the beta = 0 singularities is proposed that is based on the separation of the initial single DD f(beta, alpha) into the "plus" part [f(beta, alpha)](+) and the D term. It is demonstrated that the "DD+D" separation method allows one to (re) derive GPD sum rules that relate the difference between the forward distribution f(x) = H(x, 0) and the border function H(x, x) with the D-term function D(alpha). C1 [Radyushkin, A. V.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Radyushkin, A. V.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Radyushkin, A. V.] Joint Inst Nucl Res Dubna, Bogoliubov Lab Theoret Phys, Dubna, Russia. RP Radyushkin, AV (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. FU DOE under Jefferson Science Associates, LLC, operates Jefferson Laboratory [DE-AC05-06OR23177] FX I would like to express my deep gratitude to A. P. Szczepaniak for numerous and intensive communications about Ref. [21] that initiated this work. I thank D. Muller, M. V. Polyakov, K. M. Semenov-Tian-Shansky, and O. V. Teryaev for stimulating discussions of GPD sum rules. I am grateful to I. V. Anikin, I. I. Balitsky, A. V. Belitsky, S.J. Brodsky, M. Burkardt, M. Diehl, M. Guidal, V. Guzey, C. E. Hyde, C.-R. Ji, X. D. Ji, P. Kroll, S. Liuti, J.A. Miller, I. V. Musatov, M. V. Polyakov, A. Schafer, M. A. Strikman, L. Szymanowski, A. W. Thomas, B. C. Tiburzi, M. Vanderhaeghen, and C. Weiss for many inspiring discussions and communications that we had over the years, and which eventually influenced this work. This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Laboratory. NR 42 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 12 PY 2011 VL 83 IS 7 AR 076006 DI 10.1103/PhysRevD.83.076006 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750BL UT WOS:000289518900007 ER PT J AU Herng, TS Wong, MF Qi, DC Yi, JB Kumar, A Huang, A Kartawidjaja, FC Smadici, S Abbamonte, P Sanchez-Hanke, C Shannigrahi, S Xue, JM Wang, J Feng, YP Rusydi, A Zeng, KY Ding, J AF Herng, Tun Seng Wong, Meng Fei Qi, Dongchen Yi, Jiabao Kumar, Amit Huang, Alicia Kartawidjaja, Fransiska Cecilia Smadici, Serban Abbamonte, Peter Sanchez-Hanke, Cecilia Shannigrahi, Santiranjan Xue, Jun Min Wang, John Feng, Yuan Ping Rusydi, Andrivo Zeng, Kaiyang Ding, Jun TI Mutual Ferromagnetic-Ferroelectric Coupling in Multiferroic Copper-Doped ZnO SO ADVANCED MATERIALS LA English DT Article ID THIN-FILMS AB A mutual ferromagnetic and ferroelectric coupling (multiferroic behavior) in Cu-doped ZnO is demonstrated via deterministic control of Cu doping and defect engineering. The coexistence of multivalence Cu ions and oxygen vacancies is important to multiferroic behaviors in ZnO:Cu. The samples show clear ferroelectric and ferromagnetic domain patterns. These domain structures may be written reversibly via electric and magnetic bias. C1 [Qi, Dongchen; Feng, Yuan Ping; Rusydi, Andrivo] Natl Univ Singapore, Dept Phys, NUSSNI NanoCore, Singapore 117542, Singapore. [Herng, Tun Seng; Yi, Jiabao; Kartawidjaja, Fransiska Cecilia; Xue, Jun Min; Wang, John; Ding, Jun] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119260, Singapore. [Wong, Meng Fei; Kumar, Amit; Zeng, Kaiyang] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore. [Qi, Dongchen; Rusydi, Andrivo] Natl Univ Singapore, Singapore Synchrotron Light Source, Singapore 117603, Singapore. [Huang, Alicia; Shannigrahi, Santiranjan] Inst Mat Res & Engn, Singapore 117602, Singapore. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Smadici, Serban; Abbamonte, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Sanchez-Hanke, Cecilia] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Rusydi, A (reprint author), Natl Univ Singapore, Dept Phys, NUSSNI NanoCore, Singapore 117542, Singapore. EM phyandri@nus.edu.sg; mpezk@nus.edu.sg; msedingj@nus.edu.sg RI Ding, Jun/C-5172-2011; Qi, Dongchen/A-7052-2008; Feng, Yuan Ping /A-4507-2012; Zeng, Kaiyang/C-3413-2008; Rusydi, Andrivo/I-1849-2016; OI Qi, Dongchen/0000-0001-8466-0257; Feng, Yuan Ping /0000-0003-2190-2284; Zeng, Kaiyang/0000-0002-3348-0018; Yi, Jiabao/0000-0001-5299-9897 FU NRF-CRP [R284-000-056-281]; Ministry of Education (Singapore) [R265-000-257-112]; NUS YIA; NUS cross faculty; FRC; NUS [C-380-003-003-001, A*STAR/MOE RP 3979908M, A*STAR 12 105 0038]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-06ER46285]; NSLS [DE-AC02-98CH10886]; [NRF2008NRF-CRP002-024] FX J. D. and T. S. H. acknowledge the support by NRF-CRP R284-000-056-281. K. Y. Z., M. F. W., and A. K. acknowledge the Academic Research Funding by Ministry of Education (Singapore) for financial support under Grant No. R265-000-257-112. A. R. and Q. D. C. acknowledge the support by NRF2008NRF-CRP002-024, NUS YIA, NUS cross faculty, and FRC. The work partly performed at SSLS are supported by NUS Core Support Grants No. C-380-003-003-001, No. A*STAR/MOE RP 3979908M, and No. A*STAR 12 105 0038. The works at NSLS were supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Grant No. DE-FG02-06ER46285, with use of the NSLS supported by Contract No. DE-AC02-98CH10886. NR 24 TC 46 Z9 46 U1 2 U2 63 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 12 PY 2011 VL 23 IS 14 BP 1635 EP + DI 10.1002/adma.201004519 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 745ZY UT WOS:000289211600007 PM 21472791 ER PT J AU Griffini, G Douglas, JD Piliego, C Holcombe, TW Turri, S Frechet, JMJ Mynar, JL AF Griffini, Gianmarco Douglas, Jessica D. Piliego, Claudia Holcombe, Thomas W. Turri, Stefano Frechet, Jean M. J. Mynar, Justin L. TI Long-Term Thermal Stability of High-Efficiency Polymer Solar Cells Based on Photocrosslinkable Donor-Acceptor Conjugated Polymers SO ADVANCED MATERIALS LA English DT Article ID BULK HETEROJUNCTION POLYMER; ORGANIC PHOTOVOLTAICS; MORPHOLOGY; PERFORMANCE; DEVICES; RECOMBINATION; STABILIZATION; POLYTHIOPHENE; TEMPERATURE; SEPARATION AB Highly efficient polymer solar cells based on novel photocrosslinkable donor-acceptor conjugated polymers are fabricated and their long-term thermal stability is reported. After 72 h of thermal annealing at 150 degrees C, a stable power conversion efficiency as high as 4.7% is maintained. The control of active layer morphology and device performance through annealing is correlated with the synthetic design of the photocrosslinkable polymer. C1 [Griffini, Gianmarco; Douglas, Jessica D.; Piliego, Claudia; Holcombe, Thomas W.; Frechet, Jean M. J.; Mynar, Justin L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Griffini, Gianmarco; Douglas, Jessica D.; Piliego, Claudia; Holcombe, Thomas W.; Frechet, Jean M. J.; Mynar, Justin L.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Griffini, Gianmarco; Douglas, Jessica D.; Piliego, Claudia; Holcombe, Thomas W.; Frechet, Jean M. J.; Mynar, Justin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Griffini, Gianmarco; Turri, Stefano] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, I-20133 Milan, Italy. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu; jmynar@gmail.com RI Griffini, Gianmarco/F-4696-2011; OI Griffini, Gianmarco/0000-0002-9924-1722; Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; Fondazione Banca del Monte di Lombardia; National Science Foundation; Natural Sciences and Engineering Research Council of Canada FX This work is part of the "Plastics Electronics" program at Lawrence Berkeley National Laboratory and was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 (all experimental work). G. G. thanks Fondazione Banca del Monte di Lombardia; T. W. H. thanks the National Science Foundation, and J. D. D. thanks the Natural Sciences and Engineering Research Council of Canada for research fellowships. The authors thank Dr. Jill Millstone and Claire Woo for helpful discussions. NR 46 TC 90 Z9 94 U1 2 U2 74 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 12 PY 2011 VL 23 IS 14 BP 1660 EP + DI 10.1002/adma.201004743 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 745ZY UT WOS:000289211600012 PM 21472794 ER PT J AU Martin, Z Jimenez, I Gomez-Fatou, MA West, M Hitchcock, AP AF Martin, Zulima Jimenez, Ignacio Gomez-Fatou, Marian A. West, Marcia Hitchcock, Adam P. TI Interfacial Interactions in Polypropylene-Organoclay-Elastomer Nanocomposites: Influence of Polar Modifications on the Location of the Clay SO MACROMOLECULES LA English DT Article ID POLYMER MELT INTERCALATION; ADVANCED LIGHT-SOURCE; POLYPROPYLENE/MONTMORILLONITE NANOCOMPOSITES; FUNCTIONALIZED POLYPROPYLENES; SILICATE NANOCOMPOSITES; LAYERED SILICATE; PLASMA TREATMENT; COLD-PLASMA; G-MA; MORPHOLOGY AB A detailed, chemically sensitive study of the morphology of nanocomposites prepared by melt blending of polypropylene (PP) reinforced with an organically modified nanoclay (montmorillonite 20A) and toughened with poly(styrene-b-ethylenebutylene-b-styrene) (SEBS) is reported. Polar functionalities were incorporated in two ways: (i) additional compatibilizers: polypropylene-graft-maleic anhydride (PP-g-MA) and PP surface modified by N-2-plasma treatment (PP*) and (ii) superficial cold N-2 plasma modification of the elastomer SEBS (SEBS*). In a previous study on the ternary composite PP/20A/SEBS [Martin et al. Macromolecules 2010, 43, 448] the montmorillonite 20A was found to be located inside the elastomer domains and not in direct contact with the PP phase. With the addition of polar functionalities, the nanoclay locates at the PP SEBS interface rather than interacting just with the SEBS elastomer. Depending on the nature, content, and distribution of the polar groups in the material, the 20A locates selectively in the phase it has more affinity with. The different interactions between the polymer components and the nanoclay have been examined with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission X-ray microscopy (STXM). The latter provides simultaneously images with similar to 30 nm spatial resolution and quantitative compositional information at the same spatial resolution. Together this provides direct experimental evidence of the polar interactions in the composites. The influence of the nanoclay on the domain distributions of the elastomer is also discussed. C1 [Martin, Zulima; Hitchcock, Adam P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Martin, Zulima; Hitchcock, Adam P.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Jimenez, Ignacio] ICMM CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain. [Gomez-Fatou, Marian A.] ICTP CSIC, Inst Ciencia & Tecnol Polimeros, Madrid 28006, Spain. [West, Marcia] McMaster Univ, Hamilton, ON L8S 4K1, Canada. RP Martin, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM zmartin@lbl.gov RI Jimenez, Ignacio/F-7422-2010; GOMEZ-FATOU RODRIGUEZ, MARIAN/C-9900-2012 OI Jimenez, Ignacio/0000-0001-5605-3185; GOMEZ-FATOU RODRIGUEZ, MARIAN/0000-0002-0212-0634 FU Office of Science, Department of Energy [DE-AC02-05CH11231]; MICINN [MAT2009-13625] FX We thank David Kilcoyne and Tolek Tyliszczak for expert maintenance of STXM 5.3.2.2 at the ALS. The ALS is supported by the Director of the Office of Science, Department of Energy, under Contract No. DE-AC02-05CH11231. Plasma modification of the polymers was financed by MICINN project MOS-PLADER MAT2009-13625. NR 43 TC 17 Z9 17 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 12 PY 2011 VL 44 IS 7 BP 2179 EP 2189 DI 10.1021/ma102707f PG 11 WC Polymer Science SC Polymer Science GA 743OR UT WOS:000289028500059 ER PT J AU Hur, K Jeong, C Winkler, RG Lacevic, N Gee, RH Yoon, DY AF Hur, Kahyun Jeong, Cheol Winkler, Roland G. Lacevic, Naida Gee, Richard H. Yoon, Do Y. TI Chain Dynamics of Ring and Linear Polyethylene Melts from Molecular Dynamics Simulations SO MACROMOLECULES LA English DT Article ID POLYMER MELTS; VISCOELASTIC PROPERTIES; COMPUTER-SIMULATION; FIXED OBSTACLES; SELF-DIFFUSION; LENGTH; ROUSE; POLYSTYRENES; REPTATION; VISCOSITY AB The dynamical characteristics of ring and linear polyethylene (PE) molecules in the melt have been studied by employing atomistic molecular dynamics simulations for linear PEs with carbon atom numbers N up to 500 and rings with N up to 1500. The single-chain dynamic structure factors S(q,t) from entangled linear PE melt chains, which show strong deviations from the Rouse predictions, exhibit quantitative agreement with experimental results. Ring PE melt chains also show a transition from the Rouse-type to entangled dynamics, as indicated by the characteristics of S(q,1) and mean-square monomer displacements g(1)(t). For entangled ring PE melts, we observe g(1)(t) similar to t(0.35) and the chain-length dependence of diffusion coefficients D-N proportional to N-1.9, very similar to entangled linear chains. Moreover, the diffusion coefficients D-N remain larger for the entangled rings than the corresponding entangled linear chains, due to about a 3-fold larger chain length for entanglement. Since rings reptate, our results point toward other important dynamical modes, based on mutual relaxations of neighboring chains, for entangled polymers in general. do not C1 [Winkler, Roland G.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. [Hur, Kahyun; Jeong, Cheol; Yoon, Do Y.] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea. [Lacevic, Naida; Gee, Richard H.] Lawrence Livermore Natl Lab, Chem Sci Div, Livermore, CA 94550 USA. RP Winkler, RG (reprint author), Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. EM rwinkler@fz-juelich.de; dyyoon@snu.ac.kr RI Winkler, Roland/G-4059-2013; OI Winkler, Roland/0000-0002-7513-0796; Jeong, Cheol/0000-0003-0228-3529 FU National Research Foundation of Korea [R01-2008-000-11971-0]; Korea Institute of Science and Technology Information [KSC-2009-S03-0006]; Chemistry and Molecular Engineering Program of Brain Korea 21 Project; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank D. Richter and K. Kremer for helpful discussions and acknowledge the financial support by the National Research Foundation of Korea (R01-2008-000-11971-0), Korea Institute of Science and Technology Information (KSC-2009-S03-0006), and the Chemistry and Molecular Engineering Program of Brain Korea 21 Project. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 45 TC 47 Z9 47 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD APR 12 PY 2011 VL 44 IS 7 BP 2311 EP 2315 DI 10.1021/ma102659x PG 5 WC Polymer Science SC Polymer Science GA 743OR UT WOS:000289028500075 ER PT J AU Philip, V Harris, J Adams, R Nguyen, D Spiers, J Baudry, J Howell, EE Hinde, RJ AF Philip, Vivek Harris, Jason Adams, Rachel Don Nguyen Spiers, Jeremy Baudry, Jerome Howell, Elizabeth E. Hinde, Robert J. TI A Survey of Aspartate-Phenylalanine and Glutamate-Phenylalanine Interactions in the Protein Data Bank: Searching for Anion-pi Pairs SO BIOCHEMISTRY LA English DT Article ID ALPHA-HELICAL PEPTIDES; CATION-PI; AROMATIC RINGS; AB-INITIO; ENERGY DECOMPOSITION; HYDROGEN-BONDS; BETA-SHEET; HEXAFLUOROBENZENE INTERACTION; MOLECULAR-INTERACTIONS; STACKING INTERACTIONS AB Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-pi pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R, et al. (2007) J. Phys. Chew. B 111, 8242-8249]. To study the role of anion-pi interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe Asp or Glu pairs separated by less than 7 angstrom in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/rnol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-pi pairs are found throughout protein structures, in helices as well as beta strands. Numerous pairs also had nearby cation-pi interactions as well as potential pi-pi stacking. While more than 1000 structures did not contain an anion-pi pair, the 3134 remaining structures contained approximately 2.6 anion-pi pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein. C1 [Don Nguyen; Spiers, Jeremy; Baudry, Jerome; Howell, Elizabeth E.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Philip, Vivek; Harris, Jason; Adams, Rachel] Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Program, Oak Ridge, TN 37830 USA. [Hinde, Robert J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Harris, Jason; Spiers, Jeremy; Baudry, Jerome] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. RP Howell, EE (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM lzh@utk.edu RI Adams, Rachel/D-3644-2012; OI Philip, Vivek/0000-0001-5126-707X FU NSF IGERT [0801540] FX We thank Jordan Grubbs for construction of the images in Figure 8. J. H. was supported by an NSF IGERT grant (no. 0801540) entitled "Scalable Computing and Leading Edge Innovative Technologies (SCALE-IT) for Biology". NR 89 TC 43 Z9 43 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 12 PY 2011 VL 50 IS 14 BP 2939 EP 2950 DI 10.1021/bi200066k PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 743OW UT WOS:000289029200025 PM 21366334 ER PT J AU Papandrew, AB Chisholm, CRI Elgammal, RA Ozer, MM Zecevic, SK AF Papandrew, Alexander B. Chisholm, Calum R. I. Elgammal, Ramez A. Oezer, Mustafa M. Zecevic, Strahinja K. TI Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4 SO CHEMISTRY OF MATERIALS LA English DT Article DE catalysis and catalysts; nanomaterials (nanopartides; nanotubes; etc.); ionic conductors (including solid (inorganic); polymer electrolytes ID CHEMICAL-VAPOR-DEPOSITION; RAY PHOTOELECTRON-SPECTROSCOPY; ONE-STEP PREPARATION; PARTICLE-SIZE; THIN-FILMS; SUPPORTED CATALYSTS; TRANSITION-METALS; PT(ACAC)(2); PALLADIUM; ALUMINA AB We demonstrate cathodes for solid acid fuel cells fabricated by vapor deposition of platinum from the metalorganic precursor Pt(acac)(2) on the solid acid CsH2PO4 at 210 degrees C. A network of platinum nanoparticles with diameters of 2-4 nm serves as both the oxygen reduction catalyst and the electronic conductor in the electrode. Electrodes with a platinum content of 1.75 mg/cm(2) are more active for oxygen reduction than previously retorted electrodes with a platinum content of 7.5 mg/cm(2). Electrodes containing < 1.75 mg/cm(2) of platinum show significantly reduced catalytic activity and increased ohmic resistance indicative of a highly discontinuous catalytic-electronic platinum network. C1 [Chisholm, Calum R. I.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Papandrew, Alexander B.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Elgammal, Ramez A.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Oezer, Mustafa M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zecevic, Strahinja K.] LiOx Inc, Pasadena, CA 91106 USA. RP Papandrew, AB (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM apapandrew@utk.edu NR 52 TC 23 Z9 23 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 12 PY 2011 VL 23 IS 7 BP 1659 EP 1667 DI 10.1021/cm101147y PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 743OY UT WOS:000289029400007 ER PT J AU Syzdek, JS Armand, MB Falkowski, P Gizowska, M Karlowicz, M Lukaszuk, L Marcinek, ML Zalewska, A Szafran, M Masquelier, C Tarascon, JM Wieczorek, WG Zukowska, ZG AF Syzdek, Jaroslaw S. Armand, Michel B. Falkowski, Pawel Gizowska, Magdalena Karlowicz, Maciej Lukaszuk, Lukasz Marcinek, Marek L. Zalewska, Aldona Szafran, Mikolaj Masquelier, Christian Tarascon, Jean M. Wieczorek, Wladyslaw G. Zukowska, Zofia G. TI Reversed Phase Composite Polymeric Electrolytes Based on Poly(oxyethylene) SO CHEMISTRY OF MATERIALS LA English DT Article DE characterization of materials; composites; ionic conductors ID AC CONDUCTIVITY; POLY(ETHYLENE OXIDE); IONIC-CONDUCTIVITY; IMPEDANCE SPECTROSCOPY; TEMPERATURE-DEPENDENCE; MOLECULAR-WEIGHT; SOLID ELECTROLYTES; MEASUREMENT MODELS; LITHIUM BATTERIES; BETA-ALUMINA AB In this paper, a concept and structural characterization of novel class of composite polymeric electrolytes is systematically presented. These are polymer-in-ceramic composites consisting of porous alumina matrices, distinguished by different pore architectures (anodized alumina with narrow and well-ordered parallel pores as well as random structures obtained by various methods from alumina grains by sintering); and a complex of lithium tetraoxochlorate and poly(oxyethylene) of different molecular weight. These new electrolytes exhibit room temperature conductivities exceeding 10(-3)S.cm(-1), low resistance of the interface with lithium electrode, excellent thermal and electrochemical stability. We show combined structural (environmental XRD), thermal and conductivity studies on composite electrolyte systems that were never published before and provide a new explanation of the enhancement of conductivity at subambient temperatures. Feasibility of cells employing electrodes prepared directly on the electrolyte support with a novel synthesis method (MPCVD) is also emphasized. C1 [Syzdek, Jaroslaw S.; Falkowski, Pawel; Gizowska, Magdalena; Karlowicz, Maciej; Lukaszuk, Lukasz; Marcinek, Marek L.; Zalewska, Aldona; Szafran, Mikolaj; Wieczorek, Wladyslaw G.; Zukowska, Zofia G.] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland. [Syzdek, Jaroslaw S.; Armand, Michel B.; Karlowicz, Maciej; Lukaszuk, Lukasz; Masquelier, Christian; Tarascon, Jean M.] Univ Picardie Jules Verne, Lab Reactivite & Chim Solides, F-80039 Amiens, France. [Syzdek, Jaroslaw S.] Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Syzdek, JS (reprint author), Warsaw Univ Technol, Fac Chem, Ul Noakowskiego 3, PL-00664 Warsaw, Poland. EM jsyzdek@lbl.gov RI Tarascon, Jean-Marie/B-5952-2016; MASQUELIER, Christian/G-4763-2011 FU European Union; European Social Fund FX This research project was realized within ALISTORE European Research Institute in collaboration with Special Ceramics Research Group from Warsaw University of Technology, Faculty of Chemistry. Staff from Laboratoire de Reactivite et de Chimie des Solides (Amiens), Special Ceramics Research Group and Polymer Ionics Research Group (Warsaw), is acknowledged for fruitful discussions and help with multiple experiments. J.S. thanks the European Union for its support in the framework of European Social Fund through the Warsaw University of Technology Development Program. NR 88 TC 13 Z9 13 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 12 PY 2011 VL 23 IS 7 BP 1785 EP 1797 DI 10.1021/cm103021r PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 743OY UT WOS:000289029400021 ER PT J AU Koenig, GM Belharouak, I Deng, HX Sun, YK Amine, K AF Koenig, Gary M., Jr. Belharouak, Ilias Deng, Haixai Sun, Yang-Kook Amine, Khalil TI Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials SO CHEMISTRY OF MATERIALS LA English DT Article DE gradient materials; cathode; tailored synthesis; transition metal oxide; lithium-ion battery ID POSITIVE ELECTRODE MATERIAL; ELECTROCHEMICAL PROPERTIES; SECONDARY BATTERIES; HIGH-ENERGY; MANGANESE; COPRECIPITATION; PERFORMANCE; CAPACITY; NICKEL AB We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the pas-tides was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li(1.2)-(Mn(0.62)Ni(0).(38))(0.8)O(2), which was electrochemically evaluated as the active cathode material in a lithium battery. The Li(1.2)(Mn(0.62)Ni(0.38))(0.8)O(2) material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions. C1 [Koenig, Gary M., Jr.; Belharouak, Ilias; Deng, Haixai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Sun, Yang-Kook] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. RP Koenig, GM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gkoenig@anl.gov; belharouak@anl.gov RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; OI Sun, Yang-Kook/0000-0002-0117-0170; Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy; FreedomCAR, and Vehicle Technologies Office; UChicago Argonne, LLC [ACOZ-06CH11357] FX This research was funded by the U.S. Department of Energy, FreedomCAR, and Vehicle Technologies Office. We acknowledge Dr. Nancy L. Dietz Rago for SEM and EDXS analysis of particle cross-sections, and Dr. Huiming M. Wu for helpful discussions. Some electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-ACOZ-06CH11357. NR 33 TC 59 Z9 61 U1 7 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 12 PY 2011 VL 23 IS 7 BP 1954 EP 1963 DI 10.1021/cm200058c PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 743OY UT WOS:000289029400040 ER PT J AU Shambat, G Ellis, B Mayer, MA Majumdar, A Haller, EE Vuckovic, J AF Shambat, Gary Ellis, Bryan Mayer, Marie A. Majumdar, Arka Haller, Eugene E. Vuckovic, Jelena TI Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator SO OPTICS EXPRESS LA English DT Article ID NANOCAVITY; COMPACT AB We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz. (C)2011 Optical Society of America C1 [Shambat, Gary; Ellis, Bryan; Majumdar, Arka; Vuckovic, Jelena] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA. RP Shambat, G (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM gshambat@stanford.edu FU Interconnect Focus Center; AFOSR MURI for Complex and Robust On-chip Nanophotonics [FA9550-09-1-0704]; Stanford Graduate Fellowship; National Science Foundation (NSF) GRFP; DoD, Air Force Office of Scientific Research [32 CFR 168a]; National Science Foundation; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge the support of the Interconnect Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity, and of the AFOSR MURI for Complex and Robust On-chip Nanophotonics (Dr. Gernot Pomrenke), grant number FA9550-09-1-0704. Gary Shambat and Bryan Ellis would like to thank the Stanford Graduate Fellowship for support. Gary Shambat is also supported by the National Science Foundation (NSF) GRFP. Marie Mayer was supported by the National Defense Science and Engineering Graduate NDSEG_Fellowship, 32 CFR 168a, through the DoD, Air Force Office of Scientific Research. The fabrication has been performed in the Stanford Nanofabrication Facilities of NNIN supported by the National Science Foundation. The characterization of the devices was conducted in part at the Lawrence Berkeley National Laboratory which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 21 Z9 21 U1 0 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 11 PY 2011 VL 19 IS 8 BP 7530 EP 7536 DI 10.1364/OE.19.007530 PG 7 WC Optics SC Optics GA 762MI UT WOS:000290482500048 PM 21503060 ER PT J AU Polyanskiy, MN Pogorelsky, IV Yakimenko, V AF Polyanskiy, Mikhail N. Pogorelsky, Igor V. Yakimenko, Vitaly TI Picosecond pulse amplification in isotopic CO2 active medium SO OPTICS EXPRESS LA English DT Article ID CO2-LASER AB Using a high-pressure carbon-dioxide laser amplifier enriched with the oxygen-18 isotope, we produced a 5-ps, 10-mu m pulse of the 1 TW peak power without splitting, which otherwise occurs due to spectral modulation by the rotation structure of the CO2 amplification band. (C) 2011 Optical Society of America C1 [Polyanskiy, Mikhail N.; Pogorelsky, Igor V.; Yakimenko, Vitaly] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Polyanskiy, MN (reprint author), Brookhaven Natl Lab, Bldg 820M, Upton, NY 11973 USA. EM polyanskiy@bnl.gov RI Polyanskiy, Mikhail/E-8406-2010 FU US DOE [DE-AC02-98CH10886]; BNL [07-004] FX This work is supported by the US DOE contract DE-AC02-98CH10886 and by the BNL Laboratory Directed R&D (LDRD) grant #07-004. The authors are thankful to Victor Platonenko from Moscow State University for providing original simulation code and supporting further code development, and to Marcus Babzien for help in setting up the pulse diagnostics. NR 17 TC 44 Z9 44 U1 8 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 11 PY 2011 VL 19 IS 8 BP 7717 EP 7725 DI 10.1364/OE.19.007717 PG 9 WC Optics SC Optics GA 762MI UT WOS:000290482500069 PM 21503081 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hartl, C Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Cerny, K De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, R Van Remortel, N Beauceron, S Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Velde, CV Vanlaer, R Wickens, J Adler, V Costantini, S Grunewald, M Klein, B Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, R Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L De Jeneret, JDF Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Xu, M Yang, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhang, L Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Awad, A Khalil, S Hektor, A Kadastik, M Kannike, K Muentel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Megrelidze, L Roinishvili, V Lomidze, D Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Masetti, G Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Fluegge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Glushkov, I Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Raval, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Walsh, R Wissing, C Autermann, C Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Barth, C Bauer, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heindl, SM Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, E Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, R Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Ghezzi, A Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Merola, M Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Conti, E De Mattia, M Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, R Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Taroni, S Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Nourbakhsh, S Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, S Valencia, F Ibarguen, HA Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PC Gallinaro, M Martins, R Musella, P Nayak, A Ribeiro, PQ Seixas, J Silva, P Varela, J Wohri, HK Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Colino, N De La Cruz, B Pardos, C Vazquez, DD Bedoya, C Ramos, JP Ferrando, A Flix, J Fouz, MC Garcia-Abia, R Lopez, O Lopez, S Hernandez, JM Josa, MI Merino, G Pelayo, J Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JA Cabrillo, IJ Calderon, A Llatas, M Chuang, SH Campderros, J Felcini, M Fernandez, M Gomez, G Sanchez, J Jorda, C Pardo, P Virto, A Marco, J Marco, R Rivero, C Matorras, F Sanchez, FJ Gomez, J Rodrigo, T Jimeno, A Scodellaro, L Sanudo, M Vila, I Cortabitarte, R Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Ramos, FD Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Harvey, J Hegeman, J Hegner, B Henderson, C Hesketh, G Hoffmann, HF Honma, A Innocente, V Janot, R Kaadze, K Karavakis, E Lecoq, P Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvoldl, E Nguyen, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Tsyganov, A Veresil, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bortignon, P Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Regenfus, C Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Chen, WT Dutta, S Go, A Kuo, CM Li, SW Lin, W Liu, MH Liu, ZK Lu, YJ Mekterovic, D Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, N Hartley, D Heath, GP Heath, HF Huckvale, B Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Fantasia, C Heister, A John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCDLB Cebra, D Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, E Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Bornheim, A Bunn, J Chen, Y Gataullin, M Kcira, D Litvine, V Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Tan, R Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Kim, B Klimenko, S Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bandurin, D Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, R Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, R Bean, A Benelli, G Grachov, O Murray, M Noonan, D Radicci, V Sanders, S Wood, JS Zhukova, V Bolton, T Chakaberia, I Ivanov, A Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boucerneur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kim, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, R Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, R Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, R Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Osipenkov, I Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Damgov, J Jeong, C Kovitanggoon, K Lee, SW Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, R Maguire, C Melo, A Sheldon, P Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Lamichhane, R Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hartl, C. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Cerny, K. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, R. Van Remortel, N. Beauceron, S. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Velde, C. Vander Vanlaer, R. Wickens, J. Adler, V. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, R. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Damiao, D. De Jesus Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Nogima, H. Oguri, V. Da Silva, W. L. Prado Santoro, A. Do Amaral, S. M. Silva Sznajder, A. Da Silva De Araujo, F. Torres Dias, F. A. Dias, M. A. F. Fernandez Perez Tomei, T. R. Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Xu, M. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhang, L. Zhu, B. Zou, W. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Awad, A. Khalil, S. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Megrelidze, L. Roinishvili, V. Lomidze, D. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Masetti, G. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Glushkov, I. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I-A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Raval, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Walsh, R. Wissing, C. Autermann, C. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Barth, C. Bauer, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heindl, S. M. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, E. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, R. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Ghezzi, A. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Conti, E. De Mattia, M. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, R. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Taroni, S. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Nourbakhsh, S. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De La Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. C. Gallinaro, M. Martins, R. Musella, P. Nayak, A. Ribeiro, P. Q. Seixas, J. Silva, P. Varela, J. Woehri, H. K. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Colino, N. De La Cruz, B. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, R. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chamizo Llatas, M. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Ramos, F. Duarte Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Harvey, J. Hegeman, J. Hegner, B. Henderson, C. Hesketh, G. Hoffmann, H. F. Honma, A. Innocente, V. Janot, R. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvoldl, E. Nguyen, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Tsyganov, A. Veresil, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bortignon, P. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Milian Regenfus, C. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Chen, W. T. Dutta, S. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Liu, Z. K. Lu, Y. J. Mekterovic, D. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, Ni. Hartley, D. Heath, G. P. Heath, H. F. Huckvale, B. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De La Barca Cebra, D. Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, E. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Tan, R. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bandurin, D. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, R. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, R. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bolton, T. Chakaberia, I. Ivanov, A. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boucerneur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kim, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, Rd. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, R. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, R. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Osipenkov, I. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, R. Maguire, C. Melo, A. Sheldon, P. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Lamichhane, R. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Supersymmetry ID PARTICLES; SQUARKS; FB(-1); HERA AB A search for supersymmetry with R-parity conservation in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated luminosity of 35 pb(-1) collected by the CMS experiment at the LHC. The search is performed in events with jets and significant missing transverse energy, characteristic of the decays of heavy, pair-produced squarks and gluinos. The primary background, from standard model multijet production, is reduced by several orders of magnitude to a negligible level by the application of a set of robust kinematic requirements. With this selection, the data are consistent with the standard model backgrounds, namely t (t) over bar, W + jet and Z + jet production, which are estimated from data control samples. Limits are set on the parameters of the constrained minimal supersymmetric extension of the standard model. These limits extend those set previously by experiments at the Tevatron and LEP colliders. (C) 2011 CMS Collaboration. Published by Elsevier B.V. All rights reserved. C1 [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.] Scuola Normale Super Pisa, Pisa, Italy. [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Cerny, K.; De Wolf, E. A.; Janssen, X.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, R.; Van Remortel, N.; Maes, J.] Univ Antwerp, B-2020 Antwerp, Belgium. [Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, R.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, R.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Damiao, D. De Jesus; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Do Amaral, S. M. Silva; Sznajder, A.; Da Silva De Araujo, F. Torres] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Xu, M.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Awad, A.; Khalil, S.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Megrelidze, L.; Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchroton, Hamburg, Germany. [Autermann, C.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heindl, S. M.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, E.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, E.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, R.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Iorio, A. O. M.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, R.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Merola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, R.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, R.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Taroni, S.; Valdata, M.; Volpe, R.] Univ Perugia, I-06100 Perugia, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. C.; Gallinaro, M.; Martins, R.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, R.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chamizo Llatas, M.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Ramos, F. Duarte; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hesketh, G.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, R.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvoldl, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Tsyganov, A.; Veresil, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Iorio, A. O. M.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Milian; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Hansen, M.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Avetisyan, A.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De La Barca; Cebra, D.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, E.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, R.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, R.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, R.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boucerneur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kim, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Yang, M.; Li, W.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Loizides, C.; Luckey, Rd.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, R.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, R.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Osipenkov, I.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, R.; Maguire, C.; Melo, A.; Sheldon, P.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, R.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI USA. [Cankocak, K.] Istanbul Tech Univ, Istanbul, Turkey. RP Tenchini, R (reprint author), Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. EM Roberto.Tenchini@cern.ch RI Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Wimpenny, Stephen/K-8848-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Janssen, Xavier/E-1915-2013; Oguri, Vitor/B-5403-2013; Santoro, Alberto/E-7932-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; Tinoco Mendes, Andre David/D-4314-2011; Mignerey, Alice/D-6623-2011; Ganjour, Serguei/D-8853-2011; Ruiz, Alberto/E-4473-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Yang, Fan/B-2755-2012; Krammer, Manfred/A-6508-2010; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Ferguson, Thomas/O-3444-2014; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Gerbaudo, Davide/J-4536-2012; MERCIER, Damien/C-4151-2017; Menasce, Dario Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; OI Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Katkov, Igor/0000-0003-3064-0466; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ruiz, Alberto/0000-0002-3639-0368; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Dudko, Lev/0000-0002-4462-3192; Costa, Salvatore/0000-0001-9919-0569; Malik, Sudhir/0000-0002-6356-2655; Staiano, Amedeo/0000-0003-1803-624X; Tonelli, Guido Emilio/0000-0003-2606-9156; Abbiendi, Giovanni/0000-0003-4499-7562; WANG, MIN-ZU/0000-0002-0979-8341; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Ferguson, Thomas/0000-0001-5822-3731; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gerbaudo, Davide/0000-0002-4463-0878; MERCIER, Damien/0000-0001-5063-7067; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Mrenna, Stephen/0000-0001-8731-160X; Kasemann, Matthias/0000-0002-0429-2448; Stober, Fred/0000-0003-2620-3159; Landsberg, Greg/0000-0002-4184-9380; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Giacomelli, Paolo/0000-0002-6368-7220; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Arneodo, Michele/0000-0002-7790-7132; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Faccioli, Pietro/0000-0003-1849-6692; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; CHANG, PAO-TI/0000-0003-4064-388X; Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855 FU FMSR (Austria); FNRS and FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences; NICPB (Estonia); Academy of Finland, ME; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); CSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA) FX We thank L. Dixon and the members of the Blackhat Collaboration for discussions concerning vector-boson + jets production at the LHC. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC Machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); CSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). NR 44 TC 135 Z9 135 U1 3 U2 109 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 11 PY 2011 VL 698 IS 3 BP 196 EP 218 DI 10.1016/j.physletb.2011.03.021 PG 23 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750JZ UT WOS:000289543700004 ER PT J AU Barger, V Keung, WY Yu, CT AF Barger, Vernon Keung, Wai-Yee Yu, Chiu-Tien TI Tevatron asymmetry of tops in a W ', Z ' model SO PHYSICS LETTERS B LA English DT Article DE Collider phenomenology; Top quark pair asymmetry; Tevatron; W ' and Z ' gauge bosons ID PHYSICS AB Recent results from the CDF Collaboration indicate that the top-pair forward-backward asymmetry is largest in regions of high rapidity difference vertical bar Delta y vertical bar and invariant mass M-t (t) over bar. We show that experimental observations can be explained by our previously proposed Asymmetric Left-Right Model (ALRM). The gauge symmetry U'(1) x SU'(2) x SU(2) is broken by a triplet Higgs in the primed sector. The W' boson has a (t,d) right-handed coupling and the Z' boson has diagonal fermion couplings. We determine the model parameters to be M-W' = 700 GeV, M-Z' = 1 TeV, and charged current coupling g(2)' = 3. The W' and Z' total decay widths are of O(100 GeV). The signals from Z' -> t (t) over bar and W' -> tb at the LHC will test the model. (C) 2011 Elsevier B.V. All rights reserved. C1 [Barger, Vernon; Yu, Chiu-Tien] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Keung, Wai-Yee] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Keung, Wai-Yee] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Yu, CT (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM barger@pheno.physics.wisc.edu; keung@fnal.gov; cyu27@wisc.edu OI Keung, Wai-Yee/0000-0001-6761-9594 FU U.S. Department of Energy [DE-FG02-95ER40896, DE-FG02-84ER40173]; National Science Foundation FX The authors would like to thank Martin Schmaltz and Christian Spethmann for stimulating correspondence. V.B. thanks the University of Hawaii for hospitality. W.-Y.K. thanks BNL for hospitality. This work was supported in part by the U.S. Department of Energy under grants Nos. DE-FG02-95ER40896 and DE-FG02-84ER40173. C.-T. Yu is supported by the National Science Foundation. NR 37 TC 54 Z9 54 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 11 PY 2011 VL 698 IS 3 BP 243 EP 250 DI 10.1016/j.physletb.2011.03.010 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750JZ UT WOS:000289543700009 ER PT J AU Karsch, F Schaefer, BJ Wagner, M Wambach, J AF Karsch, F. Schaefer, B-J. Wagner, M. Wambach, J. TI Towards finite density QCD with Taylor expansions SO PHYSICS LETTERS B LA English DT Article DE QCD phase diagram; Lattice QCD; Taylor expansion; Pade series ID BARYON NUMBER DENSITY; QUARK-MESON MODEL; CRITICAL-POINT; LATTICE QCD; FLAVOR QCD; THERMODYNAMICS; TEMPERATURE AB Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N(f) = 2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N(f) = 2 + 1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wagner, M.; Wambach, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Karsch, F.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, F.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Schaefer, B-J.] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria. [Wagner, M.] GSI Helmholtzzentrum Schwerionenforsch mbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Wambach, J.] Gesell Schwerionenforsch GSI, D-64291 Darmstadt, Germany. RP Wagner, M (reprint author), Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. EM karsch@physik.uni-bielefeld.de; bernd-jochen.schaefer@uni-graz.at; mathias.wagner@physik.tu-darmstadt.de; jochen.wambach@physik.tu-darmstadt.de FU US Department of Energy [DE-AC02-98CH10886]; BMBF [06BI401, 06DA90471]; Helmholtz Association [HA216/EMMI]; Helmholtz International Center for FAIR FX We gratefully acknowledge very useful discussions with Christian Schmidt. The work of F.K. has been supported in part by contracts DE-AC02-98CH10886 with the US Department of Energy and the BMBF under grant 06BI401. M.W. acknowledges support by the Alliance Program of the Helmholtz Association (HA216/EMMI) and BMBF grant 06DA90471. The work of M.W. and J.W. was supported in part by the Helmholtz International Center for FAIR. NR 48 TC 26 Z9 26 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 11 PY 2011 VL 698 IS 3 BP 256 EP 264 DI 10.1016/j.physletb.2011.03.013 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 750JZ UT WOS:000289543700011 ER PT J AU Aksel, E Forrester, JS Jones, JL Thomas, PA Page, K Suchomel, MR AF Aksel, Elena Forrester, Jennifer S. Jones, Jacob L. Thomas, Pam A. Page, Katharine Suchomel, Matthew R. TI Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID PHASE-TRANSITIONS; PEROVSKITES; CERAMICS; SYSTEM; TEM AB Bismuth-based ferroelectric ceramics are currently under intense investigation for their potential as Pb-free alternatives to lead zirconate titanate-based piezoelectrics. Na0.5Bi0.5TiO3 (NBT), one of the widely studied compositions, has been assumed thus far to exhibit the rhombohedral space group R3c at room temperature. High-resolution powder x-ray diffraction patterns, however, reveal peak splitting in the room temperature phase that evidence the true structure as monoclinic with space group Cc. This peak splitting and Cc space group is only revealed in sintered powders; calcined powders are equally fit to an R3c model because microstructural contributions to peak broadening obscure the peak splitting. (C) 2011 American Institute of Physics. [doi:10.1063/1.3573826] C1 [Aksel, Elena; Forrester, Jennifer S.; Jones, Jacob L.; Thomas, Pam A.; Page, Katharine] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Thomas, Pam A.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Page, Katharine] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jones, JL (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM jjones@mse.ufl.edu RI Page, Katharine/C-9726-2009; Jones, Jacob/A-8361-2008; Lujan Center, LANL/G-4896-2012; Thomas, Pam/G-3532-2010; OI Page, Katharine/0000-0002-9071-3383; Thomas, Pam/0000-0003-2221-0394; SUCHOMEL, Matthew/0000-0002-9500-5079 FU U.S. National Science Foundation (NSF) [DMR-0746902]; U.S. Department of the Army [W911NF-09-1-0435]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX E.A. acknowledges partial support for this work by the U.S. National Science Foundation (NSF) under Award No. DMR-0746902. J.F. and J.J. acknowledge support from the U.S. Department of the Army under Grant No. W911NF-09-1-0435. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Dr. Graham King for helpful discussions. NR 23 TC 137 Z9 139 U1 9 U2 96 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 152901 DI 10.1063/1.3573826 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800045 ER PT J AU Liu, XY Uberuaga, BP Andersson, DA Stanek, CR Sickafus, KE AF Liu, X. -Y. Uberuaga, B. P. Andersson, D. A. Stanek, C. R. Sickafus, K. E. TI Mechanism for transient migration of xenon in UO2 SO APPLIED PHYSICS LETTERS LA English DT Article ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; MOLECULAR-DYNAMICS; FISSION-PRODUCTS; URANIUM-DIOXIDE; SADDLE-POINTS; 1ST-PRINCIPLES; DIFFUSION; METALS AB In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3579198] C1 [Liu, X. -Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Liu, XY (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM xyliu@lanl.gov FU Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396]; DOE Nuclear Energy Fuel Cycle Research and Development (FCRD) Campaign [LA1015090603] FX We acknowledge valuable discussions with David Parfitt, Chao Jiang, and Steve Valone. This work was supported by the Los Alamos National Laboratory Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This work was also funded by DOE Nuclear Energy Fuel Cycle Research and Development (FCRD) Campaign, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Fuels Integrated Performance and Safety Code (IPSC) project under the work Package No. LA1015090603. NR 21 TC 23 Z9 23 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 151902 DI 10.1063/1.3579198 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800020 ER PT J AU Marcet, Z Chan, HB Carr, DW Bower, JE Cirelli, RA Klemens, F Mansfield, WM Miner, JF Pai, CS Kravchenko, II AF Marcet, Z. Chan, H. B. Carr, D. W. Bower, J. E. Cirelli, R. A. Klemens, F. Mansfield, W. M. Miner, J. F. Pai, C. S. Kravchenko, I. I. TI A half wave retarder made of bilayer subwavelength metallic apertures SO APPLIED PHYSICS LETTERS LA English DT Article ID POLARIZATION ROTATOR; OPTICAL-TRANSMISSION; HOLE ARRAYS; SLIT ARRAYS; GRATINGS; GUIDES; LIGHT AB We demonstrate a half wave plate whose principle of operation is based on the strong evanescent field coupling between two metal layers with arrays of subwavelength slits. The device is divided into two kinds of pixels in which the slits are oriented in orthogonal directions. By tuning the phase delay of the transmitted light through the lateral displacement between the top and bottom layers, the polarization of linearly polarized light at 1.55 mu m can be rotated by up to 90 degrees. The polarization extinction ratio of the transmitted light exceeds 22 dB. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579245] C1 [Marcet, Z.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Marcet, Z.; Chan, H. B.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Marcet, Z.; Chan, H. B.] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China. [Carr, D. W.] Symphony Acoust, Rio Rancho, NM 87124 USA. [Bower, J. E.; Cirelli, R. A.; Klemens, F.; Mansfield, W. M.; Miner, J. F.; Pai, C. S.] Bell Labs, Murray Hill, NJ 07974 USA. [Kravchenko, I. I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Marcet, Z (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM hochan@ust.hk RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU National Science Foundation [ECS-0621944]; South East Alliance for Graduate Education and the Professoriate; Division of Scientific User Facilities, U.S. Department of Energy FX This work was supported by the National Science Foundation under Grant No. ECS-0621944. Z. Marcet acknowledges support from South East Alliance for Graduate Education and the Professoriate. A portion of this research was conducted at the Center for Nanophase Material Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 20 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 151107 DI 10.1063/1.3579245 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800007 ER PT J AU Nunez-Sanchez, S Roque, PM Serna, R Petford-Long, AK AF Nunez-Sanchez, S. Roque, P. M. Serna, R. Petford-Long, A. K. TI Si nanoparticle-Er3+ coupling through contact in as-deposited nanostructured films SO APPLIED PHYSICS LETTERS LA English DT Article ID ERBIUM AB The efficient excitation of Er3+ ions through contact with Si nanoparticles (NPs) is demonstrated. A nanostructured doping process has been developed that leads to contact between Si NPs formed in situ and optically-active Er3+ ions embedded in Al2O3. This is achieved by independent and consecutive deposition of the dopants and matrix. The Si NP-Er3+ contact regime enhances the probability of efficient interaction due to the local spatial overlap of the electronic states of the Er3+ and of the Si NP exciton, enabling energy transfer by interband exciton recombination. This leads to up to 53% of the Er3+ ions being excited in as-deposited films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579523] C1 [Nunez-Sanchez, S.; Roque, P. M.; Serna, R.] IO CSIC, Laser Proc Grp, Inst Opt, Madrid 28006, Spain. [Petford-Long, A. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Serna, R (reprint author), IO CSIC, Laser Proc Grp, Inst Opt, Serrano 121, Madrid 28006, Spain. EM rserna@io.cfmac.csic.es RI Serna, Rosalia/C-6013-2011; Petford-Long, Amanda/P-6026-2014; Nunez-Sanchez, Sara/A-3796-2016; OI Serna, Rosalia/0000-0002-7101-3947; Petford-Long, Amanda/0000-0002-3154-8090; Nunez-Sanchez, Sara/0000-0002-5435-6892; de Roque, Pablo M/0000-0002-0751-9126 FU CICYT (Spain) [MAT2009-14369-C02-02]; MEC, Spain; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work has been partially supported by CICYT (Spain) under Project No. MAT2009-14369-C02-02. S.N.-S. acknowledges support from a FPU contract (MEC, Spain). Part of this work was carried out at U. Chicago Argonne, LLC, operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 17 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 151109 DI 10.1063/1.3579523 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800009 ER PT J AU Yang, SY Prendergast, D Neaton, JB AF Yang, Shenyuan Prendergast, David Neaton, Jeffrey B. TI Nonlinear variations in the electronic structure of II-VI and III-V wurtzite semiconductors with biaxial strain SO APPLIED PHYSICS LETTERS LA English DT Article ID GAN AB Using first-principles calculations within many-body perturbation theory, we predict effects of biaxial strain on electronic band gaps and band edges of wurtzite III-V and II-VI semiconductor compounds. We find strain-induced changes in band gaps are large and highly nonlinear. Under both compressive and tensile biaxial strains, II-VI chalcogenide band gaps are predicted to decrease by as much as 0.6 eV for 10% strain; in contrast, III-V nitrides attain maximum gaps for compressive strains near 4%. Whereas nitrides tend to preserve covalent bond angle, more ionic chalcogenides tend to preserve bond length and volume, leading to qualitatively different trends in electronic structure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3578193] C1 [Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yang, SY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM syang4@lbl.gov; jbneaton@lbl.gov RI Neaton, Jeffrey/F-8578-2015 OI Neaton, Jeffrey/0000-0001-7585-6135 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed at the Molecular Foundry and within the Helios Solar Energy Research Center, both supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. All calculations were performed on the Nano and Vulcan compute clusters at LBNL and on Franklin at NERSC. NR 22 TC 17 Z9 17 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 152108 DI 10.1063/1.3578193 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800034 ER PT J AU Sorensen, P AF Sorensen, Peter TI Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Dark matter; Liquid xenon; Time projection chamber; Electron diffusion ID FIELDS; DETECTOR; PARALLEL; GASES AB Electron diffusion in a liquid xenon time projection chamber has recently been used to infer the z coordinate of a particle interaction, from the width of the electron signal. The goal of this technique is to reduce the background event rate by discriminating edge events from bulk events. Analyses of dark matter search data which employ it would benefit from increased longitudinal electron diffusion. We show that a significant increase is expected if the applied electric field is decreased. This observation is trivial to implement but runs contrary to conventional wisdom and practice. We also extract a first measurement of the longitudinal diffusion coefficient, and confirm the expectation that electron diffusion in liquid xenon is highly anisotropic under typical operating conditions. Published by Elsevier B.V. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sorensen, P (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM pfs@llnl.gov NR 21 TC 7 Z9 7 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 IS 1 BP 41 EP 43 DI 10.1016/j.nima.2011.01.089 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 747JW UT WOS:000289317100007 ER PT J AU Peurrung, AJ AF Peurrung, A. J. TI Evaluating the performance of gamma-ray imaging instruments for detection applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Imaging; Detection; Gamma ray ID SILICON DETECTORS; CODED-APERTURE; COMPTON IMAGER AB A method for evaluating and comparing the performance of gamma-ray imaging instruments is proposed and demonstrated using seven instrument design benchmarks found in the literature. This method makes simplifying assumptions that do impact the accuracy of performance estimation and the range of conditions under which performance estimation will be reliable. However, the method provides a valuable means for evaluating imager performance under many conditions of relevance for detection applications, and provides an upper bound for performance that is valid under all conditions. This performance estimation method provides, for the first time, a means for comparing imaging instruments against one another and for making rapid determinations of the potential viability of using specified imaging instruments for detection application scenarios. The insight provided by this model should also motivate future innovation in imager design. (C) 2011 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Peurrung, AJ (reprint author), Pacific NW Natl Lab, MS K8-27, Richland, WA 99352 USA. EM aj.peurrung@pnl.gov FU U.S. Department of Energy; U.S. Department of Homeland Security; Pacific Northwest National Laboratory under U.S. Department of Energy [DE-AC05-76RLO-1830] FX The author is grateful to the U.S. Department of Energy and U.S. Department of Homeland Security for support in the area of radiation detection research and development. Special thanks are extended to Karl Pitts, Can Seifert, Eric Smith, and David Jordan for helpful discussions. This work was funded through the Pacific Northwest National Laboratory under U.S. Department of Energy Contract DE-AC05-76RLO-1830. NR 18 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 IS 1 BP 57 EP 63 DI 10.1016/j.nima.2011.01.071 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 747JW UT WOS:000289317100010 ER PT J AU Contarato, D Denes, P Doering, D Joseph, J Krieger, B AF Contarato, Devis Denes, Peter Doering, Dionisio Joseph, John Krieger, Brad TI Direct detection in Transmission Electron Microscopy with a 5 mu m pitch CMOS pixel sensor SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensors; Transmission Electron Microscopy AB This paper presents the characterization of a CMOS monolithic pixel sensor prototype optimized for direct detection in Transmission Electron Microscopy (TEM). The sensor was manufactured in a deep-submicron commercial CMOS process and features pixels of 5 mu m pitch. Different pixel architectures have been implemented in the test chip, and the best performing architecture has been selected from a series of tests performed with 300 keV electrons. Irradiation tests to high electron doses have also been performed in order to estimate device lifetime. (C) 2011 Elsevier BM. All rights reserved. C1 [Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Contarato, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DContarato@lbl.gov FU Howard Hughes Medical Institute (HHMI); Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the Howard Hughes Medical Institute (HHMI) and was supported by the Director, Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231. The authors would like to thank the staff of the LBNL National Center for Electron Microscopy for the assistance and the availability of the test columns. We are grateful to Nord Andresen (LBNL) for the support on mechanical issues and to David Agard (University of California, San Francisco) for the useful discussions. NR 14 TC 10 Z9 10 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 IS 1 BP 69 EP 73 DI 10.1016/j.nima.2011.01.087 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 747JW UT WOS:000289317100012 ER PT J AU Abreu, P Aglietta, M Ahn, EJ Albuquerque, IFM Allard, D Allekotte, I Allen, J Allison, P Castillo, J Alvarez-Muniz, J Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticic, T Aramo, C Arganda, E Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Beatty, JJ Becker, BR Becker, KH Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Coluccia, MR Conceicao, R Contreras, F Cook, H Coopers, MJ Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Dembinski, H Denkiewicz, A Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, J Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Ferrero, A Fick, B Filevich, A Filipcic, A Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fuchs, B Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Gascon, A Gemmeke, H Gesterling, K Ghia, PL Giaccari, U Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Grashorn, E Grebe, S Griffith, N Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Hague, JD Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Insolia, A Ionita, F Italiano, A Jiraskova, S Kadija, K Kampert, KH Karhan, P Karova, T Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C Lautridou, P Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Ludwig, M Lyberis, H Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Mertsch, P Meurer, C Micanovic, S Micheletti, MI Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Moura, CA Mueller, S Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parr, A Parrisius, J Parsons, RD Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Phan, N Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Risse, M Ristori, P Rivera, H Riviere, C Rizi, V Robledo, C de Carvalho, WR Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruhle, C Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tamashiro, A Tapia, A Tascau, O Tcaciuc, R Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tiwari, DK Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Cardenas, BV Vazquez, JR Vazquez, RA Veberic, D Verzi, V Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Winders, L Winnick, MG Wommer, M Wundheiler, B Yamamoto, T Younk, P Yuan, G Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abreu, P. Aglietta, M. Ahn, E. J. Albuquerque, I. F. M. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez Castillo, J. Alvarez-Muniz, J. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticic, T. Aramo, C. Arganda, E. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Beatty, J. J. Becker, B. R. Becker, K. H. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Coopers, M. J. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De la Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Dembinski, H. Denkiewicz, A. Di Giulio, C. Diaz, J. C. Castro, M. L. Diaz Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fuchs, B. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Gascon, A. Gemmeke, H. Gesterling, K. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Grashorn, E. Grebe, S. Griffith, N. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Hague, J. D. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Holmes, V. C. Homola, P. Horandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kadija, K. Kampert, K. H. Karhan, P. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D. -H. Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. de Oliveira, M. A. Leigui Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Bahilo, J. Lozano Lucero, A. Ludwig, M. Lyberis, H. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Mertsch, P. Meurer, C. Micanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mueller, S. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parr, A. Parrisius, J. Parsons, R. D. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Phan, N. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rivera, H. Riviere, C. Rizi, V. Robledo, C. Rodrigues de Carvalho, W. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tamashiro, A. Tapia, A. Tascau, O. Tcaciuc, R. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tiwari, D. K. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vargas Cardenas, B. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Winders, L. Winnick, M. G. Wommer, M. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. TI Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Cosmic rays; Radio detection; Analysis software; Detector simulation ID RAY AIR-SHOWERS; MONTE-CARLO SIMULATIONS; DETECTORS; EMISSION AB The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved. C1 [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] Inst Balseiro, CNEA UNCuyo CONICET, San Carlos De Bariloche, Rio Negro, Argentina. [Denkiewicz, A.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Lucero, A.; Melo, D.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] Ctr Atom Constituyentes Comis Nacl deEnergia Atom, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, P.; Tiffenberg, J.; Tueros, M.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.; Tueros, M.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.; Tamashiro, A.] Inst Astron & Fis Espacio CONICET UBA, Buenos Aires, DF, Argentina. [De la Vega, G.; Garcia, B.; Videla, M.] Natl Technol Univ, Fac Mendoza CONICET CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Coopers, M. J.; Dawson, B. R.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; dos Anjos, J. C.; Fuchs, B.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Castro, M. L. Diaz; Diep, P. N.; Navarra, G.; Nhung, P. T.; Shellard, R. C.; Thao, N. T.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Albuquerque, I. F. M.; de Souza, V.; Rodrigues de Carvalho, W.; Peixoto, C. J. Todero; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Chinellato, J. A.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, BA, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; de Oliveira, M. A. Leigui; Moura, C. A.; Peixoto, C. J. Todero] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [de Almeida, R. M.] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hrabovsky, M.; Rossler, T.] Palacky Univ, RCATM, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dong, P. N.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.] Univ Paris 11, CNRS, Inst Phys Nucl Orsay IPNO, IN2P3, F-91405 Orsay, France. [Allard, D.; Creusot, A.; Decerprit, G.; Lachaud, C.; Parizot, E.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, Lab AstroParticule & Cosmol APC, IN2P3, Paris, France. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, CNRS, Lab Accelerateur Lineaire LAL, IN2P3, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Riviere, C.; Stutz, A.] Univ Grenoble 1, LPSC, INPG, CNRS,IN2P3, Grenoble, France. [Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] CNRS IN2P3, SUBATECH, Nantes, France. [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Valino, I.; Weindl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Ave, M.; Bluemer, H.; Caballero-Mora, K. S.; Dembinski, H.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.; Parrisius, J.; Schmidt, T.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Mueller, G.; Nelles, A.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Kulbartz, J. K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Froehlich, U.; Pontz, M.; Risse, M.; Settimo, M.; Tcaciuc, R.; Younk, P.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Marsella, G.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Maurizio, D.; Melo, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Ghia, P. L.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [La Rosa, G.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Ghia, P. L.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Tegolo, D.] Univ Palermo, Catania, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Zepeda, A.] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Mexico City, DF, Mexico. [Alvarez Castillo, J.; De Donato, C.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Supanitsky, A. D.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Tiwari, D. K.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] CSIC Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Bahilo, J. Lozano; Navarro, J. L.; Navas, S.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parr, A.; Pelayo, R.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez-Cabo, I.; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Mertsch, P.; Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Knapp, J.; Parsons, R. D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Albuquerque, I. F. M.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Griffith, N.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] So Univ, Baton Rouge, LA USA. [Bohacova, M.; Cronin, J.; San Luis, P. Facal; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gesterling, K.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.; Phan, N.] Univ New Mexico, Albuquerque, NM 87131 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Winders, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol INST, Hanoi, Vietnam. RP Kampert, KH (reprint author), Berg Univ Wuppertal, Wuppertal, Germany. EM auger_pc@fnal.gov RI Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Nosek, Dalibor/F-1129-2017; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; de Almeida, Rogerio/L-4584-2016; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Caramete, Laurentiu/C-2328-2011; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Fauth, Anderson/F-9570-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Albuquerque, Ivone/H-4645-2012; Muller, Marcio Aparecido/H-9112-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Falcke, Heino/H-5262-2012; Ebr, Jan/H-8319-2012; Anjos, Joao/C-8335-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013 OI Dembinski, Hans/0000-0003-3337-3850; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Knapp, Johannes/0000-0003-1519-1383; Tiwari, Dhirendra Kumar/0000-0002-6754-3398; Mertsch, Philipp/0000-0002-2197-3421; Zamorano, Bruno/0000-0002-4286-2835; La Rosa, Giovanni/0000-0002-3931-2269; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Marsella, Giovanni/0000-0002-3152-8874; Salamida, Francesco/0000-0002-9306-8447; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603; Aglietta, Marco/0000-0001-8354-5388; Kothandan, Divay/0000-0001-9048-7518; De Mitri, Ivan/0000-0002-8665-1730; Nosek, Dalibor/0000-0001-6219-200X; de Jong, Sijbrand/0000-0002-3120-3367; Sigl, Guenter/0000-0002-4396-645X; Cataldi, Gabriella/0000-0001-8066-7718; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; de Almeida, Rogerio/0000-0003-3104-2724; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Garcia Pinto, Diego/0000-0003-1348-6735; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; Albuquerque, Ivone/0000-0001-7328-0136; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Ebr, Jan/0000-0001-8807-6162; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM, Argentina; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, Czech Republic [AV0Z10100502, AV0Z10100522, GAAV KJB300100801, KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MSM0021620859]; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell'Istruzione; Universita e della Ricerca (MIUR); Gran Sasso Center for Astroparticle Physics (CFA), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs; Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [1 P03 D 014 30, N N202 207238]; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER; Ministerio de Ciencia e Innovacion and Consolider-Ingenio (CPAN); Generalitat Valenciana; Junta de Andalucia; Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300]; The Grainger Foundation USA; ALFA-EC/HELEN; European Union [MEIF-CT-2005-025057, PIEF-GA-2008-220240]; UNESCO FX We are grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta de Andalucia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract nos. DE-AC02-07CH11359, DE-FR02-04ER41300; National Science Foundation, Grant no. 0969400, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant no. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant no. PIEF-GA-2008-220240, and UNESCO. NR 13 TC 21 Z9 21 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 IS 1 BP 92 EP 102 DI 10.1016/j.nima.2011.01.049 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 747JW UT WOS:000289317100017 ER PT J AU Aczel, AA MacDougall, GJ Ning, FL Rodriguez, JA Saha, SR Chou, FC Imai, T Luke, GM AF Aczel, A. A. MacDougall, G. J. Ning, F. L. Rodriguez, J. A. Saha, S. R. Chou, F. C. Imai, T. Luke, G. M. TI Absence of static magnetic order in lightly-doped Ti1-xScxOCl down to 1.7K SO PHYSICAL REVIEW B LA English DT Article ID SPIN-PEIERLS TRANSITION; LONG-RANGE ORDER; CUGEO3; SYSTEM; ZN; CU1-XZNXGEO3; ANTIFERROMAGNET; RELAXATION; PHASES; SI AB Impurity-induced magnetic order has been observed in many quasi-1D systems including doped variants of the spin-Peierls system CuGeO3. TiOCl is another quasi-1D quantum magnet with a spin-Peierls ground state, and the magnetic Ti sites of this system can be doped with nonmagnetic Sc. To investigate the role of nonmagnetic impurities in this system, we have performed both zero-field and longitudinal-field mu SR experiments on polycrystalline Ti1-xScxOCl samples with x = 0, 0.01, and 0.03. We verified that TiOCl has a nonmagnetic ground state, and we found no evidence for spin freezing or magnetic ordering in the lightly-doped Sc samples down to 1.7 K. Our results instead suggest that these systems remain nonmagnetic up to the x = 0.03 Sc doping level. C1 [Aczel, A. A.; MacDougall, G. J.; Ning, F. L.; Rodriguez, J. A.; Saha, S. R.; Imai, T.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Aczel, A. A.; MacDougall, G. J.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Ning, F. L.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Rodriguez, J. A.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Saha, S. R.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Chou, F. C.] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 106, Taiwan. [Imai, T.; Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Aczel, AA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM aczelaa@ornl.gov RI Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173; MacDougall, Gregory/0000-0002-7490-9650 FU NSERC; CIFAR; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We acknowledge useful discussions with J. P. Clancy and B. D. Gaulin, and we appreciate the hospitality of the TRIUMF Center for Molecular and Materials Science where the mu SR experiments were performed. Research at McMaster University is supported by NSERC and CIFAR. Work at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 38 TC 1 Z9 1 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 11 PY 2011 VL 83 IS 13 AR 134411 DI 10.1103/PhysRevB.83.134411 PG 5 WC Physics, Condensed Matter SC Physics GA 747VV UT WOS:000289349900007 ER PT J AU Li, L Muckerman, JT Hybertsen, MS Allen, PB AF Li, Li Muckerman, James T. Hybertsen, Mark S. Allen, Philip B. TI Phase diagram, structure, and electronic properties of (Ga1-xZnx)(N1-xOx) solid solutions from DFT-based simulations SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; CROSS-VALIDATION; SOLUTION PHOTOCATALYST; MODEL SELECTION; WATER; SYSTEMS; 1ST-PRINCIPLES; DRIVEN; XRD AB We construct an accurate cluster expansion for the (Ga1-x Zn-x)(N1-x O-x) solid solution, based on density functional theory (DFT). The subsequent Monte Carlo simulation reveals a phase diagram which has a wide miscibility gap and an x = 0.5 ordered compound. The disordered phase displays strong short-range order (SRO) at synthesis temperatures. To study the influences of SRO on the lattice and electronic properties, we conduct DFT calculations on snapshots from the Monte Carlo simulation. Consistent with previous theoretical and experimental findings, lattice parameters were found to deviate from Vegard's law with small upward bowing. Bond lengths depend strongly on local environment, with a variation much larger than the difference of bond length between ZnO and GaN. The downward band gap bowing deviates from parabolic by having a more rapid onset of bowing at low and high concentrations. An overall bowing parameter of 3.3 eV is predicted from a quadratic fit to the compositional dependence of the calculated band gap. Our results indicate that SRO has significant influence over both structural and electronic properties. C1 [Li, Li; Allen, Philip B.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Muckerman, James T.; Hybertsen, Mark S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Li, L (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM lili4@ic.sunysb.edu; philip.allen@sunysb.edu RI Allen, Philip/A-4366-2008; Muckerman, James/D-8752-2013; OI Hybertsen, Mark S/0000-0003-3596-9754 FU US Department of Energy [DE-AC02-98CH10886]; State of New York; AERTC; US DOE [DE-AC02-98CH10886, DE-FG02-08ER46550]; Division of Chemical Sciences; Scientific User Facilities Division FX We are grateful for discussions with members of the SWaSSiT group including Maria V. Fernandez-Serra, Yolanda A. Small, Wei Kang, Xiao Shen, and Jue Wang. This research used computational resources (i) at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory which is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York; (ii) at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886; and (iii) of the Seawulf cluster at the Stony Brook University. Work at Stony Brook was supported initially by AERTC and subsequently by the US DOE Grant No. DE-FG02-08ER46550. The work at BNL was supported by the US DOE under Contract No. DE-AC02-98CH10886 (by its Division of Chemical Sciences and its Scientific User Facilities Division). NR 37 TC 28 Z9 28 U1 4 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 11 PY 2011 VL 83 IS 13 AR 134202 DI 10.1103/PhysRevB.83.134202 PG 6 WC Physics, Condensed Matter SC Physics GA 747VV UT WOS:000289349900004 ER PT J AU Joseph, JA Thomas, JE Kulkarni, M Abanov, AG AF Joseph, J. A. Thomas, J. E. Kulkarni, M. Abanov, A. G. TI Observation of Shock Waves in a Strongly Interacting Fermi Gas SO PHYSICAL REVIEW LETTERS LA English DT Article AB We study collisions between two strongly interacting atomic Fermi gas clouds. We observe exotic nonlinear hydrodynamic behavior, distinguished by the formation of a very sharp and stable density peak as the clouds collide and subsequent evolution into a boxlike shape. We model the nonlinear dynamics of these collisions by using quasi-1D hydrodynamic equations. Our simulations of the time-dependent density profiles agree very well with the data and provide clear evidence of shock wave formation in this universal quantum hydrodynamic system. C1 [Joseph, J. A.; Thomas, J. E.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Kulkarni, M.; Abanov, A. G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kulkarni, M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Joseph, JA (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. FU Physics Divisions of the National Science Foundation; Army Research Office; Air Force Office of Sponsored Research; Division of Materials Science and Engineering; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; NSF [DMR-0906866] FX The work of the Duke group is supported by the Physics Divisions of the National Science Foundation, the Army Research Office, the Air Force Office of Sponsored Research, and the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. The work of A. G. A. was supported by the NSF under Grant No. DMR-0906866. We are grateful to P. Wiegmann, E. Shuryak, D. Schneble, and F. Franchini for useful discussions. NR 26 TC 39 Z9 40 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 11 PY 2011 VL 106 IS 15 AR 150401 DI 10.1103/PhysRevLett.106.150401 PG 4 WC Physics, Multidisciplinary SC Physics GA 747YY UT WOS:000289358400001 PM 21568532 ER PT J AU Britos, L Abeliuk, E Taverner, T Lipton, M McAdams, H Shapiro, L AF Britos, Leticia Abeliuk, Eduardo Taverner, Thomas Lipton, Mary McAdams, Harley Shapiro, Lucy TI Regulatory Response to Carbon Starvation in Caulobacter crescentus SO PLOS ONE LA English DT Article ID GENERAL STRESS-RESPONSE; BACTERIAL-CELL-CYCLE; HIGH-THROUGHPUT IDENTIFICATION; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; PROTEOMIC ANALYSIS; STATIONARY-PHASE; DNA-REPLICATION; 2-DIMENSIONAL ELECTROPHORESIS; SINORHIZOBIUM-MELILOTI AB Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells. C1 [Britos, Leticia; Abeliuk, Eduardo; McAdams, Harley; Shapiro, Lucy] Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. [Abeliuk, Eduardo] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Taverner, Thomas; Lipton, Mary] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Britos, L (reprint author), Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. EM shapiro@cmgm.stanford.edu FU National Institutes of Health (NIH) [GM32506]; Department of Energy (DOE) [DE-FG02ER64136, DE-AC05-76RL01830] FX This work was supported by National Institutes of Health (NIH - http://nih.gov/) grant GM32506 to LS and by Department of Energy (DOE - http://www.energy.gov/) grant DE-FG02ER64136 to LS and HM. Proteomic analyses were performed in the Environmental Molecular Sciences Laboratory, a Department of Energy/Office of Biological and Environmental Research (DOE/BER) national scientific user facility on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL01830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 25 Z9 25 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 11 PY 2011 VL 6 IS 4 AR e18179 DI 10.1371/journal.pone.0018179 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 747XH UT WOS:000289354100006 PM 21494595 ER PT J AU Moeller, S Arthur, J Brachmann, A Coffee, R Decker, FJ Ding, Y Dowell, D Edstrom, S Emma, P Feng, Y Fisher, A Frisch, J Galayda, J Gilevich, S Hastings, J Hays, G Hering, P Huang, Z Iverson, R Krzywinski, J Lewis, S Loos, H Messerschmidt, M Miahnahri, A Nuhn, HD Ratner, D Rzepiela, J Schultz, D Smith, T Stefan, P Tompkins, H Turner, J Welch, J White, B Wu, J Yocky, G Bionta, R Ables, E Abraham, B Gardener, C Fong, K Friedrich, S Hau-Riege, S Kishiyama, K McCarville, T McMahon, D McKernan, M Ott, L Pivovaroff, M Robinson, J Ryutov, D Shen, S Soufli, R Pile, G AF Moeller, S. Arthur, J. Brachmann, A. Coffee, R. Decker, F. -J. Ding, Y. Dowell, D. Edstrom, S. Emma, P. Feng, Y. Fisher, A. Frisch, J. Galayda, J. Gilevich, S. Hastings, J. Hays, G. Hering, P. Huang, Z. Iverson, R. Krzywinski, J. Lewis, S. Loos, H. Messerschmidt, M. Miahnahri, A. Nuhn, H. -D. Ratner, D. Rzepiela, J. Schultz, D. Smith, T. Stefan, P. Tompkins, H. Turner, J. Welch, J. White, B. Wu, J. Yocky, G. Bionta, R. Ables, E. Abraham, B. Gardener, C. Fong, K. Friedrich, S. Hau-Riege, S. Kishiyama, K. McCarville, T. McMahon, D. McKernan, M. Ott, L. Pivovaroff, M. Robinson, J. Ryutov, D. Shen, S. Soufli, R. Pile, G. TI Photon beamlines and diagnostics at LCLS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-ray free electron laser; X-ray photon diagnostics; Solid attenuator; Gas attenuator; X-ray imager; Pulse-energy detector; X-ray mirrors ID FREE-ELECTRON LASER AB The LCLS hard X-ray Free Electron Laser at SLAC reported first lasing in April 2009. Since then two successful user runs have been completed at the two soft X-ray stations. The first hard X-ray station has started commissioning in July 2010. Beam diagnostics play an essential role for tuning the machine and delivering the requested beam properties to the users. An overview of the LCLS photon diagnostics will be presented including some selected commissioning results. Plans for future improvements and upgrades will be briefly discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Moeller, S.; Arthur, J.; Brachmann, A.; Coffee, R.; Decker, F. -J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Feng, Y.; Fisher, A.; Frisch, J.; Galayda, J.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Krzywinski, J.; Lewis, S.; Loos, H.; Messerschmidt, M.; Miahnahri, A.; Nuhn, H. -D.; Ratner, D.; Rzepiela, J.; Schultz, D.; Smith, T.; Stefan, P.; Tompkins, H.; Turner, J.; Welch, J.; White, B.; Wu, J.; Yocky, G.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Bionta, R.; Ables, E.; Abraham, B.; Gardener, C.; Fong, K.; Friedrich, S.; Hau-Riege, S.; Kishiyama, K.; McCarville, T.; McMahon, D.; McKernan, M.; Ott, L.; Pivovaroff, M.; Robinson, J.; Ryutov, D.; Shen, S.; Soufli, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pile, G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Moeller, S (reprint author), SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. EM smoeller@slac.stanford.edu RI Messerschmidt, Marc/F-3796-2010; Pivovaroff, Michael/M-7998-2014; OI Messerschmidt, Marc/0000-0002-8641-3302; Pivovaroff, Michael/0000-0001-6780-6816; Loos, Henrik/0000-0001-5085-0562 FU US Department of Energy, Office of Science [DE-AC02-76SF005]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We are grateful for the support of the US Department of Energy, Office of Science, under Contract no. DE-AC02-76SF005. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 13 TC 37 Z9 37 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 SU 1 BP S6 EP S11 DI 10.1016/j.nima.2010.10.125 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 745QG UT WOS:000289180100002 ER PT J AU Yuan, S Goldberg, KA Yashchuk, VV Celestre, R McKinney, WR Morrison, G Macdougall, J Mochi, I Warwick, T AF Yuan, Sheng Goldberg, Kenneth A. Yashchuk, Valeriy V. Celestre, Richard McKinney, Wayne R. Morrison, Gregory Macdougall, James Mochi, Iacopo Warwick, Tony TI Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-ray; Synchrotron radiation; Free electron laser; KB mirror; Metrology; Wavefront measurements; Shearing interferometry; Optical slope metrology; Long trace profiler ID X-RAY MIRRORS; INTERFEROMETRY; TOPOGRAPHY AB At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yuan, Sheng; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Warwick, Tony] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Goldberg, Kenneth A.; Macdougall, James; Mochi, Iacopo] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Yuan, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM syuan@lbl.gov RI McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 FU Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors are grateful to Erik Anderson of CXRO for nanofabrication. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 24 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2011 VL 635 SU 1 BP S58 EP S63 DI 10.1016/j.nima.2010.09.120 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 745QG UT WOS:000289180100012 ER PT J AU Monreal, MJ Thomson, RK Cantat, T Travia, NE Scott, BL Kiplinger, JL AF Monreal, Marisa J. Thomson, Robert K. Cantat, Thibault Travia, Nicholas E. Scott, Brian L. Kiplinger, Jaqueline L. TI UI4(1,4-dioxane)(2), [UCl4(1,4-dioxane)](2), and UI3(1,4-dioxane)(1.5): Stable and Versatile Starting Materials for Low- and High-Valent Uranium Chemistry SO ORGANOMETALLICS LA English DT Article ID ACTINIDE ALKOXIDE CHEMISTRY; CRYSTAL-STRUCTURE; ARYLOXIDE COMPLEX; F-ELEMENT; REACTIVITY; METALLOCENE; REDUCTION; CHLORIDE; ADDUCTS; LIGANDS AB The uranium(III) and uranium (IV) iodide complexes UI3(1,4-dioxane) is and UI4(1,4-dioxane)(2) have been easily prepared in high yield by reacting uranium turnings with a 1,4-dioxane solution of iodine under mild conditions. The two complexes exhibit outstanding thermal stability and are excellent precursors to a variety of uranium(III), uranium(IV), and uranium(VI) alkoxide, amide, organometallic, and halide compounds, including a safe, room-temperature synthesis of [UCl4(1,4-dioxane)](2), which is a useful synthetic alternative to UCl4. C1 [Monreal, Marisa J.; Thomson, Robert K.; Cantat, Thibault; Travia, Nicholas E.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J-514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Cantat, Thibault/A-8167-2010; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Cantat, Thibault/0000-0001-5265-8179; Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Monreal, Marisa/0000-0001-6447-932X FU LANL G. T. Seaborg Institute for Transactinium Science; LANL; Division of Chemical Sciences, Office of Basic Energy Science; Heavy Element Chemistry Program FX For financial support of this work, we acknowledge the LANL G. T. Seaborg Institute for Transactinium Science (Graduate Student Fellowship to M.J.M.; PD Fellowships to R.K.T. and N. E.T.), LANL (Director's PD Fellowship to T.C.), the Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry Program, and the LANL LDRD program. The authors thank Prof. Paula L. Diaconescu (UCLA) for a donation of [K2(OEt2)2]fc[NSi(tBu)Me2]2. Drs. Rebecca M. Chamberlin, David L. Clark, Stosh A. Kozimor, and David E. Morris (all LANL) are acknowledged for helpful discussions and for sharing unpublished results. NR 51 TC 54 Z9 54 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD APR 11 PY 2011 VL 30 IS 7 BP 2031 EP 2038 DI 10.1021/om200093q PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 743HK UT WOS:000289008700036 ER PT J AU In, JB Grigoropoulos, CP Chernov, AA Noy, A AF In, Jung Bin Grigoropoulos, Costas P. Chernov, Alexander A. Noy, Aleksandr TI Hidden role of trace gas impurities in chemical vapor deposition growth of vertically-aligned carbon nanotube arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID WATER AB Carbon nanotubes (CNTs) grow in a seemingly simple catalytic chemical vapor deposition (CVD) process, yet the detailed mechanism of the process has continued to puzzle researchers. We have examined the role of trace amounts of gas impurities on the kinetics of atmospheric pressure CVD growth of CNTs. Our studies, which used an in situ height monitoring system, revealed that even the nominally ultrapure gases contain enough trace amounts of oxygen-containing species to affect the growth drastically. We were able to obtain the "clean" kinetics of the CNT array growth by passing the feed gases through the high performance gas purifiers. Our data show a remarkable decrease in the catalytic lifetime after the removal of the trace oxygen containing impurities. We suggest that the gas purification is an essential step in obtaining reliable nanotube growth data. (C) 2011 American Institute of Physics. [doi:10.1063/1.3573830] C1 [In, Jung Bin; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [In, Jung Bin; Chernov, Alexander A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [In, Jung Bin; Noy, Aleksandr] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 94344 USA. RP In, JB (reprint author), Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA. EM anoy@ucmerced.edu FU NSF NIRT [CBET-0709090]; DoD DTRA [BRB07-F-2-0029, BRBAA08-Per3-C-2-0078]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX A.N., C.G., and J.I. acknowledge support by NSF NIRT under Grant No. CBET-0709090. A.N. acknowledges partial support by DoD DTRA (Grant Nos. BRB07-F-2-0029 and BRBAA08-Per3-C-2-0078), and U.S. Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LLNL is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. NR 16 TC 8 Z9 9 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 11 PY 2011 VL 98 IS 15 AR 153102 DI 10.1063/1.3573830 PG 3 WC Physics, Applied SC Physics GA 750XF UT WOS:000289580800050 ER PT J AU Chen, HH Chien, CC Petibois, C Wang, CL Chu, YS Lai, SF Hua, TE Chen, YY Cai, XQ Kempson, IM Hwu, Y Margaritondo, G AF Chen, Hsiang-Hsin Chien, Chia-Chi Petibois, Cyril Wang, Cheng-Liang Chu, Yong S. Lai, Sheng-Feng Hua, Tzu-En Chen, Yi-Yun Cai, Xiaoqing Kempson, Ivan M. Hwu, Yeukuang Margaritondo, Giorgio TI Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy SO JOURNAL OF NANOBIOTECHNOLOGY LA English DT Article ID REFRACTIVE-INDEX RADIOLOGY; DRUG-DELIVERY; GOLD NANOPARTICLES; CELLULAR UPTAKE; MAGNETIC NANOPARTICLES; SYNCHROTRON-RADIATION; CANCER-CELLS; CYTOTOXICITY; ENHANCEMENT; IRRADIATION AB Background: Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm) transmission x-ray microimages with both absorption contrast and phase contrast - including two-dimensional (2D) projection images and three-dimensional (3D) tomographic reconstructions that directly show the nanoparticles. Results: Practical tests were successfully conducted on bare and polyethylene glycol (PEG) coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen. Conclusions: We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach. C1 [Chen, Hsiang-Hsin; Chien, Chia-Chi; Wang, Cheng-Liang; Lai, Sheng-Feng; Hua, Tzu-En; Chen, Yi-Yun; Cai, Xiaoqing; Kempson, Ivan M.; Hwu, Yeukuang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Chien, Chia-Chi; Hwu, Yeukuang] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan. [Petibois, Cyril] Univ Bordeaux, CNRS, UMR 5248, F-33402 Talence, France. [Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Hwu, Yeukuang] Natl Taiwan Ocean Univ, Inst Optoelect Sci, Keelung 202, Taiwan. [Margaritondo, Giorgio] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Hwu, Y (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. EM phhwu@sinica.edu.tw RI Centre d'imagerie Biomedicale, CIBM/B-5740-2012; Chien, Chia-Chi/E-9932-2013; Kempson, Ivan/F-4526-2013; petibois, cyril/L-9049-2014; OI Chien, Chia-Chi/0000-0001-8704-0336; Kempson, Ivan/0000-0002-3886-9516 FU ANR-NSC French-Taiwan [ANR-09-BLAN-0385]; National Science and Technology Program for Nanoscience and Nanotechnology; Thematic Research Project of Academia Sinica; Biomedical Nano-Imaging Core Facility at National Synchrotron Radiation Research Center (Taiwan); Fonds National Suisse pour la Recherche Scientifique; Center for Biomedical Imaging (CIBM); U. S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the ANR-NSC French-Taiwan bilateral program n degrees ANR-09-BLAN-0385, the National Science and Technology Program for Nanoscience and Nanotechnology, the Thematic Research Project of Academia Sinica, the Biomedical Nano-Imaging Core Facility at National Synchrotron Radiation Research Center (Taiwan), the Fonds National Suisse pour la Recherche Scientifique and the Center for Biomedical Imaging (CIBM, supported by the Louis-Jeantet and Leenards foundations). Use of the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 45 TC 33 Z9 33 U1 1 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1477-3155 J9 J NANOBIOTECHNOL JI J. Nanobiotechnol. PD APR 10 PY 2011 VL 9 AR 14 DI 10.1186/1477-3155-9-14 PG 15 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA 767MC UT WOS:000290859700001 PM 21477355 ER PT J AU Shiltsev, V AF Shiltsev, Vladimir TI ON PERFORMANCE OF HIGH ENERGY PARTICLE COLLIDERS AND OTHER COMPLEX SCIENTIFIC SYSTEMS SO MODERN PHYSICS LETTERS A LA English DT Review DE Colliders; particle accelerators; complex systems AB Many complex scientific and technical systems demonstrate exponential performance progress with time proportional to e(+t/C). The characteristic progress time C, a measure of empirical difficulty and complexity, is analyzed for high energy elementary particle colliders, astrophysical searches for galaxies and exoplanets, protein structure determination, and compared with computers and thermonuclear fusion reactors. An explanation of the characteristic exponential progress is offered. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM shiltsev@fnal.gov FU United States Department of Energy [DE-AC02-07CH11359] FX The author is very thankful to N. Gnedin, M. Furman, N. Phinney, L. Rossi, J. P. Koutchouk and N. Maltseva for useful discussions. Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 16 TC 9 Z9 9 U1 1 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 10 PY 2011 VL 26 IS 11 BP 761 EP 772 DI 10.1142/S0217732311035699 PG 12 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 755RD UT WOS:000289953100001 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Costamante, L Cutini, S Davis, DS Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Fortin, P Frailis, M Fuhrmann, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guillemot, L Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Itoh, R Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nestoras, I Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reyes, LC Ripken, J Ritz, S Romani, RW Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Shaw, MS Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M Acciari, VA Aliu, E Arlen, T Aune, T Beilicke, M Benbow, W Bottcher, M Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Christiansen, JL Ciupik, L Cui, W Perez, ID Dickherber, R Errando, M Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Pichel, A Pohl, M Quinn, J Ragan, K Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Senturk, GD Smith, AW Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Varlotta, A Vassiliev, VV Vincent, S Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Villata, M Raiteri, CM Gurwell, MA Larionov, VM Kurtanidze, OM Aller, MF Lahteenmaki, A Chen, WP Berduygin, A Agudo, I Aller, HD Arkharov, AA Bach, U Bachev, R Beltrame, P Benitez, E Buemi, CS Dashti, J Calcidese, P Capezzali, D Carosati, D Da Rio, D Di Paola, A Diltz, C Dolci, M Dultzin, D Forne, E Gomez, JL Hagen-Thorn, VA Halkola, A Heidt, J Hiriart, D Hovatta, T Hsiao, HY Jorstad, SG Kimeridze, GN Konstantinova, TS Kopatskaya, EN Koptelova, E Leto, P Ligustri, R Lindfors, E Lopez, JM Marscher, AP Mommert, M Mujica, R Nikolashvili, MG Nilsson, K Palma, N Pasanen, M Roca-Sogorb, M Ros, JA Roustazadeh, P Sadun, AC Saino, J Sigua, LA Sillanaa, A Sorcia, M Takalo, LO Tornikoski, M Trigilio, C Turchetti, R Umana, G Belloni, T Blake, CH Bloom, JS Angelakis, E Fumagalli, M Hauser, M Prochaska, JX Riquelme, D Sievers, A Starr, DL Tagliaferri, G Ungerechts, H Wagner, S Zensus, JA AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Costamante, L. Cutini, S. Davis, D. S. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Fortin, P. Frailis, M. Fuhrmann, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Itoh, R. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reyes, L. C. Ripken, J. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Shaw, M. S. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Boettcher, M. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Christiansen, J. L. Ciupik, L. Cui, W. de la Calle Perez, I. Dickherber, R. Errando, M. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Smith, A. W. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Varlotta, A. Vassiliev, V. V. Vincent, S. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Villata, M. Raiteri, C. M. Gurwell, M. A. Larionov, V. M. Kurtanidze, O. M. Aller, M. F. Laehteenmaeki, A. Chen, W. P. Berduygin, A. Agudo, I. Aller, H. D. Arkharov, A. A. Bach, U. Bachev, R. Beltrame, P. Benitez, E. Buemi, C. S. Dashti, J. Calcidese, P. Capezzali, D. Carosati, D. Da Rio, D. Di Paola, A. Diltz, C. Dolci, M. Dultzin, D. Forne, E. Gomez, J. L. Hagen-Thorn, V. A. Halkola, A. Heidt, J. Hiriart, D. Hovatta, T. Hsiao, H. -Y. Jorstad, S. G. Kimeridze, G. N. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Leto, P. Ligustri, R. Lindfors, E. Lopez, J. M. Marscher, A. P. Mommert, M. Mujica, R. Nikolashvili, M. G. Nilsson, K. Palma, N. Pasanen, M. Roca-Sogorb, M. Ros, J. A. Roustazadeh, P. Sadun, A. C. Saino, J. Sigua, L. A. Sillanaa, A. Sorcia, M. Takalo, L. O. Tornikoski, M. Trigilio, C. Turchetti, R. Umana, G. Belloni, T. Blake, C. H. Bloom, J. S. Angelakis, E. Fumagalli, M. Hauser, M. Prochaska, J. X. Riquelme, D. Sievers, A. Starr, D. L. Tagliaferri, G. Ungerechts, H. Wagner, S. Zensus, J. A. CA Fermi-LAT Collaboration VERITAS Collaboration GASP-WEBT Consortium TI MULTI-WAVELENGTH OBSERVATIONS OF THE FLARING GAMMA-RAY BLAZAR 3C 66A IN 2008 OCTOBER (vol 726, pg 43, 2011) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Brez, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Rome, Italy. [Celik, Oe.; Davis, D. S.; Gehrels, N.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Guillemot, L.; Lott, B.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Guillemot, L.; Lott, B.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fuhrmann, L.; Guillemot, L.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama Huntsville, CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boettcher, M.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Christiansen, J. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Fortson, L.; Grube, J.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [de la Calle Perez, I.] Satellite Tracking Stn, European Space Astron Ctr INSA ESAC, ESA, E-28080 Madrid, Spain. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Villata, M.; Raiteri, C. M.] Osserv Astron Torino, INAF, Turin, Italy. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Boston, MA USA. [Larionov, V. M.; Hagen-Thorn, V. A.; Konstantinova, T. S.; Kopatskaya, E. N.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Larionov, V. M.; Hagen-Thorn, V. A.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Kurtanidze, O. M.; Kimeridze, G. N.; Nikolashvili, M. G.; Sigua, L. A.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Aller, M. F.; Aller, H. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Laehteenmaeki, A.; Hovatta, T.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, Helsinki, Finland. [Chen, W. P.; Hsiao, H. -Y.; Koptelova, E.] Natl Cent Univ, Inst Astron, Taipei, Taiwan. [Berduygin, A.; Halkola, A.; Lindfors, E.; Pasanen, M.; Saino, J.; Sillanaa, A.; Takalo, L. O.] Univ Turku, Tuorla Observ, Dept Phys & Astron, SF-20500 Turku, Finland. [Agudo, I.; Gomez, J. L.; Roca-Sogorb, M.] CSIC, Inst Astrofis Andalucia, Madrid, Spain. [Bachev, R.] Bulgarian Acad Sci, Inst Astron, BG-1040 Sofia, Bulgaria. [Benitez, E.; Dultzin, D.; Sorcia, M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.] Osserv Astrofis Catania, INAF, Catania, Italy. [Dashti, J.; Diltz, C.; Palma, N.; Roustazadeh, P.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Calcidese, P.] Osservatorio Astron Reg Autonoma Aosta, Aosta, Italy. [Di Paola, A.] Osserv Astron Roma, INAF, Rome, Italy. [Dolci, M.] Osservatorio Astron Collurania Teramo, INAF, Teramo, Italy. [Forne, E.; Ros, J. A.] Agrupacio Astron Sabadell, Sabadell, Spain. [Heidt, J.; Mommert, M.] Landessternwarte Heidelberg, ZAH, D-69117 Heidelberg, Germany. [Hiriart, D.; Lopez, J. M.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada 22800, Baja California, Mexico. [Jorstad, S. G.; Marscher, A. P.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Mommert, M.] Inst Planetary Res, DLR, D-12489 Berlin, Germany. [Mujica, R.] INAOE, Puebla 72000, Mexico. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikkio, Finland. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80202 USA. [Belloni, T.; Tagliaferri, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Blake, C. H.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bloom, J. S.; Starr, D. L.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Angelakis, E.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fumagalli, M.; Prochaska, J. X.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Hauser, M.; Wagner, S.] Heidelberg Univ, D-69117 Heidelberg, Germany. [Prochaska, J. X.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Riquelme, D.; Sievers, A.; Ungerechts, H.] Inst Radio Astron Millimetr, Granada 18012, Spain. [Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM lreyes@kicp.uchicago.edu RI Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Kurtanidze, Omar/J-6237-2014; Agudo, Ivan/G-1701-2015; Jorstad, Svetlana/H-6913-2013; Grishina, Tatiana/H-6873-2013; Hagen-Thorn, Vladimir/H-3983-2013; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Kopatskaya, Evgenia/H-4720-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Morselli, Aldo/G-6769-2011; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Funk, Stefan/B-7629-2015 OI Agudo, Ivan/0000-0002-3777-6182; Jorstad, Svetlana/0000-0001-9522-5453; Grishina, Tatiana/0000-0002-3953-6676; Hagen-Thorn, Vladimir/0000-0002-6431-8590; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Kopatskaya, Evgenia/0000-0001-9518-337X; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; Larionov, Valeri/0000-0002-4640-4356; Torres, Diego/0000-0002-1522-9065; Funk, Stefan/0000-0002-2012-0080 NR 2 TC 3 Z9 3 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2011 VL 731 IS 1 AR 77 DI 10.1088/0004-637X/731/1/77 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753KR UT WOS:000289772800077 ER PT J AU Collins, DC Padoan, P Norman, ML Xu, H AF Collins, David C. Padoan, Paolo Norman, Michael L. Xu, Hao TI MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: kinematics and dynamics; ISM: magnetic fields; magnetohydrodynamics (MHD) ID DENSITY PROBABILITY-DISTRIBUTION; REGULATED STAR-FORMATION; C2D LEGACY CLOUDS; DUST CONTINUUM EMISSION; MOLECULAR CLOUDS; MAGNETOHYDRODYNAMIC TURBULENCE; ISOTHERMAL TURBULENCE; INTERSTELLAR CLOUDS; NUMERICAL-CALCULATIONS; CONSTRAINED TRANSPORT AB In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P(rho) proportional to rho(-1.6) and P(B) proportional to B-2.7. A power-law relationship is also found between magnetic field strength and density, with B proportional to rho(0.5), throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with sigma proportional to n(0.25), also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics. C1 [Collins, David C.; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Collins, David C.; Norman, Michael L.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Padoan, Paolo] Univ Barcelona, ICREA ICC, E-08007 Barcelona, Spain. [Xu, Hao] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Collins, DC (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RI Xu, Hao/B-8734-2014 OI Xu, Hao/0000-0003-4084-9925 FU NSF [AST0808184, AST0908740] FX The authors thank A. Kritsuk for his input and many useful discussions. The authors acknowledge financial support from NSF grants AST0808184 and AST0908740, and computational resources provided by the National Institute for Computational Sciences under LRAC allocation MCA98N020 and TRAC allocation TG-AST090110. NR 84 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2011 VL 731 IS 1 AR 59 DI 10.1088/0004-637X/731/1/59 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753KR UT WOS:000289772800059 ER PT J AU Krughoff, KS Connolly, AJ Frieman, J SubbaRao, M Kilper, G Schneider, DP AF Krughoff, K. Simon Connolly, Andrew J. Frieman, Joshua SubbaRao, Mark Kilper, Gary Schneider, Donald P. TI SPECTROSCOPIC DETERMINATION OF THE LOW-REDSHIFT TYPE Ia SUPERNOVA RATE FROM THE SLOAN DIGITAL SKY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: statistical; supernovae: general; techniques: spectroscopic ID DELAY-TIME DISTRIBUTION; SURVEY IMAGING DATA; STAR-FORMATION; DATA RELEASE; SPECTRAL CLASSIFICATION; ULTRAVIOLET EXTINCTION; LEGACY SURVEY; LIGHT CURVES; DEEP SURVEY; PROGENITORS AB Supernova rates (SNRs) are directly coupled to high-mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper, we describe a probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 Type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of similar to 350,000 spectra from the SDSS DR5. We find an SNR of 0.472(-0.039)(+0.048) (Systematic)(-0.071)(+0.081)(Statistical)SNu at a redshift of < z > = 0.1. This value is higher than other values at low redshift at the 1 sigma level, but is consistent at the 3 sigma level. In this paper, we demonstrate the potential for the described approach to detect supernovae in future spectroscopic surveys. C1 [Krughoff, K. Simon; Connolly, Andrew J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Frieman, Joshua] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua; SubbaRao, Mark] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [SubbaRao, Mark] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. [Kilper, Gary] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 408A, University Pk, PA 16802 USA. RP Krughoff, KS (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. FU NSF [AST-0851007]; DOE [DE-FG02-87ER40315]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam,; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX The authors wish to thank the reviewer for many excellent points that served to greatly improve the quality of the analysis. K. S. K. and A.J.C. acknowledge partial support from NSF grant AST-0851007 and DOE grant DE-FG02-87ER40315. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 75 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2011 VL 731 IS 1 AR 42 DI 10.1088/0004-637X/731/1/42 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753KR UT WOS:000289772800042 ER PT J AU Schwadron, NA Allegrini, F Bzowski, M Christian, ER Crew, GB Dayeh, M DeMajistre, R Frisch, P Funsten, HO Fuselier, SA Goodrich, K Gruntman, M Janzen, P Kucharek, H Livadiotis, G McComas, DJ Moebius, E Prested, C Reisenfeld, D Reno, M Roelof, E Siegel, J Vanderspek, R AF Schwadron, N. A. Allegrini, F. Bzowski, M. Christian, E. R. Crew, G. B. Dayeh, M. DeMajistre, R. Frisch, P. Funsten, H. O. Fuselier, S. A. Goodrich, K. Gruntman, M. Janzen, P. Kucharek, H. Livadiotis, G. McComas, D. J. Moebius, E. Prested, C. Reisenfeld, D. Reno, M. Roelof, E. Siegel, J. Vanderspek, R. TI SEPARATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: general; magnetohydrodynamics (MHD); plasmas; shock waves; solar wind; Sun: heliosphere ID SOLAR-WIND; TERMINATION SHOCK; MAGNETIC-FIELD; OUTER HELIOSPHERE; IBEX RIBBON; PICKUP IONS; ENA FLUX; HELIOSHEATH; MECHANISM; GENERATION AB The Interstellar Boundary Explorer (IBEX) observes a remarkable feature, the IBEX ribbon, which has energetic neutral atom (ENA) flux over a narrow region similar to 20 degrees. wide, a factor of 2-3 higher than the more globally distributed ENA flux. Here, we separate ENA emissions in the ribbon from the distributed flux by applying a transparency mask over the ribbon and regions of high emissions, and then solve for the distributed flux using an interpolation scheme. Our analysis shows that the energy spectrum and spatial distribution of the ribbon are distinct from the surrounding globally distributed flux. The ribbon energy spectrum shows a knee between similar to 1 and 4 keV, and the angular distribution is approximately independent of energy. In contrast, the distributed flux does not show a clear knee and more closely conforms to a power law over much of the sky. Consistent with previous analyses, the slope of the power law steepens from the nose to tail, suggesting a weaker termination shock toward the tail as compared to the nose. The knee in the energy spectrum of the ribbon suggests that its source plasma population is generated via a distinct physical process. Both the slope in the energy distribution of the distributed flux and the knee in the energy distribution of the ribbon are ordered by latitude. The heliotail may be identified in maps of globally distributed flux as a broad region of low flux centered similar to 44 degrees W of the interstellar downwind direction, suggesting heliotail deflection by the interstellar magnetic field. C1 [Schwadron, N. A.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Schwadron, N. A.; Allegrini, F.; Dayeh, M.; Livadiotis, G.; McComas, D. J.; Reno, M.] SW Res Inst, San Antonio, TX 78228 USA. [Allegrini, F.; McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Christian, E. R.; Vanderspek, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crew, G. B.; Roelof, E.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Frisch, P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.; Goodrich, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gruntman, M.] Univ So Calif, Dept Astronaut Engn, Los Angeles, CA 90089 USA. [Janzen, P.; Reisenfeld, D.] Univ Montana, Dept Phys, Missoula, MT 59812 USA. [Prested, C.; Siegel, J.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Schwadron, NA (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM n.schwadron@unh.edu; fallegrini@swri.edu; bzowski@cbk.waw.pl; eric.r.christian@nasa.gov; gbc@space.mit.edu; maldayeh@swri.edu; Bob.DeMajistre@jhuapl.edu; frisch@oddjob.uchicago.edu; hfunsten@lanl.gov; stephen.a.fuselier@lmco.com; kgoodri@lanl.gov; mikeg@usc.edu; paul.janzen@umontana.edu; harald.kucharek@unh.edu; george.livadiotis@swri.org; dmccomas@swri.org; eberhard.moebius@unh.edu; cprested@bu.edu; dan.reisenfeld@umontana.edu; mreno@swri.edu; Edmond.Roelof@jhuapl.edu; jacob707@gmail.com RI Christian, Eric/D-4974-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Christian, Eric/0000-0003-2134-3937; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 FU NASA; Polish Ministry for Science and Higher Education [NS-1260-11-09] FX We are deeply indebted to all of the outstanding people who have made the IBEX mission possible. This work was carried out as a part of the IBEX project, with support from NASA's Explorer Program and Polish Ministry for Science and Higher Education (grant NS-1260-11-09). NR 40 TC 80 Z9 82 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2011 VL 731 IS 1 AR 56 DI 10.1088/0004-637X/731/1/56 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753KR UT WOS:000289772800056 ER PT J AU Piazza, F Collins, LA Smerzi, A AF Piazza, F. Collins, L. A. Smerzi, Augusto TI Instability and vortex ring dynamics in a three-dimensional superfluid flow through a constriction SO NEW JOURNAL OF PHYSICS LA English DT Article ID EINSTEIN CONDENSED GAS; BOSE CONDENSATE; SOLITARY WAVES; MOTIONS; DISSIPATION; STABILITY AB We study the instability of a superfluid flow through a constriction in three spatial dimensions. We consider a Bose-Einstein condensate at zero temperature in two different geometries: a straight waveguide and a torus. The constriction consists of a broad, repulsive penetrable barrier. In the hydrodynamic regime, we find that the flow becomes unstable as soon as the velocity at the classical (Thomas-Fermi) surface equals the sound speed inside the constriction. At this critical point, vortex rings enter the bulk region of the cloud. The nucleation and dynamics scenario is strongly affected by the presence of asymmetries in the velocity and density of the background condensate flow. C1 [Piazza, F.; Smerzi, Augusto] INO CNR, BEC Ctr, I-38123 Povo, Trento, Italy. [Piazza, F.; Smerzi, Augusto] Univ Trent, Dipartimento Fis, I-38123 Povo, Italy. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Smerzi, A (reprint author), INO CNR, BEC Ctr, Via Sommarive 14, I-38123 Povo, Trento, Italy. EM smerzi@science.unitn.it RI Piazza, Francesco/H-3840-2012 OI Piazza, Francesco/0000-0003-1332-6627 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We acknowledge many helpful discussions with L P Pitaevskii. We especially thank Chris Ticknor for bringing to our attention the plaquette technique and providing us with subroutines for implementing it in our analysis programs. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no. DE-AC52-06NA25396. NR 31 TC 10 Z9 10 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD APR 8 PY 2011 VL 13 AR 043008 DI 10.1088/1367-2630/13/4/043008 PG 14 WC Physics, Multidisciplinary SC Physics GA 756DM UT WOS:000289991900001 ER PT J AU Jura, N Zhang, XW Endres, NF Seeliger, MA Schindler, T Kuriyan, J AF Jura, Natalia Zhang, Xuewu Endres, Nicholas F. Seeliger, Markus A. Schindler, Thomas Kuriyan, John TI Catalytic Control in the EGF Receptor and Its Connection to General Kinase Regulatory Mechanisms SO MOLECULAR CELL LA English DT Review ID EPIDERMAL-GROWTH-FACTOR; DEPENDENT PROTEIN-KINASE; ABL TYROSINE KINASE; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; C-SRC; TRANSMEMBRANE DOMAIN; NEU ONCOGENE; LUNG-CANCER; AUTOINHIBITORY MECHANISM AB In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an a helix, has features in common with mechanisms operative in several other kinases. C1 [Jura, Natalia; Endres, Nicholas F.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jura, Natalia; Endres, Nicholas F.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. [Seeliger, Markus A.] SUNY Stony Brook, Dept Pharmacol Sci, Stony Brook, NY 11794 USA. [Schindler, Thomas] F Hoffmann La Roche & Cie AG, Pharma Res & Early Dev, CH-4070 Basel, Switzerland. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu RI Seeliger, Markus/D-6409-2013 FU National Cancer Institute [RO1 CA96504-06]; Susan G. Komen [KG 081684]; Leukemia and Lymphoma Society FX We thank Luke Chao, Nick Levinson, and other members of the Kuriyan laboratory, as well as Tom Alber, Philip Cole, Mark Moasser, Yibing Shan, David Shaw, and Susan Taylor, for inspiring discussions regarding kinase regulatory mechanisms. This work was supported in part by the grant from the National Cancer Institute to J.K. (RO1 CA96504-06) and the Susan G. Komen for the Cure Breast Cancer Research award to J.K. (KG 081684). N.F.E. acknowledges support from the Leukemia and Lymphoma Society. NR 104 TC 142 Z9 142 U1 3 U2 18 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD APR 8 PY 2011 VL 42 IS 1 BP 9 EP 22 DI 10.1016/j.molcel.2011.03.004 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 749VY UT WOS:000289500500004 PM 21474065 ER PT J AU Gao, HT Llobet, A Barth, J Winterlik, J Felser, C Panthofer, M Tremel, W AF Gao, Haitao Llobet, Anna Barth, Joachim Winterlik, Juergen Felser, Claudia Panthoefer, Martin Tremel, Wolfgang TI Structure-property relations in the distorted ordered double perovskite Sr2InReO6 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETORESISTANCE; SR2CRREO6; TEMPERATURE; MAGNETISM; CA; SR AB The rock-salt ordered type double perovskite Sr2InReO6 is systematically investigated by means of powder x-ray diffraction, neutron powder diffraction, temperature-dependent electrical transport, heat capacity and magnetic susceptibility measurements, and electronic band structure calculations. The crystal structure of Sr2InReO6 is revised to be monoclinic (cryolite structure type, space group P2(1)/n) with all structural distortions according to the high-symmetry aristotype due to tilting of the InO6 and ReO6 octahedra, respectively. Sr2InReO6 is a Mott insulator with variable-range hopping. Two 5d electrons are unpaired and localized on the Re5+ ions. Although there are antiferromagnetic interactions, the fcc arrangement of the Re5+ cations (5d(2)) leads to a geometrically frustrated spin system that does not achieve full magnetic order. The experimental findings are in line with the results of electronic structure computation using the WIEN2K program within the GGA + U approximation exclusively on the basis of the revised crystal structure model. C1 [Gao, Haitao; Barth, Joachim; Winterlik, Juergen; Felser, Claudia; Panthoefer, Martin; Tremel, Wolfgang] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. [Llobet, Anna] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Tremel, W (reprint author), Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. EM tremel@uni-mainz.de RI Felser, Claudia/A-5779-2009; Barth, Joachim/A-7832-2009; Tremel, Wolfgang/D-8125-2011; Llobet, Anna/B-1672-2010 OI Felser, Claudia/0000-0002-8200-2063; Tremel, Wolfgang/0000-0002-4536-994X; FU Deutsche Forschungsgemeinschaft [Forschergruppe 559]; Materials Science Center(MWFZ) at the Johannes-Gutenberg Universitat Mainz; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work was supported by the Deutsche Forschungsgemeinschaft (Forschergruppe 559) and the Materials Science Center(MWFZ) at the Johannes-Gutenberg Universitat Mainz. We thank Dr. Gerhard Fechher, Dr. Guodong Liu, and Nathan Banek for stimulating discussions concerning the band structure calculations with the WIEN2K program system. This work has benefited from the use of HIPD at the Lujan Center at LANSCE, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 29 TC 5 Z9 5 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 8 PY 2011 VL 83 IS 13 AR 134406 DI 10.1103/PhysRevB.83.134406 PG 6 WC Physics, Condensed Matter SC Physics GA 747VR UT WOS:000289349300005 ER PT J AU Lacey, RA Wei, R Jia, J Ajitanand, NN Alexander, JM Taranenko, A AF Lacey, Roy A. Wei, Rui Jia, J. Ajitanand, N. N. Alexander, J. M. Taranenko, A. TI Initial eccentricity fluctuations and their relation to higher-order flow harmonics SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; ELLIPTIC-FLOW; COLLECTIVE FLOW; GLUON PLASMA; THERMALIZATION; SPACE; MODEL AB Monte Carlo simulations are used to compute the centrality dependence of the participant eccentricities (epsilon(n)) in Au + Au collisions for the two primary models currently employed for eccentricity estimates-the Glauber and the factorized Kharzeev-Levin-Nardi (fKLN) models. They suggest specific testable predictions for the magnitude and centrality dependence of the flow coefficients v(n), respectively measured relative to the event planes Psi(n). They also indicate that the ratios of several of these coefficients may provide an additional constraint for distinguishing between the models. Such a constraint could be important for a more precise determination of the specific viscosity of the matter produced in heavy ion collisions. C1 [Lacey, Roy A.; Wei, Rui; Jia, J.; Ajitanand, N. N.; Alexander, J. M.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Lacey, Roy A.; Jia, J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lacey, RA (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM roy.lacey@stonybrook.edu FU US DOE [DE-FG02-87ER40331.A008]; NSF [PHY-1019387] FX We thank Wojciech Broniowski for profitable discussions and invaluable model calculation cross checks. This research is supported by the US DOE under Contract DE-FG02-87ER40331.A008 and by the NSF under Grant PHY-1019387. NR 64 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 8 PY 2011 VL 83 IS 4 AR 044902 DI 10.1103/PhysRevC.83.044902 PG 6 WC Physics, Nuclear SC Physics GA 747JG UT WOS:000289315500002 ER PT J AU Bruno, FY Garcia-Barriocanal, J Varela, M Nemes, NM Thakur, P Cezar, JC Brookes, NB Rivera-Calzada, A Garcia-Hernandez, M Leon, C Okamoto, S Pennycook, SJ Santamaria, J AF Bruno, F. Y. Garcia-Barriocanal, J. Varela, M. Nemes, N. M. Thakur, P. Cezar, J. C. Brookes, N. B. Rivera-Calzada, A. Garcia-Hernandez, M. Leon, C. Okamoto, S. Pennycook, S. J. Santamaria, J. TI Electronic and Magnetic Reconstructions in La0.7Sr0.3MnO3/SrTiO3 Heterostructures: A Case of Enhanced Interlayer Coupling Controlled by the Interface SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXIDES AB We report on the magnetic coupling of La0.7Sr0.3MnO3 layers through SrTiO3 spacers in La0.7Sr0.3MnO3/SrTiO3 epitaxial heterostructures. Combined aberration-corrected microscopy and electron-energy-loss spectroscopy evidence charge transfer to the empty conduction band of the titanate. Ti d electrons interact via superexchange with Mn, giving rise to a Ti magnetic moment as demonstrated by x-ray magnetic circular dichroism. This induced magnetic moment in the SrTiO3 controls the bulk magnetic and transport properties of the superlattices when the titanate layer thickness is below 1 nm. C1 [Bruno, F. Y.; Garcia-Barriocanal, J.; Nemes, N. M.; Rivera-Calzada, A.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, GFMC, Dept Fis Aplicada 3, E-28040 Madrid, Spain. [Garcia-Barriocanal, J.] European Synchrotron Radiat Facil, SpLine Spanish CRG Beamline, F-38043 Grenoble, France. [Varela, M.; Okamoto, S.; Pennycook, S. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Garcia-Hernandez, M.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, Canto Blanco 28049, Spain. RP Bruno, FY (reprint author), Univ Complutense Madrid, GFMC, Dept Fis Aplicada 3, Campus Moncloa, E-28040 Madrid, Spain. RI Okamoto, Satoshi/G-5390-2011; Bruno, Flavio/C-7380-2008; Leon, Carlos/A-5587-2008; Thakur, Pardeep Kumar/A-8328-2012; Criginski Cezar, Julio/D-5039-2012; Varela, Maria/H-2648-2012; Rivera-Calzada, Alberto/C-4802-2013; Nemes, Norbert Marcel/B-6275-2009; Varela, Maria/E-2472-2014; Garcia-Hernandez, Mar/J-9520-2014; Santamaria, Jacobo/N-8783-2016 OI Okamoto, Satoshi/0000-0002-0493-7568; Bruno, Flavio/0000-0002-3970-8837; Leon, Carlos/0000-0002-3262-1843; Thakur, Pardeep Kumar/0000-0002-9599-0531; Criginski Cezar, Julio/0000-0002-7904-6874; Nemes, Norbert Marcel/0000-0002-7856-3642; Varela, Maria/0000-0002-6582-7004; Garcia-Hernandez, Mar/0000-0002-5987-0647; Santamaria, Jacobo/0000-0003-4594-2686 FU Spanish MICINN [MAT 2008 06517]; Consolider Ingenio [CSD2009-00013 (IMAGINE), CAM S2009-MAT 1756 (PHAMA)]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; ERC [239739] FX Work at UCM was supported by Spanish MICINN Grant No. MAT 2008 06517, Consolider Ingenio CSD2009-00013 (IMAGINE), and CAM S2009-MAT 1756 (PHAMA). Work at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. M. V. acknowledges ERC starting Grant No. 239739 STEMOX. NR 25 TC 41 Z9 41 U1 4 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 8 PY 2011 VL 106 IS 14 AR 147205 DI 10.1103/PhysRevLett.106.147205 PG 4 WC Physics, Multidisciplinary SC Physics GA 747YD UT WOS:000289356300017 PM 21561220 ER PT J AU Khare, G Gupta, V Nangpal, P Gupta, RK Sauter, NK Tyagi, AK AF Khare, Garima Gupta, Vibha Nangpal, Prachi Gupta, Rakesh K. Sauter, Nicholas K. Tyagi, Anil K. TI Ferritin Structure from Mycobacterium tuberculosis: Comparative Study with Homologues Identifies Extended C-Terminus Involved in Ferroxidase Activity SO PLOS ONE LA English DT Article ID HORSE-SPLEEN APOFERRITIN; H-CHAIN FERRITINS; CRYSTAL-STRUCTURE; ANGSTROM RESOLUTION; ESCHERICHIA-COLI; IRON-METABOLISM; METAL-BINDING; CRYSTALLOGRAPHIC STRUCTURE; HYPOXIC RESPONSE; GENE-EXPRESSION AB Ferritins are recognized as key players in the iron storage and detoxification processes. Iron acquisition in the case of pathogenic bacteria has long been established as an important virulence mechanism. Here, we report a 3.0 angstrom crystal structure of a ferritin, annotated as Bacterioferritin B (BfrB), from Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis that continues to be one of the world's deadliest diseases. Similar to the other members of ferritin family, the Mtb BfrB subunit exhibits the characteristic fold of a four-helical bundle that possesses the ferroxidase catalytic centre. We compare the structure of Mtb BfrB with representatives of the ferritin family belonging to the archaea, eubacteria and eukarya. Unlike most other ferritins, Mtb BfrB has an extended C-terminus. To dissect the role of this extended C-terminus, truncated Mtb BfrB was purified and biochemical studies implicate this region in ferroxidase activity and iron release in addition to providing stability to the protein. Functionally important regions in a protein of known 3D-structure can be determined by estimating the degree of conservation of the amino-acid sites with its close homologues. Based on the comparative studies, we identify the slowly evolving conserved sites as well as the rapidly evolving variable sites and analyze their role in relation to structure and function of Mtb BfrB. Further, electrostatic computations demonstrate that although the electrostatic environment of catalytic residues is preserved within the family, extensive variability is exhibited by residues defining the channels and pores, in all likelihood keeping up with the diverse functions executed by these ferritins in varied environments. C1 [Khare, Garima; Gupta, Vibha; Nangpal, Prachi; Gupta, Rakesh K.; Tyagi, Anil K.] Univ Delhi, Dept Biochem, New Delhi, India. [Gupta, Rakesh K.] Univ Delhi, Ram Lal Anand Coll, New Delhi, India. [Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Khare, G (reprint author), Univ Delhi, Dept Biochem, South Campus, New Delhi, India. EM aniltyagi@south.du.ac.in RI Sauter, Nicholas/K-3430-2012 FU National Institutes of Health (USA) [1R01GM077071]; Department of Biotechnology, Government of India; Council of Scientific and Industrial Research, India FX This work was supported by a financial grant received from the Department of Biotechnology, Government of India. G. K. is grateful to the Council of Scientific and Industrial Research, India, for a fellowship. N.K.S. thanks the National Institutes of Health (USA) for financial support (grant number 1R01GM077071). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 76 TC 15 Z9 18 U1 1 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 8 PY 2011 VL 6 IS 4 AR e18570 DI 10.1371/journal.pone.0018570 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 747AP UT WOS:000289292800029 PM 21494619 ER PT J AU Norman, MR AF Norman, Michael R. TI The Challenge of Unconventional Superconductivity SO SCIENCE LA English DT Review ID HIGH-T-C; FERMION SYSTEMS; PHASES; UPT3; HE-3; TRANSITION; SYMMETRY; DENSITY; COPPER; STATE AB During the past few decades, several new classes of superconductors have been discovered that do not appear to be related to traditional superconductors. The source of the superconductivity of these materials is likely different from the electron-ion interactions that are at the heart of conventional superconductivity. Developing a rigorous theory for any of these classes of materials has proven to be a difficult challenge and will remain one of the major problems in physics in the decades to come. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM norman@anl.gov RI Norman, Michael/C-3644-2013 FU U.S. Department of Energy (DOE) Office of Science [DE-AC02-06CH11357]; DOE Office of Science [DE-AC02-98CH1088] FX Supported by the U.S. Department of Energy (DOE) Office of Science under contract DE-AC02-06CH11357, and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the DOE Office of Science under award DE-AC02-98CH1088. NR 64 TC 131 Z9 133 U1 17 U2 130 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 8 PY 2011 VL 332 IS 6026 BP 196 EP 200 DI 10.1126/science.1200181 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746MM UT WOS:000289251100039 PM 21474750 ER PT J AU Wang, F Lee, DH AF Wang, Fa Lee, Dung-Hai TI The Electron-Pairing Mechanism of Iron-Based Superconductors SO SCIENCE LA English DT Review ID RENORMALIZATION-GROUP; PHASE-DIAGRAM; PNICTIDES; GAPS; DENSITY AB The past three years have witnessed the discovery of a series of novel high-temperature superconductors. Trailing behind the cuprates, these iron-based compounds are the second-highest-temperature superconducting material family known to date. Despite the marked differences in the chemical composition, these materials share many properties with the cuprates and offer the hope of finally unveiling the secret of high-temperature superconductivity. The main theme of this review is the electron-pairing mechanism responsible for their superconductivity. We discuss the progress in this young field and point out the open issues. C1 [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Fa] MIT, Dept Phys, Cambridge, MA 02139 USA. [Lee, Dung-Hai] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, DH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dunghai@berkeley.edu RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU MIT; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank H. Zhai, F. Yang, Y. Ran, and A. Vishwanath for collaborations. F. W. is supported by the Pappalardo Fellowship of MIT, and D.-H. L. is supported by U.S. Department of Energy grant number DE-AC02-05CH11231. NR 63 TC 100 Z9 100 U1 15 U2 121 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 8 PY 2011 VL 332 IS 6026 BP 200 EP 204 DI 10.1126/science.1200182 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746MM UT WOS:000289251100040 PM 21474751 ER PT J AU Crider, PE Harrison, AW Neumark, DM AF Crider, Paul E. Harrison, Aaron W. Neumark, Daniel M. TI Two- and three-body photodissociation dynamics of diiodobromide (I2Br-) anion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FEMTOSECOND PHOTOELECTRON-SPECTROSCOPY; STIMULATED RAMAN-SCATTERING; FLIGHT MASS-SPECTROMETER; CHARGE-EXCHANGE DYNAMICS; GAS-PHASE I-3(-); TRIHALIDE IONS; ULTRAFAST PHOTODISSOCIATION; VIBRATIONAL-RELAXATION; FLASH-PHOTOLYSIS; SYM-TRIAZINE AB The photodissociation of gas-phase I2Br- was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm ( 4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two- body dissociation showed evidence for four distinct channels: Br- + I-2, I- + IBr, Br + I- 2, and I + IBr-. In three-body dissociation, Br(P-2(3/2)) + I(P-2(3/2)) + I- and Br- + I(P-2(3/2)) + I(P-2(3/2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br-(S-1) + I-2(B-3 Pi(+)(0u)) followed by predissociation of I-2(B). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3571474] C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Basic Energy Science, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Basic Energy Science, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Etienne Garand for his help with the calculations. NR 75 TC 4 Z9 4 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 7 PY 2011 VL 134 IS 13 AR 134306 DI 10.1063/1.3571474 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 746OH UT WOS:000289256100018 PM 21476754 ER PT J AU Yacovitch, TI Kim, JB Garand, E van der Poll, DG Neumark, DM AF Yacovitch, Tara I. Kim, Jongjin B. Garand, Etienne van der Poll, Derek G. Neumark, Daniel M. TI Slow photoelectron velocity-map imaging spectroscopy of the n-methylvinoxide anion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NEGATIVE-IONS; PHOTODETACHMENT SPECTROSCOPY; ELECTRON-AFFINITIES; ENOLATE RADICALS; VINOXY RADICALS; DYNAMICS; RESOLUTION; SPECTRUM; FLUORESCENCE; IONIZATION AB High resolution photoelectron spectra of the n-methylvinoxide anion and its deuterated isotopologue are obtained by slow electron velocity-map imaging. Transitions between the (X) over tilde (1)A' anion ground electronic state and the radical (X) over tilde (2)A '' and (A) over tilde (2)A' states are observed. The major features in the spectra are attributed to transitions involving the lower energy cis conformers of the anion and neutral, while the higher energy trans conformers contribute only a single small peak. Franck-Condon simulations of the (X) over tilde (2)A '' <- (X) over tilde (1)A' and (A) over tilde (2)A' <- (X) over tilde (1)A' transitions are performed to assign vibrational structure in the spectrum and to aid in identifying peaks in the cis-n-methylvinoxy (X) over tilde (2)A '' band that occur only through vibronic coupling. The experimental electron affinity and (A) over tilde state term energy are found to be EA = 1.6106 +/- 0.0008 eV and T-0 = 1.167 +/- 0.002 eV for cis-n-methylvinoxy. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3572269] C1 [Yacovitch, Tara I.; Kim, Jongjin B.; Garand, Etienne; van der Poll, Derek G.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research (USAFOSR) [F49620-03-1-0085, FA9550-09-1-0343]; Fonds quebecois de la recherche sur la nature et les technologies (FQRNT); National Science and Engineering Research Council of Canada (NSERC) FX This work was supported by the Air Force Office of Scientific Research (USAFOSR) under Grant No.'s F49620-03-1-0085 and FA9550-09-1-0343. We thank Dr. Gabriel M. P. Just for help with the excited state calculations. T.I.Y. thanks the Fonds quebecois de la recherche sur la nature et les technologies (FQRNT) for a master's scholarship. T.I.Y. and E. G. thank the National Science and Engineering Research Council of Canada (NSERC) for post graduate scholarships. NR 50 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 7 PY 2011 VL 134 IS 13 AR 134307 DI 10.1063/1.3572269 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 746OH UT WOS:000289256100019 PM 21476755 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Brown, AM Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lehmann, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schoenwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Brown, A. M. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lehmann, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, C. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. TI Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY NEUTRINOS; MUON NEUTRINOS; SEARCH; AMANDA AB IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18) eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from p gamma interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence. C1 [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Heinen, D.; Huelss, J. -P.; Krings, T.; Laihem, K.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kappes, A.; Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Meagher, K (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Taavola, Henric/B-4497-2011; OI Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Actis, Oxana/0000-0001-8851-3983; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU U.S. NSF-Office of Polar Programs; U.S. NSF-Physics Division; University of Wisconsin Alumni Research Foundation; GLOW and OSG grids; U.S. DOE; NERSCC; LONI grid; NSERC, Canada; Swedish Research Council; Swedish Polar Research Secretariat; SNIC; K. and A. Wallenberg Foundation, Sweden; German Ministry for Education and Research; Deutsche Forschungsgemeinschaft; FSR; FWO Odysseus; IWT; BELSPO, Belgium; Marsden Fund, New Zealand; JSPS, Japan; SNSF, Switzerland; EU; Capes Foundation, Brazil; NSF GRFP FX We acknowledge support from the following agencies: U.S. NSF-Office of Polar Programs, U.S. NSF-Physics Division, University of Wisconsin Alumni Research Foundation, the GLOW and OSG grids; U.S. DOE, NERSCC, the LONI grid; NSERC, Canada; Swedish Research Council, Swedish Polar Research Secretariat, SNIC, K. and A. Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft; FSR, FWO Odysseus, IWT, BELSPO, Belgium; Marsden Fund, New Zealand; JSPS, Japan; SNSF, Switzerland. A. Gross is supported by the EU Marie Curie OIF Program, J. P. R. by the Capes Foundation, Brazil, and N. W. by the NSF GRFP. NR 18 TC 74 Z9 76 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 7 PY 2011 VL 106 IS 14 AR 141101 DI 10.1103/PhysRevLett.106.141101 PG 5 WC Physics, Multidisciplinary SC Physics GA 747XY UT WOS:000289355800002 PM 21561178 ER PT J AU Altarawneh, MM Harrison, N Sebastian, SE Balicas, L Tobash, PH Thompson, JD Ronning, F Bauer, ED AF Altarawneh, M. M. Harrison, N. Sebastian, S. E. Balicas, L. Tobash, P. H. Thompson, J. D. Ronning, F. Bauer, E. D. TI Sequential Spin Polarization of the Fermi Surface Pockets in URu2Si2 and Its Implications for the Hidden Order SO PHYSICAL REVIEW LETTERS LA English DT Article ID HAAS-VAN-ALPHEN; QUANTUM CRITICALITY; TRANSITION AB Using Shubnikov-de Haas oscillations measured in URu2Si2 over a broad range in a magnetic field of 11-45 T, we find a cascade of field-induced Fermi surface changes within the hidden order phase I and further signatures of oscillations within field-induced phases III and V [previously discovered by Kim et al., [Phys. Rev. Lett. 91, 256401 (2003)]. A comparison of kinetic and Zeeman energies indicates a pocket-by-pocket polarization of the Fermi surface leading up to the destruction of the hidden order phase I at approximate to 35 T. The anisotropy of the Zeeman energy driving the transitions in URu2Si2 points to an itinerant hidden order parameter involving quasiparticles whose spin degrees of freedom depart significantly from those of free electrons. C1 [Altarawneh, M. M.; Harrison, N.; Tobash, P. H.; Thompson, J. D.; Ronning, F.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sebastian, S. E.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Balicas, L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Altarawneh, MM (reprint author), Los Alamos Natl Lab, MS E536, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; OI Ronning, Filip/0000-0002-2679-7957; Harrison, Neil/0000-0001-5456-7756; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES); Seaborg fellowship; DOE-BES [DE-SC0002613]; US DOE, Office of BES, MSE Division; LANL LDRD; US DOE; National Science Foundation; State of Florida FX M. M. A. and N. H. acknowledge the provision of the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) funding for the "Science of 100 Tesla.'' M. M. A. further acknowledges a Seaborg fellowship. LB is supported by DOE-BES through award DE-SC0002613. Work by PHT, F. R., J. D. T, and E. D. B. is supported by the US DOE, Office of BES, MSE Division and by the LANL LDRD program. Experiments were performed at the NHMFL, which is supported by the US DOE, the National Science Foundation and the State of Florida. S. E. S. acknowledges the Royal Society, Trinity College (University of Cambridge) and the EPSRC-GB. NR 34 TC 47 Z9 47 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 7 PY 2011 VL 106 IS 14 AR 146403 DI 10.1103/PhysRevLett.106.146403 PG 4 WC Physics, Multidisciplinary SC Physics GA 747XY UT WOS:000289355800005 PM 21561207 ER PT J AU Blomberg, EC Tanatar, MA Kreyssig, A Ni, N Thaler, A Hu, RW Bud'ko, SL Canfield, PC Goldman, AI Prozorov, R AF Blomberg, E. C. Tanatar, M. A. Kreyssig, A. Ni, N. Thaler, A. Hu, Rongwei Bud'ko, S. L. Canfield, P. C. Goldman, A. I. Prozorov, R. TI nIn-plane anisotropy of electrical resistivity in strain-detwinned SrFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTOR; STATE AB Intrinsic, in-plane anisotropy of electrical resistivity was studied on mechanically detwinned single crystals of SrFe2As2 above and below the temperature of the coupled structural/magnetic transition, T-TO. Resistivity is smaller for electrical current flow along the orthorhombic a(o) direction (direction of antiferromagnetically alternating magnetic moments) and is larger for transport along the b(o) direction (direction of ferromagnetic chains), which is similar to CaFe2As2 and BaFe2As2 compounds. A strongly first-order structural transition in SrFe2As2 was confirmed by high-energy x-ray measurements, with the transition temperature and character unaffected by moderate strain. For small strain levels, which are just sufficient to detwin the sample, we find a negligible effect on the resistivity above TTO. With the increase of strain, the resistivity anisotropy starts to develop above TTO, clearly showing the relation of anisotropy to an anomalously strong response to strain. Our study suggests that electronic nematicity cannot be observed in the FeAs-based compounds in which the structural transition is strongly first order. C1 [Blomberg, E. C.; Tanatar, M. A.; Kreyssig, A.; Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Blomberg, E. C.; Kreyssig, A.; Ni, N.; Thaler, A.; Hu, Rongwei; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM tanatar@ameslab.gov RI Hu, Rongwei/E-7128-2012; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; Thaler, Alexander/0000-0001-5066-8904 FU US Department of Energy, Office of Science [DE-AC02-06CH11357]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; AFOSR-MURI [FA9550-09-1-0603]; Alfred P. Sloan Foundation FX We thank D. Robinson for the excellent support of the high-energy x-ray scattering study. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Work at the Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. R. H. acknowledges support from AFOSR-MURI Grant No. FA9550-09-1-0603. R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 25 TC 39 Z9 39 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 7 PY 2011 VL 83 IS 13 AR 134505 DI 10.1103/PhysRevB.83.134505 PG 6 WC Physics, Condensed Matter SC Physics GA 746FP UT WOS:000289228800007 ER PT J AU Weyeneth, S Moll, PJW Puzniak, R Ninios, K Balakirev, FF McDonald, RD Chan, HB Zhigadlo, ND Katrych, S Bukowski, Z Karpinski, J Keller, H Batlogg, B Balicas, L AF Weyeneth, S. Moll, P. J. W. Puzniak, R. Ninios, K. Balakirev, F. F. McDonald, R. D. Chan, H. B. Zhigadlo, N. D. Katrych, S. Bukowski, Z. Karpinski, J. Keller, H. Batlogg, B. Balicas, L. TI Rearrangement of the antiferromagnetic ordering at high magnetic fields in SmFeAsO and SmFeAsO0.9F0.1 single crystals SO PHYSICAL REVIEW B LA English DT Article ID SPIN-FLOP; SUPERCONDUCTIVITY; SM; METAMAGNETISM; TRANSITIONS; COEXISTENCE; ANISOTROPY; SM2CUO4; SYSTEM; PR AB The low-temperature antiferromagnetic state of the Sm ions in both nonsuperconducting SmFeAsO and superconducting SmFeAsO0.9F0.1 single crystals was studied by magnetic torque, magnetization, and magnetoresistance measurements in magnetic fields up to 60 T and temperatures down to 0.6 K. We uncover in both compounds a distinct rearrangement of the antiferromagnetically ordered Sm moments near 35 - 40 T. This is seen in both static and pulsed magnetic fields as a sharp change in the sign of the magnetic torque, which is sensitive to the magnetic anisotropy and hence to themagnetic moment in the ab plane, (i.e., the FeAs layers), and as a jump in the magnetization for magnetic fields perpendicular to the conducting planes. This rearrangement of magnetic ordering in 35 - 40 T is essentially temperature independent and points toward a canted or a partially polarized magnetic state in high magnetic fields. However, the observed value for the saturation moment above this rearrangement, suggests that the complete suppression of the antiferromagnetism related to the Sm-moments would require fields in excess of 60 T. Such a large field value is particularly remarkable when compared to the relatively small Neel temperature T-N similar or equal to 5 K, suggesting very anisotropic magnetic exchange couplings. At the transition, magnetoresistivity measurements show a crossover from positive to negative field dependence, indicating that the charge carriers in the FeAs planes are sensitive to the magnetic configuration of the rare-earth elements. This points towards a finite magnetic/electronic coupling between the SmO and the FeAs layers which are likely to mediate the exchange interactions leading to the long-range antiferromagnetic order of the Sm ions. C1 [Weyeneth, S.; Keller, H.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Moll, P. J. W.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Karpinski, J.; Batlogg, B.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Puzniak, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Ninios, K.; Chan, H. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Balakirev, F. F.; McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Balicas, L.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Weyeneth, S (reprint author), Univ Zurich, Inst Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM balicas@magnet.fsu.edu RI McDonald, Ross/H-3783-2013; Puzniak, Roman/N-1643-2013; OI McDonald, Ross/0000-0002-0188-1087; Puzniak, Roman/0000-0001-5636-5541; Mcdonald, Ross/0000-0002-5819-4739 FU NSF [NSF-DMR-0084173]; State of Florida; DOE-BES [DE-SC0002613]; NHMFL-UCGP; Swiss National Science Foundation; NCCR; Polish Ministry of Science and Higher Education [N N202 4132 33] FX The authors acknowledge stimulating discussions with A. Gurevich and F. Mila. The NHMFL is supported by NSF through NSF-DMR-0084173 and the State of Florida. L. B. is supported by DOE-BES through award no. DE-SC0002613. K.N., H. B. C., and L. B. are supported by the NHMFL-UCGP program. This work was also partially supported by the Swiss National Science Foundation, the NCCR program MaNEP, and the Polish Ministry of Science and Higher Education, within the research project for the years 2007-2010 (No. N N202 4132 33). NR 46 TC 9 Z9 9 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 7 PY 2011 VL 83 IS 13 AR 134503 DI 10.1103/PhysRevB.83.134503 PG 9 WC Physics, Condensed Matter SC Physics GA 746FP UT WOS:000289228800005 ER PT J AU Lambrecht, DS Brandhorst, K Miller, WH McCurdy, CW Head-Gordon, M AF Lambrecht, Daniel S. Brandhorst, Kai Miller, William H. McCurdy, C. William Head-Gordon, Martin TI A Kinetic Energy Fitting Metric for Resolution of the Identity Second-Order Moller-Plesset Perturbation Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AUXILIARY BASIS EXPANSIONS; BASIS-SETS; APPROXIMATIONS; IMPLEMENTATION; RI-MP2; MP2; SCF AB A kinetic-energy-based fitting metric for application in the context of resolution of the identity second-order Moller-Plesset perturbation theory is presented, which is derived from the Poisson equation. Preliminary tests of the applicability include the evaluation, of the error in the correlation energy, compared to standard Moller-Plesset perturbation theory, with respect to the auxiliary basis set employed. We comment on the potential merits of this fitting metric, compared to standard resolution of the identity second-order Moller-Plesset perturbation theory, and discuss its scaling behavior in the limit of large molecules. C1 [Lambrecht, Daniel S.; Brandhorst, Kai; Miller, William H.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Miller, William H.; McCurdy, C. William; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Lambrecht, DS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM daniel.lambrecht@berkeley.edu OI Brandhorst, Kai/0000-0002-7028-8631 FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0376SF00098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC0376SF00098. M.H.G. is a part-owner of Q-Chem, Inc. NR 36 TC 4 Z9 4 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 7 PY 2011 VL 115 IS 13 BP 2794 EP 2801 DI 10.1021/jp108218w PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 741ST UT WOS:000288885600014 PM 21391690 ER PT J AU Goswami, M Kumar, R Sumpter, BG Mays, J AF Goswami, Monojoy Kumar, Rajeev Sumpter, Bobby G. Mays, Jimmy TI Breakdown of Inverse Morphologies in Charged Diblock Copolymers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PARTICLE DYNAMICS SIMULATIONS; BLOCK-COPOLYMERS; MICROPHASE SEPARATION; MULTICOMPARTMENT MICELLES; MOLECULAR-DYNAMICS; TRIBLOCK COPOLYMER; PHASE-BEHAVIOR; DRUG-DELIVERY; CONDENSATION; POLYMERSOMES AB Brownian Dynamics simulations are carried out to understand the effect of temperature and dielectric constant of the medium on microphise separation of charged-neutral diblock copolymer systems. For different dielectric media, we focus on the effect of temperature on the morphology and dynamics of model charged diblock copolymers. In this study we examine in detail a system with a partially charged block copolymer consisting of 75% neutral blocks and 25% of charged blocks with 50% degree of ionization. Our investigations show that due to the presence of strong electrostatic interactions between the charged block and counterions, the block copolymer morphologies are rather different than those of their neutral counterpart at low dielectric constant, however at high dielectric constant the neutral diblock behaviors are observed. This article highlights the effect of dielectric constant of two different media on different thermodynamic: and dynamic quantities. At low dielectric constant, the morphologies are a direct outcome of the ion-counterion multiplet formation. At high dielectric constant, these charged diblocics behavior resembles that of neutral and weakly charged polymers with sustainable long-range order. Similar behavior has been observed in chain swelling, albeit with small changes in swelling ratio for large changes in polarity of the medium. The results of our simulations agree with recent experimental results and are consistent with recent theoretical predictions of counterion adsorption on flexible polyelectrolytes. C1 [Goswami, Monojoy; Kumar, Rajeev] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Goswami, M (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM goswamim@ornl.gov RI KUMAR, RAJEEV/D-2562-2010; Goswami, Monojoy/G-7943-2012; Sumpter, Bobby/C-9459-2013; Kumar, Rajeev/Q-2255-2015 OI Goswami, Monojoy/0000-0002-4473-4888; Sumpter, Bobby/0000-0001-6341-0355; Kumar, Rajeev/0000-0001-9494-3488 FU Division of Materials Science and Engineering (DMSE), U.S. Department of Energy (DoE), Office of Basic Energy Sciences (BES) [DEAC05-00OR22725]; UT-Battelle, LLC, at Oak Ridge National Laboratory (ORNL) FX This work was supported by the Division of Materials Science and Engineering (DMSE), U.S. Department of Energy (DoE), Office of Basic Energy Sciences (BES) under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC, at Oak Ridge National Laboratory (ORNL). NR 57 TC 9 Z9 9 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 7 PY 2011 VL 115 IS 13 BP 3330 EP 3338 DI 10.1021/jp111001n PG 9 WC Chemistry, Physical SC Chemistry GA 741SU UT WOS:000288885700007 PM 21405029 ER PT J AU Morrow, BH Resasco, DE Striolo, A Nardelli, MB AF Morrow, Brian H. Resasco, Daniel E. Striolo, Alberto Nardelli, Marco Buongiorno TI CO Adsorption on Noble Metal Clusters: Local Environment Effects SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; BIMETALLIC NANOPARTICLES; PLATINUM NANOPARTICLES; SHELL NANOPARTICLES; CORRELATION-ENERGY; CARBON-MONOXIDE; ADSORBED CO; FUEL-CELLS; OXIDATION AB We have used ab initio density functional theory calculations to study the adsorption of CO on clusters of 13 noble metal atoms. The cluster composition ranges from 100% Pt to 100% Au. Because our goal is to study the effect of local environment on CO adsorption, adsorption is only studied on the top atom site. This atom can be either Pt or Au, depending on the cluster considered. Results are analyzed in terms of CO adsorption energy, CO bond stretching frequency, geometry of the CO + cluster system, and HOMO-LUMO gaps. It is found that, as expected, the CO adsorption energy on Pt is > 1 eV more favorable than that on Au and that the cluster composition affects both adsorption energy and stretching frequency. Specifically, when CO adsorbs on Pt, increasing Au content decreases the adsorption energy. In contrast, when CO adsorbs on Au, increasing Pt content increases the adsorption energy. In general, higher adsorption energies lead to lower C-O stretching frequencies. Electronic-structure details (i.e., density of states) are discussed to explain the observed results, toward improving the interpretation of experimental spectroscopic data and possibly designing new catalysts. C1 [Morrow, Brian H.; Resasco, Daniel E.; Striolo, Alberto] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011; Buongiorno Nardelli, Marco/C-9089-2009 FU U.S. DOE [DE-FG02-06ER64239]; BES; U.S. DOE at ORNL [DE-FG02-98ER14847, DE-AC05-00OR22725] FX The authors acknowledge financial support from the Carbon Nanotube Technology Center (CANTEC) at the University of Oklahoma, funded by the U.S. DOE under contract DE-FG02-06ER64239. M.B.N. has been supported in part by BES, U.S. DOE at ORNL (DE-FG02-98ER14847 and DE-AC05-00OR22725 with UT-Battelle, LLC). Generous allocations of computing time were provided by the OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. The authors acknowledge fruitful discussions with Dr. Friederike Jentoft and Dr. Richard Mallinson of the University of Oklahoma. NR 82 TC 27 Z9 27 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 7 PY 2011 VL 115 IS 13 BP 5637 EP 5647 DI 10.1021/jp108763f PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 741SW UT WOS:000288885900057 ER PT J AU Bare, SR Kelly, SD Vila, FD Boldingh, E Karapetrova, E Kas, J Mickelson, GE Modica, FS Yang, N Rehr, JJ AF Bare, Simon R. Kelly, Shelly D. Vila, Fernando D. Boldingh, Edwin Karapetrova, E. Kas, Josh Mickelson, George E. Modica, Frank S. Yang, Ning Rehr, John J. TI Experimental (XAS, STEM, TPR, and XPS) and Theoretical (DFT) Characterization of Supported Rhenium Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; TEMPERATURE-PROGRAMMED REDUCTION; RE/GAMMA-AL2O3 CATALYST; ALUMINA CATALYSTS; OXIDE CATALYSTS; PT-RE; OXIDATION; METAL; XAFS; REDUCIBILITY AB A high surface area supported Re-based catalyst, fundamental to heterogeneous catalysis, is studied in the oxidic and reduced states using a combination of experimental (XAFS, STEM, TPR, and XPS) and theoretical (DFT and X-ray spectroscopy simulations) approaches. In the calcined dried catalyst, the Re species is present as an isolated trioxo(oxoaluminate) Re(VII) species. The temperature at which the Re undergoes reduction is a function of the hydrogen partial pressure and temperature ramp rate, but the maximum rate of reduction occurs in the range 300-400 degrees C. Following reduction at 500 or 700 degrees C in dry hydrogen, the Re is present as a mixture of species: unreduced trioxo(oxoaluminate) Re(VII) species, Re nanoclusters, and isolated Re atoms. By using a multifaceted approach, it is apparent that the majority species is an isolated Re adatom bound to the alumina support. DFT calculations identify several likely adsorption sites for these Re adatoms on the [110] surface of gamma-Al2O3. The final extended X-ray absorption fine structure (EXAFS) model taking into account these three species is used to identify the dominant adsorption site for Re on the alumina surface. FEFF8 X-ray absorption near-edge spectroscopy (XANES) calculations of unsupported and alumina-supported Re nanoclusters provide interpretation of the shape and edge position of the Re L-3-edge XANES after reduction. The presence of moisture during reduction strongly affects the mobility of the Re on the alumina leading to agglomeration. Subsequent air exposure of a reduced catalyst readily reoxidizes the reduced Re. The power of using a combination of analysis tools provides insight into the behavior of dispersed Re on supported alumina under oxidizing and reducing conditions relevant to heterogeneous catalysis. C1 [Bare, Simon R.; Boldingh, Edwin; Mickelson, George E.; Modica, Frank S.] UOP LLC, Des Plaines, IL 60016 USA. [Karapetrova, E.; Yang, Ning] Argonne Natl Lab, Argonne, IL 60439 USA. [Kelly, Shelly D.] EXAFS Anal, Bolingbrook, IL 60440 USA. [Vila, Fernando D.; Kas, Josh; Rehr, John J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Bare, SR (reprint author), UOP LLC, Des Plaines, IL 60016 USA. EM simon.bare@uop.com OI Bare, Simon/0000-0002-4932-0342 FU U.S. DOE [DE-AC02-06CH1135]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-97ER45623] FX Steve Bradley, Sue Tonnesen, and Norma Kahn, all at UOP, are thanked for the STEM data, the TPK data, and the XPS data, respectively. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH1135. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work is also supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, grant DE-FG02-97ER45623 (JJR and FV). NR 52 TC 28 Z9 30 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 7 PY 2011 VL 115 IS 13 BP 5740 EP 5755 DI 10.1021/jp1105218 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 741SW UT WOS:000288885900068 ER PT J AU Li, ZJ Zhang, ZR Kim, YK Smith, RS Netzer, F Kay, BD Rousseau, R Dohnalek, Z AF Li, Zhenjun Zhang, Zhenrong Kim, Yu Kwon Smith, R. Scott Netzer, Falko Kay, Bruce D. Rousseau, Roger Dohnalek, Zdenek TI Growth of Ordered Ultrathin Tungsten Oxide Films on Pt(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SELECTIVE CATALYTIC-REDUCTION; (WO3)(3) CLUSTERS; ELECTRONIC-STRUCTURES; TITANIUM-OXIDE; METAL-OXIDES; NITRIC-OXIDE; THIN-FILMS; GAS-PHASE; SURFACE; TRANSITION AB Ordered ultrathin tungsten oxide films were prepared on Pt(111) substrate at 700 K via direct sublimation of monodispersed cyclic (WO3)(3) trimers. The surface composition, structure, and morphology were determined using a combination of atomically resolved imaging, ensemble-averaged surface-sensitive spectroscopies, and DFT. We find that half of the (WO3)(3) tungsten atoms in the first layer get partially reduced to the (5+) oxidation state. The opening of the (WO3)(3) ring leads to the formation of a tungsten oxide layer with a zigzag chain structure with a c(4 x 2) periodicity. In the second layer, the (WO3)(3) clusters remain intact and form an ordered (3 x 3) array of molecularly bound (WO3)(3). DFT calculations provide a detailed understanding of the structure, oxidation states, and the vibrational frequencies for both the c(4 x 2) and (3 x 3) overlayers. C1 [Li, Zhenjun; Zhang, Zhenrong; Kim, Yu Kwon; Smith, R. Scott; Kay, Bruce D.; Rousseau, Roger; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. [Netzer, Falko] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov; Roger.Rousseau@pnl.gov; Zdenek.Dohnalek@pnl.gov RI Li, Zhenjun/F-4714-2010; Rousseau, Roger/C-3703-2014; Smith, Scott/G-2310-2015; OI Smith, Scott/0000-0002-7145-1963; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; Department of Energy's Office of Biological and Environmental Research; Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, and performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. Computational resources were provided at EMSL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. NR 65 TC 21 Z9 21 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 7 PY 2011 VL 115 IS 13 BP 5773 EP 5783 DI 10.1021/jp1108976 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 741SW UT WOS:000288885900071 ER PT J AU Shen, MM Henderson, MA AF Shen, Mingmin Henderson, Michael A. TI Impact of Solvent on Photocatalytic Mechanisms: Reactions of Photodesorption Products with Ice Overlayers on the TiO2(110) Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN-ATOM ABSTRACTION; METHYL RADICALS; TITANIUM-DIOXIDE; GAS-PHASE; METHANOL GLASSES; HETEROGENEOUS PHOTOCATALYSIS; AIR PURIFICATION; GASEOUS ACETONE; WATER-VAPOR; THIN-FILMS AB The effects of water and methanol ice overlayers on the photodecomposition of acetone on rutile TiO2(110) were evaluated in ultrahigh vacuum (UHV) using photon-stimulated desorption (PSD) and temperature-programmed desorption (TPD). In the absence of ice overlayers, acetone photodecomposed on TiO2(110) at 95 K by ejection of a methyl radical into the gas phase and formation of acetate on the surface. With ice overlayers, the methyl radicals are trapped at the interface between TiO2(110) and the ice. When water ice was present, the ejected methyl radicals reacted either with each other to form ethane or with other molecules in the ice (e.g., water or displaced acetone) to form methane (CH4), ethane (CH3CH3), and other products (e.g., methanol) with all of these products trapped in the ice. The new products were free to revisit the surface or to depart during desorption of the ice. Using isotopic labeling, we show that a significant portion (similar to 50%) of methane formed resulted from reactions of methyl radicals with water in the ice. Because the methane formation from reaction of methyl radical and water is highly endothermic, the ejected methyl radicals must be emitted hyperthermally with the reaction occurring during the initial collision of the radical with a neighboring water molecule. Formation of ethane (and other products) likely comes as a consequence of unfavorable methyl radical and water collisions in the ice. Similar results were obtained using methanol ice (instead of water) except that methane and ethane products slowly leaked through the methanol ice overlayers into vacuum at 95 K but not through the water ice overlayers. These results provide new insights into the product formation routes and solution-phase radical formation mechanisms that are important in heterogeneous photocatalysis. C1 [Shen, Mingmin; Henderson, Michael A.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov RI Shen, Mingmin/A-9293-2012 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Office of Biological and Environmental Research; U.S. Department of Energy by the Battelle Memorial Institute [DEAC06-76RLO1830] FX Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and was performed in the William R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830. NR 60 TC 12 Z9 12 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 7 PY 2011 VL 115 IS 13 BP 5886 EP 5893 DI 10.1021/jp111839j PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 741SW UT WOS:000288885900086 ER PT J AU Mudiyanselage, K Weaver, JF Szanyi, J AF Mudiyanselage, Kumudu Weaver, Jason F. Szanyi, Janos TI Catalytic Decomposition of Ba(NO3)(2) on Pt(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NOX STORAGE MATERIALS; VIBRATIONAL SPECTROSCOPY; ATOMIC OXYGEN; STORED NOX; NITROGEN-DIOXIDE; BARIUM OXIDE; REDUCTION; ADSORPTION; SURFACE; MODEL AB The decomposition of Ba(NO3)(2) formed on BaO/Pt(111) (Pt(111) surface is partially covered by BaO) in the presence of CO was studied using temperature-programmed desorption, infrared reflection absorption, and X-ray photoelectron spectroscopies. The exposure of BaO/Pt(111) to elevated NO2 pressure (1.0 X 10(-4) torr) at 450 K leads to the formation of Ba(NO3)(2), chemisorbed 0 (O-Pt), and Pt-oxide-like domains. During TPD, the Ba(NO3)(2) begins to thermally decompose near 490 K, releasing NO and NO2 with the maximum NOx desorption rate seen at 605 K. The O-Pt species formed following the exposure of BaO/Pt(111) to NO2 react with CO to release CO2 at 450 K. The consumption of O-Pt during CO oxidation initiates the migration of 0 from the Pt-oxide-like domains to the chemisorbed phase, where the CO oxidation reaction occurs. Therefore, the removal of O-Pt by CO leads to the reduction of oxidized Pt and to the formation of metallic Pt(111) domains, where, subsequently, catalytic decomposition of Ba(NO3)(2) can take place. The Pt-catalyzed decomposition of Ba(NO3)(2) occurs readily at 450 K, a temperature much lower than the onset of the decomposition temperature of Ba(NO3)(2) in the presence of oxidized Pt. C1 [Mudiyanselage, Kumudu; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Weaver, Jason F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov RI Mudiyanselage, Kumudu/B-2277-2013 OI Mudiyanselage, Kumudu/0000-0002-3539-632X FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); U.S. DOE by Battelle Memorial Institute [DE-AC05-76RL01830]; Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division [DE-FG02-03ER15478] FX We gratefully acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. J.F.W. gratefully acknowledges financial support provided by the Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division through grant number DE-FG02-03ER15478. NR 27 TC 9 Z9 9 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 7 PY 2011 VL 115 IS 13 BP 5903 EP 5909 DI 10.1021/jp111924z PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 741SW UT WOS:000288885900088 ER PT J AU Eshed, M Pol, S Gedanken, A Balasubramanian, M AF Eshed, Michal Pol, Swati Gedanken, Aharon Balasubramanian, Mahalingam TI Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method SO BEILSTEIN JOURNAL OF NANOTECHNOLOGY LA English DT Article DE Let-Lok (R); nanoparticles; RAPET; reduction; zirconium ID X-RAY-ABSORPTION; POLYMERIZATION; SPECTROSCOPY; COMPLEXES; CATALYSTS AB The aim of the current work is the synthesis and characterization of metallic Zr nanoparticles. The preparation is carried out by using the RAPET method ( Reaction under Autogenic Pressure at Elevated Temperatures) developed in our lab. The RAPET reaction of commercial ZrO2 with Mg powder was carried out in a closed stainless steel cell, at 750 degrees C. On completion of the reaction, the additionally formed MgO is removed by treatment with acid. The characterization of the product was performed by XRD, X-ray absorption spectroscopy, SEM, TEM and elemental analysis. The XRD pattern reveals that the product is composed of pure metallic zirconium, without any traces of the MgO by-product. C1 [Eshed, Michal; Gedanken, Aharon] Bar Ilan Univ, Dept Chem, Kanbar Lab Nanomat,Nanotechnol Res Ctr, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Pol, Swati; Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gedanken, A (reprint author), Bar Ilan Univ, Dept Chem, Kanbar Lab Nanomat,Nanotechnol Res Ctr, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. EM Gedanken@mail.biu.ac.il RI Pol, Swati/B-5868-2012 NR 17 TC 5 Z9 5 U1 3 U2 9 PU BEILSTEIN-INSTITUT PI FRANKFURT AM MAIN PA TRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY SN 2190-4286 J9 BEILSTEIN J NANOTECH JI Beilstein J. Nanotechnol. PD APR 6 PY 2011 VL 2 BP 198 EP 203 DI 10.3762/bjnano.2.23 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 888PE UT WOS:000300015100001 PM 21977431 ER PT J AU Lynd, LR Aziz, RA Cruz, CHD Chimphango, AFA Cortez, LAB Faaij, A Greene, N Keller, M Osseweijer, P Richard, TL Sheehan, J Chugh, A van der Wielen, L Woods, J van Zyl, WH AF Lynd, Lee Rybeck Aziz, Ramlan Abdul de Brito Cruz, Carlos Henrique Chimphango, Annie Fabian Abel Barbosa Cortez, Luis Augusto Faaij, Andre Greene, Nathanael Keller, Martin Osseweijer, Patricia Richard, Tom L. Sheehan, John Chugh, Archana van der Wielen, Luuk Woods, Jeremy van Zyl, Willem Heber TI A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project SO INTERFACE FOCUS LA English DT Review DE plant biomass; bioenergy; global sustainable bioenergy project ID BIOFUELS; FOOD AB The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra-and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: - Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments. - Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors. - Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences. - Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world. The future trajectory of the GSB project is also briefly considered. C1 [Lynd, Lee Rybeck] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Aziz, Ramlan Abdul] Univ Teknol, Inst Bioprod Dev, Johore Bahru, Malaysia. [de Brito Cruz, Carlos Henrique] FAPESP, Sao Paulo Res Fdn, Sao Paulo, Brazil. [Chimphango, Annie Fabian Abel] Univ Stellenbosch, Dept Proc Engn, ZA-7600 Stellenbosch, South Africa. [Barbosa Cortez, Luis Augusto] Univ Estadual Campinas, Campinas, SP, Brazil. [Faaij, Andre] Univ Utrecht, Dept Sci Technol & Soc, Utrecht, Netherlands. [Greene, Nathanael] Nat Resources Def Council, New York, NY USA. [Keller, Martin] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Osseweijer, Patricia; van der Wielen, Luuk] Delft Univ Technol, Dept Biotechnol, Delft, Netherlands. [Richard, Tom L.] Penn State Univ, Dept Agr & Biol Engn, University Pk, PA 16802 USA. [Sheehan, John] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA. [Chugh, Archana] Indian Inst Technol, Sch Biol Sci, Delhi, India. [Woods, Jeremy] Univ London Imperial Coll Sci Technol & Med, Ctr Environm Policy, London, England. [van Zyl, Willem Heber] Univ Stellenbosch, Dept Microbiol, ZA-7600 Stellenbosch, South Africa. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. EM lee.r.lynd@dartmouth.edu RI Keller, Martin/C-4416-2012; Richard, Tom/H-5058-2012; Lynd, Lee/N-1260-2013; Faaij, Andre/E-8424-2014; Brito Cruz, Carlos/G-6446-2010; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Lynd, Lee/0000-0002-5642-668X; Brito Cruz, Carlos/0000-0001-8042-1638; Heber, Willem/0000-0001-8195-353X NR 20 TC 12 Z9 12 U1 7 U2 20 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 2042-8898 J9 INTERFACE FOCUS JI Interface Focus PD APR 6 PY 2011 VL 1 IS 2 BP 271 EP 279 DI 10.1098/rsfs.2010.0047 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 851MA UT WOS:000297273600010 PM 22419984 ER PT J AU Lee, CC Sun, Y Qian, S Huang, HW AF Lee, Chang-Chun Sun, Yen Qian, Shuo Huang, Huey W. TI Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37 SO BIOPHYSICAL JOURNAL LA English DT Article ID ORIENTED CIRCULAR-DICHROISM; OFF-PLANE SCATTERING; LIPID-BILAYERS; X-RAY; BOUND-STATES; MEMBRANES; MODEL; ALAMETHICIN; MAGAININ; CONFORMATION AB Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the alpha-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 23-33 angstrom. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes. C1 [Lee, Chang-Chun; Sun, Yen; Huang, Huey W.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Qian, Shuo] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Qian, Shuo] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN USA. RP Huang, HW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM hwhuang@rice.edu RI Sun, Yen/K-3605-2013; OI Qian, Shuo/0000-0002-4842-828X FU National Institutes of Health [GM55203]; Robert A. Welch Foundation [C-0991]; Scientific User Facilities Division, Office of Basic Energy Sciences, Department of Energy; Office of Biological and Environmental Research; Department of Energy [DE-AC05-00OR22725] FX This work was supported by the National Institutes of Health (grant GM55203) and the Robert A. Welch Foundation (grant C-0991). The neutron experiments were performed at Oak Ridge National Laboratory (High Flux Isotope Reactor sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, Department of Energy; and Center for Structural Molecular Biology supported by the Office of Biological and Environmental Research, using facilities supported by the Department of Energy, managed by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725). NR 50 TC 50 Z9 50 U1 2 U2 34 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD APR 6 PY 2011 VL 100 IS 7 BP 1688 EP 1696 DI 10.1016/j.bpj.2011.02.018 PG 9 WC Biophysics SC Biophysics GA 749TU UT WOS:000289494200014 PM 21463582 ER PT J AU Miller, MS Farman, GP Braddock, JM Soto-Adames, FN Irving, TC Vigoreaux, JO Maughan, DW AF Miller, Mark S. Farman, Gerrie P. Braddock, Joan M. Soto-Adames, Felipe N. Irving, Thomas C. Vigoreaux, Jim O. Maughan, David W. TI Regulatory Light Chain Phosphorylation and N-Terminal Extension Increase Cross-Bridge Binding and Power Output in Drosophila at In Vivo Myofilament Lattice Spacing SO BIOPHYSICAL JOURNAL LA English DT Article ID INDIRECT FLIGHT-MUSCLE; X-RAY-DIFFRACTION; SARCOMERE-LENGTH DEPENDENCE; RABBIT SKELETAL-MUSCLE; OSMOTIC COMPRESSION; CA2+ SENSITIVITY; FORCE DEVELOPMENT; PSOAS MUSCLE; MYOSIN; FIBERS AB The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically :skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc(2+)), truncated N-terminal extension (Dmlc2(Delta 2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)) and dual mutant (Dmlc2(Delta 2-46); (S66A,S67A)) The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca2+-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force producion, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation. C1 [Miller, Mark S.; Braddock, Joan M.; Vigoreaux, Jim O.; Maughan, David W.] Univ Vermont, Dept Mol Physiol & Biophys, Burlington, VT 05405 USA. [Soto-Adames, Felipe N.; Vigoreaux, Jim O.] Univ Vermont, Dept Biol, Burlington, VT USA. [Farman, Gerrie P.; Irving, Thomas C.] IIT, Biophys Collaborat Access Team, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Farman, Gerrie P.; Irving, Thomas C.] IIT, Ctr Synchrotron Radiat Res & Instrumentat, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. RP Miller, MS (reprint author), Univ Vermont, Dept Mol Physiol & Biophys, Burlington, VT 05405 USA. EM mark.miller@uvm.edu RI ID, BioCAT/D-2459-2012 FU National Institutes of Health (NIH) [R01 HL68034, T32 HL07944]; U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research [W-31-109-ENG-38]; NIH-supported Research Center [RR08630] FX This work was supported, in part, by National Institutes of Health (NIH) grant No. R01 HL68034 (to D.W.M.). F.N.S.-A. was supported by NIH training grant No. T32 HL07944. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research, under contract No. W-31-109-ENG-38. The Biophysics Collaborative Access Team is a NIH-supported Research Center (grant No. RR08630 to T.C.I.). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH. NR 35 TC 15 Z9 16 U1 2 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD APR 6 PY 2011 VL 100 IS 7 BP 1737 EP 1746 DI 10.1016/j.bpj.2011.02.028 PG 10 WC Biophysics SC Biophysics GA 749TU UT WOS:000289494200019 PM 21463587 ER PT J AU Dutta, D Peng, JC Cloet, IC Gaskell, D AF Dutta, D. Peng, J. C. Cloet, I. C. Gaskell, D. TI Pion-induced Drell-Yan processes and the flavor-dependent EMC effect SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON STRUCTURE FUNCTIONS; INELASTIC MUON SCATTERING; DIMUON PRODUCTION; PARTON DISTRIBUTIONS; IRON TARGETS; DEUTERIUM; NEUTRINO; SCALE; SEA AB Pion-induced Drell-Yan processes are proposed as a promising tool with which to measure the flavor dependence of the European Muon Collaboration (EMC) effect, that is, the flavor-dependent modification of quark distributions in the nuclear medium. Existing pionic Drell-Yan data are compared with calculations using a recent model for nuclear quark distributions that incorporates flavor-dependent nuclear effects. While no firm conclusions can yet be drawn, we find that existing Drell-Yan data likely imply a flavor dependence of the EMC effect. We demonstrate that pion-induced Drell-Yan experiments on nuclear targets can access new aspects of the EMC effect not probed in deep inelastic scattering and can therefore provide important new constrains on the nuclear quark distributions. Predictions for possible future pion-induced Drell-Yan experiments are also presented. C1 [Dutta, D.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Gaskell, D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23608 USA. RP Dutta, D (reprint author), Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. EM d.dutta@msstate.edu FU U.S. Department of Energy; National Science Foundation FX This work was supported in part by the U.S. Department of Energy and the National Science Foundation. NR 39 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 6 PY 2011 VL 83 IS 4 AR 042201 DI 10.1103/PhysRevC.83.042201 PG 4 WC Physics, Nuclear SC Physics GA 745UP UT WOS:000289193000001 ER PT J AU Curtin, D Tsai, Y AF Curtin, David Tsai, Yuhsin TI Singlet-stabilized minimal gauge mediation SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; ELECTRIC-MAGNETIC DUALITY; NEW-MODELS; TECHNICOLOR; LECTURES; VACUUM AB We propose singlet-stabilized minimal gauge mediation as a simple Intriligator, Seiberg and Shih-based model of direct gauge mediation which avoids both light gauginos and Landau poles. The hidden sector is a massive s-confining supersymmetric QCD that is distinguished by a minimal SU(5) flavor group. The uplifted vacuum is stabilized by coupling the meson to an additional singlet sector with its own U(1) gauge symmetry via nonrenormalizable interactions suppressed by a higher scale Lambda(UV) in the electric theory. This generates a nonzero vacuum expectation value for the singlet meson via the inverted hierarchy mechanism, but requires tuning to a precision similar to(Lambda/Lambda(UV))(2), which is similar to 10(-4). In the course of this analysis we also outline some simple model-building rules for stabilizing uplifted-ISS models, which lead us to conclude that meson deformations are required (or at least heavily favored) to stabilize the adjoint component of the magnetic meson. C1 [Curtin, David; Tsai, Yuhsin] Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. [Tsai, Yuhsin] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Curtin, D (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. EM drc39@cornell.edu; yt237@cornell.edu OI Tsai, Yuhsin/0000-0001-7847-225X FU National Science Foundation [PHY-0355005]; Fermilab [DE-AC02-07CH11359]; United States Department of Energy FX We are extremely grateful to Csaba Csaki, Zohar Komargodski, Maxim Perelstein and Liam McAllister for valuable insights and comments on the manuscript. We would also like to thank Markus Luty, John Terning, Jesse Thaler, David Shih, Rouvan Essig, Nathan Seiberg, Andrey Katz and Flip Tanedo for helpful discussion. The work of D. C. and Y. T. was supported in part by the National Science Foundation under Grant No. PHY-0355005. Y. T. acknowledges support from Fermilab, operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 58 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 6 PY 2011 VL 83 IS 7 AR 075005 DI 10.1103/PhysRevD.83.075005 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 745UX UT WOS:000289194300002 ER PT J AU Kharzeev, DE Yee, HU AF Kharzeev, Dmitri E. Yee, Ho-Ung TI Chiral magnetic wave SO PHYSICAL REVIEW D LA English DT Article ID NON-ABELIAN BOSONIZATION; HEAVY-ION COLLISIONS; SINE-GORDON EQUATION; 2 DIMENSIONS; THIRRING MODEL; QCD; SYMMETRY; VIOLATION; FIELDS; MATTER AB We consider a relativistic plasma containing charged chiral fermions in an external magnetic field, e. g. a chirally symmetric quark-gluon plasma created in relativistic heavy ion collisions. We show that triangle anomalies imply the existence of a new type of collective gapless excitation in this system that stems from the coupling between the density waves of the electric and chiral charges; we call it "the chiral magnetic wave" (CMW). The CMW exists even in a neutral plasma, i.e. in the absence of the axial and vector chemical potentials. We demonstrate the existence of CMW and study its properties using three different approaches: i) relativistic magnetohydrodynamics; ii) dimensional reduction to (1 + 1) Sine-Gordon model, appropriate in a strong magnetic field; and iii) holographic QCD (Sakai-Sugimoto model), appropriate at strong coupling. We also briefly discuss the phenomenological implications of the CMW for heavy ion collisions. C1 [Kharzeev, Dmitri E.; Yee, Ho-Ung] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kharzeev, DE (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM dmitri.kharzeev@stonybrook.edu; hyee@tonic.physics.sunysb.edu FU U. S. Department of Energy [DE-AC02-98CH10886, DE-FG02-88ER40388] FX We thank G. Basar, Y. Burnier, G. Dunne, C. Herzog, J. Liao, R. Pisarski, E. Shuryak, D. Son, D. Teaney and I. Zahed for useful discussions. The work of D. K. was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. The work of H. U. Y. was supported by the U. S. Department of Energy under Contract No. DE-FG02-88ER40388. NR 80 TC 115 Z9 115 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 6 PY 2011 VL 83 IS 8 AR 085007 DI 10.1103/PhysRevD.83.085007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 745UY UT WOS:000289194600007 ER PT J AU Fuentes-Cabrera, M Rhodes, BH Fowlkes, JD Lopez-Benzanilla, A Terrones, H Simpson, ML Rack, PD AF Fuentes-Cabrera, Miguel Rhodes, Bradley H. Fowlkes, Jason D. Lopez-Benzanilla, Alejandro Terrones, Humberto Simpson, Michael L. Rack, Philip D. TI Molecular dynamics study of the dewetting of copper on graphite and graphene: Implications for nanoscale self-assembly SO PHYSICAL REVIEW E LA English DT Article ID EMBEDDED-ATOM METHOD; SIMULATIONS; NANOCLUSTERS; NANODROPLETS; METALS; ROUTE; CU AB Thin-film dewetting can be exploited to self-assemble and organize nanoparticles. Crucial to this effort is the understanding of the nanoscale liquid phase dynamics, and molecular dynamics simulations (MD) provide a powerful tool in this respect. In this paper we demonstrate that MD simulations utilizing a Lennard-Jones (LJ) interface potential can be effectively used to study various wetting regimes of nanoscale Cu disks on graphite. It was found that both the dewetting velocity and the equilibrium contact angle increase with a decrease in the Cu-C potential, and that the retraction velocities obtained are characteristic of dewetting phenomena governed by inertial and capillary forces. This phenomena leads to a change in morphology, from disks to nanodroplets, which, in turn, when using the most accurate LJ potential, jump off the graphitic substrate with a velocity on the order of 140 m/s. This ejection velocity is consistent with the previous experimental observation that nanoscale Au triangles deposited on graphite or glass jump when exposed to a pulsed laser above the melting threshold. Interestingly, the Cu ejection velocity decreases when the liquid Cu disks are deposited on a suspended graphene membrane. Finally, a Rayleigh-Plateau-like instability, which leads to the breakup of a pseudo-one-dimensional liquid Cu nanowire in nanodroplets, is revealed when the MD simulations are performed using different LJ interface potentials. C1 [Fuentes-Cabrera, Miguel; Fowlkes, Jason D.; Lopez-Benzanilla, Alejandro; Terrones, Humberto; Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel; Fowlkes, Jason D.; Lopez-Benzanilla, Alejandro; Terrones, Humberto; Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN USA. [Rhodes, Bradley H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov RI Simpson, Michael/A-8410-2011; Lopez-Bezanilla, Alejandro/B-9125-2015; Fuentes-Cabrera, Miguel/Q-2437-2015; OI Simpson, Michael/0000-0002-3933-3457; Lopez-Bezanilla, Alejandro/0000-0002-4142-2360; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Rack, Philip/0000-0002-9964-3254 FU US DOE Office of Science [ERKCM38]; Higher Education Research Experience (HERE) program; Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), US Department of Energy FX All authors acknowledge support from the Materials Sciences and Engineering Division Program of the US DOE Office of Science (ERKCM38) for sponsoring the simulation efforts conducted in this work. B.H.R. was supported by the Higher Education Research Experience (HERE) program, administered by the Oak Ridge Institute for Science and Education between the US Department of Energy and Oak Ridge Associated Universities. M.F.C. acknowledges the computational resources of the UT/ORNL National Institute for Computational Sciences. P.D.R. and J.D.F. acknowledge that the experimental portion of this research effort was conducted at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, and sponsored by the Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), US Department of Energy. NR 40 TC 33 Z9 33 U1 8 U2 75 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR 6 PY 2011 VL 83 IS 4 AR 041603 DI 10.1103/PhysRevE.83.041603 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 746HK UT WOS:000289234400001 PM 21599171 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M De Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. De Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Heavy Bottomlike Quarks Decaying to an Electron or Muon and Jets in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the most sensitive direct search for pair production of fourth-generation bottomlike chiral quarks (b') each decaying promptly to tW. We search for an excess of events with an electron or muon, at least five jets (one identified as due to a b or c quark), and an imbalance of transverse momentum by using data from b (b) over bar collisions collected by the CDF II detector at Fermilab with an integrated luminosity of 4: 8 fb(-1). We observe events consistent with background expectation, calculate upper limits on the b' pair-production cross section (sigma b (b) over bar less than or similar to 30 fb for m(b') > 375 GeV/c(2)), and exclude m(b') < 372 GeV/c(2) at 95% confidence level assuming a 100% branching ratio of b0 to tW. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bhatti, A.; Carrillo, S.; Chen, Y. C.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hou, S.; Lungu, G.; Malik, S.; Mesropian, C.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Whiteson, D.] Univ Calif Irvine, Irvine, CA 92697 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Dong, P.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Stanitzki, M.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [D'Onofrio, M.; Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; St Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; St Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; St Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; St Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, IN2P3, CNRS, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Carrillo, S.; Chen, Y. C.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hou, S.; Lungu, G.; Malik, S.; Mesropian, C.; Mitra, A.; Teng, P. K.; Wang, S. M.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Iori, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stancari, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion and Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 27 TC 39 Z9 39 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 6 PY 2011 VL 106 IS 14 AR 141803 DI 10.1103/PhysRevLett.106.141803 PG 7 WC Physics, Multidisciplinary SC Physics GA 745VE UT WOS:000289196600002 PM 21561183 ER PT J AU Berland, K Chakarova-Kack, SD Cooper, VR Langreth, DC Schroder, E AF Berland, Kristian Chakarova-Kack, Svetla D. Cooper, Valentino R. Langreth, David C. Schroder, Elsebeth TI A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; STACKING INTERACTIONS; GRAPHITE; COMPLEXES; MECHANICS; SURFACES; BENZENE; DNA AB The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401). The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similarly sized naphthalene. On the basis of the single-molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption. C1 [Chakarova-Kack, Svetla D.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Cooper, Valentino R.; Langreth, David C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Cooper, Valentino R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Berland, Kristian; Schroder, Elsebeth] Chalmers, Dept Microtechnol & Nanosci, MC2, SE-41296 Gothenburg, Sweden. RP Berland, K (reprint author), Chalmers, Dept Microtechnol & Nanosci, MC2, SE-41296 Gothenburg, Sweden. RI Schroder, Elsebeth/A-2030-2011; Cooper, Valentino /A-2070-2012; OI Schroder, Elsebeth/0000-0003-4995-3585; Cooper, Valentino /0000-0001-6714-4410; Berland, Kristian/0000-0002-4655-1233 FU Swedish Research Council (VR); SNIC; NSF [DMR-0801343] FX We thank P Hyldgaard and B I Lundqvist for useful discussions. Partial support from the Swedish Research Council (VR) to ES and SC is gratefully acknowledged. We also acknowledge the allocation of computer time at UNICC/C3SE (Chalmers) and SNIC (Swedish National Infrastructure for Computing) and funding from SNIC for KB's participation in the national graduate school NGSSC. Work at Rutgers supported by NSF Grant DMR-0801343. NR 54 TC 31 Z9 31 U1 1 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 6 PY 2011 VL 23 IS 13 AR 135001 DI 10.1088/0953-8984/23/13/135001 PG 8 WC Physics, Condensed Matter SC Physics GA 739VU UT WOS:000288749300002 PM 21403239 ER PT J AU Ding, H Nakayama, K Richard, P Souma, S Sato, T Takahashi, T Neupane, M Xu, YM Pan, ZH Fedorov, AV Wang, Z Dai, X Fang, Z Chen, GF Luo, JL Wang, NL AF Ding, H. Nakayama, K. Richard, P. Souma, S. Sato, T. Takahashi, T. Neupane, M. Xu, Y-M Pan, Z-H Fedorov, A. V. Wang, Z. Dai, X. Fang, Z. Chen, G. F. Luo, J. L. Wang, N. L. TI Electronic structure of optimally doped pnictide Ba0.6K0.4Fe2As2: a comprehensive angle-resolved photoemission spectroscopy investigation SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NODELESS SUPERCONDUCTING GAPS; ORDER AB The electronic structure of the Fe-based superconductor Ba0.6K0.4Fe2As2 is studied by means of angle-resolved photoemission. We identify dispersive bands crossing the Fermi level forming hole-like (electron-like) Fermi surfaces (FSs) around Gamma(M) with nearly nested FS pockets connected by the antiferromagnetic wavevector. Compared to band structure calculation findings, the overall bandwidth is reduced by a factor of 2 and the low energy dispersions display even stronger mass renormalization. Using an effective tight banding model, we fitted the band structure and the FSs to obtain band parameters reliable for theoretical modeling and calculation of physical quantities. C1 [Ding, H.; Richard, P.; Dai, X.; Fang, Z.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Nakayama, K.; Sato, T.; Takahashi, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Richard, P.; Souma, S.; Takahashi, T.] Tohoku Univ, WPI Res Ctr, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Sato, T.] Japan Sci & Technol Agcy JST, TRIP, Kawaguchi, Saitama 3320012, Japan. [Neupane, M.; Xu, Y-M; Wang, Z.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Xu, Y-M] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ding, H.; Richard, P.; Dai, X.; Fang, Z.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Pan, Z-H] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Chen, G. F.] Renmin Univ, Dept Phys, Beijing 100872, Peoples R China. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ding, H (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM dingh@iphy.ac.cn; p.richard@iphy.ac.cn RI Sato, Takafumi/E-5094-2010; Takahashi, Takashi/E-5080-2010; souma, seigo/A-4858-2010; Nakayama, Kosuke/F-7897-2011; Richard, Pierre/F-7652-2010; 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Xu, Yiming/B-3966-2011; Fang, Zhong/D-4132-2009; OI Richard, Pierre/0000-0003-0544-4551; Ding, Hong/0000-0003-4422-9248 FU Chinese Academy of Sciences; Ministry of Science and Technology of China; JSPS; TRIP-JST; CREST-JST; MEXT of Japan; NSF [DMR-0800641, DMR-0704545, DMR-0537588]; DOE of the US [DEFG02-99ER45747]; DOE [DE-AC02-05CH11231] FX This work was supported by grants from the Chinese Academy of Sciences, NSF, Ministry of Science and Technology of China, JSPS, TRIP-JST, CREST-JST, MEXT of Japan, and NSF (DMR-0800641, DMR-0704545), DOE (DEFG02-99ER45747) of the US. This work is based upon research conducted at the Synchrotron Radiation Center supported by NSF DMR-0537588, and the Advanced Light Source supported by DOE No. DE-AC02-05CH11231. NR 43 TC 72 Z9 73 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 6 PY 2011 VL 23 IS 13 AR 135701 DI 10.1088/0953-8984/23/13/135701 PG 6 WC Physics, Condensed Matter SC Physics GA 739VU UT WOS:000288749300013 PM 21415479 ER PT J AU Drymiotis, FR Lindsey, S Capps, J Lashley, JC Rhodes, D Zhang, QR Nucklos, C Drye, TB AF Drymiotis, F. R. Lindsey, S. Capps, J. Lashley, J. C. Rhodes, D. Zhang, Q. R. Nucklos, C. Drye, T. B. TI Excess vibrational modes and high thermoelectric performance of the quenched and slow-cooled two-phase alloy Cu0.2Ag2.8SbSeTe2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID HEAT; AG2TE AB In this article we examine the low-temperature specific heat of slow-cooled Cu0.2Ag2.8SbSeTe2 and the thermoelectric performance of quenched samples. We find that the low-temperature specific heat is dominated by two Einstein terms of approximate energies of 2.5 and 5 meV. The specific-heat behavior is consistent with the amorphous low-temperature thermal conductivity behavior and validates the glassy nature of the structure. We performed the synthesis of quenched samples in an attempt to eliminate the presence of micro-cracks, whose existence presumably enhances electronic scattering. We find that quenching eliminates the presence of micro-cracks but does not result in an improvement of the figure of merit. Specifically, the highest ZT obtained in the quenched samples (ZT = 1.5), though very competitive, is still significantly less that the ZT obtained in the slow-cooled samples (ZT = 1.75). C1 [Drymiotis, F. R.; Lindsey, S.; Capps, J.; Rhodes, D.; Zhang, Q. R.; Nucklos, C.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Drye, T. B.] Univ Maryland, College Pk, MD 20742 USA. RP Drymiotis, FR (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. RI Rhodes, Daniel/H-3423-2013 FU NSF [NSF-DMR-0905322]; US Department of Energy FX We are grateful to the NSF for supporting this project through the grant NSF-DMR-0905322. The work at Los Alamos National Laboratory is supported by the US Department of Energy. We would also like to thank Dr Sumanta Tewari for very useful discussions. NR 14 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 6 PY 2011 VL 23 IS 13 AR 135305 DI 10.1088/0953-8984/23/13/135305 PG 7 WC Physics, Condensed Matter SC Physics GA 739VU UT WOS:000288749300009 PM 21415478 ER PT J AU Lieten, RR Motsnyi, V Zhang, L Cheng, K Leys, M Degroote, S Buchowicz, G Dubon, O Borghs, G AF Lieten, R. R. Motsnyi, V. Zhang, L. Cheng, K. Leys, M. Degroote, S. Buchowicz, G. Dubon, O. Borghs, G. TI Mg doping of GaN by molecular beam epitaxy SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DOPED GAN; LAYERS; CONDUCTIVITY; GAN(0001); FILMS AB We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg: Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg: Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% < Mg : Ga < 5.0%. A lowest resistivity of 0.98 Omega cm was obtained for optimized growth conditions. The p-type GaN layer then showed a hole concentration of 4.3 x 10(17) cm(-3) and a mobility of 15 cm(2) V(-1) s(-1). Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 x 10(17) cm(-3). The corresponding Mg concentration is 5 x 10(19) cm(-3), indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 degrees C or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 degrees C. C1 [Lieten, R. R.; Buchowicz, G.; Dubon, O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Borghs, G.] IMEC, B-3001 Louvain, Belgium. [Lieten, R. R.; Borghs, G.] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium. RP Lieten, RR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU Belgian American Educational Foundation (BAEF); Research Foundation-Flanders (FWO) FX Author R R Lieten acknowledges the support as Research Fellow of the Belgian American Educational Foundation (BAEF) and as Research Fellow of the Research Foundation-Flanders (FWO). Willem van de Graaf is thanked for assistance with growth experiments. Interreg is thanked for partial financial support. NR 22 TC 8 Z9 8 U1 3 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD APR 6 PY 2011 VL 44 IS 13 AR 135406 DI 10.1088/0022-3727/44/13/135406 PG 6 WC Physics, Applied SC Physics GA 735TX UT WOS:000288442600018 ER PT J AU Ji, YY Easterling, V Graham, U Fisk, C Crocker, M Choi, JS AF Ji, Yaying Easterling, Vencon Graham, Uschi Fisk, Courtney Crocker, Mark Choi, Jae-Soon TI Effect of aging on the NOx storage and regeneration characteristics of fully formulated lean NOx trap catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Lean NOx trap; NOx storage; NOx reduction; Catalyst aging; Precious metal sintering ID REDUCTION CATALYST; SPATIAL-DISTRIBUTION; THERMAL-STABILITY; SUPPORTED RHODIUM; PRECIOUS-METAL; PARTICLE-SIZE; H2O TREATMENT; MIXED OXIDES; SULFUR; H-2 AB In order to elucidate the effect of washcoat composition on lean NO trap (LNT) aging characteristics. fully formulated monolithic LNT catalysts containing varying amounts of Pt, Rh and BaO were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that in all cases aging resulted in deterioration of the NOx conversion as a consequence of impaired NOx storage and NOx reduction functions, while increased selectivity to NH3 was observed in the temperature range 250-450 degrees C. Elemental analysis, H-2 chemisorption and TEM data revealed two main changes which account for the degradation in LNT performance. First, residual sulfur in the catalysts, associated with the Ba phase, decreased catalyst NOx storage capacity. Second. sintering of the precious metals in the washcoat occurred, resulting in decreased contact between the Pt and Ba, and hence in less efficient NOx spillover from Pt to Ba during NOx adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NOx spillover during catalyst regeneration. For the aged catalysts, halving the Pt loading from 100 to 50 g/ft(3) was found to result in a significant decrease in overall NOx conversion, while for catalysts with the same 100 g/ft(3) Pt loading, increasing the relative amount of Pt on the NOx storage components (BaO and La-stabilized CeO2), as opposed to an Al2O3 support material (where it was co-located with Rh), was found to be beneficial. The effect of Rh loading on aged catalyst performance was found to be marginal within the range studied (10-20 g/ft(3)), as was the effect of BaO loading in the range 30-45 g/L. (c) 2011 Elsevier B.V. All rights reserved. C1 [Ji, Yaying; Easterling, Vencon; Graham, Uschi; Fisk, Courtney; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Choi, Jae-Soon] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM crocker@caer.uky.edu OI Choi, Jae-Soon/0000-0002-8162-4207 FU U.S. Department of Energy (DOE) [DE-FC26-05NT42631]; United States Government FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.The authors thank Shelley Hopps for sulfur measurements, and Adam Poole and Tonya Morgan for assistance with the rapid aging experiments. This project was funded by the U.S. Department of Energy (DOE) under award No. DE-FC26-05NT42631. NR 80 TC 20 Z9 20 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD APR 5 PY 2011 VL 103 IS 3-4 BP 413 EP 427 DI 10.1016/j.apcatb.2011.02.005 PG 15 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 751HZ UT WOS:000289609400019 ER PT J AU Babarao, R Dai, S Jiang, DE AF Babarao, Ravichandar Dai, Sheng Jiang, De-en TI Functionalizing Porous Aromatic Frameworks with Polar Organic Groups for High-Capacity and Selective CO2 Separation: A Molecular Simulation Study SO LANGMUIR LA English DT Article ID DER-WAALS COMPLEX; CARBON-DIOXIDE; HYDROGEN STORAGE; CATION-EXCHANGE; GAS-MIXTURES; FORCE-FIELD; AB-INITIO; ADSORPTION; CAPTURE; MEMBRANES AB Porous aromatic frameworks (PAFs) were recently synthesized with the highest surface area to date; one such PAF (PAF-1) has diamond-like structure with biphenyl building blocks and exhibits exceptional thermal and hydrothermal stabilities. Herein, we computationally design new PAFs by introducing polar organic groups to the biphenyl unit and then investigate their separating power toward CO2 by using grand-canonical Monte Carlo (GCMC) simulations. Among these functional PAFs, we found that tetrahydrofuran-like ether-functionalized PAF-1 shows higher adsorption capacity for CO2 at 1 bar and 298 K (10 mol per kilogram of adsorbent) and also much higher selectivities for CO2/CH4, CO2/N-2, and CO2/H-2 mixtures when compared with the amine functionality. The electrostatic interactions are found to play a dominant role in the high CO2 selectivities of functional PAFs, as switching off atomic charges would decrease the selectivity by an order of magnitude. This work suggests that functionalizing porous frameworks with tetrahydrofuran-like ether groups is a promising way to increase CO2 adsorption capacity and selectivity, especially at ambient pressures. C1 [Babarao, Ravichandar; Dai, Sheng; Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Babarao, Ravichandar/F-5491-2012; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 78 Z9 78 U1 8 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 5 PY 2011 VL 27 IS 7 BP 3451 EP 3460 DI 10.1021/la104827p PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 742UO UT WOS:000288970900036 PM 21351767 ER PT J AU Moore, NW AF Moore, Nathan W. TI Adhesion Hysteresis from Interdependent Capillary and Electrostatic Forces SO LANGMUIR LA English DT Article ID NANO-SCALE OXIDATION; CONTACT ELECTRIFICATION; INTERFACIAL WATER; ELASTIC SPHERES; ELECTRIC-FIELDS; SURFACE; MICROSCOPY; NANOSCALE; DEFORMATION; ADSORPTION AB Adhesion hysteresis commonly occurs at the nanoscale in humid atmospheres, yet mechanisms are not entirely understood. Here, the adhesion forces between silicon (111) oxide surfaces and tungsten oxide probes have been examined using interfacial force microscopy. The results show that the adhesion forces during surface approach and separation differ not only in magnitude but also in mechanism, arising mainly from capillary and electrostatic forces, respectively. Surface contact leads to a transient intersurface potential on dewetting. This mechanism of adhesion hysteresis differs in not relying singly on hysteretic wetting. Furthermore, by biasing the surfaces, nonadditivity is demonstrated between the capillary and electrostatic forces at the onset of condensation. These results hold important implications on the interpretation of force in nanoprobe geometries in humid atmospheres. C1 Sandia Natl Labs, Radiat Effects Res Dept, Albuquerque, NM 87185 USA. RP Moore, NW (reprint author), Sandia Natl Labs, Radiat Effects Res Dept, POB 5800,MS 1159, Albuquerque, NM 87185 USA. EM nwmoore@sandia.gov FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Sandia National Laboratories; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX M. T. Dugger, P. F. Feibelman, F. Galembeck, and K. R. Zavadil are thanked for helpful discussions. K Liechti is thanked for providing the IFM tips. This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, and by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 73 TC 3 Z9 3 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 5 PY 2011 VL 27 IS 7 BP 3678 EP 3684 DI 10.1021/la200043a PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 742UO UT WOS:000288970900060 PM 21395292 ER PT J AU Richter, AG Dergunov, SA Ganus, B Thomas, Z Pingali, SV Urban, V Liu, Y Porcar, L Pinkhassik, E AF Richter, Andrew G. Dergunov, Sergey A. Ganus, Bill Thomas, Zachary Pingali, Sai Venkatesh Urban, Volker Liu, Yun Porcar, Lionel Pinkhassik, Eugene TI Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution SO LANGMUIR LA English DT Article ID ANGLE NEUTRON-SCATTERING; THIN ORGANIC MATERIALS; POLYMER NANOCAPSULES; VESICLES; MEMBRANES; NANOPORES; SPHERES AB Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films. C1 [Dergunov, Sergey A.; Ganus, Bill; Thomas, Zachary; Pinkhassik, Eugene] Memphis State Univ, Inst Nanomat Dev & Innovat, INDIUM, Memphis, TN 38152 USA. [Dergunov, Sergey A.; Ganus, Bill; Thomas, Zachary; Pinkhassik, Eugene] Memphis State Univ, Dept Chem, Memphis, TN 38152 USA. [Richter, Andrew G.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Porcar, Lionel] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Pingali, Sai Venkatesh; Urban, Volker] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Liu, Yun] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Pinkhassik, E (reprint author), Memphis State Univ, Inst Nanomat Dev & Innovat, INDIUM, 213 Smith Chem Bldg, Memphis, TN 38152 USA. EM epnkhssk@memphis.edu RI Liu, Yun/F-6516-2012; Urban, Volker/N-5361-2015; Dergunov, Sergey/O-6287-2014; OI Liu, Yun/0000-0002-0944-3153; Urban, Volker/0000-0002-7962-3408; Dergunov, Sergey/0000-0001-6668-6445; Pingali, Sai Venkatesh/0000-0001-7961-4176 FU NSF [CHE-1012951, CHE-0349315]; NIH [1R01HL079147-01]; FedEx Institute of Technology; CIBA foundation; Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by NSF (CHE-1012951 and CHE-0349315) and NIH (1R01HL079147-01) grants, the FedEx Institute of Technology Innovation Award, and a CIBA foundation gift. SANS studies at Oak Ridge National Laboratory's Center for Structural Molecular Biology were supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. V.U. acknowledges support by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 28 TC 10 Z9 10 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 5 PY 2011 VL 27 IS 7 BP 3792 EP 3797 DI 10.1021/la1050942 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 742UO UT WOS:000288970900074 PM 21391646 ER PT J AU Tamam, L Pontoni, D Sapir, Z Yefet, S Sloutskin, E Ocko, BM Reichert, H Deutsch, M AF Tamam, Lilach Pontoni, Diego Sapir, Zvi Yefet, Shai Sloutskin, Eli Ocko, Benjamin M. Reichert, Harald Deutsch, Moshe TI Modification of deeply buried hydrophobic interfaces by ionic surfactants SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID X-RAY REFLECTIVITY; NORMAL-ALKANES; MONOLAYERS; TRANSITIONS; ENERGY AB Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T-s, well above the alkane's bulk freezing temperature, T-b. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T-s. A solid-solid transition in the frozen monolayer, occurring approximately 3 degrees C below T-s, is discovered and tentatively suggested to be a rotator-to-crystal transition. C1 [Tamam, Lilach; Sapir, Zvi; Yefet, Shai; Sloutskin, Eli; Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Tamam, Lilach; Sapir, Zvi; Yefet, Shai; Sloutskin, Eli; Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Pontoni, Diego; Reichert, Harald] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Ocko, Benjamin M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Reichert, Harald] Max Planck Inst Metallforsch, D-70569 Stuttgart, Germany. RP Deutsch, M (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.biu.ac.il FU US-Israel Binational Science Foundation, Jerusalem; Department of Energy [DE-AC02-76CH0016] FX We thank European Synchrotron Radiation Facility for beam time and the US-Israel Binational Science Foundation, Jerusalem, for support. Brookhaven National Laboratory is supported by Department of Energy Contract DE-AC02-76CH0016. NR 40 TC 23 Z9 23 U1 1 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 5 PY 2011 VL 108 IS 14 BP 5522 EP 5525 DI 10.1073/pnas.1014100108 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746RT UT WOS:000289265300012 PM 21422287 ER PT J AU Smith, CR Smith, CD Robertson, HM Helmkampf, M Zimin, A Yandell, M Holt, C Hu, H Abouheif, E Benton, R Cash, E Croset, V Currie, CR Elhaik, E Elsik, CG Fave, MJ Fernandes, V Gibson, JD Graur, D Gronenberg, W Grubbs, KJ Hagen, DE Viniegra, ASI Johnson, BR Johnson, RM Khila, A Kim, JW Mathis, KA Munoz-Torres, MC Murphy, MC Mustard, JA Nakamura, R Niehuis, O Nigam, S Overson, RP Placek, JE Rajakumar, R Reese, JT Suen, G Tao, S Torres, CW Tsutsui, ND Viljakainen, L Wolschin, F Gadau, J AF Smith, Chris R. Smith, Christopher D. Robertson, Hugh M. Helmkampf, Martin Zimin, Aleksey Yandell, Mark Holt, Carson Hu, Hao Abouheif, Ehab Benton, Richard Cash, Elizabeth Croset, Vincent Currie, Cameron R. Elhaik, Eran Elsik, Christine G. Fave, Marie-Julie Fernandes, Vilaiwan Gibson, Joshua D. Graur, Dan Gronenberg, Wulfila Grubbs, Kirk J. Hagen, Darren E. Viniegra, Ana Sofia Ibarraran Johnson, Brian R. Johnson, Reed M. Khila, Abderrahman Kim, Jay W. Mathis, Kaitlyn A. Munoz-Torres, Monica C. Murphy, Marguerite C. Mustard, Julie A. Nakamura, Rin Niehuis, Oliver Nigam, Surabhi Overson, Rick P. Placek, Jennifer E. Rajakumar, Rajendhran Reese, Justin T. Suen, Garret Tao, Shu Torres, Candice W. Tsutsui, Neil D. Viljakainen, Lumi Wolschin, Florian Gadau, Juergen TI Draft genome of the red harvester ant Pogonomyrmex barbatus SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE chemoreceptor; de novo genome; eusociality; genomic evolution; social insect ID HONEYBEE APIS-MELLIFERA; SOCIAL INSECT; CHEMORECEPTOR SUPERFAMILY; DROSOPHILA-MELANOGASTER; DNA METHYLATION; EVOLUTION; GENES; INSIGHTS; DIVERSIFICATION; HYMENOPTERA AB We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e. g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e. g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts. C1 [Helmkampf, Martin; Cash, Elizabeth; Gibson, Joshua D.; Mustard, Julie A.; Overson, Rick P.; Wolschin, Florian; Gadau, Juergen] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Smith, Chris R.] Earlham Coll, Dept Biol, Richmond, IN 47374 USA. [Smith, Christopher D.; Kim, Jay W.; Nakamura, Rin; Placek, Jennifer E.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Robertson, Hugh M.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. [Zimin, Aleksey] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Yandell, Mark; Holt, Carson; Hu, Hao] Univ Utah, Dept Human Genet, Salt Lake City, UT 84112 USA. [Abouheif, Ehab; Fave, Marie-Julie; Fernandes, Vilaiwan; Viniegra, Ana Sofia Ibarraran; Khila, Abderrahman; Rajakumar, Rajendhran] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Benton, Richard; Croset, Vincent] Univ Lausanne, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland. [Currie, Cameron R.; Munoz-Torres, Monica C.; Suen, Garret] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Currie, Cameron R.; Grubbs, Kirk J.; Suen, Garret] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Elhaik, Eran] Johns Hopkins Univ, Sch Med, Baltimore, MD 21205 USA. [Elsik, Christine G.; Hagen, Darren E.; Reese, Justin T.; Tao, Shu] Georgetown Univ, Dept Biol, Washington, DC 20057 USA. [Graur, Dan] Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA. [Gronenberg, Wulfila] Univ Arizona, Dept Neurosci, Tucson, AZ 85721 USA. [Johnson, Brian R.; Mathis, Kaitlyn A.; Torres, Candice W.; Tsutsui, Neil D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Johnson, Reed M.] Univ Nebraska, Dept Entomol, Lincoln, NE 68583 USA. [Murphy, Marguerite C.; Nigam, Surabhi] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA. [Niehuis, Oliver] Zool Res Museum Alexander Koenig, Ctr Mol Biodivers, D-53113 Bonn, Germany. [Viljakainen, Lumi] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. [Wolschin, Florian] Norwegian Univ Life Sci, Dept Biotechnol Chem & Food Sci, N-1492 As, Norway. RP Gadau, J (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM jgadau@asu.edu RI Johnson, Reed/H-3742-2011; Hu, Hao/I-4399-2014; Elsik, Christine/C-4120-2017; Abouheif, Ehab/H-2507-2011; OI Johnson, Reed/0000-0002-2431-0180; Elsik, Christine/0000-0002-4248-7713; Suen, Garret/0000-0002-6170-711X; Khila, Abderrahman/0000-0003-0908-483X FU National Science Foundation [IOS-0920732]; National Institutes of Health [5R01HG004694] FX A very special thanks to S. Pratt for comments on the manuscript. We are thankful to the Earlham College Evolutionary Genomics class, which annotated genes and did preliminary analyses. R. Jones, B. Mott, and T. Holbrook collected specimens. We are grateful for allocated computer time from the Center for High Performance Computing at the University of Utah. We also thank Mike Wong from the Center for Computing for Life Science at San Francisco State University for assistance with custom scripts and hardware configuration. National Science Foundation Grant IOS-0920732 (to J.G. and C. R. S.) funded the sequencing of the genome, and National Institutes of Health Grant 5R01HG004694 (to M.Y.) funded the MAKER annotation. NR 66 TC 127 Z9 134 U1 2 U2 59 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 5 PY 2011 VL 108 IS 14 BP 5667 EP 5672 DI 10.1073/pnas.1007901108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746RT UT WOS:000289265300037 PM 21282651 ER PT J AU Smith, CD Zimin, A Holt, C Abouheif, E Benton, R Cash, E Croset, V Currie, CR Elhaik, E Elsik, CG Fave, MJ Fernandes, V Gadau, J Gibson, JD Graur, D Grubbs, KJ Hagen, DE Helmkampf, M Holley, JA Hu, H Viniegra, ASI Johnson, BR Johnson, RM Khila, A Kim, JW Laird, J Mathis, KA Moeller, JA Munoz-Torres, MC Murphy, MC Nakamura, R Nigam, S Overson, RP Placek, JE Rajakumar, R Reese, JT Robertson, HM Smith, CR Suarez, AV Suen, G Suhr, EL Tao, S Torres, CW van Wilgenburg, E Viljakainen, L Walden, KKO Wild, AL Yandell, M Yorke, JA Tsutsui, ND AF Smith, Christopher D. Zimin, Aleksey Holt, Carson Abouheif, Ehab Benton, Richard Cash, Elizabeth Croset, Vincent Currie, Cameron R. Elhaik, Eran Elsik, Christine G. Fave, Marie-Julie Fernandes, Vilaiwan Gadau, Juergen Gibson, Joshua D. Graur, Dan Grubbs, Kirk J. Hagen, Darren E. Helmkampf, Martin Holley, Jo-Anne Hu, Hao Viniegra, Ana Sofia Ibarraran Johnson, Brian R. Johnson, Reed M. Khila, Abderrahman Kim, Jay W. Laird, Joseph Mathis, Kaitlyn A. Moeller, Joseph A. Munoz-Torres, Monica C. Murphy, Marguerite C. Nakamura, Rin Nigam, Surabhi Overson, Rick P. Placek, Jennifer E. Rajakumar, Rajendhran Reese, Justin T. Robertson, Hugh M. Smith, Chris R. Suarez, Andrew V. Suen, Garret Suhr, Elissa L. Tao, Shu Torres, Candice W. van Wilgenburg, Ellen Viljakainen, Lumi Walden, Kimberly K. O. Wild, Alexander L. Yandell, Mark Yorke, James A. Tsutsui, Neil D. TI Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile) SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Hymenoptera; invasive species; transcriptome; chemoreception; sociality ID HONEYBEE APIS-MELLIFERA; DNA METHYLATION; CHEMORECEPTOR SUPERFAMILY; NASONIA-VITRIPENNIS; GENE-EXPRESSION; DROSOPHILA; EVOLUTION; INSIGHTS; ENZYMES; FAMILY AB Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism. C1 [Smith, Christopher D.; Kim, Jay W.; Nakamura, Rin; Placek, Jennifer E.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Murphy, Marguerite C.; Nigam, Surabhi] San Francisco State Univ, Dept Comp Sci, San Francisco, CA 94132 USA. [Zimin, Aleksey] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Yorke, James A.] Univ Maryland, Dept Math, College Pk, MD 20742 USA. [Abouheif, Ehab; Fave, Marie-Julie; Fernandes, Vilaiwan; Viniegra, Ana Sofia Ibarraran; Khila, Abderrahman; Rajakumar, Rajendhran] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Benton, Richard; Croset, Vincent] Univ Lausanne, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland. [Cash, Elizabeth; Gadau, Juergen; Gibson, Joshua D.; Grubbs, Kirk J.; Helmkampf, Martin; Overson, Rick P.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Currie, Cameron R.; Moeller, Joseph A.; Suen, Garret] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Currie, Cameron R.; Moeller, Joseph A.; Suen, Garret] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Elhaik, Eran] Johns Hopkins Univ, Sch Med, Baltimore, MD 21205 USA. [Elsik, Christine G.; Hagen, Darren E.; Munoz-Torres, Monica C.; Reese, Justin T.; Suhr, Elissa L.; Tao, Shu] Georgetown Univ, Dept Biol, Washington, DC 20057 USA. [Graur, Dan] Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA. [Holley, Jo-Anne; Johnson, Reed M.; Laird, Joseph; Robertson, Hugh M.; Suarez, Andrew V.; Walden, Kimberly K. O.; Wild, Alexander L.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. [Robertson, Hugh M.; Suarez, Andrew V.] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Johnson, Brian R.; Mathis, Kaitlyn A.; Torres, Candice W.; van Wilgenburg, Ellen; Tsutsui, Neil D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Smith, Chris R.] Earlham Coll, Dept Biol, Richmond, IN 47374 USA. [Viljakainen, Lumi] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. [Holt, Carson; Hu, Hao; Yandell, Mark] Univ Utah, Sch Med, Eccles Inst Human Genet, Dept Human Genet, Salt Lake City, UT 84112 USA. RP Smith, CD (reprint author), San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. EM smithcd@sfsu.edu; ntsutsui@berkeley.edu RI Johnson, Reed/H-3742-2011; Hu, Hao/I-4399-2014; Elsik, Christine/C-4120-2017; OI Johnson, Reed/0000-0002-2431-0180; Elsik, Christine/0000-0002-4248-7713; Suen, Garret/0000-0002-6170-711X; Khila, Abderrahman/0000-0003-0908-483X FU National Human Genome Research Institute National Institutes of Health (NIH) [1R01HG004694]; National Institute of Mental Health NIH [5SC2MH086071]; University of Illinois at Urbana-Champaign FX We thank G. Anderson for providing the ants used in this project; A. Smith for assistance with transcriptome sequencing; L. Tonkin and the V. Coates Genomic Sequencing Facility and the Center for High Performance Computing for assistance and use of facilities; G. Robinson for support; M. Wong for script support; M. Goodisman for valuable discussion; B. Hunt and S. Yi for generously sharing useful data; and B. Moore for assistance with SNP analysis. Infrastructure for this work was supported in part by National Human Genome Research Institute National Institutes of Health (NIH) Grant 1R01HG004694 (to M.D.Y.), National Institute of Mental Health NIH Grant 5SC2MH086071 (to C. D. S.), and the University of Illinois at Urbana-Champaign Romano Professorial Scholarship (H.M.R.). NR 46 TC 128 Z9 134 U1 2 U2 67 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 5 PY 2011 VL 108 IS 14 BP 5673 EP 5678 DI 10.1073/pnas.1008617108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746RT UT WOS:000289265300038 PM 21282631 ER PT J AU Schluter, PM Xu, SQ Gagliardini, V Whittle, E Shanklin, J Grossniklaus, U Schiestl, FP AF Schlueter, Philipp M. Xu, Shuqing Gagliardini, Valeria Whittle, Edward Shanklin, John Grossniklaus, Ueli Schiestl, Florian P. TI Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE acyl-acyl carrier protein desaturase; isolation genes; pollination; speciation ID ARABIDOPSIS-THALIANA; SEX-PHEROMONE; FATTY-ACIDS; SPECIATION; OPHRYS; POLLINATION; MIMICRY; HYDROCARBONS; EVOLUTION; PATTERNS AB The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators' sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP Delta(9) and a 16:0-ACP Delta(4) desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection. C1 [Schlueter, Philipp M.; Xu, Shuqing; Schiestl, Florian P.] Univ Zurich, Inst Systemat Bot, CH-8008 Zurich, Switzerland. [Schlueter, Philipp M.; Xu, Shuqing; Schiestl, Florian P.] Univ Zurich, Inst Plant Biol, CH-8008 Zurich, Switzerland. [Schlueter, Philipp M.; Xu, Shuqing; Schiestl, Florian P.] Zurich Basel Plant Sci Ctr, CH-8008 Zurich, Switzerland. [Xu, Shuqing] Swiss Fed Inst Technol Zurich, Inst Integrat Biol, CH-8092 Zurich, Switzerland. [Whittle, Edward; Shanklin, John] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Schluter, PM (reprint author), Univ Zurich, Inst Systemat Bot, CH-8008 Zurich, Switzerland. EM philipp.schlueter@systbot.uzh.ch RI Schluter, Philipp/A-3571-2011; Grossniklaus, Ueli/A-2736-2012; Grossniklaus, Ueli/E-9995-2016; OI Schluter, Philipp/0000-0002-6057-0908; Grossniklaus, Ueli/0000-0002-0522-8974; Xu, Shuqing/0000-0001-7010-4604 FU Austrian Science Fund Fellowship [J2678-B16]; Swiss Federal Institute of Technology Zurich [TH 02 06-2]; University of Zurich; Office of Basic Energy Sciences of the US Department of Energy FX We thank A. Bolanos, A. Boyko, S. Cozzolino, M. Curtis, S. Kessler, M. and S. Schauer, and H. Zheng for providing laboratory materials, help, or source code, and M. Anisimova and M. and S. Schauer for discussions and comments. This work was supported by Austrian Science Fund Fellowship J2678-B16 (to P. M. S.), Swiss Federal Institute of Technology Zurich Grant TH 02 06-2 (to F. P. S.), the University of Zurich (U. G. and F. P. S.), and the Office of Basic Energy Sciences of the US Department of Energy (J.S. and E.J.W.). NR 38 TC 34 Z9 40 U1 3 U2 32 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 5 PY 2011 VL 108 IS 14 BP 5696 EP 5701 DI 10.1073/pnas.1013313108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 746RT UT WOS:000289265300042 PM 21436056 ER PT J AU Yin, J Haggerty, R Stoliker, DL Kent, DB Istok, JD Greskowiak, J Zachara, JM AF Yin, Jun Haggerty, Roy Stoliker, Deborah L. Kent, Douglas B. Istok, Jonathan D. Greskowiak, Janek Zachara, John M. TI Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments SO WATER RESOURCES RESEARCH LA English DT Article ID CONTAMINATED SEDIMENTS; HANFORD-SITE; VADOSE ZONE; URANIUM(VI); DESORPTION; ADSORPTION; CARBONATE; SORPTION; URANYL AB In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. C1 [Yin, Jun; Haggerty, Roy] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Stoliker, Deborah L.; Kent, Douglas B.] US Geol Survey, Menlo Pk, CA 94025 USA. [Istok, Jonathan D.] Oregon State Univ, Dept Civil Engn, Corvallis, OR 97331 USA. [Greskowiak, Janek] CSIRO Land & Water, Wembley, WA 6913, Australia. [Greskowiak, Janek] Carl von Ossietzky Univ Oldenburg, Working Grp Hydrogeol & Landscape Hydrol, Inst Biol & Environm Sci, D-2900 Oldenburg, Germany. [Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yin, J (reprint author), Oregon State Univ, Dept Geosci, 104 Wilkinson Hall, Corvallis, OR 97331 USA. EM jun.yin@geo.oregonstate.edu; haggertr@geo.oregonstate.edu; dlstoliker@usgs.gov; dbkent@usgs.gov; jack.istok@oregonstate.edu; janek.greskowiak@uni-oldenburg.de; john.zachara@pnl.gov RI Haggerty, Roy/A-5863-2009; Greskowiak, Janek/F-4198-2012 FU U.S. DOE Office of Biological and Environmental Research [DE-FG02-06ER06-16]; CSIRO OCE FX This research was supported by the U.S. DOE Office of Biological and Environmental Research, Environmental Remediation Science Program (ERSP) though DOE-ERSP grant DE-FG02-06ER06-16 as part of the Hanford 300 Area Integrated Field Research Challenge Project. Funding to J. G. was provided by a postdoctoral fellowship from CSIRO OCE. We also would like to thank Brian Wood for the use of equipment, Stephanie Harrington for help with experimental setup, and Chongxuan Liu for helpful conversations and ideas. Special thanks to Chunmiao Zheng and Rui Ma for providing the PHT3D program. Reviews by Mike Hay, Rob Runkel, and three anonymous reviewers greatly improved the quality of the manuscript. Use of brand names is for identification purposes only and does not present endorsement by the U.S. Geological Survey. NR 38 TC 21 Z9 21 U1 1 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 5 PY 2011 VL 47 AR W04502 DI 10.1029/2010WR009369 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 747ZE UT WOS:000289359000001 ER PT J AU Apostol, MI Wiltzius, JJW Sawaya, MR Cascio, D Eisenberg, D AF Apostol, Marcin I. Wiltzius, Jed J. W. Sawaya, Michael R. Cascio, Duilio Eisenberg, David TI Atomic Structures Suggest Determinants of Transmission Barriers in Mammalian Prion Disease SO BIOCHEMISTRY LA English DT Article ID CHRONIC WASTING DISEASE; CREUTZFELDT-JAKOB-DISEASE; X-RAY-DIFFRACTION; MULE DEER; SPONGIFORM ENCEPHALOPATHY; VARIANT CJD; PROTEIN; SCRAPIE; PRP; ELK AB Prion represents a unique class of pathogens devoid of nucleic acid. The deadly diseases transmitted by it between members of one species and, in certain instances, to members of other species present a public health concern. Transmissibility and the barriers to transmission between species have been suggested to arise from the degree to which a pathological protein conformation from an individual of one species can seed a pathological conformation in another species. However, this hypothesis has never been illustrated at an atomic level. Here we present three X-ray atomic structures of the same segment from human, mouse, and hamster PrP, which is critical for forming amyloid and confers species specificity in PrP seeding experiments. The structures reveal that different sequences encode different steric zippers and suggest that the degree of dissimilarity of these zipper structures gives rise to transmission barriers in prion disease, such as those that protect humans from acquiring bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD). C1 [Apostol, Marcin I.; Wiltzius, Jed J. W.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Chem & Biochem, UCLA DOE Inst, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Chem & Biochem, UCLA DOE Inst, 611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011; OI Sawaya, Michael/0000-0003-0874-9043 FU NIH; NSF; DOD; HHMI; Ruth L. Kirschstein National Research Service Award [GM007185]; UCLA FX This study was supported by grants from the NIH, NSF, DOD, and HHMI. M.I.A. thanks the support of the Ruth L. Kirschstein National Research Service Award GM007185 and the UCLA Dissertation Year Fellowship. NR 47 TC 24 Z9 24 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 5 PY 2011 VL 50 IS 13 BP 2456 EP 2463 DI 10.1021/bi101803k PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 742UN UT WOS:000288970800010 PM 21323366 ER PT J AU Mezger, M Jerome, B Kortright, JB Valvidares, M Gullikson, EM Giglia, A Mahne, N Nannarone, S AF Mezger, Markus Jerome, Blandine Kortright, Jeffrey B. Valvidares, Manuel Gullikson, Eric M. Giglia, Angelo Mahne, Nicola Nannarone, Stefano TI Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity SO PHYSICAL REVIEW B LA English DT Article ID ANISOTROPIC MEDIA; SCATTERING; POLYMERS; BEAMLINE; POLARIZATION; RESOLUTION; UNDULATOR; CRYSTALS AB We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness. C1 [Mezger, Markus] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano] CNR, Ist Officina Mat, I-34149 Trieste, Italy. [Nannarone, Stefano] Univ Modena & Reggio Emilia, Dipartimento Ingn Mat & Ambiente, I-41100 Modena, Italy. RP Mezger, M (reprint author), Max Planck Inst Polymer Res, D-55128 Mainz, Germany. EM mezger@mpip-mainz.mpg.de RI MSD, Nanomag/F-6438-2012; MPIP, AK Butt/B-8805-2009; EFRC, CGS/I-6680-2012; Mezger, Markus/D-6897-2014; giglia, angelo/B-7934-2015; Stangl, Kristin/D-1502-2015; Valvidares, Secundino /M-4979-2016 OI Mezger, Markus/0000-0001-9049-6983; Valvidares, Secundino /0000-0003-4895-8114 FU US Department of Energy's Office of Basic Energy Sciences; Lawrence Berkeley Natl. Lab.; Program "Fundamental Structural Studies of Hybrid Biomolecular Materials using Scattering Techniques" [DE-AC02-05CH11231]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center [DE-SC0001015]; US-Spain Fulbright FX This work was supported by the US Department of Energy's Office of Basic Energy Sciences through the Advanced Light Source, the Laboratory Directed Research and Development Program of Lawrence Berkeley Natl. Lab., and the Program "Fundamental Structural Studies of Hybrid Biomolecular Materials using Scattering Techniques" (M. V.) under Contract No. DE-AC02-05CH11231, and through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center (B.J.) under Award No. DE-SC0001015. A US-Spain Fulbright award supported M.V. for part of this work. Data were acquired at the BEAR end station at ELETTRA Synchrotrone Trieste and at BL4.0.2 and BL6.3.2 at the ALS, Berkeley. We gratefully thank Elke Arenholz and Marco Liberati for their assistance in using BL4.0.2. NR 34 TC 28 Z9 28 U1 3 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 5 PY 2011 VL 83 IS 15 AR 155406 DI 10.1103/PhysRevB.83.155406 PG 8 WC Physics, Condensed Matter SC Physics GA 745TY UT WOS:000289190700006 ER PT J AU Vidmar, L Bonca, J Mierzejewski, M Prelovsek, P Trugman, SA AF Vidmar, Lev Bonca, Janez Mierzejewski, Marcin Prelovsek, Peter Trugman, Stuart A. TI Nonequilibrium dynamics of the Holstein polaron driven by an external electric field SO PHYSICAL REVIEW B LA English DT Article ID WANNIER-STARK LADDERS; SEMICONDUCTOR SUPERLATTICE; BLOCH OSCILLATIONS; QUANTUM TRANSPORT; MODEL; DNA; DIFFUSION; CRYSTAL AB This work represents a fundamental study of a Holstein polaron in one dimension driven away from the ground state by a constant electric field. Taking fully into account quantum effects, we follow the time evolution of the system from its ground state as the constant electric field is switched on at t = 0 until it reaches a steady state. At weak electron-phonon coupling (EP), the system experiences damped Bloch oscillations (BO's) characteristic for a noninteracting electron band. An analytic expression of the steady-state current is proposed in terms of weak EP coupling and large electric field. For moderate values of EP coupling, the oscillations are almost critically damped and the system reaches the steady state after a short time. In the strong-coupling limit, weakly damped BO's, consistent with nearly adiabatic evolution within the polaron band, persist up to extremely large electric fields. A traveling polaron under the influence of the electric field leaves behind a trail of phonon excitations absorbing the excess energy gained from the electric field. The shape of the traveling polaron is investigated in detail. C1 [Vidmar, Lev; Bonca, Janez; Mierzejewski, Marcin; Prelovsek, Peter] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Bonca, Janez; Prelovsek, Peter] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Mierzejewski, Marcin] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland. [Trugman, Stuart A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vidmar, L (reprint author), Jozef Stefan Inst, Ljubljana 1000, Slovenia. RI Vidmar, Lev/J-2464-2014; OI Trugman, Stuart/0000-0002-6688-7228 FU SRA [P1-0044]; JAEA, Japan FX We acknowledge stimulating discussions with C.D. Batista and financial support of the SRA under Grant No. P1-0044. J.B. and L. V. acknowledge financial support of the REIMEI project, JAEA, Japan. NR 62 TC 40 Z9 40 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 5 PY 2011 VL 83 IS 13 AR 134301 DI 10.1103/PhysRevB.83.134301 PG 7 WC Physics, Condensed Matter SC Physics GA 745TT UT WOS:000289190100005 ER PT J AU Yang, F Zhai, H Wang, F Lee, DH AF Yang, Fan Zhai, Hui Wang, Fa Lee, Dung-Hai TI Electronic instabilities in iron-based superconductors: A variational Monte Carlo study SO PHYSICAL REVIEW B LA English DT Article ID PNICTIDES AB We report a variational Monte Carlo (VMC) study of the iron-based superconductors. We use realistic band structures, and the ordering instabilities/variational ansatz are suggested by previous functional renormalization group calculations. We examine antiferromagnetism, superconducting pairing, normal state Fermi surface distortion, and orbital order in the antiferromagnetic state. C1 [Yang, Fan; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yang, Fan] Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R China. [Zhai, Hui] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China. [Wang, Fa] MIT, Dept Phys, Cambridge, MA 02139 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhai, Hui/H-9496-2012; Wang, Fa/D-3817-2015 OI Zhai, Hui/0000-0001-8118-6027; Wang, Fa/0000-0002-6220-5349 FU NSFC [10704008, 10944002]; Tsinghua University; DOE [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Zheng-Yu Weng for sharing computer resources and Hong Yao, Ying Ran, and Tao Li for helpful discussions. We acknowledge the support by NSFC Grant No. 10704008 (FY); BRYS Program of Tsinghua University and NSFC Grant No. 10944002 (HZ); and DOE grant no. DE-AC02-05CH11231 (DHL). This research also used the resources of NERSC supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 10 Z9 10 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 5 PY 2011 VL 83 IS 13 AR 134502 DI 10.1103/PhysRevB.83.134502 PG 4 WC Physics, Condensed Matter SC Physics GA 745TT UT WOS:000289190100008 ER PT J AU Chen, XS Sun, WM Wang, F Goldman, T AF Chen, Xiang-Song Sun, Wei-Min Wang, Fan Goldman, T. TI Art of spin decomposition SO PHYSICAL REVIEW D LA English DT Article ID NUCLEON AB We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates. C1 [Chen, Xiang-Song] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China. [Chen, Xiang-Song; Sun, Wei-Min; Wang, Fan] Chinese Acad Sci, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China. [Sun, Wei-Min; Wang, Fan] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Sun, Wei-Min; Wang, Fan] Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China. [Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chen, XS (reprint author), Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China. EM cxs@hust.edu.cn FU National Science Foundation of China [10875082, 11035003]; U.S. DOE [DE-AC52-06NA25396]; China Education Department FX This work is supported by the National Science Foundation of China under Grants No. 10875082 and No. 11035003, and by the U.S. DOE under Contract No. DE-AC52-06NA25396. X. S. C. is also supported by the NCET Program of the China Education Department. NR 16 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 5 PY 2011 VL 83 IS 7 AR 071901 DI 10.1103/PhysRevD.83.071901 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 745UT UT WOS:000289193800001 ER PT J AU Perry, JJP Tainer, JA AF Perry, J. Jefferson P. Tainer, John A. TI All Stressed Out Without ATM Kinase SO SCIENCE SIGNALING LA English DT Article ID ATAXIA-TELANGIECTASIA; DNA-DAMAGE; OXIDATIVE STRESS; PROTEIN-KINASE; ACTIVATION; PHENOTYPE; REVEALS; CANCER; PKCS; RADIOSENSITIVITY AB Ataxia-telangiectasia (A-T) is a rare, neurodegenerative, inherited disease arising from mutations in the kinase A-T mutated (ATM), which promotes cell cycle checkpoints and DNA double-strand break repair. Puzzlingly, these ATM activities fail to fully explain A-T neuropathologies, which instead have links to stress induced by reactive oxygen species (ROS). However, a landmark discovery reveals an unexpected intersection of ROS and kinase signaling: ATM can be directly activated by oxidation to form a disulfide-linked dimer in a mechanism distinct from DNA damage activation. When combined with notable structural-based insights into the ATM homolog DNA-PK (DNA-protein kinase) and mTOR (mammalian target of rapamycin), these results suggest conformation and assembly mechanisms to signal oxidative stress through an ATM nodal point. These findings fundamentally affect our understanding of ROS and ATM signaling and of the A-T phenotype, with implications for altering signaling in cancer cells to increase sensitivities to current therapeutic interventions. C1 [Perry, J. Jefferson P.; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Life Sci Div, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. EM jat@scripps.edu FU NIH [CA092584, CA117638] FX Research in the Tainer laboratory focused on DNA repair is supported by NIH grants CA092584 and CA117638. NR 39 TC 8 Z9 8 U1 1 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD APR 5 PY 2011 VL 4 IS 167 AR pe18 DI 10.1126/scisignal.2001961 PG 4 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 745DZ UT WOS:000289147000004 PM 21467296 ER PT J AU Biegalski, MD Kim, DH Choudhury, S Chen, LQ Christen, HM Dorr, K AF Biegalski, M. D. Kim, D. H. Choudhury, S. Chen, L. Q. Christen, H. M. Doerr, K. TI Strong strain dependence of ferroelectric coercivity in a BiFeO3 film SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; FIELD AB The ferroelectric polarization loop of an epitaxial BiFeO3 film on a piezoelectric substrate has been investigated as a function of continuously and reversibly varied biaxial strain of epsilon = 0.36%-0.51%. Over this range, the ferroelectric coercive field (E-C) at 80 K increases reversibly by 36% with the increasing tensile strain. In contrast, phase-field simulations predict the opposite trend of dE(C)/d epsilon < 0. Therefore, we attribute the observed E-C(epsilon) dependence to the strain dependence of domain dynamics, which are not included in thermodynamic models. The strain dependence of the remanent polarization agrees with previous results. (C) 2011 American Institute of Physics. [doi:10.1063/1.3569137] C1 [Biegalski, M. D.; Kim, D. H.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci CNMS, Oak Ridge, TN 37830 USA. [Kim, D. H.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Doerr, K.] IFW Dresden, Inst Metall Mat, D-01171 Dresden, Germany. [Choudhury, S.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Choudhury, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Biegalski, MD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci CNMS, Oak Ridge, TN 37830 USA. EM biegalskim@ornl.gov RI Kim, Dae Ho/B-4670-2012; Choudhury, Samrat/B-4115-2009; Chen, LongQing/I-7536-2012; Christen, Hans/H-6551-2013 OI Chen, LongQing/0000-0003-3359-3781; Christen, Hans/0000-0001-8187-7469 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; Deutsche Forschungsgemeinschaft [FOR520]; DOE at Pennsylvania State University [DE-FG02-07ER46417] FX The research at the CNMS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. K. D. acknowledges funding by the Deutsche Forschungsgemeinschaft, FOR520. The work at Pennsylvania State University was supported by DOE under grant DE-FG02-07ER46417. NR 21 TC 30 Z9 31 U1 3 U2 58 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2011 VL 98 IS 14 AR 142902 DI 10.1063/1.3569137 PG 3 WC Physics, Applied SC Physics GA 747CL UT WOS:000289297800060 ER PT J AU Sun, CJ Anwar, MZ Chen, Q Yang, JW Khan, MA Shur, MS Bykhovski, AD Liliental-Weber, Z Kisielowski, C Smith, M Lin, JY Jiang, HX AF Sun, C. J. Anwar, M. Zubair Chen, Q. Yang, J. W. Khan, M. Asif Shur, M. S. Bykhovski, A. D. Liliental-Weber, Z. Kisielowski, C. Smith, M. Lin, J. Y. Jiang, H. X. TI Quantum shift of band-edge stimulated emission in InGaN-GaN multiple quantum well light-emitting diodes (vol 70, pg 2978, 1997) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Sun, C. J.; Anwar, M. Zubair; Chen, Q.; Yang, J. W.; Khan, M. Asif] APA Opt Inc, Blaine, MN 55434 USA. [Shur, M. S.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Bykhovski, A. D.] Univ Virginia, Dept Elect Engn, Charlottesville, VA 22903 USA. [Liliental-Weber, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kisielowski, C.] Univ Calif Berkeley, Dept Mat Sci & Mineral Engn, Berkeley, CA 94720 USA. [Smith, M.; Lin, J. Y.; Jiang, H. X.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. RP Sun, CJ (reprint author), APA Opt Inc, 2950 NE 84th Lane, Blaine, MN 55434 USA. RI Lin, Jingyu/A-7276-2011; Jiang, Hongxing/F-3635-2011; Liliental-Weber, Zuzanna/H-8006-2012; Shur, Michael/A-4374-2016 OI Lin, Jingyu/0000-0003-1705-2635; Jiang, Hongxing/0000-0001-9892-4292; Shur, Michael/0000-0003-0976-6232 NR 1 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2011 VL 98 IS 14 AR 149901 DI 10.1063/1.3576116 PG 1 WC Physics, Applied SC Physics GA 747CL UT WOS:000289297800085 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjeea, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Camacho-Perez, E Carrasco-Lizarraga, MA Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Cris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffe, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, TJ McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PC Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, R Novaes, SF Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Garzon, GJY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, R Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, RN Razumov, I Renkel, R Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, R Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, R Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, M Strom, D Stutte, L Suter, L Svoisky, R Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelasav, N Varnes, EW Vasilyev, IA Verdier, R Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, R Vokac, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjeea, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Cris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffe, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, T. J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. C. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, R. Novaes, S. F. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, R. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, R. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, R. N. Razumov, I. Renkel, R. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, R. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, R. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, M. Strom, D. Stutte, L. Suter, L. Svoisky, R. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelasav, N. Varnes, E. W. Vasilyev, I. A. Verdier, R. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, R. Vokac, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA DO Collaboration TI Search for neutral Higgs bosons in the multi-b-jet topology in 5.2 fb(-1) of p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Higgs boson; Supersymmetry; Bottom quarks; Tevatron ID STANDARD MODEL; MSSM; SUPERSYMMETRY; PHYSICS; MASSES; LEVEL; LEP AB Data recorded by the DO experiment at the Fermilab Tevatron Collider are analyzed to search for neutral Higgs bosons produced in association with b quarks. The search is performed in the three-b-quark channel using multijet-triggered events corresponding to an integrated luminosity of 5.2 fb(-1). In the absence of any significant excess above background, limits are set on the cross section multiplied by the branching ratio in the Higgs boson mass range 90 to 300 GeV, extending the excluded regions in the parameter space of the minimal supersymmetric standard model. (C) 2011 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. C.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hoeneisen, B.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, R.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Soustruznik, K.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Cris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Jaffe, M.; Petroff, R.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, R.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Hohlfeld, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Buescher, V.; Schliephake, T.; Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjeea, S.; Evdokimov, A.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, T. J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, R.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, R.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, R. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, R.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Head, T.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Heredia-De La Cruz, I.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, R.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Strom, D.; Varelasav, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Univ Illinois, De Kalb, IL 60115 USA. [Kirby, M. H.; Schellman, H.; Welty-Rieger, L.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Bean, A.; Carrasco-Lizarraga, M. A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Baringer, P.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, R.; Strauss, M.; Svoisky, R.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, R.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Santos, Angelo/K-5552-2012; Mercadante, Pedro/K-1918-2012; Alves, Gilvan/C-4007-2013; Yip, Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 33 TC 28 Z9 28 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 4 PY 2011 VL 698 IS 2 BP 97 EP 104 DI 10.1016/j.physletb.2011.02.062 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 747QH UT WOS:000289334000001 ER PT J AU Yu, SW Tobin, JG Crowhurst, JC Sharma, S Dewhurst, JK Velasco, PO Yang, WL Siekhaus, WJ AF Yu, S. -W. Tobin, J. G. Crowhurst, J. C. Sharma, S. Dewhurst, J. K. Olalde Velasco, P. Yang, W. L. Siekhaus, W. J. TI f-f origin of the insulating state in uranium dioxide: X-ray absorption experiments and first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; INVERSE-PHOTOEMISSION; ENERGY; UO2; OXIDES; METAL; TRANSITIONS; UO2(111); CRYSTAL AB We have performed x-ray absorption experiments on uranium dioxide (UO(2)) at the O 1s, U 4d, U 4f, and U 5d edges. After comprehensive energy calibrations for O 1s, U 4d, and U 4f spectra, we have used the U 4d and 4f spectra to sort the energetic positions of the 5f and the 6d states in the unoccupied band unambiguously. This demonstrates conclusively that UO(2) is an f - f Mott-Hubbard insulator, where the electronic repulsion between f electrons is responsible for the insulating state. Calculations performed within the U-corrected generalized gradient approximation of the optical response of UO(2) permit direct comparison with the absorption spectra and confirm the experimental results. C1 [Yu, S. -W.; Tobin, J. G.; Crowhurst, J. C.; Siekhaus, W. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sharma, S.; Dewhurst, J. K.] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Olalde Velasco, P.; Yang, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Olalde Velasco, P.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RP Yu, SW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM YU21@LLNL.GOV RI Yang, Wanli/D-7183-2011; Tobin, James/O-6953-2015 OI Yang, Wanli/0000-0003-0666-8063; FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) of Lawrence Livermore National Laboratory [10-SI-016]; DOE Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Ian Hutcheon, Patrick Allen, Anthony Van Buuren, Trevor Wiley, and Joseph Zaug for valuable discussion. POV would like to acknowledge CONACyT Mexico. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. This work is funded by Laboratory Directed Research and Development (LDRD) Program No. (10-SI-016) of Lawrence Livermore National Laboratory. Some of the work performed by JGT and SWY was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 39 Z9 39 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 4 PY 2011 VL 83 IS 16 AR 165102 DI 10.1103/PhysRevB.83.165102 PG 8 WC Physics, Condensed Matter SC Physics GA 743YA UT WOS:000289054400001 ER PT J AU Hatridge, M Vijay, R Slichter, DH Clarke, J Siddiqi, I AF Hatridge, M. Vijay, R. Slichter, D. H. Clarke, John Siddiqi, I. TI Dispersive magnetometry with a quantum limited SQUID parametric amplifier SO PHYSICAL REVIEW B LA English DT Article ID INTERFERENCE DEVICE; NOISE; AMPLIFICATION; STATES AB There is currently fundamental and technological interest in measuring and manipulating nanoscale magnets, particularly in the quantum coherent regime. To observe the dynamics of such systems one requires a magnetometer with not only exceptional sensitivity but also high gain, wide bandwidth, and low backaction. We demonstrate a dispersive magnetometer consisting of a two-junction superconducting quantum interference device (SQUID) in parallel with an integrated, lumped-element capacitor. Input flux signals are encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator results in quantum limited, phase sensitive parametric amplification of this signal, which improves flux sensitivity at the expense of bandwidth. Depending on the drive parameters, the device performance ranges from an effective flux noise of 0.29 mu Phi(0)Hz(-1/2) and 20 MHz of signal bandwidth to a noise of 0.14 mu Phi(0)Hz(-1/2) and a bandwidth of 0.6 MHz. These results are in excellent agreement with our theoretical model. C1 [Hatridge, M.; Vijay, R.; Slichter, D. H.; Siddiqi, I.] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA. [Hatridge, M.; Clarke, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hatridge, M (reprint author), Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA. RI Slichter, Daniel/A-2870-2013; Siddiqi, Irfan/E-5548-2015 OI Slichter, Daniel/0000-0002-1228-0631; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Office of Naval Research [N00014-07-1-0774]; AFOSR [FA9550-08-1-0104]; Hertz Foundation FX The authors thank O. Naaman for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 (M. H., J.C.). Financial support was also provided by the Office of Naval Research under Grant No. N00014-07-1-0774 (I. S.) and AFOSR Grant No. FA9550-08-1-0104 (R. V., I. S.). D. H. S. acknowledges support from a Hertz Foundation Fellowship endowed by Big George Ventures. NR 37 TC 94 Z9 94 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 4 PY 2011 VL 83 IS 13 AR 134501 DI 10.1103/PhysRevB.83.134501 PG 8 WC Physics, Condensed Matter SC Physics GA 743XU UT WOS:000289053700005 ER PT J AU Yin, WJ Wei, SH Al-Jassim, MM Turner, J Yan, YF AF Yin, Wan-Jian Wei, Su-Huai Al-Jassim, Mowafak M. Turner, John Yan, Yanfa TI Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory SO PHYSICAL REVIEW B LA English DT Article ID VISIBLE-LIGHT; PHOTOELECTROCHEMICAL PROPERTIES; PHOTOCATALYTIC PROPERTIES; SEMICONDUCTORS; WATER; ENERGY; FILMS AB The intrinsic and extrinsic doping properties of BiVO4, i.e., the formation energies and transition energy levels of defects and impurities, have been studied systematically by first-principles density-functional theory. We find that for doping caused by intrinsic defects, Ovacancies are shallow donors and Bi vacancies are shallow acceptors. However, these defects compensate each other and can only lead to moderate n-type and p-type conductivities at Bi-rich and O-rich growth conditions, respectively. To obtain BiVO4 with high n-type and p-type conductivities, which are required for forming Ohmic contacts, extrinsic doping using foreign impurities is necessary. Our results reveal that Sr, Ca, Na, and K atoms on Bi sites are very shallow acceptors and have rather low formation energies. The calculated Fermi-level pinning positions predict that doping of these impurities under oxygen-rich growth conditions should result in outstanding p-type conductivity. Substitutional Mo and W atoms on V sites are very shallow donors and have very low formation energies. Fermi-level pinning position calculations expect the doping of Mo and W under oxygen-poor growth conditions to produce excellent n-type conductivity. Also discussed is the dependence of formation energies and transition energies of defects on the atomic size and atomic chemical potential trends. C1 [Yin, Wan-Jian; Wei, Su-Huai; Al-Jassim, Mowafak M.; Turner, John; Yan, Yanfa] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yin, WJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yanfa.yan@nrel.gov RI gao, erping/D-4499-2011; Yin, Wanjian/F-6738-2013 FU US Department of Energy [DE-AC36-08GO28308] FX We thank Aron Walsh for helpful discussion. This work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. NR 45 TC 71 Z9 72 U1 15 U2 127 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 4 PY 2011 VL 83 IS 15 AR 155102 DI 10.1103/PhysRevB.83.155102 PG 11 WC Physics, Condensed Matter SC Physics GA 743XZ UT WOS:000289054200004 ER PT J AU Andresen, GB Ashkezari, MD Baquero-Ruiz, M Bertsche, W Bowe, PD Butler, E Cesar, CL Chapman, S Charlton, M Deller, A Eriksson, S Fajans, J Friesen, T Fujiwara, MC Gill, DR Gutierrez, A Hangst, JS Hardy, WN Hayden, ME Humphries, AJ Hydomako, R Jonsell, S Madsen, N Menary, S Nolan, P Olin, A Povilus, A Pusa, P Robicheaux, F Sarid, E Silveira, DM So, C Storey, JW Thompson, RI van der Werf, DP Wurtele, JS Yamazaki, Y AF Andresen, G. B. Ashkezari, M. D. Baquero-Ruiz, M. Bertsche, W. Bowe, P. D. Butler, E. Cesar, C. L. Chapman, S. Charlton, M. Deller, A. Eriksson, S. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Gutierrez, A. Hangst, J. S. Hardy, W. N. Hayden, M. E. Humphries, A. J. Hydomako, R. Jonsell, S. Madsen, N. Menary, S. Nolan, P. Olin, A. Povilus, A. Pusa, P. Robicheaux, F. Sarid, E. Silveira, D. M. So, C. Storey, J. W. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Yamazaki, Y. CA ALPHA Collaboration TI Centrifugal Separation and Equilibration Dynamics in an Electron-Antiproton Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID PURE ION-PLASMA AB Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments. C1 [Andresen, G. B.; Bowe, P. D.; Hangst, J. S.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Ashkezari, M. D.; Hayden, M. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bertsche, W.; Butler, E.; Charlton, M.; Deller, A.; Eriksson, S.; Humphries, A. J.; Madsen, N.; van der Werf, D. P.] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Cesar, C. L.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Friesen, T.; Hydomako, R.; Thompson, R. I.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Fujiwara, M. C.; Gill, D. R.; Olin, A.; Storey, J. W.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gutierrez, A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Jonsell, S.] Stockholm Univ, SE-10691 Stockholm, Sweden. [Menary, S.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Nolan, P.; Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Sarid, E.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Silveira, D. M.; Yamazaki, Y.] RIKEN, Atom Phys Lab, Wako, Saitama 3510198, Japan. [Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Yamazaki, Y.] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan. RP Andresen, GB (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RI Butler, Eoin/G-6413-2011; Bertsche, William/A-3678-2012; Madsen, Niels/G-3548-2013; Jonsell, Svante/J-2251-2016; Fajans, Joel/J-6597-2016; Robicheaux, Francis/F-4343-2014; OI Deller, Adam/0000-0002-3430-1501; Yamazaki, Yasunori/0000-0001-5712-0853; Andresen, Gorm Bruun/0000-0002-4820-020X; Bertsche, William/0000-0002-6565-9282; Madsen, Niels/0000-0002-7372-0784; Jonsell, Svante/0000-0003-4969-1714; Fajans, Joel/0000-0002-4403-6027; van der Werf, Dirk/0000-0001-5436-5214; Robicheaux, Francis/0000-0002-8054-6040; Butler, Eoin/0000-0003-0947-7166 FU CNPq; FINEP/RENAFAE (Brazil); ISF (Israel); MEXT (Japan); FNU (Denmark); VR (Sweden); NSERC; NRC/TRIUMF AIF FQRNT(Canada); DOE; NSF (USA); EPSRC; Royal Society; Leverhulme Trust (UK) FX This work was supported by CNPq, FINEP/RENAFAE (Brazil), ISF (Israel), MEXT (Japan), FNU (Denmark), VR (Sweden), NSERC, NRC/TRIUMF AIF FQRNT(Canada), DOE, NSF (USA), and EPSRC, the Royal Society and the Leverhulme Trust (UK). We thank D. H. E. Dubin for his helpful comments, and S. Kemp and C. O Rasmussen. NR 21 TC 14 Z9 14 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 4 PY 2011 VL 106 IS 14 AR 145001 DI 10.1103/PhysRevLett.106.145001 PG 5 WC Physics, Multidisciplinary SC Physics GA 743YT UT WOS:000289057100006 PM 21561196 ER PT J AU Mamontov, E Baker, GA Luo, HM Dai, S AF Mamontov, Eugene Baker, Gary A. Luo, Huimin Dai, Sheng TI Microscopic Diffusion Dynamics of Silver Complex-Based Room-Temperature Ionic Liquids Probed by Quasielastic Neutron Scattering SO CHEMPHYSCHEM LA English DT Article DE diffusion; ionic liquids; molecular dynamics; neutron scattering; silver ID 1-BUTYL-3-METHYL IMIDAZOLIUM HEXAFLUOROPHOSPHATE; RELAXATION PROCESSES; SEPARATION; MEMBRANES; WATER; TRANSPORT; FUTURE AB Quasielastic neutron scattering is used to probe the microscopic diffusion dynamics of the hydrogen-bearing cations of two different silver complex-derived room-temperature ionic liquids, [Ag(propylamine)(2)(+)][Tf2N-] (Tf = trifluoromethanesulfonyl) and [Ag(1-pentene)(+)][Tf2N-]. In the temperature range from 300 to 340 K, analysis of the scattering momentum trans-fer dependence of the data provides evidence for three distinct diffusion components. The slowest component describes the long-range cationic translational diffusion. A possible link between the microscopic diffusion parameters and the structural features of the cations comprising these two ionic liquids is discussed. C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Baker, Gary A.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM mamontove@ornl.gov RI Mamontov, Eugene/Q-1003-2015; Baker, Gary/H-9444-2016; Dai, Sheng/K-8411-2015 OI Mamontov, Eugene/0000-0002-5684-2675; Baker, Gary/0000-0002-3052-7730; Dai, Sheng/0000-0002-8046-3931 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Oak Ridge National Laboratory [DE-AC05-00OR22725] FX The experiments at Oak Ridge National Laboratory's Spallation Neutron Source were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work was supported by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. Utilization of the DAVE package for the data analysis is acknowledged. NR 37 TC 21 Z9 21 U1 1 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD APR 4 PY 2011 VL 12 IS 5 BP 944 EP 950 DI 10.1002/cphc.201001017 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 740SR UT WOS:000288815200013 PM 21384486 ER PT J AU Mrutu, A Dickie, DA Goldberg, KI Kemp, RA AF Mrutu, Agnes Dickie, Diane A. Goldberg, Karen I. Kemp, Richard A. TI A Unique Three-Dimensional Coordination Cluster Based on a Silver Carbene Complex SO INORGANIC CHEMISTRY LA English DT Article ID N-HETEROCYCLIC CARBENES; CATALYTIC-ACTIVITY; PINCER COMPLEXES; LIGANDS; NICKEL; BOND AB In an attempt to perform a simple anion-exchange reaction on a pincer-carbene-ligated nickel complex using AgNO(3), we instead obtained an unexpected three-dimensional (3D) Ag(7) cluster containing a [Ag(6)] core in a twisted-bowtie geometry. The reverse-transmetalation reaction by which the carbene is transferred from nickel to silver is virtually unprecedented. The CNC pincer-carbene ligands exhibit unusual bridging modes of ligand bonding for all three donor atoms. Another unique feature is that the final structure exhibits a 3D structure brought about by the connection of two-dimensional layers of the [Ag(6)] core via a seventh Ag ion. C1 [Mrutu, Agnes; Dickie, Diane A.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Goldberg, Karen I.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87131 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU DOE-BES [DE-FG02-06ER15765]; National Science Foundation [CHE-0443580]; NSERC FX We thank DOE-BES (Grant DE-FG02-06ER15765 to RA.K. and K.I.G.), the National Science Foundation (Grant CHE-0443580 for purchase of the X-ray instrument), and the NSERC (Post-Doctoral Fellowship to DAD.) for funding this work Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. We also thank Dr. Lev Zakharov for discussions concerning disorder in the X-ray structure. NR 26 TC 15 Z9 15 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2011 VL 50 IS 7 BP 2729 EP 2731 DI 10.1021/ic200029c PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 739PO UT WOS:000288730400009 PM 21366253 ER PT J AU Broderick, EM Thuy-Boun, PS Guo, N Vogel, CS Sutter, J Miller, JT Meyer, K Diaconescu, PL AF Broderick, Erin M. Thuy-Boun, Peter S. Guo, Neng Vogel, Carola S. Sutter, Joerg Miller, Jeffrey T. Meyer, Karsten Diaconescu, Paula L. TI Synthesis and Characterization of Cerium and Yttrium Alkoxide Complexes Supported by Ferrocene-Based Chelating Ligands SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; X-RAY CRYSTAL; COORDINATION CHEMISTRY; NICKEL(III) COMPLEXES; RUTHENIUM COMPLEXES; MOLECULAR-STRUCTURE; STAUDINGER REACTION; OXIDATION; CATALYSTS; POLYMERIZATION AB Two series of Schiff base metal complexes were investigated, where each series was supported by an ancillary ligand incorporating a ferrocene backbone and different N=X functionalities. One ligand is based on an imine, while the other is based on an iminophosphorane group. Cerium(IV), cerium(III), and yttrium(III) alkoxide complexes supported by the two ligands were synthesized. All metal complexes were characterized by cyclic voltammetry. Additionally, NMR, Mossbauer, X-ray absorption near-edge structure (XANES), and absorption spectroscopies were used. The experimental data indicate that iron remains in the +2 oxidation state and that cerium(IV) does not engage in a redox behavior with the ancillary ligand. C1 [Broderick, Erin M.; Thuy-Boun, Peter S.; Diaconescu, Paula L.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Guo, Neng; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Vogel, Carola S.; Sutter, Joerg; Meyer, Karsten] Univ Erlangen Nurnberg, Dept Chem & Pharm, D-91058 Erlangen, Germany. RP Diaconescu, PL (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM pld@chem.ucla.edu RI BM, MRCAT/G-7576-2011; Meyer, Karsten/G-2570-2012; Guo, Neng/A-3223-2013 OI Meyer, Karsten/0000-0002-7844-2998; FU UCLA; Department of Energy [ER15984]; Sloan Foundation; University of Erlangen-Nuremburg; DFG; Bavarian California Technology Center (BaCaTec); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MRCAT member institutions FX This work was supported by the UCLA, DOE (Grant ER15984), Sloan Foundation, the University of Erlangen-Nuremburg, DFG, and the Bavarian California Technology Center (BaCaTec). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No, DE-AC02-06CH11357. MRCAT (Sector 10) operations are supported by the Department of Energy and the MRCAT member institutions. NR 61 TC 48 Z9 48 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2011 VL 50 IS 7 BP 2870 EP 2877 DI 10.1021/ic102076g PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 739PO UT WOS:000288730400026 PM 21366251 ER PT J AU Jana, B Ellern, A Pestoysky, O Sadow, A Bakac, A AF Jana, Barun Ellern, Arkady Pestoysky, Oleg Sadow, Aaron Bakac, Andreja TI Synthesis of Monomeric Fe(II) and Ru(II) Complexes of Tetradentate Phosphines SO INORGANIC CHEMISTRY LA English DT Article ID C-H BONDS; STRUCTURAL-CHARACTERIZATION; BIS(DIPHOSPHINE) COMPLEXES; STEREOCHEMICAL CONTROL; CRYSTAL-STRUCTURES; P-31 NMR; LIGAND; IRON(II); CATALYSTS; GEOMETRY AB rac-Bis[{(diphenylphosphino)ethyl}-phenylphosphino]methane (DPPEPM) reacts with iron(H) and ruthenium(II) halides to generate. complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl(2) (1) in CD(2)Cl(2) features sa tridentate binding mode as established by (31)P{(1)H} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br(2) (2) revealed a pseudo-octahedral, cis-alpha geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD(2)Cl(2) solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru-(K(4)-DPPEPM)Cl(2) (3) is obtained from rac-DPPEPM and either [RuCl(2)(COD)](2) [COD = 1,5-cyclooctadiene] or RuCl(2)-(PPh(3))(4). The structure of 3 in both the solid state and in CD(2)Cl(2) solution features a folded K(4)-DPPEPM. This binding mode was also observed in cis-[Fe(K(4)-DPPEPM)(CH(3)CN)(2)](CF(3)SO(3))(2) (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe(k(4)-DPPEPM)Cl(CO)] (Cl) (5). The same reaction in CH(2)Cl(2) produces a mixture of 5 and [Fe(K(3)-DPPEPM)Cl(2),(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of k(4)-DPPEPM. C1 [Pestoysky, Oleg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Pestoysky, O (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pvp@iastate.edu; sadow@iastate.edu; bakac@ameslab.gov FU Iowa Energy Center; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Ames Laboratory; Iowa State University [DE-AC02-07CH11358] FX The support for this project from the Iowa Energy Center (B,J., A.S., A.B., A.E.) and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (O.P.) and is gratefully acknowledged. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The work was carried out in the facilities of the Ames Laboratory and the Chemistry Department at Iowa State University. NR 46 TC 10 Z9 10 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2011 VL 50 IS 7 BP 3010 EP 3016 DI 10.1021/ic102510c PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 739PO UT WOS:000288730400042 PM 21381671 ER PT J AU Tian, GX Martin, LR Zhang, ZY Rao, LF AF Tian, Guoxin Martin, Leigh R. Zhang, Zhiyong Rao, Linfeng TI Thermodynamic, Spectroscopic, and Computational Studies of Lanthanide Complexation with Diethylenetriaminepentaacetic Acid: Temperature Effect and Coordination Modes SO INORGANIC CHEMISTRY LA English DT Article ID VARIABLE TEMPERATURES; CRYSTAL-STRUCTURES; LUMINESCENCE; CONSTANTS; EXTRACTION; NEODYMIUM(III); TRANSITIONS; HYDROLYSIS; EUROPIUM; LIGANDS AB Stability constants of two DTPA (diethylenetriaminepentaacetic acid) complexes with lanthanides (ML(2-) and MHL(-), where M stands for Nd and Eu and L stands for diethylenetriaminepentaacetate) at 10, 25, 40, 55, and 70 degrees C were determined by potentiometry, absorption spectrophotometry, and luminescence spectroscopy. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic data show that the complexation of Nd(3+) and Eu(3+) with DTPA is weakened at higher temperatures, a 10-fold decrease in the stability constants of ML(2-) and MHL(-) as the temperature is increased from 10 to 70 degrees C. The effect of temperature is consistent with the exothermic enthalpy of complexation directly measured by microcalorimetry. Results by luminescence spectroscopy and density functional theory (DFT) calculations suggest that DTPA is octa-dentate in both the EuL(2-) and EuHL(-) complexes and, for the first time, the coordination mode in the EuHL(-) complex was clarified by integration of the experimental data and DFT calculations. In the EuHL(-) complex, the Eu is coordinated by an octa-dentate H(DTPA) ligand and a water molecule, and the protonation occurs on the oxygen of a carboxylate group. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. [Zhang, Zhiyong] Stanford Univ, Stanford Nanofabricat Facil, Stanford, CA 94305 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM LRao@lbl.gov RI Martin, Leigh/P-3167-2016 OI Martin, Leigh/0000-0001-7241-7110 FU Fuel Cycle Research and Development Program of Office of Nuclear Energy (NE FCRD); Office of Science, Office of Basic Energy Sciences, the U.S. Department of Energy (DOE) at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; DOE [DE-AC07-05ID14517] FX The experimental work and the DFT calculations were supported, respectively, by the Fuel Cycle Research and Development Program of Office of Nuclear Energy (NE FCR&D) and the Single Investigator and Small Group (SISGR) Program of the Office of Science, Office of Basic Energy Sciences, the U.S. Department of Energy (DOE), under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Z.Z. of Stanford University thanks the National Nanotechnology Infrastructure Network (NNIN) for providing computational time for this work. L.R.M. acknowledges the support from DOE NE FCR&D Thermodynamics and Kinetics program, under DOE Idaho Operations Office Contract DE-AC07-05ID14517 while preparing this manuscript. The authors thank the anonymous reviewers whose comments have helped to improve this manuscript. NR 33 TC 20 Z9 20 U1 5 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2011 VL 50 IS 7 BP 3087 EP 3096 DI 10.1021/ic200025s PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 739PO UT WOS:000288730400051 PM 21375350 ER PT J AU Kassianov, E Barnard, J Berg, LK Long, CN Flynn, C AF Kassianov, E. Barnard, J. Berg, L. K. Long, C. N. Flynn, C. TI Shortwave spectral radiative forcing of cumulus clouds from surface observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SGP SITE; ALBEDO; MODELS AB The spectral changes of the shortwave total, direct and diffuse cloud radiative forcing (CRF) at surface are examined for the first time using spectrally resolved all-sky flux observations and clear-sky fluxes. The latter are computed applying a physically based approach, which accounts for the spectral changes of aerosol optical properties and surface albedo. Application of this approach to 13 summertime days with single-layer continental cumuli demonstrates: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and also can be applied for estimation of the shortwave broadband CRF. Citation: Kassianov, E., J. Barnard, L. K. Berg, C. N. Long, and C. Flynn (2011), Shortwave spectral radiative forcing of cumulus clouds from surface observations, Geophys. Res. Lett., 38, L07801, doi: 10.1029/2010GL046282. C1 [Kassianov, E.; Barnard, J.; Berg, L. K.; Long, C. N.; Flynn, C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM evgueni.kassianov@pnl.gov RI Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 FU Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE); DOE [DE-AC06-76RLO 1830] FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM), and Atmospheric System Research (ASR) Programs. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-AC06-76RLO 1830. We thank the anonymous reviewers for thoughtful comments. NR 16 TC 10 Z9 10 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 2 PY 2011 VL 38 AR L07801 DI 10.1029/2010GL046282 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 744IZ UT WOS:000289089400001 ER PT J AU Quenee, LE Ciletti, N Berube, B Krausz, T Elli, D Hermanas, T Schneewind, O AF Quenee, Lauriane E. Ciletti, Nancy Berube, Bryan Krausz, Thomas Elli, Derek Hermanas, Timothy Schneewind, Olaf TI Plague in Guinea Pigs and Its Prevention by Subunit Vaccines SO AMERICAN JOURNAL OF PATHOLOGY LA English DT Article ID YERSINIA-PESTIS; PNEUMONIC PLAGUE; BUBONIC PLAGUE; PASTEURELLA-PESTIS; CYNOMOLGUS MACAQUES; GENOME SEQUENCE; V-ANTIGEN; IMMUNITY; VIRULENCE; PROTECTION AB Human pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system. On intranasal instillation of a fully virulent strain, Yersinia pestis CO92, guinea pigs developed lethal lung infections with hemorrhagic necrosis, massive bacterial replication in the respiratory system, and blood-borne dissemination to other organ systems. Expression of the Y. pestis F1 capsule was not required for the development of pulmonary infection; however, the capsule seemed to be important for the establishment of bubonic plague. The mean lethal dose (MLD) for pneumonic plague in guinea pigs was estimated to be 1000 colony-forming units. Immunization of guinea pigs with the recombinant forms of LcrV, a protein that resides at the tip of Yersinia type III secretion needles, or F1 capsule generated robust humoral immune responses. Whereas LcrV immunization resulted in partial protection against pneumonic plague challenge with 250 MW Y pestis CO92, immunization with recombinant F1 did not. rV10, a vaccine variant lacking LcrV residues 271-300, elicited protection against pneumonic plague, which seemed to be based on conformational antibodies directed against LcrV. (Am J Pathol 2011, 178:1689-1700; DOI: 10.1016/j.ajpath.2010.12.028) C1 [Quenee, Lauriane E.; Ciletti, Nancy; Berube, Bryan; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Krausz, Thomas] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Quenee, Lauriane E.; Ciletti, Nancy; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf] Argonne Natl Lab, Howard Taylor Ricketts Lab, Argonne, IL 60439 USA. RP Schneewind, O (reprint author), Univ Chicago, Dept Microbiol, 920 E 58th St, Chicago, IL 60637 USA. EM oschnee@bsd.uchicago.edu FU NIH/NIAID [U01-AI070559]; Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium (NIH) [1-U54-AI-057153] FX Supported in part by the NIH/NIAID Challenge Award U01-AI070559 "LcrV Plague Vaccine with Altered Immune Modulatory Properties" (to O.S.).; The authors acknowledge membership within and support from the Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium (NIH Award 1-U54-AI-057153 to O.S.). NR 50 TC 6 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0002-9440 J9 AM J PATHOL JI Am. J. Pathol. PD APR PY 2011 VL 178 IS 4 BP 1689 EP 1700 DI 10.1016/j.ajpath.2010.12.028 PG 12 WC Pathology SC Pathology GA 865JH UT WOS:000298306700027 PM 21406168 ER PT J AU Fragaszy, RJ Santamarina, JC Amekudzi, A Assimaki, D Bachus, R Burns, SE Cha, M Cho, GC Cortes, DD Dai, S Espinoza, DN Garrow, L Huang, H Jang, J Jung, JW Kim, S Kurtis, K Lee, C Pasten, C Phadnis, H Rix, G Shin, HS Torres, MC Tsouris, C AF Fragaszy, R. J. Santamarina, J. C. Amekudzi, A. Assimaki, D. Bachus, R. Burns, S. E. Cha, M. Cho, G. C. Cortes, D. D. Dai, S. Espinoza, D. N. Garrow, L. Huang, H. Jang, J. Jung, J. W. Kim, S. Kurtis, K. Lee, C. Pasten, C. Phadnis, H. Rix, G. Shin, H. S. Torres, M. C. Tsouris, C. TI Sustainable Development and Energy Geotechnology - Potential Roles for Geotechnical Engineering SO KSCE JOURNAL OF CIVIL ENGINEERING LA English DT Article DE sustainability; energy; CO2 sequestration; education; climate change; research; geothermal; underground storage; hydrate ID CARBON-DIOXIDE; PRESSURE SOLUTION; CO2; STORAGE; ROCK; SEQUESTRATION; CONTRACTION; RESERVOIR; FRACTURE; FAILURE AB The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization. C1 [Fragaszy, R. J.] Natl Sci Fdn, Civil Mech & Mfg Innovat Div, Arlington, VA 22230 USA. [Santamarina, J. C.; Amekudzi, A.; Assimaki, D.; Burns, S. E.; Cha, M.; Cortes, D. D.; Dai, S.; Espinoza, D. N.; Garrow, L.; Huang, H.; Jang, J.; Jung, J. W.; Kim, S.; Kurtis, K.; Lee, C.; Pasten, C.; Phadnis, H.; Rix, G.] Georgia Inst Technol, Dept Civil & Environm Engn, Atlanta, GA 30332 USA. [Cho, G. C.] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea. [Shin, H. S.] Univ Ulsan, Dept Civil & Environm Engn, Ulsan 680749, South Korea. [Torres, M. C.] Univ Nacl Colombia, Dept Civil Engn, Bogota, Colombia. [Tsouris, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fragaszy, RJ (reprint author), Natl Sci Fdn, Civil Mech & Mfg Innovat Div, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM rfragasz@nsf.gov RI Cho, Gye-Chun/C-1600-2011; Rix, Glenn/F-2779-2011; Cortes, Douglas/A-7879-2013; Pasten, Cesar/H-3751-2013; Burns, Susan/H-7947-2012; Dai, Sheng/A-1691-2015; Tsouris, Costas/C-2544-2016; Espinoza, D. Nicolas/E-3764-2016; Asimaki, Domniki/A-2274-2013; OI Kurtis, Kimberly/0000-0002-1252-7323; Pasten, Cesar/0000-0002-6683-0619; Tsouris, Costas/0000-0002-0522-1027; Espinoza, D. Nicolas/0000-0002-3418-0180; Asimaki, Domniki/0000-0002-3008-8088; Assimaki, Dominic/0000-0002-9200-3940; Dai, Sheng/0000-0003-0221-3993; Jang, Jaewon/0000-0002-9749-4072 FU Goizueta Foundation FX This manuscript evolved as a result of a weekly workshop conducted at Georgia Institute of Technology during Fragaszy's tenure as a Goizueta Scholar, while working for the National Science Foundation. Additional funding was provided by the Goizueta Foundation. Any opinion, finding, and conclusions or recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the views of the funding agencies or the United States Government. NR 63 TC 13 Z9 13 U1 1 U2 31 PU KOREAN SOCIETY OF CIVIL ENGINEERS-KSCE PI SEOUL PA 50-7 OGUM-DONG, SONGPA-KU, SEOUL, 138-857, SOUTH KOREA SN 1226-7988 J9 KSCE J CIV ENG JI KSCE J. Civ. Eng. PD APR PY 2011 VL 15 IS 4 BP 611 EP 621 DI 10.1007/s12205-011-0102-7 PG 11 WC Engineering, Civil SC Engineering GA 756VG UT WOS:000290042200002 ER PT J AU Diffenbaugh, NS White, MA Jones, GV Ashfaq, M AF Diffenbaugh, Noah S. White, Michael A. Jones, Gregory V. Ashfaq, Moetasim TI Climate adaptation wedges: a case study of premium wine in the western United States SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE climate change; adaptation; vulnerability; RegCM3; viticulture ID COASTAL CALIFORNIA; CHANGE PROJECTIONS; CHANGE COMMITMENT; CARBON-DIOXIDE; FUTURE; QUALITY; CCSM3; VULNERABILITY; 21ST-CENTURY; VARIABILITY AB Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000-39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030-9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation within and across a broad range of natural and human systems. C1 [Diffenbaugh, Noah S.; Ashfaq, Moetasim] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Diffenbaugh, Noah S.; Ashfaq, Moetasim] Stanford Univ, Woods Inst Environm, Stanford, CA USA. [Diffenbaugh, Noah S.; Ashfaq, Moetasim] Purdue Univ, Purdue Climate Change Res Ctr, W Lafayette, IN 47907 USA. [Diffenbaugh, Noah S.; Ashfaq, Moetasim] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [White, Michael A.] Utah State Univ, Logan, UT 84322 USA. [Jones, Gregory V.] So Oregon Univ, Dept Environm Studies, Ashland, OR USA. [Ashfaq, Moetasim] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Diffenbaugh, NS (reprint author), Stanford Univ, Dept Environm Earth Syst Sci, 473 Via Ortega, Stanford, CA 94305 USA. EM diffenbaugh@stanford.edu RI Ashfaq, Moetasim/A-4183-2009; Diffenbaugh, Noah/I-5920-2014; OI Diffenbaugh, Noah/0000-0002-8856-4964; White, Michael/0000-0002-0238-8913 FU NSF [0955283] FX We thank two anonymous reviewers for insightful and constructive comments. We thank the Rosen Center for Advanced Computing at Purdue for support of computing resources. The analyses presented here were supported by NSF CAREER award 0955283 (Climate and Large-Scale Dynamics, and Geography and Spatial Sciences). NR 64 TC 12 Z9 12 U1 4 U2 45 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2011 VL 6 IS 2 AR 024024 DI 10.1088/1748-9326/6/2/024024 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 826BQ UT WOS:000295326800024 ER PT J AU Marino, GP Kaiser, DP Gu, LH Ricciuto, DM AF Marino, Garrett P. Kaiser, Dale P. Gu, Lianhong Ricciuto, Daniel M. TI Reconstruction of false spring occurrences over the southeastern United States, 1901-2007: an increasing risk of spring freeze damage? SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE false spring; start of the growing season (SGS); phenology; minimum temperature; deciduous forest; growing degree days (GDD); last hard freeze; Global Historical Climatology Network (GHCN) ID GROWING-SEASON; EASTERN US; CLIMATE; TEMPERATURES; PHENOLOGY; NORTHERN; ONSET AB Near-record warmth over much of the United States during March 2007 promoted early growth of crops and vegetation. A widespread arctic air outbreak followed in early April, resulting in extensive agricultural losses over much of the south-central and southeastern US. This 'false spring' event also resulted in widespread damage to newly grown tissues of native deciduous forest species, shown by previous researchers to have had measurable effects on the terrestrial carbon cycle. The current study reconstructed the historical occurrence of false springs over most of the southeastern quarter of the conterminous US (32-39 degrees N; 75-98 degrees W) from 1901 to 2007 using daily maximum and minimum temperature records from 176 stations in the Global Historical Climatology Network database, and enhanced vegetation index (EVI) data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. A false spring index was derived that examined the timing of the start of the growing season (SGS), or leaf emergence, relative to the timing of a potentially damaging last hard freeze (minimum temperature <= -2.2 degrees C). SGS was modeled for the domain by combining EVI data with ground-based temperature 'degree day' calculations reflecting the rate of springtime warming. No significant area-wide, long-term SGS trend was found; however, over much of a contiguous region stretching from Mississippi eastward to the Carolinas, the timing of the last hard freeze was found to occur significantly later, this change occurring along with increased frequency of false springs. Earlier last hard freeze dates and decreased frequency of false springs were found over much of the northwestern part of the study region, including Arkansas and southern Missouri. C1 [Marino, Garrett P.; Kaiser, Dale P.; Gu, Lianhong; Ricciuto, Daniel M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Marino, Garrett P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Kaiser, DP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM kaiserdp@ornl.gov RI Ricciuto, Daniel/I-3659-2016; Gu, Lianhong/H-8241-2014 OI Ricciuto, Daniel/0000-0002-3668-3021; Gu, Lianhong/0000-0001-5756-8738 FU US Department of Energy [DE-AC05-00OR22725] FX This research was supported by the US Department of Energy's Climate and Environmental Sciences Division, in the Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. The majority of this work was completed during G Marino's summer appointments at ORNL's Carbon Dioxide Information Analysis Center (CDIAC), which were facilitated by DOE's Science Undergraduate Laboratory Internship (SULI) program and ORNL's Higher Education Research Experiences (HERE) program. The authors thank Imke Durre of NOAA's National Climatic Data Center and David Miskus of the NOAA/USDA Joint Agricultural Weather Facility for valuable discussions. We are also grateful for the suggestions of the two anonymous reviewers, which have added clarity to the article's conclusions. NR 31 TC 15 Z9 15 U1 4 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2011 VL 6 IS 2 AR 024015 DI 10.1088/1748-9326/6/2/024015 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 826BQ UT WOS:000295326800015 ER PT J AU Quist, DA Liebrock, LM AF Quist, Daniel A. Liebrock, Lorie M. TI Reversing compiled executables for malware analysis via visualization SO INFORMATION VISUALIZATION LA English DT Article DE reverse engineering; visualization; binary analysis AB Reverse engineering-compiled executables is a task with a steep learning curve. It is complicated by the task of translating assembly into a series of abstractions that represent the overall flow of a program. Most of the steps involve finding interesting areas of an executable and determining their general functionality. This article presents a method using dynamic analysis of program execution to visually represent the general flow of a program. We use the Ether hypervisor framework to covertly monitor a program. The data are processed and presented for the reverse engineer. The VERA (Visualization of Executables for Reversing and Analysis) system specifically accelerates the location of the original entry point and understanding of overall executable functionality. Using this method, the amount of time needed to extract key features of an executable is greatly reduced, improving productivity. Two malware samples are used to demonstrate the advantages of using the VERA system to reverse engineer malware. Further, these examples exemplify a reversing process enhanced through effective use of dynamic analysis tools. Preliminary user study indicates that the tool is useful for both new and experienced users. Information Visualization (2011) 10, 117-126. doi:10.1057/ivs.2010.11; published online 13 January 2011 C1 [Quist, Daniel A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liebrock, Lorie M.] New Mexico Inst Min & Technol, Dept Comp Sci, Socorro, NM 87801 USA. RP Quist, DA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dquist@nmt.edu; liebrock@cs.nmt.edu FU National Science Foundation (NSF) [DUE-0313885] FX This work was partially funded by National Science Foundation (NSF) Scholarship for Service grant DUE-0313885. In addition, the authors thank Alan Erickson, Cort Dougan, Paul Royal, Artem Dinaburg and Moses Schwartz for their invaluable help. NR 24 TC 1 Z9 1 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 EI 1473-8724 J9 INFORM VISUAL JI Inf. Vis. PD APR PY 2011 VL 10 IS 2 BP 117 EP 126 DI 10.1057/ivs.2010.11 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 824VE UT WOS:000295229500003 ER PT J AU Goodall, JR AF Goodall, John R. TI An evaluation of visual and textual network analysis tools SO INFORMATION VISUALIZATION LA English DT Article DE user testing; comparative evaluation; security visualization; user-centered design ID INFORMATION VISUALIZATIONS; INTRUSION AB User testing is an integral component of user-centered design, but has only rarely been applied to visualization for cyber security applications. This article presents the results of a comparative evaluation between a visualization-based application and a more traditional, table-based application for analyzing computer network packet captures. We conducted this evaluation as part of the user-centered design process. Participants performed both structured, well-defined tasks and exploratory, open-ended tasks with both tools. We measured accuracy and efficiency for the well-defined tasks, number of insights was measured for exploratory tasks and user perceptions were recorded for each tool. The results of this evaluation demonstrated that users performed significantly more accurately in the well-defined tasks, discovered a higher number of insights and demonstrated a clear preference for the visualization tool. The study design presented may be useful for future researchers performing user testing on visualization for cyber security applications. Information Visualization (2011) 10, 145-157. doi:10.1057/ivs.2011.2 C1 Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Goodall, JR (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,Bldg 5300,MS 6418, Oak Ridge, TN 37830 USA. EM jgoodall@ornl.gov NR 22 TC 1 Z9 1 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD APR PY 2011 VL 10 IS 2 BP 145 EP 157 DI 10.1057/ivs.2011.2 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 824VE UT WOS:000295229500006 ER PT J AU Fu, H Zou, M Guo, MS Zheng, Q Zu, XT AF Fu, H. Zou, M. Guo, M. S. Zheng, Q. Zu, X. T. TI Structural, magnetic, and magnetothermal properties of R2Co2Al (R = Tb, and Dy) compounds SO MATERIALS CHARACTERIZATION LA English DT Article DE Rare earth compounds; Coercivity; Remanence; Magnetic entropy changes ID GD; HO AB The Tb2Co2Al and Dy2Co2Al alloys prepared in this study consist of 2:2:1 and 1:1:1 phases, which were identified by using the powder x-ray diffraction and scanning electron microscopy techniques. Considerable thermomagnetic irreversibility between the zero field cooled and field cooling magnetization were observed in the two alloys because of the energy barriers needed to overcome the alignment of domains. Remarkable intrinsic coercivity and remanence at temperatures close to absolute zero were also observed. The maximum magnetic entropy changes of the Tb2Co2Al and Dy2Co2Al alloys are 6.4 J/kg K and 10.6 J/kg K, respectively, with a field change from 0 to 50 kOe. The low magnetic entropy changes result from the low magnetization of the alloys even with a 50 kOe of applied field. C1 [Fu, H.; Guo, M. S.; Zheng, Q.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Fu, H.; Zou, M.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Fu, H (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM fuhao@uestc.edu.cn FU National Natural Science Foundation of China [50901013]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-ACO2-07CH11358] FX This work was supported by the National Natural Science Foundation of China (No. 50901013). Work at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-ACO2-07CH11358 with Iowa State University of Science and Technology. We acknowledge Ors. K. A. Gshneidner, Jr. and V. K. Pecharsky for their support in sample preparation and characterization. NR 8 TC 0 Z9 0 U1 1 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD APR PY 2011 VL 62 IS 4 BP 451 EP 455 DI 10.1016/j.matchar.2011.02.009 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 762VS UT WOS:000290510200014 ER PT J AU Abat, E Abdallah, JM Addy, TN Adragna, P Aharrouche, M Ahmad, A Akesson, TPA Aleksa, M Alexa, C Anderson, K Andreazza, A Anghinolfi, F Antonaki, A Arabidze, G Arik, E Atkinson, T Baines, J Baker, OK Banfi, D Baron, S Barr, AJ Beccherle, R Beck, HP Belhorma, B Bell, PJ Benchekroun, D Benjamin, DP Benslama, K Kuutmann, EB Bernabeu, J Bertelsen, H Binet, S Biscarat, C Boldea, V Bondarenko, VG Boonekamp, M Bosman, M Bourdarios, C Broklova, Z Chromek, DB Bychkov, V Callahan, J Calvet, D Canneri, M Garrido, MC Caprini, M Sas, LC Carli, T Carminati, L Carvalho, J Cascella, M Castillo, MV Catinaccio, A Cauz, D Cavalli, D Sforza, MC Cavasinni, V Cetin, SA Chen, H Cherkaoui, R Chevalier, L Chevallier, F Chouridou, S Ciobotaru, M Citterio, M Clark, A Cleland, B Cobal, M Cogneras, E Muino, PC Consonni, M Constantinescu, S Cornelissen, T Correard, S Radu, AC Costa, G Costa, MJ Costanzo, D Cuneo, S Cwetanski, P Da Silva, D Dam, M Dameri, M Danielsson, HO Dannheim, D Darbo, G Davidek, T De, K Defay, PO Dekhissi, B Del Peso, J Del Prete, T Delmastro, M Derue, F Di Ciaccio, L Di Girolamo, B Dita, S Dittus, F Djama, F Djobava, T Dobos, D Dobson, M Dolgoshein, BA Dotti, A Drake, G Drasal, Z Dressnandt, N Driouchi, C Drohan, J Ebenstein, WL Eerola, P Efthymiopoulos, I Egorov, K Eifert, TF Einsweiler, K El Kacimi, M Elsing, M Emelyanov, D Escobar, C Etienvre, AI Fabich, A Facius, K Fakhr-Edine, AI Fanti, M Farbin, A Farthouat, P Fassouliotis, D Fayard, L Febbraro, R Fedin, OL Fenyuk, A Fergusson, D Ferrari, P Ferrari, R Ferreira, BC Ferrer, A Ferrere, D Filippini, G Flick, T Fournier, D Francavilla, P Francis, D Froeschl, R Froidevaux, D Fullana, E Gadomski, S Gagliardi, G Gagnon, P Gallas, M Gallop, BJ Gameiro, S Gan, KK Garcia, R Garcia, C Gavrilenko, IL Gemme, C Gerlach, P Ghodbane, N Giakoumopoulou, V Giangiobbe, V Giokaris, N Glonti, G Goettfert, T Golling, T Gollub, N Gomes, A Gomez, MD Gonzalez-Sevilla, S Goodrick, MJ Gorfine, G Gorini, B Goujdami, D Grahn, KJ Grenier, P Grigalashvili, N Grishkevich, Y Grosse-Knetter, J Gruwe, M Guicheney, C Gupta, A Haeberli, C Haertel, R Hajduk, Z Hakobyan, H Hance, M Hansen, JD Hansen, PH Hara, K Harvey, A Hawkings, RJ Heinemann, FEW Correia, AH Henss, T Hervas, L Higon, E Hill, JC Hoffman, J Hostachy, JY Hruska, I Hubaut, F Huegging, F Hulsbergen, W Hurwitz, M Iconomidou-Fayard, L Jansen, E Jen-La Plante, I Johansson, PDC Jon-And, K Joos, M Jorgensen, S Joseph, J Kaczmarska, A Kado, M Karyukhin, A Kataoka, M Kayumov, F Kazarov, A Keener, PT Kekelidze, GD Kerschen, N Kersten, S Khomich, A Khoriauli, G Khramov, E Khristachev, A Khubua, J Kittelmann, TH Klingenberg, R Klinkby, EB Kodys, P Koffas, T Kolos, S Konovalov, SP Konstantinidis, N Kopikov, S Korolkov, I Kostyukhin, V Kovalenko, S Kowalski, TZ Kruger, K Kramarenko, V Kudin, LG Kulchitsky, Y Lacasta, C Lafaye, R Laforge, B Lampl, W Lanni, F Laplace, S Lari, T Le Bihan, AC Lechowski, M Ledroit-Guillon, F Lehmann, G Leitner, R Lelas, D Lester, CG Liang, Z Lichard, P Liebig, W Lipniacka, A Lokajicek, M Louchard, L Loureiro, KF Lucotte, A Luehring, F Lund-Jensen, B Lundberg, B Ma, H Mackeprang, R Maio, A Maleev, VP Malek, F Mandelli, L Maneira, J Mangin-Brinet, M Manousakis, A Mapelli, L Marques, C Garcia, SMI Martin, F Mathes, M Mazzanti, M McFarlane, KW McPherson, R Mchedlidze, G Mehlhase, S Meirosu, C Meng, Z Meroni, C Mialkovski, V Mikulec, B Milstead, D Minashvili, I Mindur, B Mitsou, VA Moed, S Monnier, E Moorhead, G Morettini, P Morozov, SV Mosidze, M Mouraviev, SV Moyse, EWJ Munar, A Myagkov, A Nadtochi, AV Nakamura, K Nechaeva, P Negri, A Nemecek, S Nessi, M Nesterov, SY Newcomer, FM Nikitine, I Nikolaev, K Nikolic-Audit, I Ogren, H Oh, SH Oleshko, SB Olszowska, J Onofre, A Aranda, CP Paganis, S Pallin, D Pantea, D Paolone, V Parodi, F Parsons, J Parzhitskiy, S Pasqualucci, E Passmored, SM Pater, J Patrichev, S Peez, M Reale, VP Perini, L Peshekhonov, VD Petersen, J Petersen, TC Petti, R Phillips, PW Pilcher, J Pina, J Pinto, B Podlyski, F Poggioli, L Poppleton, A Poveda, J Pralavorio, P Pribyl, L Price, MJ Prieur, D Puigdengoles, C Puzo, P Ragusa, F Rajagopalan, S Reeves, K Reisinger, I Rembser, C de Renstrom, PAB Reznicek, P Ridel, M Risso, P Riu, I Robinson, D Roda, C Roe, S Rohne, O Romaniouk, A Rousseau, D Rozanov, A Ruiz, A Rusakovich, N Rust, D Ryabov, YF Ryjov, V Salto, O Salvachua, B Salzburger, A Sandaker, H Rios, CS Santi, L Santoni, C Saraiva, JG Sarri, F Sauvage, G Says, LP Schaefer, M Schegelsky, VA Schiavi, C Schieck, J Schlager, G Schlereth, J Schmitt, C Schultes, J Schwemling, P Schwindling, J Seixas, JM Seliverstov, DM Serin, L Sfyrla, A Shalanda, N Shaw, C Shin, T Shmeleva, A Silva, J Simion, S Simonyan, M Sloper, JE Smirnov, SY Smirnova, L Solans, C Solodkov, A Solovianov, O Soloviev, I Sosnovtsev, VV Spano, F Speckmayer, P Stancu, S Stanek, R Starchenko, E Straessner, A Suchkov, SI Suk, M Szczygiel, R Tarrade, F Tartarelli, F Tas, P Tayalati, Y Tegenfeldt, F Teuscher, R Thioye, M Tikhomirov, VO Timmermans, CJWP Tisserant, S Toczek, B Tremblet, L Troncon, C Tsiareshka, P Tyndel, M Unel, MK Unal, G Unel, G Usai, G Van Berg, R Valero, A Valkar, S Valls, JA Vandelli, W Vannucci, F Vartapetian, A Vassilakopoulos, VI Vasilyeva, L Vazeille, F Vernocchi, F Vetter-Cole, Y Vichou, I Vinogradov, V Virzi, J Vivarelli, I de Vivie, JB Volpi, M Anh, TV Wang, C Warren, M Weber, J Weber, M Weidberg, AR Weingarten, J Wells, PS Werner, P Wheeler, S Wiessmann, M Wilkens, H Williams, HH Wingerter-Seez, I Yasu, Y Zaitsev, A Zenin, A Zenis, T Zenonos, Z Zhang, H Zhelezkobk, A Zhou, N AF Abat, E. Abdallah, J. M. Addy, T. N. Adragna, P. Aharrouche, M. Ahmad, A. Akesson, T. P. A. Aleksa, M. Alexa, C. Anderson, K. Andreazza, A. Anghinolfi, F. Antonaki, A. Arabidze, G. Arik, E. Atkinson, T. Baines, J. Baker, O. K. Banfi, D. Baron, S. Barr, A. J. Beccherle, R. Beck, H. P. Belhorma, B. Bell, P. J. Benchekroun, D. Benjamin, D. P. Benslama, K. Kuutmann, E. Bergeaas Bernabeu, J. Bertelsen, H. Binet, S. Biscarat, C. Boldea, V. Bondarenko, V. G. Boonekamp, M. Bosman, M. Bourdarios, C. Broklova, Z. Chromek, D. Burckhart Bychkov, V. Callahan, J. Calvet, D. Canneri, M. Garrido, M. Capeans Caprini, M. Sas, L. Cardiel Carli, T. Carminati, L. Carvalho, J. Cascella, M. Castillo, M. V. Catinaccio, A. Cauz, D. Cavalli, D. Sforza, M. Cavalli Cavasinni, V. Cetin, S. A. Chen, H. Cherkaoui, R. Chevalier, L. Chevallier, F. Chouridou, S. Ciobotaru, M. Citterio, M. Clark, A. Cleland, B. Cobal, M. Cogneras, E. Muino, P. Conde Consonni, M. Constantinescu, S. Cornelissen, T. Correard, S. Radu, A. Corso Costa, G. Costa, M. J. Costanzo, D. Cuneo, S. Cwetanski, P. Da Silva, D. Dam, M. Dameri, M. Danielsson, H. O. Dannheim, D. Darbo, G. Davidek, T. De, K. Defay, P. O. Dekhissi, B. Del Peso, J. Del Prete, T. Delmastro, M. Derue, F. Di Ciaccio, L. Di Girolamo, B. Dita, S. Dittus, F. Djama, F. Djobava, T. Dobos, D. Dobson, M. Dolgoshein, B. A. Dotti, A. Drake, G. Drasal, Z. Dressnandt, N. Driouchi, C. Drohan, J. Ebenstein, W. L. Eerola, P. Efthymiopoulos, I. Egorov, K. Eifert, T. F. Einsweiler, K. El Kacimi, M. Elsing, M. Emelyanov, D. Escobar, C. Etienvre, A. I. Fabich, A. Facius, K. Fakhr-Edine, A. I. Fanti, M. Farbin, A. Farthouat, P. Fassouliotis, D. Fayard, L. Febbraro, R. Fedin, O. L. Fenyuk, A. Fergusson, D. Ferrari, P. Ferrari, R. Ferreira, B. C. Ferrer, A. Ferrere, D. Filippini, G. Flick, T. Fournier, D. Francavilla, P. Francis, D. Froeschl, R. Froidevaux, D. Fullana, E. Gadomski, S. Gagliardi, G. Gagnon, P. Gallas, M. Gallop, B. J. Gameiro, S. Gan, K. K. Garcia, R. Garcia, C. Gavrilenko, I. L. Gemme, C. Gerlach, P. Ghodbane, N. Giakoumopoulou, V. Giangiobbe, V. Giokaris, N. Glonti, G. Goettfert, T. Golling, T. Gollub, N. Gomes, A. Gomez, M. D. Gonzalez-Sevilla, S. Goodrick, M. J. Gorfine, G. Gorini, B. Goujdami, D. Grahn, K-J. Grenier, P. Grigalashvili, N. Grishkevich, Y. Grosse-Knetter, J. Gruwe, M. Guicheney, C. Gupta, A. Haeberli, C. Haertel, R. Hajduk, Z. Hakobyan, H. Hance, M. Hansen, J. D. Hansen, P. H. Hara, K. Harvey, A., Jr. Hawkings, R. J. Heinemann, F. E. W. Correia, A. Henriques Henss, T. Hervas, L. Higon, E. Hill, J. C. Hoffman, J. Hostachy, J. Y. Hruska, I. Hubaut, F. Huegging, F. Hulsbergen, W. Hurwitz, M. Iconomidou-Fayard, L. Jansen, E. Jen-La Plante, I. Johansson, P. D. C. Jon-And, K. Joos, M. Jorgensen, S. Joseph, J. Kaczmarska, A. Kado, M. Karyukhin, A. Kataoka, M. Kayumov, F. Kazarov, A. Keener, P. T. Kekelidze, G. D. Kerschen, N. Kersten, S. Khomich, A. Khoriauli, G. Khramov, E. Khristachev, A. Khubua, J. Kittelmann, T. H. Klingenberg, R. Klinkby, E. B. Kodys, P. Koffas, T. Kolos, S. Konovalov, S. P. Konstantinidis, N. Kopikov, S. Korolkov, I. Kostyukhin, V. Kovalenko, S. Kowalski, T. Z. Krueger, K. Kramarenko, V. Kudin, L. G. Kulchitsky, Y. Lacasta, C. Lafaye, R. Laforge, B. Lampl, W. Lanni, F. Laplace, S. Lari, T. Le Bihan, A-C. Lechowski, M. Ledroit-Guillon, F. Lehmann, G. Leitner, R. Lelas, D. Lester, C. G. Liang, Z. Lichard, P. Liebig, W. Lipniacka, A. Lokajicek, M. Louchard, L. Loureiro, K. F. Lucotte, A. Luehring, F. Lund-Jensen, B. Lundberg, B. Ma, H. Mackeprang, R. Maio, A. Maleev, V. P. Malek, F. Mandelli, L. Maneira, J. Mangin-Brinet, M. Manousakis, A. Mapelli, L. Marques, C. Marti i Garcia, S. Martin, F. Mathes, M. Mazzanti, M. McFarlane, K. W. McPherson, R. Mchedlidze, G. Mehlhase, S. Meirosu, C. Meng, Z. Meroni, C. Mialkovski, V. Mikulec, B. Milstead, D. Minashvili, I. Mindur, B. Mitsou, V. A. Moed, S. Monnier, E. Moorhead, G. Morettini, P. Morozov, S. V. Mosidze, M. Mouraviev, S. V. Moyse, E. W. J. Munar, A. Myagkov, A. Nadtochi, A. V. Nakamura, K. Nechaeva, P. Negri, A. Nemecek, S. Nessi, M. Nesterov, S. Y. Newcomer, F. M. Nikitine, I. Nikolaev, K. Nikolic-Audit, I. Ogren, H. Oh, S. H. Oleshko, S. B. Olszowska, J. Onofre, A. Aranda, C. Padilla Paganis, S. Pallin, D. Pantea, D. Paolone, V. Parodi, F. Parsons, J. Parzhitskiy, S. Pasqualucci, E. Passmored, S. M. Pater, J. Patrichev, S. Peez, M. Reale, V. Perez Perini, L. Peshekhonov, V. D. Petersen, J. Petersen, T. C. Petti, R. Phillips, P. W. Pilcher, J. Pina, J. Pinto, B. Podlyski, F. Poggioli, L. Poppleton, A. Poveda, J. Pralavorio, P. Pribyl, L. Price, M. J. Prieur, D. Puigdengoles, C. Puzo, P. Ragusa, F. Rajagopalan, S. Reeves, K. Reisinger, I. Rembser, C. de Renstrom, P. A. Bruckman Reznicek, P. Ridel, M. Risso, P. Riu, I. Robinson, D. Roda, C. Roe, S. Rohne, O. Romaniouk, A. Rousseau, D. Rozanov, A. Ruiz, A. Rusakovich, N. Rust, D. Ryabov, Y. F. Ryjov, V. Salto, O. Salvachua, B. Salzburger, A. Sandaker, H. Rios, C. Santamarina Santi, L. Santoni, C. Saraiva, J. G. Sarri, F. Sauvage, G. Says, L. P. Schaefer, M. Schegelsky, V. A. Schiavi, C. Schieck, J. Schlager, G. Schlereth, J. Schmitt, C. Schultes, J. Schwemling, P. Schwindling, J. Seixas, J. M. Seliverstov, D. M. Serin, L. Sfyrla, A. Shalanda, N. Shaw, C. Shin, T. Shmeleva, A. Silva, J. Simion, S. Simonyan, M. Sloper, J. E. Smirnov, S. Yu. Smirnova, L. Solans, C. Solodkov, A. Solovianov, O. Soloviev, I. Sosnovtsev, V. V. Spano, F. Speckmayer, P. Stancu, S. Stanek, R. Starchenko, E. Straessner, A. Suchkov, S. I. Suk, M. Szczygiel, R. Tarrade, F. Tartarelli, F. Tas, P. Tayalati, Y. Tegenfeldt, F. Teuscher, R. Thioye, M. Tikhomirov, V. O. Timmermans, C. J. W. P. Tisserant, S. Toczek, B. Tremblet, L. Troncon, C. Tsiareshka, P. Tyndel, M. Unel, M. Karagoez Unal, G. Unel, G. Usai, G. Van Berg, R. Valero, A. Valkar, S. Valls, J. A. Vandelli, W. Vannucci, F. Vartapetian, A. Vassilakopoulos, V. I. Vasilyeva, L. Vazeille, F. Vernocchi, F. Vetter-Cole, Y. Vichou, I. Vinogradov, V. Virzi, J. Vivarelli, I. de Vivie, J. B. Volpi, M. Anh, T. Vu Wang, C. Warren, M. Weber, J. Weber, M. Weidberg, A. R. Weingarten, J. Wells, P. S. Werner, P. Wheeler, S. Wiessmann, M. Wilkens, H. Williams, H. H. Wingerter-Seez, I. Yasu, Y. Zaitsev, A. Zenin, A. Zenis, T. Zenonos, Z. Zhang, H. Zhelezkobk, A. Zhou, N. TI Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Transition radiation detectors; Calorimeters; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors) AB The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself. C1 [Wheeler, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Drake, G.; Fullana, E.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lampl, W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [De, K.; Farbin, A.; Vartapetian, A.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Manousakis, A.] Univ Athens, Nucl & Particle Phys Dept Phys, GR-15771 Athens, Greece. [Abdallah, J. M.; Bosman, M.; Sforza, M. Cavalli; Jorgensen, S.; Korolkov, I.; Puigdengoles, C.; Salto, O.; Volpi, M.] Univ Autonoma Barcelona, IFAE, Inst Fis Altes Energies, ES-08193 Bellaterra, Barcelona, Spain. [Lipniacka, A.; Sandaker, H.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Einsweiler, K.; Fergusson, D.; Golling, T.; Joseph, J.; Virzi, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Beck, H. P.; Cogneras, E.; Haeberli, C.] Univ Bern, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Chen, H.; Lanni, F.; Ma, H.; Petti, R.; Rajagopalan, S.; Tarrade, F.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Abat, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Grosse-Knetter, J.; Huegging, F.; Mathes, M.; Weingarten, J.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Alexa, C.; Boldea, V.; Caprini, M.; Constantinescu, S.; Dita, S.; Pantea, D.] Natl Inst Phys & Nucl Engn Bucharest IFIN HH, R-077125 Bucharest, Romania. [Fakhr-Edine, A. I.; Goujdami, D.] Univ Cadi Ayyad, Marrakech, Morocco. [Carvalho, J.] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal. [Benchekroun, D.] Univ Hassan 2, Fac Sci Ain Chock, Casablanca, Morocco. [Goodrick, M. J.; Hill, J. C.; Lester, C. G.; Robinson, D.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Aleksa, M.; Anghinolfi, F.; Baron, S.; Chromek, D. Burckhart; Garrido, M. Capeans; Sas, L. Cardiel; Carli, T.; Catinaccio, A.; Cornelissen, T.; Radu, A. Corso; Danielsson, H. O.; Dannheim, D.; Delmastro, M.; Di Girolamo, B.; Dittus, F.; Dobson, M.; Efthymiopoulos, I.; Eifert, T. F.; Elsing, M.; Fabich, A.; Farthouat, P.; Ferrari, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Gallas, M.; Gameiro, S.; Gollub, N.; Gorini, B.; Gruwe, M.; Hawkings, R. J.; Correia, A. Henriques; Hervas, L.; Hulsbergen, W.; Joos, M.; Kataoka, M.; Koffas, T.; Krueger, K.; Le Bihan, A-C.; Lehmann, G.; Lichard, P.; Mapelli, L.; Meirosu, C.; Moyse, E. W. J.; Nessi, M.; Aranda, C. Padilla; Passmored, S. M.; Petersen, J.; Poppleton, A.; Pribyl, L.; Price, M. J.; Rembser, C.; Roe, S.; Ryjov, V.; Rios, C. Santamarina; Schlager, G.; Sloper, J. E.; Speckmayer, P.; Tremblet, L.; Unal, G.; Vandelli, W.; Wells, P. S.; Werner, P.; Wilkens, H.] CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland. [Anderson, K.; Gupta, A.; Hurwitz, M.; Jen-La Plante, I.; Pilcher, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Calvet, D.; Defay, P. O.; Febbraro, R.; Filippini, G.; Ghodbane, N.; Grenier, P.; Guicheney, C.; Louchard, L.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Tayalati, Y.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, CNRS, IN2P3, FR-63177 Aubiere, France. [Bertelsen, H.; Dam, M.; Driouchi, C.; Facius, K.; Hansen, J. D.; Hansen, P. H.; Kittelmann, T. H.; Mackeprang, R.; Petersen, T. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Correard, S.; Djama, F.; Hubaut, F.; Monnier, E.; Pralavorio, P.; Rozanov, A.; Tisserant, S.; de Vivie, J. B.; Zhang, H.] Univ Aix Marseille 2, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille, France. [Kowalski, T. Z.; Mindur, B.; Szczygiel, R.; Toczek, B.] AGH Univ Sci & Technol FPACS AGH UST, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Hajduk, Z.; Kaczmarska, A.; Olszowska, J.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Hoffman, J.; Liang, Z.; Vetter-Cole, Y.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Dobos, D.; Klingenberg, R.; Reisinger, I.; Weber, J.] Univ Dortmund, DE-44221 Dortmund, Germany. [Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, D. P.; Ebenstein, W. L.; Klinkby, E. B.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Biscarat, C.] CNRS, IN2P3, Ctr Calcul, Lyon, France. [Clark, A.; Ferrere, D.; Gadomski, S.; Gomez, M. D.; Mangin-Brinet, M.; Mikulec, B.; Moed, S.; Riu, I.; Sfyrla, A.; Anh, T. Vu] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Shaw, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Addy, T. N.; Harvey, A., Jr.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Mehlhase, S.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Callahan, J.; Cwetanski, P.; Egorov, K.; Gagnon, P.; Luehring, F.; Ogren, H.; Rust, D.; Unel, G.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. INFN Genova, IT-16146 Genoa, Italy. [Beccherle, R.; Cuneo, S.; Dameri, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Kostyukhin, V.; Morettini, P.; Nechaeva, P.; Parodi, F.; Risso, P.; Schiavi, C.; Vernocchi, F.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Cauz, D.; Cobal, M.; Santi, L.] INFN Grp Coll Udine, IT-33100 Udine, Italy. [Cauz, D.; Cobal, M.; Santi, L.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Cauz, D.; Cobal, M.; Santi, L.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; Santi, L.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Salzburger, A.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Tegenfeldt, F.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Bychkov, V.; Glonti, G.; Grigalashvili, N.; Kekelidze, G. D.; Khoriauli, G.; Khramov, E.; Khubua, J.; Mialkovski, V.; Minashvili, I.; Nikolaev, K.; Parzhitskiy, S.; Peshekhonov, V. D.; Rusakovich, N.; Vinogradov, V.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Moscow, Russia. Karlsruher Inst Technol, Inst Prozessdatenverarbeitung & Elekt, D-76344 Eggenstein Leopoldshafen, Germany. [Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Di Ciaccio, L.; El Kacimi, M.; Lafaye, R.; Laplace, S.; Sauvage, G.; Simonyan, M.; Wingerter-Seez, I.] Univ Savoie, CNRS, IN2P3, Phys Particules Lab, Annecy Le Vieux, France. [El Kacimi, M.] Univ Cadi Ayyad, Marrakech, Morocco. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Usai, G.] Univ Lisbon, Fac Ciencias, Dept Fis, P-1749016 Lisbon, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Derue, F.; Laforge, B.; Nikolic-Audit, I.; Ridel, M.; Schwemling, P.; Vannucci, F.] Univ Paris 06, FR-75252 Paris 05, France. [Derue, F.; Laforge, B.; Nikolic-Audit, I.; Ridel, M.; Schwemling, P.; Vannucci, F.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, FR-75252 Paris 05, France. [Belhorma, B.; Chevallier, F.; Hostachy, J. Y.; Ledroit-Guillon, F.; Lucotte, A.; Malek, F.; Schaefer, M.] Univ Grenoble 1, INPG, Lab Phys Subatom & Cosmol, CNRS,IN2P3, FR-38026 Grenoble, France. [Dekhissi, B.] Univ Mohammed Premier, Lab Phys Theor & Phys Particules, Oujda, Morocco. [Akesson, T. P. A.; Eerola, P.; Lundberg, B.] Lund Univ, Naturvetenskapliga Fak, Fysiska Inst, SE-22100 Lund, Sweden. [Del Peso, J.; Garcia, R.; Peez, M.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Schmitt, C.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Bell, P. J.; Pater, J.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Khomich, A.] Univ Mannheim, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Atkinson, T.; Moorhead, G.] Univ Melbourne, Sch Phys, Au Parkvill, Vic 3010, Australia. [Andreazza, A.; Banfi, D.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, M.; Costa, G.; Fanti, M.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Perini, L.; Ragusa, F.; Tartarelli, F.; Troncon, C.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Carminati, L.; Consonni, M.; Fanti, M.; Perini, L.; Ragusa, F.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Onofre, A.] Univ Minho, Dept Fis, P-4710057 Braga, Portugal. [Shalanda, N.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. EM stathes.paganis@cern.ch RI Shmeleva, Alevtina/M-6199-2015; Suchkov, Sergey/M-6671-2015; Gavrilenko, Igor/M-8260-2015; Carvalho, Joao/M-4060-2013; Konovalov, Serguei/M-9505-2015; vasilyeva, lidia/M-9569-2015; Maneira, Jose/D-8486-2011; Tikhomirov, Vladimir/M-6194-2015; Solodkov, Alexander/B-8623-2017; Karyukhin, Andrey/J-3904-2014; Tartarelli, Giuseppe Francesco/A-5629-2016; Pina, Joao /C-4391-2012; Ferreira, Brigida/J-2667-2013; De, Kaushik/N-1953-2013; Morozov, Sergey/C-1396-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Bosman, Martine/J-9917-2014; Santamarina Rios, Cibran/K-4686-2014; Mitsou, Vasiliki/D-1967-2009; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Bernabeu, Jose/H-6708-2015; kayumov, fred/M-6274-2015; Cascella, Michele/B-6156-2013; Marti-Garcia, Salvador/F-3085-2011; Conde Muino, Patricia/F-7696-2011; Szczygiel, Robert/B-5662-2011; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Delmastro, Marco/I-5599-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013 OI Carvalho, Joao/0000-0002-3015-7821; Maneira, Jose/0000-0002-3222-2738; Tikhomirov, Vladimir/0000-0002-9634-0581; Solodkov, Alexander/0000-0002-2737-8674; Troncon, Clara/0000-0002-7997-8524; Maio, Amelia/0000-0001-9099-0009; Karyukhin, Andrey/0000-0001-9087-4315; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Gomes, Agostinho/0000-0002-5940-9893; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Beck, Hans Peter/0000-0001-7212-1096; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993; Pina, Joao /0000-0001-8959-5044; De, Kaushik/0000-0002-5647-4489; Morozov, Sergey/0000-0002-6748-7277; Bosman, Martine/0000-0002-7290-643X; Santamarina Rios, Cibran/0000-0002-9810-1816; Mitsou, Vasiliki/0000-0002-1533-8886; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Bernabeu, Jose/0000-0002-0296-9988; Cascella, Michele/0000-0003-2091-2501; Conde Muino, Patricia/0000-0002-9187-7478; Smirnov, Sergei/0000-0002-6778-073X; Moorhead, Gareth/0000-0002-9299-9549; Delmastro, Marco/0000-0003-2992-3805; Andreazza, Attilio/0000-0001-5161-5759; NR 12 TC 1 Z9 1 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2011 VL 6 AR P04001 DI 10.1088/1748-0221/6/04/P04001 PG 40 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 814XU UT WOS:000294491300002 ER PT J AU Adloff, C Blaha, J Blaising, JJ Drancourt, C Espargiliere, A Gaglione, R Geffroy, N Karyotakis, Y Prast, J Vouters, G Francis, K Repond, J Smith, J Xia, L Baldolemar, E Li, J Park, ST Sosebee, M White, AP Yu, J Mikami, Y Watson, NK Goto, T Mavromanolakis, G Thomson, MA Ward, DR Yan, W Benchekroun, D Hoummada, A Khoulaki, Y Benyamna, M Carloganu, C Fehr, F Gay, P Manen, S Royer, L Blazey, GC Dyshkant, A Lima, JGR Zutshi, V Hostachy, JY Morin, L Cornett, U David, D Fabbri, R Falley, G Gadow, K Garutti, E Gottlicher, P Gunter, C Karstensen, S Krivan, F Lucaci-Timoce, AI Lu, S Lutz, B Marchesini, I Meyer, N Morozov, S Morgunov, V Reinecke, M Sefkow, F Smirnov, P Terwort, M Vargas-Trevino, A Wattimena, N Wendt, O Feege, N Haller, J Richter, S Samson, J Eckert, P Kaplan, A Schultz-Coulon, HC Shen, W Stamen, R Tadday, A Bilki, B Norbeck, E Onel, Y Wilson, GW Kawagoe, K Uozumi, S Ballin, JA Dauncey, PD Magnan, AM Yilmaz, HS Zorba, O Bartsch, V Postranecky, M Warren, M Wing, M Salvatore, F Alamillo, EC Fouz, MC Puerta-Pelayo, J Balagura, V Bobchenko, B Chadeeva, M Danilov, M Epifantsev, A Markin, O Mizuk, R Novikov, E Rusinov, V Tarkovsky, E Kozlov, V Soloviev, Y Buzhan, P Dolgoshein, B Ilyin, A Kantserov, V Kaplin, V Karakash, A Popova, E Smirnov, S Frey, A Kiesling, C Seidel, K Simon, F Soldner, C Weuste, L Bonis, J Bouquet, B Callier, S Cornebise, P Doublet, P Dulucq, F Giannelli, MF Fleury, J Guilhem, G Li, H Martin-Chassard, G Richard, F de la Taille, C Poschl, R Raux, L Seguin-Moreau, N Wicek, F Anduze, M Boudry, V Brient, JC Jeans, D de Freitas, PM Musat, G Reinhard, M Ruan, M Videau, H Bulanek, B Zacek, J Cvach, J Gallus, P Havranek, M Janata, M Kvasnicka, J Lednicky, D Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Ruzicka, P Sicho, P Smolik, J Vrba, V Zalesak, J Belhorma, B Ghazlane, H Kotera, K Nishiyama, M Takeshita, T Tozuka, S Buanes, T Eigen, G AF Adloff, C. Blaha, J. Blaising, J. -J. Drancourt, C. Espargiliere, A. Gaglione, R. Geffroy, N. Karyotakis, Y. Prast, J. Vouters, G. Francis, K. Repond, J. Smith, J. Xia, L. Baldolemar, E. Li, J. Park, S. T. Sosebee, M. White, A. P. Yu, J. Mikami, Y. Watson, N. K. Goto, T. Mavromanolakis, G. Thomson, M. A. Ward, D. R. Yan, W. Benchekroun, D. Hoummada, A. Khoulaki, Y. Benyamna, M. Carloganu, C. Fehr, F. Gay, P. Manen, S. Royer, L. Blazey, G. C. Dyshkant, A. Lima, J. G. R. Zutshi, V. Hostachy, J. -Y. Morin, L. Cornett, U. David, D. Fabbri, R. Falley, G. Gadow, K. Garutti, E. Goettlicher, P. Guenter, C. Karstensen, S. Krivan, F. Lucaci-Timoce, A. -I. Lu, S. Lutz, B. Marchesini, I. Meyer, N. Morozov, S. Morgunov, V. Reinecke, M. Sefkow, F. Smirnov, P. Terwort, M. Vargas-Trevino, A. Wattimena, N. Wendt, O. Feege, N. Haller, J. Richter, S. Samson, J. Eckert, P. Kaplan, A. Schultz-Coulon, H. -Ch. Shen, W. Stamen, R. Tadday, A. Bilki, B. Norbeck, E. Onel, Y. Wilson, G. W. Kawagoe, K. Uozumi, S. Ballin, J. A. Dauncey, P. D. Magnan, A. -M. Yilmaz, H. S. Zorba, O. Bartsch, V. Postranecky, M. Warren, M. Wing, M. Salvatore, F. Calvo Alamillo, E. Fouz, M. -C. Puerta-Pelayo, J. Balagura, V. Bobchenko, B. Chadeeva, M. Danilov, M. Epifantsev, A. Markin, O. Mizuk, R. Novikov, E. Rusinov, V. Tarkovsky, E. Kozlov, V. Soloviev, Y. Buzhan, P. Dolgoshein, B. Ilyin, A. Kantserov, V. Kaplin, V. Karakash, A. Popova, E. Smirnov, S. Frey, A. Kiesling, C. Seidel, K. Simon, F. Soldner, C. Weuste, L. Bonis, J. Bouquet, B. Callier, S. Cornebise, P. Doublet, Ph. Dulucq, F. Giannelli, M. Faucci Fleury, J. Guilhem, G. Li, H. Martin-Chassard, G. Richard, F. de la Taille, Ch. Poeschl, R. Raux, L. Seguin-Moreau, N. Wicek, F. Anduze, M. Boudry, V. Brient, J-C. Jeans, D. de Freitas, P. Mora Musat, G. Reinhard, M. Ruan, M. Videau, H. Bulanek, B. Zacek, J. Cvach, J. Gallus, P. Havranek, M. Janata, M. Kvasnicka, J. Lednicky, D. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Ruzicka, P. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. Belhorma, B. Ghazlane, H. Kotera, K. Nishiyama, M. Takeshita, T. Tozuka, S. Buanes, T. Eigen, G. TI Electromagnetic response of a highly granular hadronic calorimeter SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, CCDs, EBCCDs etc); Calorimeter methods; Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators) ID SILICON PHOTOMULTIPLIER; PHYSICS AB The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and angles of incidence. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. C1 [Adloff, C.; Blaha, J.; Blaising, J. -J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Francis, K.; Repond, J.; Smith, J.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Mikami, Y.; Watson, N. K.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Benchekroun, D.; Hoummada, A.; Khoulaki, Y.] Univ Hassan II Ain Chock, Fac Sci, Casablanca, Morocco. [Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,LPC, F-63006 Clermont Ferrand 0, France. [Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.] No Illinois Univ, Dept Phys, NICADD, De Kalb, IL 60115 USA. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble 1, Inst Polytech Grenoble, Lab Phys Subatom & Cosmol, CNRS,IN2P3, F-38026 St Martin Dheres, France. [Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Goettlicher, P.; Guenter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A. -I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.] DESY, D-22603 Hamburg, Germany. [Feege, N.; Haller, J.; Richter, S.; Samson, J.] Univ Hamburg, Inst Expt Phys, Dept Phys, D-22761 Hamburg, Germany. [Eckert, P.; Kaplan, A.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Tadday, A.] Univ Heidelberg, Fak Phys & Astron, D-69120 Heidelberg, Germany. [Bilki, B.; Norbeck, E.; Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Wilson, G. W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Kawagoe, K.; Uozumi, S.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Ballin, J. A.; Dauncey, P. D.; Magnan, A. -M.; Yilmaz, H. S.; Zorba, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. [Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Salvatore, F.] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.] Ctr Invest Energet Medioambientales & Tecnol, CIEMAT, Madrid, Spain. [Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Kozlov, V.; Soloviev, Y.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117924, Russia. [Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.] Moscow Engn Phys Inst, MEPhI, Dept Phys, Moscow 115409, Russia. [Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Anduze, M.; Boudry, V.; Brient, J-C.; Jeans, D.; de Freitas, P. Mora; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Giannelli, M. Faucci; Fleury, J.; Guilhem, G.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.] Univ Paris 11, Ctr Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Anduze, M.; Boudry, V.; Brient, J-C.; Jeans, D.; de Freitas, P. Mora; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.] Ecole Polytech, CNRS, LLR, IN2P3, F-91128 Palaiseau, France. [Bulanek, B.; Zacek, J.] Charles Univ Prague, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belhorma, B.; Ghazlane, H.] Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco. [Kotera, K.; Nishiyama, M.; Takeshita, T.; Tozuka, S.] Shinshu Univ, Dept Phys, Matsumoto, Nagano 390861, Japan. [Buanes, T.; Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. RP Adloff, C (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, 9 Chemin Bellevue,BP110, F-74941 Annecy Le Vieux, France. EM erika.garutti@desy.de RI Calvo Alamillo, Enrique/L-1203-2014; Kozlov, Valentin/M-8000-2015; Soloviev, Yury/M-8788-2015; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Chadeeva, Marina/C-8789-2016; Smirnov, Sergei/F-1014-2011; Cvach, Jaroslav/G-6269-2014; Smolik, Jan/H-1479-2014; Marcisovsky, Michal/H-1533-2014; Zalesak, Jaroslav/G-5691-2014; Tomasek, Lukas/G-6370-2014 OI Bilki, Burak/0000-0001-9515-3306; Watson, Nigel/0000-0002-8142-4678; Calvo Alamillo, Enrique/0000-0002-1100-2963; Soloviev, Yury/0000-0003-1136-2827; Danilov, Mikhail/0000-0001-9227-5164; Chadeeva, Marina/0000-0003-1814-1218; Blazey, Gerald/0000-0002-7435-5758; Smirnov, Sergei/0000-0002-6778-073X; Zalesak, Jaroslav/0000-0002-4519-4705; Tomasek, Lukas/0000-0002-5224-1936 FU Bundesministerium fur Bildung und Forschung (BMBF), Germany [05HS6VH1]; DFG of Germany; Helmholtz-Nachwuchsgruppen [VH-NG-206]; Alexander von Humboldt Foundation; Helmholtz Foundation [HRJRG-002]; RFBR [HRJRG-002]; Russian Ministry for Education and Science; CPAN, Spain; MICINNCRI(MST) of MOST/KOSEF in Korea; US Department of Energy; US National Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic [AV0 Z3407391, AV0 Z10100502, LC527, LA09042]; Grant Agency of the Czech Republic [202/05/0653]; Science and Technology Facilities Council, UK; [SS-3270.2010.2]; [RFBR08-02-12100-OFI] FX We would like to thank the technicians and the engineers who contributed to the design and construction of the prototypes. We also gratefully acknowledge the DESY and CERN managements for their support and hospitality, and their accelerator staff for the reliable and efficient beam operation. This work was supported by the Bundesministerium fur Bildung und Forschung (BMBF), grant no. 05HS6VH1, Germany; by the DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; by the Helmholtz-Nachwuchsgruppen grant VH-NG-206; by the Alexander von Humboldt Foundation (Research Award IV, RUS1066839 GSA); by joint Helmholtz Foundation and RFBR grant HRJRG-002, SC Rosatom; by Russian Grants SS-3270.2010.2 and RFBR08-02-12100-OFI and by Russian Ministry for Education and Science; by MICINN and CPAN, Spain; by CRI(MST) of MOST/KOSEF in Korea; by the US Department of Energy and the US National Science Foundation; by the Ministry of Education, Youth and Sports of the Czech Republic under the projects AV0 Z3407391, AV0 Z10100502, LC527 and LA09042 and by the Grant Agency of the Czech Republic under the project 202/05/0653; and by the Science and Technology Facilities Council, UK. NR 30 TC 16 Z9 16 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2011 VL 6 AR P04003 DI 10.1088/1748-0221/6/04/P04003 PG 29 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 814XU UT WOS:000294491300004 ER PT J AU Gamboa, EJ Montgomery, DS Hall, IM Drake, RP AF Gamboa, E. J. Montgomery, D. S. Hall, I. M. Drake, R. P. TI Imaging X-ray crystal spectrometer for laser-produced plasmas SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray detectors; Plasma diagnostics - interferometry; spectroscopy; imaging ID SPHERICALLY BENT CRYSTALS; THOMSON SCATTERING; DENSE-PLASMAS; RESOLUTION; SPECTROSCOPY; PERFORMANCE; DIAGNOSTICS; MICROSCOPY; FACILITY; SYSTEM AB X-ray Thomson scattering (XRTS) is a powerful technique for measuring state variables in dense plasmas. In this paper, we report on the development of a one-dimensional imaging spectrometer for use in characterizing spatially nonuniform, dense plasmas using XRTS. Diffraction of scattered x-rays from a toroidally curved crystal images along a one-dimensional spatial profile while simultaneously spectrally resolving along the other. An imaging spectrometer was fielded at the Trident laser at Los Alamos National Laboratory, yielding a FWHM spatial resolution of < 25 mu m, spectral resolution of 4 eV, spectral range of 350 eV, and spatial range of > 3 mm. A geometrical analysis is performed yielding a simple analytical expression for the throughput of the imaging spectrometer scheme. The SHADOW code is used to perform a ray tracing analysis on the spectrometer fielded at the Trident Laser Facility understand the alignment tolerances on the spatial and spectral resolutions. The analytical expression for the throughput was found to agree well with the results from the ray tracing. C1 [Gamboa, E. J.; Drake, R. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Montgomery, D. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hall, I. M.] Univ Nevada, Reno, NV 89557 USA. RP Gamboa, EJ (reprint author), Univ Michigan, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM eliseo@umich.edu RI Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 FU Predictive Sciences Academic Alliances Program in NNSA-ASC [DEFC52- 08NA28616]; NNSA-DS; High-Energy-Density Laboratory Plasmas [DE-FG52-09NA29548]; National Laser User Facility Program [DE-FG52-09NA29034]; U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors would like to thank the staff at the Trident Laser Facility and S. H. Glenzer for his valuable input. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-FG52-09NA29034. This work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under contract DE-AC52-06NA25396. NR 42 TC 19 Z9 21 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2011 VL 6 AR P04004 DI 10.1088/1748-0221/6/04/P04004 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 814XU UT WOS:000294491300005 ER PT J AU Cristiano, E Hu, YJ Siegfried, M Kaplan, D Nitsche, H AF Cristiano, Elena Hu, Yung-Jin Siegfried, Matthew Kaplan, Daniel Nitsche, Heino TI A COMPARISON OF POINT OF ZERO CHARGE MEASUREMENT METHODOLOGY SO CLAYS AND CLAY MINERALS LA English DT Article DE Goethite; Pyrolusite; Point of Zero Charge; Potentiometric Titration; Mass Titration; Powder Addition; Isoelectric Point; Zeta Potential Charge; X-ray Diffraction; BET ID SURFACE-PROPERTIES; ELECTROLYTE INTERFACE; MANGANESE DIOXIDES; GOETHITE; ADSORPTION; OXIDES; SORPTION; DENSITY; IRON; COMPLEXATION AB Contaminant-transport modeling requires information about the charge of subsurface particle surfaces. Because values are commonly reused many times in a single simulation, small errors can be magnified greatly. Goethite (alpha-FeOOH) and pyrolusite (beta-MnO(2)) are ubiquitous mineral phases that are especially contaminant reactive. The objective of the present study was to measure and compare the point of zero charge (PZC) using different methods. The pyrolusite PZC was measured with three methods: mass titration (MT) (PZC = 5.9 +/- 0.1), powder addition (PA) (PZC = 5.98 +/- 0.08), and isoelectric point, IEP (PZC = 4.4 +/- 0.1). The IEP measurement was in agreement with literature values. However, MT and PA resulted in a statistically larger PZC than the IEP measurement. The surface area of pyrolusite, 2.2 m(2)g(-1), was too small to permit PZC determination by the potentiometric titration (PT) method. Goethite PZC values were measured using MT (7.5 +/- 0.1), PT (7.46 +/- 0.09), and PA (7.20 +/- 0.08). The present work presents the first reported instance where MT and PA have been applied to measure the point of zero charge of either pyrolusite or goethite. The results illustrate the importance of using multiple, complementary techniques to measure PZC values accurately. C1 [Cristiano, Elena; Hu, Yung-Jin; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Hu, Yung-Jin; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Siegfried, Matthew; Kaplan, Daniel] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Nitsche, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM HNitsche@lbl.gov FU U.S. Department of Energy (DOE), Office of Science, Climate and Environmental Sciences; Environmental Remediation Science Programs (ERSP); Office of Civilian Radioactive Waste Management; U.S. Department of Energy (DOE); Oak Ridge Associated Universities; DOE [DE-AC02-05CH11231, DE-AC09-96SR18500] FX The authors thank L.K. Schwaiger for her assistance in preparing the manuscript for publication. The work was supported by the U.S. Department of Energy (DOE), Office of Science, Climate and Environmental Sciences, and Environmental Remediation Science Programs (ERSP). The research was performed in part under appointment of the Office of Civilian Radioactive Waste Management Graduate Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy (DOE) and Oak Ridge Associated Universities. Work at Lawrence Berkeley National Laboratory (LBNL) was conducted under DOE Contract No. DE-AC02-05CH11231. Work at the Savannah River National Laboratory (SRNL) was conducted under DOE contract DE-AC09-96SR18500. NR 39 TC 19 Z9 19 U1 6 U2 43 PU CLAY MINERALS SOC PI CHANTILLY PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA SN 0009-8604 J9 CLAY CLAY MINER JI Clay Clay Min. PD APR PY 2011 VL 59 IS 2 BP 107 EP 115 DI 10.1346/CCMN.2011.0590201 PG 9 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil Science SC Chemistry; Geology; Mineralogy; Agriculture GA 799CH UT WOS:000293260600001 ER PT J AU Nucci, JA Doherty, P Lung, L Singhota, N AF Nucci, Julie A. Doherty, Paul Lung, Linda Singhota, Nev TI How researchers can help K-12 teachers bring materials science into the classroom SO MRS BULLETIN LA English DT Article AB Education research strongly indicates that students make decisions in their mid-to late adolescence that impact the general direction of their careers, including choices about pursuing studies in science and mathematics. Educators can play an important role in these student career choices. By creating and implementing teacher professional development programs that increase teachers' awareness/understanding of materials science and providing materials science-based classroom materials, researchers can take concrete actions toward improving the number and quality of students entering materials science and engineering departments as undergraduate students. No matter where you live or work throughout the world, there is a school nearby and abundant opportunities for researchers to make a difference in K-12 science education. C1 [Nucci, Julie A.; Singhota, Nev] Cornell Univ, Ithaca, NY 14853 USA. [Doherty, Paul] Exploratorium Teacher Inst, San Francisco, CA USA. [Lung, Linda] Natl Renewable Energy Lab, Golden, CO USA. RP Nucci, JA (reprint author), Cornell Univ, Ithaca, NY 14853 USA. EM jn28@cornell.edu; dohertypm@gmail.com; linda.lung@nrel.gov; nks5@cornell.edu NR 9 TC 1 Z9 1 U1 0 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD APR PY 2011 VL 36 IS 4 BP 284 EP 289 DI 10.1557/mrs.2011.40 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 798TQ UT WOS:000293235500022 ER PT J AU Johnson, PV Hodyss, R Tang, KQ Brinckerhoff, WB Smith, RD AF Johnson, Paul V. Hodyss, Robert Tang, Keqi Brinckerhoff, William B. Smith, Richard D. TI The laser ablation ion funnel: Sampling for in situ mass spectrometry on Mars SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Ion funnel; Laser ablation; Mars; Mass spectrometry ID INTERFACE; PRESSURE; PERFORMANCE; TRANSPORT; DESIGN; SPACE AB A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Johnson, Paul V.; Hodyss, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Brinckerhoff, William B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Johnson, PV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91101 USA. EM Paul.V.Johnson@jpl.nasa.gov RI Smith, Richard/J-3664-2012; Brinckerhoff, William/F-3453-2012; Johnson, Paul/D-4001-2009 OI Smith, Richard/0000-0002-2381-2349; Brinckerhoff, William/0000-0001-5121-2634; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); DOE [DE-AC05-76RLO 1830]; NASA; JPL FX This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and at the Environmental Molecular Sciences Laboratory, a US DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract no. DE-AC05-76RLO 1830. Funding from NASA's Planetary Instrument Definition and Development program and the JPL Director's Research and Development Fund is gratefully acknowledged. NR 27 TC 4 Z9 4 U1 5 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD APR PY 2011 VL 59 IS 5-6 BP 387 EP 393 DI 10.1016/j.pss.2011.01.004 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 737PT UT WOS:000288581400003 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Collins-Hughes, E Cui, W Dickherber, R Duke, C Errando, M Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Griffin, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hughes, JP Hui, CM Humensky, TB Kaaret, P Karlsson, N Kertzman, M Kieda, D Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Ong, RA Orr, M Otte, AN Pandel, D Park, NH Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Saxon, DB Schroedter, M Sembroski, GH Senturk, GD Slane, P Smith, AW Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Varlotta, A Vassiliev, VV Vincent, S Vivier, M Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Collins-Hughes, E. Cui, W. Dickherber, R. Duke, C. Errando, M. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Griffin, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hughes, J. P. Hui, C. M. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Ong, R. A. Orr, M. Otte, A. N. Pandel, D. Park, N. H. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Saxon, D. B. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Slane, P. Smith, A. W. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Varlotta, A. Vassiliev, V. V. Vincent, S. Vivier, M. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wood, M. Zitzer, B. TI DISCOVERY OF TeV GAMMA-RAY EMISSION FROM TYCHO'S SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: general; ISM: individual objects (G120.1+01.4, Tycho=VER J0025+641) ID GALACTIC PLANE SURVEY; SHOCK ACCELERATION; EXPANSION; ASTRONOMY; SPECTRUM; CATALOG; CHANDRA; HESS; CONSTRAINTS; TURBULENCE AB We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's SNR. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at 00(h)25(m)27(s).0, +64 degrees 10'50 '' (J2000). The TeV photon spectrum measured by VERITAS can be described with a power law dN/dE = C(E/3.42 TeV)(-Gamma) with Gamma = 1.95 +/- 0.51(stat) +/- 0.30(sys) and C = (1.55 +/- 0.43(stat) +/- 0.47(sys)) x 10(-14) cm(-2) s(-1) TeV-1. The integral flux above 1 TeV corresponds to similar to 0.9% of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models that can describe the data. The lowest magnetic field allowed in these models is similar to 80 mu G, which may be interpreted as evidence for magnetic field amplification. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Arlen, T.; Majumdar, P.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Collins-Hughes, E.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Grube, J.; Gyuk, G.; Karlsson, N.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Griffin, S.; Guenette, R.; Hanna, D.; McCann, A.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Humensky, T. B.; Park, N. H.; Reyes, L. C.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kaaret, P.; Pandel, D.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Maier, G.; Pohl, M.] DESY, D-15738 Zeuthen, Germany. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Slane, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM dbsaxon@udel.edu; wakely@uchicago.edu OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Otte, Adam Nepomuk/0000-0002-5955-6383; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; Natural Sciences and Engineering Research Council (NSERC) in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; Science and Technology Facilities Council in the UK; NSERC; NASA [NNX08AZ86G] FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by the Natural Sciences and Engineering Research Council (NSERC) in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by the Science and Technology Facilities Council in the UK. The research presented in this Letter has used data from the Canadian Galactic Plane Survey, a Canadian project with international partners, supported by NSERC. D. B. S. acknowledges the NASA Delaware Space Grant Program for its support of this research. J.P.H. acknowledges support from NASA grant NNX08AZ86G to Rutgers University. NR 50 TC 89 Z9 90 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2011 VL 730 IS 2 AR L20 DI 10.1088/2041-8205/730/2/L20 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797KK UT WOS:000293125600008 ER PT J AU Song, F Zhao, JH Swinton, SM AF Song, Feng Zhao, Jinhua Swinton, Scott M. TI Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility SO AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS LA English DT Article DE real options; sunk costs; land conversion; biofuel; cellulosic biomass; dynamic modeling; stochastic process; biofuel policy; Q42; Q24 ID LAND-USE CHANGE; MEAN REVERSION; INVESTMENT; PRICES; SWITCHGRASS; BIOFUELS; EMISSIONS; ETHANOL; BIOMASS AB We study a farmer's decision to convert traditional cropland into land for growing dedicated energy crops, taking into account sunk conversion costs and uncertainties in crop returns. The optimal decision rules differ significantly from the expected net present value rule, which ignores uncertainties, and from real options models that allow only one-way conversion into energy crops. These models also predict drastically different patterns of land conversions into and out of energy crops over time. Using corn-soybean rotation and switchgrass as examples, we show that the model predictions are sensitive to assumptions about stochastic processes of the returns. Government policies might have unintended consequences: subsidizing conversion costs into switchgrass may not much affect proportions of land in switchgrass in the long run. C1 [Song, Feng] Renmin Univ, Sch Econ, Beijing, Peoples R China. [Zhao, Jinhua] Michigan State Univ, Dept Agr Food & Resource Econ, Dept Econ, E Lansing, MI 48824 USA. [Zhao, Jinhua] Shanghai Univ Finance & Econ, Sch Econ, Shanghai, Peoples R China. [Swinton, Scott M.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Song, F (reprint author), Renmin Univ, Sch Econ, Beijing, Peoples R China. FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX Research support was provided by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 36 TC 21 Z9 21 U1 5 U2 34 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0002-9092 J9 AM J AGR ECON JI Am. J. Agr. Econ. PD APR PY 2011 VL 93 IS 3 BP 764 EP 779 DI 10.1093/ajae/aar018 PG 16 WC Agricultural Economics & Policy; Economics SC Agriculture; Business & Economics GA 789XP UT WOS:000292553100007 ER PT J AU Taiwo, TA Bays, SE Yacout, AM Hoffman, EA Todosow, M Kim, TK Salvatores, M AF Taiwo, Temitope A. Bays, Samuel E. Yacout, Abdullatif M. Hoffman, Edward A. Todosow, Michael Kim, Taek K. Salvatores, Massimo TI Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE fast reactors; heterogeneous recycle; targets; transuranic; LWR ID TRANSMUTATION AB A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent of the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time. C1 [Taiwo, Temitope A.; Yacout, Abdullatif M.; Hoffman, Edward A.; Kim, Taek K.; Salvatores, Massimo] Argonne Natl Lab, Argonne, IL 60439 USA. [Bays, Samuel E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Todosow, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Taiwo, TA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Taiwo@anl.gov NR 14 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 472 EP 478 DI 10.1080/18811248.2011.9711721 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400003 ER PT J AU Wigeland, RA Cahalan, JE AF Wigeland, Roald A. Cahalan, James E. TI Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE sodium; fast; reactor; safety; inherent; mitigation; prevention; severe; accidents; metallic; fuel AB Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur. C1 [Wigeland, Roald A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Cahalan, James E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wigeland, RA (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Roald.Wigeland@inl.gov NR 15 TC 1 Z9 1 U1 1 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 516 EP 523 DI 10.1080/18811248.2011.9711728 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400010 ER PT J AU Morris, EE Nutt, WM AF Morris, Edgar E. Nutt, W. Mark TI Uncertainty Analysis for Unprotected Accidents in Sodium-Cooled Fast Reactors SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE uncertainty analysis; accident analysis; fast reactors; reactor safety; risk-based regulation AB Reactor safety analyses often utilize a deterministic approach where in addition to performing best estimate calculations, uncertainty is accommodated by performing calculations with pessimistic values for input parameters that are important to safety. Here, a stochastic approach is considered for explicitly including uncertainty in safety parameters by applying Monte Carlo sampling coupled with established deterministic reactor safety analysis tools. The Monte Carlo approach yields frequency distributions for reactor safety metrics (e.g., peak temperatures) that can be compared to performance limits, allowing for an improved determination of the safety margin and a clear determination of which safety parameters are most important to the transient response. Because the approach enables the estimation of probabilities for violating safety boundaries, it should be useful in a risk-based regulatory environment. It has the advantage of not requiring any substantial rewriting of existing safety analysis computer codes. C1 [Morris, Edgar E.; Nutt, W. Mark] Argonne Natl Lab, Argonne, IL 60439 USA. RP Morris, EE (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM eemorris@anl.gov NR 9 TC 0 Z9 0 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 532 EP 537 DI 10.1080/18811248.2011.9711730 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400012 ER PT J AU Hosemann, P Dai, Y Stergar, E Nelson, AT Maloy, SA AF Hosemann, Peter Dai, Yong Stergar, Erich Nelson, Andrew T. Maloy, Stuart A. TI Small-Scale Testing of In-Core Fast Reactor Materials SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE microcompression testing; indentation; FFTF; LEAP; F/M steel; HT-9 ID YIELD-STRESS; HARDNESS AB Part of the Fuel Cycle R&D (FCRD) initiative in the USA is to investigate materials for high dose application. While mechanical testing on large samples delivers direct engineering data, these types of tests are only possible if enough sample material and required hot cell capabilities are available. Small-scale materials testing methods in addition to large-scale materials testing allows insight on the same specimen and direct probing into areas of interest which are not accessible otherwise. In order to establish an empirical and research-based relationship between small-scale and large-scale materials testing, several different mechanical testing techniques were conducted on the same specimen irradiated in the Swiss spallation source irradiation program (STIP) at the Swiss spallation source (SINQ) at the Paul Scherrer Institute (PSI) up to a dose of 19 dpa. It is shown that the yield strength measured by tensile testing, microcompression testing and microhardness testing all show the same trend. In addition, focused ion beam (FIB)-based techniques also are used to produce local electrode atom probe (LEAP) samples. This procedure allows cutting samples of such a small size that no radioactivity on the prepared sample can be measured. C1 [Hosemann, Peter; Stergar, Erich] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Dai, Yong] Paul Scherrer Inst, Villigen, Switzerland. [Nelson, Andrew T.; Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stergar, Erich] Univ Leoben, A-8700 Leoben, Austria. RP Hosemann, P (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM peterh@berkeley.edu RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213; Nelson, Andrew/0000-0002-4071-3502 NR 14 TC 4 Z9 4 U1 2 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 575 EP 579 DI 10.1080/18811248.2011.9711735 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400017 ER PT J AU Palmiotti, G Salvatores, M AF Palmiotti, Giuseppe Salvatores, Massimo TI Impact of Nuclear Data Uncertainties on Innovative Fast Reactors and Required Target Accuracies SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE nuclear data; uncertainty; fast reactors; target accuracy AB It is widely accepted that the current status of neutronics calculations for fast reactor design is such that the present uncertainties on nuclear data should still be significantly reduced, in order to get the full benefit from advances in modeling and simulation. Only a parallel effort in advanced simulation, high-accuracy validation experiments, and nuclear data improvement will provide designers with more general and well-validated calculation tools to meet tight design target accuracies to further improve safety and economics. The present paper presents very recent results related to nuclear data uncertainty impact assessment and target accuracy requirements for advanced reactor systems. C1 [Palmiotti, Giuseppe; Salvatores, Massimo] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Salvatores, Massimo] CEA, Cadarache, France. RP Salvatores, M (reprint author), Idaho Natl Lab, 2525 Fremont Ave,POB 1625, Idaho Falls, ID 83415 USA. EM massimo.salvatores@cea.fr NR 9 TC 5 Z9 5 U1 1 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 612 EP 619 DI 10.1080/18811248.2011.9711741 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400023 ER PT J AU Palmiotti, G Salvatores, M Assawaroongruengchot, M AF Palmiotti, Giuseppe Salvatores, Massimo Assawaroongruengchot, Monchai TI Impact of the Core Minor Actinide Content on Fast Reactor Reactivity Coefficients SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Fast Reactors and Related Fuel Cycles CY DEC 07-11, 2009 CL Japan Atom Energy Agcy, Kyoto, JAPAN SP Int Atom Energy Agcy HO Japan Atom Energy Agcy DE minor actinides; reactivity coefficients; fast reactors; sensitivity AB A major challenge for future fast reactors could be the recycling of minor actinides (MAs) in the core fuel in order to minimize waste and to meet both the sustainability objective and the reduction in the burden of geological disposal. Although the prevailing issues will be found in the development and validation of the appropriate fuels, the presence of MAs in the core can deteriorate the core reactivity coefficients. However, in this paper, we will show that there is no well-defined physical limit to the amount of MAs in the core fuel, and that a careful physics analysis can indicate the most appropriate measures that reduce the MA impact on the reactivity coefficients, and in particular, for Na-cooled reactors, on the Na void reactivity coefficient. C1 [Palmiotti, Giuseppe; Salvatores, Massimo; Assawaroongruengchot, Monchai] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Salvatores, Massimo] CEA, Cadarache, France. RP Salvatores, M (reprint author), Idaho Natl Lab, 2525 Fremont Ave,POB 1625, Idaho Falls, ID 83415 USA. EM massimo.salvatores@cea.fr NR 7 TC 6 Z9 6 U1 1 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR PY 2011 VL 48 IS 4 SI SI BP 628 EP 634 DI 10.1080/18811248.2011.9711743 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 788GM UT WOS:000292433400025 ER PT J AU Robey, RW Robey, JM Aulwes, R AF Robey, Robert W. Robey, Jonathan M. Aulwes, Rob TI In search of numerical consistency in parallel programming SO PARALLEL COMPUTING LA English DT Article DE Kahan summation; Knuth summation; Reproducibility; Numerical consistency; Parallel programming; Finite difference; Finite volume AB We present methods that can dramatically improve numerical consistency for parallel calculations across varying numbers of processors. By calculating global sums with enhanced precision techniques based on Kahan or Knuth summations, the consistency of the numerical results can be greatly improved with minimal memory and computational cost. This study assesses the value of the enhanced numerical consistency in the context of general finite difference or finite volume calculations. (C) 2011 Elsevier B.V. All rights reserved. C1 [Robey, Robert W.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. [Robey, Jonathan M.] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA. RP Robey, RW (reprint author), Los Alamos Natl Lab, X Computat Phys Div, XCP-2,MS T086, Los Alamos, NM 87545 USA. EM brobey@lanl.gov; robeyj@u.washington.edu; rta@lanl.gov OI Robey, Jonathan/0000-0003-3221-6271 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 14 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD APR-MAY PY 2011 VL 37 IS 4-5 BP 217 EP 229 DI 10.1016/j.parco.2011.02.009 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 787YI UT WOS:000292412200002 ER PT J AU Jung, JY Lal, R Jastrow, JD Tyler, DD AF Jung, Ji Young Lal, Rattan Jastrow, Julie D. Tyler, Donald D. TI Nitrogenous fertilizer effects on soil structural properties under switchgrass SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Switchgrass; Nitrogen fertilizer; Soil structure; Aggregate stability; Root; Soil organic carbon (SOC) ID FINE-ROOT DYNAMICS; FOREST ECOSYSTEMS; CARBON; AVAILABILITY; BIOMASS; STABILIZATION; FEEDBACKS; POROSITY; IMPACTS; MANURE AB Nitrogen (N) fertilization is needed to sustain the biomass yield of switchgrass (Panicum virgatum L, Poaceae) as a biofuel feedstock and, consequently, may influence the potential for soil quality improvements through soil organic carbon (SOC) sequestration. Therefore, the objective of this study was to assess how inorganic N application to switchgrass affects soil structural properties, which may feed back to affect the sustainability of biomass production. Soil was sampled at depths of 0-5, 5-10, and 10-15 cm in April and November 2008 during the fifth year of switchgrass growth in Milan, TN. Nitrogenous fertilizer was applied as NH(4)NO(3) at rates of 0, 67, and 202 kg N ha(-1) y(-1) beginning in the second year. Root weight density (RWD), root length density (RLD) and SOC concentration were measured under different N treatments as factors potentially influencing soil structural properties. Measured soil structural parameters included soil moisture characteristic curve (SMCC), and aggregate stability through wet-sieving. At 0-5 cm depth, spring RWD (3.8 mg cm(-3)) was significantly lower with 202 kg N ha(-1) application compared to 0 and 67 kg N ha(-1) (14.1 and 17.0 mg cm(-3), respectively). Although fall RWD did not vary among N treatments, RLD under 202 kg N ha(-1) (7.1 cm cm(-3)) was less than half of that at 0 kg N ha(-1) (15.7 cm cm(-3)). The SOC concentration was greater in both fertilized treatments than in the unfertilized treatment. Although SMCC varied somewhat between seasons, it did not exhibit any consistent trends attributable to N application. The proportion of macroaggregates for 0-10 cm depth were significantly greater in the 0 and 67 kg N ha(-1) treatments than in the 202 kg N ha(-1) treatment. These data suggest that excessive N application to switchgrass could have negative impacts on soil structural properties by reducing root biomass and length, crucial determinants of soil structure despite an increase in SOC. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jung, Ji Young; Lal, Rattan] Ohio State Univ, C MASC, Sch Environm & Nat Resources, Columbus, OH 43210 USA. [Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Tyler, Donald D.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, W Tennessee Res & Educ Ctr, Jackson, TN 38301 USA. RP Jung, JY (reprint author), Korea Polar Res Inst KOPRI, Div Life Sci, Inchon 406840, South Korea. EM jyjung@kopri.re.kr RI Lal, Rattan/D-2505-2013 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (via Oak Ridge National Laboratory) [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division under contracts DE-AC05-00OR22725 (via a subcontract from Oak Ridge National Laboratory to R.L.) and DE-AC02-06CH11357 (for J.D.J. at Argonne National Laboratory). We thank Tim Vugteveen for assistance with field sampling and Bert Bishop for the statistical analysis, Dr. Virginie Bouchard for the use of the root scanner, Basant Rimal for CN analysis, and Josh Beniston, Laura Bast, and two anonymous reviewers for helpful comments on earlier versions of this paper. NR 36 TC 12 Z9 14 U1 2 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD APR PY 2011 VL 141 IS 1-2 BP 215 EP 220 DI 10.1016/j.agee.2011.01.016 PG 6 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA 780GE UT WOS:000291841700024 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogana, T Akesson, TP Akimoto, G Akimov, AV Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBGA Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bobrovnikov, VB Bocci, A Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K De Asmundisa, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedes, G Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Dennis, C Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogana, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Ferro, F Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joram, C Jorge, PM Jorgensen, S Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maennerc, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, A Mann, WA Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGarvie, S McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RM Nevski, P Newman, PR Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculatia, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ottewell, B Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peeters, SJM Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantonia, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltranaa, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Stefanidis, E Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F VarelaRodriguez, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vertogardov, L Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G Von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, JC Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, S Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogana, T. Akesson, T. P. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Dos Santos Pedrosa, F. Baltasar Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. Acs da Costa, J. Barreiro Guimar Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Belhorma, B. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bischof, R. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J-B Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Boaretto, C. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Braccini, S. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Caprio, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervetto, M. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. De Asmundisa, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedes, G. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Dennis, C. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Gomez, M. M. Diaz Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogana, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Ferro, F. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez, S. de la Hoz, S. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J-F Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harper, R. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Hendriks, P. J. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hindson, D. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Hollins, T. I. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S-C Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, M. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joram, C. Jorge, P. M. Jorgensen, S. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E-E Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambacher, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebel, C. Lechowski, M. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Lepidis, J. Leroy, C. Lessard, J-R Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lynn, J. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maennerc, R. Maeno, T. Mattig, P. Mattig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Mangin-Brinet, M. Manjavidze, I. D. Mann, A. Mann, W. A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGarvie, S. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Migliaccio, A. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Miscetti, S. Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moye, T. H. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Nauyock, F. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neukermans, L. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Francisco, O. Norniella Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A-E Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, C. Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculatia, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ottewell, B. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Palmer, M. J. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadopoulou, Th D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peeters, S. J. M. Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantonia, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petereit, E. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M-A Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltranaa, D. Romero Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H-C Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schweiger, D. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Stefanidis, E. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockmanns, T. Stockton, M. C. Stodulski, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. VarelaRodriguez, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vertogardov, L. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. Von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, S. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Luminosity determination in pp collisions at root s=7 TeV using the ATLAS detector at the LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article AB Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at root s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0 < mu < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/- 11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/- 2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Dos Santos Pedrosa, F. Baltasar; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C; Gianotti, F.; Gibson, S. M.; Gildemeister, O.; Godlewski, J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grafstroem, P.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Joo, K. K.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Schweiger, D.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; VarelaRodriguez, F.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.; ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Bella, L. Aperio; Arnaez, O.; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Neukermans, L.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Petereit, E.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Savva, P.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Cameron, D.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Jorgensen, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Francisco, O. Norniella; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade 11000, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arguin, J-F; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S-C; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bansil, H. S.; Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Hollins, T. I.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; McMahon, T. J.; Moye, T. H.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogana, T.; Arik, E.; Arik, M.; Dogana, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Barbero, M.; Bartsch, D.; Bawa, H. S.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J-W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Palmer, M. J.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltranaa, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Valparaiso, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Xu, C.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys Nanjing, Nanjing 210093, CN Jiangsu, Peoples R China. [Feng, C.; Miao, J.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Univ, CNRS IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-21000 Copenhagen O, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Stodulski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Brandt, G.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dallas, TX 75080 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Bunse, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Mattig, S.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Wildt, M. A.; Zhu, H.] DESY, D-15738 Zeuthen, Germany. [Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] TU Dortmund, D-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhochschule Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Braccini, S.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Miscetti, S.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Gomez, M. M. Diaz; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Mangin-Brinet, M.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Vercesi, V.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculatia, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Odino, G. A.; Osculatia, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Phys Inst 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M-L; Belhorma, B.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] CNRS, LPSC, IN2P3, F-38026 Grenoble, France. [Albrand, S.; Andrieux, M-L; Belhorma, B.; Clement, B.; Collot, J.; Donini, J.; Harvey, A.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.] Univ Grenoble 1, F-38026 Grenoble, France. [Addy, T. N.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Acs da Costa, J. Barreiro Guimar; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E-E; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Schroer, N.] ZITI Ruprecht Karls Univ, Heidelberg, Germany. [Maennerc, R.; Schroer, N.] Lehrstuhl Informat V, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bischof, R.; Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Omachi, C.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, T. W.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jonsson, O.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; McGarvie, S.; McMahon, T. R.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Univ London, Dept Phys, Surrey TW20 0EX, England. [Baker, S.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. J.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Stefanidis, E.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, Univ Paris 06, CNRS IN2P3, FR-75272 Paris 05, France. [Akesson, T. P.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Oliver, C.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Duerdoth, I. P.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Univ Maine, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, M.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Nauyock, F.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Benchouk, C.; Bernardet, K.; Bousson, N.; Cerna, C.; Clemens, J. C.; Coadou, Y.; Correard, S.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Azuelos, G.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M-A; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Banfi, D.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN Sez Milano, IT-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Banfi, D.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Koletsou, I.; Lazzaro, A.; Lombardo, V. P.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Banerjee, P.; Baranov, S. P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, RU-117218 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Lambacher, M.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; Von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; De Asmundisa, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Napoli, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Ferrari, P.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Kayl, M. S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J-B; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lechowski, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, IN2P3 CNRS, Orsay, France. [Fayard, L.; Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Hindson, D.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, R. W. L.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Lynn, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Ottewell, B.; Ryder, N. C.; Short, D.; Tseng, J. C-L; Vertogardov, L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.; Yang, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino 142281, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Sci & Technol Facil Council, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Virchaux, M.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W; Schumm, B. A.; Seiden, A.; Taylor, G.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Damiani, D. S.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Harper, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Grenier, P.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A IS6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Bruncko, D.; Federic, P.; Ferencei, J.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, SK-04353 Kosice, Slovakia. [Gellerstedt, K.] Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Gellerstedt, K.; Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Hellman, S.; Johansen, M.; Jones, G.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K-J; Johansen, M.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron Pevensey, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Landsman, H.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Guttman, N.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Joram, C.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Toronto, ON V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Mann, W. A.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Gimenez, V. Castillo; Costa, M. J.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, Sw; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R; McPherson, R. A.; Plamondon, M.; Sobie, R.] Victoria Univ, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.; Wicke, D.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Lepidis, J.; Mattig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, F-69622 Villeurbanne, France. [Lopes, L.; Miguens, J. Machado; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Arfaoui, S.] CPPM, Marseille, France. [Bold, T.; Grabowska-Bold, I.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Carvalho, J.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Wildt, M. A.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA USA. Baku Inst Phys, Baku, Azerbaijan. [Kono, T.; Terwort, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Taiwan Tier 1, ASGC, Taipei 115, Taiwan. [Ge, P.; He, M.; Liu, D.; Meng, Z.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. Univ Oxford, Dept Phys, Oxford, England. [Yuan, L.] LPNHE, Paris, France. [Zhou, B.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] INFN Sez Pavia, Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Anulli, F.; Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.; Zanello, L.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.; Zanello, L.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Baroncelli, A.; Ceradini, F.; Di Luise, S.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, RUPHE, Fac Sci Ain Chock, Casablanca, Morocco. CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohammed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [Acharya, B. S.; El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN Grp Coll Udine, IT-33100 Udine, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Bellaterra 08193, Spain. [Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.] Inst Microelect Barcelona IMB CNM CSIC, Bellaterra 08193, Spain. [Castro, N. F.] LIP, Lisbon, Portugal. [Azuelos, G.; Forti, A.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Asfandiyarov, R.; Carvalho, J.; Muino, P. Conde; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, PT-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Amorim, A.; Castro, N. F.; Jorge, P. M.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Amorim, A.; Castro, N. F.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Akimoto, G.; Asai, S.; Azuma, Y.; Kessoku, K.; Terashi, K.; Ueda, I.] Dept Phys, Bunkyo Ku, JP-1130033 Tokyo, Japan. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Inerge, Inct/J-8679-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Wolters, Helmut/M-4154-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Andreazza, Attilio/E-5642-2011; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Nemecek, Stanislav/C-3487-2012; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; valente, paolo/A-6640-2010; Ferrando, James/A-9192-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Jakubek, Jan/E-6530-2011; Marti-Garcia, Salvador/F-3085-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; collins-tooth, christopher/A-9201-2012 OI Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Andreazza, Attilio/0000-0001-5161-5759; Della Pietra, Massimo/0000-0003-4446-3368; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; valente, paolo/0000-0002-5413-0068; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Doyle, Anthony/0000-0001-6322-6195; Stoicea, Gabriel/0000-0002-7511-4614; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 25 TC 26 Z9 26 U1 3 U2 70 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD APR PY 2011 VL 71 IS 4 AR 1630 DI 10.1140/epjc/s10052-011-1630-5 PG 37 WC Physics, Particles & Fields SC Physics GA 778JA UT WOS:000291698800013 ER PT J AU Sillekens, WH Nyberg, EA AF Sillekens, Wim H. Nyberg, Eric A. TI The TMS Magnesium Committee: Committed to the Advancement of Global Magnesium Technology SO JOM LA English DT Editorial Material C1 [Sillekens, Wim H.] TNO, Dutch Res Org, NL-5600 HE Eindhoven, Netherlands. [Nyberg, Eric A.] Pacific NW Natl Lab, Energy Mat & Mfg Dept, Richland, WA 99352 USA. RP Sillekens, WH (reprint author), TNO, Dutch Res Org, POB 6235, NL-5600 HE Eindhoven, Netherlands. EM wim.sillekens@tno.nl NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD APR PY 2011 VL 63 IS 4 BP 9 EP 9 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 777IO UT WOS:000291609300001 ER PT J AU Trabert, E AF Traebert, E. TI IIndrek Martinson - Life of a Spectroscopist TRIBUTE SO CANADIAN JOURNAL OF PHYSICS LA English DT Biographical-Item C1 [Traebert, E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Traebert, E.] Ruhr Univ Bochum, Fak Phys & Astron, AIRUB, D-44780 Bochum, Germany. RP Trabert, E (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD APR PY 2011 VL 89 IS 4 BP VII EP XI PG 5 WC Physics, Multidisciplinary SC Physics GA 775QA UT WOS:000291475700001 ER PT J AU Sterling, NC Witthoeft, MC Esteves, DA Bilodeau, RC Kilcoyne, ALD Red, EC Phaneuf, RA Alna'Washi, G Aguilar, A AF Sterling, N. C. Witthoeft, M. C. Esteves, D. A. Bilodeau, R. C. Kilcoyne, A. L. D. Red, E. C. Phaneuf, R. A. Alna'Washi, G. Aguilar, A. TI New atomic data for trans-iron elements and their application to abundance determinations in planetary nebulae SO CANADIAN JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 10th International Colloquium on AtomicSpectroscopy and Oscillator Strengths for Astrophysical andLaboratory Plasmas (ASOS) CY AUG 03-07, 2010 CL Berkeley, CA ID GIANT BRANCH STARS; NEUTRON-CAPTURE ELEMENTS; EFFECTIVE COLLISION STRENGTHS; S-PROCESS; CHARGE-TRANSFER; DIELECTRONIC RECOMBINATION; FORBIDDEN TRANSITIONS; CROSS-SECTIONS; MASSIVE STARS; CONFIGURATIONS AB Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular spectroscopy is a promising new tool for such studies. In PNe, n-capture element abundance determinations reveal details of s-process nucleosynthesis and convective mixing in evolved low-mass stars, as well as the chemical evolution of elements that cannot be detected in stellar spectra. Only one or two ions of a given trans-iron element can typically be detected in individual nebulae. Elemental abundance determinations thus require corrections for the abundances of unobserved ions. Such corrections rely on the availability of atomic data for processes that control the ionization equilibrium of nebulae (e. g., photoionization cross sections and rate coefficients for various recombination processes). Until recently, these data were unknown for virtually all n-capture element ions. For the first six ions of Se, Kr, and Xe - the three most widely detected n-capture elements in PNe we are calculating photoionization cross sections and radiative and dielectronic recombination rate coefficients using the multi-configuration Breit-Pauli atomic structure code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with a multichannel Landau-Zener code. To calibrate these calculations, we have measured absolute photoionization cross sections of Se and Xe ions at the Advanced Light Source synchrotron radiation facility. These atomic data can be incorporated into photoionization codes, which we will use to derive ionization corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. Using Monte Carlo simulations, we will investigate the effects of atomic data uncertainties on the derived abundances, illuminating the systems and atomic processes that require further analysis. These results are critical for honing nebular spectroscopy into a more effective tool for investigating the production and chemical evolution of trans-iron elements in the Universe. C1 [Sterling, N. C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Witthoeft, M. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Esteves, D. A.; Phaneuf, R. A.; Alna'Washi, G.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Bilodeau, R. C.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Kilcoyne, A. L. D.; Red, E. C.; Aguilar, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sterling, NC (reprint author), Michigan State Univ, Dept Phys & Astron, 3248 Biomed Phys Sci, E Lansing, MI 48824 USA. EM sterling@pa.msu.edu RI Kilcoyne, David/I-1465-2013; OI Bilodeau, Rene/0000-0001-8607-2328 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF-00098, DE-FG02-03ER15424]; National Science Foundation [AST-0901432]; NASA [06-APRA206-0049]; NASA Goddard Space Flight Center [NNX08AJ96G] FX We acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contracts DE-AC02-05CH11231, DE-AC03-76SF-00098, and grant DE-FG02-03ER15424. N. C. Sterling acknowledges support from an National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0901432 and from NASA grant 06-APRA206-0049. D. Esteves acknowledges support from grant NNX08AJ96G with NASA Goddard Space Flight Center and the Doctoral Fellowship Program at the Advanced Light Source. We thank N. R. Badnell for many enlightening discussions regarding AUTOSTRUCTURE, and P. Stancil for helpful discussions and providing a code for our CT calculations. NR 57 TC 7 Z9 7 U1 0 U2 7 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4204 EI 1208-6045 J9 CAN J PHYS JI Can. J. Phys. PD APR PY 2011 VL 89 IS 4 BP 379 EP 385 DI 10.1139/P10-105 PG 7 WC Physics, Multidisciplinary SC Physics GA 775QA UT WOS:000291475700009 ER PT J AU Trabert, E Ishikawa, Y Santana, JA Del Zanna, G AF Traebert, Elmar Ishikawa, Yasuyuki Santana, Juan A. Del Zanna, Giulio TI The 3s(2)3p3d F-3(o) term in the Si-like spectrum of Fe (Fe XIII) SO CANADIAN JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 10th International Colloquium on AtomicSpectroscopy and Oscillator Strengths for Astrophysical andLaboratory Plasmas (ASOS) CY AUG 03-07, 2010 CL Berkeley, CA ID PERTURBATION-THEORY CALCULATIONS; BEAM-FOIL SPECTRA; EFFECTIVE COLLISION STRENGTHS; FINE-STRUCTURE TRANSITIONS; ENERGY-LEVEL SCHEME; ION STORAGE-RING; OSCILLATOR-STRENGTHS; EXTREME-ULTRAVIOLET; SOLAR SPECTRUM; EMISSION-LINES AB The structure of Si-like ions is discussed for the example of iron (spectrum Fe XIII). The 3s(2)3p3d F-3(o) term with its three fine structure levels of very different lifetimes has eluded the early observations. Meanwhile, complementary experimental techniques have permitted to track these levels. Theory has also evolved from approximate techniques to accurate ab initio calculations, the results of which cast doubt on some earlier Fe XIII line identifications and guide the search for and the identification of the correct lines in solar corona spectra. C1 [Traebert, Elmar] Ruhr Univ Bochum, Fak Phys & Astron, Astron Inst, D-44780 Bochum, Germany. [Traebert, Elmar] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Ishikawa, Yasuyuki; Santana, Juan A.] Univ Puerto Rico, Dept Chem, Rio Piedras, PR 00931 USA. [Ishikawa, Yasuyuki; Santana, Juan A.] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. [Del Zanna, Giulio] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. RP Trabert, E (reprint author), Ruhr Univ Bochum, Fak Phys & Astron, Astron Inst, D-44780 Bochum, Germany. EM traebert@astro.rub.de RI Santana, Juan A./G-4329-2011 OI Santana, Juan A./0000-0003-2349-6312 FU Lawrence Livermore National Laboratory [B579693]; NASA [NNH04AA751]; Deutsche Forschungsgemeinschaft (DFG); US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07-NA27344]; STFC (APAP network) FX The work at UPR is supported in part by the Lawrence Livermore National Laboratory under subcontract No. B579693, and the work was also supported by NASA Astronomy and Physics Research and Analysis Program under contract no. NNH04AA751. ET acknowledges support by the Deutsche Forschungsgemeinschaft (DFG). Some of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344. Support from STFC (Advanced Fellowship and APAP network) is acknowledged by GDZ. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). NR 72 TC 1 Z9 1 U1 0 U2 1 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4204 EI 1208-6045 J9 CAN J PHYS JI Can. J. Phys. PD APR PY 2011 VL 89 IS 4 BP 403 EP 412 DI 10.1139/P11-007 PG 10 WC Physics, Multidisciplinary SC Physics GA 775QA UT WOS:000291475700012 ER PT J AU Chen, MH Cheng, KT AF Chen, M. H. Cheng, K. T. TI Hyperfine quenching of the metastable 4s4p P-3(0) and P-3(2) states of Zn-like ions SO CANADIAN JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 10th International Colloquium on AtomicSpectroscopy and Oscillator Strengths for Astrophysical andLaboratory Plasmas (ASOS) CY AUG 03-07, 2010 CL Berkeley, CA ID HELIUM-LIKE IONS; SPECTRA; ATOMS; TRANSITIONS; SEQUENCE; PLASMAS; LEVEL; REAL; ZINC AB The hyperfine-induced 4s4p P-3(0),(2)-4s(2) S-1(0) transition rates for Zn-like ions with Z = 30-66 are calculated using a large scale relativistic configuration-interaction method. Comparisons are made between different approaches to hyperfine quenching studies, and discussions are given to the significance of various contributions. For the P-3(0) state, the effect of the P-1(1) state on hyperfine quenching is found to be quite substantial and cannot be ignored in spite of the large energy separation. For the P-3(2) state, hyperfine quenching leads to different decay rates to the ground state for different hyperfine levels and the induced decays can dominated over the unperturbed M2 transition. The present results are compared with the other theoretical predictions, and reasons for the discrepancies are discussed. C1 [Chen, M. H.; Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cheng, KT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ktcheng@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We thank Professor W. R. Johnson for invaluable help in carrying out Bohr-Weisskopf correction calculations using Fermi nuclear magnetization distributions. NR 34 TC 3 Z9 3 U1 0 U2 2 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0008-4204 EI 1208-6045 J9 CAN J PHYS JI Can. J. Phys. PD APR PY 2011 VL 89 IS 4 BP 473 EP 482 DI 10.1139/P11-025 PG 10 WC Physics, Multidisciplinary SC Physics GA 775QA UT WOS:000291475700020 ER PT J AU Baldauf, T Seljak, U Senatore, L AF Baldauf, Tobias Seljak, Uros Senatore, Leonardo TI Primordial non-Gaussianity in the bispectrum of the halo density field SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE galaxy clustering; non-gaussianity; inflation; power spectrum ID COSMOLOGICAL PERTURBATION-THEORY; INFLATIONARY UNIVERSE; INITIAL CONDITIONS; FLUCTUATIONS; GALAXIES; BIAS; SCENARIOS; EVOLUTION; CLUSTERS; FLATNESS AB The bispectrum vanishes for linear Gaussian fields and is thus a sensitive probe of non-linearities and non-Gaussianities in the cosmic density field. Hence, a detection of the bispectrum in the halo density field would enable tight constraints on non-Gaussian processes in the early Universe and allow inference of the dynamics driving inflation. We present a tree level derivation of the halo bispectrum arising from non-linear clustering, non-linear biasing and primordial non-Gaussianity. A diagrammatic description is developed to provide an intuitive understanding of the contributing terms and their dependence on scale, shape and the non-Gaussianity parameter f(NL). We compute the terms based on a multivariate bias expansion and the peak-background split method and show that non-Gaussian modifications to the bias parameters lead to amplifications of the tree level bispectrum that were ignored in previous studies. Our results are in a good agreement with published simulation measurements of the halo bispectrum. Finally, we estimate the expected signal to noise on f(NL) and show that the constraint obtainable from the bispectrum analysis significantly exceeds the one obtainable from the power spectrum analysis. C1 [Baldauf, Tobias; Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Senatore, Leonardo] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Baldauf, T (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM baldauf@physik.uzh.ch; seljak@physik.uzh.ch; senatore@stanford.edu FU DOE; Swiss National Foundation [200021-116696/1]; WCU [R32-2009-000-10130-0] FX We acknowledge M. Zaldarriaga for initial collaboration on this project and for many discussions. Furthermore, we would like to thank N. Hamaus, P. McDonald, C. Porciani, F. Schmidt, R. Scoccimarro and in particular E. Sefusatti for helpful discussions. Special thanks to V. Desjacques both for fruitful discussions and comments on the manuscript. We would also like to thank T. Nishimichi for providing the data points of the simulation bispectrum measurement and the Asian Pacific Centre for Theoretical Physics in Pohang, Korea, for their kind hospitality during the workshop on "Cosmology and Fundamental Physics". This work is supported by DOE, the Swiss National Foundation under contract 200021-116696/1 and WCU grant R32-2009-000-10130-0. NR 62 TC 36 Z9 36 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2011 IS 4 AR 006 DI 10.1088/1475-7516/2011/04/006 PG 38 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 772TJ UT WOS:000291259000006 ER PT J AU Linder, EV Smith, TL AF Linder, Eric V. Smith, Tristan L. TI Dark before light: testing the cosmic expansion history through the cosmic microwave background SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy experiments; cosmological parameters from CMBR; dark energy theory ID ANISOTROPIES; TELESCOPE AB The cosmic expansion history proceeds in broad terms from a radiation dominated epoch to matter domination to an accelerated, dark energy dominated epoch. We investigate whether intermittent periods of acceleration (from a canonical, minimally coupled scalar field) are possible in the early universe - between Big Bang nucleosynthesis (BBN) and recombination and beyond. We establish that the standard picture is remarkably robust: anisotropies in the cosmic microwave background consistent with Lambda CDM will exclude any extra period of accelerated expansion between 1 <= z less than or similar to 10(5) (corresponding to 5 x 10(-4) eV <= T less than or similar to 25 eV). C1 [Linder, Eric V.; Smith, Tristan L.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.; Smith, Tristan L.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. RP Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. EM evlinder@lbl.gov; tlsmith@berkeley.edu FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0] FX We thank Ed Copeland, Marina Cortes, Sudeep Das, Roland de Putter, Kim Griest, and Wayne Hu for useful discussions. EL thanks the Centro de Ciencias Pedro Pascual in Benasque, Spain and TLS thanks the Institute for the Early Universe, Ewha University, Korea for hospitality. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the World Class University grant R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea. NR 15 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2011 IS 4 AR 001 DI 10.1088/1475-7516/2011/04/001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 772TJ UT WOS:000291259000001 ER PT J AU McDonald, P AF McDonald, Patrick TI How to generate a significant effective temperature for cold dark matter, from first principles SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; redshift surveys; cosmic web; baryon acoustic oscillations ID PAIRWISE VELOCITY DISPERSION; LY-ALPHA FOREST; GALAXY POWER SPECTRUM; N-BODY SIMULATIONS; DIGITAL SKY SURVEY; COSMOLOGICAL PERTURBATION-THEORY; BARYONIC ACOUSTIC-OSCILLATIONS; HALO OCCUPATION DISTRIBUTION; 2-POINT CORRELATION-FUNCTION; RENORMALIZATION-GROUP METHOD AB I show how to reintroduce velocity dispersion into perturbation theory (PT) calculations of structure in the Universe, i.e., how to go beyond the pressureless fluid approximation, starting from first principles. This addresses a possible deficiency in uses of PT to compute clustering on the weakly non-linear scales that will be critical for probing dark energy. Specifically, I show how to derive a non-negligible value for the (initially tiny) velocity dispersion of dark matter particles, , where delta v is the deviation of particle velocities from the local bulk flow. The calculation is essentially a renormalization of the homogeneous (zero order) dispersion by fluctuations 1st order in the initial power spectrum. For power law power spectra with n > -3, the small-scale fluctuations diverge and significant dispersion can be generated from an arbitrarily small starting value - the dispersion level is set by an equilibrium between fluctuations generating more dispersion and dispersion suppressing fluctuations. For an n = -1.4 power law normalized to match the present non-linear scale, the dispersion would be A 100 km s(-1). This n corresponds roughly to the slope on the non-linear scale in the real ACDM Universe, but ACDM contains much less initial small-scale power not enough to bootstrap the small starting dispersion up to a significant value within linear theory (viewed very broadly, structure formation has actually taken place rather suddenly and recently, in spite of the usual "hierarchical" description). The next order PT calculation drives the ACDM dispersion up into balance with growing structure, and should eventually account for dispersion effects seen recently in simulations (I have not yet carried out that calculation). C1 [McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McDonald, Patrick] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McDonald, Patrick] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. RP McDonald, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM pvmcdonald@lbl.gov OI McDonald, Patrick/0000-0001-8346-8394 FU Beatrice D. Tremaine Fellowship FX I thank Roman Scoccimarro for helpful comments on the manuscript and Lev Kofman for helpful conversations. I acknowledge the support of the Beatrice D. Tremaine Fellowship. NR 117 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2011 IS 4 AR 032 DI 10.1088/1475-7516/2011/04/032 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 772TJ UT WOS:000291259000032 ER PT J AU de Galisteo, JPO Cachorro, V Toledano, C Torres, B Laulainen, N Bennouna, Y de Frutos, A AF Ortiz de Galisteo, J. P. Cachorro, V. Toledano, C. Torres, B. Laulainen, N. Bennouna, Y. de Frutos, A. TI Diurnal cycle of precipitable water vapor over Spain SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE PWV; atmospheric water vapor content; diurnal regime; GPS ID GLOBAL POSITIONING SYSTEM; RADIO INTERFEROMETRY; GPS METEOROLOGY; GEODESY; VARIABILITY; JAPAN; AREA AB Knowledge of the diurnal cycle of precipitable water vapor (PWV) is very limited owing to the lack of data with sufficient temporal resolution. Currently, GPS receivers have proven to be a suitable technique to determine PWV diurnal variations. In this study, the annual and seasonal diurnal cycles of PWV have been obtained from GPS data for 10 locations over Spain. The minimum value of PWV is reached approximately at the same time at all the stations, similar to 0430-0530 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The annual sub-daily variability ranges from 0.41 to 1.35 mm (3-7%). The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The winter cycle is quite similar at all locations, whereas in summer local effects are felt strongly, making the diurnal cycle quite different between stations. The PWV mean diurnal cycle is strongest in summer and weakest in spring, with a sub-daily variability of 1.34 and 0.66 mm respectively. Harmonic analysis shows that the first two harmonics can explain 97% of the variance. The diurnal (24 h) harmonic explains 85% of the variance, has mean amplitude of 0.40 mm, and the peak time is from early afternoon to evening. The semi-diurnal (12 h) harmonic is weaker, with an amplitude of 0.13 mm, and peak time between 0400 and 1000 UTC. The diurnal cycle of temperature alone would be a proxy for PWV cycle during the night, but not during the daytime. The breeze regime is the main factor responsible for the phase lag between PWV and temperature cycles during daytime. No clear correlation between the daily cycle of precipitation and PWV has been found. Copyright (C) 2011 Royal Meteorological Society C1 [Ortiz de Galisteo, J. P.] Univ Valladolid, Fac Ciencias, Grp Opt Atmosfer, GOA UVA, Valladolid 47014, Spain. [Ortiz de Galisteo, J. P.] Meteorol State Agcy, AEMET, Territorial Delegation C, Spain. [Laulainen, N.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP de Galisteo, JPO (reprint author), Univ Valladolid, Fac Ciencias, Grp Opt Atmosfer, GOA UVA, Valladolid 47014, Spain. EM jportiz@goa.uva.es RI Toledano, Carlos/J-3672-2012; Ortiz-de-Galisteo, Jose Pablo/O-4607-2014; OI Toledano, Carlos/0000-0002-6890-6648; Ortiz-de-Galisteo, Jose Pablo/0000-0001-6649-8970; Cachorro, Victoria/0000-0002-4627-9444 FU CICYT [CGL2008-05939-C03-01/CLI, CGL2009-05693-C03/CLI, CGL2010-09480-E]; Junta de Castilla y Leon Excellence Program; US Department of Energy [DE-AC06-76RLO 1830] FX The GOA-UVA is funded by CICYT projects CGL2008-05939-C03-01/CLI, CGL2009-05693-C03/CLI and CGL2010-09480-E, and under the project of Junta de Castilla y Leon Excellence Program. One of us (NL) was supported by the US Department of Energy under Contract DE-AC06-76RLO 1830. Pacific Northwest National Laboratory is operated for the US DOE by Battelle Memorial Institute. NR 34 TC 10 Z9 10 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD APR PY 2011 VL 137 IS 657 BP 948 EP 958 DI 10.1002/qj.811 PN B PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 777CU UT WOS:000291592800009 ER PT J AU Menikoff, R AF Menikoff, R. TI Hot spot formation from shock reflections SO SHOCK WAVES LA English DT Article DE Hot spots; Shock reflection; Nitromethane ID LIQUID NITROMETHANE; DETONATION AB Heterogeneities sensitize an explosive to shock initiation. This is due to hot-spot formation and the sensitivity of chemical reaction rates to temperature. Here, we describe a numerical experiment aimed at elucidating a mechanism for hot-spot formation that occurs when a shock wave passes over a high-density impurity. The simulation performed is motivated by a physical experiment in which glass beads are added to liquid nitromethane. The impedance mismatch between the beads and the nitromethane results in shock reflections. These, in turn, give rise to transverse waves along the lead shock front. Hot spots arise on local portions of the lead front with a higher shock strength, rather than on the reflected shocks behind the beads. Moreover, the interactions generated by reflected waves from neighboring beads can significantly increase the peak hot-spot temperature when the beads are suitably spaced. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Menikoff, R (reprint author), Los Alamos Natl Lab, Mail Stop B214, Los Alamos, NM 87545 USA. EM rtm@lanl.gov FU U.S. Department of Energy at LANL [DE-AC52-06NA25396, 20080015DR] FX This work was carried out under the auspices of the U.S. Department of Energy at LANL under contract DE-AC52-06NA25396 as part of LDRD project on hot spots (project # 20080015DR). NR 16 TC 11 Z9 12 U1 2 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD APR PY 2011 VL 21 IS 2 BP 141 EP 148 DI 10.1007/s00193-011-0303-5 PG 8 WC Mechanics SC Mechanics GA 777FN UT WOS:000291601400007 ER PT J AU Cheng, HY AF Cheng, Hai-Yang TI Remarks on Strong CP-Violating Lagrangians SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID ELECTRIC-DIPOLE MOMENT; LARGE-N LIMIT; QUANTUM CHROMODYNAMICS; CHIRAL DYNAMICS; NEUTRON; MODEL AB Owing to a different treatment of the vacuum alignment, the strong CP-violating Lagrangian obtained by Di Vecchia, Veneziano, and Witten (DVW) 3 decades ago does not look quite the same as the one originally derived by Baluni at the quark or hadron level. We show that they are consistent with each other and emphasize that, within the DVW approach, the theta GG term is not entirely removed away after the vacuum is rotated from the CP-odd state to the CP-even one; strong CP violation resides not only in the quark mass terms but also in the residual topological sector. Contrary to some claims, it is necessary to include the SU(3)-singlet eta(0) tadpole contribution for strong CP-odd effects induced by the Baluni-type Lagrangian to ensure that strong CP violation vanishes in the zero axial anomaly limit. C1 [Cheng, Hai-Yang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Cheng, Hai-Yang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Cheng, Hai-Yang] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. FU National Science Council of the R.O.C. [NSC97-2112-M-001-004-MY3] FX We wish to thank the Physics Department of Brookhaven National Laboratory and the C. N. Yang Institute for Theoretical Physics at SUNY Stony Brook for hospitality. This research was supported in part by the National Science Council of the R.O.C. under Grant No. NSC97-2112-M-001-004-MY3. NR 20 TC 1 Z9 1 U1 0 U2 1 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD APR PY 2011 VL 49 IS 2 BP 580 EP 588 PG 9 WC Physics, Multidisciplinary SC Physics GA 772KU UT WOS:000291233600003 ER PT J AU Salisbury, CM Gillespie, RB Tan, HZ Barbagli, F Salisbury, JK AF Salisbury, Curt M. Gillespie, R. Brent Tan, Hong Z. Barbagli, Federico Salisbury, J. Kenneth TI What You Can't Feel Won't Hurt You: Evaluating Haptic Hardware Using a Haptic Contrast Sensitivity Function SO IEEE TRANSACTIONS ON HAPTICS LA English DT Article DE Haptics; design; psychophysics; texture; evaluation of haptic devices; haptic contrast sensitivity function (HCSF) ID PERCEIVED INSTABILITY; ROUGHNESS PERCEPTION; TEXTURE-PERCEPTION; FREQUENCY AB In this paper, we extend the concept of the contrast sensitivity function-used to evaluate video projectors-to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures. C1 [Salisbury, Curt M.] Sandia Natl Labs, Intelligent Syst Robot & Cybernet Grp, Albuquerque, NM 87123 USA. [Gillespie, R. Brent] Univ Michigan, Haptix Lab, Ann Arbor, MI 48109 USA. [Tan, Hong Z.] Purdue Univ, Hapt Interface Res Lab, W Lafayette, IN 47907 USA. [Barbagli, Federico] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA. [Salisbury, J. Kenneth] Stanford Univ, BioRobot Lab, Stanford, CA 93405 USA. RP Salisbury, CM (reprint author), Sandia Natl Labs, Intelligent Syst Robot & Cybernet Grp, 1515 Eubank SE,BLDG 895,RM 2263, Albuquerque, NM 87123 USA. EM cmsalis@sandia.gov; brentg@umich.edu; hongtan@purdue.edu; fedster@gmail.com; jks@robotics.stanford.edu RI Gillespie, Brent/K-3431-2016 OI Gillespie, Brent/0000-0002-1051-0026 FU Sandia National Laboratories FX The first author was supported in part by Sandia National Laboratories. Portions of this article reprinted with permission from [1], (C) 2009 IEEE. NR 31 TC 4 Z9 4 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1412 EI 2329-4051 J9 IEEE T HAPTICS JI IEEE Trans. Haptics PD APR-JUN PY 2011 VL 4 IS 2 BP 134 EP 146 DI 10.1109/ToH.2011.5 PG 13 WC Computer Science, Cybernetics SC Computer Science GA 774OP UT WOS:000291396300006 PM 26963164 ER PT J AU Antropov, VP Solontsov, A AF Antropov, V. P. Solontsov, A. TI The influence of quantum spin fluctuations on magnetic instability SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; METALS AB We analyze the magnetic stability of the ground state of magnetic systems, taking into account strongly coupled zero-point spin fluctuations. The formalism is applied to the elemental 3d-metals Fe and Ni and to two phases of the 5f-metal Pu. Strong suppression of local magnetism due to spin fluctuations is obtained for x alpha- Pu. Such inclusion of spin fluctuations changes the character of the magnetism in alpha-Pu from localized to itinerant. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549656] C1 [Antropov, V. P.; Solontsov, A.] US DOE, Ames Lab, Ames, IA 50011 USA. [Solontsov, A.] AA Bochvar Inst Inorgan Mat, Moscow 123060, Russia. [Solontsov, A.] State Ctr Condensed Matter Phys, Moscow 115569, Russia. RP Antropov, VP (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM antropov@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; ROSATOM; Russian Foundation for Basic Research [06-02-17291] FX Work at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. AS would also like to acknowledge the support of ROSATOM and the Russian Foundation for Basic Research (grant No 06-02-17291). NR 18 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E116 DI 10.1063/1.3549656 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100302 ER PT J AU Brown, G Rusanu, A Daene, M Nicholson, DM Eisenbach, M Fidler, J AF Brown, G. Rusanu, A. Daene, M. Nicholson, D. M. Eisenbach, M. Fidler, J. TI Improved methods for calculating thermodynamic properties of magnetic systems using Wang-Landau density of states SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB The Wang-Landau method [F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001)] is an efficient way to calculate the density of states (DOS) for magnetic systems, and the DOS can then be used to rapidly calculate the thermodynamic properties of the system. A technique is presented that uses the DOS for a simple Hamiltonian to create a stratified sample of configurations which are then used calculate a "warped'' DOS for more realistic Hamiltonians. This technique is validated for classical models of bcc Fe with exchange interactions of increasing range, but its real value is using the DOS for a model Hamiltonian calculated on a workstation to select the stratified set of configurations whose energies can then be calculated for a density-functional Hamiltonian. The result is an efficient first-principles calculation of thermodynamic properties such as the specific heat and magnetic susceptibility. Another technique uses the sample configurations to calculate the parameters of a model exchange interaction using a least-squares approach. The thermodynamic properties can be subsequently evaluated using traditional Monte Carlo techniques for the model exchange interaction. Finally, a technique that uses the configurations to train a neural network to estimate the configuration energy is also discussed. This technique could potentially be useful in identifying the configurations most important in calculating the "warped'' DOS. (C) 2011 American Institute of Physics. [doi:10.1063/1.3565413] C1 [Brown, G.; Rusanu, A.; Daene, M.; Nicholson, D. M.] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37830 USA. [Eisenbach, M.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37830 USA. [Fidler, J.] Pine Grove Area High Sch, Pine Grove, PA 17963 USA. RP Brown, G (reprint author), Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37830 USA. EM gbrown@fsu.edu RI Rusanu, Aurelian/A-8858-2013; Dane, Markus/H-6731-2013; Brown, Gregory/F-7274-2016; OI Dane, Markus/0000-0001-9301-8469; Brown, Gregory/0000-0002-7524-8962; Eisenbach, Markus/0000-0001-8805-8327 FU UT-Battelle, LLC [DE-AC05-00OR22725]; Laboratory Directed Research and Development Program (ORNL); Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (U.S. DOE); Division of Materials Sciences and Engineering; Office of Basic Energy Sciences (U.S. DOE) FX This work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725, and sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (U.S. DOE), and by the Division of Materials Sciences and Engineering; Office of Basic Energy Sciences (U.S. DOE). NR 2 TC 0 Z9 0 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E161 DI 10.1063/1.3565413 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100347 ER PT J AU Eisenbach, M Nicholson, DM Rusanu, A Brown, G AF Eisenbach, M. Nicholson, D. M. Rusanu, A. Brown, G. TI First principles calculation of finite temperature magnetism in Fe and Fe3C SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPIN DYNAMICS AB Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today's large massively parallel computers by combining a classical Wang-Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3562218] C1 [Eisenbach, M.; Nicholson, D. M.; Rusanu, A.; Brown, G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Eisenbach, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM eisenbachm@ornl.gov RI Rusanu, Aurelian/A-8858-2013; Brown, Gregory/F-7274-2016; OI Brown, Gregory/0000-0002-7524-8962; Eisenbach, Markus/0000-0001-8805-8327 FU U.S. Department of Energy (U.S. DOE) [DE-AC05-00OR22725]; Center for Nanophase Material Sciences, Scientific User Facilities Division; Center for Defect Physics, an Energy Frontier Research Center, U.S. DOE Office of Basic Energy Sciences; U.S. DOE Office of Energy Efficiency and Renewable Energy; U.S. DOE, Office of Science FX This work was conducted at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle for the U.S. Department of Energy (U.S. DOE) under Contract No. DE-AC05-00OR22725 and sponsored in parts by the Center for Nanophase Material Sciences, Scientific User Facilities Division, the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences, and by the U.S. DOE Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program. This research used resources of the Oak Ridge Leadership Computing Facility at ORNL, which is supported by the U.S. DOE, Office of Science. NR 9 TC 11 Z9 11 U1 4 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E138 DI 10.1063/1.3562218 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100324 ER PT J AU Fishman, RS Haraldsen, JT AF Fishman, Randy S. Haraldsen, Jason T. TI Global stability and the magnetic phase diagram of a geometrically frustrated triangular lattice antiferromagnet SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB While a magnetic phase may be both locally stable and globally unstable, global stability always implies local stability. The distinction between local and global stability is studied on a geometrically-frustrated triangular lattice antiferromagnet with single-ion anisotropy D that favors alignment along the z axis. Whereas the critical value D(c)(loc) for local stability may be discontinuous across a magnetic phase boundary, the critical value D(c)(glo) >= D(c)(loc) for global stability must be continuous. We demonstrate this behavior across the phase boundary between collinear three and four sublattice phases that are stable for large D. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553780] C1 [Fishman, Randy S.; Haraldsen, Jason T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Haraldsen, Jason T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM fishmanrs@ornl.gov RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; FU Division of Materials Science and Engineering of the U.S. Department of Energy; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This research was sponsored by the Division of Materials Science and Engineering of the U.S. Department of Energy (R.F. and J.H.) and under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory (J.H.) under Contract No. DE-AC52-06NA25396 NR 8 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E117 DI 10.1063/1.3553780 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100303 ER PT J AU He, C Zhai, X Mehta, VV Wong, FJ Suzuki, Y AF He, C. Zhai, X. Mehta, V. V. Wong, F. J. Suzuki, Y. TI Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FERROMAGNETISM; PEROVSKITES AB We have studied epitaxially grown superlattices of CaRuO3/CaMnO3 as well as an alloy film of CaMn0.5Ru0.5O3 on (001) SrTiO3 substrates. In contrast to previous experiments, we have studied CRO/CMO superlattices with a constant CRO thickness and variable CMO thickness. All superlattices exhibit Curie temperatures (T-C) of 110 K. The saturated magnetization per interfacial Mn cation has been found to be 1.1 mu(B)/Mn ion. The T-C's of the superlattices are much lower than the T-C of the alloy film while the saturated magnetization values are larger than that of the alloy film. These observations suggest that interdiffusion alone cannot account for ferromagnetism in the superlattices and that double exchange induced FM must play a role at the interfaces. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3561448] C1 [He, C.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mehta, V. V.; Wong, F. J.; Suzuki, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP He, C (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM he@berkeley.edu FU Army Research Office; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Army Research Office MURI program. V.V.M. is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 18 TC 4 Z9 4 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D729 DI 10.1063/1.3561448 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100260 ER PT J AU Jia, L Koehler, M McCarthy, D McGuire, MA Keppens, V AF Jia, Lin Koehler, Michael McCarthy, David McGuire, Michael A. Keppens, Veerle TI Structural and magnetic properties of Tb6Fe1-xCoxBi2 (0 <= x <= 0.375) compounds SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INTERMETALLIC COMPOUNDS; RARE-EARTH AB Tb(6)Fe(1-x)C(o)xBi(2) (x = 0, 0.125, 0.250, 0.375) compounds have been synthesized, and the structural and magnetic properties are reported. All of the compounds crystallize in the hexagonal Zr6CoAs2-type structure at room temperature, but low temperature x-ray diffraction measurements on the Co-doped samples Tb6Fe0.750Co0.250Bi2 and Tb6Fe0.625Co0.375Bi2 show a splitting of the Bragg peaks, indicating a symmetry lowering structural phase transition at similar to 40 K. Two magnetic transitions are observed, with T-C1 similar to 250 K and T-C2 similar to 70 K. While the high temperature transition corresponds to the ferromagnetic ordering of the Tb moments, the lower transition is most likely linked to the structural transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3565515] C1 [Jia, Lin; Koehler, Michael; McCarthy, David; Keppens, Veerle] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [McGuire, Michael A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jia, L (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM vkeppens@utk.edu RI McGuire, Michael/B-5453-2009; Koehler, Michael/H-9057-2012 OI McGuire, Michael/0000-0003-1762-9406; FU DOD DEPSCoR [N00014-08-1-0783]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Work at The University of Tennessee is supported by DOD DEPSCoR Grant No. N00014-08-1-0783. Work at Oak Ridge National Laboratory was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 9 TC 2 Z9 2 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E331 DI 10.1063/1.3565515 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100382 ER PT J AU Jimenez, E Camarero, J Perna, P Mikuszeit, N Teran, FJ Sort, J Nogues, J Garcia-Martin, JM Hoffmann, A Dieny, B Miranda, R AF Jimenez, E. Camarero, J. Perna, P. Mikuszeit, N. Teran, F. J. Sort, J. Nogues, J. Garcia-Martin, J. M. Hoffmann, A. Dieny, B. Miranda, R. TI Role of anisotropy configuration in exchange-biased systems SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BILAYERS; FEF2-FE AB We present a systematic study of the anisotropy configuration effects on the magnetic properties of exchange-biased ferromagnetic/antiferromagnetic (FM/AFM) Co/IrMn bilayers. The interfacial unidirectional anisotropy is set extrinsically via a field cooling procedure with the magnetic field misaligned by an angle beta(FC) with respect to the intrinsic FM uniaxial anisotropy. High resolution angular dependence in-plane resolved Kerr magnetometry measurements have been performed for three different anisotropy arrangements, including collinear beta(FC) = 0 degrees and two opposite noncollinear cases. The symmetry breaking of the induced noncollinear configurations results in a peculiar nonsymmetric magnetic behavior of the angular dependence of magnetization reversal, coercivity, and exchange bias. The experimental results are well reproduced without any fitting parameter by using a simple model including the induced anisotropy configuration. Our finding highlights the importance of the relative angle between anisotropies in order to properly account for the magnetic properties of exchange-biased FM/AFM systems. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3562507] C1 [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. [Camarero, J.; Perna, P.; Teran, F. J.; Miranda, R.] Inst Madrileno Estudios Avanzados Nanociencia IMD, Madrid 28049, Spain. [Sort, J.; Nogues, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain. [Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain. [Nogues, J.] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Spain. [Garcia-Martin, J. M.] Inst Microelect Madrid IMM CNM CSIC, Tres Cantos 28760, Spain. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Dieny, B.] INAC CEA, SPINTEC, CEA CNRS UJF INPG, F-38054 Grenoble, France. RP Jimenez, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain. EM erika.jimenez@uam.es RI Garcia-Martin, Jose Miguel/H-4434-2011; Teran, Francisco/F-1285-2010; Nogues, Josep/D-7791-2012; Microelectronica de Madrid, Instituto de/D-5173-2013; Hoffmann, Axel/A-8152-2009; PERNA, PAOLO/C-3862-2012; Sort, Jordi/F-6582-2014; Camarero, Julio/C-4375-2014 OI Garcia-Martin, Jose Miguel/0000-0002-5908-8428; Camarero De Diego, Julio/0000-0003-0078-7280; Nogues, Josep/0000-0003-4616-1371; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Hoffmann, Axel/0000-0002-1808-2767; PERNA, PAOLO/0000-0001-8537-4834; Sort, Jordi/0000-0003-1213-3639; FU Spanish MICINN [CSD2007-00010, MAT2010-21822, MAT2010-20616-C02]; Comunidad de Madrid; Generalitat de Catalunya [S2009/MAT-1726, 2009-SGR-1292]; U.S. Department of Energy-Basic Energy Sciences [DE-AC02-06CH1357] FX This work was supported in part by the Spanish MICINN through Project Nos. CSD2007-00010, MAT2010-21822, and MAT2010-20616-C02 and by Comunidad de Madrid and the Generalitat de Catalunya through Project Nos. S2009/MAT-1726 and 2009-SGR-1292, respectively. Work at Argonne was supported by the U.S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-06CH1357. NR 18 TC 15 Z9 15 U1 0 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D730 DI 10.1063/1.3562507 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100261 ER PT J AU Kaiser, AM Wiemann, C Cramm, S Schneider, CM AF Kaiser, Alexander M. Wiemann, Carsten Cramm, Stefan Schneider, Claus M. TI Spatially resolved observation of uniform precession modes in spin-valve systems SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POLARIZED X-RAYS; MICROSCOPY AB Using time-resolved photoemission electron microscopy, the excitation of uniform precession modes in individual domains of a weakly coupled spin-valve system has been studied. A coupling dependence of the precession frequencies has been found that can be reasonably well understood on the basis of a macrospin model. By tuning the frequency of the excitation source the uniform precession modes are excited in a resonant way. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3535439] C1 Forschungszentrum Julich, Inst Festkorperforsch IFF 9, D-52425 Julich, Germany. JARA FIT, D-52425 Julich, Germany. RP Kaiser, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM a.kaiser@fz-juelich.de RI Schneider, Claus/H-7453-2012 OI Schneider, Claus/0000-0002-3920-6255 FU DFG [SFB 491]; BMBF [05KS7UK1] FX We would like to thank R. Schreiber for the sample preparation and K. Bickmann, J. Lauer, B. Kupper, and H. Pfeifer for their technical support. This work has been financially supported by the DFG (SFB 491) and the BMBF (Project 05KS7UK1). NR 26 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D305 DI 10.1063/1.3535439 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100170 ER PT J AU Kim, EJ Watts, JLR Harteneck, B Scholl, A Young, A Doran, A Suzuki, Y AF Kim, Eun Ji Watts, John L. R. Harteneck, Bruce Scholl, Andreas Young, Anthony Doran, Andrew Suzuki, Yuri TI Magnetic domain structure of La0.7Sr0.3MnO3 nanoislands: Experiment and simulation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID COLOSSAL MAGNETORESISTANCE; THIN-FILMS; ANISOTROPY; ISLANDS; STRAIN AB We have studied the magnetic domain structure of La0.7Sr0.3MnO3 (LSMO) nanoislands with dimensions on the order of 160 similar to 720 nm. Domain structures of (001)-oriented LSMO rectangular nanoislands exhibit single and multiple flux-closed domain states depending on aspect ratio. (110)-oriented rectangular nanoislands, with a strain-induced magnetically easy axis parallel to the long axis of the rectangle, exhibit single and two domain states depending on aspect ratio. (110) elongated hexagonal islands, with similar aspect ratios, uniformly exhibit single domain states due to the apparent suppression of domain nucleation at tapered edges. These results are consistent with object-oriented micromagnetic framework simulations of LSMO islands. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544510] C1 [Kim, Eun Ji; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Watts, John L. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Scholl, Andreas; Young, Anthony; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kim, EJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM eunjikim@berkeley.edu RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 FU University of California Office of the President [09-LR-01-121586-SUZY]; Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-05CH11231] FX We thank David Carlton and Jeff Bokor for useful discussions. This work was supported by the University of California Office of the President under Grant no. 09-LR-01-121586-SUZY. Electron beam lithography was performed at the Molecular Foundry at Lawrence Berkeley National Laboratory operated by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Contract Number: DE-AC02-05CH11231. NR 12 TC 13 Z9 13 U1 4 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D712 DI 10.1063/1.3544510 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100243 ER PT J AU Liu, M Obi, O Lou, J Li, SD Xing, X Yang, GM Sun, NX AF Liu, Ming Obi, Ogheneyunume Lou, Jing Li, Shandong Xing, Xing Yang, Guomin Sun, Nian X. TI Tunable magnetoresistance devices based on multiferroic heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Surface-effect induced strong magnetoelectric (ME) coupling was investigated in ultrathin Ni80Fe20/PZN-PT (lead zinc niobate-lead titanate) multiferroic heterostructures. Giant electric field (E-field) tuning of the magnetic anisotropy, ferromagnetic resonance field, coercive field and anisotropic magnetoresistance were demonstrated through strain mediated ME coupling in 10 nm thick Ni80Fe20/PZN-PT multiferroic heterostructures. E-field dynamic modulation of magnetoresistance was also displayed. These provide great opportunities for electrostatic tunable MR devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561771] C1 [Liu, Ming; Obi, Ogheneyunume; Lou, Jing; Xing, Xing; Yang, Guomin; Sun, Nian X.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Li, Shandong] Fujian Normal Univ, Dept Phys, Fuzhou 350007, Peoples R China. RP Liu, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nian@ece.neu.edu RI Sun, Nian-xiang/G-8330-2011; Lou, Jing/B-6762-2009; Xing, Xing/I-7706-2012; Obi, Ogheneyunume/K-2372-2012; Liu, Ming/B-4143-2009; Sun, Nian Xiang/F-9590-2010 OI Liu, Ming/0000-0002-6310-948X; Sun, Nian Xiang/0000-0002-3120-0094 FU NSF [0 746 810, 0 824 008]; ONR [N000140710761, 000 140 810 526] FX This work is financially supported by NSF awards 0 746 810 and 0 824 008, and ONR awards N000140710761 and 000 140 810 526. NR 20 TC 12 Z9 12 U1 5 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D913 DI 10.1063/1.3561771 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100282 ER PT J AU Marcham, MK Keatley, PS Neudert, A Hicken, RJ Cavill, SA Shelford, LR van der Laan, G Telling, ND Childress, JR Katine, JA Shafer, P Arenholz, E AF Marcham, M. K. Keatley, P. S. Neudert, A. Hicken, R. J. Cavill, S. A. Shelford, L. R. van der Laan, G. Telling, N. D. Childress, J. R. Katine, J. A. Shafer, P. Arenholz, E. TI Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PRECESSION AB Phase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co(50)Fe(50)(0.7)/Ni(90)Fe(10)(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L(3) edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co(50)Fe(50)(0.7)/Ni(90)Fe(10)(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567143] C1 [Marcham, M. K.; Keatley, P. S.; Hicken, R. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Neudert, A.] Forschungszentrum Dresden Rossendorf eV, Inst Ion Beam Phys & Mat Res, D-01313 Dresden, Germany. [Cavill, S. A.; Shelford, L. R.; van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Telling, N. D.] Keele Univ, Inst Sci & Technol Med, Guy Hilton Res Ctr, Stoke On Trent ST4 7QB, Staffs, England. [Childress, J. R.; Katine, J. A.] Hitachi Global Storage Technol, San Jose, CA 95135 USA. [Shafer, P.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Marcham, MK (reprint author), Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England. EM mkm202@ex.ac.uk RI Neudert, Andreas/H-1798-2012; Cavill, Stuart/C-5002-2015; van der Laan, Gerrit/Q-1662-2015; OI Cavill, Stuart/0000-0002-1359-4958; van der Laan, Gerrit/0000-0001-6852-2495; Keatley, Paul/0000-0002-7679-6418 FU U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/F021755/1] FX The ALS is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 The authors gratefully acknowledge the financial support of EPSRC Grant EP/F021755/1. This work was carried out on beam line I06 at the diamond light source and on beam line 4.0.2 at the advanced light source. NR 10 TC 16 Z9 16 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D353 DI 10.1063/1.3567143 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100218 ER PT J AU Mehta, V Suzuki, Y AF Mehta, Virat Suzuki, Yuri TI Ferromagnetism enhanced by structural relaxation of biaxially compressed LaCoO3 films SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Epitaxial LaCoO3 films were synthesized on LaAlO3 substrates to explore the role of epitaxial strain and structure on the ferromagnetism observed in these biaxially compressed films. Coherent strain and tetragonal structure were only achieved in thin film samples grown using higher energy densities. The strain relaxed with increasing thickness and was accompanied by increasing mosaic spread. Higher magnetization values were consistently seen in fully relaxed films grown using lower laser energy density. These results suggest that epitaxial strain is not the only factor determining the ferromagnetism and that the microstructure and defects may play a significant role. (C) 2011 American Institute of Physics. [doi:10.1063/1.3545809] C1 [Mehta, Virat; Suzuki, Yuri] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mat Sci & Engn, UC Berkeley & Mat Sci Div, Berkeley, CA 94720 USA. RP Mehta, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mat Sci & Engn, UC Berkeley & Mat Sci Div, Berkeley, CA 94720 USA. EM viratmehta@berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in full by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering as well as Scientific User Facilities Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Kin Man Yu at the Lawrence Berkeley National Laboratory Materials Science Division for RBS, Chris Leighton, and Franklin Wong for valuable discussions. We would also like to thank Jodi Iwata, Alex Grutter, Urusa Alaan, Chunyong He, and Eunji Kim, for discussions and support. NR 17 TC 7 Z9 7 U1 4 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D717 DI 10.1063/1.3545809 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100248 ER PT J AU Odbadrakh, K Rusanu, A Stocks, GM Samolyuk, GD Eisenbach, M Wang, Y Nicholson, DM AF Odbadrakh, K. Rusanu, A. Stocks, G. M. Samolyuk, G. D. Eisenbach, M. Wang, Yang Nicholson, D. M. TI Calculated electronic and magnetic structure of screw dislocations in alpha iron SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DYNAMICS; METALS AB Local atomic magnetic moments in crystalline Fe are perturbed by the presence of dislocations. The effects are most pronounced near the dislocation core and decay slowly as the strain field of the dislocation decreases with distance. We have calculated local moments using the locally self-consistent multiple scattering (LSMS) method for a supercell containing a screw-dislocation quadrupole. Finite size effects are found to be significant indicating that dislocation cores affect the electronic structure and magnetic moments of neighboring dislocations. The influence of neighboring dislocations points to a need to study individual dislocations from first principles just as they appear amid surrounding atoms in large-scale classical force field simulations. An approach for the use of the LSMS to calculate local moments in subvolumes of large atomic configurations generated in the course of classical molecular dynamics simulation of dislocation dynamics is discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562217] C1 [Nicholson, D. M.] Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37830 USA. [Odbadrakh, K.; Rusanu, A.; Stocks, G. M.; Samolyuk, G. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Eisenbach, M.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37830 USA. [Wang, Yang] Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. RP Nicholson, DM (reprint author), Oak Ridge Natl Lab, Computat Sci & Math Div, Oak Ridge, TN 37830 USA. EM nicholsondm@ornl.gov RI Rusanu, Aurelian/A-8858-2013; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Eisenbach, Markus/0000-0001-8805-8327 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; Office of Science of the Department of Energy FX Work is supported by Center for Defect Physics in Structural Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. This research used the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy. NR 8 TC 2 Z9 2 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E159 DI 10.1063/1.3562217 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100345 ER PT J AU Sundararajan, JA Zhang, DT Qiang, Y Jiang, W McCloy, JS AF Sundararajan, J. A. Zhang, D. T. Qiang, Y. Jiang, W. McCloy, J. S. TI Magnetic stability of He+ ion irradiated FeO+Fe3N granular films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CORE-SHELL NANOCLUSTERS; IRON-OXIDES; NANOPARTICLES; EPSILON-FE3N; NANOSCALE; NI AB Ion irradiation effects on the magnetic properties of FeO+Fe3N (iron oxide/iron nitride) granular films are investigated in this study. The FeO+Fe3N granular films were prepared using a nanocluster deposition system. The x-ray diffraction data confirm the presence of FeO and Fe3N compounds in the prepared granular films. The saturation magnetization (30 emu/g), coercivity (87.9 Oe), and remanence (3.2 emu/g) of these granular films remain unaltered after irradiation with 2 MeV He+ ions to a fluence of 3 x 10(15) ions/cm(2) at room temperature, indicating that the magnetic properties of these granular films are not affected in a highly radioactive environment. This unique property of the magnetic stability may provide promising applications for advanced data storage. (C) 2011 American Institute of Physics. [doi:10.1063/1.3560119] C1 [Sundararajan, J. A.; Zhang, D. T.; Qiang, Y.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Jiang, W.; McCloy, J. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Qiang, Y (reprint author), Univ Idaho, Dept Phys, Moscow, ID 83844 USA. EM youqiang@uidaho.edu RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-07ER46386, DE-FG02-04ER46142, DE-AC05-76RL01830]; Defense Threat Research Agency, U.S. Department of Defense [IACRO 10-4951I]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract Nos. DE-FG02-07ER46386, DE-FG02-04ER46142, and DE-AC05-76RL01830 as well as by the Defense Threat Research Agency, U.S. Department of Defense, IACRO 10-4951I. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 30 TC 3 Z9 3 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E324 DI 10.1063/1.3560119 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100375 ER PT J AU Szulczewski, G Brauer, J Ellingsworth, E Kreil, J Ambaye, H Lauter, V AF Szulczewski, Greg Brauer, Jonathan Ellingsworth, Edward Kreil, Justin Ambaye, Hailemariam Lauter, Valeria TI Electronic and structural characterization of LiF tunnel barriers in organic spin-valve structures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOEMISSION-SPECTROSCOPY; INTERFACES; INJECTION; DEVICES; METAL AB The electronic, magnetic, and structural properties of Ni80Fe20 and Co electrodes at LiF and aluminum tris(8-hydroxyquinoline), or Alq(3), interfaces were investigated with photoemission spectroscopy and polarized neutron reflectivity measurements. When LiF was deposited onto Ni80Fe20 films and Co was deposited onto thin LiF layers, the work function of both metals decreased. Polarized neutron reflectivity measurements were used to probe the buried interfaces of multilayers resembling a spin-valve structure. The results indicate that LiF is an effective barrier layer to block diffusion of Co into the Alq(3) film. X-ray absorption spectra at the fluorine K edge indicate that no chemical reactions occur between Co and LiF. Despite these positive effects derived from the LiF tunnel barriers, there was no magnetoresistance in spin valves when the Alq(3) layer was greater than 50 nm. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562255] C1 [Szulczewski, Greg; Brauer, Jonathan; Ellingsworth, Edward; Kreil, Justin] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Ambaye, Hailemariam; Lauter, Valeria] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Szulczewski, G (reprint author), Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. EM gjs@bama.ua.edu RI Ambaye, Haile/D-1503-2016 OI Ambaye, Haile/0000-0002-8122-9952 FU MINT Center at the University of Alabama; Department of Energy [DE-FG02-08ER46499]; Scientific Users Facility Division through the U.S. Department of Energy [IPTS-2442]; National Science Foundation [DMR-0537588] FX The authors thank MINT Center at the University of Alabama and the Department of Energy (Award No. DE-FG02-08ER46499) for partial support of this work. The research at the Oak Ridge National Laboratory Spallation Neutron Source was made possible through Award No. IPTS-2442, which was sponsored by the Scientific Users Facility Division through the U. S. Department of Energy. The work based on research at the University of Wisconsin-Madison Synchrotron Radiation Center was supported by the National Science Foundation under Award No. DMR-0537588. NR 32 TC 6 Z9 6 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07C509 DI 10.1063/1.3562255 PG 3 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100108 ER PT J AU Vaz, CAF Hoffman, J Segal, Y Marshall, MSJ Reiner, JW Zhang, Z Grober, RD Walker, FJ Ahn, CH AF Vaz, C. A. F. Hoffman, J. Segal, Y. Marshall, M. S. J. Reiner, J. W. Zhang, Z. Grober, R. D. Walker, F. J. Ahn, C. H. TI Control of magnetism in Pb(Zr0.2Ti0.8)O-3/La0.8Sr0.2MnO3 multiferroic heterostructures (invited) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SCANNING FORCE MICROSCOPY; FIELD-EFFECT TRANSISTOR; MN K-EDGE; MANGANITES; LA1-XSRXMNO3; MODULATION; TRANSITION; OXIDES; FILMS AB We present an overview of our results demonstrating a large, charge-driven, magnetoelectric coupling in epitaxial Pb(Zr0.2Ti0.8)O-3/La0.8Sr0.2MnO3 (PZT/LSMO) multiferroic heterostructures. Measurements of the magnetization as a function of temperature and applied electric field using magneto-optic Kerr effect magnetometry show a large change in the magnetic critical temperature and magnetic moment of the LSMO layer for the two states of the PZT ferroelectric polarization, which modulates the charge-carrier concentration at the LSMO interface. Near-edge x-ray absorption spectroscopy measurements show directly that the valence state of Mn is modulated by the PZT polarization state, demonstrating that the magnetoelectric coupling in these PZT/LSMO multiferroic heterostructures is purely electronic in origin. From the combined spectroscopic, magnetic, and electric characterization, we conclude that both the interfacial spin state and spin configuration are modulated electrostatically. This ability of controlling spin by means of electric fields opens a new venue for the development of novel spin-based devices. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3540694] C1 [Vaz, C. A. F.; Hoffman, J.; Segal, Y.; Marshall, M. S. J.; Reiner, J. W.; Grober, R. D.; Walker, F. J.; Ahn, C. H.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Vaz, C. A. F.; Hoffman, J.; Segal, Y.; Marshall, M. S. J.; Reiner, J. W.; Grober, R. D.; Walker, F. J.; Ahn, C. H.] Yale Univ, CRISP, New Haven, CT 06520 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Vaz, CAF (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. EM carlos.vaz@cantab.net RI Vaz, Carlos/A-7240-2012; Zhang, Zhan/A-9830-2008; OI Vaz, Carlos/0000-0002-6209-8918; Zhang, Zhan/0000-0002-7618-6134; Walker, Frederick/0000-0002-8094-249X; Marshall, Matthew/0000-0002-8619-2490 FU CRISP [NSFDMR 1006256, NSFDMR 0520495]; FENA; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by NSFDMR 1006256, NSFDMR 0520495 (CRISP), and FENA. Use of the Advanced Photon Source was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 50 TC 14 Z9 14 U1 5 U2 69 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07D905 DI 10.1063/1.3540694 PG 6 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100274 ER PT J AU Wang, Y Nicholson, DMC Stocks, GM Rusanu, A Eisenbach, M Stoller, RE AF Wang, Yang Nicholson, D. M. C. Stocks, G. M. Rusanu, Aurelian Eisenbach, Markus Stoller, R. E. TI A study of radiation damage effects on the magnetic structure of bulk Iron SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; TRANSITION-METALS AB Defects, defect interactions, and defect dynamics in solids created by fast neutrons are known to have significant impact on the performance and lifetime of structural materials. A fundamental understanding of the radiation damage effects in solids is therefore of great importance in assisting the development of improved materials - materials with ultrahigh strength, toughness, and radiation resistance. In this presentation, we show our recent theoretical investigation on the magnetic structure evolution of bulk iron in the region of the radiation defects. We applied a linear scaling ab-initio method based on density functional theory with local spin density approximation, namely the locally self-consistent multiple scattering method (LSMS), to the study of magnetic moment distributions in a cascade at the damage peak and for a series of time steps as the interstitials and vacancies recombined. Atomic positions correspond to those in a low energy cascade in a 10 vertical bar 000 atom sample, in which the primary damage state and the evolution of all defects produced were simulated using molecular dynamics with empirical, embedded-atom inter-atomic potentials. We will discuss how a region of affected moments expands and then recedes in response to a cascade evolution. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553937] C1 [Wang, Yang] Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. [Wang, Yang; Nicholson, D. M. C.; Stocks, G. M.; Rusanu, Aurelian; Eisenbach, Markus; Stoller, R. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, Y (reprint author), Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA. EM ywg@psc.edu RI Stoller, Roger/H-4454-2011; Rusanu, Aurelian/A-8858-2013; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Eisenbach, Markus/0000-0001-8805-8327 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX This research was performed at Oak Ridge National Laboratory (ORNL) and is based upon work supported as part of the Center for Defect Physics in Structural Materials (CDP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. This research used resources of the Oak Ridge Leadership Computing Facility at ORNL, which is supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725. NR 15 TC 1 Z9 1 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07E120 DI 10.1063/1.3553937 PG 2 WC Physics, Applied SC Physics GA 755QV UT WOS:000289952100306 ER PT J AU Hepp, GR Kennamer, RA AF Hepp, Gary R. Kennamer, Robert A. TI DATE OF NEST INITIATION MEDIATES INCUBATION COSTS OF WOOD DUCKS (AIX SPONSA) SO AUK LA English DT Article DE Aix sponsa; body mass; cost of reproduction; female quality; incubation behavior; Wood Duck ID TITS PARUS-MAJOR; INDIVIDUAL QUALITY; TREE SWALLOWS; CLUTCH SIZE; GREAT TITS; EMBRYONIC TEMPERATURE; ENERGETIC CONSTRAINT; REPRODUCTIVE PHASES; IMMUNE FUNCTION; BODY CONDITION AB Incubation has a significant reproductive cost in birds that can limit both current and future reproductive success. We manipulated the incubation period of Wood Ducks (Aix sponsa) to examine how female body mass, incubation behavior, and nest temperature responded to changes in incubation costs. We found no relationships between the length of the incubation period and either the percent loss of body mass or the body mass at the end of incubation. However, females that initiated nests early in the season lost more body mass than females that nested later. The number of daily recesses increased slightly with longer incubation periods, but incubation constancy over the full incubation period and during the last week of incubation was not affected by incubation-period length. Variation in incubation constancy was explained best by nest initiation date. Incubation constancy was greatest for early-nesting females and declined for females that nested later. There also was a weak positive relationship between body mass and incubation constancy. Average nest temperature was not associated with the length of the incubation period but increased with increasing incubation constancy and as the breeding season progressed. Evidence from this study is consistent with the idea that incubation is an important reproductive cost that may constrain the timing of nest initiation in Wood Ducks. Poor-quality females, by delaying nest initiation, experienced reduced incubation costs and were able to maintain nest temperatures at levels similar to those of early-nesting females. Received 11 August 2010, accepted 10 December 2010. C1 [Hepp, Gary R.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. [Kennamer, Robert A.] Savannah River Ecol Lab, Aiken, SC 29801 USA. RP Hepp, GR (reprint author), Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. EM heppgar@auburn.edu FU National Science Foundation [IOB-0615361] FX We are grateful to our field crew: E. Butler, M. Carney, B. Gann, K. Hasapes, E. Koen, J. Scott, and T. Watts. We also thank the Savannah River Ecology Laboratory, and especially W. Gibbons, for their hospitality and for use of their facilities. The Institutional Animal Care and Use Committee of Auburn University approved our research (PRN 2006-1049). Financial support was provided by National Science Foundation grant IOB-0615361 to G.R.H. NR 45 TC 7 Z9 7 U1 1 U2 21 PU AMER ORNITHOLOGISTS UNION PI LAWRENCE PA ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA SN 0004-8038 EI 1938-4254 J9 AUK JI AUK PD APR PY 2011 VL 128 IS 2 BP 258 EP 264 DI 10.1525/auk.2011.10189 PG 7 WC Ornithology SC Zoology GA 767VV UT WOS:000290887600006 ER PT J AU Lin, B Urayama, S Saroufeem, RMG Matthews, DL Demos, SG AF Lin, Bevin Urayama, Shiro Saroufeem, Ramez M. G. Matthews, Dennis L. Demos, Stavros G. TI Endomicroscopy imaging of epithelial structures using tissue autofluorescence SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE endomicroscopy; ultraviolet autofluorescence; real-time histology ID OPTICAL COHERENCE TOMOGRAPHY; BARRETTS-ESOPHAGUS; ULTRAVIOLET EXCITATION; ENDOCYTOSCOPY SYSTEM; CONFOCAL MICROSCOPE; MULTICENTER; ENDOSCOPY; DIAGNOSIS; LESIONS; TRACT AB We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems-an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3565216] C1 [Lin, Bevin; Matthews, Dennis L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Lin, Bevin; Matthews, Dennis L.; Demos, Stavros G.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Urayama, Shiro] Univ Calif Davis, Davis Med Ctr, Div Gastroenterol & Hepatol, Sacramento, CA 95817 USA. [Saroufeem, Ramez M. G.] Univ Calif Davis, Davis Med Ctr, Dept Pathol, Sacramento, CA 95817 USA. [Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lin, B (reprint author), Univ Calif Davis, Dept Biomed Engn, Shields Dr, Davis, CA 95616 USA. EM freddychopin@gmail.com FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Center for Biophotonics, an NSF Science and Technology Center [PHY 0120999] FX We thank Dr. Kazuhiro Gono, Dr. Takeshi Ozawa, and Dr. Nobuyuki Doguchi of Olympus Medical Systems Corp. for lending us the Endo-Cytoscopy System. We also thank Chris Pivetti for supplying murine kidney specimens. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This research was supported by funding from the Center for Biophotonics, an NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. NR 34 TC 2 Z9 2 U1 2 U2 7 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD APR PY 2011 VL 16 IS 4 AR 046014 DI 10.1117/1.3565216 PG 7 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 769PX UT WOS:000291031400021 PM 21529083 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, J Maes, M Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Vander Velde, C Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhang, L Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Khalil, S Mahmoud, MA Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Fedi, G Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, TM Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Lomidze, D Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Dietz-Laursonn, E Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Tonutti, M Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Pitzl, D Raspereza, A Raval, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schmanau, M Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Karafasoulis, K Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Ghezzi, A Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P De Mattia, M Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, D Son, DC Son, T Kim, Z Kim, JY Song, S Choi, S Hong, B Jeong, MS Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Lopez-Fernandez, R Villalba, RM Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Seixas, J Varela, J Afanasiev, S Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Brona, G Bunkowski, K Camporesi, T Cerminara, G Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiropulu, M Stoye, M Tropea, P Tsirou, A Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bortignon, P Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Regenfus, C Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, M Hartley, D Heath, GP Heath, HF Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Sanchez, MCD Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Cassel, D Chatterjee, A Das, S Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kaufman, GN Patterson, JR Puigh, D Ryd, A Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Khatiwada, R Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Bandurin, D Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Wenger, EA Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Osipenkov, I Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Flood, K Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Palmonari, F Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, J. Maes, M. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Vander Velde, C. Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Torres Da Silva De Araujo, F. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhang, L. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Khalil, S. Mahmoud, M. A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Fedi, G. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. M. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Lomidze, D. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Dietz-Laursonn, E. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Tonutti, M. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Pitzl, D. Raspereza, A. Raval, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Bauer, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schmanau, M. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Karafasoulis, K. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Ghezzi, A. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. Son, D. C. Son, T. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jeong, M. S. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Lopez-Fernandez, R. Magana Villalba, R. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Seixas, J. Varela, J. Afanasiev, S. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Chuang, S. H. Campderros, J. Duarte Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cerminara, G. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiropulu, M. Stoye, M. Tropea, P. Tsirou, A. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bortignon, P. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Regenfus, C. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, M. Hartley, D. Heath, G. P. Heath, H. F. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Cassel, D. Chatterjee, A. Das, S. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Bandurin, D. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Wenger, E. A. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Osipenkov, I. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Flood, K. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Palmonari, F. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Measurement of the lepton charge asymmetry in inclusive W production in pp collisions at root s=7TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering AB A measurement of the lepton charge asymmetry in inclusive pp -> WX production at root s = 7TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 36 pb(-1). This high precision measurement of the lepton charge asymmetry, performed in both the W -> e nu and W -> mu nu channels, provides new insights into parton distribution functions. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adiguzel, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, J.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres Da Silva De Araujo, F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Khalil, S.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T. M.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, Lab Leprince Ringuet, IN2P3 CNRS, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Bender, W.; Dietz-Laursonn, E.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Tonutti, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Pitzl, D.; Raspereza, A.; Raval, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Adiguzel, A.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Karafasoulis, K.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.] INFN Sez Bologna, Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.] INFN Sez Genova, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] INFN Sez Milano Biccoca, Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] INFN Sez Pavia, Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] INFN Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jeong, M. S.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Lopez-Fernandez, R.; Magana Villalba, R.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Katkov, I.; Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, IFCA, Santander, Spain. [Hammer, J.; Delaere, C.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Jung, H.; Hajdu, C.; Sikler, F.; Mohanty, A. K.; De Filippis, N.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Boccali, T.; Tonelli, G.; Venturi, A.; Grassi, M.; Pandolfi, F.; Botta, C.; Graziano, A.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Cassel, D.; Chatterjee, A.; Das, S.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.; Schmitt, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Wyslouch, B.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Osipenkov, I.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Flood, K.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Palmonari, F.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Khalil, S.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Bolton, Tim/A-7951-2012; Yang, Fan/B-2755-2012; Krammer, Manfred/A-6508-2010; Lokhtin, Igor/D-7004-2012; Liu, Chang/B-7249-2009; Tinoco Mendes, Andre David/D-4314-2011; Mignerey, Alice/D-6623-2011; Ganjour, Serguei/D-8853-2011; Ruiz, Alberto/E-4473-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Mercadante, Pedro/K-1918-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Russ, James/P-3092-2014; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Cavallo, Nicola/F-8913-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Codispoti, Giuseppe/F-6574-2014; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; OI Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ruiz, Alberto/0000-0002-3639-0368; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Mundim, Luiz/0000-0001-9964-7805; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Heath, Helen/0000-0001-6576-9740 FU FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA) FX We wish to thank James W. Stirling for very useful discussions on PDF models and John Campbell for providing theoretical predictions based on MCFM. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). NR 23 TC 20 Z9 20 U1 2 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR PY 2011 IS 4 AR 050 DI 10.1007/JHEP04(2011)050 PG 31 WC Physics, Particles & Fields SC Physics GA 760NT UT WOS:000290331700050 ER PT J AU Vecchi, L AF Vecchi, Luca TI Multitrace deformations, Gamow states, and stability of AdS/CFT SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE AdS-CFT Correspondence; 1/N Expansion ID POSITIVE ENERGY; OPERATORS AB We analyze the effect of multitrace deformations in conformal field theories at leading order in a large N approximation. These theories admit a description in terms of weakly coupled gravity duals. We show how the deformations can be mapped into boundary terms of the gravity theory and how to reproduce the RG equations found in field theory. In the case of doubletrace deformations, and for bulk scalars with masses in the range -d(2)/4 < m(2) < -d(2)/4 + 1, the deformed theory flows between two fixed points of the renormalization group, manifesting a resonant behavior at the scale characterizing the transition between the two CFT's. On the gravity side the resonance is mapped into an IR non-normalizable mode (Gamow state) whose overlap with the UV region increases as the dual operator approaches the free field limit. We argue that this resonant behavior is a generic property of large N theories in the conformal window, and associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance. We emphasize the role of nonminimal couplings to gravity and establish a stability theorem for scalar/gravity systems with AdS boundary conditions in the presence of arbitrary boundary potentials and nonminimal coupling. C1 Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. RP Vecchi, L (reprint author), Los Alamos Natl Lab, Theoret Div T2, POB 1663, Los Alamos, NM 87545 USA. EM vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The author would like to thank T. Bhattacharya for interesting conversations and especially M. L. Graesser for numerous and helpful discussions. This work has been supported by the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 38 TC 20 Z9 20 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR PY 2011 IS 4 AR 056 DI 10.1007/JHEP04(2011)056 PG 28 WC Physics, Particles & Fields SC Physics GA 760NT UT WOS:000290331700056 ER PT J AU Li, G Moridis, GJ Zhang, K Li, XS AF Li, Gang Moridis, George J. Zhang, Keni Li, Xiao-sen TI The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE gas hydrate; huff and puff; cyclic steam stimulation; horizontal well; Shenhu area ID METHANE HYDRATE; PRODUCTION BEHAVIOR; SEDIMENT; STIMULATION; SIMULATION; STEAM AB The Shenhu Area is located in the Pearl River Mouth Basin, the northern continental slope of the South China Sea. It is expected that the Shenhu Area will become a strategic area of gas hydrate exploitation in China. Based on currently available data from site measurements, including water depth, thickness of the Hydrate-Bearing Layer (HBL), sediment porosity, salinity and pressures and temperatures at key locations, it is possible to develop preliminarily estimates of the gas production potential by numerical modeling. We used measurements of ambient temperature in the sediments to determine the local geothermal gradient. Estimates of the hydrate saturation and the intrinsic permeabilities of the system formations were obtained from direct measurements. The hydrate accumulations in the Shenhu Area are similar to Class 3 deposits (involving only an HBL), and the overburden and underburden layers are assumed to be permeable. These unconfined deposits may represent a large challenge for gas production. In this modeling study, we estimated gas production from hydrates at the SH7 drilling site of the Shenhu Area by means of the stream huff and puff method using a single horizontal well in the middle of the HBL The simulation results indicate that the hydrate dissociated zone expands around the well, and the hydrate formation occurs during the injection stage of the huff and puff process. The higher temperature of the injected brine appears to have a limited effect on gas production using the huff and puff method. Reasonable injection and production rates should be adopted to avoid the over pressurization and depressurization during each huff and puff cycle. Production is invariably lower than that attainable in a confined system, and thermal stimulation is shown to have an effect over a limited range around the well. The sensitivity analysis demonstrates the dependence of gas production on the level of the increment of the injection and production rates of the huff and puff process, the temperature of the injected brine and the existence of brine injection during the injection stage. (C) 2011 Elsevier B.V. All rights reserved. C1 [Li, Gang; Li, Xiao-sen] Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. [Moridis, George J.; Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Li, XS (reprint author), Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. EM lixs@ms.giec.ac.cn RI Li, Xiaosen/H-2002-2013 FU National Natural Science Foundation of China [20773133, 51004089, 51076155]; CAS [KGCX2-YW-3X6, YZ200717]; Science & Technology Program of Guangdong Province [2009B050600006]; Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Natural Science Foundation of China (20773133, 51004089, 51076155), CAS Knowledge Innovation Program (KGCX2-YW-3X6), Science & Technology Program of Guangdong Province (2009B050600006) and CAS Magnitude Science and Technology Apparatus Development Program (YZ200717), which are gratefully acknowledged. The contribution of G.J. Moridis was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC02-05CH11231. NR 34 TC 41 Z9 43 U1 6 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD APR PY 2011 VL 77 IS 1 BP 49 EP 68 DI 10.1016/j.petrol.2011.02.009 PG 20 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 770CQ UT WOS:000291065000006 ER PT J AU Neophytou, M Gowardhan, A Brown, M AF Neophytou, Marina Gowardhan, Akshay Brown, Michael TI An inter-comparison of three urban wind models using Oklahoma City Joint Urban 2003 wind field measurements SO JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS LA English DT Article; Proceedings Paper CT 5th International Symposium on Computational Wind Engineering (CWE2010) CY MAY 23-27, 2010 CL Chapel Hill, NC DE Fast-response models; Model evaluation; Large eddy simulation; Computational fluid dynamics; Empirical-diagnostic model; Field measurements ID STREET CANYON; FLOW; DISPERSION; STATISTICS; TUNNEL AB Three wind models are compared to near-surface time-averaged wind measurements obtained in downtown Oklahoma City during the Joint Urban 2003 Field Campaign. The models cover several levels of computational approximation and include in increasing order of computational demand: a mass-consistent empirical-diagnostic code, a Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) model, and a Large Eddy Simulation (LES) CFD code. The models were run with identical inlet and boundary conditions using the same grid resolution; the choice of the specific computational set-up reflects demands for fast-response models, although it may be a sub-optimal choice for the more complex models. A qualitative comparison of the model-computed flow fields with the Joint Urban 2003 wind measurements shows that all three models compare favorably to the near-surface wind measurements in many locations, although there are often instances of winds being calculated poorly in specific locations. The CFD models, however, had clearly superior looking flow fields, whereas the empirical-diagnostic code produced fields that were less smoothly varying. The inter-comparison exercise was supported by point-by-point quantitative comparisons of the wind speed and wind direction and with statistical measures. The RANS-CFD code, for example, was within 50% of the measured wind speed 62% of the time as compared to 53% for the LES model and 49% for the empirical-diagnostic code. For wind direction, the RANS-CFD code was within 30 of the measured wind direction 58% of the time as compared to 50% for the LES code and 43% for the empirical diagnostic code. It is noticeable that throughout the various 10P cases examined, and under the specific computational set-up used in the simulations for fast-response needs, there is no clear superiority of one model over another. In addition, for the LES model, which in theory should provide the most realistic representation of the flow field, it appears that further to the sub-optimal computational set-up, as well as the uncertainty and natural variability persistent in the real world, has resulted in diminished performance. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Neophytou, Marina] Univ Cyprus, Dept Civil & Environm Engn, Environm Fluid Mech Lab, Nicosia, Cyprus. [Gowardhan, Akshay; Brown, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Neophytou, M (reprint author), Univ Cyprus, Dept Civil & Environm Engn, Environm Fluid Mech Lab, Nicosia, Cyprus. EM neophytou@ucy.ac.cy OI Brown, Michael J./0000-0002-8069-0835; NEOPHYTOU, MARINA K.-A./0000-0001-8393-2441 NR 40 TC 16 Z9 16 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6105 EI 1872-8197 J9 J WIND ENG IND AEROD JI J. Wind Eng. Ind. Aerodyn. PD APR PY 2011 VL 99 IS 4 SI SI BP 357 EP 368 DI 10.1016/j.jweia.2011.01.010 PG 12 WC Engineering, Civil; Mechanics SC Engineering; Mechanics GA 768XN UT WOS:000290972900021 ER PT J AU Rautengarten, C Ebert, B Herter, T Petzold, CJ Ishii, T Mukhopadhyay, A Usadel, B Scheller, HV AF Rautengarten, Carsten Ebert, Berit Herter, Thomas Petzold, Christopher J. Ishii, Tadashi Mukhopadhyay, Aindrila Usadel, Bjoern Scheller, Henrik Vibe TI The Interconversion of UDP-Arabinopyranose and UDP-Arabinofuranose Is Indispensable for Plant Development in Arabidopsis SO PLANT CELL LA English DT Article ID REVERSIBLY GLYCOSYLATED POLYPEPTIDE; SEED COAT DEVELOPMENT; RHAMNOGALACTURONAN-I; ARABINOSYLTRANSFERASE ACTIVITY; BIOCHEMICAL-CHARACTERIZATION; PROTEIN TRANSGLUCOSYLASE; MOLECULAR-CLONING; COMPLEX-FORMATION; PECTIC ARABINAN; BIOSYNTHESIS AB L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-L-arabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12-31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall-derived L-Ara and exhibiting severe developmental defects. C1 [Rautengarten, Carsten; Ebert, Berit; Scheller, Henrik Vibe] Lawrence Berkeley Lab, Feedstocks Div, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Herter, Thomas; Usadel, Bjoern] Max Planck Inst Mol Plant Physiol, D-14476 Golm, Germany. [Petzold, Christopher J.; Mukhopadhyay, Aindrila] Lawrence Berkeley Lab, Div Technol, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Ishii, Tadashi] Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan. [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Scheller, HV (reprint author), Lawrence Berkeley Lab, Feedstocks Div, Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM hscheller@lbl.gov RI Usadel, Bjorn/E-1932-2011; Scheller, Henrik/A-8106-2008; Ebert, Berit/F-1856-2016 OI Scheller, Henrik/0000-0002-6702-3560; Ebert, Berit/0000-0002-6914-5473 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX Sherry Chan is thanked for assistance with plant growth. We thank the Commonwealth Scientific and Industrial Research Organization for providing the pHANNIBAL and pART27 vectors that were used for silencing of AtRGP1/2 and AtRGP5. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between the Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 62 TC 61 Z9 66 U1 0 U2 24 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD APR PY 2011 VL 23 IS 4 BP 1373 EP 1390 DI 10.1105/tpc.111.083931 PG 18 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 769GO UT WOS:000291000500018 PM 21478444 ER PT J AU Gou, JY Felippes, FF Liu, CJ Weigel, D Wang, JW AF Gou, Jin-Ying Felippes, Felipe F. Liu, Chang-Jun Weigel, Detlef Wang, Jia-Wei TI Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor SO PLANT CELL LA English DT Article ID SBP-BOX GENES; FLAVONOID BIOSYNTHESIS; SHOOT MATURATION; BHLH PROTEINS; END-PRODUCTS; THALIANA; MYB; EXPRESSION; ACCUMULATION; PATHWAY AB Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants. C1 [Felippes, Felipe F.; Weigel, Detlef; Wang, Jia-Wei] Max Planck Inst Dev Biol, Dept Mol Biol, D-72076 Tubingen, Germany. [Gou, Jin-Ying; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Wang, JW (reprint author), Max Planck Inst Dev Biol, Dept Mol Biol, D-72076 Tubingen, Germany. EM weigel@weigelworld.org; jia-wei.wang@tuebingen.mpg.de RI Weigel, Detlef/C-1418-2008; Gou, Jin-Ying/G-7628-2012; OI Weigel, Detlef/0000-0002-2114-7963; Wang, Jia-Wei/0000-0003-3885-6296; Fenselau de Felippes, Felipe/0000-0001-9579-9174 FU EMBO Long-Term Fellowship [ALTF 274-2006]; DFG [SFB 446]; European Community [LSHG-CT-2006-037900, LSHG-CT-2006-037704]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DEAC0298CH10886]; Office of Biological and Environmental Research, Department of Energy FX We thank the European Arabidopsis Stock Centre for seeds, James C. Carrington for the Pro35S:P19-HA construct, Jian-Min Zhou for BiFC constructs, and Eunyoung Chae and Yasushi Kobayashi for discussion. This work was supported by an EMBO Long-Term Fellowship to J.-W.W. (ALTF 274-2006), by a DFG-SFB 446 grant, by European Community FP6 IPs SIROCCO (Contract LSHG-CT-2006-037900) and AGRONOMICS (Contract LSHG-CT-2006-037704) to D. W., by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEAC0298CH10886, and by the Pilot Program for Plant Epigenetic Study from the Office of Biological and Environmental Research, Department of Energy, to C.-J.L. NR 56 TC 172 Z9 203 U1 20 U2 131 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD APR PY 2011 VL 23 IS 4 BP 1512 EP 1522 DI 10.1105/tpc.111.084525 PG 11 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 769GO UT WOS:000291000500027 PM 21487097 ER PT J AU Saraf, LV AF Saraf, L. V. TI Chromium Grain-Boundary Segregation and Effect of Ion Beam Cleaning on Ni-Fe-Cr Alloys SO PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY LA English DT Article ID STAINLESS-STEEL AB The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Ni-Fe-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Ni-Fe-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Ni-Fe-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (10) and inverse pole figure (IPF) maps of Ni-Fe-Cr alloy C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Saraf, LV (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. FU DOE's Office of Biological and Environmental Research, PNNL; BER [DE-AC06-76RL01830] FX The research was performed using resources at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research located at PNNL. PNNL is operated by Battelle for the US DOE. The work support for this work is provided by BER under capability development funds at EMSL through the grant contract DE-AC06-76RL01830 NR 10 TC 2 Z9 2 U1 1 U2 10 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 0032-678X J9 PRAKT METALLOGR-PR M JI Prakt. Metallogr.-Pract. Metallogr. PD APR PY 2011 VL 48 IS 4 BP 184 EP 187 PG 4 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 768ID UT WOS:000290926500002 ER PT J AU Pimont, F Dupuy, JL Linn, RR Dupont, S AF Pimont, Francois Dupuy, Jean-Luc Linn, Rodman R. Dupont, Sylvain TI Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC SO ANNALS OF FOREST SCIENCE LA English DT Article DE Canopy structure; Forest fire; Windflow; Modeling; FIRETEC ID FUEL-BREAK; BEHAVIOR; ATMOSPHERE; FORESTS; SPREAD; MODEL AB Forest fuel management in the context of fire prevention generally induces heterogeneous spatial patterns of vegetation. However, the impact of the canopy structure on both wind flows and fire behavior is not well understood. Here, a coupled atmosphere wildfire behavior model, HIGRAD/FIRETEC, was used to investigate the effects of canopy treatment on wind field and fire behavior in a typical Mediterranean pine ecosystem. First, the treatment-induced winds were simulated with the model. We observed that with decreasing cover fraction the wind velocity increased within the treated zone. The wind spatial variability increased when the vegetation was aggregated into larger clumps. Fire simulations indicated that a decrease of fire intensity occurred after several meters of propagation in the treated zone. This intensity decrease was significant with a cover fraction below 25%, but negligible with a cover fraction greater than 50%. The treatment also induced a more significant inclination of the plume away from vertical. The size of the tree clumps did not show significant effects on fire behavior. This study was a preliminary investigation of wind/fire interaction over various canopy treatments, by using a physically based model. It gives some practical considerations for discerning the appropriate cover fraction and open perspectives for further investigations. C1 [Pimont, Francois; Dupuy, Jean-Luc] INRA, Equipe Phys & Ecol Feu, Inst Natl Rech Agron Ecol Forets Mediterraneennes, UR 629, F-84914 Avignon, France. [Linn, Rodman R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Dupont, Sylvain] INRA, UR1263 EPHYSE, F-33883 Villenave Dornon, France. RP Pimont, F (reprint author), INRA, Equipe Phys & Ecol Feu, Inst Natl Rech Agron Ecol Forets Mediterraneennes, UR 629, F-84914 Avignon, France. EM pimont@avignon.inra.fr FU European Commission [FP6-018505] FX This study has been partially funded by the European Commission in the frame of the FIREPARADOX research program (contract FP6-018505) and the large computations for this work have been made possible by the Los Alamos National Laboratory Institutional Computing resources. This work has also leveraged contributions from INRA and LANL/USFS efforts. NR 21 TC 21 Z9 21 U1 3 U2 19 PU SPRINGER FRANCE PI PARIS PA 22 RUE DE PALESTRO, PARIS, 75002, FRANCE SN 1286-4560 J9 ANN FOREST SCI JI Ann. For. Sci. PD APR PY 2011 VL 68 IS 3 BP 523 EP 530 DI 10.1007/s13595-011-0061-7 PG 8 WC Forestry SC Forestry GA 768DZ UT WOS:000290913000008 ER PT J AU McKee, AM Lance, SL Jones, KL Hagen, C Glenn, TC AF McKee, Anna M. Lance, Stacey L. Jones, Kenneth L. Hagen, Cris Glenn, Travis C. TI Development and characterization of 18 microsatellite loci for the Southern Leopard Frog, Rana sphenocephala SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Southern Leopard Frog; Rana; Lithobates; Microsatellite; PCR primers; SSR; STR AB We isolated and characterized 18 microsatellite loci for the Southern Leopard Frog, Rana sphenocephala. Loci were screened in 30 individuals of R. sphenocephala. The number of alleles per locus ranged from 5 to 21, observed heterozygosity ranged from 0.200 to 0.933, and the probability of identity values ranged from 0.008 to 0.299. These new loci are tools that can be used to study population genetic structure, genetic diversity, and gene flow across varying habitat types and scales. C1 [McKee, Anna M.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.; Glenn, Travis C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP McKee, AM (reprint author), Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. EM mckee@uga.edu RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU DOE [DE-FC09-07SR22506] FX Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. We thank David Scott for providing tissue samples from known sex and family groups of R. sphenocephala. We thank Dr. Lora Smith and the herpetology lab at the Jones Ecological Research Center for their assistance collecting R. sphenocephala samples. NR 11 TC 1 Z9 1 U1 2 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD APR PY 2011 VL 3 IS 2 BP 267 EP 269 DI 10.1007/s12686-010-9338-7 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761YG UT WOS:000290438700018 ER PT J AU Purcell, KM Lance, SL Jones, KL Stockwell, CA AF Purcell, K. M. Lance, S. L. Jones, K. L. Stockwell, C. A. TI Ten novel microsatellite markers for the western mosquitofish Gambusia affinis SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Gambusia; Mosquitofish; Microsatellite; SSR; STR; Poeciliidae ID LOCI AB We isolated and characterized 10 microsatellite loci from the western mosquitofish, Gambusia affinis. Loci were screened in 30 individuals from a single location from their native range in coastal Texas. The number of alleles per locus ranged from 4 to 25, observed heterozygosity ranged from 0.40 to 0.93, and the probability of identity values from 6.0 x 10(-3) to 2.7 x 10(-1), with an overall PI for all loci of 1.3 x 10(-13). These new loci provide tools for examining the genetic diversity, structure, and pedigree G. affinis populations. C1 [Purcell, K. M.; Stockwell, C. A.] N Dakota State Univ, Dept Biol Sci, NDSU Dept 2715, Fargo, ND 58108 USA. [Lance, S. L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, K. L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP Stockwell, CA (reprint author), N Dakota State Univ, Dept Biol Sci, NDSU Dept 2715, 218 Stevens Hall,POB 6050, Fargo, ND 58108 USA. EM craig.stockwell@ndsu.edu RI Lance, Stacey/K-9203-2013; OI Lance, Stacey/0000-0003-2686-1733; Purcell, Kevin/0000-0001-6046-2774 FU agency of the United States Government; NDSU; Environmental and Conservation Sciences Graduate Program Postdoctoral Fellowship; North Dakota EPSCoR; National Science Foundation [EPS-0814442]; North Dakota State University IACUC [A0902]; Department of Energy [DE-FC09-07SR22506] FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.; This work was supported by funds from the NDSU, Environmental and Conservation Sciences Graduate Program Postdoctoral Fellowship awarded to KP and North Dakota EPSCoR and National Science Foundation Grant EPS-0814442 to CAS. Specimen handling and collection was conducted under North Dakota State University IACUC #A0902, and with the assistance of S. Martin. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 9 TC 6 Z9 6 U1 3 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD APR PY 2011 VL 3 IS 2 BP 361 EP 363 DI 10.1007/s12686-010-9362-7 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761YG UT WOS:000290438700040 ER PT J AU Breton, JS Oliveira, K Drew, RE Jones, KL Hagen, C Lance, S AF Breton, Jonathan S. Oliveira, Kenneth Drew, Robert E. Jones, Kenneth L. Hagen, Cris Lance, Stacey TI Development and characterization of ten polymorphic microsatellite loci in the yellowtail flounder (Limanda ferruginea) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Limanda; Yellowtail flounder; Microsatellite; PCR primers; SSR; STR AB We isolated and characterized a total of 10 microsatellite loci from the Yellowtail flounder, Limanda ferruginea. Loci were screened in 24 individuals, 8 each, from the Georges Bank, Southern New England/Mid Atlantic, and Cape Cod/Gulf of Maine, management areas. The number of alleles per locus ranged from 5 to 23, observed heterozygosity ranged from 0.375 to 0.875, and the probability of identity values ranged from 0.102 to 0.505. These new loci will provide tools for examining existing management stock designations and for determining levels of gene flow between these stocks. C1 [Breton, Jonathan S.; Oliveira, Kenneth; Drew, Robert E.] Univ Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USA. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Hagen, Cris; Lance, Stacey] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Breton, JS (reprint author), Univ Massachusetts Dartmouth, Dept Biol, 285 Old Westport Rd, N Dartmouth, MA 02747 USA. EM u_jbreton@umassd.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU agency of the United States Government; Massachusetts Marine Fisheries Institute; DOE [DE-FC09-07SR22506] FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.; Funding from the Massachusetts Marine Fisheries Institute supported this work. Fish were collected by the NOAA Northeast Cooperative Research Program (NCRP) Study Fleet field staff and the participating cooperative owners, Captains and fishers. We thank Richard McBride, Mark Wuenschel, David McElroy, Yvonna Rowinski, and Joshua Dayton for help in collecting and processing of samples. Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 11 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD APR PY 2011 VL 3 IS 2 BP 369 EP 371 DI 10.1007/s12686-010-9364-5 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 761YG UT WOS:000290438700042 ER PT J AU Park, S Kim, Y Urgaonkar, B Lee, J Seo, E AF Park, Seonyeong Kim, Youngjae Urgaonkar, Bhuvan Lee, Joonwon Seo, Euiseong TI A comprehensive study of energy efficiency and performance of flash-based SSD SO JOURNAL OF SYSTEMS ARCHITECTURE LA English DT Article DE Flash memory; SSD; Energy; Power; Filesystems; Storage ID TRANSLATION; LAYER AB Use of flash memory as a storage medium is becoming popular in diverse computing environments. However, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL (flash translation layer). Although the FTL enables flash memory storages to replace conventional hard disks, it induces significant computational and space overhead. Despite the low power consumption of flash memory, this overhead leads to significant power consumption in an overall storage system. In this paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power consumption and energy efficiency by using various methodologies. First, we utilize simulation to investigate the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the performance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics. (C) 2011 Elsevier B.V. All rights reserved. C1 [Seo, Euiseong] Ulsan Natl Inst Sci & Technol, Sch Elect & Comp Engn, Ulsan, South Korea. [Park, Seonyeong] Korea Adv Inst Sci & Technol, Div Comp Sci, Taejon 305701, South Korea. [Kim, Youngjae] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Urgaonkar, Bhuvan] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16803 USA. [Lee, Joonwon] Sungkyunkwan Univ, Sch Informat & Commun Engn, Suwon, South Korea. RP Seo, E (reprint author), Ulsan Natl Inst Sci & Technol, Sch Elect & Comp Engn, Ulsan, South Korea. EM parksy@calab.kaist.ac.kr; kimy1@ornl.gov; bhuvan@cse.psu.edu; joonwon@skku.edu; euiseong@unist.ac.kr FU Ministry of Education, Science and Technology [2009-0089491, 2010-0003453] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0089491 and 2010-0003453). NR 32 TC 6 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-7621 J9 J SYST ARCHITECT JI J. Syst. Architect. PD APR PY 2011 VL 57 IS 4 BP 354 EP 365 DI 10.1016/j.sysarc.2011.01.005 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 765XB UT WOS:000290741600003 ER PT J AU Yoshii, K Iskra, K Naik, H Beckman, P Broekema, PC AF Yoshii, Kazutomo Iskra, Kamil Naik, Harish Beckman, Pete Broekema, P. Chris TI Performance and Scalability Evaluation of 'Big Memory' on Blue Gene Linux SO WAR IN HISTORY LA English DT Article DE Linux; Blue Gene; OS kernel; memory performance; TLB ID PARALLEL OCEAN PROGRAM AB We address memory performance issues observed in Blue Gene Linux and discuss the design and implementation of 'Big Memory'-an alternative, transparent memory space introduced to eliminate the memory performance issues. We evaluate the performance of Big Memory using custom memory benchmarks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4,096 nodes. We find that Big Memory successfully resolves the performance issues normally encountered in Blue Gene Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better scalability than does the lightweight compute node kernel designed solely for high-performance applications. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically improves the performance of certain I/O node applications as well. We demonstrate this performance using the central processor of the LOw Frequency ARray radio telescope as an example. C1 [Yoshii, Kazutomo; Iskra, Kamil; Naik, Harish; Beckman, Pete] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Beckman, Pete] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. [Broekema, P. Chris] Netherlands Inst Radio Astron, ASTRON, Dwingeloo, Netherlands. RP Yoshii, K (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kazutomo@mcs.anl.gov NR 18 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0968-3445 J9 WAR HIST JI War Hist. PD APR PY 2011 VL 18 IS 2 BP 148 EP 160 DI 10.1177/1094342010369116 PG 13 WC History; International Relations SC History; International Relations GA 759AY UT WOS:000290213300001 ER PT J AU Shukla, N Miller, JB Coletta, E Ondeck, AD Pushkarev, V Gellman, AJ AF Shukla, N. Miller, J. B. Coletta, E. Ondeck, A. D. Pushkarev, V. Gellman, A. J. TI Synthesis of Nanorods with Ni Cores and Porous Silica Coatings SO CATALYSIS LETTERS LA English DT Article DE Nanoparticulate catalyst; Silica coatings; Ni nanoparticles ID NICKEL NANOPARTICLES; PLATINUM NANOPARTICLES; METHANE DECOMPOSITION; CATALYTIC-PROPERTIES; MAGNETIC-PROPERTIES; GOLD NANOPARTICLES; PARTIAL OXIDATION; CARBON-MONOXIDE; SYNTHESIS GAS; QUANTUM DOTS AB Nanorods with a Ni core and a silica coating have been prepared using a one-step synthesis and characterized using a variety of methods. Nitrogen adsorption isotherms have been used to characterize the pore size and the internal surface area of the silica shells grown on the Ni nanorods. Spectroscopic characterization of CO adsorbed on the Ni nanoparticle cores has been used to verify that the pore structure of the silica shells allows CO to access the Ni core; this property is critical to the use of core-shell structures as industrial catalysts. To demonstrate their resistance to physical and chemical degradation, the properties of the silica-coated Ni nanoparticles have been measured both before and after treatment at high temperature (623-1073 K) and exposure to a reducing atmosphere (hydrogen gas). Annealing at high temperatures reduces, but does not eliminate, the porosity of the silica shells. C1 [Shukla, N.] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA. [Shukla, N.; Miller, J. B.; Gellman, A. J.] US DOE, Natl Energy & Technol Lab, Pittsburgh, PA 15236 USA. [Miller, J. B.; Coletta, E.; Ondeck, A. D.; Pushkarev, V.; Gellman, A. J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Shukla, N (reprint author), Carnegie Mellon Univ, Inst Complex Engn Syst, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM nisha@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory [DE-FE0004000] FX This effort was performed in support of the National Energy Technology Laboratory's on-going research in "Next generation, sinter-resistant, catalysts for syngas conversion", under the RES contract DE-FE0004000. NR 44 TC 2 Z9 2 U1 3 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD APR PY 2011 VL 141 IS 4 BP 491 EP 497 DI 10.1007/s10562-010-0531-9 PG 7 WC Chemistry, Physical SC Chemistry GA 759CY UT WOS:000290219300001 ER PT J AU Deng, WL Lobo, R Setthapun, W Christensen, ST Elam, JW Marshall, CL AF Deng, Weiling Lobo, Rodrigo Setthapun, Worajit Christensen, Steven T. Elam, Jeffrey W. Marshall, Christopher L. TI Oxidative Hydrolysis of Cellobiose to Glucose SO CATALYSIS LETTERS LA English DT Article DE Cellobiose; Sucrose; Glucose; Oxidative hydrolysis; Non-porous support AB Cellobiose hydrolysis into glucose was chosen as a model system for cellulose breakdown to investigate glycosidic bond cleavage. The hydrolysis was enhanced by increased acidity in an inert gas medium, while air-assisted hydrolysis with a neutral solution achieved over 70% glucose yield. Hydrogen peroxide, as a stronger oxidant than air, converted cellobiose to carboxyl compounds, which lowered the glucose selectivity. At 150 degrees C, the selectivity from cellobiose to glucose was very low on porous gamma-Al(2)O(3) supported catalysts, even lower than without a catalyst. When the active metals were prepared on non-porous supports such as spherical alumina (alpha phase), the overall yield of glucose was dramatically improved at 120 degrees C. Similar improvements were obtained for another disaccharide model, sucrose, which achieved greater than 90% sucrose conversion with selectivity in excess of 90% at 80 degrees C. C1 [Deng, Weiling; Lobo, Rodrigo; Setthapun, Worajit; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Christensen, Steven T.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Marshall, CL (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM marshall@anl.gov RI Marshall, Christopher/D-1493-2015 OI Marshall, Christopher/0000-0002-1285-7648 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [FWP 57703]; U.S Department of Energy [DE-AC02-06CH11357] FX This work is supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under contract FWP 57703. Argonne is operated by UChicago Argonne, LLC, for the U.S Department of Energy under contract DE-AC02-06CH11357. NR 30 TC 7 Z9 7 U1 0 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD APR PY 2011 VL 141 IS 4 BP 498 EP 506 DI 10.1007/s10562-010-0532-8 PG 9 WC Chemistry, Physical SC Chemistry GA 759CY UT WOS:000290219300002 ER PT J AU Feng, H Lu, JL Stair, PC Elam, JW AF Feng, Hao Lu, Junling Stair, Peter C. Elam, Jeffrey W. TI Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity SO CATALYSIS LETTERS LA English DT Article DE Atomic layer deposition; Alumina over-coat; Methanol decomposition; Pd nanoparticles; Sintering ID SUPPORTED-CATALYST; ADSORPTION; SILICA; MODEL; PARTICLES AB ALD Alumina was utilized as a protective layer to inhibit the sintering of supported nano-sized ALD Pd catalysts in the methanol decomposition reaction carried out at elevated temperatures. The protective ALD alumina layers were synthesized on Pd nanoparticles (1-2 nm) supported on high surface area alumina substrates. Up to a certain over-coat thickness, the alumina protective layers preserved or even slightly enhanced the catalytic activity and prevented sintering of the Pd nanoparticles up to 500 degrees C. C1 [Lu, Junling; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Feng, Hao; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Lu, Junling/F-3791-2010 OI Lu, Junling/0000-0002-7371-8414 FU U.S. Department of Energy, BES-HFI, Chemical Sciences [DE-AC-02-06CH11357]; Dow Chemical Company FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, BES-HFI, Chemical Sciences under Contract DE-AC-02-06CH11357. The work at Northwestern University was financially supported by The Dow Chemical Company under the Dow Methane Challenge Award. NR 24 TC 59 Z9 59 U1 6 U2 77 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD APR PY 2011 VL 141 IS 4 BP 512 EP 517 DI 10.1007/s10562-011-0548-8 PG 6 WC Chemistry, Physical SC Chemistry GA 759CY UT WOS:000290219300004 ER PT J AU Khan, MI Aydemir, K Siddiqui, MRH Alwarthan, AA Marshall, CL AF Khan, M. Ishaque Aydemir, Kadir Siddiqui, M. Rafiq H. Alwarthan, Abdulrahman A. Marshall, Christopher L. TI Oxidative Dehydrogenation Properties of Novel Nanostructured Polyoxovanadate Based Materials SO CATALYSIS LETTERS LA English DT Article DE Oxidative dehydrogenation; Catalysis; Propylene; Framework materials; Polyoxovanadates; X-ray absorption spectroscopy; XANES ID VANADIA-BASED CATALYSTS; PROPANE ODH REACTION; SELECTIVE OXIDATION; SURFACE-AREA; OXIDE; MOLYBDENA; ADDITIVES; ALUMINA; ETHANE; MECHANISM AB A comparative study of the catalytic oxidative dehydrogenation of propane by a novel polyoxovanadate based open-framework material (Co-POV)-[Co(3)V(18)O(42) (H(2)O)(12)(XO(4))]center dot 24H(2)O (X = V, S), which is composed of nanometer size vanadium oxide clusters interlinked by cobalt oxide {-O-Co-O-} motifs, showed that Co-POV has superior catalytic property as compared to its individual metal oxide constituents, vanadium oxide and cobalt oxide, and their mixture, with high propylene selectivity. C1 [Khan, M. Ishaque; Aydemir, Kadir] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Siddiqui, M. Rafiq H.; Alwarthan, Abdulrahman A.] King Saud Univ, Dept Chem, Coll Sci, Riyadh 11451, Saudi Arabia. [Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Khan, MI (reprint author), IIT, Dept Biol Chem & Phys Sci, 3101 S Dearborn St,Life Sci Bldg,Room 178, Chicago, IL 60616 USA. EM khan@iit.edu RI BM, MRCAT/G-7576-2011; Siddiqui, M Rafiq/E-9030-2010; Marshall, Christopher/D-1493-2015 OI Siddiqui, M Rafiq/0000-0002-4703-0333; Marshall, Christopher/0000-0002-1285-7648 FU King Abdullah Institute of Nanotechnology, King Saud University, Riyadh, Saudi Arabia FX Funding for part of this work from King Abdullah Institute of Nanotechnology, King Saud University, Riyadh, Saudi Arabia is gratefully acknowledged. We thank Rodrigo Lobo, Argonne National Laboratory, for his help with XANES experiments. NR 28 TC 8 Z9 8 U1 1 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD APR PY 2011 VL 141 IS 4 BP 538 EP 543 DI 10.1007/s10562-011-0547-9 PG 6 WC Chemistry, Physical SC Chemistry GA 759CY UT WOS:000290219300008 ER PT J AU Beckham, GT Bomble, YJ Bayer, EA Himmel, ME Crowley, MF AF Beckham, Gregg T. Bomble, Yannick J. Bayer, Edward A. Himmel, Michael E. Crowley, Michael F. TI Applications of computational science for understanding enzymatic deconstruction of cellulose SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID THERMOCELLUM CELLOBIOHYDROLASE CBHA; CARBOHYDRATE-BINDING MODULE; MOLECULAR-DYNAMICS; TRICHODERMA-REESEI; CRYSTALLINE CELLULOSE; FREE-ENERGIES; FORCE-FIELD; FAMILY; SIMULATION; PROTEIN AB Understanding the molecular-level mechanisms that enzymes employ to deconstruct plant cell walls is a fundamental scientific challenge with significant ramifications for renewable fuel production from biomass. In nature, bacteria and fungi use enzyme cocktails that include processive and non-processive cellulases and hemicellulases to convert cellulose and hemicellulose to soluble sugars. Catalyzed by an accelerated biofuels R&D portfolio, there is now a wealth of new structural and experimental insights related to cellulases and the structure of plant cell walls. From this background, computational approaches commonly used in other fields are now poised to offer insights complementary to experiments designed to probe mechanisms of plant cell wall deconstruction. Here we outline the current status of computational approaches for a collection of critical problems in cellulose deconstruction. We discuss path sampling methods to measure rates of elementary steps of enzyme action, coarse-grained modeling for understanding macromolecular, cellulosomal complexes, methods to screen for enzyme improvements, and studies of cellulose at the molecular level. Overall, simulation is a complementary tool to understand carbohydrate-active enzymes and plant cell walls, which will enable industrial processes for the production of advanced, renewable fuels. C1 [Bomble, Yannick J.; Himmel, Michael E.; Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Beckham, Gregg T.] Renewable & Sustainable Energy Inst, Boulder, CO USA. [Bomble, Yannick J.; Himmel, Michael E.; Crowley, Michael F.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Bayer, Edward A.] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. RP Himmel, ME (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. EM Mike.Himmel@nrel.gov; Michael.Crowley@nrel.gov RI crowley, michael/A-4852-2013 OI crowley, michael/0000-0001-5163-9398 FU DOE Office of the Biomass; DOE BER BioEnergy Science Center (cellulosome modeling); DOE ASCR FX We thank the DOE Office of the Biomass Program (Cel7A modeling), the DOE BER BioEnergy Science Center (cellulosome modeling), and the DOE ASCR SciDAC program for funding (cellulose modeling). EAB holds the Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry at the Weizmann Institute of Science. NR 59 TC 66 Z9 69 U1 6 U2 72 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD APR PY 2011 VL 22 IS 2 BP 231 EP 238 DI 10.1016/j.copbio.2010.11.005 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 762TX UT WOS:000290505300015 PM 21168322 ER PT J AU Sutton, MA Hild, F Jin, H Li, X Grediac, MM AF Sutton, M. A. Hild, F. Jin, H. Li, X. Grediac, M. M. TI Advanced Imaging Methods SO EXPERIMENTAL MECHANICS LA English DT Editorial Material C1 [Sutton, M. A.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Hild, F.] LMT Cachan, ENS Cachan, F-94235 Cachan, France. [Jin, H.] Sandia Natl Labs, Livermore, CA 94551 USA. [Li, X.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Grediac, M. M.] Univ Blaise Pascal IFMA, Lab Mecan & Ingn, F-63175 Aubiere, France. RP Sutton, MA (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St,Room A129, Columbia, SC 29208 USA. EM sutton@sc.edu RI GREDIAC, Michel/H-7100-2013; HILD, Francois/G-9752-2015 OI GREDIAC, Michel/0000-0002-6814-1438; HILD, Francois/0000-0001-5553-0066 NR 0 TC 2 Z9 2 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 401 EP 403 DI 10.1007/s11340-011-9469-0 PG 3 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100001 ER PT J AU Wang, YQ Sutton, MA Ke, XD Schreier, HW Reu, PL Miller, TJ AF Wang, Y-Q. Sutton, M. A. Ke, X-D. Schreier, H. W. Reu, P. L. Miller, T. J. TI On Error Assessment in Stereo-based Deformation Measurements Part I: Theoretical Developments for Quantitative Estimates SO EXPERIMENTAL MECHANICS LA English DT Article DE Probabilistic theoretical analysis; Stereovision; Camera parameters; Variance and expectation for 3D position AB Using the basic equations for stereo-vision with established procedures for camera calibration, the error propagation equations for determining both bias and variability in a general 3D position are provided. The results use recent theoretical developments that quantified the bias and variance in image plane positions introduced during image plane correspondence identification for a common 3D point (e.g., pattern matching during measurement process) as a basis for preliminary application of the developments for estimation of 3D position bias and variability. Extensive numerical simulations and theoretical analyses have been performed for selected stereo system configurations amenable to closed-form solution. Results clearly demonstrate that the general formulae provide a robust framework for quantifying the effect of various stereo-vision parameters and image-plane matching procedures on both the bias and variance in an estimated 3D object position. C1 [Wang, Y-Q.; Sutton, M. A.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Ke, X-D.; Schreier, H. W.] Correlated Solut Inc, Columbia, SC 29210 USA. [Reu, P. L.; Miller, T. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sutton, MA (reprint author), Univ S Carolina, Dept Mech Engn, 300 S Main St, Columbia, SC 29208 USA. EM sutton@sc.edu RI Ke, Xiaodan/A-2153-2013 OI Ke, Xiaodan/0000-0002-8853-9312 FU Sandia National Laboratory; PO [551836]; ARO [W911NF-06-1-0216]; NASA [NNX07AB46A]; Department of Mechanical Engineering at the University of South Carolina FX The financial support of Sandia National Laboratory and the technical advice and support of Dr. Timothy Miller and Dr. Phillip Reu through Sandia Contract PO#551836, the support of Dr. Bruce Lamattina through ARO# W911NF-06-1-0216 and the support provided by Dr. Stephen Smith through NASA NNX07AB46A are gratefully acknowledged. In addition, the research support provided by the Department of Mechanical Engineering at the University of South Carolina is also gratefully acknowledged. NR 14 TC 30 Z9 30 U1 3 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 405 EP 422 DI 10.1007/s11340-010-9449-9 PG 18 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100002 ER PT J AU Reu, PL AF Reu, P. L. TI Experimental and Numerical Methods for Exact Subpixel Shifting SO EXPERIMENTAL MECHANICS LA English DT Article DE Digital image correlation; Uncertainty quantification; DIC; Subpixel ID DIGITAL IMAGE CORRELATION; INTENSITY PATTERN NOISE; SYSTEMATIC-ERRORS; INTERPOLATION AB An approach to quantifying the errors in digital image correlation (DIC) is presented using experimentally produced images. The challenge arises in creating exact subpixel shifted images in an experiment. This was accomplished via numerical binning of an ultra-high resolution image. The shifted images are then used for a preliminary analysis of 2D correlation software uncertainty and investigation of speckle pattern quality. Because it is often necessary to use numerically shifted images, for uncertainty quantification for instance, the optimum method of Fourier shifting is also presented. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reu, PL (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM plreu@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 15 TC 36 Z9 36 U1 3 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 443 EP 452 DI 10.1007/s11340-010-9417-4 PG 10 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100004 ER PT J AU Rae, PJ Williamson, DM Addiss, J AF Rae, P. J. Williamson, D. M. Addiss, J. TI A Comparison of 3 Digital Image Correlation Techniques on Necessarily Suboptimal Random Patterns Recorded By X-Ray SO EXPERIMENTAL MECHANICS LA English DT Article DE Image correlation; X-ray; Propellant; Deformation; Fragment attack ID ELECTRONIC SPECKLE PHOTOGRAPHY; DISPLACEMENT MEASUREMENT; ACCURACY; INTERPOLATION AB Dynamic x-rays have been used to follow the deformation ahead of a steel ball fired into a mock-up of a generic cylindrical rocket motor. The impact was arranged to intersect a sparse lead powder layer within the mock explosive that created a random speckle pattern on x-ray film. Three different digital image correlation programs are compared to examine any sensitivity to the sub-optimal speckle pattern produced by the lead powder. An identical output data reduction method was used in all cases to aid comparison. All three correlation methods were able analyze the deformation, but all had intricacies that would require more detailed optimization of the data reduction in order to fully exploit the technique. Quantitative analysis showed that the three methods agreed closely in estimations of rigid body displacements between a pair of representative x-ray images. It was discovered that the deformation caused by the ball impact was highly localized and the useful data available about the deformation pattern was sparse. This limits the applicability of this technique to this specific application. Extensive cracking was not observed that would have aided the development of computer-based models for prediction of such impact events. The x-ray technique was however excellent for determining the ball position as a function of time after impact. C1 [Rae, P. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Williamson, D. M.; Addiss, J.] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England. RP Rae, PJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM prae@lanl.gov; dmw28@cam.ac.uk; ja304@cam.ac.uk FU NNSA of the U.S. Department of Energy [DE-AC52-06NA25396]; Joint DoD/DoE Munitions Technology Development FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the NNSA of the U.S. Department of Energy under contract DE-AC52-06NA25396. This research was partially sponsored by the Joint DoD/DoE Munitions Technology Development Program. NR 14 TC 3 Z9 3 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 467 EP 477 DI 10.1007/s11340-010-9444-1 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100006 ER PT J AU Jin, H Haldar, S Bruck, HA Lu, WY AF Jin, H. Haldar, S. Bruck, H. A. Lu, W-Y. TI Grid Method for Microscale Discontinuous Deformation Measurement SO EXPERIMENTAL MECHANICS LA English DT Article DE Grid method; Digital Image Correlation; Microscale; Discontinuous ID DIGITAL-IMAGE-CORRELATION; STRAIN-MEASUREMENT; DISPLACEMENT; PATTERN; OBJECT AB The objective of this paper is to explore both grid method and Digital Image Correlation (DIC) technique for microscale and discontinuous displacement measurements, such as those associated with crack tips. First, the principle of the grid method is revisited. The grid method and DIC technique are then applied to computer generated images to calculate the displacement field around crack tips. Finally, the grid method is applied to actual experimental images of fracture tests which are conducted inside a Scanning Electron Microscope (SEM) chamber. A new technique is developed to generate microscale pattern that is suitable for both grid method and DIC technique. The displacement fields calculated from grid method are compared with those from DIC technique to identify the strengths and weaknesses of each technique for the microscale and discontinuous displacement measurements. It has been determined that grid method can obtain data closer to the discontinuity than DIC; however, DIC produces smoother displacement fields at the far field. Using this new pattern generation technique, both grid method and DIC technique can be applied to the fracture test at the microscale to complement with each other to achieve the best experiment results. C1 [Jin, H.; Lu, W-Y.] Sandia Natl Labs Calif, Livermore, CA 94550 USA. [Haldar, S.; Bruck, H. A.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. RP Jin, H (reprint author), Sandia Natl Labs Calif, Livermore, CA 94550 USA. EM hjin@sandia.gov RI Haldar, Sandip/E-8907-2012; OI Haldar, Sandip/0000-0002-6082-1754 FU United States Department of Energy [DE-AC04-94-AL85000]; NSF [DMR-0907122] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Support provided by NSF under grant number DMR-0907122 is also greatly appreciated. NR 29 TC 9 Z9 10 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 565 EP 574 DI 10.1007/s11340-010-9459-7 PG 10 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100011 ER PT J AU Xu, ZH Jin, H Lu, WY Sutton, MA Li, XD AF Xu, Zhi-Hui Jin, Helena Lu, Wei-Yang Sutton, Michael A. Li, Xiaodong TI Influence of Scanning Rotation on Nanoscale Artificial Strain in Open-Loop Atomic Force Microscopy SO EXPERIMENTAL MECHANICS LA English DT Article DE Atomic force microscopy; Digital image correlation; Scanning rotation; Artificial strain ID DIGITAL IMAGE CORRELATION; TENSILE DEFORMATION; SURFACE DEFORMATION; ELASTIC PROPERTIES; MEMS; CARBON; FIELD AB For nanoscale metrology using atomic force microscopy (AFM), it is essential to know the baseline error induced by the AFM scanning process. A systematic study has been performed using digital image correlation (DIC) to quantify the influence of scanning rotation angle on the artificial strain (error) in an open loop AFM. It is found that significant artificial strain has been induced by the scanning rotation angle, demonstrating that highly accurate metrology can only be performed in an open loop AFM when the scan angle is held constant during imaging. C1 [Xu, Zhi-Hui; Sutton, Michael A.; Li, Xiaodong] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Jin, Helena; Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94550 USA. RP Li, XD (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM lixiao@cec.sc.edu RI Xu, Zhi-Hui/B-3392-2008 FU National Science Foundation [CMMI-0653651, CMMI-0968843, CMMI-824728]; University of South Carolina NanoCenter FX This work was supported by the National Science Foundation (CMMI-0653651, CMMI-0968843, and CMMI-824728) and the University of South Carolina NanoCenter. NR 26 TC 4 Z9 4 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD APR PY 2011 VL 51 IS 4 BP 619 EP 624 DI 10.1007/s11340-010-9442-3 PG 6 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 761JM UT WOS:000290394100015 ER PT J AU Vecchi, L AF Vecchi, Luca TI Technicolor at criticality SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE AdS-CFT Correspondence; Technicolor and Composite Models ID DYNAMICAL SYMMETRY-BREAKING; QUANTUM ELECTRODYNAMICS; GAUGE-THEORIES; SCALE; HIERARCHIES; HYPERCOLOR; WALKING; MASS AB We discuss an asymptotically non-free, natural model for dynamical electroweak symmetry breaking characterized by the emergence of a weakly coupled Higgs in the IR regime. Due to the large anomalous dimension of the Higgs operator, the model is capable of solving the hierarchy problem without losing the phenomenologically appealing features typical of weakly coupled Higgs sectors. We speculate on the possibility that such a scenario be realized as a strongly coupled phase of non-supersymmetric non-abelian gauge theories. C1 Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. RP Vecchi, L (reprint author), Los Alamos Natl Lab, Theoret Div T2, POB 1663, Los Alamos, NM 87545 USA. EM vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We are grateful to Michael L. Graesser for valuable discussions. This work has been supported by the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 39 TC 11 Z9 11 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR PY 2011 IS 4 AR 127 DI 10.1007/JHEP04(2011)127 PG 22 WC Physics, Particles & Fields SC Physics GA 760NY UT WOS:000290332200064 ER PT J AU Seidl-Seiboth, V Gruber, S Sezerman, U Schwecke, T Albayrak, A Neuhof, T von Dohren, H Baker, SE Kubicek, CP AF Seidl-Seiboth, Verena Gruber, Sabine Sezerman, Ugur Schwecke, Torsten Albayrak, Aydin Neuhof, Torsten von Doehren, Hans Baker, Scott E. Kubicek, Christian P. TI Novel Hydrophobins from Trichoderma Define a New Hydrophobin Subclass: Protein Properties, Evolution, Regulation and Processing SO JOURNAL OF MOLECULAR EVOLUTION LA English DT Article DE Hydrophobin; Trichoderma; Protein evolution; Protein processing; Peptidomics; Splicing; Hypocrea ID GENE-EXPRESSION; NUCLEOTIDE-SEQUENCES; MULTIGENE FAMILIES; DEATH EVOLUTION; BIOCONTROL; FUNGI; GENERATION; DISTANCE; MUSHROOM; STRAINS AB Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing. C1 [Seidl-Seiboth, Verena; Gruber, Sabine; Kubicek, Christian P.] Vienna Univ Technol, Res Area Gene Technol & Appl Biochem, Inst Chem Engn, A-1060 Vienna, Austria. [Sezerman, Ugur; Albayrak, Aydin] Sabanci Univ, Istanbul, Turkey. [Schwecke, Torsten; Neuhof, Torsten] Anagnostec GmbH, D-14943 Luckenwalde, Germany. [Schwecke, Torsten; von Doehren, Hans] TU Berlin, Inst Chem, FG Biochem & Mol Biol, D-10587 Berlin, Germany. [Baker, Scott E.] Pacific NW Natl Lab, Fungal Biotechnol Team, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. RP Kubicek, CP (reprint author), Vienna Univ Technol, Res Area Gene Technol & Appl Biochem, Inst Chem Engn, Gumpendorferstr 1A-166-5, A-1060 Vienna, Austria. EM christian.kubicek@tuwien.ac.at FU EC [EUROFUNG 2, QLK3-1999-00729]; FWF Austrian Science Fund [P-19690, T390]; Deutsche Forschungsgemeinschaft [Do270/10]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE EERE Office of the Biomass Program FX This study was supported by the Fifth (EC) Framework program (Quality of Life and Management of Living Resources; Project EUROFUNG 2; QLK3-1999-00729) to CPK and HVD, by the FWF Austrian Science Fund (P-19690 to CPK and T390 to VS) and by a fellowship from the Deutsche Forschungsgemeinschaft (Do270/10) to HVD. The work conducted by the U. S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SEB was supported by the DOE EERE Office of the Biomass Program. NR 47 TC 24 Z9 25 U1 5 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2844 J9 J MOL EVOL JI J. Mol. Evol. PD APR PY 2011 VL 72 IS 4 BP 339 EP 351 DI 10.1007/s00239-011-9438-3 PG 13 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 763RW UT WOS:000290578400001 PM 21424760 ER PT J AU Huang, R Harinath, E Biegler, LT AF Huang, Rui Harinath, Eranda Biegler, Lorenz T. TI Lyapunov stability of economically oriented NMPC for cyclic processes SO JOURNAL OF PROCESS CONTROL LA English DT Article DE Model predictive control; Nonlinear systems; Cyclic processes; Lyapunov stability; Air separation ID MODEL-PREDICTIVE CONTROL; OPERATIONS AB Several applications in process industries, such as simulated moving bed (SMB) separation and pressure swing adsorption (PSA), exhibit cyclic steady state behavior. Moreover, it is of economic interest to require energy intensive applications to take advantage of the periodically varying electricity price by changing the operating point frequently. Because traditional two-layer optimization methods are difficult to apply to these systems, we consider instead an economically oriented nonlinear model predictive control (NMPC) that directly considers system's economic performance subject to the dynamic model. On the other hand, the commonly used Lyapunov framework to analyze the stability for the economically oriented NMPC cannot be applied directly. This work proposes two economically oriented NMPC formulations and proves nominal stability for both. We introduce transformed systems by subtracting the optimal cyclic steady state from the original system, for which the Lyapunov function can easily be established. Moreover, we show that the asymptotical stability of the transformed system is equivalent to that of the original system. Hence, the original systems are also nominally stable at the cyclic optimal solution. Finally, an industrial size air separation unit case study with periodic electricity cost is presented. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Huang, Rui; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Huang, Rui; Biegler, Lorenz T.] Natl Energy Technol Lab, Collaboratory Proc & Dynam Syst Res, Morgantown, WV 26507 USA. [Harinath, Eranda] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. RP Biegler, LT (reprint author), Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM biegler@cmu.edu NR 20 TC 101 Z9 104 U1 4 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-1524 J9 J PROCESS CONTR JI J. Process Control PD APR PY 2011 VL 21 IS 4 BP 501 EP 509 DI 10.1016/j.jprocont.2011.01.012 PG 9 WC Automation & Control Systems; Engineering, Chemical SC Automation & Control Systems; Engineering GA 762SE UT WOS:000290500600006 ER PT J AU Brown, EN AF Brown, E. N. TI Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing SO JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN LA English DT Article DE fracture toughness; tapered double-cantilever beam; TDCB; self-healing; autonomic healing ID MICROCAPSULE-TOUGHENED EPOXY; OPENING METATHESIS POLYMERIZATION; FATIGUE-CRACK-PROPAGATION; MEMORY ALLOY WIRES; POLYTETRAFLUOROETHYLENE PTFE; COMPOSITE-MATERIALS; POLYMERS; PERFORMANCE; DICYCLOPENTADIENE; SPECIMENS AB The successful invention of self-healing polymer composites a decade ago necessitated a methodology to quantify the ability of the material to heal and recover structural properties following damage. Healing efficiency was defined as the ratio of healed to virgin fracture toughness, eta = K(IChealed)/K(ICvirgin). Early work took advantage of the crack length independence offered by a tapered double-cantilever beam (TDCB) fracture geometry to simplify calculation of healing efficiency to the ratio of healed to virgin critical loads, eta = P(Chealed)/P(Cvirgin). The current work investigates the application of the TDCB geometry and three common geometries utilized in the broader fracture literature (the compact tension (CT), single-edge notch bend (SENB), and single-edge notch tension (SENT) geometries) to the measurement of healing efficiency. While the TDCB geometry simplifies the calculation of healing efficiency because the crack lengths do not need to be accounted for, it is shown that if the virgin and healed crack lengths are not accurately accounted when using the CT, SENB, and SENT geometries, errors in calculated healing efficiency can be several hundred per cent. The TDCB geometry is reviewed at length, including the underlying theory and experimental calibration and validation of TDCB geometry. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Brown, EN (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA. EM en_brown@lanl.gov OI Brown, Eric/0000-0002-6812-7820 FU DoD/DOE; NSF; AFOSR FX The author would like to express profound gratitude to Professor N. R. Sottos and Professor S. R. White, who supported early elements of this work and seeded many of the ideas that culminate in this paper, also to Professor M. R. Kessler for early discussions of TDCB and WTDCB geometries. The author would also like to thank the Journal of Strain Analysis for Engineering Design, its Editor Professor E. A. Patterson, and the Society for Experimental Mechanics for acknowledging the author's work with the inaugural JSA Young Investigator Lecturer in 2009, for which the final ideas for the current work were solidified. The Joint DoD/DOE Munitions Program, NSF, and AFOSR financially supported elements of this work. Portions of this work were conducted at Los Alamos National Laboratory, operated by Los Alamos National Security, LCC for the US Department of Energy NNSA. NR 72 TC 34 Z9 34 U1 4 U2 39 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0309-3247 J9 J STRAIN ANAL ENG JI J. Strain Anal. Eng. Des. PD APR PY 2011 VL 46 IS 3 BP 167 EP 186 DI 10.1177/0309324710396018 PG 20 WC Engineering, Mechanical; Mechanics; Materials Science, Characterization & Testing SC Engineering; Mechanics; Materials Science GA 763HZ UT WOS:000290547900001 ER PT J AU Walters, TW Walters, LC Schoen, MP Naidu, DS Dickerson, C Perrenoud, B AF Walters, Thomas W. Walters, Leon C. Schoen, Marco P. Naidu, D. Subbaram Dickerson, Charles Perrenoud, Ben C. TI Quantification of stress history in type 304L stainless steel using positron annihilation spectroscopy SO MATERIALS CHARACTERIZATION LA English DT Article DE 304L stainless steel; Nondestructive evaluation; Positron spectroscopy; Stress history; Bremsstrahlung ID DEFECT ANALYSIS AB Five Type 304L stainless steel specimens were subjected to incrementally increasing values of plastic strain. At each value of strain, the associated static stress was recorded and the specimen was subjected to positron annihilation spectroscopy (PAS) using the Doppler Broadening method. A calibration curve for the 'S' parameter as a function of stress was developed based on the five specimens. Seven different specimens (blind specimens labeled B1-B7) of 304L stainless steel were subjected to values of stress inducing plastic deformation. The values of stress ranged from 310 to 517 MPa. The seven specimens were subjected to PAS post-loading using the Doppler Broadening method, and the results were compared against the developed curve from the previous five specimens. It was found that a strong correlation exists between the 'S' parameter, stress, and strain up to a strain value of 15%, corresponding to a stress value of 500 MPa, beyond which saturation of the 'S' parameter occurs. (C) 2011 Elsevier Inc. All rights reserved. C1 [Walters, Thomas W.; Perrenoud, Ben C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Walters, Leon C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schoen, Marco P.; Naidu, D. Subbaram] Idaho State Univ, Pocatello, ID 83201 USA. [Dickerson, Charles] Positron Syst Inc, Pocatello, ID 83201 USA. RP Walters, TW (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Thomas.Walters@inl.gov FU U.S. Government under DOE [DE-AC07-051D14517] FX This submitted manuscript was authored by a contractor of the U.S. Government under DOE Contract No. DE-AC07-051D14517. Accordingly, the U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 5 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD APR PY 2011 VL 62 IS 4 BP 398 EP 401 DI 10.1016/j.matchar.2011.02.004 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 762VS UT WOS:000290510200006 ER PT J AU Bat'kov, YV Ignatova, ON Kondrokhina, IN Malyshev, AN Nadezhin, SS Podurets, AM Raevskii, VA Skokov, VI Tyupanova, OA Zocher, MA Preston, DL AF Bat'kov, Yu V. Ignatova, O. N. Kondrokhina, I. N. Malyshev, A. N. Nadezhin, S. S. Podurets, A. M. Raevskii, V. A. Skokov, V. I. Tyupanova, O. A. Zocher, Marvin A. Preston, Dean L. TI Specific Features of the Damage Nucleation Stage under Severe Loading of Copper SO PHYSICS OF THE SOLID STATE LA English DT Article AB The nucleation and evolution of damage in annealed coarsely crystalline M1-type copper subjected to fast loading to a pressure P similar to 32 GPa, followed by the action of tensile stresses sigma(p) with an intensity of approximate to-2.0 GPa for a time t approximate to 0.3-1.5 mu s, have been investigated numerically and experimentally. It has been shown that, at a specific combination of amplitude-time characteristics of the tensile stress pulse, damage localization in some cases at t < 1 mu s has been observed in zones (similar to 10 14 mm in size) alternating with "dead" zones (similar to 3-5 mm in size) containing no visible damages. Pores are connected by "yield streamlets." The existing multistage models of fracture kinetics have neither explained nor predicted the formation of a "band" damage structure or the presence of "yield streamlets" in specimens. C1 [Bat'kov, Yu V.; Ignatova, O. N.; Kondrokhina, I. N.; Malyshev, A. N.; Nadezhin, S. S.; Podurets, A. M.; Raevskii, V. A.; Skokov, V. I.; Tyupanova, O. A.] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607188, Nizhni Novgorod, Russia. [Zocher, Marvin A.; Preston, Dean L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bat'kov, YV (reprint author), All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Pr Mira 37, Sarov 607188, Nizhni Novgorod, Russia. EM root@gdd.vniief.ru FU Russian Foundation for Basic Research [08-02-00087a]; Los Alamos National Laboratory (Los Alamos, United States) FX This study was supported by the Russian Foundation for Basic Research (project no. 08-02-00087a) and the Los Alamos National Laboratory (Los Alamos, United States). NR 7 TC 0 Z9 0 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7834 J9 PHYS SOLID STATE+ JI Phys. Solid State PD APR PY 2011 VL 53 IS 4 BP 768 EP 772 DI 10.1134/S1063783411040068 PG 5 WC Physics, Condensed Matter SC Physics GA 761YM UT WOS:000290439400014 ER PT J AU Seo, YS Chern, M Bartley, LE Han, MH Jung, KH Lee, I Walia, H Richter, T Xu, X Cao, PJ Bai, W Ramanan, R Amonpant, F Arul, L Canlas, PE Ruan, R Park, CJ Chen, XW Hwang, S Jeon, JS Ronald, PC AF Seo, Young-Su Chern, Mawsheng Bartley, Laura E. Han, Muho Jung, Ki-Hong Lee, Insuk Walia, Harkamal Richter, Todd Xu, Xia Cao, Peijian Bai, Wei Ramanan, Rajeshwari Amonpant, Fawn Arul, Loganathan Canlas, Patrick E. Ruan, Randy Park, Chang-Jin Chen, Xuewei Hwang, Sohyun Jeon, Jong-Seong Ronald, Pamela C. TI Towards Establishment of a Rice Stress Response Interactome SO PLOS GENETICS LA English DT Article ID XA21-MEDIATED DISEASE RESISTANCE; ACTIVATED PROTEIN-KINASE; ORYZAE PV. ORYZAE; INNATE IMMUNITY; TRANSCRIPTION FACTORS; XANTHOMONAS-ORYZAE; SUBMERGENCE TOLERANCE; NEGATIVE REGULATOR; CHAPERONE COMPLEX; PATHOGEN DEFENSE AB Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance. C1 [Seo, Young-Su; Chern, Mawsheng; Bartley, Laura E.; Jung, Ki-Hong; Walia, Harkamal; Richter, Todd; Xu, Xia; Cao, Peijian; Bai, Wei; Ramanan, Rajeshwari; Amonpant, Fawn; Arul, Loganathan; Canlas, Patrick E.; Ruan, Randy; Park, Chang-Jin; Chen, Xuewei; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Chern, Mawsheng; Bartley, Laura E.; Jung, Ki-Hong; Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA USA. [Han, Muho; Jeon, Jong-Seong; Ronald, Pamela C.] Kyung Hee Univ, Plant Metab Res Ctr, Yongin, South Korea. [Han, Muho; Jeon, Jong-Seong; Ronald, Pamela C.] Kyung Hee Univ, Grad Sch Biotechnol, Yongin, South Korea. [Jung, Ki-Hong] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin, South Korea. [Jung, Ki-Hong] Kyung Hee Univ, Crop Biotech Inst, Yongin, South Korea. [Lee, Insuk; Hwang, Sohyun] Yonsei Univ, Dept Biotechnol, Coll Life Sci & Biotechnol, Seoul 120749, South Korea. [Ramanan, Rajeshwari] Ctr Cellular & Mol Biol, Hyderabad 500007, Andhra Pradesh, India. RP Seo, YS (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu RI Lee, Insuk/F-7722-2010; OI Bartley, Laura/0000-0001-8610-7551 FU NIH [GM59962]; USDA [2008-01048, 2004-63560416640]; UC Discovery Program; Korea government (MEST) [2010-0017649]; Crop Functional Genomics Center (CFGC) [CG2111-2]; Korean Ministry of Education, Science, and Technology [R33-2008-000-10168-0]; National Research Foundation of Korea [2010-0981] FX This research was supported by NIH GM59962, USDA 2008-01048, USDA 2004-63560416640, and a UC Discovery Program grant to PC Ronald; a grant from the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (No. 2010-0017649) to I Lee; a grant from the Crop Functional Genomics Center (CFGC) of the 21st Century Frontier Research Program (CG2111-2) and the World Class University program (R33-2008-000-10168-0) of the Korean Ministry of Education, Science, and Technology to J-S Jeon; and a grant from a Young Scientist Program through the National Research Foundation of Korea (No. 2010-0981) to K-H Jung. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 80 Z9 84 U1 2 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD APR PY 2011 VL 7 IS 4 AR e1002020 DI 10.1371/journal.pgen.1002020 PG 12 WC Genetics & Heredity SC Genetics & Heredity GA 755YI UT WOS:000289977000048 PM 21533176 ER PT J AU Summa, B Scorzelli, G Jiang, M Bremer, PT Pascucci, V AF Summa, Brian Scorzelli, Giorgio Jiang, Ming Bremer, Peer-Timo Pascucci, Valerio TI Interactive Editing of Massive Imagery Made Simple: Turning Atlanta into Atlantis SO ACM TRANSACTIONS ON GRAPHICS LA English DT Article DE Algorithms; Design; Performance; Poisson equation; gradient domain editing; gigapixel images; out-of-core processing; cache-oblivious data layout ID SPACE-FILLING CURVES; POISSON; EQUATION; SOLVER AB This article presents a simple framework for progressive processing of high-resolution images with minimal resources. We demonstrate this framework's effectiveness by implementing an adaptive, multi-resolution solver for gradient-based image processing that, for the first time, is capable of handling gigapixel imagery in real time. With our system, artists can use commodity hardware to interactively edit massive imagery and apply complex operators, such as seamless cloning, panorama stitching, and tone mapping. We introduce a progressive Poisson solver that processes images in a purely coarse-to-fine manner, providing near instantaneous global approxi-mations for interactive display (see Figure 1). We also allow for data-driven adaptive refinements to locally emulate the effects of a global solution. These techniques, combined with a fast, cache-friendly data access mechanism, allow the user to interactively explore and edit massive imagery, with the illusion of having a full solution at hand. In particular, we demonstrate the interactive modification of gigapixel panoramas that previously required extensive offline processing. Even with massive satellite images surpassing a hundred gigapixels in size, we enable repeated interactive editing in a dynamically changing environment. Images at these scales are significantly beyond the purview of previous methods yet are processed interactively using our techniques. Finally our system provides a robust and scalable out-of-core solver that consistently offers high-quality solutions while maintaining strict control over system resources. C1 [Summa, Brian; Scorzelli, Giorgio; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Jiang, Ming; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Summa, B (reprint author), Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. EM bsumma@sci.utah.edu; scrgiorgio@sci.utah.edu; jiang4@llnl.gov; bremer5@llnl.gov; pascucci@sci.utah.edu FU National Science Foundation [IIS-0904631, IIS-0906379, CCF-0702817]; U.S. Department of Energy by the University of Utah [DE-SC0001922, DE-FC02-06ER25781]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344. LLNL-JRNL-453051] FX This work is supported in part by the National Science Foundation awards IIS-0904631, IIS-0906379, and CCF-0702817. This work was also performed under the auspices of the U.S. Department of Energy by the University of Utah under contract DE-SC0001922 and DE-FC02-06ER25781 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-JRNL-453051. NR 41 TC 5 Z9 5 U1 0 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0730-0301 EI 1557-7368 J9 ACM T GRAPHIC JI ACM Trans. Graph. PD APR PY 2011 VL 30 IS 2 AR 7 DI 10.1145/1944846.1944847 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 757TJ UT WOS:000290110300001 ER PT J AU Quinn, NWT AF Quinn, Nigel W. T. TI Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE Salinity; Information technology; Decision support; Modeling; Management; San Joaquin Basin; Hunter River Basin AB Pollutant trading schemes are market-based strategies that can provide cost-effective and flexible environmental compliance in large river basins. The aim of this paper is to contrast two innovative adaptive strategies for salinity management have been developed in the Hunter River Basin, New South Wales, Australia and in the San Joaquin River Basin, California, USA, respectively. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support tools for salinity management. A common element to implementation of salinity management strategies in both the Hunter River and San Joaquin River basins has been the concept of river assimilative capacity as a guide for controlling export salt loading and the establishment of a framework for trading of the right to discharge salt load to the Hunter River and San Joaquin River respectively. Both rivers provide basin drainage and the means of exporting salt load to the ocean. The paper compares the opportunities and constraints governing salinity management in the two basins as well as the use of monitoring, modeling and information technology to achieve environmental compliance and sustain irrigated agriculture in an equitable, socially and politically acceptable manner. The paper concludes by placing into broader context some of the issues raised by the comparison of the two approaches to basin salinity management. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Quinn, NWT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Road,Bld 90-1116, Berkeley, CA 94720 USA. EM nwquinn@lbl.gov RI Quinn, Nigel/G-2407-2015 OI Quinn, Nigel/0000-0003-3333-4763 FU US Bureau of Reclamation Science and Technology; U.S. Department of Energy; LBNL [DE-AC02-05CH11231] FX This work was supported by the US Bureau of Reclamation Science and Technology Program and the U.S. Department of Energy and LBNL under Contract No. DE-AC02-05CH11231. NR 39 TC 6 Z9 6 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3774 J9 AGR WATER MANAGE JI Agric. Water Manage. PD APR PY 2011 VL 98 IS 6 BP 930 EP 940 DI 10.1016/j.agwat.2010.11.013 PG 11 WC Agronomy; Water Resources SC Agriculture; Water Resources GA 760WD UT WOS:000290354000003 ER PT J AU Ovcharenko, AM Chernov, II Golubov, SI AF Ovcharenko, A. M. Chernov, I. I. Golubov, S. I. TI MODELING OF THE COALESCENCE OF GAS PORES DURING ANNEALING SO ATOMIC ENERGY LA English DT Article ID SUPERSATURATED LATTICE VACANCIES; GROUPING METHOD; CLUSTERING PROCESS; NUCLEATION; KINETICS; EVOLUTION; BUBBLES; HELIUM; GROWTH AB The kinetics of the coalescence of gas bubbles under the conditions of high-temperature annealing is modeled. The case where the growth of gas pores is controlled by thermal dissolution of gas atoms from bubbles is examined. The modeling is performed by solving the basic kinetic equation numerically. The numerical calculations are compared with the results of an analytical model which describes the asymptotic behavior of the gas pores. The time characteristics of the process which are obtained in this work are at variance with the results of the analytical model. The discrepancies found are discussed. C1 [Ovcharenko, A. M.; Chernov, I. I.] Natl Nucl Res Univ, Moscow Engn Phys Inst NIYaU MIFI, Moscow, Russia. [Golubov, S. I.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ovcharenko, AM (reprint author), Natl Nucl Res Univ, Moscow Engn Phys Inst NIYaU MIFI, Moscow, Russia. NR 22 TC 0 Z9 0 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1063-4258 J9 ATOM ENERGY+ JI Atom. Energy PD APR PY 2011 VL 109 IS 6 BP 385 EP 395 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 758KQ UT WOS:000290164000004 ER PT J AU Brayshaw, SK Schiffers, S Stevenson, AJ Teat, SJ Warren, MR Bennett, RD Sazanovich, IV Buckley, AR Weinstein, JA Raithby, PR AF Brayshaw, Simon K. Schiffers, Stephanie Stevenson, Anna J. Teat, Simon J. Warren, Mark R. Bennett, Robert D. Sazanovich, Igor V. Buckley, Alastair R. Weinstein, Julia A. Raithby, Paul R. TI Highly Efficient Visible-Light Driven Photochromism: Developments towards a Solid-State Molecular Switch Operating through a Triplet-Sensitised Pathway SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE dithienylethene; photochromism; photocyclisation; platinum; structure elucidation; transient absorption spectroscopy ID CONTAINING 1,10-PHENANTHROLINE LIGAND; DINUCLEAR PLATINUM COMPLEXES; SINGLE-CRYSTALLINE PHASE; POLY-YNES; EMITTING-DIODES; DIARYLETHENE DERIVATIVES; OPTICAL SPECTROSCOPY; CONJUGATED POLYMERS; RHENIUM(I) COMPLEX; SOLAR-CELLS AB We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two PtII chromophores [Pt(PEt3)(2)(C C)(DTE)(C C)Pt(PEt3)(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photo-conversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%-considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (> 400 nm), which is not absorbed by the non-metallated DTE core HC C(DTE)C CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the PtII units has the potential to tune absorption properties and hence operational wavelength across the visible range. C1 [Bennett, Robert D.; Sazanovich, Igor V.; Weinstein, Julia A.] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England. [Brayshaw, Simon K.; Schiffers, Stephanie; Stevenson, Anna J.; Warren, Mark R.; Raithby, Paul R.] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Buckley, Alastair R.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. RP Weinstein, JA (reprint author), Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England. EM Julia.Weinstein@sheffield.ac.uk; p.r.raithby@bath.ac.uk RI Raithby, Paul/N-7997-2014 OI Raithby, Paul/0000-0002-2944-0662 FU EPSRC; Universities of Bath and Sheffield; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank EPSRC (ARF to J.A.W. and a SRF to P.R.R., and for studentships to A.J.S., M.R.W., and R.D.B.), Marie Curie Program of the European Research Council for IIF to I.V.S., and the Universities of Bath and Sheffield for financial support. We are grateful to Prof. H. Miyasaka for helpful discussions, and to Dr. P. Burgos (Rutherford Appleton Laboratory, STFC, UK) for his kind assistance in measuring Raman spectra under 830 nm excitation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 109 TC 24 Z9 25 U1 2 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD APR PY 2011 VL 17 IS 16 BP 4385 EP 4395 DI 10.1002/chem.201003487 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 758IY UT WOS:000290159000007 PM 21433129 ER PT J AU Pestovsky, O Veysey, SW Bakac, A AF Pestovsky, Oleg Veysey, Stephen W. Bakac, Andreja TI Kinetics and Mechanism of Hydrogen-Atom Abstraction from Rhodium Hydrides by Alkyl Radicals in Aqueous Solutions SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE hydrides; hydrogen atom abstraction; isotope effects; kinetics; reaction mechanisms; rhodium ID PULSE-RADIOLYSIS; COMPLEXES; DIHYDROGEN; REDUCTION; WATER; PORPHYRINS AB The kinetics of the reaction of benzyl radicals with [L(1)(H(2)O)RhH{D}](2+) (L(1) = 1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3 +/- 0.6) x 10(7)M(-1)s(-1) (H) and (6.2 +/- 0.3) x 10(7)M(-1)s(-1) (D), lead to a kinetic isotope effect k(H)/k(D)= 1.5 +/- 0.1. The same value was obtained from the relative yields of PhCH(3) and PhCH(2)D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {[L(1)(H(2)O)RhH](2+) + [L(1)(H(2)O)RhD](2+)} produced a mixture of CH(4) and CH(3)D that yielded k(H)/k(D)= 1.42 +/- 0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L(1)Rh. C1 [Pestovsky, Oleg; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Veysey, Stephen W.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Pestovsky, O (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pvp@ameslab.gov; bakac@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358] FX This manuscript has been authored under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy. NR 28 TC 3 Z9 3 U1 1 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD APR PY 2011 VL 17 IS 16 BP 4518 EP 4522 DI 10.1002/chem.201100094 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 758IY UT WOS:000290159000020 PM 21438044 ER PT J AU Costa, JS Craig, GA Barrios, LA Roubeau, O Ruiz, E Gomez-Coca, S Teat, SJ Aromi, G AF Sanchez Costa, Jose Craig, Gavin A. Barrios, Leoni A. Roubeau, Olivier Ruiz, Eliseo Gomez-Coca, Silvia Teat, Simon J. Aromi, Guillem TI The Use of a Bis(phenylpyrazolyl)pyridyl Ligand to Prepare [Mn-4] and [Mn-10] Cage Complexes SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE coordination chemistry; clusters compounds; ligand design; magnetic properties; manganese ID SINGLE-MOLECULE MAGNETS; TRANSITION-METAL-COMPLEXES; COORDINATION CHEMISTRY; STRUCTURAL AESTHETICS; CLUSTERS; AZIDE C1 [Sanchez Costa, Jose; Craig, Gavin A.; Barrios, Leoni A.; Ruiz, Eliseo; Gomez-Coca, Silvia; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Costa, JS (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM guillem.aromi@qi.ub.es RI Gomez-Coca, Silvia/F-5384-2011; Ruiz, Eliseo/A-6268-2011; Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; Sanchez Costa, Jose/N-9085-2014; BARRIOS MORENO, LEONI ALEJANDRA/E-5413-2017 OI Gomez-Coca, Silvia/0000-0002-2299-4697; Craig, Gavin/0000-0003-3542-4850; Ruiz, Eliseo/0000-0001-9097-8499; Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; Sanchez Costa, Jose/0000-0001-5426-7956; BARRIOS MORENO, LEONI ALEJANDRA/0000-0001-7075-9950 FU Generalitat de Catalunya [2009SGR-1459]; Spanish MCI [CTQ2009-06959, CTQ2008-06670-C02-01]; Juan de la Cierva; U.S. Department of Energy [DE-AC02 05CH11231] FX The authors thank the Generalitat de Catalunya for the prize ICREA Academia 2008 (G.A.) and Grant 2009SGR-1459 (E.R., S.G.C.) and Spanish MCI through CTQ2009-06959 (G.A., L.B., G.A.C., J.S.C.) CTQ2008-06670-C02-01 (E.R., S.G.C.) and a research fellowship "Juan de la Cierva" (J.S.C.). Computer resources and assistance were provided by the Barcelona Supercomputer Centre. The Advanced Light Source (S.J.T.) is supported by the U.S. Department of Energy (DE-AC02 05CH11231). NR 23 TC 20 Z9 20 U1 0 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD APR PY 2011 VL 17 IS 18 BP 4960 EP 4963 DI 10.1002/chem.201003329 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 759AW UT WOS:000290213100002 ER PT J AU He, DQ Meng, F Wang, MQ He, KB AF He, Dongquan Meng, Fei Wang, Michael Q. He, Kebin TI Impacts of Urban Transportation Mode Split on CO2 Emissions in Jinan, China SO ENERGIES LA English DT Article DE urban transportation system; mode split; CO2 emissions; scenario analysis AB As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation-in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions-approximately 50% of the BAU scenario emissions. C1 [Meng, Fei; He, Kebin] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [He, Dongquan] Energy Fdn, Beijing 100004, Peoples R China. [Wang, Michael Q.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Meng, F (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM dqhe@efchina.org; mengfei@efchina.org; mqwang@anl.gov; hekb@tsinghua.edu.cn FU Jinan municipal government; Jinan Bus Company; Shandong University FX We greatly appreciate the Jinan municipal government, the Jinan Bus Company, and Shandong University for providing support and assisting with data collection, data processing, and the technical review of this paper. NR 13 TC 9 Z9 9 U1 1 U2 28 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD APR PY 2011 VL 4 IS 4 BP 685 EP 699 DI 10.3390/en4040685 PG 15 WC Energy & Fuels SC Energy & Fuels GA 755MF UT WOS:000289935000008 ER PT J AU Romero, LA Mason, J AF Romero, L. A. Mason, Jeff TI Evaluation of Direct and Iterative Methods for Overdetermined Systems of TOA Geolocation Equations SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID LOCATION AB We analyze and rigorously test over a wide range of noise levels some of the most popular algorithms for solving overdetermined systems of the time of arrival (TOA) or pseudorange geolocation equations. Four criteria are given for evaluating these methods, one of which is that the method should achieve the minimum Cramer-Rao lower bound (CRLB) solution error variance. We discuss some straightforward techniques to determine if a method is minimum variance (MV) and apply this analysis to several solution methods. We consider two popular iterative algorithms, Newton-Raphson and Gauss-Newton, applied to both the primitive and squared TOA equations, both without and with explicit differencing (TDOA). We prove that each of these formulations is MV and examine the robustness of several initialization methods. We also consider three direct (noniterative) methods by Bancroft, by Chan and Ho, and by Abel and Chaffee and show when these methods achieve MV. In particular we show how the performance of each of these three algorithms depends on whether or not the large equal radius (LER) conditions are satisfied. Finally we give a new direct method that we prove is MV and show that it is robust in simulated geometries where the other direct methods are not. C1 [Romero, L. A.] Sandia Natl Labs, Dept Computat & Appl Math, Albuquerque, NM 87185 USA. [Mason, Jeff] Sandia Natl Labs, Radar & Signals Anal Dept, Albuquerque, NM 87185 USA. RP Romero, LA (reprint author), Sandia Natl Labs, Dept Computat & Appl Math, POB 5800, Albuquerque, NM 87185 USA. EM lromero@sandia.gov; jjmason@sandia.gov FU Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 8 Z9 9 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD APR PY 2011 VL 47 IS 2 BP 1213 EP 1229 PG 17 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 754GW UT WOS:000289844100030 ER PT J AU Weinberger, AD Perelson, AS AF Weinberger, Ariel D. Perelson, Alan S. TI PERSISTENCE AND EMERGENCE OF X4 VIRUS IN HIV INFECTION SO MATHEMATICAL BIOSCIENCES AND ENGINEERING LA English DT Article DE HIV; coreceptor; phenotypic switch; X4; R5 ID HUMAN-IMMUNODEFICIENCY-VIRUS; CD4(+) T-CELLS; ACTIVE ANTIRETROVIRAL THERAPY; SYNCYTIUM-INDUCING PHENOTYPE; CHEMOKINE CORECEPTOR USAGE; HUMAN LYMPHOID-TISSUE; IN-VIVO; TYPE-1 INFECTION; SOOTY MANGABEYS; RHESUS MACAQUES AB Approximately 50% of late-stage HIV patients develop CXCR4-tropic (X4) virus in addition to CCR5-tropic (R5) virus. X4 emergence occurs with a sharp decline in CD4+ T cell counts and accelerated time to AIDS. Why this phenotypic switch to X4 occurs is not well understood. Previously, we used numerical simulations of a mathematical model to show that across much of parameter space a promising new class of antiretroviral treatments, CCR5 inhibitors, can accelerate X4 emergence and immunodeficiency. Here, we show that mathematical model to be a minimal activation-based HIV model that produces a spontaneous switch to X4 virus at a clinically-representative time point, while also matching in vivo data showing X4 and R5 coexisting and competing to infect memory CD4+ T cells. Our analysis shows that X4 avoids competitive exclusion from an initially fitter R5 virus due to X4s unique ability to productively infect nave CD4+ T cells. We further justify the generalized conditions under which this minimal model holds, implying that a phenotypic switch can even occur when the fraction of activated nave CD4+ T cells increases at a slower rate than the fraction of activated memory CD4+ T cells. We find that it is the ratio of the fractions of activated nave and memory CD4+ T cells that must increase above a threshold to produce a switch. This occurs as the concentration of CD4+ T cells drops beneath a threshold. Thus, highly active antiretroviral therapy (HAART), which increases CD4+ T cell counts and decreases cellular activation levels, inhibits X4 viral growth. However, we show here that even in the simplest dual-strain framework, competition between R5 and X4 viruses often results in accelerated X4 emergence in response to CCR5 inhibition, further highlighting the potential danger of anti-CCR5 monotherapy in multi-strain HIV infection. C1 [Weinberger, Ariel D.] Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Weinberger, AD (reprint author), Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA. EM arielw@berkeley.edu; asp@lanl.gov FU U. S. Department of Energy [DE-AC52-06NA25396]; NIH [AI28433, RR06555, P20-RR18754]; California HIV/AIDS Research Program FX Portions of this work were done under the auspices of the U. S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH grants AI28433, RR06555, and P20-RR18754 (ASP). ADW gratefully acknowledges the support of the California HIV/AIDS Research Program (Dissertation Award). NR 70 TC 9 Z9 9 U1 1 U2 7 PU AMER INST MATHEMATICAL SCIENCES PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1547-1063 J9 MATH BIOSCI ENG JI Math. Biosci. Eng. PD APR PY 2011 VL 8 IS 2 SI SI BP 605 EP 626 DI 10.3934/mbe.2011.8.605 PG 22 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 757NV UT WOS:000290095400024 PM 21631149 ER PT J AU Courtois, P Menthonnex, C Hehn, R Andersen, KH Nesvizhevsky, V Zimmer, O Piegsa, F Geltenbort, P Greene, G Allen, R Huffman, PR Schmidt-Weenburg, P Fertl, M Mayer, S AF Courtois, P. Menthonnex, C. Hehn, R. Andersen, K. H. Nesvizhevsky, V. Zimmer, O. Piegsa, F. Geltenbort, P. Greene, G. Allen, R. Huffman, P. R. Schmidt-Weenburg, P. Fertl, M. Mayer, S. TI Production and characterization of intercalated graphite crystals for cold neutron monochromators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Workshop on Neutron Optics CY MAR 17-19, 2010 CL Grenoble, FRANCE DE Neutron diffraction; Neutron monochromator; Mosaic crystal; Intercalated graphite compound ID BRAGG REFLECTION; MOSAIC CRYSTALS AB The preparation of intercalated graphite compounds is now well established at the Institut Laue Langevin (ILL). We are able to manufacture several types of intercalated crystals, such as KC(8). RbC(8), KC(24) and RbC(24) compounds, in large quantities and in a reproducible manner. Even though the mosaic distribution is large, these compounds exhibit a high neutron peak reflectivity of about 70% at a neutron wavelength of 9.8 angstrom. The production of such intercalated graphite crystals allows us to build efficient neutron monochromators for wavelengths in the range 6-15 angstrom. 2010 Elsevier B.V. All rights reserved. C1 [Courtois, P.; Menthonnex, C.; Hehn, R.; Andersen, K. H.; Nesvizhevsky, V.; Zimmer, O.; Piegsa, F.; Geltenbort, P.; Schmidt-Weenburg, P.; Mayer, S.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Greene, G.; Allen, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Huffman, P. R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Zimmer, O.; Schmidt-Weenburg, P.; Fertl, M.] Tech Univ Munich, D-85748 Garching, Germany. RP Courtois, P (reprint author), Inst Max Von Laue Paul Langevin, BP 156, F-38042 Grenoble 9, France. EM courtois@ill.fr RI Sanders, Susan/G-1957-2011; OI Huffman, Paul/0000-0002-2562-1378; Fertl, Martin/0000-0002-1925-2553 NR 13 TC 6 Z9 6 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 1 PY 2011 VL 634 SU 1 BP S37 EP S40 DI 10.1016/j.nima.2010.06.222 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 760WM UT WOS:000290355100008 ER PT J AU Crow, L Robertson, L Bilheux, H Fleenor, M Iverson, E Tong, X Stoica, D Lee, WT AF Crow, Lowell Robertson, Lee Bilheux, Hassina Fleenor, Mike Iverson, Erik Tong, Xin Stoica, Ducu Lee, W. T. TI The CG1 instrument development test station at the high flux isotope reactor SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Workshop on Neutron Optics CY MAR 17-19, 2010 CL Grenoble, FRANCE DE Neutron scattering; Neutron polarization; Neutron diffraction; Neutron imaging AB The CG1 instrument development station at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory began commissioning operation in 2009. When completed, the station will have four beams. CG1A is a 4.22 angstrom monochromatic beam intended for spin-echo resolved grazing incidence scattering (SERGIS) prototype development. Initial beam operation and characterization are in progress. CG1B will be a 2.35 angstrom monochromatic beam for a 2-axis utility diffractometer for sample alignment and monochromator development. CG1C will have a double-bounce monochromator system, which will produce a variable wavelength beam from about 1.8-6.4 angstrom, and will be used for imaging and optical development. The CG1D beam is a single chopper time-of-flight system, used for instrument prototype and component testing. The cold neutron spectrum, with an integrated flux of about 2.7 x 10(9) n/cm(2) s, has a guide cutoff at 0.8 angstrom and useful wavelengths greater than 20 angstrom. Initial results from CG1 include spectral characterization, imaging tests, detector trials, and polarizer tests. An overview of recent tests will be presented, and upcoming instrument prototype efforts will be described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Crow, Lowell; Robertson, Lee; Bilheux, Hassina; Fleenor, Mike; Iverson, Erik; Tong, Xin; Stoica, Ducu] Oak Ridge Natl Lab, Neutron Facil Dev Div, Oak Ridge, TN 37831 USA. [Lee, W. T.] Australian Nucl Sci & Technol Org, Lucas Heights, Australia. RP Crow, L (reprint author), Oak Ridge Natl Lab, Neutron Facil Dev Div, Oak Ridge, TN 37831 USA. EM crowmljr@ornl.gov RI tong, Xin/C-4853-2012; Bilheux, Hassina/H-4289-2012; Stoica, Alexandru/K-3614-2013; OI tong, Xin/0000-0001-6105-5345; Bilheux, Hassina/0000-0001-8574-2449; Stoica, Alexandru/0000-0001-5118-0134; Iverson, Erik /0000-0002-7920-705X NR 8 TC 21 Z9 21 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 1 PY 2011 VL 634 SU 1 BP S71 EP S74 DI 10.1016/j.nima.2010.06.213 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 760WM UT WOS:000290355100016 ER PT J AU Yamada, M Iwashita, Y Kanaya, T Ichikawa, M Tongu, H Kennedy, SJ Shimizu, HM Mishima, K Yamada, NL Hirota, K Carpenter, JM Lal, J Andersen, K Geltenbort, P Guerard, B Manzin, G Hino, M Kitaguchi, M Bleuel, M AF Yamada, M. Iwashita, Y. Kanaya, T. Ichikawa, M. Tongu, H. Kennedy, S. J. Shimizu, H. M. Mishima, K. Yamada, N. L. Hirota, K. Carpenter, J. M. Lal, J. Andersen, K. Geltenbort, P. Guerard, B. Manzin, G. Hino, M. Kitaguchi, M. Bleuel, M. TI The performance of magnetic lens for focusing VCN-SANS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Workshop on Neutron Optics CY MAR 17-19, 2010 CL Grenoble, FRANCE DE Focusing lens; Permanent magnet; Pulsed neutron beams; Time of flight; Focusing VCN-SANS ID POLYMER-SOLUTIONS; PERMANENT-MAGNET; COLD NEUTRONS; SCATTERING AB We have developed a prototype rotating-permanent magnet sextupole lens (named rot-PMSx) for more efficient experiments with neutron beams in time of flight (ToF) mode. This lens can modulate the focusing strength over range 1.5 x 10(4)T/m(2) <= g' <= 5.9 x 10(4) T/m(2). Synchronization between the modulation and the beam pulse produces a focused beam without significant chromatic aberration. We anticipate that this lens could be utilized in focusing small angle neutron scattering (SANS) instruments for novel approach to high resolution SANS. We carried out experiments testing the principle of this lens at the very cold neutron (VCN) beamline (PF2) at Institut Laue-Langevin (ILL), France. The focused beam image size at the detector was kept constant at the same beam size as the source (approximate to 3 mm) over a wavelength range of 30 angstrom <= lambda <= 48 angstrom in focal length of approximate to 1.14m. The flux gain was about 12 relative to a beam without focusing, and the depth of focus was quite large. These results show the good performance of this lens and the system. Thereupon we have demonstrated the performance of this test bed for high resolution focusing of VCN-SANS for a well-studied softmatter sample; a deuterium oxide solution of Pluronic F127, an (PEO)(100)(PPO)(65)(PEO)(100) tri-block copolymer in deuterium oxide. The results of the focusing experiment and the focusing VCN-SANS are presented. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yamada, M.; Iwashita, Y.; Kanaya, T.; Ichikawa, M.; Tongu, H.] Kyoto Univ, ICR, Kyoto 6110011, Japan. [Kennedy, S. J.] ANSTO, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Shimizu, H. M.; Mishima, K.; Yamada, N. L.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Hirota, K.] RIKEN, Wako, Saitama 3510198, Japan. [Carpenter, J. M.; Lal, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Andersen, K.; Geltenbort, P.; Guerard, B.; Manzin, G.] ILL, BP 156, F-38042 Grenoble 9, France. [Hino, M.; Kitaguchi, M.] KURRI, Osaka 5900494, Japan. [Bleuel, M.] Reactor Inst Delft TU Delft, NL-2629 JB Delft, Netherlands. RP Yamada, M (reprint author), Kyoto Univ, ICR, Kyoto 6110011, Japan. EM yamada@kyticr.kuicr.kyoto-u.ac.jp NR 14 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 1 PY 2011 VL 634 SU 1 BP S156 EP S160 DI 10.1016/j.nima.2010.06.259 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 760WM UT WOS:000290355100034 ER PT J AU Jia, JY AF Jia, Jiangyong CA PHENIX Collaboration TI Zeroing in on jet quenching: a PHENIX perspective SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Quark gluon plasma; Jet quenching; single hadron suppression; azimuthal anisotropy; di-hadron correlation; gamma-hadron correlation AB We review recent progresses on jet quenching measurements by the PHENIX experiment. With increased statistics, PHENIX has gone beyond the single hadron suppression R-AA, and made measurements on multiple jet quenching observables, such as v(2), I-AA and v(2)(IAA). We argue that, by combining these observables together, one can achieve a better understanding of the energy loss mechanism. We present new gamma-hadron correlation results with associated hadrons extended to low P-T; an enhancement has been observed, suggesting a contribution of genuine medium response that is relatively unbiased by the initial geometry fluctuations. The status of full jet reconstruction and future perspective of the PHENIX jet quenching program are discussed. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. NR 30 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 92 EP 100 DI 10.1016/j.nuclphysa.2011.02.024 PG 9 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500013 ER PT J AU Petreczky, P Miao, C Mocsy, A AF Petreczky, Peter Miao, Chuan Mocsy, Agnes TI Quarkonium spectral functions with complex potential SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Quark gluon plasma; quarkonium spectral functions; potential model ID SU(2) GAUGE-THEORY; ADJOINT HIGGS-MODEL; FINITE-TEMPERATURE; HEAVY QUARKONIUM; GLUON PLASMA; DEBYE MASS; QCD; LATTICE; CHARMONIUM AB We study quarkonium spectral functions at high temperatures using a potential model with complex potential. The real part of the potential is constrained by the lattice QCD data on static quark anti-quark correlation functions, while the imaginary part of the potential is taken from perturbative calculations. We find that the imaginary part of the potential has significant effect on quarkonium spectral functions, in particular, it leads to the dissolution of the IS charmonium and excited bottomonium states at temperatures about 250 MeV and melting of the ground state bottomonium at temperatures slightly above 450 MeV. C1 [Petreczky, Peter; Miao, Chuan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Miao, Chuan] Johannes Gutenberg Univ Mainz, Inst Nucl Phys, D-55099 Mainz, Germany. [Mocsy, Agnes] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 54 TC 52 Z9 52 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 125 EP 132 DI 10.1016/j.nuclphysa.2011.02.028 PG 8 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500017 ER PT J AU Sakaguchi, T AF Sakaguchi, Takao CA PHENIX Collaboration TI PHENIX photons and dileptons SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE direct photons; heavy ion collisions; cold nuclear effect; hot dense medium ID COLLISIONS AB Electromagnetic probes such as dileptons and photons are useful to investigate the thermodynamical state of the early stages of heavy-ion collisions. The PHENIX experiment has measured both photons and dileptons in p+p, d+Au, and Au+Au collisions. An excess of dilepton yield over the expected hadronic contribution is seen in the mass region 0.2-0.8 GeV/c(2) in Au+Au collisions, most prominently at low p(T). and in central collisions. Direct photons are measured through their internal conversion to electron pairs. We observe a large enhancement in Au+Au collisions over the p+p yield scaled by the number of binary collisions. The latest results from d+Au collisions show that this enhancement cannot be attributed to cold-nuclear-matter effects. C1 [Sakaguchi, Takao; PHENIX Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Sakaguchi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 8 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 141 EP 148 DI 10.1016/j.nuclphysa.2011.02.030 PG 8 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500019 ER PT J AU Sorensen, P AF Sorensen, Paul TI The rise and fall of the ridge SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE QGP; Correlations; Fluctuations; Power spectrum; Ridge; Transfer Function ID HEAVY-ION COLLISIONS; COLLECTIVE FLOW AB Recent data from heavy ion collisions at RHIC show unexpectedly large near-angle correlations that broaden longitudinally with centrality. The amplitude of this ridge-like correlation rises rapidly with centrality, reaches a maximum, and then falls in the most central collisions. In this talk we explain how this behavior can be easily understood in a picture where final momentum-space correlations are driven by initial coordinate space density fluctuations. We propose v(n)(2)/epsilon(2)(n,part) as a useful way to study these effects and explain what it tells us about the collision dynamics. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sorensen, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. OI Sorensen, Paul/0000-0001-5056-9391 NR 31 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 229 EP 232 DI 10.1016/j.nuclphysa.2011.02.046 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500032 ER PT J AU Mocsy, A Sorensen, P AF Mocsy, Agnes Sorensen, Paul TI Analyzing the Power Spectrum of the Little Bangs SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Quark-gluon plasma; correlations; fluctuations ID NUCLEAR COLLISIONS AB In this talk we discuss the analogy between data from heavy-ion collisions and the Cosmic Microwave Background. We identify p(T) correlations data as the heavy-ion analogy to the CMB and extract a power-spectrum from the heavy-ion data. We define the ratio of the final state power-spectrum to the initial coordinate-space eccentricity as the transfer-function. From the transfer-function we find that higher n terms are suppressed and we argue that the suppression provides information on length scales like the mean-free-path. We make a rough estimate of the mean-free-path and find that it is larger than estimates based on the centrality dependence of nu(2). C1 [Mocsy, Agnes] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. [Sorensen, Paul] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Mocsy, A (reprint author), Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. OI Sorensen, Paul/0000-0001-5056-9391 NR 29 TC 11 Z9 11 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 241 EP 244 DI 10.1016/j.nuclphysa.2011.02.049 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500035 ER PT J AU Piasetzky, E Weinstein, LB Higinbotham, DW Gomez, J Hen, O Shneor, R AF Piasetzky, E. Weinstein, L. B. Higinbotham, D. W. Gomez, J. Hen, O. Shneor, R. TI Short range correlations and the EMC effect SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Short range correlation; DIS; EMC effect ID SCATTERING; DEUTERIUM; NEUTRON; PROTON AB The magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) is linearly related to the Short Range Correlation (SRC) scaling factor obtained from electron inclusive scattering. We speculate that the observed correlation is due to the fact that both the EMC effect and SRC are dominated by high momentum nucleons in the nucleus. The observed phenomenological relationship can be used to extract the ratio of the deuteron to the free pn-pair cross sections, the DIS cross section for a free neutron. F(2)(n)/F(2)(p) the ratio of the free neutron to free proton structure functions, and the u/d ratio in a free proton. C1 [Piasetzky, E.; Hen, O.; Shneor, R.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Higinbotham, D. W.; Gomez, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Piasetzky, E (reprint author), Tel Aviv Univ, IL-69978 Tel Aviv, Israel. RI Higinbotham, Douglas/J-9394-2014 OI Higinbotham, Douglas/0000-0003-2758-6526 NR 27 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 245 EP 248 DI 10.1016/j.nuclphysa.2011.02.050 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500036 ER PT J AU Silvermyr, D AF Silvermyr, D. CA ALICE Collaboration TI Transverse energy measurements with ALICE SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE transverse energy; p plus p collisions AB ALICE is an ideal detector to measure transverse energy using the combined information of the calorimeters and the tracking detectors to give insight into the energy densities reached at the LHC. We discuss the status of studies in proton+proton collisions and the outlook for heavy-ion collisions. C1 [Silvermyr, D.; ALICE Collaboration] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Silvermyr, D (reprint author), Oak Ridge Natl Lab, MS 6356, Oak Ridge, TN 37831 USA. EM silvermy@mail.phy.ornl.gov RI Barbera, Roberto/G-5805-2012 OI Barbera, Roberto/0000-0001-5971-6415 NR 5 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 249 EP 252 DI 10.1016/j.nuclphysa.2011.02.051 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500037 ER PT J AU Ruan, LJ AF Ruan, Lijuan CA STAR Collaboration TI Di-lepton production in p plus p collisions at root s(NN)=200 GeV from STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE di-electron continuum; cocktail simulations; 200 GeV p+p collisions ID RESISTIVE PLATE CHAMBERS; PARTICLE IDENTIFICATION; TRANSVERSE-MOMENTUM; D+AU COLLISIONS; PERFORMANCE; EMISSION; TRAY; P+P; TPC AB The di-electron analysis for 200 GeV p+p collisions is presented in this article. The cocktail simulations of di-eletrons from light flavor meson decays and heavy flavor decays are reported and compared with the data. The perspectives for di-lepton measurements in Au+Au collisions are discussed. C1 [Ruan, Lijuan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ruan, LJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 35 TC 15 Z9 15 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 269 EP 272 DI 10.1016/j.nuclphysa.2011.02.056 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500042 ER PT J AU Jacobs, PM AF Jacobs, P. M. CA STAR Collaboration TI Background fluctuations in heavy ion jet reconstruction SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Relativistic nucleus-nucleus collisions; Jets; STAR; RHIC AB We present a new study by the STAR Collaboration of background fluctuations in jet reconstruction in heavy ion collisions. C1 [Jacobs, P. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Jacobs, PM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM pmjacobs@lbl.gov NR 12 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 299 EP 302 DI 10.1016/j.nuclphysa.2011.02.064 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500049 ER PT J AU Tang, ZB AF Tang, Zebo CA STAR Collaboration TI J/psi production at high p(T) at STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE J/psi; high p(T); color screening; correlation ID RESISTIVE PLATE CHAMBERS; TRAY AB We report results on J/psi-hadron azimuthal angular correlations in 200 GeV p+p collision in the STAR experiment at RHIC. The extracted B-hadron feed-down contribution to inclusive J/psi yield is found to be 10-25% in 4 < p(T) < 12 GeV/c and has no significant center-of-mass energy dependence from RHIC to LHC. The p(T) spectrum of charged hadrons associated with high-p(T) J/psi triggers on the away side is found to be consistent with that from di-hadron correlations. J/psi signal from Au+Au 39 GeV data will also be presented to demonstrate STAR's J/psi capability at RHIC low energy run. C1 [Tang, Zebo; STAR Collaboration] Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Peoples R China. [Tang, Zebo] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tang, ZB (reprint author), Univ Sci & Technol China, Dept Modern Phys, 96 Jinzhai Rd, Anhua 230026, Peoples R China. RI Tang, Zebo/A-9939-2014 OI Tang, Zebo/0000-0002-4247-0081 NR 14 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 396 EP 399 DI 10.1016/j.nuclphysa.2011.02.089 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500073 ER PT J AU Nelson, R Vogt, R Lourenco, C Wohri, H AF Nelson, Randy Vogt, Ramona Lourenco, Carlos Woehri, Hermine TI Bottom production from fixed-target to LHC energies SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE perturbative QCD; heavy-ion collisions; FONLL ID PRODUCTION CROSS-SECTION; HEAVY-FLAVOR; COLLISIONS; HADRONS AB We present a state-of-the-art compilation of the existing bottom production cross sections in elementary collisions, from fixed-target to collider experiments. We then discuss the theoretical uncertainties on the total and differential bottom cross sections in the FONLL approach. In particular, we show total cross sections and kinematical distributions of the bottom hadrons and their decays: B -> e/mu X, B -> D -> e/mu, and B -> J/psi X. After seeing that the calculations give a good description of the existing measurements, we present detailed predictions for the LHC experiments in their specific phase space windows. C1 [Nelson, Randy; Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Nelson, Randy; Vogt, Ramona] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Lourenco, Carlos] CERN, CH-1211 Geneva 23, Switzerland. [Woehri, Hermine] LIP, P-1000 Lisbon, Portugal. RP Nelson, R (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM nelson@physics.ucdavis.edu; vogt2@physics.ucdavis.edu NR 18 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 400 EP 403 DI 10.1016/j.nuclphysa.2011.02.090 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500074 ER PT J AU Deng, WT Chang, NB Wang, XN AF Deng, Wei-Tian Chang, Ning-Bo Wang, Xin-Nian TI Modified DGLAP evolution for fragmentation functions in nuclei and QGP SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Modified splitting functions; Modified Fragmentation Functions; nuclear modification factor ID MULTIPLE PARTON SCATTERING; HEAVY-ION COLLISIONS; ENERGY-LOSS AB Within the framework of generalized factorization of higher-twist contributions, including modification to splitting functions of both quark and gluon, we get and numerically resolve the medium-modified DGLAP (mDGLAP) evolution equations. With Woods-Saxon nuclear geometry and Hirano 3D ideal hydrodynamic simulations of hot medium, we study the medium modified fragmentation functions (mFF) in DIS and Au+Au collisions in RHIC. Our calculations imply that the parton density in the hot medium produced in RHIC is about 30 times larger than in a cold nucleus. C1 [Deng, Wei-Tian; Chang, Ning-Bo] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Deng, Wei-Tian] FIAS, D-60438 Frankfurt, Germany. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Deng, WT (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967; Deng, Wei-Tian/0000-0003-2544-660X NR 18 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 416 EP 419 DI 10.1016/j.nuclphysa.2011.02.094 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500078 ER PT J AU Fries, RJ Rodriguez, R AF Fries, Rainer J. Rodriguez, Ricardo TI Event-by-event jet quenching and higher Fourier moments of hard probes SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Quark Gluon Plasma; Heavy Ion Collisions; Energy Loss ID ENERGY-LOSS AB We investigate the effect of event-by-event fluctuations of the fireball created in high energy nuclear collisions on hard probe observables. We show that spatial inhomogeneities lead to changes in the nuclear suppression factor of high momentum hadrons which can be absorbed in the quenching strength (q) over cap. This can increase the theoretical uncertainty on extracted values of (q) over cap by up to 50%. We also investigate effects on azimuthal asymmetries v(2) and dihadron correlation functions. The latter show a promising residual signal of event-by-event quenching that might allow us to estimate the size of spatial inhomogeneities in the fireball from experimental data. C1 [Fries, Rainer J.; Rodriguez, Ricardo] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77845 USA. [Fries, Rainer J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77845 USA. [Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Rodriguez, Ricardo] Ave Maria Univ, Dept Math & Phys, Ave Maria, FL 34142 USA. RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77845 USA. NR 12 TC 12 Z9 12 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 424 EP 427 DI 10.1016/j.nuclphysa.2011.02.096 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500080 ER PT J AU Neufeld, RB AF Neufeld, R. B. TI Tagged jets and jet reconstruction as a probe of the quark-gluon plasma SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Quark Gluon Plasma; Heavy Ion Collisions; Jets ID ENERGY-LOSS AB The large center-of-mass energies available to the heavy-ion program at the LHC and recent experimental advances at RHIC will enable QCD matter at very high temperatures and energy densities, that is, the quark-gluon plasma (QGP), to be probed in unprecedented ways. Fully-reconstructed inclusive jets and the away-side hadron showers associated with electroweak bosons, that is, tagged jets, are among these exciting new probes. Full jet reconstruction provides an experimental window into the mechanisms of quark and gluon dynamics in the QGP which is not accessible via leading particles and leading particle correlations. Theoretical advances in these exciting new fields of research can help resolve some of the most controversial points in heavy ion physics today such as the significance of the radiative, collisional and dissociative processes in the QGP and the applicability of strong versus weak coupling regimes to describe jet production and propagation. In this proceedings, I will present results on the production and subsequent suppression of high energy jets tagged with Z bosons in relativistic heavy-ion collisions at RHIC and LHC energies using the Gyulassy-Levai-Vitev (GLV) parton energy loss approach. C1 Los Alamos Natl Lab, Los Alamos, NM 87506 USA. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87506 USA. NR 15 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 428 EP 431 DI 10.1016/j.nuclphysa.2011.02.097 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500081 ER PT J AU Vogt, R Lourenco, C Wohri, HK AF Vogt, R. Lourenco, C. Woehri, H. K. TI J/psi production and absorption in p plus A and d plus Au collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE quarkonium; cold nuclear matter ID QUARKONIUM PRODUCTION; DIMUON PRODUCTION; SYSTEMATICS AB The level of "anomalous" charmonium suppression in high-energy heavy-ion collisions and its interpretation as a signal of quark-gluon plasma formation requires a robust understanding of charmonium production and absorption in proton-nucleus collisions. In a previous study we have shown that, contrary to common belief, the so-called J/psi, "absorption cross section", sigma(J/psi)(ubs), is not a "universal constant" but, rather, an effective parameter that depends very significantly on the charmonium rapidity and on the collision energy. Here we present ugraded Glauber calculations with the EPS09 parameterization of nuclear modifications of the parton densities. We confirm that the effective "absorption cross section" depends on the J/psi kinematics and the collision energy. We also make further steps towards understanding the physics of the mechanisms behind the observed "cold nuclear matter" effects. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogt, R.] Univ Calif Davis, Davis, CA 95616 USA. [Lourenco, C.; Woehri, H. K.] CERN, CH-1211 Geneva 23, Switzerland. [Woehri, H. K.] LIP, P-1000149 Lisbon, Portugal. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 20 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 453 EP 456 DI 10.1016/j.nuclphysa.2011.02.104 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500087 ER PT J AU Wang, XN Li, HL Liu, FM Ma, GL Zhu, Y AF Wang, Xin-Nian Li, Han-Lin Liu, Fu-Ming Ma, Guo-Liang Zhu, Yan TI Dihadron and gamma-hadron correlations from jet-induced medium excitation in high-energy heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Jet; gamma-jet; Mach cone; dihadron; hot spot; harmonic flow ID FLOW AB Jet propagation is shown to produce Mach-cone-like medium excitation inside a quark-gluon plasma. However, only deflection of such medium excitation and jet shower partons by radial flow leads to double-peaked dihadron correlation in high-energy heavy-ion collisions. Dihadron correlations from harmonic flow, hot spots and dijets are studied separately within the AMPT Monte Carlo model and all lead to double-peaked dihadron azimuthal correlation. The gamma-hadron correlation has similar double-peak feature but is free of the contributions from harmonic flow and hot spots. Dihadron and gamma-hadron correlations are compared to shed light on jet-induced medium excitation and hot spots in an expanding medium. C1 [Wang, Xin-Nian; Li, Han-Lin; Liu, Fu-Ming; Zhu, Yan] Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Ma, Guo-Liang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Nucl Sci Div MS 70R0319, Berkeley, CA 94720 USA. RP Wang, XN (reprint author), Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 NR 14 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 469 EP 472 DI 10.1016/j.nuclphysa.2011.02.108 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500091 ER PT J AU Xing, HX Wang, XN Yuan, F AF Xing, Hongxi Wang, Xin-Nian Yuan, Feng TI Quark splitting in non-trivial theta-vacuum SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE QCD; fragmentation function; theta-vacuum; parity violation AB Quark splitting in non-trivial A-vacuum with a given helicity is investigated in pQCD with a modified quark propagator. We found that the quark splitting functions were modified by the presence of a topologically non-trivial QCD background field, though there is no explicit helicity flip associated with the radiative processes. The interaction with the. topological non-trivial field leads to the degeneracy of the quark splitting functions for left- and right-handed quarks. Such degeneracy can lead to imbalance of left- and right-handed quarks in quark jet showers. We also discuss phenomenological consequences of such imbalance if there exists non-trivial topological gluon field configuration in heavy-ion collisions. C1 [Xing, Hongxi] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Xing, Hongxi; Wang, Xin-Nian; Yuan, Feng] Huazhong Normal Univ, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China. [Xing, Hongxi; Wang, Xin-Nian; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] BNL, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Xing, HX (reprint author), Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RI Yuan, Feng/N-4175-2013; OI Wang, Xin-Nian/0000-0002-9734-9967 NR 13 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 473 EP 477 DI 10.1016/j.nuclphysa.2011.02.109 PG 5 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500092 ER PT J AU Dunlop, JC AF Dunlop, J. C. CA STAR Collaboration TI The next decade of physics with STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 4th International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions CY OCT 10-15, 2010 CL Eilat, ISRAEL DE Relativistic nucleus-nucleus collisions; RHIC; STAR AB With existing and planned detector and accelerator improvements in both STAR and RHIC, a wide range of new opportunities will become reality over the next decade. STAR is in the process of planning a program to make best use of these opportunities. The prospects for new capabilities and associated measurements will be reviewed. C1 [Dunlop, J. C.; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Dunlop, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 3 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 1 PY 2011 VL 855 IS 1 BP 518 EP 521 DI 10.1016/j.nuclphysa.2011.02.120 PG 4 WC Physics, Nuclear SC Physics GA 758VY UT WOS:000290196500103 ER PT J AU Dorf, MA Davidson, RC Startsev, EA AF Dorf, Mikhail A. Davidson, Ronald C. Startsev, Edward A. TI A spectral method for halo particle definition in intense mismatched beams SO PHYSICS OF PLASMAS LA English DT Article ID SIMULATION; LIMITS AB An advanced spectral analysis of a mismatched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574665] C1 [Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy [DE-AC02-76CH-O3073]; Princeton Plasma Physics Laboratory FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. NR 21 TC 9 Z9 9 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 043109 DI 10.1063/1.3574665 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200042 ER PT J AU Hesse, M Birn, J Zenitani, S AF Hesse, Michael Birn, Joachim Zenitani, Seiji TI Magnetic reconnection in a compressible MHD plasma SO PHYSICS OF PLASMAS LA English DT Article ID PARALLEL ELECTRIC-FIELDS AB Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581077] C1 [Hesse, Michael; Zenitani, Seiji] NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Birn, Joachim] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hesse, M (reprint author), NASA, Space Weather Lab, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA. RI Hesse, Michael/D-2031-2012; Zenitani, Seiji/D-7988-2013; NASA MMS, Science Team/J-5393-2013 OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA's MMS mission; ROSES program; JSPS FX The authors gratefully acknowledge the support by NASA's MMS mission and ROSES program. One of us (S.Z.) gratefully acknowledges the support from JSPS Fellowship for Research Abroad. NR 24 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 042104 DI 10.1063/1.3581077 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200006 ER PT J AU Rose, HA Mounaix, P AF Rose, Harvey A. Mounaix, Philippe TI Diffraction-controlled backscattering threshold and application to Raman gap SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PRODUCED PLASMAS; STIMULATED BRILLOUIN-SCATTERING; HOT-SPOTS; F-NUMBER; INSTABILITY; LIGHT; FILAMENTATION; STATISTICS; DEPENDENCE; FREQUENCY AB In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations-or localized speckles-which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more strongly than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G(0) be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G(0) at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581083] C1 [Rose, Harvey A.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Rose, Harvey A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Mounaix, Philippe] Ecole Polytech, CNRS, UMR 7644, Ctr Phys Theor, F-91128 Palaiseau, France. RP Rose, HA (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA. EM mounaix@cpht.polytechnique.fr FU Department of Energy [DE-SCOO02238]; New Mexico Consortium FX We are pleased to acknowledge insightful conversations with R. L. Berger, R. P. Drake, and W. Seka. H. Rose was supported by the New Mexico Consortium and Department of Energy Award No. DE-SCOO02238. NR 42 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 042109 DI 10.1063/1.3581083 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200011 ER PT J AU Vauzour, B Perez, F Volpe, L Lancaster, K Nicolai, P Batani, D Baton, SD Beg, FN Benedetti, C Brambrink, E Chawla, S Dorchies, F Fourment, C Galimberti, M Gizzi, LA Heathcote, R Higginson, DP Hulin, S Jafer, R Koster, P Labate, L MacKinnon, AJ MacPhee, AG Nazarov, W Pasley, J Regan, C Ribeyre, X Richetta, M Schurtz, G Sgattoni, A Santos, JJ AF Vauzour, B. Perez, F. Volpe, L. Lancaster, K. Nicolai, Ph. Batani, D. Baton, S. D. Beg, F. N. Benedetti, C. Brambrink, E. Chawla, S. Dorchies, F. Fourment, C. Galimberti, M. Gizzi, L. A. Heathcote, R. Higginson, D. P. Hulin, S. Jafer, R. Koester, P. Labate, L. MacKinnon, A. J. MacPhee, A. G. Nazarov, W. Pasley, J. Regan, C. Ribeyre, X. Richetta, M. Schurtz, G. Sgattoni, A. Santos, J. J. TI Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas SO PHYSICS OF PLASMAS LA English DT Article ID FAST IGNITION; MATTER; PENETRATION; CRYSTALS AB Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g/cm(3) and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities and electrical conductivities allow for testing electron transport in a wide range of configurations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3578346] C1 [Vauzour, B.; Nicolai, Ph.; Dorchies, F.; Fourment, C.; Hulin, S.; Regan, C.; Ribeyre, X.; Schurtz, G.; Santos, J. J.] Univ Bordeaux 1, Ctr Lasers Intenses & Applicat CELIA, CNRS, CEA, F-33405 Talence, France. [Perez, F.; Baton, S. D.; Brambrink, E.] Ecole Polytech, CNRS, LULI, UPMC, F-91128 Palaiseau, France. [Volpe, L.; Batani, D.; Jafer, R.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Lancaster, K.; Galimberti, M.; Heathcote, R.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Beg, F. N.; Chawla, S.; Higginson, D. P.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Benedetti, C.; Sgattoni, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Gizzi, L. A.; Koester, P.; Labate, L.] INO CNR, Intense Laser Irradiat Lab, Pisa, Italy. [MacKinnon, A. J.; MacPhee, A. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nazarov, W.] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Richetta, M.] Univ Roma Tor Vergata, Dipartimento Ingn Meccan, Rome, Italy. RP Santos, JJ (reprint author), Univ Bordeaux 1, Ctr Lasers Intenses & Applicat CELIA, CNRS, CEA, F-33405 Talence, France. EM Santos.Joao@celia.u-bordeaux1.fr RI Gizzi, Leonida/F-4782-2011; RICHETTA, MARIA/I-8513-2012; Vauzour, Benjamin/N-8385-2013; Jafer, Rashida/K-2078-2014; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; Brennan, Patricia/N-3922-2015 OI MacKinnon, Andrew/0000-0002-4380-2906; Gizzi, Leonida A./0000-0001-6572-6492; Higginson, Drew/0000-0002-7699-3788; FU Conseil Regional d'Aquitaine [34293]; Marie Curie IRSES Project [230777]; HiPER project; EC; MSMT; STFC FX The authors are thankful to V. T. Tikhonchuk for helpful discussions and comments, to the technical staff of the VULCAN laser facility and also to C. Spindloe and H. Lowe at the RAL target fabrication laboratory, for the target assembling and mounting. This work is supported by the Conseil Regional d'Aquitaine under Project No. 34293, by the European support program Marie Curie IRSES Project No. 230777, and by the HiPER project and Preparatory Phase Funding Agencies (EC, MSMT, and STFC). NR 41 TC 16 Z9 17 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 043108 DI 10.1063/1.3578346 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200041 ER PT J AU Waltz, RE Staebler, GM Solomon, WM AF Waltz, R. E. Staebler, G. M. Solomon, W. M. TI Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE SIMULATIONS; H-MODE; CONFINEMENT; TOKAMAKS; PLASMAS AB Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E x B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E x B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E x B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and the much smaller profile shear residual stress component. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3579481] C1 [Waltz, R. E.; Staebler, G. M.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Waltz, RE (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM waltz@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FG02-95ER54309] FX This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-95ER54309. We wish to thank J. Candy and E. A. Belli for new coding consistently computing all ion toroidal and poloidal velocity profiles from experimental radial electric field profile data via the NEO (Ref. 22) delta-f neoclassical code. NR 26 TC 30 Z9 30 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 042504 DI 10.1063/1.3579481 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200026 ER PT J AU Wang, WX Hahm, TS Ethier, S Diamond, PH Rewoldt, G Tang, WM Lee, WW AF Wang, W. X. Hahm, T. S. Ethier, S. Diamond, P. H. Rewoldt, G. Tang, W. M. Lee, W. W. TI Characteristics of turbulence-driven plasma flow and origin of experimental empirical scalings of intrinsic rotation SO PHYSICS OF PLASMAS LA English DT Article ID ANOMALOUS MOMENTUM TRANSPORT; TOROIDAL ROTATION; TOKAMAKS; VELOCITY; JT-60U AB Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced k(parallel to) symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LT(e) and R/Ln(e) for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase," and are shown to play important roles in determining plasma profiles. Also discussed are the experimental tests proposed to validate findings from these gyrokinetic simulations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3575162] C1 [Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Diamond, P. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Wang, WX (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wwang@pppl.gov FU U.S. DOE [DE-AC02-09CH11466]; SciDAC project for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas FX The authors would like to express special thanks to Dr. L. Zakharov for generating numerical MHD equilibria using the ESC code for current scan simulations, and Dr. S. Kaye for discussions on how current scan studies are carried out in experiments. We also would like to acknowledge useful discussions with (in alphabetical order) Drs. R. Betti, A. Boozer, L. Chen, G. Dif-Pradalier, J. Q. Dong, X. Garbet, O. Gurcan, C. Hidalgo, F. Hinton, S. Ku, J. Kwon, C. McDevitt, J. Rice, W. Solomon, Y. H. Xu, and H. Zohm. Simulations were performed on Franklin at the National Energy Research Scientific Computing Center (NERSC) and on Jaguar/pf at the National Center for Computational Sciences (NCCS). This work was supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the SciDAC project for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. NR 40 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 042502 DI 10.1063/1.3575162 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200024 ER PT J AU Yu, TP Pukhov, A Shvets, G Chen, M Ratliff, TH Yi, SA Khudik, V AF Yu, T. P. Pukhov, A. Shvets, G. Chen, M. Ratliff, T. H. Yi, S. A. Khudik, V. TI Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil SO PHYSICS OF PLASMAS LA English DT Article ID ION-ACCELERATION; LASER; PLASMA; TARGETS; PULSE AB We report stable laser-driven proton beam acceleration from ultrathin foils consisting of two ion species: heavier carbon ions and lighter protons. Multidimensional particle-in-cell simulations show that the radiation pressure leads to very fast and complete spatial separation of the species. The laser pulse does not penetrate the carbon ion layer, avoiding the proton Rayleigh-Taylor (RT)-like instability. Ultimately, the carbon ions are heated and spread extensively in space. In contrast, protons always ride on the front of the carbon ion cloud, forming a compact high quality bunch. We introduce a simple three-interface model to interpret the instability suppression in the proton layer. The model is backed by simulations of various compound foils such as carbon-deuterium and carbon-tritium foils. The effects of the carbon ions' charge state on proton acceleration are also investigated. It is shown that with the decrease of the carbon ion charge state, both the RT-like instability and the Coulomb explosion degrade the energy spectrum of the protons. Finally, full 3D simulations are performed to demonstrate the robustness of the stable two-ion-species regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574351] C1 [Yu, T. P.; Pukhov, A.; Chen, M.] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Yu, T. P.] Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China. [Shvets, G.; Ratliff, T. H.; Yi, S. A.; Khudik, V.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Chen, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. RP Yu, TP (reprint author), Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. EM Tongpu.Yu@tp1.uni-duesseldorf.de; pukhov@tp1.uni-duesseldorf.de; gena@physics.utexas.edu RI Yu, Tong-Pu/A-2360-2011; Chen, Min/A-9955-2010; pukhov, alexander/C-8082-2016 OI Chen, Min/0000-0002-4290-9330; FU DFG [GRK1203, TR18]; China Scholarship Council; NSAF [10976031]; U.S. DOE [DE-FG02-05ER54840, DE-FG02-04ER41321]; Alexander von Humboldt Foundation FX We thank the fruitful discussions with Dr. N. Kumar and Dr. A. Upadhyay. This work is supported by the DFG programs GRK1203 and TR18. T. P. Y acknowledges financial support from the China Scholarship Council and the NSAF program (Grant No. 10976031). T. H. R., S. A. Y., V. K., and G. S. acknowledge the support of the U.S. DOE Grant Nos. DE-FG02-05ER54840 and DE-FG02-04ER41321. M. C. acknowledges support from the Alexander von Humboldt Foundation. The simulations were performed on ATTO in HHUD. NR 46 TC 21 Z9 21 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2011 VL 18 IS 4 AR 043110 DI 10.1063/1.3574351 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 757TI UT WOS:000290110200043 ER PT J AU Feng, YJ AF Feng, Yejun TI A portable, light-emitting diode-based ruby fluorescence spectrometer for high-pressure calibration SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Ruby (Al(2)O(3), with similar to 0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones. (C) 2011 American Institute of Physics. [doi:10.1063/1.3580617] C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Feng, YJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Feng, Yejun/A-5417-2009 OI Feng, Yejun/0000-0003-3667-056X FU U.S. Department of Energy (DOE)-BES [DE-AC02-06CH11357] FX I am grateful to V. Prakapenka, R. Jaramillo, and D. Haskel for stimulating discussions. The work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE)-BES under Contract No. DE-AC02-06CH11357. NR 6 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 046105 DI 10.1063/1.3580617 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500062 PM 21529049 ER PT J AU Jung, D Horlein, R Gautier, DC Letzring, S Kiefer, D Allinger, K Albright, BJ Shah, R Palaniyappan, S Yin, L Fernandez, JC Habs, D Hegelich, BM AF Jung, D. Hoerlein, R. Gautier, D. C. Letzring, S. Kiefer, D. Allinger, K. Albright, B. J. Shah, R. Palaniyappan, S. Yin, L. Fernandez, J. C. Habs, D. Hegelich, B. M. TI A novel high resolution ion wide angle spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID BEAMS; ELECTRON; TARGETS; TRACKS AB A novel ion wide angle spectrometer (iWASP) has been developed, which is capable of measuring angularly resolved energy distributions of protons and a second ion species, such as carbon C6+, simultaneously. The energy resolution for protons and carbon ions is better than 10% at similar to 50 MeV/nucleon and thus suitable for the study of novel laser-ion acceleration schemes aiming for ultrahigh particle energies. A wedged magnet design enables an acceptance angle of 30 degrees (similar to 524 mrad) and high angular accuracy in the mu rad range. First, results obtained at the LANL Trident laser facility are presented demonstrating high energy and angular resolution of this novel iWASP. (C) 2011 American Institute of Physics. [doi:10.1063/1.3575581] C1 [Jung, D.; Gautier, D. C.; Letzring, S.; Albright, B. J.; Shah, R.; Palaniyappan, S.; Yin, L.; Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jung, D.; Kiefer, D.; Allinger, K.; Habs, D.; Hegelich, B. M.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Jung, D.; Hoerlein, R.; Kiefer, D.; Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. RP Jung, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM daniel.jung@physik.uni-muenchen.de RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; palaniyappan, sasikumar/A-7791-2015; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Palaniyappan, sasi/0000-0001-6377-1206 NR 30 TC 27 Z9 27 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043301 DI 10.1063/1.3575581 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500011 PM 21528999 ER PT J AU Krauter, KG Jacobson, GF Patterson, JR Nguyen, JH Ambrose, WP AF Krauter, K. G. Jacobson, G. F. Patterson, J. R. Nguyen, J. H. Ambrose, W. P. TI Single-mode fiber, velocity interferometry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID COMPRESSION; VELOCIMETER; WAVES AB In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. (C) 2011 American Institute of Physics. [doi:10.1063/1.3574797] C1 [Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H.; Ambrose, W. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Krauter, KG (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. NR 31 TC 4 Z9 4 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 045110 DI 10.1063/1.3574797 PG 15 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500055 PM 21529042 ER PT J AU Lea, AS Higgins, SR Knauss, KG Rosso, KM AF Lea, A. S. Higgins, S. R. Knauss, K. G. Rosso, K. M. TI A high-pressure atomic force microscope for imaging in supercritical carbon dioxide SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ACIDIC AQUEOUS-SOLUTION; IN-SITU; DISSOLUTION KINETICS; CALCITE DISSOLUTION; SATURATION STATE; KINK DYNAMICS; SURFACE; GROWTH; MAGNESITE; RATES AB A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO(2) (scCO(2)) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to similar to 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO(2), precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO(3)) mineral surface in scCO(2); both single, monatomic steps and dynamic processes occurring on the (10 (1) over bar 14) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solid-fluid interfaces under pressure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3580603] C1 [Lea, A. S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Higgins, S. R.] Wright State Univ, Dept Chem, Dayton, OH 45435 USA. [Knauss, K. G.] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94444 USA. [Rosso, K. M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Lea, AS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RI knauss, kevin/K-2827-2012; OI Lea, Alan/0000-0002-4232-1553 FU Carbon Sequestration Laboratory Directed Research and Development (LDRD) Initiative at Pacific Northwest National Laboratory (PNNL); (U.S.) Department of Energy's (DOE) Office of Biological and Environmental Research, PNNL FX This research was supported by the Carbon Sequestration Laboratory Directed Research and Development (LDRD) Initiative at Pacific Northwest National Laboratory (PNNL). The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the (U.S.) Department of Energy's (DOE) Office of Biological and Environmental Research and located at PNNL. NR 31 TC 7 Z9 8 U1 2 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043709 DI 10.1063/1.3580603 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500028 PM 21529015 ER PT J AU Lee, C Iwata, GZ Corsini, E Higbie, JM Knappe, S Ledbetter, MP Budker, D AF Lee, Changmin Iwata, G. Z. Corsini, E. Higbie, J. M. Knappe, S. Ledbetter, M. P. Budker, D. TI Small-sized dichroic atomic vapor laser lock SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FREQUENCY STABILIZATION AB Two, lightweight diode laser frequency stabilization systems designed for experiments in the field are described. A significant reduction in size and weight in both models supports the further miniaturization of measurement devices in the field. Similar to a previous design, magnetic field lines are contained within a magnetic shield enclosing permanent magnets and a Rb cell, so that these dichroic atomic vapor laser lock (DAVLL) systems may be used for magnetically sensitive instruments. The mini-DAVLL system (49 mm long) uses a vapor cell (20 mm long) and does not require cell heaters. An even smaller micro-DAVLL system (9 mm long) uses a microfabricated cell (3 mm square) and requires heaters. These new systems show no degradation in performance with regard to previous designs while considerably reducing dimensions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3568824] C1 [Lee, Changmin; Iwata, G. Z.; Corsini, E.; Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Higbie, J. M.] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. [Knappe, S.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Lee, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM cmpius@berkeley.edu; g.iwata@berkeley.edu; budker@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU ONR MURI; STTR programs; NURI program; Office of Science, Office of Basic Energy Sciences, Nuclear Science Divisions, of the U.S. Department of Energy [DE-AC03-76SF00098]; Microsystems Technology Office of the Defence Advanced Research Projects Agency (DARPA) FX The authors would like to sincerely thank J. Kitching and L. Garner for their useful discussions and advice on this work. This work was supported by the ONR MURI, and STTR programs, the NURI program, by the Director, Office of Science, Office of Basic Energy Sciences, Nuclear Science Divisions, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the Microsystems Technology Office of the Defence Advanced Research Projects Agency (DARPA). C. L. and G. I. were participants in the U. C. Berkeley Undergraduate Research Apprentice Program. NR 16 TC 7 Z9 7 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043107 DI 10.1063/1.3568824 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500007 PM 21528995 ER PT J AU Nakagawa, S AF Nakagawa, Seiji TI Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ROCKS AB Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver-the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 degrees C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579501] C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Nakagawa, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM snakagawa@lbl.gov RI Nakagawa, Seiji/F-9080-2015 OI Nakagawa, Seiji/0000-0002-9347-0903 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy; Office of Natural Gas and Petroleum Technology through the National Energy Technology Laboratory; U.S. DOE [DE-AC02-05CH11231] FX This research was supported by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. Department of Energy, and by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, NGOTP program and GEO-SEQ Program, through the National Energy Technology Laboratory, under the U.S. DOE, Contract No. DE-AC02-05CH11231. NR 19 TC 3 Z9 3 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 044901 DI 10.1063/1.3579501 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500042 PM 21529029 ER PT J AU Pedersoli, E Capotondi, F Cocco, D Zangrando, M Kaulich, B Menk, RH Locatelli, A Mentes, TO Spezzani, C Sandrin, G Bacescu, DM Kiskinova, M Bajt, S Barthelmess, M Barty, A Schulz, J Gumprecht, L Chapman, HN Nelson, AJ Frank, M Pivovaroff, MJ Woods, BW Bogan, MJ Hajdu, J AF Pedersoli, Emanuele Capotondi, Flavio Cocco, Daniele Zangrando, Marco Kaulich, Burkhard Menk, Ralf H. Locatelli, Andrea Mentes, Tevfik O. Spezzani, Carlo Sandrin, Gilio Bacescu, Daniel M. Kiskinova, Maya Bajt, Sasa Barthelmess, Miriam Barty, Anton Schulz, Joachim Gumprecht, Lars Chapman, Henry N. Nelson, A. J. Frank, Matthias Pivovaroff, Michael J. Woods, Bruce W. Bogan, Michael J. Hajdu, Janos TI Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-SCATTERING; HOLOGRAPHY; DIFFRACTION; DYNAMICS AB We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582155] C1 [Pedersoli, Emanuele; Capotondi, Flavio; Cocco, Daniele; Zangrando, Marco; Kaulich, Burkhard; Menk, Ralf H.; Locatelli, Andrea; Mentes, Tevfik O.; Spezzani, Carlo; Sandrin, Gilio; Bacescu, Daniel M.; Kiskinova, Maya] Elettra Sincrotrone Trieste, Fermi, I-34149 Trieste, Italy. [Zangrando, Marco] IOM CNR, Lab TASC, I-34149 Trieste, Italy. [Barty, Anton; Schulz, Joachim; Gumprecht, Lars; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Chapman, Henry N.] Univ Hamburg, D-22607 Hamburg, Germany. [Nelson, A. J.; Frank, Matthias; Pivovaroff, Michael J.; Woods, Bruce W.] LLNL, Livermore, CA 94550 USA. [Bogan, Michael J.] PULSE Inst, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hajdu, Janos] Uppsala Univ, Lab Mol Biophys, S-75124 Uppsala, Sweden. RP Kiskinova, M (reprint author), Elettra Sincrotrone Trieste, Fermi, SS 14 Km 163-5, I-34149 Trieste, Italy. EM kiskinova@elettra.trieste.it RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Bogan, Mike/I-6962-2012; Barty, Anton/K-5137-2014; Pivovaroff, Michael/M-7998-2014; Frank, Matthias/O-9055-2014; Zangrando, Marco/E-1326-2015; OI Mentes, Tevfik Onur/0000-0003-0413-9272; Chapman, Henry/0000-0002-4655-1743; Bogan, Mike/0000-0001-9318-3333; Barty, Anton/0000-0003-4751-2727; Pivovaroff, Michael/0000-0001-6780-6816; Zangrando, Marco/0000-0001-8860-3962; Locatelli, Andrea/0000-0002-8072-7343; Pedersoli, Emanuele/0000-0003-0572-6735 FU Fermi@Elettra project; U.S. Department of Energy (DOE), Office of Basic Energy Sciences through the PULSE Institute at the SLAC National Accelerator Laboratory; Department of Energy's National Nuclear Security Administration, Lawrence Livermore National Security FX The construction of the apparatus was funded by the Fermi@Elettra project. This work was in part supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences through the PULSE Institute at the SLAC National Accelerator Laboratory, and Department of Energy's National Nuclear Security Administration, Lawrence Livermore National Security. NR 28 TC 15 Z9 15 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043711 DI 10.1063/1.3582155 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500030 PM 21529017 ER PT J AU Wang, L Ding, Y Patel, U Yang, WG Xiao, ZL Cai, ZH Mao, WL Mao, HK AF Wang, Lin Ding, Yang Patel, Umesh Yang, Wenge Xiao, Zhili Cai, Zhonghou Mao, Wendy L. Mao, Ho-Kwang TI Studying single nanocrystals under high pressure using an x-ray nanoprobe SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB In this report, we demonstrate the feasibility of applying a 250-nm focused x-ray beam to study a single crystalline NbSe(3) nanobelt under high-pressure conditions in a diamond anvil cell. With such a small probe, we not only resolved the distribution and morphology of each individual nanobelt in the x-ray fluorescence maps but also obtained the diffraction patterns from individual crystalline nanobelts with thicknesses of less than 50 nm. Single crystalline diffraction measurements on NbSe(3) nanobelts were performed at pressures up to 20 GPa. (C) 2011 American Institute of Physics. [doi:10.1063/1.3584881] C1 [Wang, Lin; Ding, Yang; Yang, Wenge; Mao, Ho-Kwang] Carnegie Inst Washington, HPSynC, Argonne, IL 60439 USA. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Patel, Umesh; Xiao, Zhili] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Cai, Zhonghou] Argonne Natl Lab, XOR, Adv Photon Source, Argonne, IL 60439 USA. [Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA. [Mao, Wendy L.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Mao, Ho-Kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Wang, L (reprint author), Carnegie Inst Washington, HPSynC, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lwang@ciw.edu RI Mao, Wendy/D-1885-2009; Yang, Wenge/H-2740-2012; Patel, Umeshkumar/A-8643-2013; WANG, LIN/G-7884-2012; Ding, Yang/K-1995-2014 OI Patel, Umeshkumar/0000-0002-8259-1646; Ding, Yang/0000-0002-8845-4618 FU National Science Foundation (NSF) [MRI-0821584, EAR-0810255]; International Balzan Foundation; (U.S.) Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001057]; DOE-NNSA; DOE-BES; NSF of China (NSFC) [11004072]; DOE [DE-FG02-06ER46334]; Center for Nanoscale Materials at ANL [DE-AC02-06CH11357] FX The research was supported by National Science Foundation (NSF) (MRI-0821584 and EAR-0810255) and the International Balzan Foundation. HPSynC is supported as part of EFree, an Energy Frontier Research Center funded by the (U.S.) Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Grant No. DE-SC0001057. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. This work was also partially supported by the NSF of China (NSFC) (11004072). The synthesis of NbSe3 nanoribbons was funded by DOE Grant No. DE-FG02-06ER46334. The work was conducted at the APS, the Electron Microscopy Center, and the Center for Nanoscale Materials at ANL (Contract No. DE-AC02-06CH11357). NR 11 TC 0 Z9 0 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043903 DI 10.1063/1.3584881 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500034 PM 21529021 ER PT J AU Xia, D Xiao, X Bian, J Han, X Sidky, EY De Carlo, F Pan, X AF Xia, D. Xiao, X. Bian, J. Han, X. Sidky, E. Y. De Carlo, F. Pan, X. TI Image reconstruction from sparse data in synchrotron-radiation-based microtomography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICRO-COMPUTED TOMOGRAPHY; SIGNAL RECOVERY; INCOMPLETE DATA; BEAM CT; RAY; INFORMATION; ALGORITHM AB Synchrotron-radiation-based microcomputed-tomography (SR-mu CT) is a powerful tool for yielding 3D structural information of high spatial and contrast resolution about a specimen preserved in its natural state. A large number of projection views are required currently for yielding SR-mu CT images by use of existing algorithms without significant artifacts. When a wet biological specimen is imaged, synchrotron x-ray radiation from a large number of projection views can result in significant structural deformation within the specimen. A possible approach to reducing imaging time and specimen deformation is to decrease the number of projection views. In the work, using reconstruction algorithms developed recently for medical computed tomography (CT), we investigate and demonstrate image reconstruction from sparse-view data acquired in SR-mu CT. Numerical results of our study suggest that images of practical value can be obtained from data acquired at a number of projection views significantly lower than those used currently in a typical SR-mu CT imaging experiment. (C) 2011 American Institute of Physics. [doi:10.1063/1.3572263] C1 [Xia, D.] Chinese Acad Sci, Inst Biomed & Hlth Engn, Shenzhen, Peoples R China. [Xia, D.] Chinese Acad Sci, Key Lab Biomed Informat & Hlth Engn, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China. [Xiao, X.; De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bian, J.; Han, X.; Sidky, E. Y.; Pan, X.] Univ Chicago, Dept Radiol, Chicago, IL 60601 USA. RP Xia, D (reprint author), Chinese Acad Sci, Inst Biomed & Hlth Engn, Shenzhen, Peoples R China. FU National Institutes of Health [CA120540, EB000225, S10 RR021039, P30 CA14599]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOD [BC083239, PC094510] FX This work was supported in part by National Institutes of Health Grant Nos. CA120540 and EB000225. Partial funding for the computation in this work was provided by NIH Grant Nos. S10 RR021039 and P30 CA14599. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J. B. and X. H. were supported in part by DOD Predoctoral Training Grant Nos. BC083239 and PC094510. NR 31 TC 6 Z9 6 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043706 DI 10.1063/1.3572263 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500025 PM 21529012 ER PT J AU Zhang, P Richard, P Qian, T Xu, YM Dai, X Ding, H AF Zhang, P. Richard, P. Qian, T. Xu, Y-M Dai, X. Ding, H. TI A precise method for visualizing dispersive features in image plots SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SUPERCONDUCTOR; MICROSCOPY AB In order to improve the advantages and the reliability of the second derivative method in tracking the position of extrema from experimental curves, we develop a novel analysis method based on the mathematical concept of curvature. We derive the formulas for the curvature in one and two dimensions and demonstrate their applicability to simulated and experimental angle-resolved photoemission spectroscopy data. As compared to the second derivative, our new method improves the localization of the extrema and reduces the peak broadness for a better visualization on intensity image plots. (C) 2011 American Institute of Physics. [doi:10.1063/1.3585113] C1 [Zhang, P.; Richard, P.; Qian, T.; Dai, X.; Ding, H.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, P.; Richard, P.; Qian, T.; Dai, X.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Xu, Y-M] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, P (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RI Richard, Pierre/F-7652-2010; Dai, Xi/C-4236-2008; Xu, Yiming/B-3966-2011 OI Richard, Pierre/0000-0003-0544-4551; Dai, Xi/0000-0003-0538-1829; FU Chinese Academy of Sciences (CAS) [2010Y1JB6]; NSF of China (NSFC) [11004232, 11050110422]; MOST of China [2010CB923000] FX We acknowledge useful discussions with Y.B. Huang, X. P. Wang, T.J. Min, T. Ayral, and A. Van Roekeghem. This work was supported by grants from Chinese Academy of Sciences (CAS) (2010Y1JB6), NSF of China (NSFC) (11004232 and 11050110422), and MOST of China (2010CB923000). NR 32 TC 53 Z9 53 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2011 VL 82 IS 4 AR 043712 DI 10.1063/1.3585113 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 756YU UT WOS:000290051500031 PM 21529018 ER PT J AU Seley, DB Dissing, DA Sumant, AV Divan, R Miller, S Auciello, O Lepak, LA Terrell, EA Shogren, TJ Fahrner, DA Hamilton, JP Zach, MP AF Seley, David B. Dissing, Daniel A. Sumant, Anirudha V. Divan, Ralu Miller, Suzanne Auciello, Orlando Lepak, Lori A. Terrell, Eric A. Shogren, Tyler J. Fahrner, Daryl A. Hamilton, James P. Zach, Michael P. TI Electroplate and Lift Lithography for Patterned Micro/Nanowires Using Ultrananocrystalline Diamond (UNCD) as a Reusable Template SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE electrode patterning; nontraditional lithography; patterned nanowires; metamaterials; electrochemically deposited semiconductors; UNCD films ID IONIC LIQUIDS; THIN-FILMS; FABRICATION; ELECTRODEPOSITION; NANOWIRES; GOLD; NANOFABRICATION; NANOSTRUCTURES; MONOLAYERS; MEMS AB A fast, simple, scalable technique is described for the controlled, solution-based, electrochemical synthesis of patterned metallic and semiconducting nanowires from reusable, nonsacrificial, ultrananocrystalline diamond (UNCD) templates. This enables the repeated fabrication of arrays of complex patterns of nanowires, potentially made of any electrochemically depositable material. Unlike all other methods of patterning nanowires, this benchtop technique quickly mass-produces patterned nanowires whose diameters are not predefined by the template, without requiring intervening vacuum or clean room processing. This technique opens a pathway for studying nanoscale phenomena with minimal equipment, allowing the process-scale development of a new generation of nanowire-based devices. C1 [Seley, David B.; Dissing, Daniel A.; Lepak, Lori A.; Terrell, Eric A.; Shogren, Tyler J.; Fahrner, Daryl A.; Zach, Michael P.] Univ Wisconsin, Dept Chem, Stevens Point, WI 54481 USA. [Sumant, Anirudha V.; Divan, Ralu; Miller, Suzanne; Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hamilton, James P.] Univ Wisconsin Platteville, Dept Chem & Engn Phys, Platteville, WI 53818 USA. [Hamilton, James P.] Univ Wisconsin Platteville, NCCRD, Platteville, WI 53818 USA. [Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zach, MP (reprint author), Univ Wisconsin, Dept Chem, Stevens Point, WI 54481 USA. EM Mike.Zach@uwsp.edu RI Hamilton, James/A-7367-2009; Zach, Michael/D-4160-2009 OI Hamilton, James/0000-0002-4865-7103; Zach, Michael/0000-0002-4409-3419 FU WiSys Technology Foundation; University of Wisconsin System; NSF [NSF CMMI-0954656]; UWSP University Personnel Development Committee; College of Letters and Sciences Undergraduate Education Initiative and Chemistry Department; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX UWSP authors gratefully acknowledge the support from WiSys Technology Foundation, University of Wisconsin System, NSF CAREER Award (NSF CMMI-0954656),31 UWSP University Personnel Development Committee, and College of Letters and Sciences Undergraduate Education Initiative and Chemistry Department Funding. This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under Contract DE-AC02. The Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 31 TC 4 Z9 4 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD APR PY 2011 VL 3 IS 4 BP 925 EP 930 DI 10.1021/am101226w PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 753HH UT WOS:000289762400001 PM 21405103 ER PT J AU Monson, TC Hollars, CW Orme, CA Huser, T AF Monson, Todd C. Hollars, Christopher W. Orme, Christine A. Huser, Thomas TI Improving Nanoparticle Dispersion and Charge Transfer in Cadmium Telluride Tetrapod and Conjugated Polymer Blends SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE conjugated polymers; polymer composites; semiconductor nanoparticles; confocal fluorescence microscope; AFM; fluoresence ID THIN-FILM TRANSISTORS; FIELD-EFFECT MOBILITY; PHOTOVOLTAIC CELLS; MOLECULAR-WEIGHT; SOLAR-CELLS; DEVICES; NANOCRYSTALS; MORPHOLOGY; GROWTH; LAYER AB The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. C1 [Monson, Todd C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hollars, Christopher W.] MRIGlobal, Kansas City, MO 64110 USA. [Hollars, Christopher W.; Huser, Thomas] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Orme, Christine A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Huser, Thomas] Univ Calif Davis, Dept Internal Med, Sacramento, CA 95817 USA. RP Monson, TC (reprint author), Sandia Natl Labs, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM tmonson@sandia.gov RI Orme, Christine/A-4109-2009; Huser, Thomas/H-1195-2012; OI Huser, Thomas/0000-0003-2348-7416; Monson, Todd/0000-0002-9782-7084 FU Air Force Office of Scientific Research; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded in part by the Air Force Office of Scientific Research. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 as well as Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. T. C. Monson thanks the Lawrence Livermore National Laboratory Military Academic Research Associates (MARA) program for partial support. We thank R. E. Del Sesto and T. J. Boyle for their help in the CdTe tetrapod synthesis. NR 33 TC 4 Z9 4 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD APR PY 2011 VL 3 IS 4 BP 1077 EP 1082 DI 10.1021/am101218m PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 753HH UT WOS:000289762400022 PM 21401211 ER PT J AU Yang, ZZ Gao, SM Li, W Vlasko-Vlasov, V Welp, U Kwok, WK Xu, T AF Yang, Zhenzhen Gao, Shanmin Li, Wei Vlasko-Vlasov, Vitalii Welp, Ulrich Kwok, Wai-Kwong Xu, Tao TI Three-Dimensional Photonic Crystal Fluorinated Tin Oxide (FTO) Electrodes: Synthesis and Optical and Electrical Properties SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE fluorinated tin oxide; electrode; inverse opal; photonic crystal; photoelectrochemical ID SENSITIZED SOLAR-CELLS; INVERSE OPAL; TRANSPARENT CONDUCTORS; POTENTIAL DISTRIBUTION; CHARGE-COLLECTION; NANOPOROUS TIO2; THIN-FILMS; PHOTOCURRENT; EFFICIENCY; TRANSPORT AB Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO(2) layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO(2)-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells. C1 [Yang, Zhenzhen; Gao, Shanmin; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Yang, Zhenzhen; Li, Wei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Xu, Tao] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. EM txu@niu.edu RI Yang, Zhenzhen/A-5904-2012 FU U.S. Department of Energy [DE-AC02-06CH11357]; NIU-Argonne Graduate NanoScience Fellowship; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX We thank the U.S. Department of Energy for financial support under Contract DE-AC02-06CH11357 and the NIU-Argonne Graduate NanoScience Fellowship through InSET. The electron microscopy was conducted at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 60 TC 27 Z9 27 U1 5 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD APR PY 2011 VL 3 IS 4 BP 1101 EP 1108 DI 10.1021/am1012408 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 753HH UT WOS:000289762400025 PM 21395238 ER PT J AU Woodward, J Kennel, SJ Stuckey, A Osborne, D Wall, J Rondinone, AJ Standaert, RF Mirzadeh, S AF Woodward, Jonathan Kennel, Stephen J. Stuckey, Alan Osborne, Dustin Wall, Jonathan Rondinone, Adam J. Standaert, Robert F. Mirzadeh, Saed TI LaPO4 Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides SO BIOCONJUGATE CHEMISTRY LA English DT Article ID SEMICONDUCTOR QUANTUM DOTS; LIQUID-PHASE SYNTHESIS; IN-VIVO GENERATOR; MONOCLONAL-ANTIBODY; MAGNETIC NANOPARTICLES; DRUG-DELIVERY; PARTICLE-SIZE; CANCER; RADIOIMMUNOTHERAPY; LUNG AB Nanoscale materials have been envisioned as carriers for various therapeutic drugs, including radioisotopes. Inorganic nanoparticles (NPs) are particularly appealing vehicles for targeted radiotherapy because they can package several radioactive atoms into a single carrier and can potentially retain daughter radioisotopes produced by in vivo generators such as actinium-225 (Ac-225, t(1/2) = 10 cl). Decay of this radioisotope to stable bismuth-209 proceeds through a chain of short-lived daughters accompanied by the emission of four a-particles that release >27 MeV of energy. The challenge in realizing the enhanced cytotoxic potential of in vivo generators lies in retaining the daughter nuclei at the therapy site. When Ac-225 is attached to targeting agents via standard chelate conjugation methods, all of the daughter radionuclides are released after the initial a-decay occurs. In this work, Ac-225 was incorporated into lanthanum phosphate NPs to determine whether the radioisotope and its daughters would be retained within the dense mineral lattice. Further, the Ac-225-doped NPs were conjugated to the monoclonal antibody mAb 201B, which targets mouse lung endothelium through the vasculature, to ascertain the targeting efficacy and in vivo retention of radioisotopes. Standard biodistribution techniques and microSPECT/CT imaging of Ac-225 as well as the daughter radioisotopes showed that the NPs accumulated rapidly in mouse lung after intravenous injection. By showing that excess, competing, uncoupled antibodies or NPs coupled to control mAbs are deposited primarily in the liver and spleen, specific targeting of NP-mAb 201B conjugates was demonstrated. Biodistribution analysis showed that similar to 30% of the total injected dose of La(Ac-225)PO4 NPs accumulated in mouse lungs 1 h postinjection, yielding a value of % ID/g, >200. Furthermore, after 24 h, 80% of the Bi-213 daughter produced from Ac-225 decay was retained within the target organ and Bi-213 retention increased to similar to 87% at 120 h. In vitro analyses, conducted over a 1 month interval, demonstrated that similar to 50% of the daughters were retained within the La(Ac-225)PO4 NPs at any point over that time frame. Although most of the gamma-rays from radionuclides in the Ac-225 decay chain are too energetic to be captured efficiently by SPECT detectors, appropriate energy windows were found that provided dramatic microSPECT images of the NP distribution in vivo. We conclude that La(Ac-225)PO4-mAb 201B conjugates can be targeted efficiently to mouse lung while partially retaining daughter products and that targeting can be monitored by biodistribution techniques and microSPECT imaging. C1 [Woodward, Jonathan; Rondinone, Adam J.; Standaert, Robert F.; Mirzadeh, Saed] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kennel, Stephen J.; Stuckey, Alan; Osborne, Dustin; Wall, Jonathan] Univ Tennessee, Grad Sch Med, Knoxville, TN 37920 USA. RP Mirzadeh, S (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mirzadeh@ornl.gov RI Standaert, Robert/D-9467-2013; Rondinone, Adam/F-6489-2013 OI Standaert, Robert/0000-0002-5684-1322; Rondinone, Adam/0000-0003-0020-4612 FU Office of Biologic and Environmental Research of the U.S. Department of Energy [ERKP 735]; U.S. Department of Energy [DE-AC05-00OR22725]; University of Tennessee, Graduate School of Medicine FX Research supported in part by the Office of Biologic and Environmental Research of the U.S. Department of Energy under contract ERKP 735 and in part by the Laboratory Directed Research and Development Program, managed by UT-Battelle, LLC, or the U.S. Department of Energy under contract DE-AC05-00OR22725. The work was also supported by the University of Tennessee, Graduate School of Medicine, through funding of the cancer imaging and tracer development program. The authors gratefully acknowledge Drs. Russ Knapp, Rose A. Boll, and Timothy McKnight (ORNL) for critical reviews of the manuscript and Jane Howe (ORNL High Temperature Materials Laboratory) for assistance during transmission electron microscopy measurements. NR 70 TC 20 Z9 21 U1 0 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD APR PY 2011 VL 22 IS 4 BP 766 EP 776 DI 10.1021/bc100574f PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 751JM UT WOS:000289613400029 PM 21434681 ER PT J AU Xu, ZL Cai, W Cheng, XL AF Xu, Zhenli Cai, Wei Cheng, Xiaolin TI Image Charge Method for Reaction Fields in a Hybrid Ion-Channel Model SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Ion channels; image charges; cylindrical harmonics; electrostatic interactions ID POISSON-BOLTZMANN EQUATION; IMPLICIT-MEMBRANE; ELECTROSTATIC INTERACTIONS; MULTIPOLE ALGORITHM; DIELECTRIC SPHERE; SOLVATION MODEL; PARTICLE-MESH; 3 DIMENSIONS; SIMULATIONS; SYSTEMS AB A multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge. C1 [Xu, Zhenli] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China. [Xu, Zhenli] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China. [Cai, Wei] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA. [Cai, Wei] Beijing Int Ctr Math Res, Beijing 100871, Peoples R China. [Cheng, Xiaolin] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Xu, ZL (reprint author), Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China. EM xuzl@sjtu.edu.cn; wcai@uncc.edu; chengx@ornl.gov RI Xu, Zhenli/A-8509-2008 FU Chinese Ministry of Education [NCET-09-0556]; SJTU; U.S. NIH [1R01GM083600-03]; U.S. Department of Energy [DEFG0205ER25678, ERKJE84]; NSFC [10828101] FX Z. Xu is funded by the Chinese Ministry of Education (NCET-09-0556), 985 Project of SJTU, and U.S. NIH (1R01GM083600-03). W. Cai is funded by the U.S. Department of Energy (DEFG0205ER25678) and the NSFC (10828101). X. Cheng is funded by the U.S. Department of Energy Field Work Proposal ERKJE84. NR 42 TC 10 Z9 10 U1 0 U2 3 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD APR PY 2011 VL 9 IS 4 BP 1056 EP 1070 DI 10.4208/cicp.160410.200910a PG 15 WC Physics, Mathematical SC Physics GA 755TG UT WOS:000289959000012 PM 23504509 ER PT J AU Foster, JT Chen, W Luk, VK AF Foster, J. T. Chen, W. Luk, V. K. TI Dynamic crack initiation toughness of 4340 steel at constant loading rates SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Dynamic crack initiation toughness; Dynamic fracture toughness; Kolsky bar; Split-Hopkinson bar; Pulse shaping; 4340 Steel ID FRACTURE-TOUGHNESS; BAR AB Determination of fracture toughness for metals under quasi-static loading conditions can follow well-established procedures and ASTM standards. The use of metallic materials in impact related applications requires the determination of dynamic crack initiation toughness for these materials. There are two main challenges in experiment design that must be overcome before valid dynamic data can be obtained. Dynamic equilibrium over the entire specimen needs to be approximately achieved to relate the crack tip loading state to the far-field loading conditions, and the loading rate at the crack tip should be maintained near constant during an experiment to delineate rate effects on the values of dynamic crack initiation toughness. A recently developed experimental technique for determining dynamic crack initiation toughness of brittle materials has been adapted to measure the dynamic crack initiation toughness of high-strength steel alloys. A Kolsky pressure bar is used to apply the dynamic loading. A pulse shaper is used to achieve constant loading rate at the crack tip and dynamic equilibrium across the specimen. A four-point bending configuration is used at the gage section of the setup. Results are presented which show a monotonically increasing rate dependence of crack initiation toughness for 4340 high-strength steel. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Foster, J. T.; Luk, V. K.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Chen, W.] Purdue Univ, W Lafayette, IN 47907 USA. RP Foster, JT (reprint author), POB 5800,MS 1160, Albuquerque, NM 87185 USA. EM jtfoste@sandia.gov RI Foster, John/K-5291-2016 OI Foster, John/0000-0002-7173-4728 NR 12 TC 11 Z9 12 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD APR PY 2011 VL 78 IS 6 BP 1264 EP 1276 DI 10.1016/j.engfracmech.2011.02.019 PG 13 WC Mechanics SC Mechanics GA 756KN UT WOS:000290010200029 ER PT J AU Bradman, A Castorina, R Barr, DB Chevrier, J Harnly, ME Eisen, EA McKone, TE Harley, K Holland, N Eskenazi, B AF Bradman, Asa Castorina, Rosemary Barr, Dana Boyd Chevrier, Jonathan Harnly, Martha E. Eisen, Ellen A. McKone, Thomas E. Harley, Kim Holland, Nina Eskenazi, Brenda TI Determinants of Organophosphorus Pesticide Urinary Metabolite Levels in Young Children Living in an Agricultural Community SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE children; organophosphorus; pesticides; exposure; agriculture; biomarkers; diet ID DIALKYL PHOSPHATE METABOLITES; PRESCHOOL-CHILDREN; EXPOSURE PATHWAYS; SALINAS VALLEY; US POPULATION; CHLORPYRIFOS; ASSOCIATION; PARATHION; FAMILIES; WOMEN AB Organophosphorus (OP) pesticides are used in agriculture and several are registered for home use. As young children age they may experience different pesticide exposures due to varying diet, behavior, and other factors. We measured six OP dialkylphosphate (DAP) metabolites (three dimethyl alkylphosphates (DMAP) and three diethyl alkylphosphates (DEAP)) in urine samples collected from similar to 400 children living in an agricultural community when they were 6, 12, and 24 months old. We examined bivariate associations between DAP metabolite levels and determinants such as age, diet, season, and parent occupation. To evaluate independent impacts, we then used generalized linear mixed multivariable models including interaction terms with age. The final models indicated that DMAP metabolite levels increased with age. DMAP levels were also positively associated with daily servings of produce at 6- and 24-months. Among the 6-month olds, DMAP metabolite levels were higher when samples were collected during the summer/spring versus the winter/fall months. Among the 12-month olds, DMAP and DEAP metabolites were higher when children lived <= 60 meters from an agricultural field. Among the 24-month-olds, DEAP metabolite levels were higher during the summer/spring months. Our findings suggest that there are multiple determinants of OP pesticide exposures, notably dietary intake and temporal and spatial proximity to agricultural use. The impact of these determinants varied by age and class of DAP metabolite. C1 [Bradman, Asa; Castorina, Rosemary; Chevrier, Jonathan; Eisen, Ellen A.; McKone, Thomas E.; Harley, Kim; Holland, Nina; Eskenazi, Brenda] Univ Calif Berkeley, Sch Publ Hlth, CERCH, Berkeley, CA 94720 USA. [Barr, Dana Boyd] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. [Harnly, Martha E.] Calif Dept Publ Hlth, Environm Hlth Invest Branch, Richmond, CA 94804 USA. [Eisen, Ellen A.] Univ Calif Berkeley, Sch Publ Hlth, Div Environm Hlth, Berkeley, CA 94720 USA. [Eisen, Ellen A.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bradman, A (reprint author), Univ Calif Berkeley, Sch Publ Hlth, CERCH, 1995 Univ Ave, Berkeley, CA 94720 USA. EM abradman@berkeley.edu; rcastori@berkeley.edu; dbbarr@emory.edu; chevrier@berkeley.edu; martha.harnly@cdph.ca.gov; eeisen@berkeley.edu; temckone@lbl.gov; kharley@berkeley.edu; ninah@berkeley.edu; eskenazi@berkeley.edu RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013 FU EPA [RD 83171001, RD 876709]; NIEHS [PO1 ES009605] FX This publication was made possible by research supported by grant numbers RD 83171001 and RD 876709 from EPA, and PO1 ES009605 from NIEHS. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the U.S. EPA, NIEHS, or the California Department of Public Health. The authors declare they have no competing financial interests. We gratefully acknowledge the CHAMACOS staff, students, community partners, and, especially, the CHAMACOS participants and their families. NR 47 TC 31 Z9 33 U1 1 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD APR PY 2011 VL 8 IS 4 BP 1061 EP 1083 DI 10.3390/ijerph8041061 PG 23 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 755WQ UT WOS:000289970800008 PM 21695029 ER PT J AU Knights, D Kuczynski, J Koren, O Ley, RE Field, D Knight, R DeSantis, TZ Kelley, ST AF Knights, Dan Kuczynski, Justin Koren, Omry Ley, Ruth E. Field, Dawn Knight, Rob DeSantis, Todd Z. Kelley, Scott T. TI Supervised classification of microbiota mitigates mislabeling errors SO ISME JOURNAL LA English DT Editorial Material ID METAGENOMICS; COMMUNITIES; GENE C1 [Kelley, Scott T.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Knights, Dan] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Kuczynski, Justin] Univ Colorado, Dept Mol Cellular & Dev Biol, UCB 347, Boulder, CO 80309 USA. [Koren, Omry; Ley, Ruth E.] Cornell Univ, Dept Microbiol, Ithaca, NY USA. [Field, Dawn] NERC Ctr Ecol & Hydrol, Oxford, England. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, UCB 215, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [DeSantis, Todd Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Kelley, ST (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM skelley@sciences.sdsu.edu RI Ley, Ruth/M-8542-2014; Knight, Rob/D-1299-2010; OI Ley, Ruth/0000-0002-9087-1672; Koren, Omry/0000-0002-7738-1337 FU Howard Hughes Medical Institute NR 10 TC 12 Z9 13 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD APR PY 2011 VL 5 IS 4 BP 570 EP 573 DI 10.1038/ismej.2010.148 PG 5 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 756OG UT WOS:000290021900002 PM 20927137 ER PT J AU Maldonado-Contreras, A Goldfarb, KC Godoy-Vitorino, F Karaoz, U Contreras, M Blaser, MJ Brodie, EL Dominguez-Bello, MG AF Maldonado-Contreras, Ana Goldfarb, Kate C. Godoy-Vitorino, Filipa Karaoz, Ulas Contreras, Monica Blaser, Martin J. Brodie, Eoin L. Dominguez-Bello, Maria G. TI Structure of the human gastric bacterial community in relation to Helicobacter pylori status SO ISME JOURNAL LA English DT Article DE gastric; microbiota; H. pylori; microarray; Amerindians ID RIBOSOMAL-RNA GENES; IMMUNE-RESPONSE; PCR; AMPLIFICATION; INFLAMMATION; POPULATIONS; MICROFLORA; MICROBIOTA; DIVERSITY; BIAS AB The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status. The ISME Journal (2011) 5, 574-579; doi: 10.1038/ismej.2010.149; published online 7 October 2010 C1 [Goldfarb, Kate C.; Karaoz, Ulas; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [Maldonado-Contreras, Ana; Godoy-Vitorino, Filipa; Dominguez-Bello, Maria G.] Univ Puerto Rico, Dept Biol, San Juan, PR 00931 USA. [Contreras, Monica] Venezuelan Inst Sci Res IVIC, Altos Del Pipe, Miranda, Venezuela. [Blaser, Martin J.] NYU, Langone Med Ctr, Dept Med, New York, NY USA. [Blaser, Martin J.] NYU, Langone Med Ctr, Dept Microbiol, New York, NY USA. RP Brodie, EL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, MS 70A-3317, Berkeley, CA 94720 USA. EM ELBrodie@lbl.gov; maria.dominguez1@upr.edu RI Brodie, Eoin/A-7853-2008; Karaoz, Ulas/J-7093-2014 OI Brodie, Eoin/0000-0002-8453-8435; FU UPR [FIPI 880314]; University of California [DOE DE-AC02-05CH11231]; Diane Belfer Program in Human Microbial Ecology FX This work was supported by UPR grant FIPI 880314. Part of this work was performed at the Lawrence Berkeley National Laboratory under the auspices of the University of California under contract number DOE DE-AC02-05CH11231 and of the Diane Belfer Program in Human Microbial Ecology. We thank Lyd Marie Rodriguez for technical assistance. NR 36 TC 50 Z9 54 U1 1 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD APR PY 2011 VL 5 IS 4 BP 574 EP 579 DI 10.1038/ismej.2010.149 PG 6 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 756OG UT WOS:000290021900003 PM 20927139 ER PT J AU Chan, CS Fakra, SC Emerson, D Fleming, EJ Edwards, KJ AF Chan, Clara S. Fakra, Sirine C. Emerson, David Fleming, Emily J. Edwards, Katrina J. TI Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation SO ISME JOURNAL LA English DT Article DE biomineralization; Gallionella; Mariprofundus ferrooxydans; spectromicroscopy; Zetaproteobacteria ID X-RAY MICROSCOPY; HYDROTHERMAL VENTS; FE(II)-OXIDIZING BACTERIA; GALLIONELLA-FERRUGINEA; CONSPICUOUS VEILS; SPECTROSCOPY; OXYGEN; OXIDATION; OXIDE; BIOMINERALIZATION AB Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 mu m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (similar to 100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature. The ISME Journal (2011) 5, 717-727; doi:10.1038/ismej.2010.173; published online 25 November 2010 C1 [Chan, Clara S.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Chan, Clara S.; Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Chan, Clara S.; Edwards, Katrina J.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Emerson, David; Fleming, Emily J.] Bigelow Lab Ocean Sci, W Boothbay Harbor, ME USA. RP Chan, CS (reprint author), Univ Delaware, Dept Geol Sci, Newark, DE 19716 USA. EM cschan@udel.edu RI Chan, Clara/B-6420-2011; Fleming, Emily/I-8927-2012 OI Chan, Clara/0000-0003-1810-4994; FU Advanced Light Source [BL11.0.2, 5.3.2]; NSF; NASA Astrobiology Institute; Office of Science, Basic Energy Sciences, Division of Materials Science of the United States Department of Energy [DE-AC02-05CH11231] FX TEM analyses were performed at the Berkeley National Center for Electron Microscopy, at the Marine Biological Laboratory and at the University of Delaware Bioimaging Facility. We thank Reena Zalpuri (Berkeley) for ultramicrotoming samples, Natalie Villa (University of Delaware) for performing lectin studies and Shawn French (University of Guelph) for providing LPS standard. We thank T Tyliszczak and ALD Kilcoyne for support at the Advanced Light Source BL11.0.2 and 5.3.2, respectively, and Jill Banfield for helpful discussions. Funding was provided by a NSF Ridge 2000 postdoctoral fellowship (CSC, KJE), by the NSF Microbial Observatories Program (KJE, DE) and by the NASA Astrobiology Institute (KJE, DE). ALS is supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the United States Department of Energy (DE-AC02-05CH11231). NR 52 TC 111 Z9 117 U1 5 U2 86 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD APR PY 2011 VL 5 IS 4 BP 717 EP 727 DI 10.1038/ismej.2010.173 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 756OG UT WOS:000290021900016 PM 21107443 ER PT J AU Asay, JR Vogler, TJ Ao, T Ding, JL AF Asay, J. R. Vogler, T. J. Ao, T. Ding, J. L. TI Dynamic yielding of single crystal Ta at strain rates of similar to 5 x 10(5)/s SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC PRECURSOR DECAY; ISENTROPIC COMPRESSION; DISLOCATION DYNAMICS; WAVE-PROPAGATION; TANTALUM; GPA; POLYCRYSTALS; TRANSITION; ALUMINUM; BEHAVIOR AB A magnetic loading technique was used to produce planar ramp loading of [100] and [110] orientations of single crystal tantalum to peak stresses of either similar to 18 or similar to 86 GPa for applied plastic strain rates of about 2 x 10(6)/s. It was found that the dynamic elastic limit varied only slightly for factor-of-2 changes in the resulting elastic strain rates near 5 x 10(5)/s. For wave propagation in the [100] direction, the dynamic elastic limit varied from 4.18-3.92 GPa for corresponding sample thicknesses of 0.625-1.030 mm and exhibited a slight rate dependence for the strain rate region studied. For [110] compression, the elastic limit was essentially independent of propagation distance, but exhibited a significant sample-to-sample variation; the elastic limit for this orientation varied from 2.49-3.18 GPa over sample thicknesses of 0.702-1.023 mm, with an average and standard deviation for the data of 2.93 +/- 0.27 GPa. There was no apparent rate dependence in this case for the strain rates examined. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3562178] C1 [Asay, J. R.] Ktech Corp Inc, Albuquerque, NM 87185 USA. [Vogler, T. J.; Ao, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ding, J. L.] Washington State Univ, Pullman, WA 99164 USA. RP Asay, JR (reprint author), Ktech Corp Inc, Albuquerque, NM 87185 USA. EM jamesasay@aol.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Clint Hall for supporting this work, the experimental teams at the Veloce and Z facilities for their excellence in preparing and performing these experiments, and Bill Wolfer, who provided theoretical analysis for determining elastic wave velocities based on the second and third-order elastic constants of tantalum. We also thank Rusty Gray, Los Alamos National Laboratory for pointing out previous work on yielding and hardening of single crystal tantalum. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 65 TC 9 Z9 9 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 073507 DI 10.1063/1.3562178 PG 14 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000034 ER PT J AU Barton, NR Bernier, JV Becker, R Arsenlis, A Cavallo, R Marian, J Rhee, M Park, HS Remington, BA Olson, RT AF Barton, N. R. Bernier, J. V. Becker, R. Arsenlis, A. Cavallo, R. Marian, J. Rhee, M. Park, H. -S. Remington, B. A. Olson, R. T. TI A multiscale strength model for extreme loading conditions SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TANTALUM-TUNGSTEN ALLOYS; STRAIN-RATE DEFORMATION; DISLOCATION MECHANICS; ATOMISTIC SIMULATION; CONSTITUTIVE MODEL; SINGLE-CRYSTALS; BCC TANTALUM; PLASTICITY; PRESSURE; LOCALIZATION AB We present a multiscale strength model in which strength depends on pressure, strain rate, temperature, and evolving dislocation density. Model construction employs an information passing paradigm to span from the atomistic level to the continuum level. Simulation methods in the overall hierarchy include density functional theory, molecular statics, molecular dynamics, dislocation dynamics, and continuum based approaches. Given the nature of the subcontinuum simulations upon which the strength model is based, the model is particularly appropriate to strain rates in excess of 10(4) s(-1). Strength model parameters are obtained entirely from the hierarchy of simulation methods to obtain a full strength model in a range of loading conditions that so far has been inaccessible to direct measurement of material strength. Model predictions compare favorably with relevant high energy density physics (HEDP) experiments that have bearing on material strength. The model is used to provide insight into HEDP experimental observations and to make predictions of what might be observable using dynamic x-ray diffraction based experimental methods. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553718] C1 [Barton, N. R.; Bernier, J. V.; Arsenlis, A.; Cavallo, R.; Marian, J.; Rhee, M.; Park, H. -S.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Becker, R.] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Olson, R. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Barton, NR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM barton22@llnl.gov RI Davidi, Gal/E-7089-2011; Becker, Richard/I-1196-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344 (LLNL-JRNL-448591)]; ASC/PEM program FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344 (LLNL-JRNL-448591). Funding through the ASC/PEM program is gratefully acknowledged. NR 58 TC 61 Z9 61 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 073501 DI 10.1063/1.3553718 PG 12 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000028 ER PT J AU Brant, AT Yang, S Giles, NC Iqbal, MZ Manivannan, A Halliburton, LE AF Brant, A. T. Yang, Shan Giles, N. C. Iqbal, M. Zafar Manivannan, A. Halliburton, L. E. TI Oxygen vacancies adjacent to Cu2+ ions in TiO2 (rutile) crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DILUTED COPPER SALTS; NUCLEAR-QUADRUPOLE INTERACTIONS; ELECTRIC-FIELD-GRADIENT; PARAMAGNETIC-RESONANCE; DOPED TIO2; PHOTOCATALYTIC ACTIVITY; HYPERFINE STRUCTURE; IMPURITIES; MOMENTS; SYSTEMS AB Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize Cu2+ ions substituting for Ti4+ ions in nominally undoped TiO2 crystals having the rutile structure. Illumination at 25 K with 442 nm laser light reduces the concentration of Cu2+ ions by more than a factor of 2. The laser light also reduces the EPR signals from Fe3+ and Cr3+ ions and introduces signals from Ti3+ ions. Warming in the dark to room temperature restores the crystal to its preilluminated state. Monitoring the recovery of the photoinduced changes in the Cu2+ ions and the other paramagnetic electron and hole traps as the temperature is raised from 25 K to room temperature provides evidence that the Cu2+ ions have an adjacent doubly ionized oxygen vacancy. These oxygen vacancies serve as charge compensators for the substitutional Cu2+ ions and lead to the formation of electrically neutral Cu2+-V-O complexes during growth of the crystals. The Cu2+-V-O complexes act as electron traps and convert to nonparamagnetic Cu+-V-O complexes when the crystals are illuminated at low temperature. Complete sets of spin-Hamiltonian parameters describing the electron Zeeman, hyperfine, and nuclear electric quadrupole interactions for both the Cu-63 and Cu-65 nuclei are obtained from the EPR and ENDOR data. This study suggests that other divalent cation impurities in TiO2 such as Co2+ and Ni2+ may also have an adjacent oxygen vacancy for charge compensation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552910] C1 [Brant, A. T.; Yang, Shan; Manivannan, A.; Halliburton, L. E.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Giles, N. C.] USAF, Inst Technol, Dept Engn Phys, Wright Patterson AFB, OH 45433 USA. [Iqbal, M. Zafar] COMSATS Inst Informat Technol, Dept Phys, Islamabad 30, Pakistan. [Manivannan, A.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Halliburton, LE (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM Larry.Halliburton@mail.wvu.edu RI Manivannan, Ayyakkannu/A-2227-2012; Yang, Shan /F-5020-2012; ZAFAR IQBAL, MUHAMMAD/G-5557-2012 OI Manivannan, Ayyakkannu/0000-0003-0676-7918; FU National Science Foundation [DMR-0804352]; Higher Education Commission of Pakistan FX This work was supported at West Virginia University by Grant No. DMR-0804352 from the National Science Foundation. One of the authors (M.Z.I.) acknowledges financial support from the Higher Education Commission of Pakistan (under their POCR program) for his visit to West Virginia University. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the United States Government. NR 28 TC 10 Z9 10 U1 2 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 073711 DI 10.1063/1.3552910 PG 7 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000059 ER PT J AU Corsini, E Acosta, V Baddour, N Higbie, J Lester, B Licht, P Patton, B Prouty, M Budker, D AF Corsini, Eric Acosta, Victor Baddour, Nicolas Higbie, James Lester, Brian Licht, Paul Patton, Brian Prouty, Mark Budker, Dmitry TI Search for plant biomagnetism with a sensitive atomic magnetometer SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHILODENDRON-SELLOUM; HEART AB We report what we believe is the first experimental limit placed on plant biomagnetism. Measurements with a sensitive atomic magnetometer were performed on the Titan arum (Amorphophallus titanum) inflorescence, known for its fast biochemical processes while blooming. We find that the magnetic field from these processes, projected along the Earth's magnetic field, and measured at the surface of the plant, is less than or similar to 0.6 mu G. (C) 2011 American Institute of Physics. [doi:10.1063/1.3560920] C1 [Corsini, Eric; Acosta, Victor; Baddour, Nicolas; Patton, Brian; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Higbie, James] Bucknell Univ, Lewisburg, PA 17837 USA. [Lester, Brian] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Licht, Paul] Univ Calif Berkeley, UC Bot Garden, Berkeley, CA 94720 USA. [Prouty, Mark] Geometrics Inc, San Jose, CA 95131 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Corsini, E (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM eric.corsini@gmail.com RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954 FU U.S. Department of Energy through the LBNL Nuclear Science Division [DE-AC03-76SF00098]; ONR MURI FX The authors are indebted to the University of California Botanical Garden staff who generously granted after-hours access to the garden facilities. We also acknowledge stimulating discussions with Robert Dudley from the department of Integrative Biology, with Lewis Feldman, Steve Ruzin, and Peggy Lemaux from the department of Plant and Microbial Biology, and with Philip Stark from the Department of Statistics, at University of California at Berkeley. Invigorating exchanges with our colleague Todor Karaulanov helped the understanding of the processes at hand. This project was funded by an ONR MURI fund and by the U.S. Department of Energy through the LBNL Nuclear Science Division (Grant No. DE-AC03-76SF00098). NR 33 TC 5 Z9 5 U1 4 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 074701 DI 10.1063/1.3560920 PG 5 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000148 ER PT J AU Corti, M Cattaneo, L Mozzati, MC Borsa, F Jang, ZH Fang, X AF Corti, M. Cattaneo, L. Mozzati, M. C. Borsa, F. Jang, Z. H. Fang, X. TI Ground state of the magnetic molecule {V6} determined by broadband electron spin resonance at low frequency SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA AB We utilize a nonconventional (i.e., without resonance cavity) broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range 0.3-9GHz to investigate the ground state of the magnetic molecule {V6} at low temperature. There exist two different varieties of {V6} molecules with small differences in the organic part and in the crystal packing. We find differences in the width and hyperfine structure of the ESR line in the two compounds. However, the central frequency of the broad ESR line measured vs H down to 0.3 GHz shows a linear behavior in both compounds indicating a g value close to 2 and a zero field gap no larger than 30 x 10(-3) K. The result is in contrast with a level scheme for the ground state previously reported for one of the two varieties of {V6}. We propose an alternative scenario for the structure of the magnetic ground state. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3545806] C1 [Corti, M.; Cattaneo, L.; Mozzati, M. C.; Borsa, F.] Dipartimento Fis A Volta, I-27100 Pavia, Italy. [Corti, M.; Cattaneo, L.; Mozzati, M. C.; Borsa, F.] Unita CNISM Pavia, I-27100 Pavia, Italy. [Jang, Z. H.] Kookmin Univ, Dept Phys, Seoul 136702, South Korea. [Fang, X.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Corti, M (reprint author), Dipartimento Fis A Volta, Via A Bassi 6, I-27100 Pavia, Italy. EM maurizio.corti@unipv.it NR 5 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07B104 DI 10.1063/1.3545806 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000330 ER PT J AU Diaconu, CV Batista, ER Martin, RL Smith, DL Crone, BK Crooker, SA Smith's, DL AF Diaconu, C. V. Batista, E. R. Martin, R. L. Smith, D. L. Crone, B. K. Crooker, S. A. Smith's, D. L. TI Circularly polarized photoluminescence from platinum porphyrins in organic hosts: Magnetic field and temperature dependence SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EFFECTIVE CORE POTENTIALS; LOWEST TRIPLET-STATE; ZEEMAN EXPERIMENTS; DEVICES; PORPHIN; SPINTRONICS; PALLADIUM; SPECTRA; OCTANE; PHOSPHORESCENCE AB We study the temperature and magnetic field-dependent photoluminescence from the metalorganic molecules octaethyl-porphine platinum (PtOEP) and porphine platinum (PtP) that are doped into organic hosts. We first consider PtOEP in the polymer host poly-dioctylfluorene (PFO), which is characteristic of the phosphorescent dopants and polymers used in organic light-emitting diodes. We observe that the intensity of the PtOEP zero-phonon emission band, which is strongly suppressed at low temperatures to 1.6 K, increases dramatically with applied magnetic field and is accompanied by a marked circular polarization. This "magnetic brightening" effect, similar to that observed in other organic systems such as carbon nanotubes, highlights the interplay between low-energy optically active and optically forbidden excited states of PtOEP, which become mixed in applied magnetic fields. To elucidate these findings, we also investigate (i) dilute PtOEP in n-octane hosts (where emission lines are much sharper), and (ii) dilute PtP in n-octane hosts, for which the emission spectra are simpler and can be directly compared with theory. Detailed electronic structure calculations of PtP were performed, and a model for the magnetic field and temperature dependence of the zero phonon emission lines is developed, which agrees quantitatively with the data for PtP and with the circular polarization of the PtOEP emission. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3569584] C1 [Diaconu, C. V.; Batista, E. R.; Martin, R. L.; Smith, D. L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Crone, B. K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Crooker, S. A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Diaconu, CV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM crooker@lanl.gov; dsmith@lanl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [06SCP1001]; UCOP program on Carbon Nanostructures FX We thank I. H. Campbell for helpful discussion and suggestions. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 06SCP1001 and the UCOP program on Carbon Nanostructures. NR 36 TC 5 Z9 5 U1 4 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 073513 DI 10.1063/1.3569584 PG 11 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000040 ER PT J AU Franco, A Machado, FLA Zapf, VS Wolff-Fabris, F AF Franco, A., Jr. Machado, F. L. A. Zapf, V. S. Wolff-Fabris, F. TI Enhanced magnetic properties of Bi-substituted cobalt ferrites SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID TEMPERATURE-DEPENDENCE; ANISOTROPY; NANOPARTICLES; FIELD AB In this paper we present a magnetic study of Co1-xBixFe2O4 nanoparticles obtained by applying magnetic fields up to 14 T and for temperatures in the range of 5 to 340 K. Hysteresis loops yield a saturation magnetization (M-s), coercive field (H-c), and remanent magnetization (M-r) that vary significantly with temperature and bismuth content. The T-dependence of Ms obtained for H = 5 T presents a maximum at 150 K and a minimum at 25 K that are also dependent on the value of x. However, for H = 14 T, this anomalous behavior disappears and the magnetization smoothly approaches saturation down to 5 K. The magnetic cubic anisotropy constant for different Bi contents, determined by a "law of approach" to saturation, was found to be smaller than those values for pure cobalt ferrite nanoparticles and strongly dependent on temperature. A discussion on the implications of the anomalous behavior in the determination of the anisotropy constant in these sample materials is also presented. (c) 2011 American Institute of Physics. [doi:10.1063/1.3565406] C1 [Franco, A., Jr.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Machado, F. L. A.] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil. [Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Wolff-Fabris, F.] Lab HLD, Dresden High Magnet Field, Dresden, Germany. RP Franco, A (reprint author), Univ Fed Goias, Inst Fis, CP 131, BR-74001970 Goiania, Go, Brazil. EM franco@if.ufg.br RI Zapf, Vivien/K-5645-2013; Franco Jr, Adolfo/L-3515-2014; Machado, Fernando/A-5443-2009; OI Zapf, Vivien/0000-0002-8375-4515; Franco Jr, Adolfo/0000-0001-6428-6640; Machado, Fernando/0000-0002-6498-7751; Araujo, Fernando/0000-0001-6471-5564 NR 20 TC 7 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A745 DI 10.1063/1.3565406 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000263 ER PT J AU Gupta, S Saxena, A AF Gupta, Sanju Saxena, Avadh TI Geometrical interpretation and curvature distribution in nanocarbons SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; ELECTRONIC-PROPERTIES; RAMAN-SPECTROSCOPY; GRAPHITIC CARBON; CONES; MEMBRANES; TOPOLOGY; GRAPHENE; DEFECTS AB Despite extensive research on microscopic structure and physical property characterization of advanced nanocarbon systems, they have not been viewed as topologically distinct nanoscale materials with various geometries (curvature). This work is motivated by our recent work [S. Gupta and A. Saxena, J. Raman Spectrosc. 40, 1127 (2009)] where we introduced the notion of "global" topology for novel nanocarbons and provided systematic trends by monitoring the phonon spectra via resonance Raman spectroscopy, which led to the paradigm of curvature/topology -> property -> functionality relationship in these materials. Here we determined the distribution of the mean (H) and Gaussian (K) curvatures as pertinent observables for geometric characterization taking into account the observed geometrical parameters, that is, radius, polar, azimuthal, or conical angle associated with tubular (single, double-, and multi-walled nanotubes; K = 0), spherical (hypo- and hyperfullerenes; K>0) and complex (helical nanoribbons and nanotori/nanorings; K<0) nanocarbon geometries to quantify the interplay of intrinsic surface curvature and topology, wherein global topology of the overall sp(2)-bonded carbon (sp(2)C) constrains local topology of the constituent carbon rings. We also studied various other structures such as catenoid and saddle-shaped surfaces as interesting nanocarbons. We compared these results with highly oriented pyrolytic graphite and monolayer graphene as layered and planar systems, respectively. Moreover, nanocarbons discussed herein are their derivatives. Curvature leads to nonlinearity that manifests itself in some form of symmetry breaking which can be extrapolated to topological variation due to nanoscale defects. Thus it may either close/open the bandgap leading to the introduction of new Raman spectroscopy signatures and optical absorption peaks, changes in mechanical properties, electrical behavior, and electronic density of states and possibly inducing magnetism. Finally, we elucidate the role of curved geometry in Casimir forces arising in carbon nanostructures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553860] C1 [Gupta, Sanju] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Gupta, Sanju] Univ Penn, Biophys Program, Philadelphia, PA 19104 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Gupta, S (reprint author), Univ Penn, Dept Chem, 231 S 34 St, Philadelphia, PA 19104 USA. EM sgup@rocketmail.com FU CINT LANL-Gateway User Proposal; U.S. Department of Energy FX This work was supported in part by the CINT LANL-Gateway User Proposal (S.G.) and in part by the U.S. Department of Energy (A.S.). NR 89 TC 14 Z9 14 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 074316 DI 10.1063/1.3553860 PG 11 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000126 ER PT J AU Koehler, MR Jia, L McCarthy, D McGuire, MA Keppens, V AF Koehler, Michael R. Jia, Lin McCarthy, David McGuire, Michael A. Keppens, Veerle TI Elastic and magnetostrictive properties of Tb6Fe1-xCoxBi2 (0 <= x <= 0.375) SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID RESONANT ULTRASOUND SPECTROSCOPY; TEMPERATURE AB Elastic moduli and magnetostriction data are reported for polycrystalline Tb6Fe1-xCoxBi2 (0 <= x <= 0.375). The elastic moduli c(11) and c(44) have been measured as a function of temperature (5-300 K) and magnetic field (0-5 T), and reflect the ferromagnetic transition observed in these materials around 250 K. A remarkable elastic softening, which is partially suppressed upon application of a magnetic field, is observed at low temperatures and is believed to be linked to a structural transition that takes place in the Co-doped samples. The soft elastic moduli lead to large magnetostriction below 50 K, reaching a value of 700 ppm at 20 kOe for Tb6Fe0.75Co0.25Bi2. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549613] C1 [Koehler, Michael R.; Jia, Lin; McCarthy, David; Keppens, Veerle] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [McGuire, Michael A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Keppens, V (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM vkeppens@utk.edu RI McGuire, Michael/B-5453-2009; Koehler, Michael/H-9057-2012 OI McGuire, Michael/0000-0003-1762-9406; NR 14 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A918 DI 10.1063/1.3549613 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000302 ER PT J AU Mudryk, Y Paudyal, D Pecharsky, VK Gschneidner, KA AF Mudryk, Y. Paudyal, Durga Pecharsky, V. K. Gschneidner, K. A., Jr. TI Magnetic properties of Gd2C: Experiment and first principles calculations SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID ELECTRONIC-STRUCTURE; GD(0001) SURFACE; SYSTEMS AB We report the crystal structure, magnetic properties, and electronic structure of Gd2C. The compound crystallizes in the rhombohderal CdCl2-type structure and has a Curie temperature of 351 K, which decreases to similar to 340 K after heat treatment at 1000 degrees C for 1 week. The magnetic ordering transition is of second order, and the saturation magnetic moment measured at 2 K in 70 kOe magnetic field is 7.26 mu(B)/Gd which compares well with 7.34 mu(B)/Gd calculated from first principles. The electronic structure calculations performed using the tight bonding linear muffin tin orbital method within the non local exchange correlation potentials show stronger exchange interactions compared to the local exchange correlation potentials leading to the high Curie temperature of Gd2C. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3554257] C1 [Mudryk, Y.; Paudyal, Durga; Pecharsky, V. K.; Gschneidner, K. A., Jr.] US DOE, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mudryk, Y (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM slavkomk@ameslab.gov NR 19 TC 2 Z9 2 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A924 DI 10.1063/1.3554257 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000308 ER PT J AU Nadal, MH Bourgeois, L Migliori, A AF Nadal, Marie-Helene Bourgeois, Ludivine Migliori, Albert TI Analytical models for the shear modulus of alpha-Pu and Ga-stabilized delta-Pu versus temperature and pressure from measurements SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; RESONANT ULTRASOUND SPECTROSCOPY; MELTING-POINT; ELASTIC-CONSTANTS; SOUND-VELOCITY; GALLIUM ALLOYS; STRAIN RATE; PLUTONIUM; METALS; PHASE AB From measurements we model some constitutive relations of pure plutonium and Ga-stabilized delta-plutonium alloy (Pu-2.3 at.%Ga), focusing on the shear modulus G versus temperature T (T is an element of [300; 750] K) and pressure P (P is an element of [0; 1] GPa). G(T) or G(P) are computed from the density-corrected elastic-waves velocities for each crystallographic phase. The models developed here in this temperature and pressure range provide useful analytical forms in contrast to the discrete values of the measurements. Because it is reasonable to expect that the bulk moduli of pure and Ga-stabilized delta-Pu also agree where they exist at the same temperatures, these models are applicable to comparisons with ab-initio calculations (which are essentially zero-temperature calculations) for pure Pu. A model for G(P, T) is also provided for use in elasto-plastic models implemented in hydrodynamic codes based on measurements of G(T) up to 750 K and G(P) up to 1 GPa. The model for G(P, T) of Pu-2.3 at.%Ga accounts for the presence of alpha' under pressure. The G(P, T) model, a continuous function from solid to liquid, uses the phase transition temperatures and the melting temperature to make it more than a simple curve fit. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563066] C1 [Nadal, Marie-Helene; Bourgeois, Ludivine] CEA, VALDUC, F-21120 Is Sur Tille, France. [Migliori, Albert] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Nadal, MH (reprint author), CEA, VALDUC, F-21120 Is Sur Tille, France. EM marie-helene.nadal@cea.fr NR 54 TC 0 Z9 0 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 073508 DI 10.1063/1.3563066 PG 7 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000035 ER PT J AU Nicholson, DM Odbadrakh, K Rusanu, A Eisenbach, M Brown, G Evans, BM AF Nicholson, D. M. Odbadrakh, Kh Rusanu, A. Eisenbach, M. Brown, G. Evans, B. M., III TI First principles approach to the magneto caloric effect: Application to Ni2MnGa SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID DENSITY-OF-STATES; ALLOYS; ALGORITHM; ORDER AB The magneto-caloric effect (MCE) is a possible route to more efficient heating and cooling of residential and commercial buildings. The search for improved materials is important to the development of a viable MCE based heat pump technology. We have calculated the magnetic structure of a candidate MCE material: Ni2MnGa. The density of magnetic states was calculated with the Wang Landau statistical method utilizing energies fit to those of the locally self-consistent multiple scattering method. The relationships between the density of magnetic states and the field induced adiabatic temperature change and the isothermal entropy change are discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3562199] C1 [Nicholson, D. M.; Odbadrakh, Kh; Rusanu, A.; Eisenbach, M.; Brown, G.; Evans, B. M., III] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Nicholson, DM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM nicholsondm@ornl.gov RI Rusanu, Aurelian/A-8858-2013; Brown, Gregory/F-7274-2016; OI Brown, Gregory/0000-0002-7524-8962; Eisenbach, Markus/0000-0001-8805-8327 NR 19 TC 5 Z9 5 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A942 DI 10.1063/1.3562199 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000326 ER PT J AU Nirmala, R Paudyal, D Pecharsky, VK Gschneidner, KA Nigam, AK AF Nirmala, R. Paudyal, Durga Pecharsky, V. K. Gschneidner, K. A., Jr. Nigam, A. K. TI First order transition in Dy5Si3Ge: Transport and thermal properties, and first principles calculations SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID SYSTEMS AB Transport properties of the intermetallic compound Dy5Si3Ge have been studied across its structural and magnetic transitions. The compound has a monoclinic crystal structure at room temperature, and orders magnetically at 74 K (T-N) and 62 K (T-C). Upon cooling it undergoes a structural transition to an orthorhombic structure near T-C. Below similar to 50 K, Dy5Si3Ge exists in a structurally phase separated state and is ferromagnetically ordered. The electrical resistivity and heat capacity of Dy5Si3Ge show interesting hysteretic behavior in the vicinity of the structural transition in zero field. First principles calculations suggest that Ge and Si atoms preferentially occupy intraslab and interslab sites in Dy5Si3Ge, respectively, which leads to dominant ferromagnetic interactions within both the orthorhombic and monoclinic structures. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3554255] C1 [Nirmala, R.; Paudyal, Durga; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Nigam, A. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. RP Nirmala, R (reprint author), Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India. EM nirmala@physics.iitm.ac.in NR 11 TC 2 Z9 2 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A923 DI 10.1063/1.3554255 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000307 ER PT J AU Nlebedim, IC Melikhov, Y Snyder, JE Ranvah, N Moses, AJ Jiles, DC AF Nlebedim, I. C. Melikhov, Y. Snyder, J. E. Ranvah, N. Moses, A. J. Jiles, D. C. TI Dependence of magnetomechanical performance of CoGaxFe2-xO4 on temperature variation SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID COBALT FERRITE; ACTUATOR APPLICATIONS; SENSOR AB The temperature dependence of the magnetoelastic properties of the CoGaxFe2-xO4 system (for x = 0.0, 0.2, and 0.4) has been studied. It has been shown that increase in temperature resulted in reduced magnetostrictive hysteresis. For both CoGa0.2Fe1.8O4 and CoGa0.4Fe1.6O4, the measured magnetostriction amplitudes were higher at 250 K than at 150 K. It was also shown that the temperature stability of magnetostriction in CoGa0.2Fe1.8O4 is higher than that of the other compositions studied which is important for sensor applications. The highest strain sensitivity was obtained for CoGa0.2Fe1.8O4 at 250 K. Results demonstrate the possibility of tailoring magnetomechanical properties of the material to suit intended applications under varying temperature conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3540662] C1 [Nlebedim, I. C.; Melikhov, Y.; Snyder, J. E.; Ranvah, N.; Moses, A. J.; Jiles, D. C.] Cardiff Univ, Sch Engn, Wolfson Ctr Magnet, Cardiff CF24 3AA, S Glam, Wales. [Nlebedim, I. C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Nlebedim, IC (reprint author), Cardiff Univ, Sch Engn, Wolfson Ctr Magnet, Cardiff CF24 3AA, S Glam, Wales. EM nlebedim@iastate.edu NR 12 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A908 DI 10.1063/1.3540662 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000292 ER PT J AU Petculescu, G Ledet, KL Huang, M Lograsso, TA Zhang, YN Wu, RQ Wun-Fogle, M Restorff, JB Clark, AE Hathaway, KB AF Petculescu, G. Ledet, K. L. Huang, M. Lograsso, T. A. Zhang, Y. N. Wu, R. Q. Wun-Fogle, M. Restorff, J. B. Clark, A. E. Hathaway, K. B. TI Magnetostriction, elasticity, and D0(3) phase stability in Fe-Ga and Fe-Ga-Ge alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MAGNETOELASTICITY AB The contrast between the saturation tetragonal magnetostriction, lambda(gamma,2) = (3/2)lambda(100), of Fe1-xGax and Fe1-yGey, at compositions where both alloys exhibit D0(3) cubic symmetry (second peak region), was investigated. This region corresponds to x = 28 at. % Ga and y = 18 at. % Ge or, in terms of e/a = 2x + 3 y + 1, to an e/a value of similar to 1.55 for each of the alloys. Single crystal, slow-cooled, ternary Fe1-x-y GaxGey alloys with e/a similar to 1.55 and gradually increasing y/x were investigated experimentally (magnetostriction, elasticity, powder XRD) and theoretically (density functional calculations). It was found that a small amount of Ge (y = 1.3) replacing Ga in the Fe-Ga alloy has a profound effect on the measured lambda(gamma,2). As y increases, the drop in lambda(gamma,2) is considerable, reaching negative values at y/x = 0.47. The two shear elastic constants c' = (c(11) - c(12))/2 and c(44) measured for four compositions with 0.06 <= y/x <= 0.45 at 7 K range from 16 to 21 GPa and from 133 to 138 GPa, respectively. Large temperature dependence was observed for c' but not for c(44), a trend seen in other high-solute Fe alloys. The XRD analysis shows that the metastable D0(3) structure, observed previously in slow-cooled Fe-Ga at e/a = 1.55, is replaced with two phases, fcc L1(2) and hexagonal D0(19), at just 1.6 at. % Ge. The two are the stable phases of the assessed Fe-Ga phase diagram at x similar to 28. Notably, at y = 7.8, only the D0(3) phase (the equilibrium phase of Fe-Ge at e/a = 1.54) was found in the ternary alloy. The theory also shows that the D0(3) instability is removed for compositions with y >= 3.9, when D0(3) becomes the structure's ground-state phase. Thus, the high, positive lambda(gamma,2) value for Fe-Ga at x = 28 could be the result of the high sensitivity of its metastable D0(3) structure. VC 2011 American Institute of Physics. [doi:10.1063/1.3535444] C1 [Petculescu, G.; Ledet, K. L.] Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA. [Huang, M.; Lograsso, T. A.] Ames Lab, Ames, IA 50011 USA. [Zhang, Y. N.; Wu, R. Q.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Wun-Fogle, M.; Restorff, J. B.] USN, Ctr Surface Warfare, Carderock Div, Bethesda, MD 20817 USA. [Clark, A. E.] Clark Associates, Adelphi, MD 20783 USA. [Hathaway, K. B.] GJ Associates, Annapolis, MD 21401 USA. RP Petculescu, G (reprint author), Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA. EM gp@louisiana.edu RI ZHANG, YANNING/A-3316-2013; Wu, Ruqian/C-1395-2013 OI Wu, Ruqian/0000-0002-6156-7874 NR 12 TC 5 Z9 5 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07A904 DI 10.1063/1.3535444 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000288 ER PT J AU Pool, VL Jolley, C Douglas, T Arenholz, EA Idzerda, YU AF Pool, V. L. Jolley, C. Douglas, T. Arenholz, E. A. Idzerda, Y. U. TI Orbital moment determination in (MnxFe1-x)(3)O-4 nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 55th Annual Conference on Magnetism and Magnetic Materials CY NOV, 2010 CL Atlanta, GA ID MAGNETIC CIRCULAR-DICHROISM; FILMS; IRON AB Nanoparticles of (MnxFe1-x)(3)O-4 with a concentration ranging from x = 0 to 1 and a crystallite size of 14-15 nm were measured using X-ray absorption spectroscopy and X-ray magnetic circular dichroism to determine the ratio of the orbital moment to the spin moment for Mn and Fe. At low Mn concentrations, the Mn substitutes into the host Fe3O4 spinel structure as Mn2+ in the tetrahedral A-site. The net Fe moment, as identified by the X-ray dichrosim intensity, is found to increase at the lowest Mn concentrations then rapidly decrease until no dichroism is observed at 20% Mn. The average Fe orbit/spin moment ratio is determined to initially be negative and small for pure Fe3O4 nanoparticles and quickly go to 0 by 5%-10% Mn addition. The average Mn moment is anti-aligned to the Fe moment with an orbit/spin moment ratio of 0.12 which gradually decreases with Mn concentration. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562905] C1 [Pool, V. L.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Pool, V. L.; Douglas, T.; Idzerda, Y. U.] Montana State Univ, Ctr Bioinspired Nanomat, Bozeman, MT 59717 USA. [Jolley, C.; Douglas, T.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Jolley, C.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [Arenholz, E. A.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Pool, VL (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. EM pool@physics.montana.edu RI Douglas, Trevor/F-2748-2011 NR 12 TC 1 Z9 1 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 1 PY 2011 VL 109 IS 7 AR 07B532 DI 10.1063/1.3562905 PG 3 WC Physics, Applied SC Physics GA 755PY UT WOS:000289949000390 ER EF