FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Subin, ZM Riley, WJ Jin, J Christianson, DS Torn, MS Kueppers, LM AF Subin, Z. M. Riley, W. J. Jin, J. Christianson, D. S. Torn, M. S. Kueppers, L. M. TI Ecosystem Feedbacks to Climate Change in California: Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (WRF3-CLM3.5) SO EARTH INTERACTIONS LA English DT Article DE Regional climate model; Afforestation; Climate-ecosystem feedbacks ID GLOBAL VEGETATION MODEL; WESTERN UNITED-STATES; COVER CHANGE; CHANGE SCENARIOS; SYSTEM MODEL; PART II; IMPACTS; CARBON; TEMPERATURE; DEFORESTATION AB A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory ClimateModel version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 degrees to +1 degrees C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2 degrees-1.2 degrees C reductions in summer daily-mean 2-m air temperature and 2.0 degrees-3.7 degrees C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions. C1 [Subin, Z. M.; Riley, W. J.; Torn, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Subin, Z. M.; Christianson, D. S.; Torn, M. S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Jin, J.] Utah State Univ, Logan, UT 84322 USA. [Kueppers, L. M.] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA USA. [Kueppers, L. M.] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP Subin, ZM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 50A4037, Berkeley, CA 94720 USA. EM subin@post.harvard.edu RI Subin, Zachary/K-5168-2012; Jin, Jiming/A-9678-2011; Kueppers, Lara/M-8323-2013; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Subin, Zachary/0000-0002-9257-9288; Kueppers, Lara/0000-0002-8134-3579; Riley, William/0000-0002-4615-2304; FU California Energy Commission; Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Ron Neilson (Oregon State University), Jim Lenihan (USDA Forest Service), and Sandra Brown (Winrock International) for providing scenarios of vegetation change in California; Sebastien Biraud (Lawrence Berkeley National Laboratory) and Ramona Butz (USDA Forest Service) for helping convert various files to common resolutions and projections; and Norman L. Miller (Lawrence Berkeley National Laboratory) for his contribution to the WRF2-CLM3.0 coupling work. Simulations were performed on computers at the University of California, Merced and at Lawrence Berkeley National Laboratory. The computers were maintained by Joseph Norris in Merced and Krishna Muriki and Susan James in Berkeley, whose help was invaluable throughout the simulation process. Two anonymous reviewers also provided detailed comments that allowed us to substantially improve the clarity of this article. This work was funded by the California Energy Commission's PIER Energy-Related Environmental Research Program (but it does not necessarily represent the views of the Energy Commission, their employees, or the state of California; it has not been reviewed by Energy Commission or the University of California; and no liability is assumed for this information or its use). This research was also supported by the Office of Biological and Environmental Research of the U.S. Department of Energy, under Contract DE-AC02-05CH11231, as part of the Atmospheric Radiation Measurement Program. NR 106 TC 25 Z9 27 U1 1 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD MAY PY 2011 VL 15 AR 15 DI 10.1175/2010EI331.1 PG 38 WC Geosciences, Multidisciplinary SC Geology GA 771HV UT WOS:000291148700001 ER PT J AU Dou, QF Sun, YF Sullivan, C AF Dou, Qifeng Sun, Yuefeng Sullivan, Charlotte TI Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article DE Carbonate rock physics model; Pore type diversity; Permeability heterogeneity; Seismic velocity ID VELOCITY; FIELD AB In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor (gamma) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor (gamma), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor (gamma)<3.85 represent either visible vuggy pore space in a dolopackstone or intercrystalline pore space in dolowackstone. On the other hand, samples with frame flexibility factor (gamma)>3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor (gamma), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with gamma classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor (gamma) is quite feasible because of the strong influence of carbonate pore types on AVO especially when offset is large. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dou, Qifeng; Sun, Yuefeng] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. [Sullivan, Charlotte] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, YF (reprint author), Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. EM sun@geos.tamu.edu FU DOE [DE-FC26-04NT15504]; Conoco Phillips Company; Devon Energy Corporation; Hess Corporation FX This research was partially supported by DOE Grant DE-FC26-04NT15504. Qifeng Dou is indebted to Conoco Phillips Company, Devon Energy Corporation and Hess Corporation for their fellowship support. We thank Burlington Oil Company for providing us the data. Hao Guo at the University of Houston helped seismic data processing for the DOE project. Hamid Adesokan helped to enhance the readability of the manuscript. We thank the anonymous reviewers for their constructive comments and critical reviews that greatly improved the manuscript. NR 29 TC 17 Z9 19 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD MAY PY 2011 VL 74 IS 1 BP 8 EP 18 DI 10.1016/j.jappgeo.2011.02.010 PG 11 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 773FB UT WOS:000291291300002 ER PT J AU Windisch, CF Pierce, EM Burton, SD Bovaird, CC AF Windisch, Charles F., Jr. Pierce, Eric M. Burton, Sarah D. Bovaird, Chase C. TI Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Raman spectroscopy; UV-Raman; Borosilicate; Trisilicate; Dissolution; Q(3) fraction ID NA2O-B2O3-SIO2; NEPHELINE; ALUMINA; SPECTRA AB As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na(2)O center dot xB(2)O(3)center dot(3-x)SiO(2), with x <= 1 (Na(2)O/B(2)O(3) ratio >= 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO(4) tetrahedra with one non-bridging oxygen (Q(3)) and then correlated with Na(2)O and B(2)O(3) content. The Q(3) fraction was found to increase with increasing Na(2)O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q(3) fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q(3) fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO(4) tetrahedron replaces the Q(3) unit as the charge-compensating structure for Na(+) ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference. (C) 2011 Elsevier B.V. All rights reserved. C1 [Windisch, Charles F., Jr.; Pierce, Eric M.; Burton, Sarah D.; Bovaird, Chase C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Windisch, CF (reprint author), Pacific NW Natl Lab, MS K2-01,Box 999, Richland, WA 99352 USA. EM cf.windisch@pnl.gov RI Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 FU U. S. Department of Energy's (DOE) Office of Science and Technology; DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U. S. Department of Energy's (DOE) Office of Science and Technology under the Environmental Management Science Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. NR 19 TC 12 Z9 13 U1 2 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2011 VL 357 IS 10 BP 2170 EP 2177 DI 10.1016/j.jnoncrysol.2011.02.046 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 771PF UT WOS:000291172500026 ER PT J AU Keiser, DD Jue, JF Yao, B Perez, E Sohn, Y Clark, CR AF Keiser, Dennis D., Jr. Jue, Jan-Fong Yao, Bo Perez, Emmanuel Sohn, Yongho Clark, Curtis R. TI Microstructural characterization of U-7Mo/Al-Si alloy matrix dispersion fuel plates fabricated at 500 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID U-MO ALLOY; INTERDIFFUSION; AL; SI AB The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of U-Mo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted U-7Mo (U-7Mo) dispersion fuel plates with either Al-2 wt.% Si(Al-2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, 51)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the U-7Mo particles for shorter exposure times, and thicker. Si-depleted layers will develop for the longer exposure times. (C) 2011 Published by Elsevier B.V. C1 [Keiser, Dennis D., Jr.; Jue, Jan-Fong; Clark, Curtis R.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Yao, Bo; Perez, Emmanuel; Sohn, Yongho] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Keiser, DD (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Dennis.Keiser@inl.gov RI Yao, Bo/C-9927-2011; Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 FU US Department of Energy, Office of Nuclear Materials Threat Reduction, National Nuclear Security Administration, under DOE-NE Idaho Operations Office [AC07-05ID14517] FX This work was supported by the US Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 20 TC 20 Z9 20 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 1 PY 2011 VL 412 IS 1 BP 90 EP 99 DI 10.1016/j.jnucmat.2011.02.027 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 771OU UT WOS:000291171400013 ER PT J AU Chopra, OK Rao, AS AF Chopra, O. K. Rao, A. S. TI A review of irradiation effects on LWR core internal materials - Neutron embrittlement SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID AUSTENITIC STAINLESS-STEELS; FRACTURE-TOUGHNESS; MICROSTRUCTURAL EVOLUTION; ATOM PROBE; BEHAVIOR; TEMPERATURE; HYDROGEN; CRACKING; ALLOYS; PWR AB Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods not only changes the microstructure and microchemistry of these steels, but also degrades their fracture properties. The existing data on irradiated austenitic SSs are reviewed to determine the effects of key parameters such as material type and condition and irradiation temperature, dose, and dose rate on neutron embrittlement. Differences in the radiation-induced degradation of fracture properties between LWR and fast-reactor irradiations are also discussed. The results are used to (a) define a threshold fluence above which irradiation effects on fracture toughness of the material are significant, (b) evaluate the potential of neutron embrittlement under LWR operating conditions, and (c) assess the potential effects of voids on fracture toughness. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chopra, O. K.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Rao, A. S.] US Nucl Regulatory Commiss, Div Engn, Washington, DC 20555 USA. RP Chopra, OK (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM okc@anl.gov FU Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission [N6818] FX The authors are grateful to Bill Shack for his invaluable input and guidance in preparing this paper. This work is sponsored by the Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, under Job Code N6818; Program Manager: Appajosula S. Rao. NR 71 TC 17 Z9 18 U1 5 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY 1 PY 2011 VL 412 IS 1 BP 195 EP 208 DI 10.1016/j.jnucmat.2011.02.059 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 771OU UT WOS:000291171400027 ER PT J AU Clark, SPR Ahirwar, P Jaeckel, FT Hains, CP Albrecht, AR Rotter, TJ Dawson, LR Balakrishnan, G Hopkins, PE Phinney, LM Hader, J Moloney, JV AF Clark, S. P. R. Ahirwar, P. Jaeckel, F. T. Hains, C. P. Albrecht, A. R. Rotter, T. J. Dawson, L. R. Balakrishnan, G. Hopkins, P. E. Phinney, L. M. Hader, J. Moloney, J. V. TI Growth and thermal conductivity analysis of polycrystalline GaAs on chemical vapor deposition diamond for use in thermal management of high-power semiconductor lasers SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID THERMOREFLECTANCE; TEMPERATURE AB The authors demonstrate the growth of polycrystalline GaAs thin films on polycrystalline chemical vapor deposition (CVD) diamond by low-temperature molecular beam epitaxy. The low-temperature GaAs (LT-GaAs) layer is easily polished compared to the CVD diamond, and this process results in a reduction of rms surface roughness from >50 to <5 nm. This makes the LT-GaAs on diamond layer an ideal wafer-bonding interface for high-power semiconductor devices. The samples were grown at 0.2 mu m/h with a substrate temperature of 250 degrees C and a 1:8 III/V beam equivalent pressure ratio. The samples were analyzed by x-ray powder diffraction, atomic force microscopy for surface roughness, and in situ reflective high-energy electron diffraction during molecular beam epitaxy growth. The authors also measure the thermal conductivity of the GaAs layer on CVD diamond using pump-probe time domain thermoreflectance. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3565054] C1 [Clark, S. P. R.; Ahirwar, P.; Jaeckel, F. T.; Hains, C. P.; Albrecht, A. R.; Rotter, T. J.; Dawson, L. R.; Balakrishnan, G.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Hopkins, P. E.; Phinney, L. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hader, J.; Moloney, J. V.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Clark, SPR (reprint author), Univ New Mexico, Ctr High Technol Mat, 1313 Goddard SE, Albuquerque, NM 87106 USA. EM sprclark@chtm.unm.edu RI balakrishnan, ganesh/F-7587-2011; Ahirwar, Pankaj/O-9413-2014; OI Ahirwar, Pankaj/0000-0002-1223-1848; Jaeckel, Felix/0000-0001-6401-7010 FU U.S. Joint Technology Office, AFOSR [FA9550-07-1-0573]; Optoelectronics Research Center (at CHTM), AFOSR [FA9550-09-1-0202]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; LDRD program office through the Sandia National Laboratories FX This research is done at the University of New Mexico and the University of Arizona for this publication and was funded by a U.S. Joint Technology Office Multidisciplinary Research Initiative Program, AFOSR Grant No. FA9550-07-1-0573 and Optoelectronics Research Center (at CHTM), AFOSR Grant No. FA9550-09-1-0202. P. E. H is grateful for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 20 TC 1 Z9 1 U1 0 U2 14 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C130 DI 10.1116/1.3565054 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300066 ER PT J AU France, R Ptak, AJ AF France, Ryan Ptak, Aaron J. TI Low-misfit epilayer analyses using in situ wafer curvature measurements SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID STRAIN RELAXATION; BEAM EPITAXY; MOCVD GROWTH; STRESS; INGAAS/GAAS; DISLOCATION; EVOLUTION; HETEROEPITAXY; MORPHOLOGY; SENSOR AB Several benefits of in situ wafer curvature monitoring on simple structures with low misfit are discussed. The misfit of lattice-mismatched layers is measured during pseudomorphic growth, allowing for experiments that test relationships between misfit and growth conditions. As an example, Bi incorporation in GaAs is quantified by varying the substrate temperature throughout growth while using curvature measurements to continuously calculate the composition. Results agree well with x-ray diffraction measurements on individual GaAsBi samples, demonstrating the utility of this technique for the study of incorporation in mismatched systems. Once relaxation begins, the strain and dislocation energetics of low-misfit epilayers are determined from changes in wafer curvature. The authors perform several analyses on GaInAs epilayers with different misfits using an anisotropic thin film approximation. Substantial information on dislocation formation and motion is derived from the wafer curvature. Potential applications of this technique include the study of devices that utilize coherently strained layers and structures that intentionally use dislocations to relieve strain. Wafer curvature is a powerful method for comparing strain evolution in mismatched materials. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3556974] C1 [France, Ryan; Ptak, Aaron J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP France, R (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ryan.france@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors would like to thank J. F. Geisz, M. A. Steiner, and W. E. McMahon for useful conversations. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 25 TC 4 Z9 4 U1 0 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C115 DI 10.1116/1.3556974 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300051 ER PT J AU He, L Collins, BA Tsui, F Chu, YS AF He, Liang Collins, Brian A. Tsui, Frank Chu, Yong S. TI Epitaxial growth of Co(x)Mn(y)Si(z) (111) thin films in the compositional range around the Heusler alloy Co(2)MnSi SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID METALLIC FERROMAGNET NIMNSB; X-RAY; DISORDER AB Epitaxial growth and structural properties of Co(x)Mn(y)Si(z) thin films on Ge (111) substrates, including the Heusler alloy Co(2)MnSi (111), have been studied using combinatorial molecular beam epitaxy (MBE) techniques. In situ reflection high energy electron diffraction and ex situ x-ray diffraction experiments show that high quality coherent MBE growth with fcc (111) stacking can be achieved over a relatively large composition space that includes Co(2)MnSi. The highest structural and chemical ordering is observed near the composition of Co(0.63)Mn(0.14)Si(0.23) rather than that at the Heusler stoichiometry of Co(2)MnSi. The in-plane crystallographic axis of the fcc film exhibits a 60 degrees rotation with respect to that of the Ge substrate. The rotation appears to be originated at the film-substrate interface, as a result of the symmetry and stacking of the Ge (111) surface reconstruction. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3567419] C1 [He, Liang; Collins, Brian A.; Tsui, Frank] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Tsui, F (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. EM ftsui@physics.unc.edu RI He, Liang/E-5935-2012; Collins, Brian/M-5182-2013 OI Collins, Brian/0000-0003-2047-8418 FU DOE BES [DE-FG02-05ER46216, DE-AC02-06CH11357]; Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy FX The work was supported by DOE BES Grant No. DE-FG02-05ER46216. The use of the Advanced Photon Source was supported by DOE BES Grant No. DE-AC02-06CH11357. A part of the work was supported by the Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 18 TC 1 Z9 1 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C124 DI 10.1116/1.3567419 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300060 ER PT J AU Lin, Y Norman, AG McMahon, WE Moutinho, HR Jiang, CS Ptak, AJ AF Lin, Y. Norman, A. G. McMahon, W. E. Moutinho, H. R. Jiang, C. -S. Ptak, A. J. TI Single-crystalline aluminum grown on MgAl(2)O(4) spinel using molecular-beam epitaxy SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID LIGHT-EMITTING-DIODES; OXIDE SURFACES; FILMS; INTERFACES; ENERGY; NUCLEATION; CDTE AB Al thin films were grown on MgAl(2)O(4) spinel substrates using solid-source molecular-beam epitaxy. The structural properties of Al layers were systematically investigated as a function of substrate orientation and growth temperature. Scanning electron microscopy and atomic force microscopy show that low growth temperatures lead to smoother and more coalesced Al films. X-ray diffraction and electron backscatter diffraction (EBSD) measurements demonstrate that Al layers are single crystalline and coherently grown on both (100)- and (111)-oriented spinel substrates. EBSD data also clearly reveal a high density of twin domain structures in Al films grown on (111) spinel substrates, and all twin boundaries were determined to be Sigma 3 boundaries. High-resolution transmission electron microscopy was used to confirm the presence of twin structures. Al grown on (001) spinel roughens more easily than Al grown on (111) spinel at higher growth temperatures. It is suggested that Al surface energy and thermal expansion mismatch play a critical role in the evolution of surface morphology of Al thin films grown on MgAl(2)O(4) spinel. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3570869] C1 [Lin, Y.; Norman, A. G.; McMahon, W. E.; Moutinho, H. R.; Jiang, C. -S.; Ptak, A. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lin, Y (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yong_lin@emcore.com RI Norman, Andrew/F-1859-2010; jiang, chun-sheng/F-7839-2012 OI Norman, Andrew/0000-0001-6368-521X; FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 24 TC 0 Z9 0 U1 1 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C128 DI 10.1116/1.3570869 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300064 ER PT J AU Lo, CF Ren, F Chang, CY Pearton, SJ Chen, SH Chang, CM Wang, SY Chyi, JI Kravchenko, II AF Lo, C. F. Ren, F. Chang, C. Y. Pearton, S. J. Chen, S. -H. Chang, C. -M. Wang, S. -Y. Chyi, J. -I. Kravchenko, I. I. TI Fabrication of InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID NANOIMPRINT LITHOGRAPHY; TEMPERATURE AB A trilevel resist system was employed to fabricate self-aligned, submicron emitter finger In0.52Al0.48As/In0.42Ga0.58As0.77Sb0.23/In0.53Ga0.47As double heterojunction bipolar transistors (DHBTs). Selective wet-etchants were used to define the emitter fingers and to form an InGaAs guard-ring around the emitter fingers. Due to the low energy bandgap of the InGaAsSb base layer and type II base-collector junction, a low turn-on voltage of 0.38 V at 1 A/cm(2) and a high dc current gain of 123.8 for a DHBT with a 0.65 x 8.65 mu m(2) emitter area were obtained. A unity gain cutoff frequency (f(T)) of 260 GHz and a maximum oscillation frequency (f(max)) of 485 GHz at J(C) = 302 kA/cm(2) were achieved. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3589808] C1 [Lo, C. F.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Chen, S. -H.; Chang, C. -M.; Wang, S. -Y.; Chyi, J. -I.] Natl Cent Univ, Dept Elect Engn, Jhongli 32001, Taiwan. [Kravchenko, I. I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Lo, CF (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM ren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015; Chyi, Jen-Inn/A-1799-2016 OI Kravchenko, Ivan/0000-0003-4999-5822; FU Office of Naval Research (ONR) [00075094]; NSF [ECCS 0901711]; Superfund Basic Research Program [RO1ES015449]; National Science Council, Taiwan R.O.C. [NSC-96-2628-E-008-0072MY3]; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX The work at UF is partially supported by the Office of Naval Research (ONR) under Contract No. 00075094 monitored by Dr. Chagaan Baatar, NSF under Contract No. ECCS 0901711 monitored by Dr. Yogesh B. Gianchandani, and by Superfund Basic Research Program Grant No. RO1ES015449. The work at National Central University is partially supported by the National Science Council, Taiwan R.O.C. under Contract No. NSC-96-2628-E-008-0072MY3. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 4 Z9 4 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 031205 DI 10.1116/1.3589808 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300010 ER PT J AU Norman, AG France, R Ptak, AJ AF Norman, Andrew G. France, Ryan Ptak, Aaron J. TI Atomic ordering and phase separation in MBE GaAs(1-x)Bi(x) SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; EPITAXIAL LAYERS; ALLOY; GROWTH; SEMICONDUCTORS; SUPERLATTICES; DIFFRACTION; SB AB Transmission electron microscopy studies of GaAs(1-x)Bi(x) layers grown at low temperature by molecular beam epitaxy have revealed evidence of both atomic ordering and phase separation. In layers containing up to similar to 10% Bi, the two variants of CuPt(B)-type atomic ordering on {111}B planes were observed and this is believed to be associated with the surface reconstruction present during growth. In a sample containing similar to 13% Bi, no atomic ordering was observed but instead an anisotropic platelike structure was present that is believed to result from phase separation, possibly associated with the surface segregation of excess Bi during growth. Both of these effects are expected to have significant effects on the electrical and optical properties of the material. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3562512] C1 [Norman, Andrew G.; France, Ryan; Ptak, Aaron J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Norman, AG (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM andrew.norman@nrel.gov RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 20 TC 14 Z9 14 U1 0 U2 14 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C121 DI 10.1116/1.3562512 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300057 ER PT J AU Williamson, TL Williams, JJ Hubbard, JCD Hoffbauer, MA AF Williamson, Todd L. Williams, Joshua J. Hubbard, Jonathan C. D. Hoffbauer, Mark A. TI High In content In(x)Ga(1-x)N grown by energetic neutral atom beam lithography and epitaxy under slightly N-rich conditions SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID III-NITRIDE ALLOYS; INN; INGAN; GAN AB Two series of In-rich InGaN films with compositions of similar to 25% and similar to 35% In, grown over a substrate temperature range from 490 to 620 degrees C, show how the film properties improve as the growth temperature is lowered below the InN decomposition temperature of similar to 550 degrees C in vacuum. These InGaN films have been grown using a novel growth technique utilizing energetic N atoms as the active growth species. Under N-rich growth conditions, these InGaN films show how compositional uniformity, crystallinity, band edge photoluminescence, and surface morphology are improved as growth temperatures are reduced. The results emphasize the importance of energetic N atoms and lower substrate temperatures for overcoming difficulties associated with growing high-quality In-rich In(x)Ga(1-x)N thin film materials. Utilizing energetic N atoms allows for the growth of high-quality, thick (>500 nm) In(x)Ga(1-x)N films at temperatures below 500 degrees C. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3581870] C1 [Williamson, Todd L.; Williams, Joshua J.; Hubbard, Jonathan C. D.; Hoffbauer, Mark A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Williamson, TL (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM mhoffbauer@lanl.gov FU Laboratory Directed Research Development FX This work was supported by Laboratory Directed Research & Development funding at Los Alamos National Laboratory. NR 15 TC 1 Z9 1 U1 1 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2011 VL 29 IS 3 AR 03C132 DI 10.1116/1.3581870 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 770TL UT WOS:000291111300068 ER PT J AU Dunlop, MJ Dossani, ZY Szmidt, HL Chu, HC Lee, TS Keasling, JD Hadi, MZ Mukhopadhyay, A AF Dunlop, Mary J. Dossani, Zain Y. Szmidt, Heather L. Chu, Hou Cheng Lee, Taek Soon Keasling, Jay D. Hadi, Masood Z. Mukhopadhyay, Aindrila TI Engineering microbial biofuel tolerance and export using efflux pumps SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE biofuel; efflux pump; synthetic biology; tolerance engineering ID PSEUDOMONAS-PUTIDA S12; GRAM-NEGATIVE BACTERIA; SOLVENT TOLERANCE; ESCHERICHIA-COLI; ORGANIC-SOLVENTS; GENOMIC ANALYSIS; MECHANISMS; RESISTANCE; PROVIDE AB Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. Molecular Systems Biology 7: 487; published online 10 May 2011; doi: 10.1038/msb.2011.21 C1 [Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Dunlop, Mary J.; Dossani, Zain Y.; Szmidt, Heather L.; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D.; Hadi, Masood Z.; Mukhopadhyay, Aindrila] Joint BioEnergy Inst, Emeryville, CA USA. [Dunlop, Mary J.] Univ Vermont, Burlington, VT USA. [Chu, Hou Cheng; Hadi, Masood Z.] Sandia Natl Labs, Livermore, CA USA. RP Mukhopadhyay, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM amukhopadhyay@lbl.gov RI Keasling, Jay/J-9162-2012; Luan, Gan/B-3211-2015 OI Keasling, Jay/0000-0003-4170-6088; FU US Department of Energy's Joint BioEnergy Institute [DE-AC02-05CH11231] FX We thank Mario Ouellet for advice on the custom microarray design; Rossana Chan for technical help with the limonene production strain; and Nathan Hillson, Pamela Peralta-Yahya and Joshua Gilmore for helpful discussions. We also thank Antoine Danchin and Jiandong Huang for providing the P. haloplanktis TAC125 strain. John Bates helped to generate the list of HAE1 efflux pump sequences. Hiroshi Nikaido provided thoughtful comments on the manuscript. This work was conducted at the US Department of Energy's Joint BioEnergy Institute, supported through contract DE-AC02-05CH11231. NR 28 TC 167 Z9 172 U1 18 U2 118 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD MAY PY 2011 VL 7 AR 487 DI 10.1038/msb.2011.21 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 773ZL UT WOS:000291351000002 PM 21556065 ER PT J AU Talamo, A Gohar, Y Aliberti, G Cao, Y Smith, D Zhong, Z Kiyavitskaya, H Bournos, V Fokov, Y Routkovskaya, C Serafimovich, I AF Talamo, Alberto Gohar, Y. Aliberti, G. Cao, Y. Smith, D. Zhong, Z. Kiyavitskaya, H. Bournos, V. Fokov, Y. Routkovskaya, C. Serafimovich, I. TI MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc ID DELAYED NEUTRON FRACTION; TRANSMUTATION; GENERATION; CARLO AB This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk. Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations. The MCNPX results match the experimental measurements of the He-3(n,p) reaction rates obtained with the californium neutron source. (C) 2011 Elsevier B.V. All rights reserved. C1 [Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.] Natl Acad Sci Belarus, Joint Inst Power & Nucl Res Sosny, Minsk 220109, Byelarus. RP Talamo, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU Office of Global Nuclear Material Threat Reduction U.S. Department of Energy [DE-AC02-06CH11357] FX This work has been supported by the Office of Global Nuclear Material Threat Reduction U.S. Department of Energy Under Contract DE-AC02-06CH11357. NR 32 TC 7 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2011 VL 241 IS 5 SI SI BP 1606 EP 1615 DI 10.1016/j.nucengdes.2011.03.006 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 770ZC UT WOS:000291126000038 ER PT J AU Unal, C Williams, B Hemez, F Atamturktur, SH McClure, P AF Unal, C. Williams, B. Hemez, F. Atamturktur, S. H. McClure, P. TI Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc ID COMPUTER-MODELS; SENSITIVITY-ANALYSIS; MOLECULAR-DYNAMICS; URANIUM-DIOXIDE; SAFETY MARGINS; SIMULATIONS; CALIBRATION AB Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M&S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M&S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in the design and licensing of evolving nuclear technology. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification - steps similar to the components of the traditional US Nuclear Regulatory Commission (NRC) licensing approach, with the exception of the calibration step. An enhanced calibration concept is introduced here, and is accomplished through data assimilation. The goal of this methodology is to enable best-estimate prediction of system behaviors in both normal and safety-related environments. This goal requires the additional steps of estimating the domain of validation, and quantification of uncertainties, allowing for the extension of results to areas of the validation domain that are not directly tested with experiments. These might include the extension of the M&S capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. The proposed methodology is at a conceptual level. Upon maturity, and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty (BEPU) licensing methodology that the NRC has developed. In order to achieve maturity, the methodology must be communicated to scientific, design, and regulatory stakeholders for discussion and debate. This paper is the first step in establishing that communication. (C) 2011 Elsevier BM. All rights reserved. C1 [Unal, C.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Atamturktur, S. H.] Clemson Univ, Clemson, SC 29634 USA. RP Unal, C (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Mail Stop B297,Bikini Atoll Rd,SM 30, Los Alamos, NM 87545 USA. EM cu@lanl.gov OI Hemez, Francois/0000-0002-5319-4078; Williams, Brian/0000-0002-3465-4972 FU US Department of Energy, Nuclear Energy Division, Nuclear Energy Advanced Modeling and Simulation Office (NEAMS); National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was sponsored by the US Department of Energy, Nuclear Energy Division, Nuclear Energy Advanced Modeling and Simulation Office (NEAMS), Fuels and Verification and Validation Program Elements. Authors are grateful to Dr. Keith Bradley, NEAMS National Director, Dr. Jim Peltz, NEAMS Program Manager, and Dr. Robert Versluis, NEAMS Program Manager, Mr. Alex Larzelere, NEAMS Office Director, and Dr. Ralph Nelson, NEAMS VU technical lead, for their support. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 42 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2011 VL 241 IS 5 SI SI BP 1813 EP 1833 DI 10.1016/j.nucengdes.2011.01.048 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 770ZC UT WOS:000291126000057 ER PT J AU Bahn, CB Kasza, KE Shack, WJ Natesan, K Klein, P AF Bahn, Chi Bum Kasza, Ken E. Shack, William J. Natesan, Ken Klein, Paul TI Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc ID AQUEOUS CHEMICAL ENVIRONMENT; HIGH-TEMPERATURE SOLUBILITY; IN-SITU MEASUREMENTS; OF-COOLANT ACCIDENT; IONIC-STRENGTH; PH; COAGULATION; CORROSION; BOEHMITE; BEHAVIOR AB Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al](T)' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions. Published by Elsevier BM. C1 [Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken] Argonne Natl Lab, Lemont, IL 60439 USA. [Klein, Paul] US Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Bahn, CB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM bahn@anl.gov RI Bahn, Chi Bum/C-2481-2012 FU U.S. NRC FX Authors are grateful to Mr. John J. Picciolo of ANL for his assistance in particle size analysis. This work was sponsored by U.S. NRC. NR 39 TC 8 Z9 8 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2011 VL 241 IS 5 SI SI BP 1914 EP 1925 DI 10.1016/j.nucengdes.2010.10.013 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 770ZC UT WOS:000291126000067 ER PT J AU Bahn, CB Kasza, KE Shack, WJ Natesan, K Klein, P AF Bahn, Chi Bum Kasza, Ken E. Shack, William J. Natesan, Ken Klein, Paul TI Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 17th International Conference on Nuclear Engineering CY JUL 12-16, 2009 CL Brussels, BELGIUM SP ASME, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc ID INTERMETALLIC PHASES; CRYSTALLIZATION; PH AB Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 degrees C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH)(3)) surrogate was more effective in increasing head loss than the Al(OH)(3) precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH)(3) when intermetallic particles are present. (C) 2011 Elsevier B.V. All rights reserved. C1 [Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken] Argonne Natl Lab, Lemont, IL 60439 USA. [Klein, Paul] US Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Bahn, CB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM bahn@anl.gov RI Bahn, Chi Bum/C-2481-2012 FU United States Nuclear Regulatory Commission (USNRC) FX Authors are grateful to Dr. Seungbum Hong of ANL for his assistance in XRD analysis of NUKON (R) patch samples. This work was sponsored by United States Nuclear Regulatory Commission (USNRC). NR 21 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2011 VL 241 IS 5 SI SI BP 1926 EP 1936 DI 10.1016/j.nucengdes.2011.01.004 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 770ZC UT WOS:000291126000068 ER PT J AU Gonzalez-Juez, ED Kerstein, AR Shih, LH AF Gonzalez-Juez, Esteban D. Kerstein, Alan R. Shih, Lucinda H. TI Vertical mixing in homogeneous sheared stratified turbulence: A one-dimensional-turbulence study SO PHYSICS OF FLUIDS LA English DT Article ID MODEL FORMULATION; POTENTIAL-ENERGY; LAYER FORMATION; FLOWS; FLUID; SIMULATION; DIFFUSION; CONVECTION; TRANSPORT; PARAMETERIZATION AB We conduct a parametric study of diapycnal mixing using one-dimensional-turbulence (ODT) simulations. Homogeneous sheared stratified turbulence is considered. ODT simulations reproduce the intermediate and energetic regimes of mixing, in agreement with previous work, but do not capture important physics of the diffusive regime. ODT indicates K(rho) similar to epsilon/N(2) for the intermediate regime, and K(rho) similar to (epsilon h(4))(1/3) for the energetic regime and limit of near-zero stratification. Here K(rho) is the turbulent diffusivity for mass, e the dissipation rate, N the buoyancy frequency, and h the computational domain height, where h is relevant mainly in simulations with jump-periodic vertical boundary conditions. These scaling relationships suggest that K(rho) is independent of the molecular diffusivity. ODT results for a wide range of parameters show that K(rho) cannot be parametrized solely with the turbulent intensity parameter epsilon/(vN(2)), in contrast with the previous studies, but it is well predicted by correlations using the Ellison length scale. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3592329] C1 [Gonzalez-Juez, Esteban D.; Kerstein, Alan R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Shih, Lucinda H.] Costa Water Dist, Concord, CA 94520 USA. RP Gonzalez-Juez, ED (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM estebandgj@gmail.com; arkerst@sandia.gov FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Simulations were performed at Sandia National Laboratories on the Shasta Linux Cluster. NR 49 TC 6 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2011 VL 23 IS 5 AR 055106 DI 10.1063/1.3592329 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 770RL UT WOS:000291106100020 ER PT J AU Innocenti, F Cooper, GM Stanaway, IB Gamazon, ER Smith, JD Mirkov, S Ramirez, J Liu, WQ Lin, YS Moloney, C Aldred, SF Trinklein, ND Schuetz, E Nickerson, DA Thummel, KE Rieder, MJ Rettie, AE Ratain, MJ Cox, NJ Brown, CD AF Innocenti, Federico Cooper, Gregory M. Stanaway, Ian B. Gamazon, Eric R. Smith, Joshua D. Mirkov, Snezana Ramirez, Jacqueline Liu, Wanqing Lin, Yvonne S. Moloney, Cliona Aldred, Shelly Force Trinklein, Nathan D. Schuetz, Erin Nickerson, Deborah A. Thummel, Ken E. Rieder, Mark J. Rettie, Allan E. Ratain, Mark J. Cox, Nancy J. Brown, Christopher D. TI Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue SO PLOS GENETICS LA English DT Article ID GENOME-WIDE ASSOCIATION; HUMAN GENE-EXPRESSION; TRANSCRIPTIONAL REGULATION; HUMAN-POPULATIONS; POLYMORPHISMS; CHOLESTEROL; GENOTYPES; ELEMENTS; BIAS AB The discovery of expression quantitative trait loci ("eQTLs") can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n=206) and Illumina (n=60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n=266). We found that, similar to 30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3'UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits. C1 [Brown, Christopher D.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Brown, Christopher D.] Argonne Natl Lab, Chicago, IL USA. [Brown, Christopher D.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Brown, Christopher D.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Innocenti, Federico; Ratain, Mark J.] Univ Chicago, Canc Res Ctr, Comm Clin Pharmacol & Pharmacogenom, Dept Med, Chicago, IL 60637 USA. [Cooper, Gregory M.; Stanaway, Ian B.; Smith, Joshua D.; Nickerson, Deborah A.; Rieder, Mark J.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Gamazon, Eric R.; Cox, Nancy J.] Univ Chicago, Med Genet Sect, Dept Med, Chicago, IL 60637 USA. [Mirkov, Snezana; Ramirez, Jacqueline; Liu, Wanqing] Univ Chicago, Sect Hematol Oncol, Dept Med, Chicago, IL 60637 USA. [Lin, Yvonne S.; Thummel, Ken E.; Rettie, Allan E.] Univ Washington, Sch Pharm, Dept Med Chem, Seattle, WA 98195 USA. [Lin, Yvonne S.; Thummel, Ken E.] Univ Washington, Dept Pharmaceut, Seattle, WA 98195 USA. [Moloney, Cliona] Merck Res Labs, Boston, MA USA. [Aldred, Shelly Force; Trinklein, Nathan D.] SwitchGear Genom, Menlo Pk, CA USA. [Schuetz, Erin] St Jude Childrens Hosp, Dept Pharmaceut Sci, Memphis, TN 38105 USA. RP Innocenti, F (reprint author), Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. EM caseybrown@uchicago.edu RI Cooper, Gregory/D-6914-2011 OI Liu, Wanqing/0000-0001-7727-6900; Gamazon, Eric/0000-0003-4204-8734; Cooper, Gregory/0000-0001-5509-9923 FU University of Chicago; NIH/NIDDK [R21DK081157-01A2]; University of Chicago Cancer Research Center [CA 014599]; NIH/NCI [K07CA140390-01]; Pharmacogenetics of Anticancer Agents Research (PAAR) Group; NIH/NIGMS [U01 GM61393, P01 GM32165]; NIH [U01 HL66682, NS053646, R01GM094418, N01-DK-7-0004/HHSN267200700004C]; Cooperative Human Tissue Network; National Center for Research Resources (NCRR) [1KL2RR025015]; Merck; Jane Coffin Childs Memorial Fund FX This study was supported by start-up funds from the University of Chicago to Kevin P. White, NIH/NIDDK R21DK081157-01A2 (F Innocenti), University of Chicago Cancer Research Center Grant # CA 014599 (F Innocenti), NIH/NCI K07CA140390-01 (F Innocenti), the Pharmacogenetics of Anticancer Agents Research (PAAR) Group (http://pharmacogenetics.org) (NIH/NIGMS grant U01 GM61393, MJ Ratain, NJ Cox), NIH U01 HL66682 (MJ Rieder), NIH NS053646 (MJ Rieder), NIH/NIGMS P01 GM32165 (AE Rettie), NIH R01GM094418 (E Schuetz). Livers studied by UC were also provided by the Liver Tissue Cell Distribution System funded by NIH Contract # N01-DK-7-0004/HHSN267200700004C and by the Cooperative Human Tissue Network. YS Lin was supported in part by 1KL2RR025015 from the National Center for Research Resources (NCRR). CD Brown is a Lilly-Life Sciences Research Foundation Fellow, GM Cooper was supported by a Merck, Jane Coffin Childs Memorial Fund Postdoctoral Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 98 Z9 103 U1 1 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD MAY PY 2011 VL 7 IS 5 AR e1002078 DI 10.1371/journal.pgen.1002078 PG 16 WC Genetics & Heredity SC Genetics & Heredity GA 769LI UT WOS:000291014600023 PM 21637794 ER PT J AU Mellone, BG Grive, KJ Shteyn, V Bowers, SR Oderberg, I Karpen, GH AF Mellone, Barbara G. Grive, Kathryn J. Shteyn, Vladimir Bowers, Sarion R. Oderberg, Isaac Karpen, Gary H. TI Assembly of Drosophila Centromeric Chromatin Proteins during Mitosis SO PLOS GENETICS LA English DT Article ID HISTONE H3 VARIANT; E3 UBIQUITIN LIGASE; CENP-A; CELL-CYCLE; FISSION YEAST; LOCALIZATION; REPLICATION; DESTRUCTION; ANAPHASE; DOMAIN AB Semi-conservative segregation of nucleosomes to sister chromatids during DNA replication creates gaps that must be filled by new nucleosome assembly. We analyzed the cell-cycle timing of centromeric chromatin assembly in Drosophila, which contains the H3 variant CID (CENP-A in humans), as well as CENP-C and CAL1, which are required for CID localization. Pulse-chase experiments show that CID and CENP-C levels decrease by 50% at each cell division, as predicted for semi-conservative segregation and inheritance, whereas CAL1 displays higher turnover. Quench-chase-pulse experiments demonstrate that there is a significant lag between replication and replenishment of centromeric chromatin. Surprisingly, new CID is recruited to centromeres in metaphase, by a mechanism that does not require an intact mitotic spindle, but does require proteasome activity. Interestingly, new CAL1 is recruited to centromeres before CID in prophase. Furthermore, CAL1, but not CENP-C, is found in complex with pre-nucleosomal CID. Finally, CENP-C displays yet a different pattern of incorporation, during both interphase and mitosis. The unusual timing of CID recruitment and unique dynamics of CAL1 identify a distinct centromere assembly pathway in Drosophila and suggest that CAL1 is a key regulator of centromere propagation. C1 [Mellone, Barbara G.; Grive, Kathryn J.; Bowers, Sarion R.] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA. [Shteyn, Vladimir; Oderberg, Isaac; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Shteyn, Vladimir; Oderberg, Isaac; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Mellone, BG (reprint author), Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA. EM barbara.mellone@uconn.edu; karpen@fruitfly.org OI Mellone, Barbara/0000-0002-2785-5119 FU NIH [R01 GM066272]; American Cancer Society/IRG; UConn Research Foundation; NSF [1024973] FX This study was funded by NIH R01 GM066272 (GHK), American Cancer Society/IRG, UConn Research Foundation, and NSF grant number 1024973 (BGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 63 Z9 63 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD MAY PY 2011 VL 7 IS 5 AR e1002068 DI 10.1371/journal.pgen.1002068 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA 769LI UT WOS:000291014600016 PM 21589899 ER PT J AU Kilgore, WB AF Kilgore, William B. TI Introduction to quantum chromodynamics at hadron colliders SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 11th Workshop on High Energy Physics Phenomenology (WHEPP-XI) CY JAN 02-12, 2010 CL Phys Res Lab, Ahmedabad, INDIA HO Phys Res Lab DE Quantum chromodynamics ID PAIR ANNIHILATION PROCESSES; LEPTON-NUCLEON SCATTERING; ABELIAN GAUGE THEORIES; YANG-MILLS FIELDS; E&E ANNIHILATION; ELECTRON SCATTERING; MASS SINGULARITIES; ASYMPTOTIC FREEDOM; HIGH ENERGIES; MODEL AB A basic introduction to the application of QCD at hadron colliders is presented. I briefly review the phenomenological and theoretical origins of QCD, and then discuss factorization and infrared safety, parton distributions, the computation of hard scattering amplitudes and applications of perturbative QCD. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kilgore, WB (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kilgore@bnl.gov NR 58 TC 0 Z9 0 U1 1 U2 1 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD MAY PY 2011 VL 76 IS 5 SI SI BP 757 EP 766 PG 10 WC Physics, Multidisciplinary SC Physics GA 770XO UT WOS:000291122000008 ER PT J AU Benton, ER Johnson, CE DeWitt, J Yasuda, N Benton, EV Moyers, MH Frank, AL AF Benton, E. R. Johnson, C. E. DeWitt, J. Yasuda, N. Benton, E. V. Moyers, M. H. Frank, A. L. TI Observations of short-range, high-LET recoil tracks in CR-39 plastic nuclear track detector by visible light microscopy SO RADIATION MEASUREMENTS LA English DT Article ID AUTOMATIC MEASURING SYSTEM AB Using standard visible light microscopy, we are able to observe particle tracks produced by < 10 mu m range target fragment recoils in CR-39 plastic nuclear track detector (PNTD) following short chemical etching (bulk etch B <= 1 mu m). In accelerator irradiations, targets of varying composition, including a number of elemental targets of high Z, were exposed in contact with layers of CR-39 PNTD to beams of 60 MeV, 230 MeV, and 1 GeV protons at doses of 10-50 Cy. Chemical etching of CR-39 under standard conditions (50 degrees C, 6.25 N NaOH) for 2-4 h (removed layer B = 0.5-1.0 mu m) yielded secondary track densities of 10(5)-10(6) cm(-2) observable under a standard optical microscope with 500x-800x magnification. Ordinarily such a short duration etch would not be expected to enlarge the tracks sufficiently for them to be resolved by visible light optics. However, due to the short-range of the particles, a longer chemical processing would have over-etched the tracks until they were no longer recognizable. The tracks we observe in CR-39 PNTD irradiated in these experiments are the result of residual heavy recoil fragments returning to equilibrium via evaporation processes following proton-induced knock out of light particles via preequilibrium processes. Because the heavy recoil particles are very near the end of their ranges (i.e. in the Bragg peak), their LET is extremely high and changes rapidly. Consequently, the tracks they produce in CR-39 PNTD often take the form of long tubes rather than the conical etch pits produced by higher energy particles. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Benton, E. R.; DeWitt, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Johnson, C. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yasuda, N.] Natl Inst Radiol Sci, Chiba 260, Japan. [Benton, E. V.; Frank, A. L.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Moyers, M. H.] Proton Therapy Inc, Colton, CA 92324 USA. RP Benton, ER (reprint author), Oklahoma State Univ, Dept Phys, 1110 S Innovat Way,100, Stillwater, OK 74078 USA. EM eric.benton@okstate.edu FU NASA MSFC [NAG8-01899] FX This work was funded in part by NASA MSFC Grant NAG8-01899. The authors wish to thank the staff of the LLUMC Proton Therapy Facility, Adam Rusek, Michael Sieverts and the staff of the BNL NSRL, and Y. Uchihori, H. Kitamura and the staff of the NIRS HIMAC for their help in making the irradiations. NR 14 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD MAY PY 2011 VL 46 IS 5 BP 527 EP 532 DI 10.1016/j.radmeas.2011.03.013 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 773CS UT WOS:000291285200009 ER PT J AU Carlie, N Anheier, NC Qiao, HA Bernacki, B Phillips, MC Petit, L Musgraves, JD Richardson, K AF Carlie, N. Anheier, N. C., Jr. Qiao, H. A. Bernacki, B. Phillips, M. C. Petit, L. Musgraves, J. D. Richardson, K. TI Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CHALCOGENIDE GLASSES; WAVE-GUIDES; PHOTOINDUCED CHANGES; OPTICAL-PROPERTIES; ILLUMINATION; FABRICATION; SELENIDE AB The prism coupling technique has been utilized to measure the refractive index in the near-and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 mu m range. The instrumental error was found to be +/- 0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to that of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3587616] C1 [Carlie, N.; Petit, L.; Musgraves, J. D.; Richardson, K.] Sch Mat Sci & Engn COMSET, Clemson, SC 29640 USA. [Anheier, N. C., Jr.; Qiao, H. A.; Bernacki, B.; Phillips, M. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Carlie, N (reprint author), Sch Mat Sci & Engn COMSET, Clemson, SC 29640 USA. RI Musgraves, J David/D-9260-2011; Richardson, Kathleen/A-6012-2011 OI Musgraves, J David/0000-0003-4575-5119; FU U.S. Department of Energy, Office of Nonproliferation Research and Development [DE-NA000421]; U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO1830] FX This work was supported by the U.S. Department of Energy, Office of Nonproliferation Research and Development (NA-22) Project #DE-NA000421. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 38 TC 11 Z9 12 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 053103 DI 10.1063/1.3587616 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700003 PM 21639488 ER PT J AU Friesen, FQL John, B Skinner, CH Roquemore, AL Calle, CI AF Friesen, F. Q. L. John, B. Skinner, C. H. Roquemore, A. L. Calle, C. I. TI Evaluation of an electrostatic dust removal system with potential application in next-step fusion devices SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass, and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm(3) volume of carbon and tungsten particles were moved in under 5 s. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon and the change in particle distribution over short timescales (<1 s). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3587619] C1 [Friesen, F. Q. L.] Grinnell Coll, Grinnell, IA 50112 USA. [John, B.] Swarthmore Coll, Swarthmore, PA 19081 USA. [Skinner, C. H.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Calle, C. I.] NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA. RP Friesen, FQL (reprint author), Grinnell Coll, 1115 8th Ave, Grinnell, IA 50112 USA. FU US DOE [DE-AC02-09CH11466] FX This work was supported by a 2010 National Undergraduate Fellowship, which in turn is supported by US DOE Grant No. DE-AC02-09CH11466. We would like to thank T. Holoman, G. Smalley, D. Labrie, R Marsala, and T. Provost for technical assistance. NR 12 TC 1 Z9 1 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 053502 DI 10.1063/1.3587619 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700014 PM 21639499 ER PT J AU Geissel, M Schollmeier, MS Kimmel, MW Rambo, PK Schwarz, J Atherton, BW Brambrink, E AF Geissel, Matthias Schollmeier, Marius S. Kimmel, Mark W. Rambo, Patrick K. Schwarz, Jens Atherton, Briggs W. Brambrink, Erik TI Characterizing plasma mirrors near breakdown SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER; ACCELERATION; SUPPRESSION; OPTICS AB Experiments dedicated to the characterization of plasma mirrors with a high energy, single shot short-pulse laser were performed at the 100 TW target area of the Z-Backlighter Facility at Sandia National Laboratories. A suite of beam diagnostics was used to characterize a high energy laser pulse with a large aperture through focus imaging setup. By varying the fluence on the plasma mirror around the plasma ignition threshold, critical performance parameters were determined and a more detailed understanding of the way in which a plasma mirror works could be deduced. It was found, that very subtle variations in the laser near field profile will have strong effects on the reflected pulse if the maximum fluence on the plasma mirror approaches the plasma ignition threshold. (C) 2011 American Institute of Physics. [doi:10.1063/1.3585981] C1 [Geissel, Matthias; Schollmeier, Marius S.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens; Atherton, Briggs W.] Sandia Natl Labs, Z Backlighter Facil, Albuquerque, NM 87185 USA. [Brambrink, Erik] Ecole Polytech, Lab Utilisat Lasers Intenses, Palaiseau, France. RP Geissel, M (reprint author), Sandia Natl Labs, Z Backlighter Facil, POB 5800, Albuquerque, NM 87185 USA. EM mgeisse@sandia.gov RI Schollmeier, Marius/H-1056-2012 OI Schollmeier, Marius/0000-0002-0683-022X FU (U.S.) Department of Energy's (DOE) National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the (U.S.) Department of Energy's (DOE) National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 4 Z9 4 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 053101 DI 10.1063/1.3585981 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700001 PM 21639486 ER PT J AU McCloy, JS Sundaram, SK Matyas, J Woskov, PP AF McCloy, J. S. Sundaram, S. K. Matyas, J. Woskov, P. P. TI Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPECTRA AB Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 degrees C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590016] C1 [McCloy, J. S.; Sundaram, S. K.; Matyas, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Woskov, P. P.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 NR 29 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 054703 DI 10.1063/1.3590016 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700043 PM 21639528 ER PT J AU Stone, MB Loguillo, MJ Abernathy, DL AF Stone, M. B. Loguillo, M. J. Abernathy, D. L. TI Ultrathin aluminum sample cans for single crystal inelastic neutron scattering SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-PRESSURE-CELL; TEMPERATURES; DIFFRACTION; CRYOSTAT AB Single crystal inelastic neutron scattering measurements are often performed using a sample environment for controlling sample temperature. One difficulty associated with this is establishing appropriate thermal coupling from the sample to the temperature controlled portion of the sample environment. This is usually accomplished via a sample can which thermally couples the sample environment to the sample can and the sample can to the sample via an exchange gas. Unfortunately, this can will contribute additional background signal to one's measurement. We present here the design of an ultrathin aluminum sample can based upon established technology for producing aluminum beverage cans. This design minimizes parasitic sample can scattering. Neutron scattering measurements comparing a machined sample can to our beverage can design clearly indicate a large reduction in scattering intensity and texture when using the ultrathin sample can design. We also examine the possibility of using standard commercial beverage cans as sample cans. (C) 2011 American Institute of Physics. [doi:10.1063/1.3593374] C1 [Stone, M. B.; Loguillo, M. J.; Abernathy, D. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI BL18, ARCS/A-3000-2012; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012 OI Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X FU Scientific User Facilities Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE) FX The authors would like to thank John Brock and Dwayne Griffith of the machine shop at Oak Ridge National Laboratory (ORNL); K. Herwig for suggestions concerning adhesives; Alan Fredrick and Roger Miller at the ORNL Materials Joining Lab; and the Custom Can sales department of the Ball Corporation of America. This Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE). NR 18 TC 4 Z9 4 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 055117 DI 10.1063/1.3593374 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700063 PM 21639548 ER PT J AU Strobl, M Steitz, R Kreuzer, M Rose, M Herrlich, H Mezei, F Grunze, M Dahint, R AF Strobl, M. Steitz, R. Kreuzer, M. Rose, M. Herrlich, H. Mezei, F. Grunze, M. Dahint, R. TI BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NEUTRON-SCATTERING; ROUGH SURFACES; INSTRUMENT; VESICLES AB BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fur Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad range of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581210] C1 [Strobl, M.; Kreuzer, M.; Grunze, M.; Dahint, R.] Univ Heidelberg, D-69120 Heidelberg, Germany. [Strobl, M.; Steitz, R.; Kreuzer, M.; Rose, M.; Herrlich, H.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Mezei, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Strobl, M (reprint author), Univ Heidelberg, Neuenheimer Feld 253, D-69120 Heidelberg, Germany. RI Grunze, Michael/H-1600-2013; Strobl, Markus/C-7556-2014; Kreuzer, Martin/G-3156-2015 OI Strobl, Markus/0000-0001-9315-8787; Kreuzer, Martin/0000-0002-7305-5016 FU BMBF [05KN7VH1]; HZB FX This work has been funded by the BMBF by Grant No. 05KN7VH1. Additional financial support was received from HZB. NR 20 TC 16 Z9 16 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 055101 DI 10.1063/1.3581210 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700047 PM 21639532 ER PT J AU Vondrasek, R Kolomiets, A Levand, A Pardo, R Savard, G Scott, R AF Vondrasek, R. Kolomiets, A. Levand, A. Pardo, R. Savard, G. Scott, R. TI Performance of the Argonne National Laboratory electron cyclotron resonance charge breeder SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ATLAS AB An electron cyclotron resonance charge breeder for the Californium rare ion breeder upgrade (CARIBU), a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), has been constructed and commissioned. Charge breeding efficiencies up to 15.6% have been realized for stable beams with a typical breeding time of 10 ms/charge state. The CARIBU system has been undergoing commissioning tests utilizing a 100 mCi (252)Cf fission source. A charge breeding efficiency of 14.8 +/- 5% has been achieved for the first radioactive beam of (143)Cs(27+). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3586765] C1 [Vondrasek, R.; Kolomiets, A.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Vondrasek, R (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 12 TC 10 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 053301 DI 10.1063/1.3586765 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700009 PM 21639494 ER PT J AU Xiao, BP Reece, CE Phillips, HL Geng, RL Wang, H Marhauser, F Kelley, MJ AF Xiao, B. P. Reece, C. E. Phillips, H. L. Geng, R. L. Wang, H. Marhauser, F. Kelley, M. J. TI Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID THIN-FILMS; RESISTANCE AB A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample. (C) 2011 American Institute of Physics. [doi:10.1063/1.3575589] C1 [Xiao, B. P.; Reece, C. E.; Phillips, H. L.; Geng, R. L.; Wang, H.; Marhauser, F.; Kelley, M. J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Xiao, B. P.; Kelley, M. J.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Xiao, BP (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM reece@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX The authors would like to thank J. Delayen, J. Nance, J. Ozelis, T. Powers, P. Kushnick, S. Dutton, and M. Morrone for their contributions and support during the development of this system. This manuscript has been authored in part by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U. S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U. S. Government purposes. NR 11 TC 4 Z9 4 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 056104 DI 10.1063/1.3575589 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700067 PM 21639552 ER PT J AU Zhang, HQ Divan, R Wang, PS AF Zhang, Hanqiao Divan, Ralu Wang, Pingshan TI Ferromagnetic resonance of a single magnetic nanowire measured with an on-chip microwave interferometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-FREQUENCY PROPERTIES; PERMALLOY THIN-FILMS; DOMAIN AB An on-chip microwave interferometer suitable for high-sensitivity nanoscale magnetic material characterization is proposed. The device cancels the background parasitic common mode noise automatically. The magnetization dynamics of a 240 nm wide, 5 mu m long, and 70 nm thick single permalloy nanowire is investigated. Compared with a prototype device proposed previously, the proposed device has a more than 20 dB sensitivity improvement. Full wave three-dimensional simulation shows that the device has the capability of studying the fundamental physics of nanoscale magnetic devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3593502] C1 [Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wang, Pingshan] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC 29631 USA. FU Clemson Incentive fund; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The research was funded by Clemson Incentive fund. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 3 Z9 3 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2011 VL 82 IS 5 AR 054704 DI 10.1063/1.3593502 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 770RR UT WOS:000291106700044 ER PT J AU Oostrom, M Tartakovsky, GD Wietsma, TW Truex, MJ Dane, JH AF Oostrom, M. Tartakovsky, G. D. Wietsma, T. W. Truex, M. J. Dane, J. H. TI Determination of Water Saturation in Relatively Dry Porous Media Using Gas-Phase Tracer Tests SO VADOSE ZONE JOURNAL LA English DT Article ID PARTITIONING TRACER; REMEDIATION PERFORMANCE; ORGANIC VAPORS; SOIL; ADSORPTION; COEFFICIENTS; DIFFUSION; SORPTION AB Soil desiccation (drying), induced by dry air injection and moist air extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot tests and field sites. In this study, tracer tests were conducted in porous medium columns with various water saturations using SF(6) as the conservative tracer and trichlorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. For sediments with significant silt or organic matter fractions, however, tracer tests only provided satisfactory results when the water saturation was greater than 0.1 to 0.2. For drier conditions, the apparent tracer retardation increased due to air-soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air-water partitioning and water-soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided that the initial water saturations are sufficiently large. Tracer tests are not suitable for quantifying moisture content in relatively dry sediments, however, especially if significant amounts of organic matter or silt are present. C1 [Oostrom, M.; Tartakovsky, G. D.; Truex, M. J.] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99354 USA. [Wietsma, T. W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Dane, J. H.] Auburn Univ, Dep Agron & Soils, Auburn, AL 36849 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnl.gov FU CH2M Hill Plateau Remediation Company at the Department of Energy; Battelle Memorial Institute for the Department of Energy (US-DOE) [DE-AC06-76RLO 1830] FX Funding for this research was provided by CH2M Hill Plateau Remediation Company at the Department of Energy Hanford Site as part of the Deep Vadose Zone Treatability Test Project. Pacific Northwest National Laboratory (PNNL) is operated by the Battelle Memorial Institute for the Department of Energy (US-DOE) under Contract DE-AC06-76RLO 1830. The column experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the USDOE's Office of Biological and Environmental Research and located at PNNL. NR 25 TC 4 Z9 4 U1 1 U2 13 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2011 VL 10 IS 2 BP 634 EP 641 DI 10.2136/vzj2010.0101 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 774ON UT WOS:000291396000016 ER PT J AU Liu, HH AF Liu, Hui-Hai TI A Conductivity Relationship for Steady-State Unsaturated Flow Processes under Optimal Flow Conditions SO VADOSE ZONE JOURNAL LA English DT Article ID ACTIVE FRACTURE MODEL; DRAINAGE NETWORKS; PREFERENTIAL FLOW; REGION MODEL; SOILS; NONEQUILIBRIUM; TRANSPORT; PATTERNS; ENERGY AB Optimality principles have been used to investigate physical processes in different areas. This work applied an optimal principle (that water flow resistance is minimized for the entire flow domain) to steady-state unsaturated flow processes. Based on the calculus of variations, under optimal conditions, hydraulic conductivity for steady-state, gravity-dominated unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). This theoretical result was also consistent with observed fingering-flow behavior in unsaturated soils and an existing model. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov FU DOE [DE-AC03-76F00098] FX The initial version of the paper was carefully reviewed by Dr. Jim Houseworth and Dr. Dan Hawkes. The work was performed under DOE Contract DE-AC03-76F00098. NR 22 TC 11 Z9 11 U1 0 U2 9 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2011 VL 10 IS 2 BP 736 EP 740 DI 10.2136/vzj2010.0118 PG 5 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 774ON UT WOS:000291396000026 ER PT J AU McKenna, SA Ray, J Marzouk, Y Waanders, BV AF McKenna, Sean A. Ray, Jaideep Marzouk, Youssef Waanders, Bart van Bloemen TI Truncated multiGaussian fields and effective conductance of binary media SO ADVANCES IN WATER RESOURCES LA English DT Article DE Upscaling; Binary media; Effective conductivity ID EFFECTIVE CONDUCTIVITY; EFFECTIVE PERMEABILITY; GROUNDWATER-FLOW; AQUIFER SYSTEM; EXCURSION SETS; POROUS-MEDIA; COMPOSITES; INHOMOGENEITIES; INCLUSIONS; SIMULATION AB Truncated Gaussian fields provide a flexible model for defining binary media with dispersed (as opposed to layered) inclusions. General properties of excursion sets on these truncated fields are coupled with a distance-based upscaling algorithm and approximations of point process theory to develop an estimation approach for effective conductivity in two-dimensions. Estimation of effective conductivity is derived directly from knowledge of the kernel size used to create the multiGaussian field, defined as the full-width at half maximum (FWHM), the truncation threshold and conductance values of the two modes. Therefore, instantiation of the multiGaussian field is not necessary for estimation of the effective conductance. The critical component of the effective medium approximation developed here is the mean distance between high conductivity inclusions. This mean distance is characterized as a function of the FWHM, the truncation threshold and the ratio of the two modal conductivities. Sensitivity of the resulting effective conductivity to this mean distance is examined for two levels of contrast in the modal conductances and different FWHM sizes. Results demonstrate that the FWHM is a robust measure of mean travel distance in the background medium. The resulting effective conductivities are accurate when compared to numerical results and results obtained from effective media theory, distance-based upscaling and numerical simulation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [McKenna, Sean A.] Sandia Natl Labs, Geosci Res & Applicat Grp, Albuquerque, NM 87185 USA. [Ray, Jaideep] Sandia Natl Labs, Livermore, CA 94550 USA. [Marzouk, Youssef] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Waanders, Bart van Bloemen] Sandia Natl Labs, Numer Anal & Applicat Dept, Albuquerque, NM 87185 USA. RP McKenna, SA (reprint author), Sandia Natl Labs, Geosci Res & Applicat Grp, POB 5800,MS 0751, Albuquerque, NM 87185 USA. EM samcken@sandia.gov FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors appreciate the thoughtful comments of two anonymous reviewers. This work was funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 52 TC 2 Z9 2 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2011 VL 34 IS 5 BP 617 EP 626 DI 10.1016/j.advwatres.2011.02.011 PG 10 WC Water Resources SC Water Resources GA 768JH UT WOS:000290929700006 ER PT J AU Jarman, KD Tartakovsky, AM AF Jarman, Kenneth D. Tartakovsky, Alexandre M. TI Divergence of solutions to perturbation-based advection-dispersion moment equations SO ADVANCES IN WATER RESOURCES LA English DT Article DE Porous media; Stochastic; Random fields; Moment equations; Solute transport ID HETEROGENEOUS POROUS-MEDIA; PROBABILITY DENSITY-FUNCTIONS; STOCHASTIC-ANALYSIS; LOCALIZED ANALYSES; VELOCITY-FIELDS; TRANSIENT FLOW; FLUX APPROACH; MONTE-CARLO; TRANSPORT; FRAMEWORK AB Moment equation methods are popular and powerful tools for modeling transport processes in randomly heterogeneous porous media, but the application of these methods to advection-dispersion equations often leads to erroneous oscillations. Perturbative methods, required to close systems of moment equations, become inaccurate for large perturbations: however, little quantitative theory exists for determining when this occurs for advection-dispersion equations. We consider three different methods (asymptotic approximation, Eulerian truncation, and iterative solution) for closing and solving advection-dispersion moment equations describing transport in stratified porous media with random permeability. We obtain approximate analytical expressions for time above which the asymptotic approximation to the mean diverges, in particular quantifying the impact that dispersion has on delaying but not eliminating divergence. We demonstrate that Eulerian truncation and iterative solution methods do not eliminate divergent behavior either. Our divergence criteria provide a priori estimates that signal a warning to the practitioner of stochastic advection-dispersion equations to carefully consider whether to apply perturbative approaches. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Jarman, Kenneth D.; Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jarman, KD (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM kj@pnl.gov; alexandre.tartakovsky@pnl.gov RI Jarman, Kenneth/B-6157-2011 OI Jarman, Kenneth/0000-0002-4396-9212 FU Department of Energy's Office of Advanced Scientific Computing Research FX This work was supported by the Department of Energy's Office of Advanced Scientific Computing Research and performed at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. NR 32 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2011 VL 34 IS 5 BP 659 EP 670 DI 10.1016/j.advwatres.2011.03.002 PG 12 WC Water Resources SC Water Resources GA 768JH UT WOS:000290929700010 ER PT J AU Perez-Bergquist, SJ Vermaak, N Pollock, TM AF Perez-Bergquist, Sara J. Vermaak, Natasha Pollock, Tresa M. TI High-Temperature Performance of Actively Cooled Vapor Phase Strengthened Nickel-Based Thermostructural Panels SO AIAA JOURNAL LA English DT Article ID SANDWICH PANELS; ALUMINIDE COATINGS; MICROSTRUCTURE; ALLOYS; DESIGN; CORES AB Actively cooled thermostructural panels for use in emerging hypersonic flight systems require advanced materials able to support substantial loads at elevated temperatures. Identifying formable structural materials with strength, toughness, and oxidation resistance is a major challenge in this advancing technology. Geometrical optimization of thermostructural panels for scramjet applications minimizing mass with appropriate mechanical strength and cooling capacity combinations often requires submillimeter wall and face-sheet thicknesses. A new processing method was developed, resulting in rectangular-channeled panels made of nickel-based precipitation-strengthened alloy in a previously unobtainable thin-walled geometry suitable for active cooling. The processing method begins with panel fabrication from submillimeter-thin sheets of a Ni-based solid-solution alloy. The strength of the panel is subsequently increased by vapor phase aluminization combined with an annealing treatment. The vapor phase strengthening process increases the yield strength of the panel by a factor of approximately three. Panels were fabricated with geometry representative of optimal designs and tested at high temperature with active cooling in both as-fabricated and strengthened states. The strengthened, actively cooled panel withstood a temperature 478 C higher than the as-fabricated panel before failure under high heat flux conditions, indicating that the vapor phase strengthening process provides substantial new performance capabilities. C1 [Perez-Bergquist, Sara J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Vermaak, Natasha; Pollock, Tresa M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Perez-Bergquist, SJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U.S. Office of Naval Research [N00014-05-1-0439] FX The support of the U.S. Office of Naval Research (grant N00014-05-1-0439) is gratefully acknowledged. The authors also appreciate the assistance of Chris Torbet for helpful discussions and assistance with experimental procedures. NR 20 TC 2 Z9 2 U1 2 U2 13 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAY PY 2011 VL 49 IS 5 BP 1080 EP 1086 DI 10.2514/1.J050815 PG 7 WC Engineering, Aerospace SC Engineering GA 770FI UT WOS:000291072000018 ER PT J AU Anton, DL Price, CJ Gray, J AF Anton, Donald L. Price, Christine J. Gray, Joshua TI Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH2/MgH2 Mixture SO ENERGIES LA English DT Article DE hydrogen storage; lithium amide; magnesium hydride; isothermal kinetics; oxide ID N-H SYSTEM; HYDROGEN-STORAGE PROPERTIES; LITHIUM AMIDE; LIH; 1ST-PRINCIPLES; DESORPTION; NH3; ACTIVATION; LINH2-MGH2; HYDRIDES AB The destabilized complex hydride system composed of LiNH2:MgH2 (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of similar to 32 kJ/mole H-2 was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 degrees C to 200 degrees C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH3 formation. C1 [Anton, Donald L.; Price, Christine J.; Gray, Joshua] Savannah River Natl Lab Aiken, Aiken, SC 29803 USA. RP Anton, DL (reprint author), Savannah River Natl Lab Aiken, Aiken, SC 29803 USA. EM donald.anton@srnl.doe.gov; christine.erdy@srs.gov; joshua.gray@srnl.doe.gov FU US-DOE through the Metal Hydride Center of Excellence FX The authors thank H. zur Loye, Daniel Bugaris and Muktha Bharathy at the University of South Carolina and Susan Michele Everett from the University of Tennessee for their efforts on performing XRD analyses; Z. Fang at the University of Utah, Ragaiy Zidan of Savannah River National Laboratory and Ned Stetson of the U.S. DOE for helpful discussions; and Joseph Wheeler at Savannah River National Laboratory for maintaining the laboratory. This work is financially supported by the US-DOE through the Metal Hydride Center of Excellence. NR 40 TC 6 Z9 6 U1 0 U2 16 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD MAY PY 2011 VL 4 IS 5 BP 826 EP 844 DI 10.3390/en4050826 PG 19 WC Energy & Fuels SC Energy & Fuels GA 769XC UT WOS:000291050600008 ER PT J AU Gillespie, KM Rogers, A Ainsworth, EA AF Gillespie, Kelly M. Rogers, Alistair Ainsworth, Elizabeth A. TI Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max) SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Antioxidant metabolism; ascorbate; dehydroascorbate reductase; glutathione reductase; oxidative stress; ozone pollution ID ASCORBIC-ACID; DEHYDROASCORBATE REDUCTASE; BIOCHEMICAL RESPONSES; GLUTATHIONE-REDUCTASE; MEDICAGO-TRUNCATULA; SIGNALING PATHWAYS; REACTIVE OXYGEN; REDOX STATUS; CELL-DEATH; PLANTS AB Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO(2)]) or chronic elevated ozone concentration ([O(3)]; 90 ppb), and then exposed to an acute O(3) stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O(3) treatment. Growth at chronic elevated [O(3)] increased the total antioxidant capacity of plants, while growth at elevated [CO(2)] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O(3) stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O(3)]. Growth at elevated [CO(2)] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO(2)] and [O(3)] will differentially affect the antioxidant system. C1 [Gillespie, Kelly M.; Ainsworth, Elizabeth A.] Univ Illinois, Physiol & Mol Plant Biol Program, Urbana, IL 61801 USA. [Rogers, Alistair] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Rogers, Alistair] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. [Ainsworth, Elizabeth A.] USDA ARS, Global Change & Photosynth Res Unit, Urbana, IL 61801 USA. RP Ainsworth, EA (reprint author), Univ Illinois, Physiol & Mol Plant Biol Program, 1201 W Gregory Dr, Urbana, IL 61801 USA. EM lisa.ainsworth@ars.usda.gov RI Rogers, Alistair/E-1177-2011 OI Rogers, Alistair/0000-0001-9262-7430 FU US Department of Energy [DE-AC02-98CH10886]; Illinois Council for Food and Agricultural Research (CFAR) FX We thank Andrew Leakey, Don Ort, Tim Mies, and Jesse McGrath for construction and support of the growth chamber facility. We also thank Robert Koester and Jessica Chiang for assistance in plant maintenance, tissue sampling, and biochemistry. Finally, we thank Craig Yendrek and Carrie Ramig for assistance with the real-time PCR. KMG was supported by a Graduate Research for the Environment Fellowship from the US Department of Energy's Global Change Education Program. Funding for building the ozone fumigation system was provided by the Illinois Council for Food and Agricultural Research (CFAR). This research was supported in part by the US Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. NR 73 TC 46 Z9 50 U1 3 U2 39 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD MAY PY 2011 VL 62 IS 8 BP 2667 EP 2678 DI 10.1093/jxb/erq435 PG 12 WC Plant Sciences SC Plant Sciences GA 766UZ UT WOS:000290813300017 PM 21282325 ER PT J AU Brundage, AL Donaldson, AB Gill, W Kearney, SP Nicolette, VF Yilmaz, N AF Brundage, Aaron L. Donaldson, A. Burl Gill, Walt Kearney, Sean P. Nicolette, Vern F. Yilmaz, Nadir TI Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple SO JOURNAL OF FIRE SCIENCES LA English DT Article DE thermocouple response; temperature measurement; fire modeling ID HEAT-TRANSFER; CYLINDER AB This PIRT exercise identifies a number of factors which can influence thermocouple readings made in fires. Identified factors are: (a) the fuel/oxidizer equivalence ratio and its effect on readings, (b) the influence of the state of oxidation and variation with time for the thermocouple sheath, (c) the convection coefficient models and how experimental readings are influenced by thermocouple diameter and yaw angle, (d) response time of a MIMS thermocouple, and (e) thermocouple end effects. C1 [Yilmaz, Nadir] New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. [Brundage, Aaron L.; Donaldson, A. Burl; Gill, Walt; Kearney, Sean P.; Nicolette, Vern F.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Yilmaz, N (reprint author), New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. EM yilmaznadir@yahoo.com NR 13 TC 13 Z9 13 U1 0 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0734-9041 J9 J FIRE SCI JI J. Fire Sci. PD MAY PY 2011 VL 29 IS 3 BP 195 EP 211 DI 10.1177/0734904110386187 PG 17 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 762XT UT WOS:000290516200001 ER PT J AU Brundage, AL Donaldson, AB Gill, W Kearney, SP Nicolette, VF Yilmaz, N AF Brundage, Aaron L. Donaldson, A. Burl Gill, Walt Kearney, Sean P. Nicolette, Vern F. Yilmaz, Nadir TI Thermocouple Response in Fires, Part 2: Validation of Virtual Thermocouple Model for Fire Codes SO JOURNAL OF FIRE SCIENCES LA English DT Article DE virtual thermocouple model; thermocouple heat balance; fire code development; fire temperature measurements ID TEMPERATURE-MEASUREMENTS; DIFFUSION FLAME; CARS AB A virtual thermocouple model for high fidelity multiphysics computer simulation is introduced in this article. Detailed thermocouple and gas temperature (Coherent Anti-Stokes Raman Scattering) measurements were performed using a well-controlled, adiabatic, flat-flame Hencken burner, which provided data for validating the thermocouple model in a Sandia National Laboratories fire code. Comparison of simulation results to test data indicated a mean error of 6% between the thermocouple reading and predicted temperature. C1 [Yilmaz, Nadir] New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. [Brundage, Aaron L.; Donaldson, A. Burl; Gill, Walt; Kearney, Sean P.; Nicolette, Vern F.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Yilmaz, N (reprint author), New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. EM yilmaznadir@yahoo.com FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The virtual thermocouple model discussed in this article was developed in collaboration with Jens Holen of Statoil, Norway (formerly of the Division of Applied Thermodynamics, SINTEF/NTH, Norway). NR 16 TC 7 Z9 8 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0734-9041 J9 J FIRE SCI JI J. Fire Sci. PD MAY PY 2011 VL 29 IS 3 BP 213 EP 226 DI 10.1177/0734904110386188 PG 14 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 762XT UT WOS:000290516200002 ER PT J AU Arthur, DC Edwards, RA Tsutakawa, S Tainer, JA Frost, LS Glover, JNM AF Arthur, David C. Edwards, Ross A. Tsutakawa, Susan Tainer, John A. Frost, Laura S. Glover, J. N. Mark TI Mapping interactions between the RNA chaperone FinO and its RNA targets SO NUCLEIC ACIDS RESEARCH LA English DT Article ID F-LIKE PLASMIDS; X-RAY SOLUTION; ESCHERICHIA-COLI; ANTISENSE RNA; MACROMOLECULAR STRUCTURES; TRANSFER INHIBITOR; TRANSPORTER PROP; SCATTERING SAXS; PROTEIN; CRYSTALLOGRAPHY AB Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5'-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem-loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3' single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3'-nucleotide blocks FinO binding, suggesting FinO binds the 3'-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO-SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation. C1 [Arthur, David C.; Edwards, Ross A.; Glover, J. N. Mark] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. [Tsutakawa, Susan; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Genome Stabil, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Frost, Laura S.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. RP Glover, JNM (reprint author), Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. EM ross.edwards@ualberta.ca; mark.glover@ualberta.ca FU Canadian Institutes of Health Research (CIHR); Howard Hughes Medical Institute (HHMI); Department of Energy [DE-FG0207ER64326] FX Canadian Institutes of Health Research (CIHR); the Howard Hughes Medical Institute (HHMI) International Scholar Program (to J.N.M.G.); SAXS beamline SIBLYS and efforts on complexes controlling microbial colonies funded by the MAGGIE (Molecular Assemblies, Genes and Genomes Integrated Efficiently) project, Department of Energy grant (DE-FG0207ER64326 to J.A.T.) in part. Funding for open access charge: Canadian Institutes of Health Research (CIHR). NR 49 TC 10 Z9 10 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAY PY 2011 VL 39 IS 10 BP 4450 EP 4463 DI 10.1093/nar/gkr025 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 770CB UT WOS:000291063500044 PM 21278162 ER PT J AU Barber, SK Morrison, GY Yashchuk, VV Gubarev, MV Geckeler, RD Buchheim, J Siewert, F Zeschke, T AF Barber, Samuel K. Morrison, Gregory Y. Yashchuk, Valeriy V. Gubarev, Mikhail V. Geckeler, Ralf D. Buchheim, Jana Siewert, Frank Zeschke, Thomas TI Developmental long-trace profiler using optimally aligned mirror-based pentaprism SO OPTICAL ENGINEERING LA English DT Article DE optical metrology; surface slope metrology; surface profilometer; long-trace profilers; developmental long-trace profilers; pentaprism; mirror-based pentaprism; alignment; deflectometry ID OPTICS AB A low-budget surface slope-measuring instrument, the developmental long-trace profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve submicroradian surface slope metrology has been verified via cross-comparison measurements to other high-performance slope-measuring instruments when measuring the same high-quality test optics. Further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror-based pentaprism, which offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror-based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray-tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared to measurements using the new mirror-based pentaprism, demonstrating the improved performance. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3572113] C1 [Barber, Samuel K.; Morrison, Gregory Y.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gubarev, Mikhail V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Geckeler, Ralf D.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Buchheim, Jana; Siewert, Frank; Zeschke, Thomas] Elekt Speicherring BESSY II, Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. RP Barber, SK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd,M-S 15R0327, Berkeley, CA 94720 USA. EM VVYashchuk@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; United States Government FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 24 TC 8 Z9 8 U1 4 U2 10 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD MAY PY 2011 VL 50 IS 5 AR 053601 DI 10.1117/1.3572113 PG 10 WC Optics SC Optics GA 769NW UT WOS:000291024100010 ER PT J AU Lee, Y Chen, F Gallego-Giraldo, L Dixon, RA Voit, EO AF Lee, Yun Chen, Fang Gallego-Giraldo, Lina Dixon, Richard A. Voit, Eberhard O. TI Integrative Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for Monolignol Biosynthesis SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PHENYLALANINE AMMONIA-LYASE; CAFFEIC ACID 3-O-METHYLTRANSFERASE; ACINETOBACTER SP ADP1; SALICYLIC-ACID; DOWN-REGULATION; PHENYLPROPANOID BIOSYNTHESIS; ALCOHOL-DEHYDROGENASE; LIGNIN; TOBACCO; PATHWAYS AB The entanglement of lignin polymers with cellulose and hemicellulose in plant cell walls is a major biological barrier to the economically viable production of biofuels from woody biomass. Recent efforts of reducing this recalcitrance with transgenic techniques have been showing promise for ameliorating or even obviating the need for costly pretreatments that are otherwise required to remove lignin from cellulose and hemicelluloses. At the same time, genetic manipulations of lignin biosynthetic enzymes have sometimes yielded unforeseen consequences on lignin composition, thus raising the question of whether the current understanding of the pathway is indeed correct. To address this question systemically, we developed and applied a novel modeling approach that, instead of analyzing the pathway within a single target context, permits a comprehensive, simultaneous investigation of different datasets in wild type and transgenic plants. Specifically, the proposed approach combines static flux-based analysis with a Monte Carlo simulation in which very many randomly chosen sets of parameter values are evaluated against kinetic models of lignin biosynthesis in different stem internodes of wild type and lignin-modified alfalfa plants. In addition to four new postulates that address the reversibility of some key reactions, the modeling effort led to two novel postulates regarding the control of the lignin biosynthetic pathway. The first posits functionally independent pathways toward the synthesis of different lignin monomers, while the second postulate proposes a novel feedforward regulatory mechanism. Subsequent laboratory experiments have identified the signaling molecule salicylic acid as a potential mediator of the postulated control mechanism. Overall, the results demonstrate that mathematical modeling can be a valuable complement to conventional transgenic approaches and that it can provide biological insights that are otherwise difficult to obtain. C1 [Lee, Yun; Voit, Eberhard O.] Georgia Inst Technol, Integrat BioSyst Inst, Atlanta, GA 30332 USA. [Lee, Yun; Voit, Eberhard O.] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Lee, Yun; Voit, Eberhard O.] Emory Univ, Atlanta, GA 30322 USA. [Lee, Yun; Chen, Fang; Dixon, Richard A.; Voit, Eberhard O.] BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. [Chen, Fang; Gallego-Giraldo, Lina; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73402 USA. RP Lee, Y (reprint author), Georgia Inst Technol, Integrat BioSyst Inst, Atlanta, GA 30332 USA. EM eberhard.voit@bme.gatech.edu FU BioEnergy Science Center (BESC), a U.S. Department of Energy Research Center; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by the BioEnergy Science Center (BESC), a U.S. Department of Energy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 24 Z9 24 U1 1 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAY PY 2011 VL 7 IS 5 AR e1002047 DI 10.1371/journal.pcbi.1002047 PG 13 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 769LT UT WOS:000291015800023 PM 21625579 ER PT J AU Pang, TY Maslov, S AF Pang, Tin Yau Maslov, Sergei TI A Toolbox Model of Evolution of Metabolic Pathways on Networks of Arbitrary Topology SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID GENOMES; GENES; WORLD AB In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal'' network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world'' topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks. C1 [Pang, Tin Yau; Maslov, Sergei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Pang, Tin Yau] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Pang, TY (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM maslov@bnl.gov RI Maslov, Sergei/C-2397-2009 OI Maslov, Sergei/0000-0002-3701-492X FU Division of Material Science, US Department of Energy [DE-AC02-98CH10886]; Office of Biological and Environmental Research, US Department of Energy [DE-FOA-0000143] FX Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886, Division of Material Science, US Department of Energy. Part of this study was supported by the program "Computational Biology and Bioinformatic Methods to Enable a Systems Biology Knowledgebase'' (DE-FOA-0000143) of the Office of Biological and Environmental Research, US Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 19 TC 6 Z9 6 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAY PY 2011 VL 7 IS 5 AR e1001137 DI 10.1371/journal.pcbi.1001137 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 769LT UT WOS:000291015800011 PM 21625566 ER PT J AU Carlstrom, JE Ade, PAR Aird, KA Benson, BA Bleem, LE Busetti, S Chang, CL Chauvin, E Cho, HM Crawford, TM Crites, AT Dobbs, MA Halverson, NW Heimsath, S Holzapfel, WL Hrubes, JD Joy, M Keisler, R Lanting, TM Lee, AT Leitch, EM Leong, J Lu, W Lueker, M Luong-Van, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Schwan, D Shirokoff, E Spieler, HG Staniszewski, Z Stark, AA Tucker, C Vanderlinde, K Vieira, JD Williamson, R AF Carlstrom, J. E. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Busetti, S. Chang, C. L. Chauvin, E. Cho, H. -M. Crawford, T. M. Crites, A. T. Dobbs, M. A. Halverson, N. W. Heimsath, S. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Lanting, T. M. Lee, A. T. Leitch, E. M. Leong, J. Lu, W. Lueker, M. Luong-Van, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Schwan, D. Shirokoff, E. Spieler, H. G. Staniszewski, Z. Stark, A. A. Tucker, C. Vanderlinde, K. Vieira, J. D. Williamson, R. TI The 10 Meter South Pole Telescope SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; STRONG ELECTROTHERMAL FEEDBACK; POLARIZATION; BOLOMETERS; ARRAYS; WAVES; SUBMILLIMETER AB The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Gregorian telescope with a 966 pixel, multicolor, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize noise and false signals due to ground pickup. The key initial project is a large-area survey at wavelengths of 3, 2, and 1.3 mm, to detect clusters of galaxies via the Sunyaev-Zel'dovich effect and to measure the small-scale angular power spectrum of the cosmic microwave background (CMB). The data will be used to characterize the primordial matter power spectrum and to place constraints on the equation of state of dark energy. A second-generation camera will measure the polarization of the CMB, potentially leading to constraints on the neutrino mass and the energy scale of inflation. C1 [Carlstrom, J. E.; Bleem, L. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; Luong-Van, D.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Luong-Van, D.; Meyer, S. S.; Padin, S.; Pryke, C.; Vanderlinde, K.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Bleem, L. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Ade, P. A. R.; Tucker, C.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; Holzapfel, W. L.; Lee, A. T.; Schwan, D.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chauvin, E.] Gen Dynam Satcom Technol, San Jose, CA 95131 USA. [Cho, H. -M.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Dobbs, M. A.; Lanting, T. M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Leong, J.; Lu, W.; Montroy, T. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Mohr, J. J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Carlstrom, JE (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM jc@kicp.uchicago.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Stark, Antony/0000-0002-2718-9996; Tucker, Carole/0000-0002-1851-3918 FU National Science Foundation (NSF) [ANT-0638937, ANT-0130612]; US Antarctic Program; Raytheon Polar Services Company; NSF Physics Frontier Center at the University of Chicago [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; National Sciences and Engineering Research Council of Canada; Quebec Fonds de Recherche sur la Nature et les Technologies; Canadian Institute for Advanced Research FX We thank R. Hills for many useful discussions on the optical design. We gratefully acknowledge the contributions to the construction of the telescope from T. Hughes, P. Huntley, B. Johnson, E. Nichols, and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the US Antarctic Program and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. The SPT is supported by the NSF through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. The McGill University group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de Recherche sur la Nature et les Technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: J. Carlstrom from the James S. McDonnell Foundation, K. Schaffer from a Kavli Institute for Cosmological Physics (KICP) Fellowship, J. McMahon from a Fermi Fellowship, Z. Staniszewski from a Graduate Assistance in Areas of National Need (GAANN) Fellowship, and A. T. Lee from the Miller Institute for Basic Research in Science, University of California, Berkeley. NR 43 TC 195 Z9 197 U1 1 U2 8 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2011 VL 123 IS 903 BP 568 EP 581 DI 10.1086/659879 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 768NY UT WOS:000290943000007 ER PT J AU Chen, JJ Graetz, J AF Chen, Jiajun Graetz, Jason TI Study of Antisite Defects in Hydrothermally Prepared LiFePO4 by in Situ X-ray Diffraction SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE hydrothermal; cation disorder; lithium iron phosphate; in situ X-ray diffraction; battery cathode ID LITHIUM IRON PHOSPHATE; ELECTROCHEMICAL-BEHAVIOR; CATHODE MATERIALS; IMPURITIES; MANGANESE; BATTERIES; LIXFEPO4; DISORDER; OLIVINES AB Hydrothermal synthesis has proven to be a cost-effective, energy-efficient approach for the manufacture of lithium iron phosphate (LiFePO4) and its related materials. However, hydrothermally prepared LiFePO4 typically suffers from antisite defects, where some of the iron resides on lithium sites and restricts lithium-ion mobility. A post-heat-treatment temperature of around 700 degrees C is generally used to eliminate cation disorder, but little is known about these antisite defects or their concentration as a function of the post-heat-treatment temperature. In this study, time-resolved, synchrotron X-ray diffraction reveals that antisite defects are completely eliminated above 500 degrees C, suggesting that the electrochemical performance may be significantly enhanced by a milder postsynthesis heat treatment. The preliminary electrochemical results show a significant enhancement in the electrochemical capacity with the defect-free material, with the specific capacity increasing by approximately 60% at a C/20 rate. C1 [Chen, Jiajun; Graetz, Jason] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Chen, JJ (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jjchen@bnl.gov FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; Laboratory Directed Research and Development at BNL; U.S. DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC02-98CH10886 with funding from Laboratory Directed Research and Development at BNL. Use of the NSLS at BNL was supported by the U.S. DOE, Office of Basic Energy Sciences (Grant DE-AC02-98CH10886). The authors are very grateful to Dr. Jonathan Hanson and Dr. Rui Si for fruitful discussion and technical support at NSLS Beamline X7B. NR 19 TC 46 Z9 49 U1 3 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAY PY 2011 VL 3 IS 5 BP 1380 EP 1384 DI 10.1021/am200141a PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 767GR UT WOS:000290843800002 PM 21526798 ER PT J AU Qi, JS Huang, JY Feng, J Shi, DN Li, J AF Qi, Jing Shan Huang, Jian Yu Feng, Ji Shi, Da Ning Li, Ju TI The Possibility of Chemically Inert, Graphene-Based All-Carbon Electronic Devices with 0.8 eV Gap SO ACS NANO LA English DT Article DE self-folding; graphene; nanotube; half-nanotube; bilayer edge; hybrid device ID FIELD-EFFECT TRANSISTORS; BILAYER GRAPHENE; TRANSPORT-PROPERTIES; NANOTUBES; NANORIBBONS; GROWTH AB Graphene is an Interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, If produced, would be chemically stable at room temperature under normal gas environments. C1 [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Qi, Jing Shan; Feng, Ji; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Qi, Jing Shan; Shi, Da Ning] Nanjing Univ Aeronaut & Astronaut, Dept Appl Phys, Nanjing 210016, Peoples R China. RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; liju@seas.upenn.edu RI Qi, Jingshan/A-8426-2012; Huang, Jianyu/C-5183-2008; Li, Ju/A-2993-2008; Feng, Ji/B-6775-2009 OI Li, Ju/0000-0002-7841-8058; Feng, Ji/0000-0003-1944-718X FU NSF [DMR-0520020]; Honda Research Institute USA; AFOSR [FA9550-08-1-0325]; China Scholarship Council; NSFJS [BK2010499]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by NSF DMR-0520020, Honda Research Institute USA, and AFOSR FA9550-08-1-0325. J.Q. thanks the support by China Scholarship Council and NSFJS No. BK2010499. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 20 Z9 20 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3475 EP 3482 DI 10.1021/nn102322s PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800009 PM 21456598 ER PT J AU Yui, X Xiao, K Chen, JH Lavrik, NV Hong, KL Sumpter, BG Geohegan, DB AF Yui, Xiang Xiao, Kai Chen, Jihua Lavrik, Nickolay V. Hong, Kunlun Sumpter, Bobby G. Geohegan, David B. TI High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers SO ACS NANO LA English DT Article DE self-assembly; conjugated diblock copolymer; organic field-effect transistors ID THIN-FILM TRANSISTORS; CONJUGATED BLOCK-COPOLYMERS; POLYMER SOLAR-CELLS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); CHARGE-TRANSPORT; MICROPHASE SEPARATION; MOLECULAR-WEIGHT; EFFECT MOBILITY; MORPHOLOGY; POLYTHIOPHENE AB Polystyrene-b-poly(3-hexylthiophene) (PS-b-P3HT) block copolymers with fixed PS block length have been synthesized by combined atom transfer radical polymerization (ATRP) and Grignard metathesis (GRIM) polymerization. The self-assembled structures of these diblock copolymer thin films based on PS-b-P3HT have been studied by TEM, SAED, GIXD, AFM, and additionally by first principles modeling and simulation. These block copolymers undergo microphase separation and form nanostructured spheres, lamellae, nanofibers, or nanoribbons In the films dictated by the molecular weight of the P3HT block. Within the diblock copolymer thin film, PS blocks segregate to form amorphous domains, and the covalently bonded conjugated P3HT blocks exist as highly ordered crystalline domains through intermolecular packing with their alkyl side chains aligned normal to the substrate while the thiophene rings align parallel to the substrate through pi-pi stacking. The conjugated PS-b-P3HT block copolymers exhibited significant improvements in organic field-effect transistor (OFET) performance and environmental stability as compared to P3HT homopolymers, with up to a factor of 2 increase in measured mobility (0.08 cm(2)/(V.s)) for the P4(85 wt % P3HT). Overall, this work demonstrates that the high degree of molecular order induced by block copolymer phase separation can improve the transport properties and stability of conjugating polymers, which are critical for high-performance OFETs and other organic electronics. C1 [Yui, Xiang] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Xiao, Kai; Chen, Jihua; Lavrik, Nickolay V.; Hong, Kunlun; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov; hongkq@ornl.gov RI Xiao, Kai/A-7133-2012; Sumpter, Bobby/C-9459-2013; Chen, Jihua/F-1417-2011; Lavrik, Nickolay/B-5268-2011; Geohegan, David/D-3599-2013; Hong, Kunlun/E-9787-2015 OI Xiao, Kai/0000-0002-0402-8276; Sumpter, Bobby/0000-0001-6341-0355; Chen, Jihua/0000-0001-6879-5936; Lavrik, Nickolay/0000-0002-9543-5634; Geohegan, David/0000-0003-0273-3139; Hong, Kunlun/0000-0002-2852-5111 FU Scientific User Facilities Division, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. NR 45 TC 21 Z9 21 U1 3 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3559 EP 3567 DI 10.1021/nn2007964 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800018 ER PT J AU Cho, J Gao, L Tian, JF Cao, HL Wu, W Yu, QK Yitamben, EN Fisher, B Guest, JR Chen, YP Guisinger, NP AF Cho, Jongweon Gao, Li Tian, Jifa Cao, Helin Wu, Wei Yu, Qingkai Yitamben, Esmeralda N. Fisher, Brandon Guest, Jeffrey R. Chen, Yong P. Guisinger, Nathan P. TI Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing SO ACS NANO LA English DT Article DE graphene; chemical vapor deposition; Cu foil; scanning tunneling microscopy; Moire pattern; corrosion; surface oxide ID GRAPHITE; FILMS; PHASE AB We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at similar to 430 degrees C) exhibit predominantly striped Moire patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the simple (at 700-800 degrees C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands). and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion. C1 [Cho, Jongweon; Gao, Li; Yitamben, Esmeralda N.; Fisher, Brandon; Guest, Jeffrey R.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Tian, Jifa; Cao, Helin; Chen, Yong P.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Tian, Jifa; Cao, Helin; Chen, Yong P.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Wu, Wei] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA. [Wu, Wei; Yu, Qingkai] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. RP Cho, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jwcho@anl.gov RI Cho, Jongweon/F-3704-2011; Wu, Wei/F-5519-2011; Cao, Helin/G-5521-2012; Guest, Jeffrey/B-2715-2009; Chen, Yong/K-7017-2012; Cao, Helin/B-5908-2013; Tian, Jifa/C-4047-2013 OI Guest, Jeffrey/0000-0002-9756-8801; Chen, Yong/0000-0002-7356-4179; Tian, Jifa/0000-0003-2921-470X FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; SISGR [DE-FG02-09ER16109]; DARPA [MIPR 10-E533] FX The use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 and "SISGR" Contract No. DE-FG02-09ER16109. This work is also supported by DARPA contract MIPR 10-E533. NR 30 TC 86 Z9 87 U1 6 U2 124 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3607 EP 3613 DI 10.1021/nn103338g PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800024 PM 21500843 ER PT J AU Cho, J Berbil-Bautista, L Pechenezhskiy, IV Levy, N Meier, SK Srinivasan, V Kanai, Y Grossman, JC Vollhardt, KPC Crommie, MF AF Cho, Jongweon Berbil-Bautista, Luis Pechenezhskiy, Ivan V. Levy, Niv Meier, Steven K. Srinivasan, Varadharajan Kanai, Yosuke Grossman, Jeffrey C. Vollhardt, K. Peter C. Crommie, Michael F. TI Single-Molecule-Resolved Structural Changes Induced by Temperature and Light in Surface-Bound Organometallic Molecules Designed for Energy Storage SO ACS NANO LA English DT Article DE scanning tunneling microscopy; fulvalene; ruthenium; CO loss; isomerization; energy storage ID (FULVALENE)TETRACARBONYLDIRUTHENIUM; PHOTOCHEMISTRY; COMPLEXES AB We have used scanning tunneling microscopy, Auger electron spectroscopy, and density functional theory calculations to investigate thermal and photoinduced structural transitions in (fulvalene)tetracarbonyldiruthenium molecules (designed for light energy storage) on a Au(111) surface. We find that both the parent complex and the photoisomer exhibit striking thermally Induced structural phase changes on Au(111), which we attribute to the loss of carbonyl ligands from the organometallic molecules. Density functional theory calculations support this conclusion. We observe that UV Exposure leads to pronounced structural change only in the parent complex, indicative of a photoisomerization reaction. C1 [Cho, Jongweon; Pechenezhskiy, Ivan V.; Crommie, Michael F.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Berbil-Bautista, Luis; Levy, Niv; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Meier, Steven K.; Vollhardt, K. Peter C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Srinivasan, Varadharajan; Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Cho, Jongweon; Berbil-Bautista, Luis; Pechenezhskiy, Ivan V.; Levy, Niv; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94554 USA. RP Cho, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM jwcho@ani.gov; crommie@berkeley.edu RI Cho, Jongweon/F-3704-2011; Kanai, Yosuke/B-5554-2016 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC03-76SF0098]; National Science Foundation within the Center of Integrated Nanomechanical Systems [EEC-0425941]; UC Berkeley; NSF [CHE-0907800]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX STM instrumentation development and measurements supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC03-76SF0098; STM data analysis supported by the National Science Foundation within the Center of Integrated Nanomechanical Systems, under Grant EEC-0425941; molecular synthesis supported by the Sustainable Products and Solutions Program at UC Berkeley and the NSF (CHE-0907800); numerical simulations supported by the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 20 TC 9 Z9 9 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3701 EP 3706 DI 10.1021/nn2000367 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800035 PM 21480634 ER PT J AU Zhu, WG Chen, H Bevan, KH Zhang, ZY AF Zhu, Wenguang Chen, Hua Bevan, Kirk H. Zhang, Zhenyu TI Formation of Graphene p-n Superlattices on Pb Quantum Wedged Islands SO ACS NANO LA English DT Article DE graphene p-n superlattice; quantum size effects; graphene/metal contact ID MASSLESS DIRAC FERMIONS; AUGMENTED-WAVE METHOD; SUBSTRATE; JUNCTION; FILMS AB On the basis of first-principles calculations within density functional theory, we report on a novel scheme to create graphene p-n superlattices on Pb wedged Islands with quantum stability. Pb(111) wedged islands grown on vicinal Si(111) extend over several Si steps, forming a wedged structure with atomically flat tops. The monolayer thickness variation due to the underlying substrate steps is a sizable fraction of the total thickness of the wedged islands and gives rise to a bilayer oscillation in the work function of Pb(111) due to quantum size effects. Here, we demonstrate that when a graphene sheet is placed on the surface of such a Pb wedged island, the spatial work function oscillation on the Pb wedged island surface caused by the underlying steps results in an oscillatory shift in the graphene Dirac point with respect to the Fermi level. Furthermore, by applying an external electric field of similar to 0.5 V/angstrom in the surface normal direction, the Fermi level of the system can be globally tuned to an appropriate position such that the whole graphene layer becomes a graphene p-n superlattice of seamless junctions, with potentially exotic physical properties and intriguing applications in nanoelectronics. C1 [Zhu, Wenguang; Chen, Hua; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhu, Wenguang; Chen, Hua; Bevan, Kirk H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bevan, Kirk H.] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Bevan, Kirk H.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD HFNL, Hefei 230026, Anhui, Peoples R China. RP Zhu, WG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM wzhu3@utk.edu RI Zhu, Wenguang/F-4224-2011; Chen, Hua/H-3092-2013 OI Zhu, Wenguang/0000-0003-0819-595X; Chen, Hua/0000-0003-0676-3079 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; NSF [0906025]; NSERC of Canada FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, and in part by NSF Grant No. 0906025 and NSERC of Canada. The calculations were performed at NERSC of DOE. NR 51 TC 9 Z9 9 U1 6 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3707 EP 3713 DI 10.1021/nn200052f PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800036 PM 21473606 ER PT J AU Mistry, KS Larsen, BA Bergeson, JD Barnes, TM Teeter, G Engtrakul, C Blackburn, JL AF Mistry, Kevin S. Larsen, Brian A. Bergeson, Jeremy D. Barnes, Teresa M. Teeter, Glenn Engtrakul, Chaiwat Blackburn, Jeffrey L. TI n-Type Transparent Conducting Films of Small Molecule and Polymer Amine Doped Single-Walled Carbon Nanotubes SO ACS NANO LA English DT Article DE single-walled carbon nanotubes; photovoltaics; doping; n-type; transparent conductor; amine; thin films ID GRAPHITE-INTERCALATION COMPOUNDS; FIELD-EFFECT TRANSISTORS; CHARGE-TRANSFER; RAMAN-SCATTERING; C-13 NMR; NETWORKS; SPECTROSCOPY; FUNCTIONALIZATION; PHOTOVOLTAICS; DEPENDENCE AB In this report, we investigate the electrical and optical properties of thin conducting films of SWNTs after treatment with small molecule and polymeric amines. Among those tested, we find hydrazine to be the most effective n-type dopant. We use absorbance, Raman, X-ray photoelectron, and nuclear magnetic resonance spectroscopies on thin conducting films and opaque buckypapers treated with hydrazine to study fundamental properties and spectroscopic signatures of n-type SWNTs and compare them to SWNTs treated with nitric acid, a well-characterized p-type dopant. We find that hydrazine physisorbs to the surface of semiconducting and metallic SWNTs and Injects large electron concentrations, raising the Fermi level as much as 0.7 eV above that of intrinsic SWNTs. Hydrazine-treated transparent SWNT films display sheet resistances nearly as low as p-type nitric-acid-treated films at similar optical transmittances, demonstrating their potential for use in photovoltaic devices as low work function transparent electron-collecting electrodes. C1 [Mistry, Kevin S.; Larsen, Brian A.; Bergeson, Jeremy D.; Barnes, Teresa M.; Teeter, Glenn; Engtrakul, Chaiwat; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mistry, Kevin S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Jeffrey.blackburn@nrel.gov RI Engtrakul, Chaiwat/H-5634-2011; Blackburn, Jeffrey/D-7344-2012; Larsen, Brian/B-4807-2008 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308]; Seed Fund program of the Solar Energy Technology Program (SETP) FX We thank Ross Larsen for density functional calculations, and for the table of contents image. Doping and spectroscopy studies were supported by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. Thin film development was supported by the Seed Fund program of the Solar Energy Technology Program (SETP). NR 53 TC 44 Z9 44 U1 4 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3714 EP 3723 DI 10.1021/nn200076r PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800037 PM 21388221 ER PT J AU Rivest, JB Swisher, SL Fong, LK Zheng, HM Alivisatos, AP AF Rivest, Jessy B. Swisher, Sarah L. Fong, Lam-Kiu Zheng, Haimei Alivisatos, A. Paul TI Assembled Monolayer Nanorod Heterojunctions SO ACS NANO LA English DT Article DE cation exchange; self-assembly; epitaxial heterojunction nanorod ID CATION-EXCHANGE; SOLAR-CELLS; ELECTRIC-FIELD; THIN-FILMS; METAL; NANOWIRES; CRYSTALS AB Compositional and Interfacial control in heterojunction thin films is critical to the performance of complex devices that separate or combine charges. For high performance, these applications require epitaxially matched interfaces, which are difficult to produce. Here, we present a new architecture for producing low-strain, single-crystalline heterojunctions using self-assembly and in-film cation exchange of colloidal nanorods. A systematic set of experiments demonstrates a cation exchange procedure that lends precise control over compositional depths in a monolayer film of vertically aligned nanorods. Compositional changes are reflected by electrical performance as rectification is induced, quenched, and reversed during cation exchange from CdS to Cu(2)S to PbS. As an additional benefit, we achieve this single-crystal architecture via an inherently simple and low-temperature wet chemical process, which is general to a variety of chemistries. This permits ensemble measurement of transport through a colloidal nanoparticle film with no interparticle charge hopping. C1 [Fong, Lam-Kiu; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rivest, Jessy B.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Swisher, Sarah L.] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. [Zheng, Haimei; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Helios Solar Energy Research Center; Inorganic/Organic Nanocomposites NSET Program [KC3104]; National Science Foundation FX We gratefully acknowledge P.K. Jain, B. Sadtler, J. Urban, D. Milliron, and E. Rabani for helpful discussions and critical review of the manuscript We thank KM. Yu for RES data, and M.V.P. Altoe and S. Aloni for EFTEM data. SEM, EDS, and EFTEM were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), and were supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. HRTEM was performed at the National Center for Electron Microscopy at LBNL. Work summarized in Figure 2 was funded by the Helios Solar Energy Research Center, which Is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work summarized in Figures 3 and 4 was supported by Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract No. DE-AC02-05CH11231 on the Inorganic/Organic Nanocomposites NSET Program, KC3104. J.B.R. and S.L.S. performed electrical measurements and were supported by National Science Foundation Graduate Student Fellowships. An Intel Fellowship supported the research on heterojunction formation (J.B.R.). NR 33 TC 68 Z9 68 U1 7 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3811 EP 3816 DI 10.1021/nn2001454 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800047 PM 21469653 ER PT J AU Fagan, JA Huh, JY Simpson, JR Blackburn, JL Holt, JM Larsen, BA Walker, ARH AF Fagan, Jeffrey A. Huh, Ji Yeon Simpson, Jeffrey R. Blackburn, Jeffrey L. Holt, Josh M. Larsen, Brian A. Walker, Angela R. Hight TI Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes SO ACS NANO LA English DT Article DE nanotube; SWCNT; centrifugation; separation; deoxycholate; empty; water-filled ID DENSITY-GRADIENT ULTRACENTRIFUGATION; RAMAN-SPECTROSCOPY; LENGTH; SURFACTANTS; DISPERSION; DIFFERENTIATION; CENTRIFUGATION; ENCAPSULATION; ENRICHMENT; SUSPENSION AB The separation of empty and water-filled laser ablation and electric arc synthesized nanotubes is reported. Centrifugation of these large-diameter nanotubes dispersed with sodium deoxycholate using specific conditions produces isolated bands of empty and water-filled nanotubes without significant diameter selection. This separation is shown to be consistent across multiple nanotube populations dispersed from different source soots. Detailed spectroscopic characterization of the resulting empty and filled fractions reveals that water filling leads to systematic changes to the optical and vibrational properties. Furthermore, sequential separation of the resolved fractions using cosurfactants and density gradient ultracentrifugation reveals that water filling strongly influences the optimal conditions for metallic and semiconducting separation. C1 [Fagan, Jeffrey A.; Huh, Ji Yeon] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Simpson, Jeffrey R.] Towson Univ, Towson, MD 21252 USA. [Blackburn, Jeffrey L.; Holt, Josh M.; Larsen, Brian A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Walker, Angela R. Hight] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. RP Fagan, JA (reprint author), NIST, Div Polymers, Gaithersburg, MD 20899 USA. EM jeffrey.fagan@nist.gov RI Holt, Josh/G-8094-2011; Blackburn, Jeffrey/D-7344-2012; Larsen, Brian/B-4807-2008; Hight Walker, Angela/C-3373-2009; OI Hight Walker, Angela/0000-0003-1385-0672; Fagan, Jeffrey/0000-0003-1483-5554 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX J. Blackburn, J. Holt, and B. Larsen were supported by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 50 TC 31 Z9 31 U1 2 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3943 EP 3953 DI 10.1021/nn200458t PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800063 PM 21480636 ER PT J AU Roh, JW Hippalgaonkar, K Ham, JH Chen, RK Li, MZ Ercius, P Majumdar, A Kim, W Lee, W AF Roh, Jong Wook Hippalgaonkar, Kedar Ham, Jin Hee Chen, Renkun Li, Ming Zhi Ercius, Peter Majumdar, Arun Kim, Woochul Lee, Wooyoung TI Observation of Anisotropy in Thermal Conductivity of Individual Single-Crystalline Bismuth Nanowires SO ACS NANO LA English DT Article DE bismuth; nanowires; anisotropy; thermal conductivity; size effect ID TRANSPORT-PROPERTIES; BI NANOWIRES; THERMOELECTRIC FIGURE; SILICON NANOWIRES; SUPERCONDUCTIVITY; ARRAYS; MERIT AB The thermal conductivity of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires (ON-OFF) has been Investigated. We observed that the thermal conductivity of single-crystalline Bi nanowires Is highly anisotropic. Thermal conductivity of nanowires (diameter similar to 100 nm) in the off-axis [(1) over bar 02) and [110] directions exhibits a difference of similar to 7.0 W/m.K. The thermal conductivity in both growth directions is diameter-dependent, which indicates that thermal transport through the individual Bi nanowires is limited by boundary scattering of both electrons and phonons. This huge anisotropy in thermal conductivities of Bi nanowires suggests the importance of direction-dependent characterization of charge, thermal transport, and thermoelectric properties of Bi nanowires. C1 [Kim, Woochul] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea. [Roh, Jong Wook; Ham, Jin Hee; Lee, Wooyoung] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea. [Hippalgaonkar, Kedar; Li, Ming Zhi; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Chen, Renkun] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Labs, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kim, W (reprint author), Yonsei Univ, Sch Mech Engn, 262 Seongsanno, Seoul 120749, South Korea. EM woochul@yonsei.ac.kr; wooyoung@yonsei.ac.kr RI Chen, Renkun/J-2400-2014; Hippalgaonkar, Kedar/K-2196-2015 OI Chen, Renkun/0000-0001-7526-4981; FU Priority Research Center [2009-0093823]; Center for Nanostructured Materials Technology [2009K000452]; Office of Basic Energy Science, DOE [DE-AC02-05-CH11231]; U.S. Department of Energy [DE-AC02-05CH11231]; Seoul Science Fellowship FX This work was supported by Priority Research Centers Program (2009-0093823) and by a grant (code 2009K000452) from the Center for Nanostructured Materials Technology under the 21st Century Frontier R&D Programs through the National Research Foundation of Korea (NRF). Majumdar et al, acknowledge support from the Office of Basic Energy Science, DOE under Grant DE-AC02-05-CH11231 as well as the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank B. Kavaipatti for useful discussions on the analysis of Bi crystal structure. J.W.R. is thankful for the financial support from the Seoul Science Fellowship. NR 34 TC 35 Z9 35 U1 6 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3954 EP 3960 DI 10.1021/nn200474d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800064 PM 21466197 ER PT J AU Hahn, C Zhang, ZY Fu, A Wu, CH Hwang, YJ Gargas, DJ Yang, PD AF Hahn, Christopher Zhang, Zhaoyu Fu, Anthony Wu, Cheng Hao Hwang, Yun Jeong Gargas, Daniel J. Yang, Peidong TI Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes SO ACS NANO LA English DT Article DE InGaN nanowires; light-emitting diode; epitaxy; halide chemical vapor deposition; tunable emission ID ALLOYS; PHOTOLUMINESCENCE; HETEROSTRUCTURES; EMISSION; SILICON; SYSTEM; GAN AB Significant synthetic challenges remain for the epitaxial growth of high-quality InGaN across the entire compositional range. One strategy to address these challenges has been to use the nanowire geometry because of its strain relieving properties. Here, we demonstrate the heteroepitaxial growth of InxGa1-xN nanowire arrays (0.06 <= x <= 0.43) on c-plane sapphire (Al2O3(001)) using a halide chemical vapor deposition (HCVD) technique. Scanning electron microscopy and X-ray diffraction characterization confirmed the long-range order and epitaxy of vertically oriented nanowires. Structural characterization by transmission electron microscopy showed that single crystalline nanowires were grown in the < 002 > direction. Optical properties of InGaN nanowire arrays were investigated by absorption and photoluminescence measurements. These measurements show the tunable direct band gap properties of InGaN nanowires into the yellow-orange region of the visible spectrum. To demonstrate the utility of our HCVD method for implementation into devices, LEDs were fabricated from InxGa1-xN nanowires epitaxially grown on p-GaN(001). Devices showed blue (x = 0.06), green (x = 0.28), and orange (x = 0.43) electroluminescence, demonstrating electrically driven color tunable emission from this p-n junction. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Wu, Cheng Hao/C-9565-2014 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work on LED devices is supported by Samsung. We thank the National Center for Electron Microscopy for the use of their facilities. The Samsung Advanced Institute of Technology provided the p-GaN used in this experiment. Special thanks to Tev Kuykendall, Shaul Aloni, and Sarah Brittman for scientific discussion. NR 27 TC 71 Z9 73 U1 2 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAY PY 2011 VL 5 IS 5 BP 3970 EP 3976 DI 10.1021/nn200521r PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 767AD UT WOS:000290826800066 PM 21495684 ER PT J AU Suresh, AK Pelletier, DA Wang, W Broich, ML Moon, JW Gu, BH Allison, DP Joy, DC Phelps, TJ Doktycz, MJ AF Suresh, Anil K. Pelletier, Dale A. Wang, Wei Broich, Michael L. Moon, Ji-Won Gu, Baohua Allison, David P. Joy, David C. Phelps, Tommy J. Doktycz, Mitchel J. TI Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis SO ACTA BIOMATERIALIA LA English DT Article DE Biosynthesis; Gold; Hydrophilic; Shewanella; Nanoparticles ID REDUCTASE-MEDIATED SYNTHESIS; EXTRACELLULAR BIOSYNTHESIS; CDSE NANOCRYSTALS; SILVER; NANOMATERIALS; TOXICITY; FUNGUS AB Nanocrystallites have garnered substantial interest due to their various applications, including catalysis and medical research Consequently Important aspects of synthesis related to control of shape and size through economical and non-hazardous means are desirable Highly efficient bioreduction-based fabrication approaches that utilize microbes and/or plant extracts are poised to meet these needs Here we show that the gamma-proteobacterium Shewanella oneidensis can reduce tetrachloroaurate (III) ions to produce discrete extracellular spherical gold nanocrystallites The particles were homogeneously shaped with multiple size distributions and produced under ambient conditions at high yield, 88% theoretical maximum Further characterization revealed that the particles consist of spheres in the size range of similar to 2-50 nm, with an average size of 12 +/- 5 nm The nanoparticles were hydrophilic and resisted aggregation even after several months Based on our experiments, the particles are likely fabricated by the aid of reducing agents present in the bacterial cell membrane and are capped by a detachable protein/peptide coat. Ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectra and transmission electron microscopy measurements confirmed the formation, surface characteristics and crystalline nature of the nanoparticles. The antibacterial activity of these gold nanoparticles was assessed using Gram-negative (Escherichia coli and S oneidensis) and Gram-positive (Bacillus subtilis) bacterial species Toxicity assessments showed that the particles were neither toxic nor inhibitory to any of these bacteria (C) 2011 Acta Materialia Inc Published by Elsevier Ltd. All rights reserved C1 [Suresh, Anil K.; Pelletier, Dale A.; Broich, Michael L.; Moon, Ji-Won; Phelps, Tommy J.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Allison, David P.; Joy, David C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Joy, David C.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Suresh, AK (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RI Zhou, Qinghui/C-8436-2011; Pelletier, Dale/F-4154-2011; Moon, Ji-Won/A-9186-2011; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; Doktycz, Mitchel/A-7499-2011 OI Moon, Ji-Won/0000-0001-7776-6889; Gu, Baohua/0000-0002-7299-2956; Doktycz, Mitchel/0000-0003-4856-8343 FU Office of Biological and Environmental Research, US Department of Energy (DOE); US DOE [DE-AC05-00OR22725]; Oak Ridge National Laboratory, Division of Scientific User Facilities, US Department of Energy FX The authors acknowledge support from the Office of Biological and Environmental Research, US Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy NR 40 TC 66 Z9 71 U1 6 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD MAY PY 2011 VL 7 IS 5 BP 2148 EP 2152 DI 10.1016/j.actbio.2011.01.023 PG 5 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 764RH UT WOS:000290649500024 PM 21241833 ER PT J AU Yu, XH Zhang, JZ Wang, LP Ding, ZJ Jin, CQ Zhao, YS AF Yu, Xiaohui Zhang, Jianzhong Wang, Liping Ding, Zejun Jin, Changqing Zhao, Yusheng TI Comparative studies of constitutive properties of nanocrystalline and bulk iron during compressive deformation SO ACTA MATERIALIA LA English DT Article DE Nano iron; High pressure; Synchrotron ID PLASTIC-DEFORMATION; SEMICONDUCTOR NANOCRYSTALS; DISLOCATION NUCLEATION; MAXIMUM STRENGTH; GRAIN-SIZE; COPPER; DIFFRACTION; DISSIPATION; ENERGY; NICKEL AB We present a comparative study of the mechanical properties of body-centered cubic nanocrystalline iron (nano-Fe) and microcrystalline iron (micro-Fe) by in situ high-pressure synchrotron X-ray diffraction under triaxial compression. For nano-Fe with a starting high dislocation density of 10(16) m(-2), the peak broadening is almost reversible upon unloading from 8.6 GPa to atmospheric pressure, indicating that no additional dislocations are built up during compressive deformation inside grains, at grain boundaries or twin boundaries. Furthermore, an orientation-dependent surface strain is found to be stored in the surface layer of the bcc nano-Fe, which is in agreement with the core-shell model of the nanocrystals. For micro-Fe, a significant and continuous peak sharpening and the associated work softening were observed after the sample is yielded at pressures above 2.0 GPa, which can be presumably attributed to a pressure-induced dislocation annihilation. This finding/interpretation supports the hypothesis that the annihilation of dislocations is one of the dominant mechanisms underlying the plastic energy dissipation. The determined yield strength of 2.0 GPa for nano-Fe is more than 15 times higher than that for micro-Fe (0.13 GPa), indicating that the nanoscale grain-size reduction is a substantially more effective strengthening mechanism than conventional carbon infusion in iron. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yu, Xiaohui; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Yu, Xiaohui; Ding, Zejun] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China. [Yu, Xiaohui; Jin, Changqing] CAS, Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Yu, XH (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM xiaohui@lanl.gov; yzhao@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 FU Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; NSF [EAR 01-35554] FX This research is supported by Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The experimental work was carried out at beamline X17B2 at the National Synchrotron Light Source, Brook-haven National Laboratory, which is supported by the Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR 01-35554. NR 35 TC 7 Z9 7 U1 0 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 9 BP 3384 EP 3389 DI 10.1016/j.actamat.2011.02.013 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 765GL UT WOS:000290692600008 ER PT J AU Kapoor, R Rao, VSH Mishra, RS Baumann, JA Grant, G AF Kapoor, R. Rao, V. Sree Hari Mishra, R. S. Baumann, J. A. Grant, G. TI Probabilistic fatigue life prediction model for alloys with defects: Applied to A206 SO ACTA MATERIALIA LA English DT Article DE Fatigue; Probabilistic life prediction; Friction stir processing; Cast alloys; Al alloys ID ALUMINUM-SILICON ALLOYS; HIGH-CYCLE FATIGUE; CAST-ALUMINUM; CRACK GROWTH; MECHANICAL-PROPERTIES; MG ALLOY; MICROSTRUCTURE; BEHAVIOR; INITIATION; POROSITY AB A model for the prediction of fatigue life based on the statistical distribution of pores, intermetallic particles and grains is presented here. This has been applied to a cast Al alloy A206 before and after friction stir processing (FSP). The model computes the probability of initiating a small crack based on the probability of finding combinations of defects and grains on the surface. Crack initiation and the propagation life of small cracks due to these defect and grain combinations are computed and summed to obtain the total fatigue life. The defect and grain combinations are ranked according to total fatigue life and the failure probability computed. Bending fatigue experiments were carried out on A206 before and after FSP. FSP eliminated the porosity, broke down the particles and refined the microstructure. The model predicted the fatigue life of A206 before and after FSP well. The cumulative probability distribution vs. fatigue life was fitted to a three parameter Weibull distribution function. The scatter reduced after FSP and the fatigue threshold increased. The potential improvement in the fatigue life of A206 for a microstructure consisting of a finer distribution of particle sizes after FSP was predicted using the model. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kapoor, R.; Mishra, R. S.] Missouri Univ Sci & Technol, Ctr Frict Stir Proc, Rolla, MO 65409 USA. [Kapoor, R.; Mishra, R. S.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Rao, V. Sree Hari] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA. [Baumann, J. A.] Boeing Co, St Louis, MO 63166 USA. [Grant, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mishra, RS (reprint author), Missouri Univ Sci & Technol, Ctr Frict Stir Proc, Rolla, MO 65409 USA. EM rsmishra@mst.edu RI Mishra, Rajiv/A-7985-2009 OI Mishra, Rajiv/0000-0002-1699-0614 FU NSF-IUCRC; agency of the US Government FX This work was supported under the NSF-IUCRC grant for Center for Friction Stir Processing. The additional support of the NSFIIP (0531019), GM and Friction Stir Link for the Missouri S&T site is acknowledged. This report was prepared as an account of work sponsored by an agency of the US Government. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. The help of Nilesh Kumar in observing samples by SEM is acknowledged. NR 46 TC 7 Z9 7 U1 4 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 9 BP 3447 EP 3462 DI 10.1016/j.actamat.2011.02.019 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 765GL UT WOS:000290692600014 ER PT J AU Meltzman, H Chatain, D Avizemer, D Besmann, TM Kaplan, WD AF Meltzman, Hila Chatain, Dominique Avizemer, Dan Besmann, Theodore M. Kaplan, Wayne D. TI The equilibrium crystal shape of nickel SO ACTA MATERIALIA LA English DT Article DE Surface energy; Solid-state dewetting; Surface segregation; Equilibrium crystal shape; Surface anisotropy ID SURFACE FREE-ENERGY; GA-RICH LIQUIDS; ADSORPTION TRANSITION; INTERFACIAL ENERGY; ALLOY CRYSTALS; PB SYSTEM; THERMODYNAMICS; ANISOTROPY; DIFFUSION; TENSION AB The crystal shape of Ni particles, dewetted in the solid state on sapphire substrates, was examined as a function of the partial pressure of oxygen (P(O-2)) and iron content using scanning and transmission electron microscopy. The chemical composition of the surface was characterized by atom-probe tomography. Unlike other face-centered cubic (fcc) equilibrium crystal shapes, the Ni crystals containing little or no impurities exhibited a faceted shape, indicating large surface anisotropy. In addition to the {1 1 1}, {1 0 0} and {1 1 0} facets, which are usually present in the equilibrium crystal shape of fcc metals, high-index facets were identified such as {1 3 5} and {1 3 8} at low P(O-2), and {0 1 2} and {0 1 3} at higher P(O-2). The presence of iron altered the crystal shape into a truncated sphere with only facets parallel to denser planes. The issue of particle equilibration is discussed specifically for the case of solid-state dewetting. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Meltzman, Hila; Avizemer, Dan; Kaplan, Wayne D.] Technion Israel Inst Technol, Dept Mat Engn, IL-32000 Technion, Haifa, Israel. [Chatain, Dominique] Aix Marseille Univ, CNRS, CINAM UPR3118, F-13288 Marseille 09, France. [Besmann, Theodore M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kaplan, WD (reprint author), Technion Israel Inst Technol, Dept Mat Engn, IL-32000 Technion, Haifa, Israel. EM kaplan@tx.technion.ac.il RI Kaplan, Wayne/C-9100-2011; OI Kaplan, Wayne/0000-0001-9202-391X; Chatain, Dominique/0000-0002-9654-7291 FU United States Israel Binational Science Foundation (BSF) [2004068]; Russell Berrie Nanotechnology Institute at the Technion; Israel Ministry of Science; Ilan Ramon scholarship; Ministry of Science & Technology, Israel; Ministry of Research, France; European Union [FP7-NMP-2009-CSA-233484] FX The authors gratefully acknowledge P. Wynblatt for enlightening discussions. The United States Israel Binational Science Foundation (BSF Grant 2004068) and the Russell Berrie Nanotechnology Institute at the Technion are acknowledged for partial support of this study. Evan Ohriner of ORNL is thanked for providing high-purity Ni target material. H.M. acknowledges support from the Women in Science program of the Israel Ministry of Science and an Ilan Ramon scholarship. D.C. and W.D.K. acknowledge partial support from the Ministry of Science & Technology, Israel and the Ministry of Research, France. This document has been produced with the partial financial assistance of the European Union as part of the MACAN project as part of the Seventh Framework Programme (2007-2013) under grant agreement FP7-NMP-2009-CSA-233484. NR 37 TC 28 Z9 28 U1 0 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 9 BP 3473 EP 3483 DI 10.1016/j.actamat.2011.02.021 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 765GL UT WOS:000290692600016 ER PT J AU Kim, JS LaGrange, T Reed, BW Knepper, R Weihs, TP Browning, ND Campbell, GH AF Kim, J. S. LaGrange, T. Reed, B. W. Knepper, R. Weihs, T. P. Browning, N. D. Campbell, G. H. TI Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy SO ACTA MATERIALIA LA English DT Article DE Nickel aluminides; Thin film multilayers; Rapid solidification; Phase transformations; Dynamic transmission electron microscopy ID IN-SITU; THIN-FILMS; FOILS; PROPAGATION; VELOCITY; GROWTH; DTEM; PURE; TEM; AL AB Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nan-olaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within similar to 15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kim, J. S.; LaGrange, T.; Reed, B. W.; Browning, N. D.; Campbell, G. H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Kim, J. S.; Browning, N. D.] Univ Calif Davis, Davis, CA 95616 USA. [Knepper, R.; Weihs, T. P.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Kim, JS (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM judy.kim@materials.ox.ac.uk RI Weihs, Timothy/A-3313-2010; Reed, Bryan/C-6442-2013; Campbell, Geoffrey/F-7681-2010; OI Browning, Nigel/0000-0003-0491-251X FU Lawrence Livermore National Laboratory [B562528]; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Naval Research [N00014-07-1-0740]; US DOE; LLNL [DE-AC52-07NA27344] FX The authors thank Prof. O. Knio for useful discussions, and Phil Ramsey and Troy Barbee Jr. for making the Nirich RMLF. Much of this work was performed while JSK was at the University of California, Davis, and supported by the Lawrence Scholar program at Lawrence Livermore National Laboratory. TL, BWR, NDB and GHC were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. RK and TPW were supported by Lawrence Livermore National Laboratory through Grant Number B562528 and by the Office of Naval Research through Grant Number N00014-07-1-0740. This work was performed under the auspices of the US DOE and LLNL under Contract DE-AC52-07NA27344. NR 32 TC 36 Z9 37 U1 1 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 9 BP 3571 EP 3580 DI 10.1016/j.actamat.2011.02.030 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 765GL UT WOS:000290692600024 ER PT J AU Han, WZ Vinogradov, A Hutchinson, CR AF Han, W. Z. Vinogradov, A. Hutchinson, C. R. TI On the reversibility of dislocation slip during cyclic deformation of Al alloys containing shear-resistant particles SO ACTA MATERIALIA LA English DT Article DE Cyclic deformation; Slip irreversibility; Hysteresis loop; Precipitation strengthening; Al alloys ID STRESS-STRAIN RESPONSE; NICKEL-BASE SUPERALLOY; PRECIPITATION-HARDENED ALLOY; FATIGUE-CRACK INITIATION; STRENGTH ALUMINUM-ALLOYS; ATOMIC-FORCE MICROSCOPY; INTERNAL-STRESSES; SINGLE-CRYSTALS; CONSTITUTIVE MODEL; CU ALLOYS AB The cyclic deformation behavior of a model Al-4Cu-0.05Sn (wt.%) alloy containing a homogeneous and well-defined distribution of shear-resistant theta' (Al2Cu) precipitate plates was used to study the effect of precipitate state on the cyclic slip irreversibility. The precipitate spacing was controlled so that it was less than the self-trapping distance of dislocations. The cyclic deformation tests were conducted under constant plastic stain amplitude mode and the evolution of the cyclic stress and cyclic hardening rate with cumulative plastic strain were monitored. The deformed and undeformed microstructures were characterized using transmission electron microscopy. The cyclic deformation behavior and the corresponding dislocation structures depend on both precipitate state and imposed plastic strain amplitude. An expression for the cyclic slip irreversibility that explicitly depends on microstructural and deformation parameters was derived based on proposed mechanisms of interaction between the mobile dislocations and the precipitates. The cyclic deformation curve was calculated using the expression for the slip irreversibility and shown to describe most features of the cyclic deformation curves well, as a function of precipitate state and imposed plastic strain amplitude, as well as describing the results of plastic strain amplitude jump tests. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Han, W. Z.; Hutchinson, C. R.] Monash Univ, Dept Mat Engn, ARC Ctr Excellence Design Light Met, Clayton, Vic 3800, Australia. [Han, W. Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vinogradov, A.] Osaka City Univ, Dept Intelligent Mat Engn, Osaka 5588585, Japan. RP Hutchinson, CR (reprint author), Monash Univ, Dept Mat Engn, ARC Ctr Excellence Design Light Met, Clayton, Vic 3800, Australia. EM christopher.hutchinson@eng.monash.edu.au RI Han, Weizhong/C-9963-2011; VINOGRADOV, ALEXEI/A-7175-2009; OI VINOGRADOV, ALEXEI/0000-0001-9585-2801; Hutchinson, Christopher/0000-0003-1025-4445 FU Australian Research Council (ARC) FX This work is supported by the Australian Research Council (ARC) through the ARC Centre of Excellence for Design in Light Metals. C.R.H. gratefully acknowledges the award of a Future Fellowship from the ARC. The TEM experiments were performed at the Monash Centre for Electron Microscopy (MCEM). Dr Olivier Bouaziz (Arcelor-Mittal Research) is gratefully acknowledged for stimulating discussions. NR 60 TC 16 Z9 17 U1 1 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 9 BP 3720 EP 3736 DI 10.1016/j.actamat.2011.03.007 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 765GL UT WOS:000290692600038 ER PT J AU Waychunas, G AF Waychunas, Glenn TI Presentation of the Mineralogical Society of America Award for 2010 to Benjamin Gilbert SO AMERICAN MINERALOGIST LA English DT Biographical-Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Waychunas, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 0 U2 4 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2011 VL 96 IS 5-6 BP 946 EP 946 DI 10.2138/am.2011.573 PG 1 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 764CF UT WOS:000290605300028 ER PT J AU Gilbert, B AF Gilbert, Benjamin TI Acceptance of the Mineralogical Society of America Award for 2010 BENJAMIN GILBERT SO AMERICAN MINERALOGIST LA English DT Biographical-Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Gilbert, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Gilbert, Benjamin/E-3182-2010 NR 1 TC 0 Z9 0 U1 0 U2 5 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2011 VL 96 IS 5-6 BP 947 EP 947 DI 10.2138/am.2011.574 PG 1 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 764CF UT WOS:000290605300029 ER PT J AU Fryer, CL Heger, A AF Fryer, C. L. Heger, A. TI Forming massive black holes through stellar collapse: Observational diagnostics SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE black hole physics; gravitational collaps; neutrinos ID SUPERNOVAE; ACCRETION; EVOLUTION; STARS AB Massive black holes are believed to reside in the centers of many galaxies. Their seeds, 1000-100 000 solar mass black holes are believed to have formed during the first epoch of star formation. Observations of X-ray binaries suggest that at least some intermediate mass black holes form at lower redshifts. If so, we may be able to observe these massive collapses. These collapses are very different than normal core-collapse supernovae, however, and observing the collapse of massive stars will require different observing strategies than those used for normal stellar collapse. Unlike supernovae, the collapse of massive stars may not produce any burst of photons and we must be more creative in observing the occurrence of such exotic "outbursts". Here we briefly review the observational prospects of massive star collapse, focusing on the ever-present neutrino signal. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fryer, C. L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, C. L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Heger, A.] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA. RP Fryer, CL (reprint author), Los Alamos Natl Lab, CCS-2,MS D409, Los Alamos, NM 87544 USA. EM fryer@lanl.gov FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE [DE-SC0002300/FC02-09ER41618]; US Department of Energy [DE-FG02-87ER40328] FX Fryer would like to thank the organizers of the XMM meeting on ultraluminous X-ray sources for bringing together an excellent meeting discussing the issues of these interesting objects. Much of the work here was inspired by that meeting. The work by Fryer was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396. Heger has been supported by the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-SC0002300/FC02-09ER41618), and by the US Department of Energy under grant DE-FG02-87ER40328. NR 22 TC 15 Z9 15 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD MAY PY 2011 VL 332 IS 4 SI SI BP 408 EP 413 DI 10.1002/asna.201011510 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 764MG UT WOS:000290633000020 ER PT J AU McKechnie, J Zhang, YM Ogino, A Saville, B Sleep, S Turner, M Pontius, R MacLean, HL AF McKechnie, Jon Zhang, Yimin Ogino, Akifumi Saville, Brad Sleep, Sylvia Turner, Mark Pontius, Robert MacLean, Heather L. TI Impacts of co-location, co-production, and process energy source on life cycle energy use and greenhouse gas emissions of lignocellulosic ethanol SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biomass; poplar; ethanol; bioenergy; co-location; co-product; process energy ID LAND-USE CHANGE; PELLET PRODUCTION; BIOFUELS; BIOMASS; SWITCHGRASS; CONVERSION; ECONOMICS; BENEFITS; POPLAR; STOVER AB The performance of lignocellulosic ethanol in reducing greenhouse gas (GHG) emissions and fossil energy use when substituting for gasoline depends on production technologies and system decisions, many of which have not been considered in life cycle studies. We investigate ethanol production from short rotation forestry feedstock via an uncatalyzed steam explosion pre-treatment and enzymatic hydrolysis process developed by Mascoma Canada, Inc., and examine a set of production system decisions (co-location, co-production, and process energy options) in terms of their influence on life cycle emissions and energy consumption. All production options are found to reduce emissions and petroleum use relative to gasoline on a well-to-wheel (WTW) basis; GHG reductions vary by production scenario. Land-use-change effects are not included due to a lack of applicable data on short rotation forestry feed-stock. Ethanol production with wood pellet co-product, displacing coal in electricity generation, performs best amongst co-products in terms of GHG mitigation (-109% relative to gasoline, WTW basis). Maximizing pellet output, although requiring import of predominately fossil-based process energy, improves overall GHG-mitigation performance (-130% relative to gasoline, WTW). Similarly, lower ethanol yields result in greater GHG reductions because of increased co-product output. Co-locating ethanol production with facilities exporting excess steam and biomass-based electricity (e.g. pulp mills) achieves the greatest GHG mitigation (-174% relative to gasoline, WTW) by maximizing pellet output and utilizing low-GHG process energy. By exploiting co-location opportunities and strategically selecting co-products, lignocellulosic ethanol can provide large emission reductions, particularly if based upon sustainably grown, high yield, low input feedstocks. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [McKechnie, Jon; Sleep, Sylvia; MacLean, Heather L.] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. [Zhang, Yimin] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. [Ogino, Akifumi] Natl Agr & Food Res Org, Tsukuba, Ibaraki, Japan. [Saville, Brad; MacLean, Heather L.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada. [Turner, Mark; Pontius, Robert] Mascoma Canada Inc, Georgetown, ON, Canada. RP MacLean, HL (reprint author), Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. EM hmaclean@ecf.utoronto.ca RI McKechnie, Jon/G-5428-2011; OI McKechnie, Jon/0000-0001-5656-1649 FU AUTO21 Network Centre of Excellence, Genome Canada; Ontario Genomics Institute [2009-OGI-ABC-1405]; Mascoma Canada, Inc.; Natural Science and Engineering Research Council FX We thank AUTO21 Network Centre of Excellence, Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405), Mascoma Canada, Inc., and the Natural Science and Engineering Research Council for funding support. NR 44 TC 10 Z9 10 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD MAY-JUN PY 2011 VL 5 IS 3 BP 279 EP 292 DI 10.1002/bbb.286 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 763TW UT WOS:000290583600015 ER PT J AU Alia-Klein, N AF Alia-Klein, Nelly TI Monoamine Oxidase A and Impulsive Aggression: Gene-brain-behavior Interactions SO BIOLOGICAL PSYCHIATRY LA English DT Meeting Abstract CT 66th Annual Meeting of the Society-of-Biological-Psychiatry CY MAY 12-14, 2011 CL San Francisco, CA SP Soc Biol Psychiat C1 [Alia-Klein, Nelly] Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD MAY 1 PY 2011 VL 69 IS 9 SU S MA 359 BP 108S EP 108S PG 1 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 764OR UT WOS:000290641800344 ER PT J AU Mirrione, MM Li, B Henn, F AF Mirrione, Martine M. Li, Bo Henn, Fritz TI Lateral Habenula Circuit Activity Following High Frequency Deep Brain Stimulation SO BIOLOGICAL PSYCHIATRY LA English DT Meeting Abstract CT 66th Annual Meeting of the Society-of-Biological-Psychiatry CY MAY 12-14, 2011 CL San Francisco, CA SP Soc Biol Psychiat C1 [Mirrione, Martine M.; Li, Bo; Henn, Fritz] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Mirrione, Martine M.; Henn, Fritz] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD MAY 1 PY 2011 VL 69 IS 9 SU S MA 428 BP 127S EP 128S PG 2 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 764OR UT WOS:000290641800405 ER PT J AU Goldstein, RZ AF Goldstein, Rita Z. TI Cortical Control of Behavior: A Path to Addiction Recovery? SO BIOLOGICAL PSYCHIATRY LA English DT Meeting Abstract CT 66th Annual Meeting of the Society-of-Biological-Psychiatry CY MAY 12-14, 2011 CL San Francisco, CA SP Soc Biol Psychiat C1 [Goldstein, Rita Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD MAY 1 PY 2011 VL 69 IS 9 SU S MA 707 BP 213S EP 213S PG 1 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 764OR UT WOS:000290641800676 ER PT J AU Marchetti, F AF Marchetti, F. TI How Do Paternal Life Style and Environmental Exposures Impact on Sperm and Early Embryos? SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Meeting Abstract C1 [Marchetti, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD MAY PY 2011 VL 91 IS 5 SI SI BP 324 EP 324 PG 1 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 762QQ UT WOS:000290494900035 ER PT J AU Goldston, RJ Glaser, A AF Goldston, Robert J. Glaser, Alexander TI Inertial confinement fusion energy R&D and nuclear proliferation: The need for direct and transparent review SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE inertial confinement fusion; Lawrence Livermore National Laboratory; National Ignition Facility; nuclear energy; nuclear proliferation; nuclear weapons AB Proliferation concerns have generally been associated with the acquisition of the fissile material needed for nuclear weapons; however, the spread of the knowledge needed to build very light and powerful weapons that can be carried long distances by missiles is also a serious concern. Such knowledge could accelerate and destabilize regional arms races, and lead to the deployment of powerful weapons able to target the US and its allies. Classified weapons-related information has previously spread through the international effort to harness inertial confinement fusion. Success in achieving net fusion gain in the National Ignition Facility at the Lawrence Livermore National Laboratory could lead to greatly increased R&D in inertial confinement fusion worldwide, along with increased proliferation risks. The authors write that these issues have not yet been adequately addressed and require direct and transparent examination so that means to mitigate risks can be assessed and residual risks can be balanced against potential benefits. C1 [Goldston, Robert J.; Glaser, Alexander] Princeton Univ, Princeton, NJ 08544 USA. [Goldston, Robert J.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Goldston, RJ (reprint author), Princeton Univ, Princeton, NJ 08544 USA. NR 14 TC 2 Z9 2 U1 1 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD MAY-JUN PY 2011 VL 67 IS 3 SI SI BP 59 EP 66 DI 10.1177/0096340211407562 PG 8 WC International Relations; Social Issues SC International Relations; Social Issues GA 760VI UT WOS:000290351800008 ER PT J AU Yang, ZG Zhang, JL Kintner-Meyer, MCW Lu, XC Choi, DW Lemmon, JP Liu, J AF Yang, Zhenguo Zhang, Jianlu Kintner-Meyer, Michael C. W. Lu, Xiaochuan Choi, Daiwon Lemmon, John P. Liu, Jun TI Electrochemical Energy Storage for Green Grid SO CHEMICAL REVIEWS LA English DT Review ID REDOX FLOW BATTERY; LITHIUM-ION BATTERIES; SODIUM BETA-ALUMINA; ANION-EXCHANGE MEMBRANE; REGULATED LEAD/ACID BATTERIES; GRAPHITE ELECTRODE MATERIALS; DIOXIDE POSITIVE ELECTRODE; BROMINE SECONDARY BATTERY; MODIFIED NAFION MEMBRANE; OXIDIZED CARBON-FIBERS C1 [Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.; Lu, Xiaochuan; Choi, Daiwon; Lemmon, John P.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zgary.yang@pnl.gov RI Choi, Daiwon/B-6593-2008 FU DOE's Office of Electricity Delivery & Energy Reliability (OE), Advanced Research Program Agency-Energy (ARPA-E), Energy Efficiency & Renewable Energy (EERE) [57558, 58156, 59808]; DOE [DE-AC05-76RL01830] FX The authors would like to acknowledge financial support by DOE's Office of Electricity Delivery & Energy Reliability (OE), Advanced Research Program Agency-Energy (ARPA-E), Energy Efficiency & Renewable Energy (EERE) (under Contract Nos. 57558, 58156 and 59808, respectively) as well as by the Laboratory-Directed Research and Development Program of Pacific Northwest National Laboratory (PNNL). We are also thankful for useful discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage Program and Mr. Tien Duong of the EERE Vehicle Technology Storage Program. PNNL is a multiprogram national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 326 TC 1143 Z9 1166 U1 184 U2 1174 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD MAY PY 2011 VL 111 IS 5 BP 3577 EP 3613 DI 10.1021/cr100290v PG 37 WC Chemistry, Multidisciplinary SC Chemistry GA 761CO UT WOS:000290373100014 PM 21375330 ER PT J AU Colgate, SA Ziock, H AF Colgate, Stirling A. Ziock, Hans TI A Definition of Information, the Arrow of Information, and its Relationship to Life SO COMPLEXITY LA English DT Article DE definition of information; origin of life/information; selection; reproduction; artificial life ID MATHEMATICAL-THEORY; COMMUNICATION AB A new definition of information is proposed that is minimalistic and incorporates a lifetime requirement for conditions, (which we define here) applied to anything that can be considered to be information. The definition explicitly treats a state in thermodynamic equilibrium as an effectively zero information state. The definition includes the absolute requirement of selection for achieving information; the selection criterion being that the information directly or indirectly contributes to its own replication. The definition also explicitly incorporates the Laws of Thermodynamics, the Second Law leading to the requirement for replication. Finally, the definition explains the origin of information and predicts the monotonic increase of information with time. Published 2010 Wiley Periodicals, Inc. Complexity 16: 54-62, 2011 C1 [Ziock, Hans] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Colgate, Stirling A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ziock, H (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Mail Stop D462, Los Alamos, NM 87545 USA. EM ziock@lanl.gov FU U.S. Department of Energy FX The authors gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work. They also thank the reviewers and their colleagues for the suggested and implemented improvements and clarifications of arguments discussed in this article. NR 16 TC 6 Z9 6 U1 3 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1076-2787 J9 COMPLEXITY JI Complexity PD MAY-JUN PY 2011 VL 16 IS 5 BP 54 EP 62 DI 10.1002/cplx.20364 PG 9 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences SC Mathematics; Science & Technology - Other Topics GA 765BF UT WOS:000290677700007 ER PT J AU Millett, PC Tonks, M AF Millett, Paul C. Tonks, Michael TI Phase-field simulations of gas density within bubbles in metals under irradiation SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Phase-field simulation; Radiation effects; Gas bubbles ID KINETICS; GROWTH; ENERGY; VOIDS AB Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles in solids. In our simulations, which use copper as a model material, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization. (C) 2011 Elsevier B.V. All rights reserved. C1 [Millett, Paul C.; Tonks, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Millett, PC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM paul.millett@inl.gov FU US Department of Energy FX The authors gratefully acknowledge insightful conversations with Anter El-Azab, as well as financial support from the Nuclear Energy Modeling and Simulation (NEAMS) program within the US Department of Energy. NR 17 TC 5 Z9 5 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAY PY 2011 VL 50 IS 7 BP 2044 EP 2050 DI 10.1016/j.commatsci.2011.02.006 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 764RN UT WOS:000290650200011 ER PT J AU Kim, S Yan, JL Schwenzer, B Zhang, JL Li, LY Liu, J Yang, ZG Hickner, MA AF Kim, Soowhan Yan, Jingling Schwenzer, Birgit Zhang, Jianlu Li, Liyu Liu, Jun Yang, Zhenguo (Gary) Hickner, Michael A. TI Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries (vol 12, pg 1650, 2010) SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Correction C1 [Kim, Soowhan; Schwenzer, Birgit; Zhang, Jianlu; Li, Liyu; Liu, Jun; Yang, Zhenguo (Gary)] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yan, Jingling; Hickner, Michael A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Kim, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 1 TC 2 Z9 2 U1 2 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAY PY 2011 VL 13 IS 5 BP 525 EP 525 DI 10.1016/j.elecom.2011.04.001 PG 1 WC Electrochemistry SC Electrochemistry GA 765XA UT WOS:000290741500040 ER PT J AU Barone, TL Lall, AA Storey, JME Mulholland, GW Prikhodko, VY Frankland, JH Parks, JE Zachariah, MR AF Barone, Teresa L. Lall, Anshuman A. Storey, John M. E. Mulholland, George W. Prikhodko, Vitaly Y. Frankland, Jennifer H. Parks, James E. Zachariah, Michael R. TI Size-Resolved Density Measurements of Particle Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology SO ENERGY & FUELS LA English DT Article ID DIFFERENTIAL MOBILITY ANALYZER; MASS ANALYZER; VOLUME DISTRIBUTIONS; OPERATING-CONDITIONS; ONLINE MEASUREMENT; ORGANIC-COMPOUNDS; SURFACE-AREA; SOOT; NANOPARTICLES; OXIDATION AB We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) combustion and compare these with conventional diesel exhaust particles. The effective densities (rho(eff)) of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle inherent densities (rho(i)) were calculated using an expression for particle mass given by idealized aggregate (IA) theory, transmission electron microscopy (TEM) measurements of primary particle diameter (d(pp)), and a comparison of the measured number of particles in each size class with that predicted by a proposed DMA-APM response function for aggregates. The rho(eff) of POCI and conventional diesel particles were similar over a range of diameters characteristic of their number-size distributions. The rho(eff) were 0.89, 0.58, and 0.51 g/cm(3) for conventional diesel and 0.90, 0.62, and 0.42 g/cm(3) for PCCI particles with 50, 100, and 150 nm electrical mobility diameters (d(m)), respectively. The error associated with rho(eff) was about one percent of each measurement. The lowest rho(eff) were observed for exhaust gas recirculation (EGR) levels somewhat lower than that required for PCCI operation. The pi of 50 and 100 run conventional diesel particles were 1.22 +/- 0.14 and 1.77 +/- 0.29 g/cm(3), which is in good agreement with previously reported values. PCCI A for these size classes did not differ significantly (1.27 +/- 0.16 and 2.10 +/- 0.20 g/cm(3)), suggesting like amounts of adsorbed liquid hydrocarbons. In addition, for 150 nm particles, the PCCI and conventional rho(i) were the same (2.20 +/- 0.34 g/cm(3)). Given the dose density values, we expect that particulate emissions control with diesel particulate filters (DPFs) would not be adversely affected by PCCI particle physical properties. C1 [Lall, Anshuman A.; Mulholland, George W.; Zachariah, Michael R.] Univ Maryland, College Pk, MD 20742 USA. [Barone, Teresa L.; Storey, John M. E.; Prikhodko, Vitaly Y.; Parks, James E.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Frankland, Jennifer H.] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. [Mulholland, George W.; Zachariah, Michael R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Zachariah, MR (reprint author), Univ Maryland, 2125 Glenn L Martin Hall,Bldg 088, College Pk, MD 20742 USA. EM mrz@umd.edu RI Sanders, Susan/G-1957-2011 NR 49 TC 21 Z9 21 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAY PY 2011 VL 25 IS 5 BP 1978 EP 1988 DI 10.1021/ef200084k PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 764SC UT WOS:000290651900006 ER PT J AU Kohn, B Davis, M Maciel, GE AF Kohn, Benjamin Davis, Mark Maciel, Gary E. TI In situ Study of Dilute H2SO4 Pretreatment of C-13-Enriched Poplar Wood, Using C-13 NMR SO ENERGY & FUELS LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; COLORADO BLUE SPRUCE; WHITE-ROT DECAY; ACID PRETREATMENT; HIGH-RESOLUTION; LIGNOCELLULOSIC MATERIALS; CROSS POLARIZATION; ENZYMATIC SACCHARIFICATION; ETHANOL-PRODUCTION; SULFURIC-ACID AB In situ C-13 NMR measurements are reported on C-13-enriched powdered poplar wood that is subjected to pretreatment with 0.5 M sulfuric acid as a function of time and at two temperatures. C-13 MAS (magic-angle spinning) spectra were obtained in both the DP (direct polarization) and CP (cross-polarization) modes, the contrasts in this combination yielding valuable qualitative information on the effect of pretreatment on local molecular mobilities. T-1 values for C-13 and for H-1, as well as T-CH and T-1 rho H, were measured at various stages of treatment with 0.5 M H2SO4 for lignin peaks and for cellulose peaks in the C-13 NMR spectra, as quantitative indicators of the degree of molecular motion for those two structural entities. The results show that a substantial fraction of the solid/semisolid biomass is converted at elevated temperatures to (a) chemically different and more mobile structures and (b) locally similar structures with enhanced atomic-level mobilities and that some fraction of this "mobilized" biomass does not return to the original level of immobility upon cooling the biomass back to room temperature. Analysis of the T-1 results by a rather simple model indicates that, for poplar wood in 0.5% H2SO4, the estimated ("global") motional correlation time (at the multiatom level), tau(c), is in the range of about 0.7-1.5 ns at various stages and temperatures of the treatment. C1 [Kohn, Benjamin; Maciel, Gary E.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Davis, Mark] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Maciel, GE (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. EM gary.maciel@colostate.edu FU U.S. Department of Energy FX The authors gratefully acknowledge the support of this research by U.S. Department of Energy, the technical assistance of Dr. J. DiVerdi, and the help of S. Skogerboe of the Fort Collins Nursery fir providing the young poplar shoots. NR 63 TC 5 Z9 5 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAY PY 2011 VL 25 IS 5 BP 2301 EP 2313 DI 10.1021/ef2000213 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 764SC UT WOS:000290651900043 ER PT J AU Leighty, W Meier, A AF Leighty, Wayne Meier, Alan TI Accelerated electricity conservation in Juneau, Alaska: A study of household activities that reduced demand 25% SO ENERGY POLICY LA English DT Article DE Energy efficiency; Electricity price elasticity; Behavior ID RESIDENTIAL DEMAND AB An avalanche destroyed the main hydroelectric transmission line to Juneau, Alaska in April, 2008. Diesel-generated electricity was substituted, causing electricity prices to increase 500% for 45 days. Electricity demand fell by 25% during the supply disruption. Most of the reduction occurred before the higher rates were implemented. Some conservation - about 8% of historic consumption - persisted after the transmission line was repaired and prices returned to normal. Consumers reduced energy use through a combination of new habits and technical improvements. A survey of residential consumers indicated that the average household undertook 10 conservation actions, with major changes in lighting, space heating, fuel switching, and water and appliance use. We propose a method for prioritizing conservation actions for promotion according to their impact in electricity savings (as a function of popularity, effectiveness, and persistence) and a dynamic framework for electricity use before, during, and after a supply disruption (i.e., both the magnitude and rates of change in electricity conservation). (C) 2011 Elsevier Ltd. All rights reserved. C1 [Leighty, Wayne] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA. [Meier, Alan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leighty, W (reprint author), Univ Calif Davis, Inst Transportat Studies, 1 Shields Ave, Davis, CA 95616 USA. EM WayneLeighty@gmail.com; akmeier@lbl.gov FU Sustainable Transportation Energy Pathways (STEPS) Program; Energy Efficiency Center at the University of California at Davis FX The authors would like to thank the sponsors of the Sustainable Transportation Energy Pathways (STEPS) Program and Energy Efficiency Center at the University of California at Davis for funding. Gratitude is also expressed to Scott Willis and Gayle Wood from AEL&P for electricity use data and helpful review and input throughout this project, and to two anonymous reviewers for thoughtful comments. The views and opinions expressed in this paper are those of the authors alone and do not necessarily represent those of any sponsoring organization or outside reviewer. NR 16 TC 8 Z9 8 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAY PY 2011 VL 39 IS 5 BP 2299 EP 2309 DI 10.1016/j.enpol.2011.01.041 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 759JW UT WOS:000290237600008 ER PT J AU Bird, L Chapman, C Logan, J Sumner, J Short, W AF Bird, Lori Chapman, Caroline Logan, Jeff Sumner, Jenny Short, Walter TI Evaluating renewable portfolio standards and carbon cap scenarios in the US electric sector SO ENERGY POLICY LA English DT Article DE Renewable portfolio standard; Cap and trade; Policy implementation AB This report examines the impact of renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the U.S. to examine the impact of a variety of emissions caps-and RPS scenarios both individually and combined. The generation mix, carbon emissions, and electricity price are examined for various policy combinations simulated in the modeling. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bird, Lori; Chapman, Caroline; Logan, Jeff; Sumner, Jenny; Short, Walter] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Sumner, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,MS RSF 100, Golden, CO 80401 USA. EM jenny.sumner@nrel.gov NR 18 TC 25 Z9 25 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAY PY 2011 VL 39 IS 5 BP 2573 EP 2585 DI 10.1016/j.enpol.2011.02.025 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 759JW UT WOS:000290237600036 ER PT J AU Kyle, P Kim, SH AF Kyle, Page Kim, Son H. TI Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands SO ENERGY POLICY LA English DT Article DE Light-duty vehicles; Transportation emissions mitigation; Integrated assessment ID TRANSPORTATION SECTOR; PASSENGER TRANSPORT; LAND-USE; MITIGATION; FUTURE; EFFICIENCY; COST; N2O AB This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO2 emissions price pathway that achieves 450 ppmv CO2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology: with and without emissions pricing, global CO2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kyle, Page; Kim, Son H.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Kyle, P (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Ct,Suite 3500, College Pk, MD 20740 USA. EM pkyle@pnl.gov FU U.S. Department of Energy's Office of Science, the Electric Power Research Institute; Pacific Northwest National Laboratory FX The authors gratefully acknowledge funding support from the U.S. Department of Energy's Office of Science, the Electric Power Research Institute, and other sponsors of the Pacific Northwest National Laboratory's Global Energy Technology Strategy Program. NR 55 TC 36 Z9 36 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAY PY 2011 VL 39 IS 5 BP 3012 EP 3024 DI 10.1016/j.enpol.2011.03.016 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 759JW UT WOS:000290237600081 ER PT J AU Glatz, A Varlamov, AA Vinokur, VM AF Glatz, A. Varlamov, A. A. Vinokur, V. M. TI Quantum fluctuations and dynamic clustering of fluctuating Cooper pairs SO EPL LA English DT Article ID SUPERCONDUCTOR-INSULATOR TRANSITION; MAGNETIC-FIELD; CONDUCTIVITY; RESISTANCE; SYSTEMS; PHASE; FILMS AB We derive the complete expression for the fluctuation conductivity in two-dimensional superconductors as a function of the temperature and the magnetic field in the whole fluctuation region above the upper critical field H-c2(T). Focusing on the vicinity of the quantum phase transition near zero temperature, we propose that as the magnetic field approaches the line near H-c2(0) from above, a peculiar dynamic state consisting of clusters of coherently rotating fluctuation Cooper pairs forms and estimate the characteristic size and lifetime of such clusters. We find the zero-temperature magnetic-field dependence of the transverse magnetoconductivity above H-c2(0) in layered superconductors. Copyright (C) EPLA, 2011 C1 [Glatz, A.; Varlamov, A. A.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Varlamov, A. A.] SPIN, CNR, I-00133 Rome, Italy. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM glatz@anl.gov FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; MIUR; FP7-IRSES program [246937] FX We thank YU. GALPERIN, M. KARTSOVNIK, A. KOSHELEV, M. NORMAN for useful discussions, and T. BATURINA for discussions initiating this work. The work was supported by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. AAV acknowledges support of the MIUR under the project PRIN 2008 and FP7-IRSES program "SIMTECH", contract No. 246937. NR 21 TC 8 Z9 8 U1 1 U2 7 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2011 VL 94 IS 4 AR 47005 DI 10.1209/0295-5075/94/47005 PG 5 WC Physics, Multidisciplinary SC Physics GA 765OT UT WOS:000290718900023 ER PT J AU Mashnik, SG AF Mashnik, S. G. TI Validation and verification of MCNP6 against intermediate and high-energy experimental data and results by other codes SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID 400 GEV PROTONS; CROSS-SECTIONS; BACKWARD PRODUCTION; NUCLEAR COLLISIONS; FRAGMENTATION; SPECTRA; AU-197; PIONS; IONS AB MCNP6, the latest and most advanced LANL transport code representing a recent merger of MCNP5 and MCNPX, has been Validated and Verified (V&V) against a variety of intermediate and high-energy experimental data and against results by different versions of MCNPX and other codes. In the present work, we V&V MCNP6 using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. We found that MCNP6 describes reasonably well various reactions induced by particles and nuclei at incident energies from 18 MeV to about 1 TeV per nucleon measured on thin and thick targets and agrees very well with similar results obtained with MCNPX and calculations by CEM03.03, LAQGSM03.03 (03.01), INCL4 + ABLA, and Bertini INC + Dresner evaporation, EPAX, ABRABLA, HIPSE, and AMD, used as stand-alone codes. Most of several computational bugs and more serious physics problems observed in MCNP6/X during our V&V have been fixed; we continue our work to solve all the known problems before MCNP6 is distributed to the public. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mashnik, SG (reprint author), Los Alamos Natl Lab, Monte Carlo Codes XCP 3,MS A143, Los Alamos, NM 87545 USA. EM mashnik@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Defense Threat Reduction Agency (DTRA) FX I am grateful to my LANL colleagues, Drs. F. Brown, J. Bull, T. Goorley, G. Hughes, M. James, R. Martz, R. Prael, A. Sierk, and L. Waters as well as to F. Gallmeier and W. Lu of ORNL, Oak Ridge, TN, USA, and to K. Gudima of the Academy of Science of Moldova, for useful discussions, help, and/or for correcting some of the MCNP6/X bugs I have detected during the current V&V work. I thank Drs. V. Belyakov-Bodin, M. Hagiwara, Y. Miake, S. Nagamiya, P. Napolitani, M. Nortier, Y. Uozumi, and J. Weidner for sending me their publications and/or files with numerical values of their experimental data I used in my V&V work. It is a pleasure to acknowledge Drs. F. Gallmeier, M. Hagiwara, A. Krasa, W. Lu, M. Majerle, and I. Remec for sending me their MCNPX calculations included in my comparisons. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with funding from the Defense Threat Reduction Agency (DTRA). NR 38 TC 10 Z9 10 U1 0 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD MAY PY 2011 VL 126 IS 5 AR 49 DI 10.1140/epjp/i2011-11049-1 PG 12 WC Physics, Multidisciplinary SC Physics GA 768LP UT WOS:000290936500004 ER PT J AU Colotelo, AH Cooke, SJ AF Colotelo, Alison H. Cooke, Steven J. TI Evaluation of common angling-induced sources of epithelial damage for popular freshwater sport fish using fluorescein SO FISHERIES RESEARCH LA English DT Article DE Angling; Epithelial injury; Fluorescein; Catch-and-release ID CATCH-AND-RELEASE; BARRAMUNDI LATES-CALCARIFER; JUVENILE LARGEMOUTH BASS; SAPROLEGNIA-PARASITICA; RAINBOW-TROUT; BLACK BASS; HOOK TYPE; MORTALITY; INJURY; CONSERVATION AB Angling is a popular recreational activity across the globe and a large proportion of fish captured by anglers are released due to voluntary or mandatory catch-and-release practices. The handling associated with hook removal and return of the fish to their environment can cause physical damage to the epidermal layer of the fish which may affect the condition and survival of released fish. This study investigated possible sources of epithelial damage associated with several different handling methods (i.e., landing net types, interactions with different boat floor surfaces, tournament procedures) commonly used in recreational angling for two popular freshwater sport fish species, largemouth bass (Micropterus salmoides) and northern pike (Esox lucius). Epithelial damage was examined using fluorescein, a non-toxic dye, which has been shown to detect latent epithelial damage. Northern pike exhibited extensive epithelial damage after exposure to several of the induced treatments (i.e., interaction with a carpeted surface, knotted nylon net, and line rolling) but relatively little epithelial damage when exposed to others (i.e., knotless rubber nets, smooth boat surfaces, or lip gripping devices). Largemouth bass did not show significant epithelial damage for any of the treatments, with the exception of fish caught in a semi-professional live release tournament. The detection of latent injuries using fluorescein can be an important management tool as it provides visual examples of potential damage that can be caused by different handling methods. Such visualizations can be used to encourage fish-friendly angler behaviour and enhance the survival and welfare of released fish. It can also be used to test new products that are intended to or claim to reduce injury to fish that are to be released. Future research should evaluate the relationship between different levels of epithelial damage and mortality across a range of environmental conditions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Colotelo, Alison H.] Carleton Univ, Ottawa Carleton Inst Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada. [Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada. [Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada. RP Colotelo, AH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K6-85, Richland, WA 99352 USA. EM alisoncolotelo@gmail.com RI Cooke, Steven/F-4193-2010 OI Cooke, Steven/0000-0002-5407-0659 FU Ontario Ministry of Research and Innovation; Ontario Ministry of Natural Resources FX This work was supported by the Ontario Ministry of Research and Innovation through the Early Researcher Award Program and by the Ontario Ministry of Natural Resources. Additional support was provided by the Canada Research Chairs Program. We thank Emily Fobert, Jake Davis, Rana Sunder, Liane Nowell, Sam Wilson and Alex Nagrodski for their assistance in the field. Research permits were provided by the Ontario Ministry of Natural Resources, and animal care approvals were granted by Carleton University and Queen's University on behalf of the Canadian Council for Animal Care. Andy Danylchuk, Gabriel Blouin-Demers, and several anonymous referees kindly provided comments on an earlier version of the manuscript. NR 41 TC 9 Z9 9 U1 7 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD MAY PY 2011 VL 109 IS 2-3 BP 217 EP 224 DI 10.1016/j.fishres.2010.12.005 PG 8 WC Fisheries SC Fisheries GA 765HC UT WOS:000290695100001 ER PT J AU Calderone, PJ Banerjee, D Borkowski, LA Parise, JB AF Calderone, Paul J. Banerjee, Debasis Borkowski, Lauren A. Parise, John B. TI A magnesium-lithium heterometallic coordination network SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Metal-organic frameworks; Heterometallic coordination polymers; S-block metals; Lightweight metal centers ID METAL-ORGANIC FRAMEWORK; STRUCTURAL-CHARACTERIZATION; GAS-ADSORPTION; POLYMER; SUBSTITUTION AB A three-dimensional magnesium-lithium coordination network, Mg(2)Li(BTC) (HBTC)(DMF)(2), (1) (BTC = 1,3,5-benzenetricarboxylate; DMF=N,N-dimethylformamide), the first example of a mixed-metal Mg-Li coordination network, is synthesized using solvothermal techniques. Structural characterization was completed using single crystal x-ray techniques while thermal properties and surface area measurements were conducted by thermogravimetric and BET analysis, respectively. (C) 2011 Elsevier B.V. All rights reserved. C1 [Calderone, Paul J.; Banerjee, Debasis; Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Borkowski, Lauren A.; Parise, John B.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Parise, John B.] SUNY Stony Brook, Dept Geosci Earth & Space Sci Bldg, Stony Brook, NY 11794 USA. [Parise, John B.] Brookhaven Natl Lab, Light Source Div, Upton, NY 11973 USA. RP Banerjee, D (reprint author), SUNY Stony Brook, Dept Chem, 255 ESS,Room 343, Stony Brook, NY 11794 USA. EM debasis.banerjee@stonybrook.edu RI Banerjee, Debasis/B-2439-2008 FU Division of Materials Research of the National Science Foundation [DMR-0800415]; National Science Foundation [CHE-0840483] FX The synthesis and characterization work (PJC, DB, LAB) is funded by the Division of Materials Research of the National Science Foundation, grant number DMR-0800415 (JBP). Crystal structure was determined with the use of the Stony Brook University single crystal diffractometer, obtained through the support of the National Science Foundation grant CHE-0840483. We thank Alex Smirnov and Martin Schoonen (SBU Geosciences) for facilities used in BET analysis and Paul M. Forster (UNLV, Chemistry) for consultation regarding crystal structure solution. NR 23 TC 6 Z9 6 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD MAY PY 2011 VL 14 IS 5 BP 741 EP 744 DI 10.1016/j.inoche.2011.02.025 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 762FR UT WOS:000290460800032 ER PT J AU Auciello, O Dey, S de Araujo, CP AF Auciello, Orlando Dey, Sandwip de Araujo, Carlos Paz TI Preface to ISIF 2009 Special Issue of Journal of Applied Physics: Science and Technology of Integrated Functionalities SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material C1 [Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dey, Sandwip] Arizona State Univ, Ira A Fulton Sch Engn, Dept Elect Engn, Sch Mat, Tempe, AZ 85281 USA. [de Araujo, Carlos Paz] Symetrix Corp, Colorado Springs, CO 80918 USA. RP Auciello, O (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Av Lemont, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 091501 DI 10.1063/1.3581039 PG 1 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500001 ER PT J AU Brown, JL Ravichandran, G Reinhart, WD Trott, WM AF Brown, J. L. Ravichandran, G. Reinhart, W. D. Trott, W. M. TI High pressure Hugoniot measurements using converging shocks SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALUMINUM; COPPER; VELOCITIES; TANTALUM; WAVES; FLOW AB Plate impact experiments are a powerful tool in equation of state development, but are inherently limited by the range of impact velocities accessible to the facility. In an effort to dramatically increase the range of pressures which can be studied with available impact velocities, a new experimental technique is examined. The target plate is replaced by a composite assembly consisting of two concentric cylinders. The target is designed such that the initial shock velocity in a well-characterized outer cylinder is higher than in the inner cylinder material of interest. Conically converging shocks will be generated at the interface due to the impedance mismatch between the two materials and axisymmetric geometry. Upon convergence, an irregular reflection occurs and the conical analog of a Mach reflection develops. This Mach reflection grows until it reaches a steady state, at which point the high pressure state in the Mach disk can be measured using velocity interferometry and impedance matching techniques. The technique is demonstrated by studying the shock response of copper. A strong confinement setup utilizes a low impedance 6061-T6 aluminum outer cylinder and the weak confinement case features a higher impedance molybdenum outer cylinder. The experimental results for copper are in good agreement with a simple analytical model, numerical simulations, and data in the literature. The possibility of utilizing full field measurements to make multiple Hugoniot measurements is also examined. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590140] C1 [Brown, J. L.; Ravichandran, G.] CALTECH, Pasadena, CA 91125 USA. [Reinhart, W. D.; Trott, W. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brown, JL (reprint author), CALTECH, Pasadena, CA 91125 USA. EM jlbrown@caltech.edu FU Caltech Center for the Predictive Modeling and Simulation of High-Energy Density Dynamic Response of Materials through the U.S. Department of Energy [DE-FC52-08NA28613] FX The research support provided by the Caltech Center for the Predictive Modeling and Simulation of High-Energy Density Dynamic Response of Materials through the U.S. Department of Energy, Contract No. DE-FC52-08NA28613, is gratefully acknowledged. We would also like to acknowledge Tom Thornhill, John Martinez, and Rocky Palomino from Sandia National Laboratories for their technical support in conducting the experiments done at the STAR facility. We thank Professor Hans Hornung for helpful discussions regarding the shock polar analysis, Dr. Dennis Grady for helpful discussions, and Dr. Lalit Chhabildas for his suggestions on shaping the Mach wave. NR 34 TC 1 Z9 1 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 093520 DI 10.1063/1.3590140 PG 10 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500055 ER PT J AU Chen, AQ Deutsch, M AF Chen, Aiqing Deutsch, Miriam TI Tunable asymmetric reflectance in silver films near the percolation threshold SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID OPTICAL-PROPERTIES; GOLD-FILMS; CELLS AB We report on the optical characterization of semicontinuous nanostructured silver films exhibiting tunable optical reflectance asymmetries. The films are obtained using a multi-step process, where a nanocrystalline silver film is first chemically deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. The resulting films exhibit reflectance asymmetries whose dispersions may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point. We obtain a correlation between the optical response and charge transport in these films, with the spectral crossover point indicating the onset of charge percolation. Such broadband, dispersion-tunable asymmetric reflectors may find uses in future light-harvesting systems. (C) 2011 American Institute of Physics. [doi:10.1063/1.3585873] C1 [Chen, Aiqing; Deutsch, Miriam] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Chen, AQ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM miriamd@uoregon.edu FU NSF [DMR-02-39273, DMR-08-04433]; ONAMI ONR FX We thank K. Hasegawa for helpful discussions. This work was supported by NSF Grants DMR-02-39273 and DMR-08-04433, and ONAMI ONR. NR 21 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 093524 DI 10.1063/1.3585873 PG 7 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500059 ER PT J AU Dinh, LN Mayer, BP Maiti, A Chinn, SC Maxwell, RS AF Dinh, L. N. Mayer, B. P. Maiti, A. Chinn, S. C. Maxwell, R. S. TI Molecular weight distributions of irradiated siloxane-based elastomers: A complementary study by statistical modeling and multiple quantum nuclear magnetic resonance SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THEORETICAL DEPOLYMERIZATION KINETICS; INDUCED CROSS-LINKING; HIGH-ENERGY RADIATION; SILICONE-RUBBER; POLY(DIMETHYLSILOXANE) NETWORK; GAMMA-RADIATION; MQ-NMR; POLYMERS; POLYSILOXANE; DEGRADATION AB The statistical methodology of population balance (PB) has been applied in order to predict the effects of cross-linking and chain-scissioning induced by ionizing radiation on the distribution of molecular weight between cross-links (MWBC) of a siloxane-based elastomer. Effective molecular weight distributions were extracted from the quantification of residual dipolar couplings via multiple quantum nuclear magnetic resonance (MQ-NMR) measurements and are taken to reflect actual MWBC distributions. The PB methodology is then applied to the unirradiated MWBC distribution and considers both chain-scissioning and the possibility of the formation of three types of cross-links: random recombination of scissioned-chain ends (end-linking), random covalent bonds of free radicals on scissioned-chain ends (Y-cross-linking), and the formation of random cross-links from free radicals on side groups (H-cross-linking). The qualitative agreement between the statistical modeling approach and the NMR data confirms that it is possible to predict trends for the evolution of the distribution of MWBC of polymers under irradiation. The approach described herein can also discern heterogeneities in radiation effects in different structural motifs in the polymer network. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3587169] C1 [Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, POB 808,Mail Stop L-091, Livermore, CA 94551 USA. EM dinh1@llnl.gov RI Chinn, Sarah/E-1195-2011 NR 29 TC 4 Z9 4 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 094905 DI 10.1063/1.3587169 PG 10 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500132 ER PT J AU Nagayama, T Mancini, RC Florido, R Tommasini, R Koch, JA Delettrez, JA Regan, SP Smalyuk, VA AF Nagayama, T. Mancini, R. C. Florido, R. Tommasini, R. Koch, J. A. Delettrez, J. A. Regan, S. P. Smalyuk, V. A. TI Processing of spectrally resolved x-ray images of inertial confinement fusion implosion cores recorded with multimonochromatic x-ray imagers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DRIVE IMPLOSIONS; SPECTROSCOPY; TEMPERATURE; ABSORPTION; DIAGNOSIS; PROFILES; IGNITION; PLASMAS; GAIN AB We discuss the processing of data recorded with multimonochromatic x-ray imagers (MMI) in inertial confinement fusion experiments. The MMI records hundreds of gated, spectrally resolved images that can be used to unravel the spatial structure of the implosion core. In particular, we present a new method to determine the centers in all the array of images, a better reconstruction technique of narrowband implosion core images, two algorithms to determine the shape and size of the implosion core volume based on reconstructed broadband images recorded along three-quasiorthogonal lines of sight, and the removal of artifacts from the space-integrated spectra. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580513] C1 [Nagayama, T.; Mancini, R. C.; Florido, R.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Tommasini, R.; Koch, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Nagayama, T (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. EM taisuke@unr.edu RI Florido, Ricardo/H-5513-2015; Tommasini, Riccardo/A-8214-2009 OI Florido, Ricardo/0000-0001-7428-6273; Tommasini, Riccardo/0000-0002-1070-3565 FU DOE/NLUF [DE-FG52-09NA29042]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by DOE/NLUF Grant No. DE-FG52-09NA29042 and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 30 TC 13 Z9 13 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 093303 DI 10.1063/1.3580513 PG 10 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500030 ER PT J AU Tinberg, DS Johnson-Wilke, RL Fong, DD Fister, TT Streiffer, SK Han, YS Reaney, IM Trolier-McKinstry, S AF Tinberg, Daniel S. Johnson-Wilke, Raegan L. Fong, Dillon D. Fister, Timothy T. Streiffer, Stephen K. Han, Yisong Reaney, Ian M. Trolier-McKinstry, Susan TI Octahedral tilt transitions in relaxed epitaxial Pb(Zr(1-x)Ti(x))O(3) films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LEAD-ZIRCONATE-TITANATE; SOLID-SOLUTION SYSTEM; FERROELECTRIC THIN-FILMS; THERMODYNAMIC THEORY; PIEZOELECTRIC PROPERTIES; NEUTRON-DIFFRACTION; PHASE-DIAGRAM; X-RAY; PEROVSKITES; BEHAVIOR AB Relaxed epitaxial {100}(pc) and {111}(pc) oriented films (350 nm) of Pb(Zr(1-x)Ti(x))O(3) (0.2 <= x <= 0.4) on SrRuO(3)/SrTiO(3) substrates were grown by pulsed laser deposition and studied using high resolution synchrotron X-ray diffraction and transmission electron microscopy. The dielectric behavior and ferroelectric phase transition temperatures of the films were consistent with bulk PZT. However, weak 1/2{311}(pc) reflections in x-ray diffraction profiles were recorded above bulk T(Tilt) (as indicated in the Jaffe, Cooke, and Jaffe phase diagram, where pc denotes pseudocubic indices). Moreover, anomalies in the dielectric and ferroelectric response were detected above TTilt which are explained by coupling of short coherence or weakly tilted regions to the ferroelectric polarization. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580328] C1 [Tinberg, Daniel S.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Fong, Dillon D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Fister, Timothy T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Streiffer, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Han, Yisong; Reaney, Ian M.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. RP Tinberg, DS (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM rlj12@psu.edu OI Trolier-McKinstry, Susan/0000-0002-7267-9281 FU Engineering and Physical Science Research Council UK [EP/D067049/1G]; National Science Foundation (Materials World Network) [DMR-0602770]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support for this work is provided by the Engineering and Physical Science Research Council UK (EP/D067049/1G) and by the National Science Foundation (Materials World Network, DMR-0602770). Research at Argonne and use of the Advanced Photon Source and Center for Nanoscale Materials were supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. D. Tinberg would like to thank Dr. Jenia Karapetrova and Peter Baldo at Argonne National Laboratory for assisting in setting up the synchrotron diffraction experiments. Y. Han would like to thank Professors Paula Vilarinho and Augusto Lopes at the University of Aveiro, Portugal, and Dr. Alan Harvey at the University of Manchester for providing the TEM facilities for performing the low and high temperature experiments, respectively. NR 37 TC 5 Z9 5 U1 3 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 094104 DI 10.1063/1.3580328 PG 9 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500093 ER PT J AU Yamada, T Kamo, T Funakubo, H Su, D Iijima, T AF Yamada, Tomoaki Kamo, Takafumi Funakubo, Hiroshi Su, Dong Iijima, Takashi TI Strong growth orientation dependence of strain relaxation in epitaxial (Ba,Sr)TiO3 films and the resulting dielectric properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 21st International Symposium on Integrated Ferroelectrics and Functionalities CY SEP 27-30, 2009 CL Colorado Springs, CO ID SRTIO3 THIN-FILMS; FERROELECTRIC-FILMS; MISFIT RELAXATION; INTERNAL-STRESSES AB The growth orientation dependence of strain relaxation and the dielectric properties were investigated for (001)- and (111)-epitaxial (Ba,Sr)TiO3 films. The films were deposited on SrRuO3/SrTiO3 and SrTiO3 substrates using rf magnetron sputtering. The residual strain was found to be remarkably different between the two orientations, although these lattice mismatches are identical; the strain relaxation of the (001)-epitaxial films is significantly slower than that of the (111)-epitaxial films and is promoted only when the growth rate is very low (<= 5 nm/h). The observed orientation dependence is discussed with the surface energy for both growth orientations, which influences the growth mode of the films. Due to the large contrast of the strain in the (001)- and (111)-epitaxial films, the paraelectric to ferroelectric phase transition temperature of the (001)-epitaxial films is much higher than that of unstrained bulks, while the (111)-epitaxial films show a phase transition temperature corresponding to that of unstrained bulks regardless of the growth rates. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581203] C1 [Yamada, Tomoaki; Kamo, Takafumi; Funakubo, Hiroshi] Tokyo Inst Technol, Dept Innovat & Engn Mat, Yokohama, Kanagawa 2268502, Japan. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Iijima, Takashi] Natl Inst Adv Ind Sci & Technol, Res Ctr Hydrogen Ind Use & Storage, Tsukuba, Ibaraki 3058565, Japan. RP Yamada, T (reprint author), Nagoya Univ, Dept Mat Phys & Energy Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan. EM t-yamada@nucl.nagoya-u.ac.jp RI Yamada, Tomoaki/I-6538-2014; Su, Dong/A-8233-2013 OI Yamada, Tomoaki/0000-0001-5790-9029; Su, Dong/0000-0002-1921-6683 NR 28 TC 9 Z9 9 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2011 VL 109 IS 9 AR 091605 DI 10.1063/1.3581203 PG 6 WC Physics, Applied SC Physics GA 763VT UT WOS:000290588500006 ER PT J AU Gil, GC Brennan, J Throckmorton, DJ Branda, SS Chirica, GS AF Gil, Geun-Cheol Brennan, Jim Throckmorton, Dan J. Branda, Steven S. Chirica, Gabriela S. TI Automated analysis of mouse serum peptidome using restricted access media and nanoliquid chromatography-tandem mass spectrometry SO JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES LA English DT Article DE Proteomics; Peptidomics; Serum; Mouse; Restricted access media; LC-MSMS; On-line processing; Automation ID MOLECULAR-WEIGHT PROTEINS; HUMAN PLASMA PROTEOME; LIQUID-CHROMATOGRAPHY; BIOMARKER DISCOVERY; ENDOGENOUS PEPTIDES; SAMPLE PREPARATION; STATISTICAL-MODEL; NEUROPEPTIDES; EXTRACTION; ENRICHMENT AB We demonstrate use of restricted access media with reversed phase functionality (RAM-RP) for analysis of low molecular weight proteins and peptides in mouse serum (75 mu l) using a custom designed modular automated processing system (MAPS). RAM-RP fractionation with simultaneous removal of high molecular weight and high abundance proteins is integrated with a follow-on buffer exchange module (BE) to ensure compatibility with subsequent processing steps (trypsin digestion and intact peptide separation prior to mass spectrometric analysis). The high sample capacity afforded by chromatographic methods generates enough sample to achieve comprehensive serum peptidome identification (357 proteins) through tandem mass spectrometric analysis of both intact and digested peptides. Sample losses during transfer between modules are minimized through precise fluidic control; no clogging occurred over several months of serum processing in our low back pressure system. Computer controlled operation of both modules and thorough optimization yield excellent run-to-run reproducibility and protein/peptide overlap in analytical repeats. The robustness of our results demonstrate that the RAM-RP-BE workflow executed on our MAPS platform shows tremendous potential for high throughput peptidome processing, particularly with regard to direct analysis of small-volume serum samples. Published by Elsevier B.V. C1 [Gil, Geun-Cheol; Brennan, Jim; Throckmorton, Dan J.; Branda, Steven S.; Chirica, Gabriela S.] Sandia Natl Labs, Syst Biol Dept, Livermore, CA 94551 USA. RP Chirica, GS (reprint author), Sandia Natl Labs, Syst Biol Dept, Livermore, CA 94551 USA. EM gschiri@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX This work was supported by Laboratory Directed Research and Development (LDRD) program in Sandia National Laboratories which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 40 TC 5 Z9 6 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-0232 J9 J CHROMATOGR B JI J. Chromatogr. B PD MAY 1 PY 2011 VL 879 IS 15-16 BP 1112 EP 1120 DI 10.1016/j.jchromb.2011.03.028 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 764PW UT WOS:000290645400013 PM 21478059 ER PT J AU Zhang, J Jackson, TL Buckmaster, J Najjar, F AF Zhang, Ju Jackson, Thomas L. Buckmaster, John Najjar, Fady TI Erosion in Solid-Propellant Rocket Motor Nozzles with Unsteady Nonuniform Inlet Conditions SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 45th Joint Propulsion Conference & Exhibit CY AUG 02-08, 2009 CL Denver, CO SP AIAA, ASME, SAE, ASEE ID HETEROGENEOUS PROPELLANT; SIMULATION; GRAPHITE; PREDICTION; SCHEMES AB A computational framework is developed to investigate nozzle erosion in solid-propellant rocket motors. The calculations have several novel features. Among these is an accounting of three-dimensional effects, most strikingly for a vectored nozzle but also in the description of the turbulent flow. Also, instead of the hitherto universal strategy of merely solving the nozzle flow with uniform inlet conditions, strategies by which the chamber flow with its nonuniform efflux can be coupled to the nozzle flow while still resolving the nozzle boundary layer are discussed. The chamber flow is approximated by either full motor simulations, which do not resolve the boundary layer, or by an asymptotic strategy valid for slender chambers: one first used in turbulent boundary-layer studies. The manner in which the chamber efflux conditions are used as nozzle inlet conditions is part of the discussion. The results suggest that specifying turbulent rather than uniform inlet conditions can have a significant effect on nozzle erosion. C1 [Zhang, Ju; Jackson, Thomas L.] Univ Illinois, Urbana, IL 61801 USA. [Buckmaster, John] Buckmaster Res, Urbana, IL 61801 USA. [Najjar, Fady] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zhang, J (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM juzhang@illinois.edu; tlj@illinois.edu; najjar2@llnl.gov NR 26 TC 3 Z9 3 U1 0 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2011 VL 27 IS 3 BP 642 EP 649 DI 10.2514/1.47158 PG 8 WC Engineering, Aerospace SC Engineering GA 766ZT UT WOS:000290825800012 ER PT J AU Chung, CW Popovics, JS Struble, LJ AF Chung, Chul-Woo Popovics, John S. Struble, Leslie J. TI Flocculation and sedimentation in suspensions using ultrasonic wave reflection SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID CEMENTITIOUS MATERIALS; ALUMINA SUSPENSIONS; DENSITY; ATTENUATION; BEHAVIOR AB This work was undertaken to help understand and interpret the ultrasonic wave reflection response of Portland cement paste as it transforms from a fluid-like suspension to a solid in the first hours after mixing. A high impact polystyrene buffer (delay line) was used to measure small changes in the P-and S-wave reflection coefficients. Two materials were studied: a non-hydrating colloidal alumina suspension whose microstructure was manipulated between dispersed and flocculated states by adjusting the pH and a coarse silica suspension that readily sedimented. The S-wave reflection coefficient clearly distinguished between dispersed and flocculated states. Sedimentation of particles in dispersed suspensions was distinguished using the P-wave reflection coefficient. Based on these findings, the observed P-and S-wave responses from hydrating Portland cement paste are interpreted in terms of flocculation and sedimentation processes. (C) 2011 Acoustical Society of America. [DOI:10.1121/1.3569730] C1 [Popovics, John S.; Struble, Leslie J.] Univ Illinois, Urbana, IL 61801 USA. [Chung, Chul-Woo] Pacific NW Natl Lab, Radiol Mat & Technol Dev Grp, Richland, WA 99352 USA. RP Popovics, JS (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM johnpop@illinois.edu FU Center for Advanced Cement Based Materials (ACBM) FX The authors appreciate assistance provided by Ms. Miao, a Ph.D. student at Tsinghua University, Beijing, China, who performed the rheology tests reported here. These tests were carried out in the laboratory of Prof. C. F. Zukoski at the University of Illinois. In addition, the authors are grateful to Mr. Alan Sakaguchi, Inabata America Corporation, for providing alumina powders. Support from the Center for Advanced Cement Based Materials (ACBM) enabled the purchase of some experimental equipment used in this work. NR 21 TC 10 Z9 10 U1 0 U2 8 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAY PY 2011 VL 129 IS 5 BP 2944 EP 2951 DI 10.1121/1.3569730 PG 8 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 762CR UT WOS:000290450400028 PM 21568397 ER PT J AU Sun, T Borrasso, A Liu, B Dravid, V AF Sun, Tao Borrasso, Andrew Liu, Bin Dravid, Vinayak TI Synthesis and Characterization of Nanocrystalline Zinc Manganese Ferrite SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID MN-ZN FERRITES; MAGNETIC-PROPERTIES; CONTRAST AGENTS; GRAIN-SIZE; NANOPARTICLES; SUBSTITUTION; TEMPERATURE; DEPENDENCE; MECHANISM; FILMS AB ZnxMn1-xFe2O4 is a prototypical soft magnetic material, and commonly used for high-frequency applications due to its low power loss and high permeability and resistivity. Various wet chemistry routes have been developed for synthesizing ZnxMn1-xFe2O4; however, multistep procedures are usually involved in these methods, making them complex in implementation. Here, we use a facile chelate method to prepare ZnxMn1-xFe2O4 sol precursor for fabricating both fine powders and nanocrystalline thin films. X-ray diffraction and electron microscopy techniques are used to characterize the microstructure and composition of as-synthesized ZnxMn1-xFe2O4, and superconducting quantum interface device is used to measure their magnetic properties. The investigation of powders with different Zn/Mn cation concentration indicates that the saturation magnetization is determined by the content parameter x; while the coercive field is closely correlated to the crystal size. Further, Zn0.4Mn0.6Fe2O4 thin films were deposited using spin-coating technique, and annealed at different temperatures to study the formation of the impurity phase. C1 [Sun, Tao; Liu, Bin; Dravid, Vinayak] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Sun, Tao; Borrasso, Andrew; Liu, Bin; Dravid, Vinayak] Northwestern Univ, Nanoscale Sci & Engn Ctr, Evanston, IL 60208 USA. [Borrasso, Andrew] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA. RP Sun, T (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM suntao@northwest-ern.edu; v-dravid@northwestern.edu RI Dravid, Vinayak/B-6688-2009 FU DOE [DE-F602-07ER46444]; NSF-NSEC; NSF-MRSEC; State of Illinois; Northwestern University; National Science Foundation at the Materials Research Center of Northwestern University [DMR-0520513] FX This research work was partially supported by DOE under Contract No. DE-F602-07ER46444, and NSF-NSEC Research Experience for Undergraduates program.; The SEM and TEM experiments were performed in the EPIC facility of the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the State of Illinois, and Northwestern University. This work made use of the J. B. Cohen XRD facility supported by the MRSEC program of the National Science Foundation (DMR-0520513) at the Materials Research Center of Northwestern University. NR 39 TC 5 Z9 7 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2011 VL 94 IS 5 BP 1490 EP 1495 DI 10.1111/j.1551-2916.2010.04265.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 763CE UT WOS:000290530200035 ER PT J AU Grippo, MA Fleeger, JW Dubois, SF Condrey, R AF Grippo, Mark A. Fleeger, John W. Dubois, Stanislas F. Condrey, Richard TI Spatial variation in basal resources supporting benthic food webs revealed for the inner continental shelf SO LIMNOLOGY AND OCEANOGRAPHY LA English DT Article ID GULF-OF-MEXICO; STABLE-ISOTOPE ANALYSES; PARTICULATE ORGANIC-MATTER; C-13 ENRICHMENT; FEEDING ECOLOGY; NORTH-CAROLINA; CARBON RATIOS; MARINE; SEDIMENTS; BAY AB We used stable isotopes to examine the relative importance of phytodetritus and microphytobenthos (MPB) in supporting benthic food webs on the Louisiana continental shelf. Primary producers and macroinfauna were collected from Ship Shoal (SS), a submerged, sandy, barrier island where sediment-associated algae are primarily MPB and from silty, off-shoal areas where sediment-associated algae are primarily phytodetritus or a mixture of the two resources. Macroinfauna, as individual taxa and trophic guilds, were significantly more enriched in C-13 on SS indicating greater dependence on MPB, which is enriched in C-13 compared to phytoplankton. Using delta C-13 in a two-source mixing model, the estimated MPB dietary contribution for SS macroinfauna averaged across trophic guilds, ranged from 53.4% to 83.0%, depending on the mixing-model end-members used, and 5 of 14 taxa had lower 95% confidence intervals (CI) > 20%, indicating that MPB was a primary resource for most SS macroinfauna. Off-shoal, the dietary contribution of MPB ranged from 14.5% to 47.7% and most taxa had a lower CI near 0%. Settled phytoplankton are the primary microalgal food source in muddy sediments, but the importance of MPB increases in more sandy sediments where MPB are the predominant microalgal resource. Sandy shoals play a unique food-web role in deltaic shelf systems and support benthic food webs on the continental shelf. C1 [Grippo, Mark A.; Fleeger, John W.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Dubois, Stanislas F.] IFREMER, Technopole Brest Iroise, Lab Ecol Benth, F-29280 Plouzane, France. [Condrey, Richard] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. RP Grippo, MA (reprint author), Argonne Natl Lab, Div Environm Sci, Bldg 240, Argonne, IL USA. EM mgrippo@anl.gov RI Dubois, Stanislas/F-2939-2010; Fleeger, John/A-6215-2013 FU U.S. Department of Interior Minerals Management Services [1435-01-04-CA-35162]; Louisiana Department of Natural Resources [2513-04-02/613082] FX This study was jointly funded by the U.S. Department of Interior Minerals Management Services (contract No. 1435-01-04-CA-35162) and by the Louisiana Department of Natural Resources (contract No. 2513-04-02/613082). NR 67 TC 13 Z9 13 U1 0 U2 8 PU AMER SOC LIMNOLOGY OCEANOGRAPHY PI WACO PA 5400 BOSQUE BLVD, STE 680, WACO, TX 76710-4446 USA SN 0024-3590 J9 LIMNOL OCEANOGR JI Limnol. Oceanogr. PD MAY PY 2011 VL 56 IS 3 BP 841 EP 856 DI 10.4319/lo.2011.56.3.0841 PG 16 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 765BJ UT WOS:000290678100007 ER PT J AU Susac, A Ilmoniemi, RJ Ranken, D Supek, S AF Susac, Ana Ilmoniemi, Risto J. Ranken, Doug Supek, Selma TI Face activated neurodynamic cortical networks SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING LA English DT Article DE Magnetoencephalography; Spatio-temporal source localization; Face processing; Oddball paradigm; Fusiform face gyrus ID HUMAN EXTRASTRIATE CORTEX; POSITRON-EMISSION-TOMOGRAPHY; DEPTH-RECORDED POTENTIALS; EVENT-RELATED POTENTIALS; HUMAN VISUAL-CORTEX; OCCIPITOTEMPORAL CORTEX; INTRACEREBRAL POTENTIALS; SPATIOTEMPORAL STAGES; SOURCE LOCALIZATION; TEMPORAL DYNAMICS AB Previous neuroimaging studies have shown that complex visual stimuli, such as faces, activate multiple brain regions, yet little is known on the dynamics and complexity of the activated cortical networks during the entire measurable evoked response. In this study, we used simulated and face-evoked empirical MEG data from an oddball study to investigate the feasibility of accurate, efficient, and reliable spatio-temporal tracking of cortical pathways over prolonged time intervals. We applied a data-driven, semiautomated approach to spatio-temporal source localization with no prior assumptions on active cortical regions to explore non-invasively face-processing dynamics and their modulation by task. Simulations demonstrated that the use of multi-start downhill simplex and data-driven selections of time intervals submitted to the Calibrated Start Spatio-Temporal (CSST) algorithm resulted in improved accuracy of the source localization and the estimation of the onset of their activity. Locations and dynamics of the identified sources indicated a distributed cortical network involved in face processing whose complexity was task dependent. This MEG study provided the first non-invasive demonstration, agreeing with intracranial recordings, of an early onset of the activity in the fusiform face gyrus (FFG), and that frontal activation preceded parietal for responses elicited by target faces. C1 [Susac, Ana; Supek, Selma] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia. [Ilmoniemi, Risto J.] Aalto Univ, Dept Biomed Engn & Computat Sci, FI-00076 Espoo, Finland. [Ilmoniemi, Risto J.] Univ Helsinki, Cent Hosp, BioMag Lab, FI-00029 Helsinki, Finland. [Ranken, Doug] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Susac, A (reprint author), Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, Zagreb 10000, Croatia. EM ana@phy.hr RI Ilmoniemi, Risto/E-9704-2012; Ranken, Douglas/J-4305-2012 OI Ilmoniemi, Risto/0000-0002-3340-2618; FU Croatian Ministry of Science, Education, and Sport [199-1081870-1252]; National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia; Centre for International Mobility, Finland FX This study was supported by the Croatian Ministry of Science, Education, and Sport (grant 199-1081870-1252), National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia, and the Centre for International Mobility, Finland. We thank Jussi Nurminen and Milan Rados for their assistance. NR 65 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0140-0118 EI 1741-0444 J9 MED BIOL ENG COMPUT JI Med. Biol. Eng. Comput. PD MAY PY 2011 VL 49 IS 5 SI SI BP 531 EP 543 DI 10.1007/s11517-011-0740-4 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Engineering; Mathematical & Computational Biology; Medical Informatics GA 766HY UT WOS:000290772800004 PM 21305361 ER PT J AU Golubic, SJ Susac, A Grilj, V Ranken, D Huonker, R Haueisen, J Supek, S AF Golubic, Sanja Josef Susac, Ana Grilj, Veljko Ranken, Douglas Huonker, Ralph Haueisen, Jens Supek, Selma TI Size matters: MEG empirical and simulation study on source localization of the earliest visual activity in the occipital cortex SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING LA English DT Article DE Magnetoencephalography (MEG); Stimulus size; Cortical source extent; Neuromagnetic multi-source localization; Retinotopic organization of the human visual cortex; Cortical magnification factor; Occipital visual cortex ID NEUROMAGNETIC RESPONSES; CORTICAL ACTIVITY; FUNCTIONAL MR; HUMAN-BRAIN; MAGNETOENCEPHALOGRAPHY; ACTIVATION; EXTENT; MODEL; EXPANSION; HUMANS AB While the relationship between sensory stimulation and tasks and the size of the cortical activations is generally unknown, the visual modality offers a unique possibility of an experimental manipulation of stimulus size-related increases of the spatial extent of cortical activation even during the earliest activity in the retinotopically organized primary visual cortex. We used magnetoecephalography (MEG), visual stimuli of increasing size, and numerical simulations on realistic cortical surfaces to explore the effects of increasing spatial extent of the activated cortical sources on the neuromagnetic fields, location estimation biases, and source resolution. Source localization was performed assuming multiple dipoles in a sphere model using an efficient, automatically restarted multi-start simplex minimizer within the Calibrated Start Spatio-Temporal (CSST) algorithm. We found size-related effects on amplitude and latencies and differences in relative locations of the earliest occipital sources evoked by stimuli of increasing size presented at the same eccentricity. This finding was confirmed by single patch simulations. Additionally, simulations of multiple extended sources demonstrated size-related increase in limits in source resolution for bilaterally simulated sources, biases in location estimates for a given separation of sources, and limits in source resolution due to source multiplicity within a hemisphere. C1 [Golubic, Sanja Josef; Susac, Ana; Supek, Selma] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia. [Grilj, Veljko] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Ranken, Douglas] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Huonker, Ralph; Haueisen, Jens] Univ Jena, Dept Neurol, D-07737 Jena, Germany. [Haueisen, Jens] Tech Univ Ilmenau, Dept Biomed Engn & Informat, D-98693 Ilmenau, Germany. RP Supek, S (reprint author), Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, Zagreb 10000, Croatia. EM selma@phy.hr RI Ranken, Douglas/J-4305-2012; Haueisen, Jens/B-7183-2011; OI Haueisen, Jens/0000-0003-3871-2890; Grilj, Veljko/0000-0001-6573-8063 FU Croatian Ministry of Science, Education, and Sport [199-1081870-1252]; University of Zagreb; Technical University of Ilmenau FX This study was supported by the Croatian Ministry of Science, Education, and Sport (grant 199-1081870-1252) and bilateral agreement between the University of Zagreb and Technical University of Ilmenau. NR 34 TC 7 Z9 7 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0140-0118 J9 MED BIOL ENG COMPUT JI Med. Biol. Eng. Comput. PD MAY PY 2011 VL 49 IS 5 SI SI BP 545 EP 554 DI 10.1007/s11517-011-0764-9 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Engineering; Mathematical & Computational Biology; Medical Informatics GA 766HY UT WOS:000290772800005 PM 21476049 ER PT J AU Hulcr, J Adams, AS Raffa, K Hofstetter, RW Klepzig, KD Currie, CR AF Hulcr, Jiri Adams, Aaron S. Raffa, Kenneth Hofstetter, Richard W. Klepzig, Kier D. Currie, Cameron R. TI Presence and Diversity of Streptomyces in Dendroctonus and Sympatric Bark Beetle Galleries Across North America SO MICROBIAL ECOLOGY LA English DT Article ID SOUTHERN PINE-BEETLE; FUNGUS-GROWING ANTS; LEAF-CUTTING ANTS; COLEOPTERA-CURCULIONIDAE; FRONTALIS ZIMMERMANN; SYMBIOTIC BACTERIA; SEQUENCE-ANALYSIS; PONDEROSAE; COMMUNITIES; SCOLYTINAE AB Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects. C1 [Hulcr, Jiri] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA. [Adams, Aaron S.; Raffa, Kenneth] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. [Hofstetter, Richard W.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. [Klepzig, Kier D.] US Forest Serv, USDA, So Res Stn, Asheville, NC 28804 USA. [Currie, Cameron R.] Univ Wisconsin, US Dept Energy DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. RP Currie, CR (reprint author), Univ Wisconsin, Dept Bacteriol, 4325 Microbial Sci Bldg,1550 Linden Dr, Madison, WI 53706 USA. EM currie@bact.wisc.edu FU USDA Forest Service Southern Research Station; DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; NSF-Microbial Observatories [MCB-0702025] FX This project would not be possible without the assistance of many colleagues and field assistants. We thank Brian Strom, Paul Merten, Jason Moan, Jesse Pfammatter, Anthony Cognato, and Andrea Lucky for their assistance with collecting. We thank Rob Dugenske, Joe Moeller, Laura Schwab, and many other members of the Currie lab for their help with laboratory work. The project was funded by the USDA Forest Service Southern Research Station, the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), and NSF-Microbial Observatories (MCB-0702025). NR 47 TC 25 Z9 25 U1 7 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD MAY PY 2011 VL 61 IS 4 BP 759 EP 768 DI 10.1007/s00248-010-9797-0 PG 10 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 766UI UT WOS:000290811600005 PM 21249352 ER PT J AU Bruneel, O Volant, A Gallien, S Chaumande, B Casiot, C Carapito, C Bardil, A Morin, G Brown, GE Personne, CJ Le Paslier, D Schaeffer, C Van Dorsselaer, A Bertin, PN Elbaz-Poulichet, F Arsene-Ploetze, F AF Bruneel, Odile Volant, Aurelie Gallien, Sebastien Chaumande, Bertrand Casiot, Corinne Carapito, Christine Bardil, Amelie Morin, Guillaume Brown, Gordon E., Jr. Personne, Christian J. Le Paslier, Denis Schaeffer, Christine Van Dorsselaer, Alain Bertin, Philippe N. Elbaz-Poulichet, Francoise Arsene-Ploetze, Florence TI Characterization of the Active Bacterial Community Involved in Natural Attenuation Processes in Arsenic-Rich Creek Sediments SO MICROBIAL ECOLOGY LA English DT Article ID ACID-MINE DRAINAGE; FERRIREDUCENS SP NOV.; MICROBIAL COMMUNITIES; FERRIC IRON; ACIDITHIOBACILLUS-FERROOXIDANS; SULFIDE MINE; THIOMONAS SP; FRANCE; CARNOULES; DIVERSITY AB Acid mine drainage of the CarnoulSs mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, the bacterial community was characterized in water and sediments by 16S rRNA encoding gene library analysis. Based on the results obtained using a metaproteomic approach on sediments combined with high-sensitivity HPLC-chip spectrometry, several GroEL orthologs expressed by the community were characterized, and the active members of the prokaryotic community inhabiting the creek sediments were identified. Many of these bacteria are beta-proteobacteria such as Gallionella and Thiomonas, but gamma-proteobacteria such as Acidithiobacillus ferrooxidans and alpha-proteobacteria such as Acidiphilium, Actinobacteria, and Firmicutes were also detected. C1 [Bruneel, Odile; Volant, Aurelie; Casiot, Corinne; Bardil, Amelie; Personne, Christian J.; Elbaz-Poulichet, Francoise] Univ Montpellier 2, Univ Montpellier 1, Lab HydroSci Montpellier, UMR5569,CNRS,IRD,CC MSE, F-34095 Montpellier 05, France. [Chaumande, Bertrand; Bertin, Philippe N.; Arsene-Ploetze, Florence] Univ Strasbourg, CNRS, UMR7156, F-67083 Strasbourg, France. [Gallien, Sebastien; Carapito, Christine; Schaeffer, Christine; Van Dorsselaer, Alain] Univ Strasbourg, Lab Spectrometrie Masse Bioorgan, Inst Pluridisciplinaire Hubert Curien, UMR7178,CNRS, F-67087 Strasbourg, France. [Morin, Guillaume] Univ Paris 06, IMPMC, UMR7590, CNRS,IPGP, F-75015 Paris, France. [Morin, Guillaume] Univ Paris 07, IMPMC, UMR7590, CNRS,IPGP, F-75015 Paris, France. [Brown, Gordon E., Jr.] Stanford Univ, Surface & Aqueous Geochem Grp, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Le Paslier, Denis] CNRS, UMR8030, F-91057 Evry, France. [Le Paslier, Denis] CEA, Direct Sci Vivant, Inst Genom, Lab Genom Comparat, F-91057 Evry, France. RP Bruneel, O (reprint author), Univ Montpellier 2, Univ Montpellier 1, Lab HydroSci Montpellier, UMR5569,CNRS,IRD,CC MSE, Pl Eugene Bataillon, F-34095 Montpellier 05, France. EM bruneel@msem.univ-montp2.fr RI Elbaz-Poulichet, Francoise/C-3032-2008; Bardil, Amelie/D-4124-2015; Bruneel, Odile/K-4033-2016 OI Bardil, Amelie/0000-0003-4795-9561; Bruneel, Odile/0000-0001-8012-0245 FU "Institut National des Sciences de l'Univers," CNRS; "Observatoire de Recherche Mediterraneen en Environnement" (OSU-OREME); Agence Nationale de la Recherche [ANR 07-BLANC-0118]; French Ministry of Education and Research FX The study was financed by the EC2CO program ("Institut National des Sciences de l'Univers," CNRS), the "Observatoire de Recherche Mediterraneen en Environnement" (OSU-OREME), and by the ANR 07-BLANC-0118 project ("Agence Nationale de la Recherche"). Sebastien Gallien and Aurelie Volant were supported by a grant from the French Ministry of Education and Research. This work was performed in the framework of the "Groupement de recherche: Metabolisme de l'Arsenic chez les Microorganismes" (GDR2909-CNRS). NR 60 TC 32 Z9 32 U1 2 U2 37 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD MAY PY 2011 VL 61 IS 4 BP 793 EP 810 DI 10.1007/s00248-011-9808-9 PG 18 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 766UI UT WOS:000290811600008 PM 21318282 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear Data Sheets for A=93 SO NUCLEAR DATA SHEETS LA English DT Article ID DELAYED-NEUTRON EMISSION; HIGH-SPIN STATES; ISOBARIC-ANALOG STATES; GASEOUS FISSION-PRODUCTS; DOUBLE-CHARGE-EXCHANGE; PROTON DRIP-LINE; HALF-LIFE MEASUREMENTS; TOTAL CONVERSION COEFFICIENT; SHELL-MODEL CALCULATIONS; GAMMA-RAY SPECTROMETER AB Nuclear structure data pertaining to all nuclei with mass number A=93 (Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag) have been compiled and evaluated and incorporated into the ENSDF data file. This publication for A=93 supersedes the previous publication by C.M. Baglin, Nuclear Data Sheets 80, 1 (1997) (literature cutoff date November 1996) and subsequent revisions by C.M. Baglin of the ENSDF files for Br-93 and Kr-93 (literature cutoff 26 February 2001) and for Rh-93 (literature cutoff 27 February 2001); it includes all data available prior to 15 December 2010. Significant changes since prior evaluations include the following: 2010Hw03 identified several high-spin states in Kr-93 in Cf-252 SF decay; in addition to the many low-spin levels already known in Rb-93 from beta(-) decay, several higher-spin states have now been identified in a Cf-252 SF decay study (2009Hw03); this SF decay has also been used to identify additional states in Sr-93 (2003Hw01) and the U-238(Se-82,X gamma) reaction (2007Bu35) has provided new information on Y-93. (HI,xn gamma) reaction studies have expanded our knowledge of the structure of Zr-93 (2002Fo03,2005Pa48), Nb-93 (2007Wa45), Mo-93 (2005Fu01), Tc-93 (2003Ha22) and Pd-93 (2004So04,2004Ru02). Considerable information on Nb-93 was provided by a (p,2n gamma) study (2010Or01,2006Or09,2007Or01). The level schemes of Ru-93, Rh-93 and Pd-93 have undergone the most extensive revision thanks to studies of Rh-93 epsilon decay (2004De40), Ag-94 epsilon p decay (2004Mu30) and Ag-94 p decay (2005Mu15, 2005Mu30), respectively. The half-life of the Zr member of this chain is of particular interest because of Zr-93's large contribution to long-term activity of nuclear reactor waste and also due to its potential as a supernova chronometer. During 2010, two new well-documented measurements of T-1/2(Zr-93) were published (2010Ya01 and 2010Ca01); one agrees well with an earlier, undocumented measurement but, unfortunately, the other is many standard deviations lower for reasons which are not immediately apparent. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Nuclear Physics, Nuclear Physics Division of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Nuclear Physics, Nuclear Physics Division of the US Department of Energy under contract DE-AC02-05CH11231. NR 387 TC 16 Z9 16 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY PY 2011 VL 112 IS 5 BP 1163 EP + DI 10.1016/j.nds.2011.04.001 PG 226 WC Physics, Nuclear SC Physics GA 767CF UT WOS:000290832200001 ER PT J AU Sheng, J Hassan, AEA Zhang, W Zhou, JF Xu, BQ Soares, AS Huang, Z AF Sheng, Jia Hassan, Abdalla E. A. Zhang, Wen Zhou, Jianfeng Xu, Bingqian Soares, Alexei S. Huang, Zhen TI Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization SO NUCLEIC ACIDS RESEARCH LA English DT Article ID NUCLEIC-ACIDS; SELENIUM DERIVATIZATION; CRYSTAL-STRUCTURE; CHARGE MIGRATION; DNA-POLYMERASE; DUPLEX DNA; TRANSPORT; BASE; CRYSTALLOGRAPHY; OLIGONUCLEOTIDES AB We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation. C1 [Sheng, Jia; Hassan, Abdalla E. A.; Zhang, Wen; Huang, Zhen] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA. [Hassan, Abdalla E. A.] Zagazig Univ, Appl Nucle Acids Res Ctr, Zagazig, Egypt. [Zhou, Jianfeng; Xu, Bingqian] Univ Georgia, Fac Engn & NanoSEC, Athens, GA 30602 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Huang, Z (reprint author), Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA. EM Huang@gsu.edu RI Soares, Alexei/F-4800-2014 OI Soares, Alexei/0000-0002-6565-8503 FU Georgia Cancer Coalition Distinguished Cancer Clinicians and Scientists Award; US National Science Foundation [MCB-0824837] FX Georgia Cancer Coalition Distinguished Cancer Clinicians and Scientists Award and the US National Science Foundation (MCB-0824837). Funding for open access charge: US National Science Foundation (MCB-0824837). NR 49 TC 4 Z9 4 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAY PY 2011 VL 39 IS 9 BP 3962 EP 3971 DI 10.1093/nar/gkq1288 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 763WD UT WOS:000290589500045 PM 21245037 ER PT J AU Glasser, NF Jansson, KN Goodfellow, BW de Angelis, H Rodnight, H Rood, DH AF Glasser, Neil F. Jansson, Krister N. Goodfellow, Bradley W. de Angelis, Hernan Rodnight, Helena Rood, Dylan H. TI Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina SO QUATERNARY RESEARCH LA English DT Article DE Cosmogenic nuclide exposure ages; Glacial chronology; Glacial geomorphology; Moraines; Patagonia ID SOUTHERNMOST SOUTH-AMERICA; LAST GLACIAL MAXIMUM; PRODUCTION-RATES; BAHIA INUTIL; BUENOS-AIRES; ICE CORE; CHRONOLOGY; PATAGONIA; DEGLACIATION; FLUCTUATIONS AB At several times during the Quaternary, a major eastward-flowing outlet glacier of the former Patagonian Ice Sheet occupied the Lago San Martin Valley in Argentina (49 degrees S, 72 degrees W). We present a glacial chronology for the valley based on geomorphological mapping and cosmogenic nuclide ((10)Be) exposure ages (n = 10) of boulders on moraines and lake shorelines. There are five prominent moraine belts in the Lago San Martin Valley, associated with extensive sandar (glaciofluvial outwash plains) and former lake shorelines. Cosmogenic nuclide exposure ages for boulders on these moraines indicate that they formed at 14.3 +/- 1.7 ka, 22.4 +/- 2.3 ka, 34.4 +/- 3.4 ka to 37.6 +/- 3.4 ka (and possibly 60 +/- 3.5 ka), and 99 +/- 11 ka (1 sigma). These dated glacier advances differ from published chronologies from the Lago San Martin Valley based on (14)C age determinations from organic sediments and molluscs in meltwater channels directly in front of moraines or in kettleholes within end moraine ridges. The moraine boulder ages also point to possible pre-LGM glacial advances during the last glacial cycle and a key observation from our data is that the LGM glaciers were probably less extensive in the Lago San Martin Valley than previously thought. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Glasser, Neil F.] Aberystwyth Univ, Ctr Glaciol, Inst Geog & Earth Sci, Ceredigion SY23 3DB, Wales. [Jansson, Krister N.; de Angelis, Hernan] Univ Stockholm, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden. [Goodfellow, Bradley W.] Stanford Univ, Stanford, CA 94305 USA. [Rodnight, Helena] Univ Innsbruck, Inst Geol & Palaeontol, A-6020 Innsbruck, Austria. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Glasser, NF (reprint author), Aberystwyth Univ, Ctr Glaciol, Inst Geog & Earth Sci, Ceredigion SY23 3DB, Wales. EM nfg@aber.ac.uk RI De Angelis, Hernan/E-1352-2012; Glasser, Neil /C-1971-2012; OI De Angelis, Hernan/0000-0002-8584-272X; Glasser, Neil/0000-0002-8245-2670 NR 51 TC 12 Z9 13 U1 1 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD MAY PY 2011 VL 75 IS 3 BP 636 EP 646 DI 10.1016/j.yqres.2010.11.005 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 767BY UT WOS:000290831500026 ER PT J AU Yang, L Chen, RC Peng, SM Long, XG Wu, ZC Gao, F Zu, XT AF Yang Li Chen RuCheng Peng ShuMing Long XingGui Wu ZhongCheng Gao Fei Zu XiaoTao TI First-principles study of He point-defects in HCP rare-earth metals SO SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY LA English DT Article; Proceedings Paper CT 11th International Conference in Asia of the International-Union-of-Materials-Research-Societies CY SEP 25-28, 2010 CL Qingdao, PEOPLES R CHINA SP Int Union Mat Res Soc (IUMRS), Chinese Mat Res Soc, Mat Res Soc Taiwan, Mat Res Soc Japan, Govt Qingdao City DE first-principles; rare-earth metals; helium ID HELIUM RELEASE; HYDROGEN; MOTION; POTENTIALS; SCANDIUM; FILMS AB He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals. C1 [Yang Li; Chen RuCheng; Zu XiaoTao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Peng ShuMing; Long XingGui; Wu ZhongCheng] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. [Gao Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglildk@uestc.edu.cn RI Gao, Fei/H-3045-2012 NR 23 TC 4 Z9 4 U1 2 U2 11 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7348 J9 SCI CHINA PHYS MECH JI Sci. China-Phys. Mech. Astron. PD MAY PY 2011 VL 54 IS 5 BP 827 EP 830 DI 10.1007/s11433-011-4310-4 PG 4 WC Physics, Multidisciplinary SC Physics GA 766GF UT WOS:000290768300006 ER PT J AU Li, YL Hu, SY Sun, X Gao, F Henager, CH Khaleel, M AF Li YuLan Hu ShenYang Sun Xin Gao Fei Henager, Charles H., Jr. Khaleel, Mohammad TI Phase-field modeling of void evolution and swelling in materials under irradiation SO SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY LA English DT Article; Proceedings Paper CT 11th International Conference in Asia of the International-Union-of-Materials-Research-Societies CY SEP 25-28, 2010 CL Qingdao, PEOPLES R CHINA SP Int Union Mat Res Soc (IUMRS), Chinese Mat Res Soc, Mat Res Soc Taiwan, Mat Res Soc Japan, Govt Qingdao City DE radiation; void swelling; vacancies; interstitials; phase-field model ID CASCADE DAMAGE CONDITIONS; COMPUTER-SIMULATION; MICROSTRUCTURAL EVOLUTION; SOLUTE SEGREGATION; LATTICE FORMATION; FERRITIC STEELS; STAINLESS-STEEL; NUCLEATION; GROWTH; ALLOYS AB Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments. C1 [Li YuLan; Hu ShenYang; Sun Xin; Gao Fei; Henager, Charles H., Jr.; Khaleel, Mohammad] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hu, SY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM shenyang.hu@pnl.gov RI Gao, Fei/H-3045-2012; OI khaleel, mohammad/0000-0001-7048-0749; HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803 NR 52 TC 2 Z9 3 U1 0 U2 23 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7348 EI 1869-1927 J9 SCI CHINA PHYS MECH JI Sci. China-Phys. Mech. Astron. PD MAY PY 2011 VL 54 IS 5 BP 856 EP 865 DI 10.1007/s11433-011-4316-y PG 10 WC Physics, Multidisciplinary SC Physics GA 766GF UT WOS:000290768300012 ER PT J AU Bricklemyer, RS Brown, DJ Barefield, JE Clegg, SM AF Bricklemyer, Ross S. Brown, David J. Barefield, James E. Clegg, Samuel M. TI Intact Soil Core Total, Inorganic, and Organic Carbon Measurement Using Laser-Induced Breakdown Spectroscopy SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; IN-SITU CHARACTERIZATION; SAMPLES; CHEMOMETRICS; OPTIMIZATION; REGRESSION; VARIABLES; NITROGEN; MONTANA; SYSTEM AB Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate, and precise analysis of soil constituents. We evaluated the accuracy of LIBS in measuring soil profile C for field-moist, intact soil cores by interrogating 78 intact soil cores from three Montana agricultural fields. Samples from each core were analyzed in the laboratory for total C (TC), inorganic C (IC), and soil organic C (SOC). Partial least squares 2 (PLS2) regression calibration models were derived using 58 cores (227 samples) and independently validated at the field scale with the remaining 20 cores (79 samples). We obtained the best LIBS validation predictions for IC (r(2) = 0.66, standard error of prediction [SEP] = 5.3 g kg(-1), ratio product differential [RPD] = 1.7) followed by TC (r(2) = 0.63, SEP = 6.0 g kg(-1), RPD = 1.6) and SOC (r(2) = 0.22, SEP = 3.2 g kg(-1), RPD = 1.1). Although the SEP for SOC was less than for TC and IC, low SOC variance limited our ability to evaluate LIBS SOC prediction capabilities. Regression coefficients from LIBS PLS2 models suggested a reliance on stoichiometric relationships between C and other elements related to total and inorganic C in the soil matrix (e. g., Ca, Mg, and Si) to discriminate TC from IC. Results indicate that LIBS spectral data collected on intact soil cores can be calibrated to accurately estimate and differentiate between soil total and inorganic C concentrations at the field scale. C1 [Bricklemyer, Ross S.; Brown, David J.] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA. [Barefield, James E.; Clegg, Samuel M.] Los Alamos Natl Lab, Chem Diagnost & Engn Grp C CDE, Los Alamos, NM 87545 USA. RP Bricklemyer, RS (reprint author), Washington State Univ, Dept Crop & Soil Sci, POB 646420, Pullman, WA 99164 USA. EM rsb@wsu.edu RI Brown, David/A-2002-2009; OI Barefield, James/0000-0001-8674-6214; Clegg, Sam/0000-0002-0338-0948 FU Big Sky Carbon Sequestration Partnership; U.S. Department of Energy-National Energy Technology Laboratory [DE-FC26-05NT42587] FX This research was funded by the Big Sky Carbon Sequestration Partnership and U.S. Department of Energy-National Energy Technology Laboratory, Award no. DE-FC26-05NT42587. We would also like to thank Rosie Wallander at Montana State University for total C analysis. NR 53 TC 13 Z9 13 U1 2 U2 27 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2011 VL 75 IS 3 BP 1006 EP 1018 DI 10.2136/sssaj2009.0244 PG 13 WC Soil Science SC Agriculture GA 767KW UT WOS:000290856500026 ER PT J AU Gueymard, CA Wilcox, SM AF Gueymard, Christian A. Wilcox, Stephen M. TI Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data SO SOLAR ENERGY LA English DT Article DE Variability; Direct and global irradiance; DNI; Solar resource; Interannual; Validation ID RADIATION; IRRADIANCE; PERFORMANCE; VALIDATION; PINATUBO; TRENDS AB The US National Renewable Energy Laboratory (NREL) is responding to a growing demand for high-accuracy solar resource data with uncertainties significantly lower than those of existing solar resource datasets, such as the National Solar Radiation Database (NSRDB). Measurements for long-term solar resource characterizations require years to complete, which is an unacceptable timeline for the rapidly emerging needs of renewable energy applications. This contribution seeks methods of reducing the uncertainty of existing long-term solar resource datasets by incorporating lower-uncertainty site-specific ground measurements of a limited period of record. In particular, various techniques are being explored to make full use of the existing high-resolution radiation data available in the NSRDB and other sources, and extrapolate them over time using locally measured data and other supportive information. The interannual variability in global and direct radiation is studied here using long-term data at various sites. NSRDB's modeled data for the 1998-2005 period are compared to quality-controlled measurements to assess the performance of the model, which is found to vary greatly depending on climatic condition. The reported results are encouraging for applications involving concentrators at very sunny sites. Large seasonal biases are found at some cloudy sites. Various improvements are proposed to enhance the quality of the existing model and modeled data. The measurement of solar radiation to characterize the solar climate for renewable energy and other applications is a time consuming and expensive operation. Full climate characterization may require several decades of measurements-a prospect that is not practical for an industry intent on rapid deployment of solar technologies. This study demonstrates that the consistency of the solar resource in both time and space varies widely across the United States. The mapped results here illustrate regions with high and low variability and provide readers with quick visual information to help them decide where and how long measurements should be taken for a particular application. The underlying data that form these maps are also available from NREL to provide users the opportunity for more detailed analysis. (C) 2011 Published by Elsevier Ltd. C1 [Gueymard, Christian A.] Solar Consulting Serv, Colebrook, NH 03576 USA. [Wilcox, Stephen M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gueymard, CA (reprint author), Solar Consulting Serv, POB 392, Colebrook, NH 03576 USA. EM Chris@SolarConsultingServices.com; Stephen.Wilcox@nrel.gov FU Department of Energy's Office of Energy Efficiency and Renewable Energy through the NREL; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory [DE-AC36-08-GO28308] FX This work was funded by the Department of Energy's Office of Energy Efficiency and Renewable Energy through the NREL Concentrating Solar Power Program. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 36 TC 61 Z9 61 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD MAY PY 2011 VL 85 IS 5 BP 1068 EP 1084 DI 10.1016/j.solener.2011.02.030 PG 17 WC Energy & Fuels SC Energy & Fuels GA 764PJ UT WOS:000290644000036 ER PT J AU Vander Wiel, S Wilson, A Graves, T Reese, S AF Vander Wiel, Scott Wilson, Alyson Graves, Todd Reese, Shane TI A Random Onset Model for Degradation of High-Reliability Systems SO TECHNOMETRICS LA English DT Article DE Aging; Bayesian; Reliability uncertainty; Sampling; Surveillance planning AB Weapons stockpiles are expected to have high reliability over time, but prudence demands regular testing to detect detrimental aging effects and maintain confidence that reliability is high. We present a model, called RADAR, in which a stockpile has high initial reliability that may begin declining at any time. RADAR provides a framework for answering questions about how confidence in continued high reliability can change as a result of reduced sampling, discovery of failed units, and information about when a unit failed. Supplemental materials (available on the Technometrics web site) provide lemmas used in the proof of Theorem 1, details of the Markov chain Monte Carlo algorithm, and additional examples. C1 [Vander Wiel, Scott; Graves, Todd] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wilson, Alyson] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. [Reese, Shane] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA. RP Vander Wiel, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM scottv@lanl.gov; agw@iastate.edu; tgraves@lanl.gov; reese@stat.byu.edu OI Wilson, Alyson/0000-0003-1461-6212 NR 8 TC 0 Z9 0 U1 1 U2 3 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD MAY PY 2011 VL 53 IS 2 BP 163 EP 172 DI 10.1198/TECH.2011.09119 PG 10 WC Statistics & Probability SC Mathematics GA 767CK UT WOS:000290832700005 ER PT J AU Wang, Y Li, ZH Wang, J Li, JH Lin, YH AF Wang, Ying Li, Zhaohui Wang, Jun Li, Jinghong Lin, Yuehe TI Graphene and graphene oxide: biofunctionalization and applications in biotechnology SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID RESONANCE ENERGY-TRANSFER; SENSING BIOMOLECULES; LARGE-SCALE; DNA; CARBON; DELIVERY; NANOCOMPOSITES; NANOMATERIALS; EXFOLIATION; COMPOSITE AB Graphene is the basic building block of OD fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed. C1 [Wang, Ying; Li, Jinghong] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. [Wang, Ying; Li, Zhaohui; Wang, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, JH (reprint author), Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. EM jhli@mail.tsinghua.edu.cn; Yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Li, Jinghong /D-4283-2012; OI Lin, Yuehe/0000-0003-3791-7587; Li, Jinghong /0000-0002-0750-7352; Wang, Ying/0000-0002-9847-4655 FU National Institute of Environmental Health Sciences, NIH [U54 ES016015-010003]; NIH through the National Institute of Neurological Disorders and Stroke [U01 NS058161-01]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; National Natural Science Foundation of China [20975060, 21005046, 11079002]; National Basic Research Program of China [2007CB310500, 2011CB935700] FX This work was supported partially by Grant U54 ES016015-010003 from the National Institute of Environmental Health Sciences, NIH, and Grant U01 NS058161-01 from the NIH CounterACT Program through the National Institute of Neurological Disorders and Stroke. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. Part of the research described in this paper was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. This work was also financially supported by the National Natural Science Foundation of China (No. 20975060, No. 21005046, No. 11079002), National Basic Research Program of China (No. 2007CB310500, No. 2011CB935700). NR 77 TC 536 Z9 548 U1 62 U2 649 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD MAY PY 2011 VL 29 IS 5 BP 205 EP 212 DI 10.1016/j.tibtech.2011.01.008 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 767XK UT WOS:000290891900002 PM 21397350 ER PT J AU Jonkman, JM Matha, D AF Jonkman, J. M. Matha, D. TI Dynamics of offshore floating wind turbines-analysis of three concepts SO WIND ENERGY LA English DT Article DE offshore wind turbine; floating; aero-hydro-servo-elastic analysis; tension leg platform; spar buoy; barge AB This work presents a comprehensive dynamic-response analysis of three offshore floating wind turbine concepts. Models were composed of one 5 MW turbine supported on land and three 5 MW turbines located offshore on a tension leg platform, a spar buoy and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time domain aero-hydro-servo-elastic simulation tool FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads and instabilities. The loads in the barge-supported turbine are the highest found for the three floating concepts. The differences in the loads between the tension leg platform-supported turbine and spar buoy-supported turbine are not significant, except for the loads in the tower, which are greater in the spar system. Instabilities in all systems also must be resolved. The results of this analysis will help resolve the fundamental design trade-offs between the floating-system concepts. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Jonkman, J. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Matha, D.] Univ Stuttgart, Endowed Chair Wind Energy SWE, Stuttgart, Germany. RP Jonkman, JM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jason.jonkman@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308] FX This work was performed at NREL in support of the US Department of Energy under contract number DE-AC36-08-GO28308. NR 12 TC 77 Z9 83 U1 3 U2 42 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD MAY PY 2011 VL 14 IS 4 BP 557 EP 569 DI 10.1002/we.442 PG 13 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 764MZ UT WOS:000290635000005 ER PT J AU Darrow, J Johnson, K Wright, A AF Darrow, J. Johnson, K. Wright, A. TI Design of a tower and drive train damping controller for the three-bladed controls advanced research turbine operating in design-driving load cases SO WIND ENERGY LA English DT Article DE control systems; load reduction; design standards ID INDIVIDUAL PITCH CONTROL; WIND TURBINES; BLADE AB Wind turbines experience both fatigue and extreme loading, and individual components of a wind turbine are affected differently by these loads. The current practice to achieve the typical 20 year design life is to build a turbine with robust components that can withstand fatigue and extreme loads for this duration. Unfortunately, overbuilding of components may lead to higher-than-necessary initial capital costs. In this research, we studied design-driving load cases and designed advanced control algorithms aimed at enabling a decrease in initial capital cost. Our approach used a subset of a full International Electrotechnical Commission loads case analysis and selected major components experiencing design-driving extreme loads that can be alleviated using advanced control. We first describe the results from the loads case analysis and then discuss the components on which we focused the advanced control design. We next describe the controller design and finally compare the results from the advanced controller simulations with those using a baseline controller. The baseline consists of a nonlinear torque controller below rated wind speed and a proportional-integral-derivative-like controller above rated and the advanced controller uses proportional feedback and state-space design to reduce tower bending and drive train torsional loads. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Darrow, J.; Johnson, K.] Colorado Sch Mines, Dept Engn, Golden, CO 80401 USA. [Wright, A.] Natl Renewable Energy Lab, Golden, CO USA. RP Johnson, K (reprint author), Colorado Sch Mines, Dept Engn, 1610 Illinois St, Golden, CO 80401 USA. EM kjohnson@mines.edu RI Aguayo, Leandro/B-8713-2012 FU US DOE/National Renewable Energy Laboratory [KXEA-3-33607-33] FX This work was supported by the US DOE/National Renewable Energy Laboratory under Task Order KXEA-3-33607-33. NR 32 TC 6 Z9 6 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD MAY PY 2011 VL 14 IS 4 BP 571 EP 601 DI 10.1002/we.443 PG 31 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 764MZ UT WOS:000290635000006 ER PT J AU Adams, D White, J Rumsey, M Farrar, C AF Adams, Douglas White, Jonathan Rumsey, Mark Farrar, Charles TI Structural health monitoring of wind turbines: method and application to a HAWT SO WIND ENERGY LA English DT Article DE structural health monitoring; horizontal axis wind turbine; vibrations; accelerometers ID SYSTEM; POWER AB Structural health monitoring in the context of a Micon 65/13 horizontal axis wind turbine was described in this paper as a process in statistical pattern recognition. Simulation data from a calibrated model with less than 8% error in the first 14 natural frequencies of vibration was used to study the operational response under various wind states as well as the effects of three types of damage in the blade, low speed shaft and yaw joint. It was shown that vertical wind shear and turbulent winds lead to different modal contributions in the operational response of the turbine suggesting that the sensitivity of operational data to damage depends on the wind loads. It is also shown that there is less than a 4% change in the wind turbine natural frequencies given a 25% reduction in the stiffness at the root of one blade. The modal assurance criterion was used to analyse the corresponding changes in modal deflections, and this criterion exhibited nearly orthogonal changes because of the three damage scenarios suggesting that the modal deflection determines which damage is observable at a given frequency for a given wind state. The modal contribution is calculated as a damage feature, which changes as much as 100% for 50% reductions in blade root stiffness, but only the blade damage is detected using this feature. Operational data was used to study variations in the forced blade response to determine the likelihood that small levels of damage can be detected amidst variations in wind speed across the rotor plane. The standard deviation in measured data was shown to be smallest for the span and edge-wise measurements at 1P due to gravity, which provides the dominant forcing function at this frequency. A 3% change in the response in the span and edge-wise directions because of damage is required to detect a change of three standard deviations in contrast to the 90% change in flap direction response that is required to detect a similar change because of damage. The dynamic displacement in the span direction is then used to extract a damage feature from the simulation data that provides the ability to both locate and quantify the reduction in stiffness in the blade root. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Adams, Douglas] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [White, Jonathan; Rumsey, Mark] Sandia Natl Labs, Albuquerque, NM USA. [Farrar, Charles] Los Alamos Natl Lab, Engn Inst, Albuquerque, NM USA. RP Adams, D (reprint author), Purdue Univ, Sch Mech Engn, 1500 Kepner Dr, W Lafayette, IN 47907 USA. EM deadams@purdue.edu OI Farrar, Charles/0000-0001-6533-6996 NR 31 TC 41 Z9 42 U1 6 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD MAY PY 2011 VL 14 IS 4 BP 603 EP 623 DI 10.1002/we.437 PG 21 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 764MZ UT WOS:000290635000007 ER PT J AU Cordeiro, PJ Tilley, TD AF Cordeiro, Paul J. Tilley, T. Don TI Enhancement of the Catalytic Activity of Titanium-Based Terminal Olefin Epoxidation Catalysts via Surface Modification with Functionalized Protic Molecules SO ACS CATALYSIS LA English DT Article DE epoxidation; hydrogen peroxide; surface modification; titania-silica; titanium-peroxox; single site; molecular precursor ID AQUEOUS HYDROGEN-PEROXIDE; MESOPOROUS SILICA; SINGLE-SITE; VISIBLE-LIGHT; SELECTIVE EPOXIDATION; ALKENE EPOXIDATION; PRECURSOR APPROACH; CYCLOHEXENE OXIDE; CRYSTAL-STRUCTURE; OXYGEN-TRANSFER AB Site-isolated Ti(IV) centers were introduced onto the surface of a mesoporous SBA-15 support via the thermolytic molecular precursor method. Prior to thermal treatment to generate Ti-OH sites, residual silanol groups were capped via reaction with Me(2)N-SiMe(3) to give TiMe(cap)SBA15. After low temperature treatment in oxygen; the resulting Ti-OH sites of TiMe(cap)SBA15-O(2) were modified by reaction with a series of protic reagents: phenol, pentafluorophenol, acetic acid, and trifluoroacetic acid. The structure of the resulting TiSBA15 catalysts and the Ti(IV) epoxidation intermediates (formed upon treatment of Ti(IV) materials with TBHP or H(2)O(2)) were probed using diffuse-reflectance UV-visible spectroscopy and infrared spectroscopy. A titanium-hydroperoxo species similar to that found in TS-1 is proposed for all catalysts. Samples modified with phenol and pentafluorophenol exhibited conversions of 1-octene that are 20 to 50% higher than those for TiMe(cap)SBA15-O(2), without a significant drop in selectivity for the epoxide product, 1,2-epoxyoctane, when TBHP was used as the oxidant. With aqueous H(2)O(2) as the oxidant, the phenol-treated materials exhibited-l-Octene conversions that are 15 to 50% greater than those observed for TiMe(cap)SBA15-O(2), and an increased selectivity, for 1,2-ep-oxyoctane of 10 to 30%. Additionally; the efficiency of H(2)O(2) usage, as monitored via (1)H NMR spectroscopy, increased by a factor of 2 to three for catalysts modified with phenol and pentafluorophenol, with respect to the efficiency observed over TiMe(cap)SBA15-O(2). Catalysts modified with acetic acid and trifluoroacetic acid displayed decreased catalytic turnover numbers and epoxide selectivities when TBHP was used as the oxidant, but exhibited catalytic turnover numbers and epoxide selectivities similar to TiMe(cap)SBA15-O(2) when H(2)O(2) was used as the oxidant. After treatment of TiMe(cap)SBA15-O(2) with acetic acid, the H(2)O(2) efficiency decreased by a factor of 2 for the epoxidation of 1-octene with H(2)O(2). C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cordeiro, Paul J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Cordeiro, Paul J.; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge the support of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences division, of the U.S. Department of Energy under contract DE-AC02-05CH11231. We thank A. P. Alivisatos of the University of California, Berkeley for the use of instrumentation (TEM, SAXS). NR 85 TC 25 Z9 25 U1 2 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD MAY PY 2011 VL 1 IS 5 BP 455 EP 467 DI 10.1021/cs200017s PG 13 WC Chemistry, Physical SC Chemistry GA 761UN UT WOS:000290426600004 ER PT J AU Franco, AA Hu, L Grim, CJ Gopinath, G Sathyamoorthy, V Jarvis, KG Lee, C Sadowski, J Kim, J Kothary, MH McCardell, BA Tall, BD AF Franco, A. A. Hu, L. Grim, C. J. Gopinath, G. Sathyamoorthy, V. Jarvis, K. G. Lee, C. Sadowski, J. Kim, J. Kothary, M. H. McCardell, B. A. Tall, B. D. TI Characterization of Putative Virulence Genes on the Related RepFIB Plasmids Harbored by Cronobacter spp. SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PATHOGENIC ESCHERICHIA-COLI; ENTEROBACTER-SAKAZAKII INFECTIONS; POWDERED INFANT FORMULA; GRAM-NEGATIVE BACTERIA; VI SECRETION SYSTEM; NEONATAL MENINGITIS; YERSINIA-PESTIS; VIBRIO-CHOLERAE; INTESTINAL INFLAMMATION; SALMONELLA-TYPHIMURIUM AB Cronobacter spp. are emerging neonatal pathogens that cause meningitis, sepsis, and necrotizing enterocolitis. The genus Chronobacter consists of six species: C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, and Cronobacter genomospecies group 1. Whole-genome sequencing of C. sakazakii BAA-894 and C. turicensis z3032 revealed that they harbor similarly sized plasmids identified as pESA3 (131 kb) and pCTU1 (138 kb), respectively. In silico analysis showed that both plasmids encode a single RepFIB-like origin of replication gene, repA, as well as two iron acquisition systems (eitCBAD and iucABCD/iutA). In a chrome azurol S agar diffusion assay, it was demonstrated that siderophore activity was associated with the presence of pESA3 or pCTU1. Additionally, pESA3 contains a cpa (Cronobacter plasminogen activator) gene and a 17-kb type 6 secretion system (T6SS) locus, while pCTU1 contains a 27-kb region encoding a filamentous hemagglutinin gene (fhaB), its specifc transporter gene (fhaC), and associated putative adhesins (FHA locus), suggesting that these are virulence plasmids. In a repA-targeted PCR assay, 97% of 229 Cronobacter species isolates were found to possess a homologous RepFIB plasmid. All repA PCR-positive strains were also positive for the eitCBAD and iucABCD/iutA iron acquisition systems. However, the presence of cpa, T6SS, and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type, and species. These results support the hypothesis that these plasmids have evolved from a single archetypical plasmid backbone through the cointegration, or deletion, of specific virulence traits in each species. C1 [Tall, B. D.] US FDA, Ctr Food Safety & Appl Nutr, Virulence Mech Branch HFS 025, Div Virulence Assessment,MOD Facil 1,OARSA, Laurel, MD 20708 USA. [Grim, C. J.; Jarvis, K. G.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Kim, J.] Washington Internship Program, Washington, DC USA. RP Tall, BD (reprint author), US FDA, Ctr Food Safety & Appl Nutr, Virulence Mech Branch HFS 025, Div Virulence Assessment,MOD Facil 1,OARSA, 8301 MuirKirk Rd,Room 3607, Laurel, MD 20708 USA. EM ben.tall@fda.hhs.gov OI Tall, Ben/0000-0003-0399-3629 FU FDA's Office of the Commissioner; Department of Energy; Institute of Food Safety and Applied Nutrition; Washington Internship Programs FX When this study started, L. Hu was an FDA Commissioner's Fellow; she is now an Oak Ridge Institute for Science and Education (ORISE) fellow. K. G. Jarvis and C. J. Grim are also ORISE fellows, and we thank the FDA's Office of the Commissioner and the Department of Energy for their support. We also thank the Joint Institute of Food Safety and Applied Nutrition Internship and Washington Internship Programs for the support of undergraduate students J. Sadowski, C. Lee, and J. Kim, respectively. NR 68 TC 29 Z9 31 U1 3 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2011 VL 77 IS 10 BP 3255 EP 3267 DI 10.1128/AEM.03023-10 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 762JT UT WOS:000290473200012 PM 21421789 ER PT J AU Dieckmann, J Cooperman, A Brodrick, J AF Dieckmann, John Cooperman, Alissa Brodrick, James TI Cool and Dry Comfort SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Dieckmann, John; Cooperman, Alissa] TIAX, Mech Syst Grp, Cambridge, MA 02140 USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX, Mech Syst Grp, Cambridge, MA 02140 USA. NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAY PY 2011 VL 53 IS 5 BP 90 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 762GR UT WOS:000290463600015 ER PT J AU Littlejohn, D Cheng, R Therkelsen, P Smith, K Ali, S AF Littlejohn, David Cheng, Robert Therkelsen, Peter Smith, Kenneth Ali, Sy TI Burner Design for Fuel Flexibility and Efficiency SO CHEMICAL ENGINEERING LA English DT Article C1 [Littlejohn, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Combust Res Grp, Berkeley, CA 94720 USA. RP Littlejohn, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Combust Res Grp, 1 Cyclotron Rd,Mail Stop 70-108B, Berkeley, CA 94720 USA. EM dlittlejohn@lbl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU CHEMICAL WEEK ASSOC PI NEW YORK PA 110 WILLIAM ST, 11TH FL, NEW YORK, NY 10038 USA SN 0009-2460 J9 CHEM ENG-NEW YORK JI Chem. Eng. PD MAY PY 2011 VL 118 IS 5 BP 44 EP 47 PG 4 WC Engineering, Chemical SC Engineering GA 764DI UT WOS:000290608200009 ER PT J AU Melaina, M Webster, K AF Melaina, M. Webster, K. TI Role of Fuel Carbon Intensity in Achieving 2050 Greenhouse Gas Reduction Goals within the Light-Duty Vehicle Sector SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID UNITED-STATES; QUALITY AB Recent U.S. climate change policy developments include aggressive proposals to reduce greenhouse gas emissions, including cap-and-trade legislation with a goal of an 83% reduction below 2005 levels by 2050. This study examines behavioral and technological changes required to achieve this reduction within the light-duty vehicle (LDV) sector. Under this "fair share" sectoral assumption, aggressive near-term actions are necessary in three areas: vehicle miles traveled (VMT), vehicle fuel economy (FE), and fuel carbon intensity (FCI). Two generic scenarios demonstrate the important role of FCI in meeting the 2050 goal. The first scenario allows deep reductions in FCI to compensate for relatively modest FE improvements and VMT reductions. The second scenario assumes optimistic improvements in FE, relatively large reductions in VMT and less aggressive FCI reductions. Each generic scenario is expanded into three illustrative scenarios to explore the theoretical implications of meeting the 2050 goal by relying exclusively on biofiiels and hybrid vehicles, biofuels and plug-in hybrid vehicles, or hydrogen fuel cell electric vehicles. These scenarios inform a discussion of resource limitations, technology development and deployment challenges, and policy goals required to meet the 2050 GHG goal for LDVs. C1 [Melaina, M.; Webster, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Melaina, M (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM marc.melaina@nrel.gov FU U.S. Department of Energy FX This research was funded by the U.S. Department of Energy. NR 29 TC 24 Z9 24 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 1 PY 2011 VL 45 IS 9 BP 3865 EP 3871 DI 10.1021/es1037707 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 753ZI UT WOS:000289819400012 PM 21456550 ER PT J AU Felmy, AR Moore, DA Rosso, KM Qafoku, O Rai, D Buck, EC Ilton, ES AF Felmy, Andrew R. Moore, Dean A. Rosso, Kevin M. Qafoku, Odeta Rai, Dhanpat Buck, Edgar C. Ilton, Eugene S. TI Heterogeneous Reduction of PuO2 with Fe(II): Importance of the Fe(III) Reaction Product SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOLID-WATER INTERFACE; REDUCING CONDITIONS; REDOX REACTIONS; FERROUS IRON; FERRIC-OXIDE; URANIUM(VI); SURFACE; PLUTONIUM; U(VI); OXIDATION AB Heterogeneous reduction of actinides in higher, more soluble oxidation states to lower, more insoluble oxidation states by reductants such as Fe(II) has been the subject of intensive study for more than two decades. However, Fe(II)-induced reduction of sparingly soluble Pu(IV) to the more soluble lower oxidation state Pu(:II) has been much less studied, even though such reactions can potentially increase the mobility of Pu in the subsurface. Thermodynamic calculations are presented that show how differences in the free energy of various possible solid-phase Fe(III) reaction products can greatly influence aqueous Pu(III) concentrations resulting from reduction of PuO2(am) by Fe(II). We present the first experimental evidence that reduction of PuO2(am) to Pu(III) by Fe(II) was enhanced when the Fe(III) mineral goethite was spiked into the reaction. The effect of goethite on reduction of Pu(IV) was demonstrated by measuring the time dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH. We also re-evaluated established protocols for determining Pu(III) {[Pu(III) + Pu(IV)] - Pu(IV)) by using thenoyltrifuluoroacetone (TTA) in toluene extractions; the study showed that it is important to eliminate dissolved oxygen from the TTA solutions for accurate determinations. More broadly, this study highlights the importance of the Fe(III) reaction product in actinide reduction rate and extent by Fe(II). C1 [Felmy, Andrew R.; Moore, Dean A.; Rosso, Kevin M.; Qafoku, Odeta; Buck, Edgar C.; Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rai, Dhanpat] Rai Envirochem LLC, Yachats, OR USA. RP Felmy, AR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ar.felmy@pnl.gov RI Buck, Edgar/N-7820-2013 OI Buck, Edgar/0000-0001-5101-9084 FU U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy's Office of Biological and Environmental Research, as part of the Subsurface Biogeochemical Research (SBR) Science Focus Area (SFA) at the Pacific Northwest National Laboratory. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. NR 40 TC 23 Z9 24 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 1 PY 2011 VL 45 IS 9 BP 3952 EP 3958 DI 10.1021/es104212g PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 753ZI UT WOS:000289819400024 PM 21469710 ER PT J AU Obrist, D Johnson, DW Lindberg, SE Luo, Y Hararuk, O Bracho, R Battles, JJ Dail, DB Edmonds, RL Monson, RK Ollinger, SV Pallardy, SG Pregitzer, KS Todd, DE AF Obrist, D. Johnson, D. W. Lindberg, S. E. Luo, Y. Hararuk, O. Bracho, R. Battles, J. J. Dail, D. B. Edmonds, R. L. Monson, R. K. Ollinger, S. V. Pallardy, S. G. Pregitzer, K. S. Todd, D. E. TI Mercury Distribution Across 14 US Forests. Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DISSOLVED ORGANIC-MATTER; DEPOSITION; TRANSPORT; METHYLMERCURY; ACCUMULATION; POLLUTION; ECOSYSTEM; EMISSION; EXCHANGE; BINDING AB Results from a systematic investigation of mercury (Hg) concentrations across 14 forest sites in the United States show highest concentrations in litter layers, strongly enriched in Hg compared to aboveground tissues and indicative of substantial postdepositional sorption of Hg. Soil Hg concentrations were lower than in litter, with highest concentrations in surface soils. Aboveground tissues showed no detectable spatial patterns, likely due to 17 different tree species present across sites. Litter and soil Hg concentrations positively correlated with carbon (C), latitude, precipitation, and clay (in soil), which together explained up to 94% of concentration variability. We observed strong latitudinal increases in Hg in soils and litter, in contrast to inverse latitudinal gradients of atmospheric deposition measures. Soil and litter Hg concentrations were closely linked to C contents, consistent with well-known associations between organic matter and Hg, and we propose that C also shapes distribution of Hg in forests at continental scales. The consistent link between C and Hg distribution may reflect a long-term legacy whereby old, C-rich soil and litter layers sequester atmospheric Hg depositions over long time periods. Based on a multiregression model, we present a distribution map of Hg concentrations in surface soils of the United States. C1 [Obrist, D.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Lindberg, S. E.] Oak Ridge Natl Lab, Graeagle, CA USA. [Luo, Y.; Hararuk, O.] Univ Oklahoma, Norman, OK 73019 USA. [Bracho, R.] Univ Florida, Gainesville, FL USA. [Battles, J. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dail, D. B.] Univ Maine, Orono, ME USA. [Edmonds, R. L.] Univ Washington, Seattle, WA 98195 USA. [Monson, R. K.] Univ Colorado, Boulder, CO 80309 USA. [Ollinger, S. V.] Univ New Hampshire, Durham, NH 03824 USA. [Pallardy, S. G.] Univ Missouri, Columbia, MO USA. [Todd, D. E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Obrist, D (reprint author), Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. EM daniel.obrist@dri.edu RI Ollinger, Scott/N-3380-2014; OI Ollinger, Scott/0000-0001-6226-1431; Battles, John J./0000-0001-7124-7893 FU U.S Environmental Protection Agency (U.S. EPA) [R833378]; DRI FX We thank A. Pokharel, A. Pierce, C. Berger, J. Dagget, R Higgins, G. Marty, S. Vadwalas, S. Lee, and R Kreidberg for help with sample collection, processing, laboratory analyses, and manuscript editing. We thank B. Gynea, R Wenk, M. Prater, A. Richardson, B. Evans, P.Mulhoollan, P. Micks, and K. Hosman for help with site visits and field sampling. This study was funded by the U.S Environmental Protection Agency (U.S. EPA) through a Science-To-Achieve-Results grant (No. R833378) and received support by an DRI Internal Project Assignment grant. NR 44 TC 75 Z9 77 U1 5 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 1 PY 2011 VL 45 IS 9 BP 3974 EP 3981 DI 10.1021/es104384m PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 753ZI UT WOS:000289819400027 PM 21473582 ER PT J AU Wan, BNA Yu, CX Philippe, P Luhmann, NC Ang, T Domier, CW Gao, BX Gentle, K Huang, H Li, EZ Ling, BL Liu, WD Liu, Y Prater, R Rowan, W Shen, ZW Taylor, G Tobias, BJ Wang, J Wang, J Wen, YZ Xia, ZG Xiang, H Xie, JL Xu, M Xu, XY AF Wan, Baonian Yu, Changxuan Philippe, Perry Luhmann, N. C. Ang, Ti Domier, C. W. Gao, Binxi Gentle, Kenneth Huang, He Li, Erzhong Ling, Bili Liu, Wandong Liu, Yong Prater, Ron Rowan, William Shen, Zuowei Taylor, Gary Tobias, Benjamin John Wang, Jian Wang, Jun Wen, Yizhi Xia, Zhenggang Xiang, Han Xie, Jinlin Xu, Ming Xu, Xiaoyuan TI ELECTRON CYCLOTRON HEATING PROGRAM AND ELECTRON CYCLOTRON EMISSION DIAGNOSTICS ON THE EAST AND HT-7 SUPERCONDUCTING TOKAMAKS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE electron cyclotron heating and current drive; electron cyclotron emission; electron temperature fluctuation ID TEMPERATURE FLUCTUATIONS; SYSTEM AB A program of electron cyclotron heating (ECH) with 4 MW at 140 GHz has been launched for developing scenarios of stable high performance through control of the pressure and current density profiles on the EAST tokamak. Several electron cyclotron emission (ECE) diagnostics are under development as important components of the research program on EAST. The smaller HT-7 tokamak is equipped with a multichannel superheterodyne radiometer and an ECE imaging system. Physics issues including fluctuations driven by electron and ion modes, low frequency zonal flows, magnetic reconnection mechanisms, etc. were investigated on HT-7 using these two systems, which have been moved to EAST after some modifications. New systems, including a 32-channel ECE system and an ECE imaging system of 24(radial) X 16(vertical) channels, are under development. These new systems are designed for the ECH plasma regimes and provide long-range correlation measurements of plasma turbulence. A grating polychromator ECE system has been installed for measurement of the Te profile covering the whole operational range of toroidal magnetic field on EAST. C1 [Wan, Baonian; Ang, Ti; Li, Erzhong; Ling, Bili; Liu, Yong; Xiang, Han] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Yu, Changxuan; Gao, Binxi; Liu, Wandong; Wang, Jun; Wen, Yizhi; Xie, Jinlin; Xu, Ming; Xu, Xiaoyuan] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Philippe, Perry; Gentle, Kenneth; Huang, He; Rowan, William] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. [Luhmann, N. C.; Domier, C. W.; Shen, Zuowei; Tobias, Benjamin John; Wang, Jian; Xia, Zhenggang] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Prater, Ron] Gen Atom, San Diego, CA 92186 USA. [Taylor, Gary] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wan, BNA (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. EM bnwan@ipp.ac.cn NR 15 TC 2 Z9 2 U1 2 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 631 EP 639 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500002 ER PT J AU Bae, YS Joung, M Yang, HL Namkung, W Cho, MH Park, H Prater, R Ellis, RA Hosea, J AF Bae, Y. S. Joung, M. Yang, H. L. Namkung, W. Cho, M. H. Park, H. Prater, R. Ellis, R. A. Hosea, J. TI ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE PROGRAM FOR KSTAR BASED ON THE 170-GHz GYROTRON SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE electron cyclotron heating; noninductive current drive; tokamak ID TOKAMAK AB Electron cyclotron heating and current drive (ECH/ECCD) has become an essential tool for fusion plasma research in toroidal devices. In the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak, development of a high power and multifrequency ECH/ECCD system is in progress. The multiple frequency sources employed in KSTAR (84 GHz and 110 GHz have been used, and 170 GHz and possibly 140 GHz are planned) support the wide range of operating magnetic fields from similar to 1.5 to 3.5 T. In particular, 170-GHz power, which will be used on ITER, corresponds to the second harmonic of the cyclotron frequency for the KSTAR operating range from 2.5 to 3.5 T. This frequency will be mainly used for control of the local plasma current profile, in order to manipulate the internal magnetohydrodynamic instabilities such as the sawtooth and neoclassical tearing mode, which can be harmful to steady-state high-beta operation. This paper presents the status of the KSTAR ECH/ECCD program and the ray-tracing calculations of the 170-GHz electron cyclotron wave propagation for various plasma conditions in KSTAR. In the ray-tracing simulation, the TORAY-GA ray-tracing code is used to study the dependence of the ECH/ECCD on the plasma profiles as a function of the beam aiming angles. C1 [Bae, Y. S.; Joung, M.; Yang, H. L.] Natl Fus Res Inst, Taejon 305333, South Korea. [Namkung, W.; Cho, M. H.; Park, H.] Pohang Univ Sci & Technol, Pohang 790784, South Korea. [Prater, R.] Gen Atom, San Diego, CA 92186 USA. [Ellis, R. A.; Hosea, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bae, YS (reprint author), Natl Fus Res Inst, Gwahangno 113, Taejon 305333, South Korea. EM ysbae@nfri.re.kr NR 12 TC 8 Z9 8 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 640 EP 646 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500003 ER PT J AU Liu, Y Li, EZ Ling, BL Ti, A Taylor, G AF Liu, Yong Li, Erzhong Ling, Bili Ti, Ang Taylor, Gary TI A 20-CHANNEL GRATING POLYCHROMATOR FOR ELECTRON CYCLOTRON EMISSION MEASUREMENTS ON EAST SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE electron cyclotron emission; grating polychromator; EAST ID ALCATOR-C TOKAMAK; RADIOMETER; PLASMA; SYSTEM AB A 20-channel grating polychromator transferred from Princeton Plasma Physics Laboratory has been rebuilt for electron cyclotron emission measurements on EAST. This instrument measures the second-harmonic electron cyclotron emission from plasma with frequency range from 90 to 250 GHz, which corresponds to a central magnetic field (R-0 = 1.7 m) of 2 to 3.5 Ton EAST. The radial resolution of this instrument is similar to 2.5 cm, and the poloidal spot size of the quasi-optic antenna is similar to 3 cm. New preamplifiers are made and tested, based on the electronics of GPC-II on TFTR. These amplifiers have a gain of around 520, with a 400-kHz, 3-dB rolloff Measurement results from the 2010 EAST experimental campaign show that the intensity of this instrument is similar to 200 mV for electron temperature of 850 eV, and the signal-to-noise ratio is similar to 20. C1 [Liu, Yong; Li, Erzhong; Ling, Bili; Ti, Ang] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Taylor, Gary] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Liu, Y (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM liuyong@ipp.ac.cn NR 23 TC 2 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 657 EP 662 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500006 ER PT J AU Udintsev, VS Vayakis, G Costley, AE Patel, KM Pitcher, CS Walker, CI Walsh, MJ Benchikhoune, M Bora, D Dammann, A Henderson, MA Levesy, B Tesini, A Danani, S Pandya, H Vasu, P Austin, ME Phillips, PE Rowan, WL Feder, R Johnson, D AF Udintsev, V. S. Vayakis, G. Costley, A. E. Patel, K. M. Pitcher, C. S. Walker, C. I. Walsh, M. J. Benchikhoune, M. Bora, D. Dammann, A. Henderson, M. A. Levesy, B. Tesini, A. Danani, S. Pandya, H. Vasu, P. Austin, M. E. Phillips, P. E. Rowan, W. L. Feder, R. Johnson, D. TI PROGRESS IN THE DEVELOPMENT OF THE ITER ECE DIAGNOSTIC SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE ITER; electron cyclotron emission; tokamak; design; neoclassical tearing mode AB This paper explains the present status of the ITER electron cyclotron emission (ECE) diagnostic and gives an outlook on the upcoming technical and design activity. The open questions of calibration and stability of ECE systems, as well as proposals for the calibration, the design of the front end, and the transmission line are reviewed. The possible role of ECE in the neoclassical tearing mode detection and stabilization by electron cyclotron heating is also discussed. Because integration of the ITER ECE diagnostic within the tokamak requires proper definition of interfaces with many different components located both in-vessel and ex-vessel, a special attention is paid to address the associated issues. C1 [Udintsev, V. S.; Vayakis, G.; Costley, A. E.; Patel, K. M.; Pitcher, C. S.; Walker, C. I.; Walsh, M. J.; Benchikhoune, M.; Bora, D.; Dammann, A.; Henderson, M. A.; Levesy, B.; Tesini, A.] ITER Org, F-13067 St Paul Les Durance, France. [Danani, S.; Pandya, H.; Vasu, P.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [Austin, M. E.; Phillips, P. E.; Rowan, W. L.] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. [Feder, R.; Johnson, D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Udintsev, VS (reprint author), ITER Org, Route Vinon CS 90046, F-13067 St Paul Les Durance, France. EM victor.udintsev@iter.org NR 14 TC 5 Z9 5 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 678 EP 683 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500009 ER PT J AU Gandini, F Bigelow, TS Becket, B Caughman, JB Cox, D Darbos, C Gassmann, T Henderson, MA Jean, O Kajiwara, K Kobayashi, N Nazare, C Oda, Y Omori, T Purohit, D Rasmussen, DA Ronden, DMS Saibene, G Sakamoto, K Shapiro, MA Takahashi, K Temkin, RJ AF Gandini, F. Bigelow, T. S. Becket, B. Caughman, J. B. Cox, D. Darbos, C. Gassmann, T. Henderson, M. A. Jean, O. Kajiwara, K. Kobayashi, N. Nazare, C. Oda, Y. Omori, T. Purohit, D. Rasmussen, D. A. Ronden, D. M. S. Saibene, G. Sakamoto, K. Shapiro, M. A. Takahashi, K. Temkin, R. J. TI THE EC H&CD TRANSMISSION LINE FOR ITER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE ITER; transmission lines; electron cyclotron heating and current drive ID COMPONENTS; SYSTEM AB The transmission line (TL) subsystem associated with the ITER electron cyclotron heating and current drive system has reached the conceptual design maturity. At this stage the responsibility of finalizing the design has been transferred from the ITER Organization to the U.S. Domestic Agency. The purpose of the TL is to transmit the microwaves generated by the 170-GHz gyrotrons installed in the radio-frequency building to the launchers located in one equatorial and four upper tokamak ports. Each TL consists of evacuated HE(11) wave guides, direct-current breaks, power monitors, mitre bends, polarizers, switches, loads, and pumping sections and will have a typical length that ranges from 100 to 160 m. Overall transmission efficiency could be as high as 92% depending on the specific path between a given gyrotron and launcher. All components are required to be 2-MW compatible, and their layout and organization have been optimized for simplifying the maintenance accessibility and monitoring the primary tritium barrier integrity. Two different TL layouts are at the moment under study, to accommodate the two alternative options for the European sources: four 2-MW units or eight 1-MW units. In this paper the actual design is presented and the technical requirements are discussed. C1 [Gandini, F.; Becket, B.; Cox, D.; Darbos, C.; Gassmann, T.; Henderson, M. A.; Jean, O.; Omori, T.; Purohit, D.] ITER Org, F-13067 St Paul Les Durance, France. [Bigelow, T. S.; Caughman, J. B.; Rasmussen, D. A.] ORNL, US ITER Project Off, Oak Ridge, TN 37831 USA. [Kajiwara, K.; Kobayashi, N.; Oda, Y.; Sakamoto, K.; Takahashi, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Nazare, C.] Assyst Facil, F-78067 St Quentin En Yvelines, France. [Ronden, D. M. S.] EURATOM, NL-3430 BE Nieuwegein, Netherlands. [Saibene, G.] Fus Energy, E-08019 Barcelona, Spain. [Shapiro, M. A.; Temkin, R. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Gandini, F (reprint author), ITER Org, F-13067 St Paul Les Durance, France. EM franco.gandini@iter.org RI Caughman, John/R-4889-2016 OI Caughman, John/0000-0002-0609-1164 NR 22 TC 20 Z9 20 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 709 EP 717 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500012 ER PT J AU Ronden, DMS Henderson, MA Becket, B Bigelow, T Caughman, J Darbos, C Gandini, F Nazare, C Rasmussen, D Udintsev, V AF Ronden, D. M. S. Henderson, M. A. Becket, B. Bigelow, T. Caughman, J. Darbos, C. Gandini, F. Nazare, C. Rasmussen, D. Udintsev, V. TI THE ENGINEERING ANALYSIS IN SUPPORT OF THE ITER ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE TRANSMISSION LINES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-16) CY APR 12-15, 2010 CL Inst Plasma Phys Chinese Acad Sci, Sanya, PEOPLES R CHINA HO Inst Plasma Phys Chinese Acad Sci DE electron cyclotron heating; transmission line; ITER AB An engineering study has been poformed on the ITER electron cyclotron transmission lines with the aim of optimizing its conceptual design. The support types and optimum spacing, cooling, vacuum, seismic, and gravitational effects were reviewed. For the vacuum system it was shown that two pumps per line, with a capacity of 50 l/s, are sufficient. It was explained that the temperature variation inside the building is the predominant factor that influences the thermal expansion of the lines. The support strategy is one of minimizing the number of constraints. Variation in support interspacing reduces the degree of harmonic disturbances. The section of transmission line inside the ITER port cell was identified as critical with regards to occurrence of deformation and stresses. Potential solutions are described. The use of seismic breaks is discussed in light of the differences in foundation and structure of the ITER tokamak building and assembly hall. It is proposed that this interface be studied in more detail, after more data is available on the behavior of these buildings. The geometry of individual supports should be simple, with the fewest possible adjustments. The supports are designed to allow small movements of the waveguide to compensate for the thermal expansion or contraction. The transmission line system can be made for optimum alignment during nominal operating temperatures by prestressing during installation. C1 [Ronden, D. M. S.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Ronden, D. M. S.] ITER NL, NL-3430 BE Nieuwegein, Netherlands. [Henderson, M. A.; Becket, B.; Darbos, C.; Gandini, F.; Nazare, C.; Udintsev, V.] ITER Org, F-13067 St Paul Les Durance, France. [Bigelow, T.; Caughman, J.; Rasmussen, D.] ORNL, USIPO, Oak Ridge, TN 37831 USA. RP Ronden, DMS (reprint author), EURATOM, FOM Inst Plasma Phys Rijnhuizen, POB 1207, NL-3430 BE Nieuwegein, Netherlands. EM d.m.s.ronden@rijnhuizen.nl NR 12 TC 2 Z9 2 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2011 VL 59 IS 4 BP 718 EP 728 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 761TS UT WOS:000290424500013 ER PT J AU Monga, I Guok, C Johnston, WE Tierney, B AF Monga, Inder Guok, Chin Johnston, William E. Tierney, Brian TI Hybrid Networks: Lessons Learned and Future Challenges Based on ESnet4 Experience SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article AB ESnet, the Energy Sciences Network, has the mission of providing the network infrastructure to the U.S. Department of Energy's Office of Science programs and facilities, which depend on large collaborations and large-scale data sharing, enabling them to accomplish their science. ESnet4 - a hybrid IP and dynamic circuit network designed in 2006 and completed in 2008 has managed to effectively satisfy the networking needs of the science community, easily handling dramatic growth in traffic requirements: around 80 percent growth year over year and 300 percent growth with the Large Hadron Collider (LHC) coming online. In this article, we examine the benefits and limitations of the current hybrid architecture based on actual production experience; discuss open research problems; and predict factors that will drive the evolution of hybrid networks, including advances in network technology, new computer architectures, and the onset of large-scale distributed computing. C1 [Monga, Inder; Guok, Chin; Johnston, William E.; Tierney, Brian] Lawrence Berkeley Natl Lab ESnet, Berkeley, CA USA. RP Monga, I (reprint author), Lawrence Berkeley Natl Lab ESnet, Berkeley, CA USA. EM imonga@es.net; chin@es.net; wej@es.net; bltierney@es.net FU Director, Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. Thanks to all current OSCARS open source contributors (http://code.google.com/p/oscarsidc/people/list), in particular, Evangelos Chaniotakis, Andy Lake, Eric Pouyoul, and Mary Thomson from ESnet, Jeff Boote and Aaron Brown at Internet2, and Tom Lehman and Xi Yang from ISI. NR 9 TC 11 Z9 11 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD MAY PY 2011 VL 49 IS 5 BP 114 EP 121 DI 10.1109/MCOM.2011.5762807 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 762BJ UT WOS:000290447000012 ER PT J AU Lehman, T Yang, X Ghani, N Gu, F Guok, C Monga, I Tierney, B AF Lehman, Tom Yang, Xi Ghani, Nasir Gu, Feng Guok, Chin Monga, Inder Tierney, Brian TI Multilayer Networks: An Architecture Framework SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article AB We present an architecture framework for the control and management of multilayer networks and associated advanced network services. This material is identified as an "architecture framework" to emphasize its role in providing guidance and structure to our subsequent detailed architecture, design, and implementation activities. Our work is motivated by requirements from the Department of Energy science application community for real-time on-demand science-domain-specific network services and resource provisioning. We also summarize the current state of deployments and use of network services based on this multilayer network architecture framework. C1 [Lehman, Tom] Univ So Calif, Comp Networks Div, Inst Informat Sci, Los Angeles, CA 90089 USA. [Ghani, Nasir; Gu, Feng] Univ New Mexico, Albuquerque, NM 87131 USA. [Tierney, Brian] Lawrence Berkeley Natl Lab, ESnet Adv Network Technol Grp, Berkeley, CA USA. RP Lehman, T (reprint author), Univ So Calif, Comp Networks Div, Inst Informat Sci, Los Angeles, CA 90089 USA. EM imonga@ES.NET FU U.S. DOE Office of Science [DE-FG02-06ER25741, DE-AC02-05CH11231, DE-SC0001229] FX This research was supported in part by the U.S. DOE Office of Science under award numbers DE-FG02-06ER25741, DE-AC02-05CH11231, and DE-SC0001229. The authors are very grateful to DOE for its generous support. In addition, the authors are also very thankful to Dr. Thomas Ndousse, William Johnston, and Mary Thompson for their many insightful discussions and feedback. NR 6 TC 11 Z9 11 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD MAY PY 2011 VL 49 IS 5 BP 122 EP 130 DI 10.1109/MCOM.2011.5762808 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 762BJ UT WOS:000290447000013 ER PT J AU Lee, SB Lebensohn, RA Rollett, AD AF Lee, S. -B. Lebensohn, R. A. Rollett, A. D. TI Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Micromechanical modeling; Composite materials; Stress and strain-rate fields; Viscoplasticity; Microstructure-property relationship ID METAL-CERAMIC COMPOSITES; GRAIN-GROWTH; HETEROGENEOUS MATERIALS; REINFORCED COMPOSITES; MECHANICAL-BEHAVIOR; MATRIX COMPOSITES; SIZE DISTRIBUTION; NUMERICAL-METHOD; SELF-CONSISTENT; 3 DIMENSIONS AB A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain-rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain-rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain-rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain-rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain-rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lee, S. -B.; Rollett, A. D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Lebensohn, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87845 USA. RP Lee, SB (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM kaiens173@gmail.com RI Lebensohn, Ricardo/A-2494-2008; Rollett, Anthony/A-4096-2012; LEE, SUKBIN/A-4936-2012 OI Lebensohn, Ricardo/0000-0002-3152-9105; Rollett, Anthony/0000-0003-4445-2191; FU High Performance Computing Modernization Office FX Support from the User Productivity Enhancement and Technology Transfer Program (PET) of the High Performance Computing Modernization Office for S.-B.L. and A.D.R. is gratefully acknowledged. Conversations about composite materials with John Clayton and Tusit Weerasooriya of the Army Research Laboratory are gratefully acknowledged. The Intel Corporation is thanked for the provision of computing facilities. S.-B.L. thanks Professor H.-N. Han for valuable conversations on the modeling of the plasticity. NR 65 TC 35 Z9 35 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD MAY PY 2011 VL 27 IS 5 BP 707 EP 727 DI 10.1016/j.ijplas.2010.09.002 PG 21 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 761TB UT WOS:000290422800003 ER PT J AU Armour, KC Bitz, CM Thompson, L Hunke, EC AF Armour, Kyle C. Bitz, Cecilia M. Thompson, LuAnne Hunke, Elizabeth C. TI Controls on Arctic Sea Ice from First-Year and Multiyear Ice Survivability SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE; VARIABILITY; THICKNESS; COVER AB Recent observations of Arctic sea ice show that the decrease in summer ice cover over the last few decades has occurred in conjunction with a significant loss of multiyear ice. The transition to an Arctic that is populated by thinner, first-year sea ice has important implications for future trends in area and volume. Here, a reduced model for Arctic sea ice is developed. This model is used to investigate how the survivability of first-year and multiyear ice controls the mean state, variability, and trends in ice area and volume. A hindcast with a global dynamic-thermodynamic sea ice model that traces first-year and multiyear ice is used to estimate the survivability of each ice type. These estimates of survivability, in concert with the reduced model, yield persistence time scales of September area and volume anomalies and the characteristics of the sensitivity of sea ice to climate forcing that compare well with a fully coupled climate model. The September area is found to be nearly in equilibrium with climate forcing at all times, and therefore the observed decline in summer sea ice cover is a clear indication of a changing climate. Keeping an account of first-year and multiyear ice area within global climate models offers a powerful way to evaluate those models with observations, and could help to constrain projections of sea ice decline in a warming climate. C1 [Armour, Kyle C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bitz, Cecilia M.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Thompson, LuAnne] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Hunke, Elizabeth C.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp T 3, Los Alamos, NM USA. RP Armour, KC (reprint author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. EM karmour@u.washington.edu RI Bitz, Cecilia/S-8423-2016 OI Bitz, Cecilia/0000-0002-9477-7499 FU National Science Foundation [OCE-0256011]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the National Science Foundation under Grant OCE-0256011 (KCA, CMB, and LT). ECH was supported by the Climate Change Prediction Program of the Department of Energy's Office of Biological and Environmental Research. We thank Edward Blanchard-Wrigglesworth, Ian Eisenman, Dargan Frierson, Gerard Roe, and Harry Stern for their helpful comments; two anonymous reviewers for constructive suggestions that improved the manuscript; and Marika Holland, the editor. NR 26 TC 6 Z9 7 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY 1 PY 2011 VL 24 IS 9 BP 2378 EP 2390 DI 10.1175/2010JCLI3823.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 762EZ UT WOS:000290457600012 ER PT J AU Judi, DR Burian, SJ McPherson, TN AF Judi, David R. Burian, Steven J. McPherson, Timothy N. TI Two-Dimensional Fast-Response Flood Modeling: Desktop Parallel Computing and Domain Tracking SO JOURNAL OF COMPUTING IN CIVIL ENGINEERING LA English DT Article DE Parallel computing; Multicore; Multiprocessor computing; Flood modeling; Shallow-water equations; Java multithreading; Domain tracking ID PERFORMANCE; TOPOGRAPHY; FLOWS AB Emergency flood management is enhanced by using models that can estimate the timing and location of flooding. Typically, flood routing and inundation prediction is accomplished by using one-dimensional (1D) models. These have been the models of choice because they are computationally simple and quick. However, these models do not adequately represent the complex physical processes present for shallow flows located in the floodplain or in urban areas. Two-dimensional (2D) models developed on the basis of the full hydrodynamic equations can be used to represent the complex flow phenomena that exist in the floodplain and are, therefore, recommended by the National Research Council for increased use in flood analysis studies. The major limitation of these models is the increased computational cost. Two-dimensional flood models are prime candidates for parallel computing, but traditional methods/equipment (e. g., message passing paradigm) are more complex in terms of code refactoring and hardware setup. In addition, these hardware systems may not be available or accessible to modelers conducting flood analyses. This paper presents a 2D flood model that implements multithreading for use on now-prevalent multicore computers. This desktop parallel computing architecture has been shown to decrease computation time by 14 times on a 16-processor computer and, when coupled with a wet cell tracking algorithm, has been shown to decrease computation by as much as 310 times. These accomplishments make high-fidelity flood modeling more feasible for flood inundation studies using readily available desktop computers. DOI: 10.1061/(ASCE)CP.1943-5487.0000064. (C) 2011 American Society of Civil Engineers. C1 [Judi, David R.; McPherson, Timothy N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burian, Steven J.] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. RP Judi, DR (reprint author), Los Alamos Natl Lab, MS K488, Los Alamos, NM 87545 USA. EM djudi@lanl.gov; burian@eng.utah.edu OI Burian, Steven/0000-0003-0523-4968 NR 29 TC 8 Z9 8 U1 0 U2 9 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0887-3801 J9 J COMPUT CIVIL ENG JI J. Comput. Civil. Eng. PD MAY-JUN PY 2011 VL 25 IS 3 BP 184 EP 191 DI 10.1061/(ASCE)CP.1943-5487.0000064 PG 8 WC Computer Science, Interdisciplinary Applications; Engineering, Civil SC Computer Science; Engineering GA 762DF UT WOS:000290451800002 ER PT J AU Chen, HLR Choi, JH AF Chen, Hung-Liang Roger Choi, Jeong-Hoon TI Analysis of Shrinkage and Thermal Stresses in Concrete Slabs Reinforced with GFRP Rebars SO JOURNAL OF MATERIALS IN CIVIL ENGINEERING LA English DT Article DE GFRP reinforcement; CRCP; Concrete shrinkage; Temperature variation; Bond slip; Subbase; Crack spacing; Crack width ID PAVEMENT AB The corrosion resistance of glass-fiber-reinforced polymer (GFRP) rebars makes them a promising substitute for conventional steel reinforcing rebars in continuously reinforced concrete pavements (CRCPs). Studies are conducted concerning the effect of using GFRP rebars as reinforcement in CRCP on the concrete stress development, which is directly related to the concrete crack formation that is inevitable in CRCP. In this study, an analytical model of a freely supported reinforced concrete slab is first developed to simulate the shrinkage and thermal stress distributions in concrete owing to the restraint provided by GFRP rebars in comparison with the stresses induced by steel rebars. The results show that the stress level in concrete is reduced with GFRP rebars owing to a low Young's modulus of GFRP. In addition, the analytical model is utilized to estimate the concrete strain variation in the reinforced concrete slabs resulting from changes in the concrete volume, and the results are compared with the experimental observation. Finite-element (FE) analyses were also conducted to calculate the stress distribution and crack width of a GFRP-reinforced CRCP section subjected to both the concrete shrinkage and thermal change. By using the FE method, the crack spacing and crack width of a CRCP reinforced with GFRP rebars were predicted and compared with those of a steel-reinforced CRCP. The result shows that the crack spacing and the crack width of the GFRP-CRCP are larger than those of the steel-CRCP. DOI: 10.1061/(ASCE)MT.1943-5533.0000216. (C) 2011 American Society of Civil Engineers. C1 [Choi, Jeong-Hoon] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Chen, Hung-Liang Roger] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. RP Choi, JH (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Roger.Chen@mail.wvu.edu; choij@netl.doe.gov OI Chen, Hung-Liang/0000-0002-4278-5593 FU USDOT/FHWA [DTFH61-99-X-00078] FX The writers gratefully acknowledge support from USDOT/FHWA DTFH61-99-X-00078 and special thanks to Peter Kopac and Sam Tyson of the FHWA for their valuable comments and support. Appreciation is also extended to Dr. Hota V. GangaRao and Dr. P. V. Vijay of the Constructed Facility Center at West Virginia University for their assistance during this study. NR 27 TC 7 Z9 7 U1 1 U2 9 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0899-1561 J9 J MATER CIVIL ENG JI J. Mater. Civ. Eng. PD MAY PY 2011 VL 23 IS 5 BP 612 EP 627 DI 10.1061/(ASCE)MT.1943-5533.0000216 PG 16 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA 762EF UT WOS:000290454800012 ER PT J AU Jha, AK Chen, L Offeman, RD Balsara, NP AF Jha, Ashish K. Chen, Liang Offeman, Richard D. Balsara, Nitash P. TI Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Block-copolymer; Nanostructure; Selective ethanol-transport; Domain size effect ID WATER MIXTURES; ECONOMIC-ANALYSIS; ALCOHOL-WATER; PERVAPORATION; FERMENTATION; SEPARATION; PERMEABILITY; PERMSELECTIVITY; POLYMERIZATION; PRETREATMENT AB We report on the effect of nanoscale morphology on transport of ethanol/water mixtures through block copolymer membranes. In particular, we show that ethanol selectivity and overall flux can be optimized by varying the size of block copolymer domains at fixed composition. Experiments were conducted on two separate systems using polybutadiene (PB) and polydimethyl siloxane-g-polymethylmethacrylate (PDMS-MA) as the transporting blocks, using an 8 wt% ethanol/water mixture as the feed. The domain spacings for PB- and PDMS-MA-based samples were varied from 19 to 55 nm and 28 to 70 nm, respectively, at fixed compositions. The membrane separation factor increases with domain spacing for both membranes. In the case of the PB-based system, the smallest domain size system with d = 19 nm was water selective while those with larger domain spacings were ethanol selective. The total flux through the PB-based membranes increases with increasing domain spacing until it reaches a maximum at a domain spacing of 39 nm in spite of the fact that the stiffness of the polymers increases monotonically with increasing domain spacing. In contrast, the total flux through the PDMS-MA-based membranes does not depend on domain spacing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jha, Ashish K.; Chen, Liang; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Offeman, Richard D.] USDA, Bioprod Chem & Engn Res Unit, Western Reg Res Ctr, Albany, CA 94710 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Chen, Liang/A-7524-2011 FU Energy Biosciences Institute, University of California, Berkeley; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Energy Biosciences Institute, University of California, Berkeley. The Advanced Light Source at LBNL is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. TEM was performed at the National Center of Electron Microscopy at LBNL in collaboration with the Soft Matter Microscopy Program. We acknowledge David Wong for his help with identification of SBS as a possible system for the present study. NR 41 TC 30 Z9 30 U1 2 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD MAY 1 PY 2011 VL 373 IS 1-2 BP 112 EP 120 DI 10.1016/j.memsci.2011.02.043 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 761ST UT WOS:000290421900015 ER PT J AU Nurmi, JT Sarathy, V Tratnyek, PG Baer, DR Amonette, JE Karkamkar, A AF Nurmi, James T. Sarathy, Vaishnavi Tratnyek, Paul G. Baer, Donald R. Amonette, James E. Karkamkar, Abhi TI Recovery of iron/iron oxide nanoparticles from solution: comparison of methods and their effects SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Recovery; Flash drying; Weight loss; Colloids; Thermogravimetric analysis; Transmission electron microscopy; X-ray diffraction; X-ray photoelectron; spectroscopy; Linear sweep voltammetry ID ZERO-VALENT IRON; ZEROVALENT IRON; ELECTRON-MICROSCOPY; TCE DECHLORINATION; PACKING DENSITIES; POWDER ELECTRODES; KINETICS; WATER; REACTIVITY; PATHWAYS AB Most methods currently being used to recover Fe-0-core/oxide-shell nanoparticles from solutions (including the solvents they are synthesized or stored in) are potentially problematic because they may alter the particle composition (e.g., depositing salts formed from solutes) or leave the particles prone to transformations during subsequent storage and handling (e.g., due to residual moisture). In this study, several methods for recovery of nanoparticles from aqueous solution were studied to determine how they affect the structure and reactivity of the recovered materials. Simple washing of the nanoparticles during vacuum filtration (i.e., "flash drying") can leave up to similar to 17 wt% residual moisture. Modeling calculations suggest this moisture is mostly capillary or matric water held between particles and particle aggregates, which can be removed by drying for short periods at relative vapor pressures below 0.9. Flash drying followed by vacuum drying, all under N-2, leaves no detectable residue from precipitation of solutes (detectable by X-ray photoelectron spectroscopy, XPS), no significant changes in overall particle composition or structure (determined by transmission electron microscopy, TEM), and negligible residual moisture (by thermogravimetric analysis, TGA). While this improved flash-drying protocol may be the preferred method for recovering nanoparticles for many purposes, we found that Fe-0-core/oxide-shell nanoparticles still exhibit gradual aging during storage when characterized electrochemically with voltammetry. C1 [Nurmi, James T.; Sarathy, Vaishnavi; Tratnyek, Paul G.] Oregon Hlth & Sci Univ, Div Environm & Biomol Syst, Portland, OR 97006 USA. [Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Amonette, James E.; Karkamkar, Abhi] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Tratnyek, PG (reprint author), Oregon Hlth & Sci Univ, Div Environm & Biomol Syst, 20000 NW Walker Rd, Portland, OR 97006 USA. EM tratnyek@ebs.ogi.edu; don.baer@pnl.gov RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU U.S. Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences; DOE [DE-AC06-76RLO 1830] FX We acknowledge and thank C.-M. Wang, P. Nachimuthu, M. H. Engelhard, J. Kwak, and C. K. Russell for their assistance with TEM, XRD, XPS, and BET measurements and sample preparation. Samples of nano-Fe0 were donated by the Toda Kogyo Corp. We would also like to thank students Abram J. Ledbetter and Jharana Dhal who conducted some exploratory work on particle recovery during a Nanotechnology course hosted by the Pacific Northwest National Laboratory (PNNL) and the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was supported by the U.S. Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences. Parts of the work were conducted at the EMSL, which is located at PNNL. EMSL is a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. PNNL is operated for the DOE under Contract DE-AC06-76RLO 1830. NR 40 TC 14 Z9 14 U1 1 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD MAY PY 2011 VL 13 IS 5 BP 1937 EP 1952 DI 10.1007/s11051-010-9946-x PG 16 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 763RO UT WOS:000290577600012 ER PT J AU Valentine, SJ Kurulugama, RT Clemmer, DE AF Valentine, Stephen J. Kurulugama, Ruwan T. Clemmer, David E. TI Overtone Mobility Spectrometry: Part 3. On the Origin of Peaks SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Ion mobility spectrometry; Overtone mobility spectrometry; Mass spectrometry ID LC-IMS-MS; FLIGHT MASS-SPECTROMETRY; GAS-PHASE SEPARATIONS; ION FUNNEL; PEPTIDE MIXTURES; PLASMA PROTEOME; TOFMS ANALYSIS; IONIZATION; BIOMOLECULES; RANGE AB The origin of non-integer overtone peaks in overtone mobility spectrometry (OMS) spectra is investigated by ion trajectory simulations. Simulations indicate that these OMS features arise from higher-order overtone series. An empirically-derived formula is presented as a means of describing the positions of peaks. The new equation makes it possible to determine collision cross sections from any OMS peak. Additionally, it is extended as a means of predicting the resolving power for any peak in an OMS distribution. C1 [Valentine, Stephen J.; Clemmer, David E.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Kurulugama, Ruwan T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Clemmer, DE (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. EM clemmer@indiana.edu FU National Institutes of Health [1RC1GM090797-01]; Lilly; DoD NSWC Crane "Next Generation Threat Detection" [N00164-08-C-JQ11] FX The authors are grateful for partial support of this work from the National Institutes of Health (1RC1GM090797-01) and the METACyt initiative, funded by a grant from the Lilly Endowment. This work is also supported in part by funding through the DoD NSWC Crane "Next Generation Threat Detection" (N00164-08-C-JQ11). NR 50 TC 12 Z9 12 U1 3 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD MAY PY 2011 VL 22 IS 5 BP 804 EP 816 DI 10.1007/s13361-011-0087-y PG 13 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 762EA UT WOS:000290454300002 PM 21472515 ER PT J AU Abel, M Neumark, DM Leone, SR Pfeifer, T AF Abel, Mark Neumark, Daniel M. Leone, Stephen R. Pfeifer, Thomas TI Classical and quantum control of electrons using the carrier-envelope phase of strong laser fields SO LASER & PHOTONICS REVIEWS LA English DT Article DE Ultrafast laser science; laser control; attosecond physics ID HIGH-HARMONIC GENERATION; ATTOSECOND PULSE GENERATION; OPTICAL FREQUENCY COMBS; HALF-CYCLE CUTOFFS; MULTIPHOTON IONIZATION; UNIMOLECULAR REACTIONS; ABSOLUTE-PHASE; STABILIZATION; LIGHT; LOCALIZATION AB Electrons are among the lightest quantum particles in nature, yet they are of paramount importance in any kind of chemical reaction as they are the essence of molecular bonds. For several years, laser fields have been used towards the final goal of controlling chemical reaction dynamics. While early experiments focused mainly on the control of the internuclear wavefunction of rather heavy molecules, advances in shortpulse laser technology now allow the control of lighter molecules all the way down to hydrogen and even the direct control of electrons and their quantum wavefunctions. In this context, the stabilization and control of the carrier-envelope phase (CEP) of laser pulses has been one of the crucial technological advances that set off a revolution in ultrafast laser science. The authors review and summarize some of the past and current experimental achievements and theoretical ideas on CEP laser control of electrons. It will become clear that in some cases, depending on the control scenario, electrons can be considered to behave as classical particles and the control of their trajectories follow the laws of classical Newtonian mechanics while in other cases, the quantum nature of electrons is directly exploited to steer electron dynamics by means of quantum interference. C1 [Abel, Mark; Neumark, Daniel M.; Leone, Stephen R.; Pfeifer, Thomas] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Abel, Mark; Neumark, Daniel M.; Leone, Stephen R.; Pfeifer, Thomas] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Abel, Mark; Neumark, Daniel M.; Leone, Stephen R.; Pfeifer, Thomas] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Abel, Mark; Neumark, Daniel M.; Leone, Stephen R.; Pfeifer, Thomas] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Abel, Mark] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Pfeifer, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. RP Abel, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM markabel@fhi-berlin.mpg.de; tpfeifer@mpi-hd.mpg.de RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Air Force Office of Scientific Research (AFOSR) [FA9550-04-1-0242]; National Science Foundation (NSF) Extreme Ultraviolet Center [EEC-0310717]; National Science Foundation [CHE-0742662]; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; Max-Planck-Gesellschaft FX We acknowledge the MURI program of the Air Force Office of Scientific Research (AFOSR), contract FA9550-04-1-0242, and the National Science Foundation (NSF) Extreme Ultraviolet Center EEC-0310717 for their support of the Berkeley laboratory. Support is also acknowledged from National Science Foundation Chemistry grant CHE-0742662. The laboratory infrastructure and recent efforts are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract DE-AC02-05CH11231. T. P. acknowledges financial support by an MPRG grant of the Max-Planck-Gesellschaft. NR 90 TC 6 Z9 6 U1 3 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1863-8880 J9 LASER PHOTONICS REV JI Laser Photon. Rev. PD MAY PY 2011 VL 5 IS 3 BP 352 EP 367 DI 10.1002/lpor.201000018 PG 16 WC Optics; Physics, Applied; Physics, Condensed Matter SC Optics; Physics GA 761JZ UT WOS:000290395400002 ER PT J AU Mitchell, JJ Glenn, NF Sankey, TT Derryberry, DR Anderson, MO Hruska, RC AF Mitchell, Jessica J. Glenn, Nancy F. Sankey, Temuulen T. Derryberry, DeWayne R. Anderson, Matthew O. Hruska, Ryan C. TI Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Article ID AIRBORNE SCANNING LASER; WYOMING BIG SAGEBRUSH; BOREAL NATURE-RESERVE; LEAF-AREA INDEX; TREE HEIGHT; BIOMASS ESTIMATION; STEPPE VEGETATION; WINTER; COMMUNITIES; ELEVATION AB The height and shape of shrub canopies are critical measurements for characterizing shrub steppe rangelands. Remote sensing technologies might provide an efficient method to acquire these measurements across large areas. This study compared point-cloud and rasterized lidar data to field-measured sagebrush height and shape to quantify the correlation between field-based and lidar-derived estimates. The results demonstrated that discrete return, small-footprint lidar with high point density (9.46 points/m(2)) can provide strong predictions of true sagebrush height (R-2 of 0.84 to 0.86), but with a consistent underestimation of approximately 30 percent. Our results provided the first successful lidar-based descriptors of sagebrush shape with R-2 values of 0.65, 0.74, and 0.78 for respective predictions of shortest canopy diameter, longest canopy diameter, and canopy area. Future studies can extend lidar-derived shrub height and shape measurements to canopy volume, cover, and biomass estimates. C1 [Mitchell, Jessica J.] Idaho State Univ, Dept Geosci, Boise Ctr Aerosp Lab, Idaho Falls, ID 83402 USA. [Glenn, Nancy F.; Sankey, Temuulen T.] Idaho State Univ, Dept Geosci, Boise Ctr Aerosp Lab, Idaho Falls, ID 83702 USA. [Derryberry, DeWayne R.] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA. [Anderson, Matthew O.; Hruska, Ryan C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Mitchell, JJ (reprint author), Idaho State Univ, Dept Geosci, Boise Ctr Aerosp Lab, 995 Univ Blvd, Idaho Falls, ID 83402 USA. EM mitcjess@isu.edu RI Glenn, Nancy/B-4491-2014 OI Glenn, Nancy/0000-0003-2124-7654 FU Idaho National Laboratory; Idaho Space Grant Consortium; NOAA Earth System Research Laboratory Physical Sciences Division [NA06OAR4600124]; ISU [DLA060249] FX This study was made possible by data and a grant provided by the Idaho National Laboratory and grants from the Idaho Space Grant Consortium and NOAA Earth System Research Laboratory Physical Sciences Division Grant No. NA06OAR4600124, and the BLM Owyhee Uplands Pilot Project (ISU-BLM Agreement No. DLA060249). Many thanks to Roger Blew of S.M. Stoller Corporation, who facilitated field data collection access. NR 52 TC 20 Z9 20 U1 1 U2 14 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD MAY PY 2011 VL 77 IS 5 BP 521 EP 530 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 761SO UT WOS:000290421300007 ER PT J AU Sekhon, RS Lin, HN Childs, KL Hansey, CN Buell, CR de Leon, N Kaeppler, SM AF Sekhon, Rajandeep S. Lin, Haining Childs, Kevin L. Hansey, Candice N. Buell, C. Robin de Leon, Natalia Kaeppler, Shawn M. TI Genome-wide atlas of transcription during maize development SO PLANT JOURNAL LA English DT Article DE maize; transcriptome; gene atlas; gene expression; development; microarray ID GENE-EXPRESSION ATLAS; LIGNIN MODIFICATION; GRASSES; RESOURCES; DYNAMICS; DATABASE; BIOLOGY; TISSUES; PROTEIN; SORGHUM AB P>Maize is an important model species and a major constituent of human and animal diets. It has also emerged as a potential feedstock and model system for bioenergy research due to recent worldwide interest in developing plant biomass-based, carbon-neutral liquid fuels. To understand how the underlying genome sequence results in specific plant phenotypes, information on the temporal and spatial transcription patterns of genes is crucial. Here we present a comprehensive atlas of global transcription profiles across developmental stages and plant organs. We used a NimbleGen microarray containing 80 301 probe sets to profile transcription patterns in 60 distinct tissues representing 11 major organ systems of inbred line B73. Of the 30 892 probe sets representing the filtered B73 gene models, 91.4% were expressed in at least one tissue. Interestingly, 44.5% of the probe sets were expressed in all tissues, indicating a substantial overlap of gene expression among plant organs. Clustering of maize tissues based on global gene expression profiles resulted in formation of groups of biologically related tissues. We utilized this dataset to examine the expression of genes that encode enzymes in the lignin biosynthetic pathway, and found that expansion of distinct gene families was accompanied by divergent, tissue-specific transcription patterns of the paralogs. This comprehensive expression atlas represents a valuable resource for gene discovery and functional characterization in maize. C1 [Sekhon, Rajandeep S.; de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Sekhon, Rajandeep S.; de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Lin, Haining; Childs, Kevin L.; Hansey, Candice N.; Buell, C. Robin] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Lin, Haining; Childs, Kevin L.; Hansey, Candice N.; Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Kaeppler, SM (reprint author), Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, 1575 Linden Dr, Madison, WI 53706 USA. EM smkaeppl@wisc.edu RI Childs, Kevin/C-9513-2014; OI Childs, Kevin/0000-0002-3680-062X; Kaeppler, Shawn/0000-0002-5964-1668 FU Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Biological and Environmental Research) [DE-FC02-07ER64494] FX We thank Nathan Springer (Department of Plant Biology, University of Minnesota) and Karen McGinnis (Department of Biological Sciences, Florida State University) for critical reading of the manuscript. This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Biological and Environmental Research grant number DE-FC02-07ER64494). The authors thank the PLEXdb team of Sudhansu Dash, John Van Hemert, Roger Wise and Julie Dickerson, and the MaizeGDB team of Ethalinda Cannon, Taner Sen, Bremen Braun, Jack Gardiner, Mary Schaeffer and Carolyn Lawrence for making this resource easily visualized by the plant community. NR 37 TC 220 Z9 227 U1 4 U2 50 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD MAY PY 2011 VL 66 IS 4 BP 553 EP 563 DI 10.1111/j.1365-313X.2011.04527.x PG 11 WC Plant Sciences SC Plant Sciences GA 762ES UT WOS:000290456400001 PM 21299659 ER PT J AU Alahuhta, M Luo, YH Ding, SY Himmel, ME Lunin, VV AF Alahuhta, Markus Luo, Yonghua Ding, Shi-You Himmel, Michael E. Lunin, Vladimir V. TI Structure of CBM4 from Clostridium thermocellum cellulase K SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CARBOHYDRATE-BINDING MODULES; REFINEMENT AB Here, a 2.0 angstrom resolution X-ray structure of Clostridium thermocellum cellulase K family 4 carbohydrate-binding module (CelK CBM4) is reported. The resulting structure was refined to an R factor of 0.212 and an R(free) of 0.274. Structural analysis shows that this new structure is very similar to the previously solved structure of C. thermocellum CbhA CBM4. Most importantly, these data support the previously proposed notion of an extended binding pocket using a novel tryptophan-containing loop that may be highly conserved in clostridial CBM4 proteins. C1 [Alahuhta, Markus; Luo, Yonghua; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.] Natl Renewable Energy Lab, BioSci Ctr, Golden, CO 80401 USA. RP Lunin, VV (reprint author), Natl Renewable Energy Lab, BioSci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM vladimir.lunin@nrel.gov RI Alahuhta, Markus/E-9344-2012; Ding, Shi-You/O-1209-2013 FU DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center FX This work was supported by the DOE Office of Science, Office of Biological and Environmental Research through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center. NR 13 TC 2 Z9 2 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD MAY PY 2011 VL 67 BP 527 EP 530 DI 10.1107/S1744309111003307 PN 5 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 759JF UT WOS:000290235900001 PM 21543854 ER PT J AU Lazar, LM Fisher, SZ Moulin, AG Kovalevsky, A Novak, WRP Langan, P Petsko, GA Ringe, D AF Lazar, Louis M. Fisher, S. Zoe Moulin, Aaron G. Kovalevsky, Andrey Novak, Walter R. P. Langan, Paul Petsko, Gregory A. Ringe, Dagmar TI Time-of-flight neutron diffraction study of bovine gamma-chymotrypsin at the Protein Crystallography Station SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID X-RAY-DIFFRACTION; BIOLOGICAL MACROMOLECULES; SPALLATION NEUTRONS; PROTONATION STATES; ALDOSE REDUCTASE; RESOLUTION; REFINEMENT; HYDROGEN; MODEL; PK AB The overarching goal of this research project is to determine, for a subset of proteins, exact hydrogen positions using neutron diffraction, thereby improving H-atom placement in proteins so that they may be better used in various computational methods that are critically dependent upon said placement. In order to be considered applicable for neutron diffraction studies, the protein of choice must be amenable to ultrahigh-resolution X-ray crystallography, be able to form large crystals (1 mm(3) or greater) and have a modestly sized unit cell (no dimension longer than 100 angstrom). As such, gamma-chymotrypsin is a perfect candidate for neutron diffraction. To understand and probe the role of specific active-site residues and hydrogen-bonding patterns in gamma-chymotrypsin, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection. Time-of-flight neutron diffraction data were collected to 2.0 angstrom resolution at the PCS with similar to 85% completeness. Here, the first time-of-flight neutron data collection from gamma-chymotrypsin is reported. C1 [Lazar, Louis M.; Moulin, Aaron G.; Novak, Walter R. P.; Petsko, Gregory A.; Ringe, Dagmar] Brandeis Univ, Dept Biochem, Waltham, MA 02454 USA. [Lazar, Louis M.; Moulin, Aaron G.; Novak, Walter R. P.; Petsko, Gregory A.; Ringe, Dagmar] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA. [Fisher, S. Zoe; Kovalevsky, Andrey; Langan, Paul] Los Alamos Natl Lab, BioSci Div B8, Los Alamos, NM 87544 USA. RP Ringe, D (reprint author), Brandeis Univ, Dept Biochem, 415 South St, Waltham, MA 02454 USA. EM ringe@brandeis.edu RI Langan, Paul/N-5237-2015 OI Langan, Paul/0000-0002-0247-3122 FU Department of Energy Office of Biological and Environmental Research (DOE-OBER); US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Institutes of Health [GM32415, GM26788]; Fidelity [16-28100-40000-401591] FX The PCS is funded by the Department of Energy Office of Biological and Environmental Research (DOE-OBER). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. This research was supported by National Institutes of Health Grants GM32415 and GM26788 (to GAP and DR). LL was supported in part by Fidelity Grant No. 16-28100-40000-401591 as well as NIH Grant GM32415. NR 32 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD MAY PY 2011 VL 67 BP 587 EP 590 DI 10.1107/S1744309111009341 PN 5 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 759JF UT WOS:000290235900015 PM 21543868 ER PT J AU Tobimatsu, Y Davidson, CL Grabber, JH Ralph, J AF Tobimatsu, Yuki Davidson, Christy L. Grabber, John H. Ralph, John TI Fluorescence-Tagged Monolignols: Synthesis, and Application to Studying In Vitro Lignification SO BIOMACROMOLECULES LA English DT Article ID HORSERADISH-PEROXIDASE; CELL-WALL; DEHYDROGENATIVE-POLYMERIZATIONS; LIGNIN BIOSYNTHESIS; BETA-GLYCOSIDES; TRYPTOPHAN FLUORESCENCE; PLANT PEROXIDASES; ENZYMES; MODEL; ISOCONIFERIN AB Fluorescence-tagged coniferyl alcohols, coniferyl alcohol gamma-coupled by ethylenediamine spacers to dimethylaminocoumarin or nitrobenzofuran fluorophores, were tested as photoprobes to study the oxidase-mediated polymerization of monolignols. The fluorescent coniferyl alcohol derivatives readily underwent peroxidase-catalyzed in vitro copolymerization with coniferyl alcohol to yield fluorescent dehydrogenation polymers, the backbone polymers of which were structurally indistinguishable from polymers formed solely from coniferyl alcohol. To illustrate the use of the photoprobes, we successfully monitored in real time the complexation of coniferyl alcohol with horseradish apoperoxidase by Forster resonance energy transfer (FRET) using the protein-tryptophan near the active site and a dimethylarninocoumarin moiety as donor and acceptor fluorophores. Furthermore, mixtures of fluorescence-tagged and normal coniferyl alcohols readily diffused into isolated maize cell walls and reacted with wall-bound percoddases to form in muro artificial lignins that could be visualized by fluorescence microscopy. Thus we anticipate that fluorescence-tagged monolignols will be useful for in vitro and in vivo studies of cell wall lignification. C1 [Tobimatsu, Yuki; Davidson, Christy L.; Ralph, John] Univ Wisconsin Madison, Dept Biochem, Enzyme Inst, Madison, WI 53726 USA. [Grabber, John H.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Tobimatsu, Y (reprint author), Univ Wisconsin Madison, Dept Biochem, Enzyme Inst, 1710 Univ Ave, Madison, WI 53726 USA. EM tobimatsu@wisc.edu; jralph@wisc.edu FU Japan Society for the Promotion of Science; University of Wisconsin Graduate School; U.S. DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; Stanford's Global Climate and Energy Project FX We thank Prof. George H. Reed and Dr. Darrell M. McCaslin for assistance with fluorescence spectroscopy that was performed at UW Biophysics Instrumentation Facility, Dr. Sarah Swanson for fluorescence microscopic imaging that was performed at UW Plant Imaging Center, and Drs. Hoon Kim and Fachuang Lu for their assistance with NMR spectroscopy. Y.T. was supported by a Postdoctoral Fellowship for Research Abroad provided by the Japan Society for the Promotion of Science. We gratefully acknowledge partial funding from a University of Wisconsin Graduate School Vilas Associate Award, the U.S. DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494), and Stanford's Global Climate and Energy Project. NR 57 TC 15 Z9 15 U1 4 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD MAY PY 2011 VL 12 IS 5 BP 1752 EP 1761 DI 10.1021/bm200136x PG 10 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 759LP UT WOS:000290246400040 PM 21410250 ER PT J AU Wang, MQ Han, J Haq, Z Tyner, WE Wu, M Elgowainy, A AF Wang, Michael Q. Han, Jeongwoo Haq, Zia Tyner, Wallace E. Wu, May Elgowainy, Amgad TI Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes SO BIOMASS & BIOENERGY LA English DT Article DE Ethanol; Life-cycle analysis; Energy balance; Greenhouse gas emissions; Land use change ID LIFE-CYCLE; CLIMATE-CHANGE; FUEL ETHANOL; BIOFUELS; PRODUCTS; SYSTEMS; BIODIESEL; BIOMASS; COSTS AB Use of ethanol as a transportation fuel in the United States has grown from 76 dam(3) in 1980 to over 40.1 hm(3) in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wang, Michael Q.; Han, Jeongwoo; Wu, May; Elgowainy, Amgad] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Haq, Zia] US DOE, Off Biomass Program, Washington, DC 20585 USA. [Tyner, Wallace E.] Purdue Univ, Dept Agr Econ, W Lafayette, IN 47907 USA. RP Wang, MQ (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mqwang@anl.gov FU Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC02-06CH11357] FX This work was supported by Office of Energy Efficiency and Renewable Energy of the United States Department of Energy, under contract DE-AC02-06CH11357. NR 67 TC 66 Z9 66 U1 2 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD MAY PY 2011 VL 35 IS 5 BP 1885 EP 1896 DI 10.1016/j.biombioe.2011.01.028 PG 12 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 759KA UT WOS:000290238200034 ER PT J AU Yazdanpanah, F Sokhansanj, S Lau, AK Lim, CJ Bi, X Melin, S AF Yazdanpanah, F. Sokhansanj, S. Lau, A. K. Lim, C. J. Bi, X. Melin, S. TI Airflow versus pressure drop for bulk wood pellets SO BIOMASS & BIOENERGY LA English DT Article DE Pressure drop; Airflow; Wood pellets; Ventilation; Ergun; Shedd ID MOISTURE-CONTENT; RESISTANCE; VENTILATION; GRAINS; CHIP AB Data on the resistance of wood pellets to airflow are required for the design and control of ventilation, cooling, and drying of bulk pellets. In this study, pressure drops versus airflows were measured for several sizes of cylindrical wood pellets. The pellet diameter was 6.4 mm; the length varied from 4 to 34 mm. Experimental airflow rates ranged from 0.014 to 0.8 m(3) s(-1) m(-2). The corresponding measured static pressures ranged from 2 to 2550 Pa m(-1). Three predictive models of Shedd, Hukill-Ives, and Ergun that relate pressure drop to airflow in bulk granular materials were fitted to the data. The Ergun equation provided the best fit. The results obtained from this study are comparable to those reported by other researchers for biomass such as 28 mm long cut willow chips and 6.4 mm diameter alfalfa pellets. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yazdanpanah, F.; Sokhansanj, S.; Lau, A. K.; Lim, C. J.; Bi, X.; Melin, S.] Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, S.] Delta Res Corp, Delta, BC, Canada. RP Lau, AK (reprint author), Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V6T 1Z3, Canada. EM aklau@chbe.ubc.ca RI Lau, Anthony/J-8519-2015 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Office of Biomass Program of the U.S. Department of Energy FX The authors wish to acknowledge financial support of Natural Sciences and Engineering Research Council of Canada (NSERC) and the Office of Biomass Program of the U.S. Department of Energy. Thanks are also extended to Princeton Co-generation Corporation for donating wood pellets for this project. NR 22 TC 6 Z9 8 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD MAY PY 2011 VL 35 IS 5 BP 1960 EP 1966 DI 10.1016/j.biombioe.2011.01.042 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 759KA UT WOS:000290238200043 ER PT J AU Alayoglu, S Tao, F Altoe, V Specht, C Zhu, ZW Aksoy, F Butcher, DR Renzas, RJ Liu, Z Somorjai, GA AF Alayoglu, Selim Tao, Franklin Altoe, Virginia Specht, Colin Zhu, Zhongwei Aksoy, Funda Butcher, Derek R. Renzas, Russ J. Liu, Zhi Somorjai, Gabor A. TI Surface Composition and Catalytic Evolution of Au (x) Pd1-x (x=0.25, 0.50 and 0.75) Nanoparticles Under CO/O-2 Reaction in Torr Pressure Regime and at 200 A degrees C SO CATALYSIS LETTERS LA English DT Article DE Nanoparticles; Gold; Palladium; Ambient pressure X-ray photoelectron spectroscopy; CO/O-2 reaction; Surface composition ID GOLD/PALLADIUM BIMETALLIC NANOPARTICLES; CORE-SHELL NANOPARTICLES; MICROWAVE SYNTHESIS; CARBON-MONOXIDE; ALLOY CATALYST; PALLADIUM-GOLD; OXIDATION; PD; ADSORPTION; OXYGEN AB Au (x) Pd1-x (x = 0, 0.25, 0.5, 0.75, 1) nanoparticle (NP) catalysts (8-11 nm) were synthesized by a one-pot reaction strategy using colloidal chemistry. XPS depth profiles with variable X-ray energies and scanning transmission electron microscopy (STEM) analyses show that the as-synthesized Au (x) Pd1-x (x = 0.25 and 0.5) bimetallic NPs have gradient alloy structures with Au-rich cores and Pd-rich shells. The evolution of composition and structure in the surface region corresponding to a mean free path of 0.6-0.8 nm (i.e., 2-3 layers to the bulk from the particle surface) was studied with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) under CO/O-2 reaction in the Torr pressure regime. Under the reaction conditions of 80 mTorr CO and 200 mTorr O-2 at 200 A degrees C, the surface region of Au0.75Pd0.25 NP is Au-rich (similar to 70% by Au). All Au (x) Pd1-x (x = 0.25, 0.5, 0.75) NP catalysts have higher turnover rates for the model CO/O-2 reaction than pure Pd and pure Au NPs. The Pd-rich Au0.25Pd0.75 NPs show the highest turnover rates and the Pd-rich Au0.5Pd0.5 NPs the lowest turnover rates at 200 A degrees C. Interestingly, the Au-rich Au0.75Pd0.25 NPs exhibit steady-state turnover rates which are intermediate to those of the Pd-rich bimetallic nanoparticles. C1 [Alayoglu, Selim; Tao, Franklin; Specht, Colin; Zhu, Zhongwei; Butcher, Derek R.; Renzas, Russ J.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alayoglu, Selim; Tao, Franklin; Specht, Colin; Zhu, Zhongwei; Butcher, Derek R.; Renzas, Russ J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Altoe, Virginia] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Aksoy, Funda; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Sources, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Honda Corporation; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is funded by Honda Corporation and supported by the Director of the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy under Contract # DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 30 Z9 30 U1 0 U2 62 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD MAY PY 2011 VL 141 IS 5 BP 633 EP 640 DI 10.1007/s10562-011-0565-7 PG 8 WC Chemistry, Physical SC Chemistry GA 758LN UT WOS:000290166400002 ER PT J AU Kwak, JH Mei, DH Peden, CHF Rousseau, R Szanyi, J AF Kwak, Ja Hun Mei, Donghai Peden, Charles H. F. Rousseau, Roger Szanyi, Janos TI (100) facets of gamma-Al2O3: The Active Surfaces for Alcohol Dehydration Reactions SO CATALYSIS LETTERS LA English DT Article DE Alcohol; Dehydration reactions; (100) facets; Penta-coordinate Al3+ ions ID GAMMA-ALUMINA SURFACES; ADSORPTION; SITES; FTIR; DFT AB Temperature programmed desorption (TPD) of ethanol, as well as ethanol and methanol dehydration reactions were studied on gamma-Al2O3 in order to identify the active catalytic sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T a parts per thousand currency sign 473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T a parts per thousand yen 673 K showed a single desorption feature at 498 K. These two high temperature desorption features correspond to the exclusive formation of ethylene on the Lewis (498 K) and Bronsted acidic (similar to 525 K) sites. The amount of ethylene formed under conditions where the competition between water and ethanol for adsorption sites is minimized is identical over the two surfaces. Furthermore, a nearly 1-to-1 correlation between the number of under-coordinated Al3+ ions on the (100) facets of gamma-Al2O3 and the number of ethylene molecules formed in the ethanol TPD experiments on samples calcined at T a parts per thousand yen 673 K was found. Titration of the penta-coordinate Al3+ sites on the (100) facets of gamma-Al2O3 by BaO completely eliminated the methanol dehydration reaction activity. These results demonstrate that in alcohol dehydration reactions on gamma-Al2O3, the (100) facets are the active catalytic surfaces. The observed activities can be linked to the same Al3+ ions on both hydrated and dehydrated surfaces: penta-coordinate Al3+ ions (Lewis acid sites), and their corresponding -OH groups (Bronsted acid sites), depending on the calcination temperature. C1 [Kwak, Ja Hun; Mei, Donghai; Peden, Charles H. F.; Rousseau, Roger; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-98, Richland, WA 99352 USA. EM kwak@pnl.gov; chuck.peden@pnl.gov; janos.szanyi@pnl.gov RI Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012; Rousseau, Roger/C-3703-2014; Kwak, Ja Hun/J-4894-2014; OI Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); US DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX We gratefully acknowledge the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. NR 14 TC 49 Z9 49 U1 8 U2 100 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD MAY PY 2011 VL 141 IS 5 BP 649 EP 655 DI 10.1007/s10562-010-0496-8 PG 7 WC Chemistry, Physical SC Chemistry GA 758LN UT WOS:000290166400004 ER PT J AU Chen, WZ Rein, FN Scott, BL Rocha, RC AF Chen, Weizhong Rein, Francisca N. Scott, Brian L. Rocha, Reginaldo C. TI Catalytic Photooxidation of Alcohols by an Unsymmetrical Tetra(pyridyl)pyrazine-Bridged Dinuclear Ru Complex SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE electron transfer; homogeneous photocatalysis; multi-electron reactivity; photooxidation; ruthenium ID CRYSTAL-STRUCTURE; RUTHENIUM COMPLEXES; INTERVALENCE-TRANSFER; ELECTRONIC-PROPERTIES; BRIDGING LIGAND; REDOX; TPPZ; ETHYLENEDIAMINETETRAACETATE; DIHYDRATE; CHEMISTRY AB The dinuclear complexes [(tpy)Ru(tppz)Ru(bpy)(L)](n+) (where L is Cl- or H2O, tpy and bpy are the terminal ligands 2,2':6',2 ''-terpyridine and 2,2'-bipyridine, and tppz is the bridging backbone 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were prepared and structurally and electronically characterized. The mononuclear complexes [(tpy)Ru(tppz)](2+) and [(tppz)Ru(bpy)(L)](m+) were also prepared and studied for comparison. The proton-coupled, multi-electron photooxidation reactivity of the aquo dinuclear species was shown through the photocatalytic dehydrogenation of a series of primary and secondary alcohols. Under simulated solar irradiation and in the presence of a sacrificial electron acceptor, the photoactivated chromophore-catalyst complex (in aqueous solutions at room temperature and ambient pressure conditions) can perform the visible-light-driven conversion of aliphatic and benzylic alcohols into the corresponding carbonyl products (i.e., aldehydes or ketones) with 100% product selectivity and several tens of turnover cycles, as probed by NMR spectroscopy and gas chromatography. Moreover, for aliphatic substrates, the activity of the photocatalyst was found to be highly selective toward secondary alcohols, with no significant product formed from primary alcohols. Comparison of the activity of this tppz-bridged complex with that of the analogue containing a back-to-back terpyridine bridge (tpy-tpy, i.e., 6',6 ''-bis(2-pyridyl)-2,2': 4',4 '':2 '',2'''-quaterpyridine) demonstrated that the latter is a superior photocatalyst toward the oxidation of alcohols. The much stronger electronic coupling with significant delocalization across the strongly electron-accepting tppz bridge facilitates charge trapping between the chromophore and catalyst centers and therefore is presumably responsible for the decreased catalytic performance. C1 [Chen, Weizhong; Rocha, Reginaldo C.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Rein, Francisca N.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Rocha, RC (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rcrocha@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU U.S. Department of Energy (DOE), Los Alamos National Laboratory FX This work was supported by the U.S. Department of Energy (DOE) through the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. The technical assistance of Timothy Sanchez and Dr. Srinivas Iyer with mass spectrometry (Bioscience Division, Los Alamos National Laboratory) is gratefully acknowledged. Helpful details on procedures for the treatment/activation of glassy-carbon working electrodes were kindly provided by Dr. Jonah Jurss and Prof. Thomas Meyer (Department of Chemistry, University of North Carolina). NR 47 TC 34 Z9 35 U1 4 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD MAY PY 2011 VL 17 IS 20 BP 5595 EP 5604 DI 10.1002/chem.201002168 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 759BW UT WOS:000290216000016 PM 21452180 ER PT J AU Yan, XH Alexandre, C Chen, JP Seonho, C Lu, HJ Zein-Eddine, M Yoomin, O Vincent, S Ye, YX Yao, H AF Yan Xin-Hu Alexandre, C. Chen Jian-Ping Seonho, C. Lue Hai-Jiang Zein-Eddine, M. Yoomin, Oh Vincent, S. Ye Yun-Xiu Yao Huan TI NaI (Tl) calorimeter calibration and simulation for Coulomb sum rule experiment in Hall-A at Jefferson Lab SO CHINESE PHYSICS C LA English DT Article DE Coulomb sum rule; NaI (Tl); calibration; resolution; GEANT4 simulation AB A precision measurment of inclusive electron scattering cross sections is carried out at Jefferson Lab in the quasi-elastic region for He-4, C-12, Fe-56 and Pb-208 targets. The longitudinal (R-L) and transverse (R-T) response functions of the nucleon need to be extracted precisely in the momentum transfer range 0.55 GeV/c <= vertical bar q vertical bar <= 1.0 GeV/c. To achieve the above goal, a NaI (Tl) calorimeter is used to distinguish good electrons from background, including pions and low energy electrons rescattered from the walls of the spectrometer magnets. Due to a large set of kinematics and changes in HV settings, a number of calibrations are performed for the NaI (Tl) detector. Corrections for a few blocks of NaI (Tl) with bad or no signal are applied. The resolution of the NaI (Tl) detector after calibration reached delta E/root E approximate to 3% at E=1 GeV. The performance of the NaI (Tl) detector is compared with a simulation. The good calibration and background analysis for the NaI(Tl) detector are very important for the reduction of the systematic error of cross sections and the separation of R-L and R-T. C1 [Yan Xin-Hu; Ye Yun-Xiu] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Alexandre, C.; Chen Jian-Ping; Vincent, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Zein-Eddine, M.; Yao Huan] Temple Univ, Philadelphia, PA 19122 USA. [Seonho, C.; Yoomin, Oh] Seoul Natl Univ, Seoul 151747, South Korea. [Yan Xin-Hu; Lue Hai-Jiang] Huangshan Univ, Huangshan 245021, Peoples R China. RP Yan, XH (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. EM yanxinhu@mail.ustc.edu.cn FU National Natural Science Foundation of China [10605022, 10875053]; US Department of Energy [DE-AC05-84ER-40150] FX Supported by National Natural Science Foundation of China (10605022,10875053) and US Department of Energy (DE-AC05-84ER-40150) under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility NR 6 TC 0 Z9 0 U1 0 U2 1 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD MAY PY 2011 VL 35 IS 5 BP 488 EP 493 DI 10.1088/1674-1137/35/5/017 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 760VR UT WOS:000290352800017 ER PT J AU Montagnat, M Blackford, JR Piazolo, S Arnaud, L Lebensohn, RA AF Montagnat, Maurine Blackford, Jane R. Piazolo, Sandra Arnaud, Laurent Lebensohn, Ricardo A. TI Measurements and full-field predictions of deformation heterogeneities in ice SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE ice; deformation heterogeneities; kink band; full-field approach ID ELECTRON BACKSCATTER DIFFRACTION; MODELING VISCOPLASTIC BEHAVIOR; SELF-CONSISTENT APPROACH; POLYCRYSTALLINE ICE; DYNAMIC RECRYSTALLIZATION; POLAR ICE; NUMERICAL SIMULATIONS; PLASTIC-DEFORMATION; TEXTURE DEVELOPMENT; COLUMNAR ICE AB We have made creep experiments on columnar grained ice and characterised the microstructure and intragranular misorientations over a range of length scales. A FFT full-field model was used to predict the deformation behaviour, using the experimentally characterised microstructure as the starting material. This is the first time this combination of techniques has been used to study the deformation of ice. The microstructure was characterised at the cm scale using an optical technique, the automatic ice texture analyser AITA and at the micron scale using electron backscattered diffraction EBSD. The crystallographic texture and intragranular misorientations were fully characterised by EBSD (3 angles). The deformed microstructure frequently showed straight subgrain boundaries often originating at triple points. These were identified as kink bands, and for the first time we have measured the precise misorientation of the kink bands and deduced the nature of the dislocations responsible for them. These dislocations have a basal edge nature and align in contiguous prismatic planes enabling deformation along the c-axis. In addition, non-uniform grain boundaries and regions of recrystallization were seen. We present coupling between fine scale characterization of intragranular misorientations, from experiments, and prediction of internal stresses that cause it. The model predicts the morphology of the observed local misorientations within the grains, however it over predicts the misorientation values. This is because the annealing and recrystallization mechanisms are not taken into account in the model. Ice is excellent as a model material for measuring, predicting and understanding deformation behaviour for polycrystalline materials. Specifically for ice this knowledge is needed to improve models of ice sheet dynamics that are important for climatic signal interpretation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Montagnat, Maurine; Arnaud, Laurent] CNRS UJF, Lab Glaciol & Geophys Environm, St Martin Dheres, France. [Blackford, Jane R.] Univ Edinburgh, Sch Engn, Inst Mat & Proc, Edinburgh, Midlothian, Scotland. [Piazolo, Sandra] Univ Stockholm, Stockholm, Sweden. [Lebensohn, Ricardo A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Montagnat, M (reprint author), CNRS UJF, Lab Glaciol & Geophys Environm, St Martin Dheres, France. EM montagnat@lgge.obs.ujf-grenoble.fr RI Lebensohn, Ricardo/A-2494-2008; OI Lebensohn, Ricardo/0000-0002-3152-9105; Piazolo, Sandra/0000-0001-7723-8170 FU Swedish Research Council [VR 621-2004-5330]; Knut and AliceWallenberg Foundation; department INSIS of CNRS, France; Royal Society; European Science Foundation (ESF) FX We acknowledge Albert Griera for the help in providing the initial model microstructure input, Gael Durand for helping with the output toolbox, Paul Duval, Chris Hall and Michael Zaiser for the fruitful discussions and perceptive comments. Financial support by the Swedish Research Council (VR 621-2004-5330), the Knut and AliceWallenberg Foundation (financing of equipment), department INSIS of CNRS, France, and the Royal Society (joint project grant University of Edinburgh and LGGE Grenoble) are acknowledged. This contribution has been financially supported by the European Science Foundation (ESF), EUROCORES Programme EuroMinScl, FP6. NR 55 TC 24 Z9 24 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 1 PY 2011 VL 305 IS 1-2 BP 153 EP 160 DI 10.1016/j.epsl.2011.02.050 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 758UP UT WOS:000290192800016 ER PT J AU MacLeod, M von Waldow, H Tay, P Armitage, JM Wohrnschimmel, H Riley, WJ McKone, TE Hungerbuhler, K AF MacLeod, Matthew von Waldow, Harald Tay, Pascal Armitage, James M. Woehrnschimmel, Henry Riley, William J. McKone, Thomas E. Hungerbuhler, Konrad TI BETR global - A geographically-explicit global-scale multimedia contaminant fate model SO ENVIRONMENTAL POLLUTION LA English DT Article DE Model; Global; Fugacity; Transport; Mass balance ID PERSISTENT ORGANIC POLLUTANTS; MASS-BALANCE MODELS; POLYCHLORINATED-BIPHENYLS; DECISION-MAKING; TRANSPORT AB We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 degrees x 15 degrees grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). (C) 2011 Elsevier Ltd. All rights reserved. C1 [MacLeod, Matthew; von Waldow, Harald; Tay, Pascal; Woehrnschimmel, Henry; Hungerbuhler, Konrad] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Zurich, Switzerland. [Armitage, James M.] Univ Toronto Scarborough, Toronto, ON, Canada. [Armitage, James M.] Aarhus Univ Hosp, Dept Occupat Med, DK-8000 Aarhus, Denmark. [Riley, William J.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP MacLeod, M (reprint author), Stockholm Univ, Dept Appl Environm Sci, SE-10691 Stockholm, Sweden. EM matthew.macleod@itm.su.se RI MacLeod, Matthew/D-5919-2013; Riley, William/D-3345-2015 OI MacLeod, Matthew/0000-0003-2562-7339; Riley, William/0000-0002-4615-2304 FU Natural Sciences and Engineering Research Council (Canada); Region 5 of the United State Environmental Protection Agency; Swiss Federal Office for the Environment (FOEN) Air Quality Division; European Community; Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Development of BETR Global has been supported by research grants from the Natural Sciences and Engineering Research Council (Canada), Region 5 of the United State Environmental Protection Agency, The Swiss Federal Office for the Environment (FOEN) Air Quality Division, and the ArcRisk European Community 7th Framework Programme Project (http://www.arcrisk.eu). This work was also supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 to Berkeley Lab. NR 18 TC 32 Z9 33 U1 3 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD MAY PY 2011 VL 159 IS 5 SI SI BP 1442 EP 1445 DI 10.1016/j.envpol.2011.01.038 PG 4 WC Environmental Sciences SC Environmental Sciences & Ecology GA 758UL UT WOS:000290192400056 PM 21353357 ER PT J AU Parvez, S Rivera-Nunez, Z Meyer, A Wright, JM AF Parvez, Shahid Rivera-Nunez, Zorimar Meyer, Amy Wright, J. Michael TI Temporal variability in trihalomethane and haloacetic acid concentrations in Massachusetts public drinking water systems SO ENVIRONMENTAL RESEARCH LA English DT Article DE Exposure misclassification; Exposure variability; Seasonality; Disinfection by-products; Drinking water ID DISINFECTION BY-PRODUCTS; ADVERSE PREGNANCY OUTCOMES; BIRTH-WEIGHT; DEVELOPMENTAL TOXICITY; SPONTANEOUS-ABORTION; DICHLOROACETIC ACID; MUTAGENIC-ACTIVITY; CHLORAL HYDRATE; MALE B6C3F(1); FETAL-GROWTH AB Previous epidemiological studies in Massachusetts have reported a risk of adverse health outcomes in relation to disinfection by-product (DBP) exposures. Measurement error due to the use of indirect exposure surrogates can lead to misclassification bias in epidemiological studies; therefore, it is important to characterize exposure variability in these populations to assess the potential for exposure misclassification. We used 19,944 trihalomethane (THM) samples and 9291 haloacetic acid (HAA) samples collected in 201 public water systems (PWSs) in Massachusetts to examine temporal variability under different drinking water sources and disinfection types. Annual and seasonal variability was also examined in 46 PWSs with complete quarterly THM4 (i.e., the sum of 4 individual THMs) data from 1995 to 2004 and 19 PWSs with complete HAA5 (i.e., the sum of 5 individual HAAs) data from 2001 to 2004. The quarterly ratio of THM4 and HAAS and correlations between THM4. HAAS and individual DBP species were examined to determine the adequacy of using different exposure surrogates in epidemiological studies. Individual PWSs were used to examine monthly variability in relation to quarterly averages. Based on all available matched samples (n=9003) from 1995 to 2004 data, we found a correlation of 0.52 for THM4 and HAA5. The correlation was stronger among the 62 ground water systems (r(s)=0.62) compared to the 81 surface water (r(s)=0.45) and 40 mixed water (r(s)=0.39) systems. Mean THM4 levels were fairly stable over the 10-year study period for 46 PWSs including 39 PWSs that did not change disinfection. Large reductions (similar to 40 mu g/L) in mean THM4 data were found among seven systems that switched from chlorination to alternative disinfectants. As expected, the highest mean THM4 values were detected for Quarter 3, while the lowest values were found in Quarter 1. The highest HAAS values were detected in Quarters 2 and 3 and the lowest was found in Quarter 4. Data from four systems showed mean differences up to 66 mu g/L (67% change) in successive months and by 46 mu g/L compared to quarterly mean concentrations. Although longer-term disinfection by-product temporality may be minimal in this study population, the use of monthly average concentrations for exposure assessment may be needed for some PWSs to minimize misclassification of narrow critical periods of exposure in epidemiological studies. Published by Elsevier Inc. C1 [Wright, J. Michael] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Cincinnati, OH 45268 USA. [Parvez, Shahid; Meyer, Amy] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Rivera-Nunez, Zorimar] CNR, Washington, DC 20007 USA. RP Wright, JM (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res & Dev, 26 W Martin Luther King Dr,MS A-110, Cincinnati, OH 45268 USA. EM wright.michael@epa.gov RI Parvez, Shahid/J-3390-2013 NR 69 TC 15 Z9 15 U1 0 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0013-9351 J9 ENVIRON RES JI Environ. Res. PD MAY PY 2011 VL 111 IS 4 BP 499 EP 509 DI 10.1016/j.envres.2010.12.008 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 758DS UT WOS:000290141600004 PM 21316653 ER PT J AU Xu, B Singh, DJ Cooper, VR Feng, YP AF Xu, Bo Singh, David J. Cooper, Valentino R. Feng, Yuan Ping TI Design of a low band gap oxide ferroelectric: Bi6Ti4O17 SO EPL LA English DT Article ID BI4TI3O12 SINGLE CRYSTALS; AUGMENTED-WAVE METHOD; OPTICAL PROPERTIES; BISMUTH TITANATE; POLARIZATION; LANTHANUM; BEHAVIOR; FILMS AB A strategy for obtaining low band gap oxide ferroelectrics based on charge imbalance is described and illustrated by first-principles studies of the hypothetical compound Bi6Ti4O17, which is an alternate stacking of the ferroelectric Bi4Ti3O12. We find that this compound is ferroelectric, similar to Bi4Ti3O12 although with a reduced polarization. Importantly, calculations of the electronic structure with the recently developed functional of Tran and Blaha yield a much reduced band gap of 1.83eV for this material compared to Bi4Ti3O12. Therefore, Bi6Ti4O17 is predicted to be a low band gap ferroelectric material. Copyright (C) EPLA, 2011 C1 [Xu, Bo; Feng, Yuan Ping] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Xu, Bo] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 33022, Jiangxi, Peoples R China. [Singh, David J.; Cooper, Valentino R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Xu, B (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. EM singhdj@ornl.gov RI Feng, Yuan Ping /A-4507-2012; Singh, David/I-2416-2012; Cooper, Valentino /A-2070-2012 OI Feng, Yuan Ping /0000-0003-2190-2284; Cooper, Valentino /0000-0001-6714-4410 FU Singapore Agency for Science, Technology and Research (A*STAR) [0721330044]; Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (ferroelectricity); Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX Work at NUS was supported by the Singapore Agency for Science, Technology and Research (A*STAR) through the grant No. 0721330044. Work at ORNL was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (ferroelectricity) and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy (electronic structure). We acknowledge computing resources from the National Energy Research Scientific Computing Center. BX is grateful for the hospitality of ORNL where he performed a portion of the work reported here. NR 30 TC 2 Z9 2 U1 1 U2 10 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2011 VL 94 IS 3 AR 37006 DI 10.1209/0295-5075/94/37006 PG 5 WC Physics, Multidisciplinary SC Physics GA 759FU UT WOS:000290226900022 ER PT J AU Yan, LF Dapper, CH George, SJ Wang, HX Mitra, D Dong, WB Newton, WE Cramer, SP AF Yan, Lifen Dapper, Christie H. George, Simon J. Wang, Hongxin Mitra, Devrani Dong, Weibing Newton, William E. Cramer, Stephen P. TI Photolysis of Hi-CO Nitrogenase - Observation of a Plethora of Distinct CO Species Using Infrared Spectroscopy SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Nitrogen fixation; Nitrogenases; Enzyme catalysis; Carbon monoxide; IR spectroscopy; Photolysis; Azotobacter vinelandii ID ELECTRON-PARAMAGNETIC-RESONANCE; MO-DEPENDENT NITROGENASE; IRON-MOLYBDENUM COFACTOR; CARBON-MONOXIDE; FEMO-COFACTOR; AZOTOBACTER-VINELANDII; ACTIVE-SITE; N-2 REDUCTION; COORDINATION CHEMISTRY; CRYOGENIC TEMPERATURES AB Fourier-transform infrared-spectroscopy (FT-IR) was used to study the photochemistry of CO-inhibited Azotobacter vinelandii Mo nitrogenase using visible light at cryogenic temperatures. The FT-IR difference spectrum of photolyzed hi-CO at 4 K comprises negative bands at 1973 cm(-1) and 1679 cm(-1) together with positive bands at 1711 cm(-1), 2135 and 2123 cm(-1). The negative bands are assigned to a hi-CO state that comprises 2 metal-bound CO ligands, one terminally bound, and one bridged and/or protonated species. The positive band at 1711 cm(-1) is assigned to a lo-CO product with a single bridged and/or protonated metal-CO group. We term these species "Hi-1" and "Lo-1", respectively. The high-energy bands are assigned to a liberated CO trapped in the protein pocket. Warming results in CO recombination, and the temperature dependence of the recombination rate yields an activation energy of 4 kJmol(-1). Two alpha-H195 variant enzymes yielded additional signals. Asparagine substitution, alpha-H195N, gives a spectrum containing 2 negative "Hi-2" bands at 1936 and 1858 cm(-1) with a positive "Lo-2" band at 1780 cm(-1), while glutamine substitution, alpha-H195Q, produces a complex spectrum that includes a third CO species, with negative "Hi-3" bands at 1938 and 1911 cm(-1) and a positive feature "Lo-3" band at 1921 cm(-1). These species can be assigned to a combination of terminal, bridged, and possibly protonated CO groups bound to the FeMo cofactor active site. The proposed structures are discussed in terms of both CO inhibition and the mechanism nitrogenase catalysis. Given the intractability of observing nitrogenase intermediates by crystallographic methods, IR-monitored photolysis appears to be a promising and information-rich probe of nitrogenase structure and chemistry. C1 [Yan, Lifen; George, Simon J.; Wang, Hongxin; Mitra, Devrani; Dong, Weibing; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Dapper, Christie H.; Newton, William E.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. [George, Simon J.; Wang, Hongxin; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cramer, SP (reprint author), Univ Calif Davis, Dept Appl Sci, 1 Shields Ave, Davis, CA 95616 USA. EM spjcramer@ucdavis.edu RI Mitra, Devrani/B-1917-2012 FU National Institutes of Health (NIH) [GM-65440]; National Science Foundation (NSF) [CHE-0745353]; DOE Office of Biological and Environmental Research FX This work was funded by the National Institutes of Health (NIH) (grant number GM-65440, to S. P. C.), the National Science Foundation (NSF) (grant number CHE-0745353, to S. P. C.), and by the DOE Office of Biological and Environmental Research (to S. P. C.). NR 72 TC 16 Z9 17 U1 4 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAY PY 2011 IS 13 BP 2064 EP 2074 DI 10.1002/ejic.201100029 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 759IA UT WOS:000290232700006 PM 27630531 ER PT J AU Nyman, M Rodriguez, MA Alam, TM AF Nyman, May Rodriguez, Mark A. Alam, Todd M. TI The U-28 Nanosphere: What's Inside? SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Cluster compounds; Peroxides; Polyanions; Polyoxometalates; Uranium ID SPENT NUCLEAR-FUEL; FULLERENE TOPOLOGIES; CAGE CLUSTERS; SOLID-STATE; PEROXIDE; STUDTITE; METASTUDTITE; COMPLEXES; CORROSION; OXIDE AB Polyoxometalate-like behavior of actinyl-peroxide anions in aqueous alkaline media has been recently unveiled in the form of more than 20 reported crystal structures of clusters, each with 20-60 uranyl polyhedra composing capsule-like topologies. There is now opportunity to fully develop this new polyoxometalate (POM) family to include redox behavior, non-aqueous chemistry, complex materials from cluster building blocks, cluster-counterion interactions, etc. To pursue these opportunities, reliable syntheses rooted in an understanding of cluster assembly processes are imperative. To this end, using the U-28 nanosphere [UO2(O-2)(1.5)](28) as an example, we report high yield syntheses of a series of four U-28 salts that feature different templating cations (K, Rb, Cs) and anions [uranyl monomer, Nb(O-2)(4) and Ta(O-2)(4)]. The key to assembly and stability of U-28 is both 1) synthetic conditions that are not extreme or dynamic, and 2) templating cations and anions that ideally match each other and the topology of the capsule interior. U-28 salts are characterized in the solid-state by powder and single-crystal X-ray diffraction and infrared spectroscopy. Furthermore, Cs-templated U-28 is re-dissolved and characterized by Cs-133 NMR; providing information on solution stability, and revealing the interaction of the internal templating Cs+ with the central templating anion. While Cs+ internal to the cluster remains inside when U-28 is dissolved in a Na salt solution, the internal K+ will rapidly exchange with Na+, providing new routes to other cluster topologies and compositions. C1 [Nyman, May; Rodriguez, Mark A.; Alam, Todd M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; U. S. Department of Energy [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001089. We thank Gary L. Zender (SNL) for the scanning electron micrographs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company for the U. S. Department of Energy under contract number DE-AC04-94AL85000. NR 31 TC 29 Z9 29 U1 4 U2 36 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAY PY 2011 IS 14 BP 2197 EP 2205 DI 10.1002/ejic.201001355 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 759IG UT WOS:000290233400001 ER PT J AU Dunning, JP Parvaz, MA Hajcak, G Maloney, T Alia-Klein, N Woicik, PA Telang, F Wang, GJ Volkow, ND Goldstein, RZ AF Dunning, Jonathan P. Parvaz, Muhammad A. Hajcak, Greg Maloney, Thomas Alia-Klein, Nelly Woicik, Patricia A. Telang, Frank Wang, Gene-Jack Volkow, Nora D. Goldstein, Rita Z. TI Motivated attention to cocaine and emotional cues in abstinent and current cocaine users - an ERP study SO EUROPEAN JOURNAL OF NEUROSCIENCE LA English DT Article DE cocaine addiction; emotional processing; human participants; late positive potential; motivated attention ID MAJOR DEPRESSIVE DISORDER; DRUG CUES; BRAIN POTENTIALS; AFFECTIVE STIMULI; VISUAL-ATTENTION; OPIATE ADDICTION; PICTURES; RESPONSES; CORTEX; DEPENDENCE AB Event-related potentials (ERPs) are a direct measure of neural activity and are ideally suited to study the time-course of attentional engagement with emotional and drug-related stimuli in addiction. In particular, the late positive potential (LPP) appears to be enhanced following cocaine-related compared with neutral stimuli in human participants with cocaine use disorders (CUD). However, previous studies have not directly compared cocaine-related with emotional stimuli while examining potential differences between abstinent and current cocaine users. The present study examined ERPs in 55 CUD (27 abstinent and 28 current users) and 29 matched healthy controls while they passively viewed pleasant, unpleasant, neutral and cocaine-related pictures. To examine the time-course of attention to these stimuli, we analysed both an early and later window in the LPP as well as the early posterior negativity (EPN), established in assessing motivated attention. Cocaine pictures elicited increased electrocortical measures of motivated attention in ways similar to affectively pleasant and unpleasant pictures in all CUD, an effect that was no longer discernible during the late LPP window for the current users. This group also exhibited deficient processing of the other emotional stimuli (early LPP window - pleasant pictures; late LPP window - pleasant and unpleasant pictures). Results were unique to the LPP and not EPN. Taken together, results support a relatively early attention bias to cocaine stimuli in cocaine-addicted individuals, further suggesting that recent cocaine use decreases such attention bias during later stages of processing but at the expense of deficient processing of other emotional stimuli. C1 [Parvaz, Muhammad A.; Maloney, Thomas; Alia-Klein, Nelly; Woicik, Patricia A.; Telang, Frank; Wang, Gene-Jack; Goldstein, Rita Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dunning, Jonathan P.; Parvaz, Muhammad A.; Hajcak, Greg] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, 30 Bell Ave, Upton, NY 11973 USA. EM rgoldstein@bnl.gov OI Parvaz, Muhammad/0000-0002-2671-2327 FU National Institute on Drug Abuse [1R01DA023579, R21DA02062]; General Clinical Research Center [5-MO1-RR-10710]; Brookhaven Science Associates, LLC. [AC02-98CHI-886]; US Department of Energy FX This study was supported by grants from the National Institute on Drug Abuse (to R.Z.G.: 1R01DA023579 and R21DA02062) and the General Clinical Research Center (5-MO1-RR-10710). This manuscript has been authored by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CHI-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 41 TC 51 Z9 54 U1 2 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0953-816X J9 EUR J NEUROSCI JI Eur. J. Neurosci. PD MAY PY 2011 VL 33 IS 9 BP 1716 EP 1723 DI 10.1111/j.1460-9568.2011.07663.x PG 8 WC Neurosciences SC Neurosciences & Neurology GA 758MS UT WOS:000290169500015 PM 21450043 ER PT J AU Durso, LM Harhay, GP Smith, TPL Bono, JL DeSantis, TZ Clawson, ML AF Durso, Lisa M. Harhay, Gregory P. Smith, Timothy P. L. Bono, James L. DeSantis, Todd Z. Clawson, Michael L. TI Bacterial Community Analysis of Beef Cattle Feedlots Reveals That Pen Surface Is Distinct from Feces SO FOODBORNE PATHOGENS AND DISEASE LA English DT Article ID SOIL; DIVERSITY AB The surface of beef cattle feedlot pens is commonly conceptualized as being packed uncomposted manure. Despite the important role that the feedlot pen may play in the transmission of veterinary and zoonotic pathogens, the bacterial ecology of feedlot surface material is not well understood. Our present study characterized the bacterial communities of the beef cattle feedlot pen surface material using 3647 full-length 16S rDNA sequences, and we compared the community composition of feedlot pens to the fecal source material. The feedlot surface composite was represented by members of the phylum Actinobacteria (42%), followed by Firmicutes (24%), Bacteroidetes (24%), and Proteobacteria (9%). The feedlot pen surface material bacterial communities were clearly distinct from those of the feces from animals in the same pen. Comparisons with previously published results of feces from the animals in the same pen reveal that, of 139 genera identified, only 25 were present in both habitats. These results indicate that, microbiologically, the feedlot pen surface material is separate and distinct from the fecal source material, suggesting that bacteria that originate in cattle feces face different selection pressures and survival challenges during their tenure in the feedlot pen, as compared to their residence in the gastrointestinal tract. C1 [Durso, Lisa M.; Harhay, Gregory P.; Smith, Timothy P. L.; Bono, James L.; Clawson, Michael L.] ARS, US Meat Anim Res Ctr, USDA, Clay Ctr, NE USA. [DeSantis, Todd Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Durso, LM (reprint author), ARS, Agroecosyst Management Resource Unit, USDA, 121 Keim Hall,UNL E Campus, Lincoln, NE 68583 USA. EM lisa.durso@ars.usda.gov OI Clawson, Michael/0000-0002-3355-5390 FU U.S. Department of Agriculture, Agricultural Research Service [108] FX We thank Ron Mlejnek, Steve Simcox, Bob Lee, and Sandy Fryda-Bradley for technical assistance; Melissa Durso and Tammy Sorensen for help with Figure 1; Joan Rosch for secretarial assistance; Randy Bradley, Phil Anderson, and William Dailey for IT support; and the MARC cattle crew for their assistance with sample collection. This research was supported by the U.S. Department of Agriculture, Agricultural Research Service, National Program 108. NR 8 TC 10 Z9 13 U1 1 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1535-3141 J9 FOODBORNE PATHOG DIS JI Foodborne Pathog. Dis. PD MAY PY 2011 VL 8 IS 5 BP 647 EP 649 DI 10.1089/fpd.2010.0774 PG 3 WC Food Science & Technology SC Food Science & Technology GA 760DD UT WOS:000290302500012 PM 21214381 ER PT J AU Lasue, J Botet, R Levasseur-Regourd, AC Hadamcik, E Kofman, W AF Lasue, J. Botet, R. Levasseur-Regourd, A. C. Hadamcik, E. Kofman, W. TI Appearance of layered structures in numerical simulations of polydisperse bodies accretion: Application to cometary nuclei SO ICARUS LA English DT Article DE Accretion; Collisional physics; Comets, Nucleus; Interiors; Comets, Origin ID DEEP IMPACT OBSERVATIONS; PROTOPLANETARY DISKS; INTERNAL STRUCTURE; SIZE DISTRIBUTION; KUIPER-BELT; AGGREGATION; SURFACE; 9P/TEMPEL-1; PARTICLES; EVOLUTION AB A model for the aggregation of size distribution of cometesimals (Gaussian or power law) into cometary nuclei is developed. Upon disruption induced by collisions, sticking and evolution of the tensile strength and density of the cometesimals by sintering processes are taken into account. The resulting cometary nuclei present specific internal structures that have been quantified to allow the comparison with observational constraints and future in situ observations and cometary nucleus sounding with the CONSERT radar on-board the Rosetta mission. A parameter called the homogeneity exponent, mu, determines different aggregation regimes. Fractal aggregates are formed for mu < 0.4. Radial variations in tensile strength appear for 0.4 < mu < 0.6 and vanish for larger values of mu. The initial size distribution (following a Gaussian or power law) of aggregating cometesimals does not influence strongly these values but can change the extent of corresponding layers. If the layering observed on the surface of some cometary nuclei occurs often and originates from primordial structures, this constrains the velocity distribution of aggregating bodies to follow v proportional to m(-0.25), while a differential size distribution following a power law with exponent between -2 and -3 should result for large bodies, in agreement with current estimations of the size distributions. Such a layered structure would lead to more cohesive, dense and less porous material located near the center of mass of the nucleus predicting an increase of bulk density of comet nuclei with their erosion state. Published by Elsevier Inc. C1 [Lasue, J.] LANL, Los Alamos, NM 87545 USA. [Lasue, J.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Botet, R.] Univ Paris 11, CNRS, Lab Phys Solides Orsay, UMR 8502,Ctr Orsay, F-91405 Orsay, France. [Levasseur-Regourd, A. C.] Univ Paris 06, UPMC, UMR 8190, LATMOS IPSL, F-75252 Paris 05, France. [Hadamcik, E.] Univ Paris 06, UPMC, LATMOS IPSL, F-78280 Guyancourt, France. [Kofman, W.] IPAG, Inst Planetol & Astrophys Grenoble, F-38041 Grenoble, France. RP Lasue, J (reprint author), LANL, ISR-1,Mail Stop D-466, Los Alamos, NM 87545 USA. EM lasue@lanl.gov RI Kofman, Wlodek/C-4556-2008 FU Los Alamos National Laboratory FX The authors acknowledge fruitful discussions with S.M. Clifford, W.M. Harris, G. Magni. The authors thank Michael Belton, Michael Combi and an anonymous referee for constructive comments that significantly improved the manuscript. This is J. Lasue LPI contribution number 1610. The authors acknowledge funding from the Laboratory Directed Research and Development funds from the Los Alamos National Laboratory. NR 65 TC 4 Z9 4 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2011 VL 213 IS 1 BP 369 EP 381 DI 10.1016/j.icarus.2011.02.026 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 758TR UT WOS:000290190100022 ER PT J AU Balaji, P Vishnu, A AF Balaji, Pavan Vishnu, Abhinav TI Special Issue on Programming Models and Systems Software Support for High-End Computing Applications SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Vishnu, Abhinav] Pacific NW Natl Lab, Div Math & Comp Sci, Richland, WA 99352 USA. RP Balaji, P (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM balaji@mcs.anl.gov; abhinav.vishnu@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2011 VL 25 IS 2 BP 135 EP 136 DI 10.1177/1094342010369453 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 759AS UT WOS:000290212600001 ER PT J AU Yoshii, K Iskra, K Naik, H Beckman, P Broekema, PC AF Yoshii, Kazutomo Iskra, Kamil Naik, Harish Beckman, Pete Broekema, P. Chris TI Performance and Scalability Evaluation of 'Big Memory' on Blue Gene Linux SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Linux; Blue Gene; OS kernel; memory performance; TLB ID PARALLEL OCEAN PROGRAM AB We address memory performance issues observed in Blue Gene Linux and discuss the design and implementation of 'Big Memory'-an alternative, transparent memory space introduced to eliminate the memory performance issues. We evaluate the performance of Big Memory using custom memory benchmarks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4,096 nodes. We find that Big Memory successfully resolves the performance issues normally encountered in Blue Gene Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better scalability than does the lightweight compute node kernel designed solely for high-performance applications. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically improves the performance of certain I/O node applications as well. We demonstrate this performance using the central processor of the LOw Frequency ARray radio telescope as an example. C1 [Yoshii, Kazutomo; Beckman, Pete] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Beckman, Pete] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. [Beckman, Pete] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Broekema, P. Chris] Netherlands Inst Radio Astron, ASTRON, Dwingeloo, Netherlands. RP Yoshii, K (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kazutomo@mcs.anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Dutch government; European Union; "Samenwerkingsverband Noord-Nederland," EZ/KOMPAS FX This work was also supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. LOFAR is funded by the Dutch government in the BSIK program for interdisciplinary research for improvements of the knowledge infrastructure. Additional funding is provided by the European Union, European Regional Development Fund (EFRO) and by the "Samenwerkingsverband Noord-Nederland," EZ/KOMPAS. NR 17 TC 4 Z9 4 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2011 VL 25 IS 2 BP 148 EP 160 DI 10.1177/1094342010369116 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 759AS UT WOS:000290212600003 ER PT J AU Gupta, R Naik, H Beckman, P AF Gupta, Rinku Naik, Harish Beckman, Pete TI Understanding Checkpointing Overheads on Massive-Scale Systems: Analysis of the IBM Blue Gene/P System SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Checkpointing; Blue Gene; Fault Tolerance; I/O; Massive scale systems ID PARALLEL OCEAN PROGRAM AB Providing fault tolerance in high-end petascale systems, consisting of millions of hardware components and complex software stacks, is becoming an increasingly challenging task. Checkpointing continues to be the most prevalent technique for providing fault tolerance in such high-end systems. Considerable research has focussed on optimizing checkpointing; however, in practice, checkpointing still involves a high-cost overhead for users. In this paper, we study the checkpointing overhead seen by various applications running on leadership-class machines like the IBM Blue Gene/P at Argonne National Laboratory. In addition to studying popular applications, we design a methodology to help users understand and intelligently choose an optimal checkpointing frequency to reduce the overall checkpointing overhead incurred. In particular, we study the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application, the Nek5000 computational fluid dynamics application and the Parallel Ocean Program application-and analyze their memory usage and possible checkpointing trends on 65,536 processors of the Blue Gene/P system. C1 [Gupta, Rinku; Naik, Harish; Beckman, Pete] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Gupta, R (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rgupta@mcs.anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. This research also used resources of the Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 31 TC 2 Z9 3 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2011 VL 25 IS 2 BP 180 EP 192 DI 10.1177/1094342010369118 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 759AS UT WOS:000290212600005 ER PT J AU DePrince, AE Hammond, JR AF DePrince, A. Eugene, III Hammond, Jeff R. TI Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID CONFIGURATION-INTERACTION QCISD; QUANTUM-CHEMISTRY CALCULATIONS; MULTICORE PARALLELIZATION; MONTE-CARLO; IMPLEMENTATION; EQUATIONS; SYSTEMS; CCSD AB The coupled cluster (CC) ansatz is generally recognized as providing one of the best wave function-based descriptions of electronic correlation in small- and medium-sized molecules. The fact that the CC equations with double excitations (CCD) may be expressed as a handful of dense matrix matrix multiplications makes it an ideal method to be ported to graphics processing units (GPUs). We present our implementation of the spin-free CCD equations in which the entire iterative procedure is evaluated on the GPU. The GPU-accelerated algorithm readily achieves a factor of 4-5 speedup relative to the multithreaded CPU algorithm on same-generation hardware. The GPU-accelerated algorithm is approximately 8-12 times faster than Molpro, 17-22 times faster than NWChem, and 21-29 times faster than GAMESS for each CC iteration. Single-precision GPU-accelerated computations are also performed, leading to an additional doubling of performance. Single-precision errors in the energy are typically on the order of 10(-6) hartrees and can be improved by about an order of magnitude by performing one additional iteration in double precision. C1 [DePrince, A. Eugene, III] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hammond, Jeff R.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. RP DePrince, AE (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM adeprince@anl.gov RI Hammond, Jeff/G-8607-2013 OI Hammond, Jeff/0000-0003-3181-8190 FU Argonne National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX A.E.D. is supported by the Computational Postdoctoral Fellowship program at Argonne National Laboratory. J.R.H. is supported by the Director's Postdoctoral Fellowship program at Argonne National Laboratory and thanks Alan Aspuru-Guzik for interesting discussions and encouragement.; This research used the "Dirac" CPU test bed system of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.; We gratefully acknowledge use of "Breadboard," a development computing cluster operated by the Mathematics and Computer Science Division at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-06CH11357. NR 43 TC 31 Z9 31 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2011 VL 7 IS 5 BP 1287 EP 1295 DI 10.1021/ct100584w PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 760AM UT WOS:000290293000007 PM 26610123 ER PT J AU Ma, WJ Krishnamoorthy, S Villa, O Kowalski, K AF Ma, Wenjing Krishnamoorthy, Sriram Villa, Oreste Kowalski, Karol TI GPU-Based Implementations of the Noniterative Regularized-CCSD(T) Corrections: Applications to Strongly Correlated Systems SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID COUPLED-CLUSTER SINGLES; GRAPHICAL PROCESSING UNITS; MULTIREFERENCE PERTURBATION-THEORY; 2-ELECTRON INTEGRAL EVALUATION; MOLECULAR ELECTRONIC-STRUCTURE; FULL CCSDT MODEL; QUANTUM-CHEMISTRY; CONFIGURATION-INTERACTION; WAVE-FUNCTIONS; DOUBLES METHOD AB The details of the graphical processing unit (GPU) implementation of the most computationally intensive (T)-part of the recently introduced regularized CCSD(T) (Reg-CCSD(T)) method [Kowalski, K.; Valley, M. J. Chem. Phys. 2009, 131, No. 234107] for calculating electronic energies of strongly correlated systems are discussed. Parallel tests performed for several molecular systems show very good scalability of the triples part of the Reg-CCSD(T) approach. We also discuss the performance of the Reg-CCSD(T) GPU implementation as a function of the parameters defining the partitioning of the spinorbital domain (tiling structure). The accuracy of the Reg-CCSD(T) method is illustrated on three examples: the methyfluoride molecule, dissociation of dodecane, and open-shell Spiro cation (5,5'(4H,4H')-spirobi[cydopenta[c]pyrrole] 2,2',6,6'-tetrahydro cation), which is a frequently used model to study electron transfer processes. It is demonstrated that a simple regularization of the cluster amplitudes used in the noniterative corrections accounting for the effect of triply excited configurations significantly improves the accuracies of ground-state energies in the presence of strong quasidegeneracy effects. For methylfluoride, we compare the Reg-CCSD(T) results with the CR-CC(2,3) and CCSDT energies, whereas for Spiro cation we compare Reg-CCSD(T) results with the energies obtained with completely renormalized CCSD(T) method. Performance tests for the Spiro, dodecane, and uracil molecules are also discussed. C1 [Krishnamoorthy, Sriram; Villa, Oreste] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Ma, Wenjing] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. [Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Krishnamoorthy, S (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. EM sriram@pnl.gov; karol.kowalski@pnl.gov FU Extreme Scale Computing Initiative; Pacific Northwest National Laboratory; U.S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830] FX The work related to the development of the CPU Reg-CCSD(T) implementation was supported by the Extreme Scale Computing Initiative (SK,OV,KK), a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. The calculations were performed using the Barracuda cluster in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. The Barracuda cluster was purchased with funds received under the American Recovery and Reinvestment Act. NR 87 TC 25 Z9 25 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2011 VL 7 IS 5 BP 1316 EP 1327 DI 10.1021/ct1007247 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 760AM UT WOS:000290293000010 PM 26610126 ER PT J AU Lopata, K Govind, N AF Lopata, Kenneth Govind, Niranjan TI Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DNA-BASE PAIRS; EXCITATION-ENERGIES; LINEAR-RESPONSE; ZINC PORPHYRIN; EXCITED-STATES; BASIS-SETS; EXCHANGE; APPROXIMATION; SIMULATIONS; SYSTEMS AB The response of matter to external fields forms the basis for a vast wealth of fundamental physical processes ranging from light harvesting to nanoscale electron transport. Accurately modeling ultrafast electron dynamics in excited systems thus offers unparalleled insight but requires an inherently nonlinear time resolved approach. To this end, an efficient and massively parallel real-time real-space time dependent density functional theory (RT-TDDFT) implementation in NWChem is presented. The implementation is first validated against linear response TDDFT and experimental results for a series of molecules subjected to small electric field perturbations. Second, nonlinear excitation of green fluorescent protein is studied, which shows a blue shift in the spectrum with increasing perturbation, as well as a saturation in absorption. Next, the charge dynamics of optically excited zinc porphyrin is presented in real time and real space, with relevance to charge injection in photovoltaic devices. Finally, intermolecular excitation in an adenine-thymine base pair is studied using the BNL range separated functional [Baer, R.; Neuhauser, D. Phys. Rev. Lett. 2005, 94, No. 043002], demonstrating the utility of a real-time approach in capturing charge transfer processes. C1 [Lopata, Kenneth; Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Lopata, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM kenneth.lopata@pnl.gov; niri.govind@pnl.gov RI Govind, Niranjan/D-1368-2011 FU Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; EMSL FX The research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. KL acknowledges the William Wiley Postdoctoral Fellowship from EMSL. Discussions with Daniel Neuhauser, Karol Kowalski, Hongfei Wang, Eric Bylaska, Bert de Jong, and Bill Shelton are gratefully acknowledged. NR 75 TC 59 Z9 59 U1 4 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2011 VL 7 IS 5 BP 1344 EP 1355 DI 10.1021/ct200137z PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 760AM UT WOS:000290293000013 PM 26610129 ER PT J AU Caldwell, EF Duff, MC Ferguson, CE Coughlin, DP AF Caldwell, Eric Frank Duff, Martine C. Ferguson, Caitlin E. Coughlin, Daniel P. TI Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID CHEMICAL SEPARATIONS FACILITY; AQUATIC MACROPHYTES; FOLIAR UPTAKE; WATER COLUMN; SOILS; ACCUMULATION; PLUTONIUM; CESIUM; RADIONUCLIDES; RADIOCESIUM AB The Savannah River Site was constructed in South Carolina to produce plutonium (Pu) in the 1950s. Discharges associated with these now-ceased operations have contaminated large areas within the site, particularly streams associated with reactor cooling basins. Evaluating the exposure risk of contamination to an ecosystem requires methodologies that can assess the bioavailability of contaminants. Plants, as primary producers, represent an important mode of transfer of contaminants from soils and sediments into the food chain. The objective of this study was to identify local area plants for their ability to act as bio-monitors of radionuclides. The concentrations of cesium-137 ((137)Cs), potassium-40 ((40)K), (238)Pu and (239,240)Pu in plants and their associated soils were determined using gamma and alpha spectrometry. The ratio of contamination concentration found in the plant relative to the soil was calculated to assess a concentration ratio (CR). The highest CR for (137)Cs was found in Pinus palustris needles (CR of 2.18). The correlation of soil and plant (137)Cs concentration was strong (0.76) and the R(2) (0.58) from the regression was significant (p = 0.006). This suggests the ability to predict the degree of (137)Cs contamination of a soil through analysis of the pine needles. The (238)Pu and (239,240)Pu concentrations were most elevated within the plant roots. Extremely high CR values were found in Sparganium americanum (bur-reed) roots with a value of 5.86 for (238)Pu and 5.66 for (239,240)Pu. The concentration of (40)K was measured as a known congener of (137)C. Comparing (40)K and (137)C concentrations in each plant revealed an inverse relationship for these radioisotopes. Correlating (40)K and (137)Cs was most effective in identifying plants that have a high affinity for (137)Cs uptake. The P. palustris and S. americanum proved to be particularly strong accumulators of all K congeners from the soil. Some species that were measured, warrant further investigation, are the carnivorous plant Utricularia inflata (bladderwort) and the emergent macrophyte Juncus effusus. For U. inflata, the levels of (137)Cs, (238)Pu, and (239,240)Pu (which were 3922, 8399, and 803 Bq kg(-1), respectively) in the leaves were extremely high. The highest (137)Cs concentration from the study was measured in the J. effusus root (5721 Bq kg(-1)). C1 [Caldwell, Eric Frank; Duff, Martine C.; Ferguson, Caitlin E.] Savannah River Natl Lab, Aiken, SC USA. [Coughlin, Daniel P.] Sellafield Sites, Sellafield, Cumbria, England. RP Duff, MC (reprint author), Savannah River Natl Lab, Aiken, SC USA. EM martine.duff@srnl.doe.gov FU US DOE-National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development [NA-22] FX This work was supported by US DOE-National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development-NA-22. NR 50 TC 4 Z9 4 U1 0 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD MAY PY 2011 VL 13 IS 5 BP 1410 EP 1421 DI 10.1039/c0em00610f PG 12 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 758LR UT WOS:000290166800031 PM 21412545 ER PT J AU Kim, JK Berry, DH Yoo, H AF Kim, Jin Kyung Berry, Donald H. Yoo, Hyojong TI Synthesis of tridentate 2,6-bis(imino)pyridyl aminechlorohydro ruthenium(II) complexes: The convenient use of amine hydrochlorides to generate metal-hydride SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE Bis(imino)pyridine ligand; Ruthenium(II)-amine complex; Ruthenium-hydride ID IRON; CATALYSTS; ETHYLENE; POLYMERIZATION; OLIGOMERIZATION; HYDROSILATION; HYDROGENATION; LIGANDS AB The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [eta(2)-N(3)]Ru(eta(6)-Ar) (1) or {[N(3)]Ru}(2)(mu-N(2)) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N(3)]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yoo, Hyojong] Hallym Univ, Inst Appl Chem, Chunchon 200702, Gangwon Do, South Korea. [Yoo, Hyojong] Hallym Univ, Dept Chem, Chunchon 200702, Gangwon Do, South Korea. [Kim, Jin Kyung] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Berry, Donald H.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. RP Yoo, H (reprint author), Hallym Univ, Inst Appl Chem, Chunchon 200702, Gangwon Do, South Korea. EM hyojong@hallym.ac.kr OI Berry, Donald/0000-0001-6732-3726 FU Hallym University [HRF-2010-018] FX This research was supported by Hallym University Research Fund, 2010 (HRF-2010-018). The diffraction data collection was carried out by Dr. Patrick J. Carroll at Department of Chemistry, University of Pennsylvania. NR 23 TC 2 Z9 3 U1 1 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD MAY 1 PY 2011 VL 696 IS 9 BP 1895 EP 1898 DI 10.1016/j.jorganchem.2010.12.015 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 756NN UT WOS:000290019300027 ER PT J AU Cannon, WR Rawlins, MM Baxter, DJ Callister, SJ Lipton, MS Bryant, DA AF Cannon, William R. Rawlins, Mitchell M. Baxter, Douglas J. Callister, Stephen J. Lipton, Mary S. Bryant, Donald A. TI Large Improvements in MS/MS-Based Peptide Identification Rates using a Hybrid Analysis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Peptide identification; tandem mass spectrometry; spectral library; database search; false discovery rate; Synechococcus; CO2 fixation ID TANDEM MASS-SPECTROMETRY; SHOTGUN PROTEOMICS; PROTEIN COMPLEXES; PROTEOTYPIC PEPTIDES; SPECTRA; PROBABILITIES; VALIDATION; PREDICTION; INFERENCE; GENOMES AB We report a hybrid search method combining database and spectral library searches that allows for a straightforward approach to characterizing the error rates from the combined data. Using these methods, we demonstrate significantly increased sensitivity and specificity in matching peptides to tandem mass spectra. The hybrid search method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods with the accuracy of the intensity information contained in spectral libraries. A common scoring metric based on recent developments linking data analysis and statistical thermodynamics is used, which allows the use of a conservative estimate of error rates for the combined data. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a mode:, organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth. C1 [Cannon, William R.; Rawlins, Mitchell M.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Baxter, Douglas J.] Pacific NW Natl Lab, Mol Sci Comp Facil, Richland, WA 99352 USA. [Callister, Stephen J.; Lipton, Mary S.] Pacific NW Natl Lab, Biol Separat & Mass Spectrometry Grp, Richland, WA 99352 USA. [Bryant, Donald A.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Bryant, Donald A.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. RP Cannon, WR (reprint author), Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. EM william.cannon@pnl.gov RI Cannon, William/K-8411-2014 OI Cannon, William/0000-0003-3789-7889 FU DOE; National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC06-76RLO 1830]; National Science Foundation [MCB-0523100]; Air Force Office of Scientific Research [FA9550-05-1-0365]; DOE Pacific Northwest National Laboratory; [57271]; [54976]; [56812] FX This work was the result in a joint effort by the Department of Energy's Office of Biological and Environmental Research (BER) and Office of Advanced Scientific Computing Research (OASCR) to develop new approaches for computational biology in areas of national interests. The method and algorithm developments were supported under contracts 57271 and 54976, while the biological interpretation was supported under contract 56812. We thank Dr. Gaozhong Shen for assistance in growing the Synechococcus sp. PCC 7002 cells analyzed in this study, and we thank researchers in the laboratory of Richard Smith at PNNL who generated the data sets herein, as well as Dr. Smith, for providing the data. The calculations were performed in the DOE-funded William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory and at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. D.A.B. additionally and gratefully acknowledges support from the National Science Foundation (MCB-0523100), Air Force Office of Scientific Research (FA9550-05-1-0365) and DOE Pacific Northwest National Laboratory (contract pending). NR 37 TC 12 Z9 12 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2011 VL 10 IS 5 BP 2306 EP 2317 DI 10.1021/pr101130b PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 759IU UT WOS:000290234800016 PM 21391700 ER PT J AU Beyerlein, IJ McCabe, RJ Tome, CN AF Beyerlein, I. J. McCabe, R. J. Tome, C. N. TI Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Twinning; Nucleation; Statistics; Magnesium; hcp ID GRAIN-SIZE; PLASTIC-DEFORMATION; CONSTITUTIVE LAW; ZINC ALLOY; METALS; EVOLUTION; ZIRCONIUM; TITANIUM; TEXTURE; GROWTH AB A multi-scale, theoretical study of twin nucleation from grain boundaries in polycrystal-line hexagonal close packed (hcp) metals is presented. A key element in the model is a probability theory for the nucleation of deformation twins based on the idea that twins originate from a statistical distribution of defects in the grain boundaries and are activated by local stresses at the grain boundaries. In this work, this theory is integrated into a crystal plasticity constitutive model in order to study the influence of these statistical effects on the microstructural evolution of the polycrystal, such as texture and twin volume fraction. Recently, a statistical analysis of exceptionally large data sets {10 (1) over bar2} deformation twins was conducted for high-purity Mg (Beyerlein et al., 2010a). To demonstrate the significantly enhanced accuracy of the present model over those employing more conventional, deterministic approaches to twin activation, the model is applied to the case of {10 (1) over bar2} twinning in Mg to quantitatively interpret the many statistical features reported for these twins (e.g., variant selection, thickness, numbers per grain) and their relationship to crystallographic grain orientation, grain size, and grain boundary misorientation angle. Notably the model explains the weak relationship observed between crystal orientation and twin variant selection and the strong correlation found between grain size and the number of twins formed per grain. The predictions suggest that stress fluctuations generated at grain boundaries are responsible for experimentally observed dispersions in twin variant selection. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McCabe, R. J.; Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, MS B16, Los Alamos, NM 87545 USA. EM irene@lanl.gov; rmccabe@lanl.gov; tome@lanl.gov RI Beyerlein, Irene/A-4676-2011; Tome, Carlos/D-5058-2013; OI McCabe, Rodney /0000-0002-6684-7410 FU US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX This work was supported in full by the US Department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401). We would like to acknowledge the reviewers for their valuable comments. NR 39 TC 107 Z9 108 U1 7 U2 70 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAY PY 2011 VL 59 IS 5 BP 988 EP 1003 DI 10.1016/j.jmps.2011.02.007 PG 16 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 757FV UT WOS:000290071800005 ER PT J AU Wall, ME AF Wall, Michael E. TI Structure-function relations are subtle in genetic regulatory networks SO MATHEMATICAL BIOSCIENCES LA English DT Article DE Gene regulation; Function prediction; Network motifs; Escherichia coli; Computational biology; Synthetic biology ID ESCHERICHIA-COLI; LAC OPERON; TRANSCRIPTIONAL REGULATION; BISTABILITY; LACTOSE; DESIGN; MOTIFS; CIRCUITS; MODEL; EXPRESSION AB Recent studies have yielded insights into structure-function relations in genetic regulatory networks. Models of feed-forward loops show that the input-output behavior depends critically on the input signal as well as transcription interactions. Models of induction of the lac operon in Escherichia coli reveal the importance of metabolism in determining genetic regulatory network behavior. Combined experimental and computational studies of activation by MarA in E. coli show how mechanisms of transcription regulation, hidden at the level of genetic regulatory networks, can influence behavior. Together these studies illustrate that gene regulation is critically influenced by factors beyond the topology of genetic regulatory interactions. Prediction of the specific information processing roles of gene circuits is more difficult than we would like, but it is still possible. Thinking about evolution of proteins and networks might make it easier. (C) 2011 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Ctr Nonlinear Studies, Los Alamos, NM 87505 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Ctr Nonlinear Studies, Los Alamos, NM 87505 USA. EM mewall@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 FU Department of Energy through Los Alamos National Laboratory FX I am grateful to William S. Hlavacek and John Dunbar for discussions about gene regulation, and to Michael A. Savageau for his generous advice and encouragement. The writing of this review was supported by the Department of Energy through Los Alamos National Laboratory's Laboratory-Directed Research and Development program. NR 51 TC 4 Z9 4 U1 3 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-5564 EI 1879-3134 J9 MATH BIOSCI JI Math. Biosci. PD MAY PY 2011 VL 231 IS 1 SI SI BP 61 EP 68 DI 10.1016/j.mbs.2011.02.003 PG 8 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 758WP UT WOS:000290198300006 PM 21329703 ER PT J AU Fierro, AO Shao, XM Hamlin, T Reisner, JM AF Fierro, Alexandre O. Shao, Xuan-Min Hamlin, Timothy Reisner, Jon M. TI Evolution of Eyewall Convective Events as Indicated by Intracloud and Cloud-to-Ground Lightning Activity during the Rapid Intensification of Hurricanes Rita and Katrina SO MONTHLY WEATHER REVIEW LA English DT Article ID NARROW BIPOLAR EVENTS; SFERIC ARRAY LASA; TROPICAL CYCLONES; SCALE CHARACTERISTICS; RADAR OBSERVATIONS; HOT TOWERS; ELECTRIFICATION; ATLANTIC; STORM; INTENSITY AB Lightning data (cloud-to-ground plus intracloud) obtained from the Los Alamos Sferic Array (LASA) for 2005's Hurricanes Rita and Katrina were analyzed to provide a first insight into the three-dimensional electrical activity of rapidly intensifying hurricanes. This information is crucial for modelers aiming at better forecasting hurricane intensity, because it is inherently related to key structural aspects of the storm often misrepresented in numerical models. Analysis of the intracloud narrow bipolar events (NBEs) for Rita revealed a general increase in discharge heights during the period of rapid intensification. The results also showed that for the case of Rita, NBEs were useful in tracking and mapping the evolution of individual strong convective elements embedded in the eyewall during rapid intensification. Those results are particularly revealing, and suggest that the general increase in height of the intracloud lightning is an aggregate consequence of numerous short-lived convective events rotating rapidly around the eyewall of Rita. A similar rise in discharge heights during periods of intensification was also observed for Katrina. However, the NBE lightning data show that for Katrina, the eyewall convection persisted for several hours at a fixed location instead of rotating cyclonically along the eyewall. This highlights the idea that NBE lightning data can also be used to identify different convective regimes attributed to possibly different internal or external forcing mechanism(s). C1 [Fierro, Alexandre O.; Reisner, Jon M.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Shao, Xuan-Min; Hamlin, Timothy] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. RP Fierro, AO (reprint author), Natl Weather Ctr, Cooperat Inst Mesoscale Meteorol Studies, Suite 2100,120 David L Boren Blvd, Norman, OK 73072 USA. EM afterro@ou.edu RI Fierro, Alexandre/C-4733-2014 OI Fierro, Alexandre/0000-0002-4859-1255 FU U.S. Department of Energy; Los Alamos National Laboratory FX This work was supported by the U.S. Department of Energy and the LDRD program of the Los Alamos National Laboratory. The authors would also like to thank Dr. Edward "Ted" Mansell, Dr. Don MacGorman, Dr. Conrad Ziegler, and Dr. Chris Jeffery for providing helpful suggestions on an earlier version of the manuscript. The authors would also like to thank Dr. Dave Vollaro and one anonymous reviewer for their helpful comments. Thanks also go out to Steve Guimond for providing the 3D radar data used to create Fig. 6. NR 56 TC 23 Z9 25 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAY PY 2011 VL 139 IS 5 BP 1492 EP 1504 DI 10.1175/2010MWR3532.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 759JQ UT WOS:000290237000011 ER PT J AU Werth, D Garrett, A AF Werth, David Garrett, Alfred TI Patterns of Land Surface Errors and Biases in the Global Forecast System SO MONTHLY WEATHER REVIEW LA English DT Article ID PART I; VERIFICATION; CALIBRATION; RESOLUTION; MODEL AB One year's worth of Global Forecast System (GFS) predictions of surface meteorological variables (wind speed, air temperature, dewpoint temperature, sea level pressure) are validated for land-based stations over the entire planet for forecasts extending from 0 h into the future (an analysis) to 7 days. Approximately 12 000 surface stations worldwide were included in this analysis. Root-mean-square errors (RMSEs) increased as the forecast period increased from 0 to 36 h, but the initial RMSEs were almost as large as the 36-h forecast RMSEs for all variables. Typical RMSEs were 3 degrees C for air temperature, 2-3 mb for sea level pressure, 3.5 degrees C for dewpoint temperature, and 2.5 m s(-1) for wind speed. An analysis of the biases at each station shows that the biggest errors are associated with mountain ranges and other areas of steep topography, with land-sea contrasts also playing a role. When the error is decomposed into the bias, variance, and correlation terms, the large initial RMSEs for the 0-h forecasts are seen to be due to a large forecast bias (which persisted into the longer forecasts) with errors in forecast correlation also making a large contribution. A validation of two subdomains showed results similar to the global validation, but the dependence of the biases on the forecast time was clearer. Finally, the RMSE values climb as forecasts go out when validated out to a period of 7 days as the correlation error term grows. C1 [Werth, David; Garrett, Alfred] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Werth, D (reprint author), Savannah River Natl Lab, Savannah River Site,Bldg 773-A,Rm A-1012, Aiken, SC 29808 USA. EM david.werth@srnl.doe.gov NR 20 TC 5 Z9 5 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAY PY 2011 VL 139 IS 5 BP 1569 EP 1582 DI 10.1175/2010MWR3423.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 759JQ UT WOS:000290237000016 ER PT J AU Wang, CM Xu, W Liu, J Zhang, JG Saraf, LV Arey, BW Choi, DW Yang, ZG Xiao, J Thevuthasan, S Baer, DR AF Wang, Chong-Min Xu, Wu Liu, Jun Zhang, Ji-Guang Saraf, Lax V. Arey, Bruce W. Choi, Daiwon Yang, Zhen-Guo Xiao, Jie Thevuthasan, Suntharampillai Baer, Donald R. TI In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a SnO2 Nanowire during Lithium Intercalation SO NANO LETTERS LA English DT Article DE Li-ion battery; in situ TEM; microstructure; nanobattery; SnO2 nanowire ID ENERGY-LOSS SPECTROSCOPY; LI-ION BATTERIES; SEI FORMATION; OXIDE; RESOLUTION; LIQUID; FILM; VISUALIZATION; NANOPARTICLES; TRANSITION AB Recently we have reported structural transformation features of SnO2 upon initial charging using a configuration that leads to the sequential lithiation of SnO2 nanowire from one end to the other (Huang et al. Science 2010, 330,1515). A key question to be addressed is the lithiation behavior of the nanowire when it is fully soaked into the electrolyte (Chiang Science 2010, 330, 1485). This Letter documents the structural characteristics of SnO2 upon initial charging based on a battery assembled with a single nanowire anode, which is fully soaked (immersed) into an ionic liquid based electrolyte using in situ transmission electron microscopy. It has been observed that following the initial charging the nanowire retained a wire shape, although highly distorted. The originally straight wire is characterized by a zigzag structure following the phase transformation, indicating that during the phase transformation of SnO2 + Li <-> LixSn + LiyO, the nanowire was subjected to severe deformation, as similarly observed for the case when the SnO2 was charged sequentially from one end to the other. Transmission electron microscopy imaging revealed that the LixSn phase possesses a spherical morphology and is embedded into the amorphous LiyO matrix, indicating a simultaneous partitioning and coarsening of LixSn through Sn and Li diffusion in the amorphous matrix accompanied the phase transformation. The presently observed composite configuration gives detailed information on the structural change and how this change takes place on nanometer scale. C1 [Wang, Chong-Min; Saraf, Lax V.; Arey, Bruce W.; Thevuthasan, Suntharampillai; Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Xu, Wu; Zhang, Ji-Guang; Choi, Daiwon; Yang, Zhen-Guo; Xiao, Jie] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Liu, Jun] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Chongmin.Wang@pnl.gov RI Choi, Daiwon/B-6593-2008; Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU Pacific Northwest National Laboratory; Offices of Basic Energy Sciences and Biological and Environmental Research, Office of Science of U.S. Department of Energy (DOE); U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE's Office of Biological and Environmental Research at PNNL; DOE [DE-AC05-76RLO1830] FX The authors thank Dr. Jianyu Huang of Sandia National Laboratory for beneficial discussions, Michael C. Perkins of Pacific Northwest National Laboratory (PNNL) for the graphic work of Figure 2, Drs. Yuliang Cao and Libor Kovarik for critical discussions and reading the manuscript, and Norman Salmon of Hummingbird Scientific for designing and manufacturing of the biasing holder. This work was supported in part by the Laboratory Directed Research and Development (LDRD) program of Pacific Northwest National Laboratory, and Offices of Basic Energy Sciences and Biological and Environmental Research, Office of Science of U.S. Department of Energy (DOE). Jun Liu is grateful for the support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 45 TC 152 Z9 154 U1 22 U2 226 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 1874 EP 1880 DI 10.1021/nl200272n PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000004 PM 21476583 ER PT J AU Maksymovych, P Seidel, J Chu, YH Wu, PP Baddorf, AP Chen, LQ Kalinin, SV Ramesh, R AF Maksymovych, Peter Seidel, Jan Chu, Ying Hao Wu, Pingping Baddorf, Arthur P. Chen, Long-Qing Kalinin, Sergei V. Ramesh, Ramamoorthy TI Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3 SO NANO LETTERS LA English DT Article DE Bismuth ferrite; domain wall; conductivity; ferroelectric; memristive system; pinning ID PHYSICS; DEVICES; FILMS AB Topological walls separating domains of continuous polarization, magnetization, and strain in ferroic materials hold promise of novel electronic properties, that are intrinsically localized on the nanoscale and that can be patterned on demand without change of material volume or elemental composition. We have revealed that ferroelectric domain walls in multiferroic BiFeO3 are inherently dynamic electronic conductors, closely mimicking memristive behavior and contrary to the usual assumption of rigid conductivity. Applied electric field can cause a localized transition between insulating and conducting domain walls, tune domain wall conductance by over an order of magnitude, and create a quasicontinuous spectrum of metastable conductance states. Our measurements identified that subtle and microscopically reversible distortion of the polarization structure at the domain wall is at the origin of the dynamic conductivity. The latter is therefore likely to be a universal property of topological defects in ferroelectric semiconductors. C1 [Maksymovych, Peter; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Ying Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan. [Wu, Pingping; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov; jseidel@berkeley.edu RI Ying-Hao, Chu/A-4204-2008; Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Maksymovych, Petro/C-3922-2016; Baddorf, Arthur/I-1308-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Maksymovych, Petro/0000-0003-0822-8459; Baddorf, Arthur/0000-0001-7023-2382 FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; SRC-NRI-WINS program; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH1123]; Alexander von Humboldt Foundation FX Experiments were performed at the Center for Nanophase Materials Sciences, which is sponsored at the Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work at Berkeley is partially supported by the SRC-NRI-WINS program as well as by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH1123. J.S. acknowledges support from the Alexander von Humboldt Foundation. NR 41 TC 98 Z9 100 U1 8 U2 136 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 1906 EP 1912 DI 10.1021/nl104363x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000009 PM 21486089 ER PT J AU Fu, WY Qin, SY Liu, L Kim, TH Hellstrom, S Wang, WL Liang, WJ Bai, XD Li, AP Wang, EG AF Fu, Wangyang Qin, Shengyong Liu, Lei Kim, Tae-Hwan Hellstrom, Sondra Wang, Wenlong Liang, Wenjie Bai, Xuedong Li, An-Ping Wang, Enge TI Ferroelectric Gated Electrical Transport in CdS Nanotetrapods SO NANO LETTERS LA English DT Article DE Nanotetrapod; ferroelectric; field effect; nonvolatile memory; band alignment; scanning probe microscopy ID FIELD-EFFECT TRANSISTORS; CARBON-NANOTUBE; ROOM-TEMPERATURE; MEMORY; NANOCRYSTALS; DIELECTRICS; TETRAPODS; GROWTH AB Complex nanostructures such as branched semiconductor nanotetrapods are promising building blocks for next-generation nanoelectronics. Here we report on the electrical transport properties of individual CdS tetrapods in a field effect transistor (FET) configuration with a ferroelectric Ba0.7Sr0.3TiO3 film as high-k, switchable gate dielectric. A cryogenic four-probe scanning tunneling microscopy (STM) is used to probe the electrical transport through individual nanotetrapods at different temperatures. A p-type field effect is observed at room temperature, owing to the enhanced gate capacitance coupling. And the reversible remnant polarization of the ferroelectric gate dielectric leads to a well-defined nonvolatile memory effect. The field effect is shown to originate from the channel tuning in the arm/core/arm junctions of nanotetrapods. At low temperature (8.5 K), the nanotetrapod devices exhibit a ferroelectric-modulated single-electron transistor (SET) behavior. The results illustrate how the characteristics of a ferroelectric such as switchable polarization and high dielectric constant can be exploited to control the functionality of individual three-dimensional nanoarchitectures. C1 [Fu, Wangyang; Liu, Lei; Wang, Wenlong; Liang, Wenjie; Bai, Xuedong] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Qin, Shengyong; Kim, Tae-Hwan; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Enge] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Hellstrom, Sondra] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Wang, WL (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM wwl@aphy.iphy.ac.cn; apli@ornl.gov; egwang@pku.edu.cn RI Kim, Tae-Hwan/A-5636-2010; Qin, Shengyong/A-7348-2012; Li, An-Ping/B-3191-2012; Liu, Lei/E-6267-2014 OI Kim, Tae-Hwan/0000-0001-5328-0913; Li, An-Ping/0000-0003-4400-7493; FU MOST [2009DFA01290, 2007CB936203, 2007AA03Z353]; CAS of China; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX Financial support from MOST (Grants 2009DFA01290, 2007CB936203, and 2007AA03Z353) and CAS of China is acknowledged. Four-probe STM transport research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 17 Z9 18 U1 3 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 1913 EP 1918 DI 10.1021/nl104398v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000010 PM 21513340 ER PT J AU Clark, MD Kumar, SK Owen, JS Chan, EM AF Clark, Michael D. Kumar, Sanat K. Owen, Jonathan S. Chan, Emory M. TI Focusing Nanocrystal Size Distributions via Production Control SO NANO LETTERS LA English DT Article DE Nanocrystals; size focusing; theory; chemical production; monodisperse ID SILVER-HALIDE PARTICLES; GOLD NANOPARTICLES; QUANTUM DOTS; SPONTANEOUS NUCLEATION; II-VI; MONODISPERSE; GROWTH; KINETICS; INJECTION; CRYSTALS AB We present a theoretical description of how continuous monomer production affects the focusing of nanocrystal size distributions in solution. We show that sufficiently high monomer production rates can drive a decrease in the polydispersity even as the average nanocrystal size increases. This is in sharp contrast to Ostwald ripening, where polydispersity increases with mean crystal size. We interpret several experimental nanocrystal studies through our model and show how production-controlled growth promises exquisite control over the size and polydispersity of functional nano crystals. C1 [Clark, Michael D.; Kumar, Sanat K.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Owen, Jonathan S.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Chan, Emory M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kumar, SK (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. EM sk2794@columbia.edu OI Owen, Jonathan/0000-0001-5502-3267 FU National Science Foundation; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-78105CH11231] FX We acknowledge financial support from the National Science Foundation. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-78105CH11231. M.D.C. and S.K.K conducted the derivation, numerical studies, and all data fits. J.S.O. and E.M.C. provided fundamental concepts and experimental data. M.D.C., S.K.K, and J.S.O. wrote the paper. NR 36 TC 38 Z9 38 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 1976 EP 1980 DI 10.1021/nl200286j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000021 PM 21476514 ER PT J AU Fatemi, V Kamenetska, M Neaton, JB Venkataraman, L AF Fatemi, V. Kamenetska, M. Neaton, J. B. Venkataraman, L. TI Environmental Control of Single-Molecule Junction Transport SO NANO LETTERS LA English DT Article DE Metal-organic interface; single-molecule conductance; tunnel coupling; solvent effects; density functional theory; p-phenylenediamine ID ELECTRONIC-STRUCTURE; CONDUCTANCE; CONFORMATION; CIRCUITS; CONTACTS; METALS; AU AB The conductance of individual 1,4-benzenediamine (BDA)-Au molecular junctions is measured in different solvent environments using a scanning tunneling microscope based point-contact technique. Solvents are found to increase the conductance of these molecular junctions by as much as 50%. Using first principles calculations, we explain this increase by showing that a shift in the Au contact work function is induced by solvents binding to undercoordinated Au sites around the junction. Increasing the Au contact work function reduces the separation between the Au Fermi energy and the highest occupied molecular orbital of BDA in the junction, increasing the measured conductance. We demonstrate that the solvent-induced shift in conductance depends on the affinity of the solvent to Au binding sites and also on the induced dipole (relative to BDA) upon adsorption. Via this mechanism, molecular junction level alignment and transport properties can be statistically altered by solvent molecule binding to the contact surface. C1 [Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fatemi, V.; Kamenetska, M.; Venkataraman, L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Neaton, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov; lv2117@columbia.edu RI Neaton, Jeffrey/F-8578-2015; OI Neaton, Jeffrey/0000-0001-7585-6135; Venkataraman, Latha/0000-0002-6957-6089 FU NSF [CHE-07-44185]; ACS PRF; DOE, Office of Basic Energy Sciences; Columbia University; LBNL FX We thank M. L. Steigerwald, L. Kronik, I. Tamblyn, S. Y. Quek, and A. Zayak for discussions. This work was supported in part by the NSF Career Award (CHE-07-44185) and the ACS PRF. Part of this research was performed at the Molecular Foundry at LBNL, supported by the DOE, Office of Basic Energy Sciences. V.F. thanks the NSEC REU program at Columbia University and the Science Undergraduate Laboratory Internship Program at LBNL. NR 27 TC 57 Z9 57 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 1988 EP 1992 DI 10.1021/nl200324e PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000023 PM 21500833 ER PT J AU Chen, D Liu, F Wang, C Nakahara, A Russell, TP AF Chen, Dian Liu, Feng Wang, Cheng Nakahara, Atsuhiro Russell, Thomas P. TI Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion SO NANO LETTERS LA English DT Article DE Photovoltaic devices; morphology; bilayer; diffusion; bulk heterojunction; spinodal decomposition ID POLYMER SOLAR-CELLS; INTERNAL QUANTUM EFFICIENCY; X-RAY REFLECTIVITY; THIN-FILMS; INTERPENETRATING NETWORK; EXCITON DIFFUSION; SELF-ORGANIZATION; PHASE-SEPARATION; MORPHOLOGY; PERFORMANCE AB To better understand the physics of the photoactive layer in the organic photovoltaic devices, it is necessary to gain a quantitative understanding of the morphology and the manner in which it develops. A key element in the kinetics associated with the structure development is the interdiffusion of the components. To that end we used P3HT/PCBM bilayers as a model to investigate the interdiffusion of the components and its role in the development of the morphology. A detailed description of the diffusion behavior and the morphology developed from a layer of P3HT in contact with a layer of PCBM during thermal annealing is given. Amorphous P3HT and PCBM are shown to be highly miscible and PCBM can penetrate into the P3HT layer through the P3HT amorphous region and form the bulk heterojunction structure within a few seconds of annealing at 150 C. The results indicated that one phase is an ordered P3HT domain and the other phase is the mixture of amorphous P3HT and PCBM which is not consistent with a phase separation of the components by a spinodal decomposition mechanism. C1 [Chen, Dian; Liu, Feng; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Nakahara, Atsuhiro] Kuraray Co Ltd, Kurashiki Res Ctr, Okayama 7100801, Japan. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM russell@mail.pse.umass.edu RI Wang, Cheng /E-7399-2012; Chen, Dian/F-4037-2012; Chen, Dian/F-6131-2012; Wang, Cheng/A-9815-2014; Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU Department of Energy [DOE DE-PS02-08ER15944]; NSF [DMR-0820506]; University of Santa Barbara through the Materials Research Facilities Network [DMR05-30415]; Konarka; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE, Office of Science, and Office of Basic Energy Sciences FX This work was supported by the Department of Energy supported Energy Frontier Research Center at the University of Massachusetts (DOE DE-PS02-08ER15944), the NSF-supported Materials Research Science and Engineering Center at the University of Massachusetts (DMR-0820506), the University of Santa Barbara (DMR05-30415) through the Materials Research Facilities Network, and Konarka. We also thank T. Mates (UCSB) for the DSIMS measurements. A portion of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of this research were carried out at the Advanced Light Source, Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. We thank Yoshiyuki Tashiro and Hisako Suzuki (Foundation for Promotion of Material Science and Technology of Japan) for the BF-STEM and TEM-EELS measurements. We also thank Yu Gu, Xiao Bo Shen, and Alexander Hexemer for assisting in the experiments. NR 47 TC 191 Z9 192 U1 2 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 2071 EP 2078 DI 10.1021/nl200552r PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000038 PM 21476579 ER PT J AU Shelton, DJ Brener, I Ginn, JC Sinclair, MB Peters, DW Coffey, KR Boreman, GD AF Shelton, D. J. Brener, I. Ginn, J. C. Sinclair, M. B. Peters, D. W. Coffey, K. R. Boreman, G. D. TI Strong Coupling between Nanoscale Metamaterials and Phonons SO NANO LETTERS LA English DT Article DE Metamaterials; phonon vibrational modes; normal mode splitting; split ring resonators; near fields ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; INFRARED-ABSORPTION; TERAHERTZ METAMATERIALS; SURFACE-PLASMONS; SPECTROSCOPY; MONOLAYERS; FREQUENCY; ANALOG AB We use split ring resonators (SRRs) at optical frequencies to study strong coupling between planar metamaterials and phonon vibrations in nanometer-scale dielectric layers. A series of SRR metamaterials were fabricated on a semiconductor wafer with a thin intervening SiO2 dielectric layer. The dimensions of the SRRs were varied to tune the fundamental metamaterial resonance across the infrared (IR) active phonon band of SiO2 at 130 meV (31 THz). Strong anticrossing of these resonances was observed, indicative of strong coupling between metamaterial and phonon excitations. This coupling is very general and can occur with any electrically polarizable resonance including phonon vibrations in other thin film materials and semiconductor band-to-band transitions in the near to far IR. These effects may be exploited to reduce loss and to create unique spectral features that are not possible with metamaterials alone. C1 [Shelton, D. J.; Boreman, G. D.] Univ Cent Florida, CREOL, Orlando, FL 32816 USA. [Sinclair, M. B.; Peters, D. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Brener, I.; Ginn, J. C.] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Coffey, K. R.] Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. [Shelton, D. J.; Ginn, J. C.] Plasmonics Inc, Orlando, FL 32826 USA. RP Shelton, DJ (reprint author), Univ Cent Florida, CREOL, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM david.shelton@plasmonics-inc.com RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Energy Frontier Research Center for Solid State Lighting Science; DOE/NNSA [DE-AC52-06NA25396] FX This research was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. The simulation portion was funded by the Energy Frontier Research Center for Solid State Lighting Science. We also acknowledge funding by DARPA/MTO's Casimir Effect Enhancement program under DOE/NNSA Contract DE-AC52-06NA25396. NR 29 TC 33 Z9 33 U1 7 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2011 VL 11 IS 5 BP 2104 EP 2108 DI 10.1021/nl200689z PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 761CN UT WOS:000290373000044 PM 21462937 ER PT J AU Yilmaz, P Kottmann, R Field, D Knight, R Cole, JR Amaral-Zettler, L Gilbert, JA Karsch-Mizrachi, I Johnston, A Cochrane, G Vaughan, R Hunter, C Park, J Morrison, N Rocca-Serra, P Sterk, P Arumugam, M Bailey, M Baumgartner, L Birren, BW Blaser, MJ Bonazzi, V Booth, T Bork, P Bushman, FD Buttigieg, PL Chain, PSG Charlson, E Costello, EK Huot-Creasy, H Dawyndt, P DeSantis, T Fierer, N Fuhrman, JA Gallery, RE Gevers, D Gibbs, RA Gil, IS Gonzalez, A Gordon, JI Guralnick, R Hankeln, W Highlander, S Hugenholtz, P Jansson, J Kau, AL Kelley, ST Kennedy, J Knights, D Koren, O Kuczynski, J Kyrpides, N Larsen, R Lauber, CL Legg, T Ley, RE Lozupone, CA Ludwig, W Lyons, D Maguire, E Methe, BA Meyer, F Muegge, B Nakielny, S Nelson, KE Nemergut, D Neufeld, JD Newbold, LK Oliver, AE Pace, NR Palanisamy, G Peplies, J Petrosino, J Proctor, L Pruesse, E Quast, C Raes, J Ratnasingham, S Ravel, J Relman, DA Assunta-Sansone, S Schloss, PD Schriml, L Sinha, R Smith, MI Sodergren, E Spor, A Stombaugh, J Tiedje, JM Ward, DV Weinstock, GM Wendel, D White, O Whiteley, A Wilke, A Wortman, JR Yatsunenko, T Glockner, FO AF Yilmaz, Pelin Kottmann, Renzo Field, Dawn Knight, Rob Cole, James R. Amaral-Zettler, Linda Gilbert, Jack A. Karsch-Mizrachi, Ilene Johnston, Anjanette Cochrane, Guy Vaughan, Robert Hunter, Christopher Park, Joonhong Morrison, Norman Rocca-Serra, Philippe Sterk, Peter Arumugam, Manimozhiyan Bailey, Mark Baumgartner, Laura Birren, Bruce W. Blaser, Martin J. Bonazzi, Vivien Booth, Tim Bork, Peer Bushman, Frederic D. Buttigieg, Pier Luigi Chain, Patrick S. G. Charlson, Emily Costello, Elizabeth K. Huot-Creasy, Heather Dawyndt, Peter DeSantis, Todd Fierer, Noah Fuhrman, Jed A. Gallery, Rachel E. Gevers, Dirk Gibbs, Richard A. Gil, Inigo San Gonzalez, Antonio Gordon, Jeffrey I. Guralnick, Robert Hankeln, Wolfgang Highlander, Sarah Hugenholtz, Philip Jansson, Janet Kau, Andrew L. Kelley, Scott T. Kennedy, Jerry Knights, Dan Koren, Omry Kuczynski, Justin Kyrpides, Nikos Larsen, Robert Lauber, Christian L. Legg, Teresa Ley, Ruth E. Lozupone, Catherine A. Ludwig, Wolfgang Lyons, Donna Maguire, Eamonn Methe, Barbara A. Meyer, Folker Muegge, Brian Nakielny, Sara Nelson, Karen E. Nemergut, Diana Neufeld, Josh D. Newbold, Lindsay K. Oliver, Anna E. Pace, Norman R. Palanisamy, Giriprakash Peplies, Joerg Petrosino, Joseph Proctor, Lita Pruesse, Elmar Quast, Christian Raes, Jeroen Ratnasingham, Sujeevan Ravel, Jacques Relman, David A. Assunta-Sansone, Susanna Schloss, Patrick D. Schriml, Lynn Sinha, Rohini Smith, Michelle I. Sodergren, Erica Spor, Ayme Stombaugh, Jesse Tiedje, James M. Ward, Doyle V. Weinstock, George M. Wendel, Doug White, Owen Whiteley, Andrew Wilke, Andreas Wortman, Jennifer R. Yatsunenko, Tanya Gloeckner, Frank Oliver TI Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications SO NATURE BIOTECHNOLOGY LA English DT Article ID RIBOSOMAL-RNA SEQUENCES; DIVERSITY; BACTERIOPLANKTON; MICROORGANISMS; PICOPLANKTON; COMMUNITY; PLANKTON; REGIONS; PROJECT AB Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences-the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere. C1 [Yilmaz, Pelin; Kottmann, Renzo; Buttigieg, Pier Luigi; Hankeln, Wolfgang; Pruesse, Elmar; Quast, Christian; Gloeckner, Frank Oliver] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Grp, Bremen, Germany. [Yilmaz, Pelin; Buttigieg, Pier Luigi; Hankeln, Wolfgang; Pruesse, Elmar; Gloeckner, Frank Oliver] Jacobs Univ Bremen gGmbH, Bremen, Germany. [Field, Dawn; Morrison, Norman; Sterk, Peter; Bailey, Mark; Booth, Tim; Newbold, Lindsay K.; Oliver, Anna E.; Whiteley, Andrew] Wallington CEH, Environm Bioinformat Ctr, Nat Environm Res Council, Oxford, England. [Knight, Rob; Costello, Elizabeth K.; Kennedy, Jerry; Larsen, Robert; Lozupone, Catherine A.; Nakielny, Sara; Stombaugh, Jesse; Wendel, Doug] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA. [Cole, James R.] Michigan State Univ, Ribosomal Database Project, E Lansing, MI 48824 USA. [Cole, James R.; Chain, Patrick S. G.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Amaral-Zettler, Linda] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Plymouth Marine Lab, Plymouth, Devon, England. [Gilbert, Jack A.; Meyer, Folker; Wilke, Andreas] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Karsch-Mizrachi, Ilene; Johnston, Anjanette] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Cochrane, Guy; Vaughan, Robert; Hunter, Christopher] European Bioinformat Inst, European Mol Biol Lab EMBL Outstn, Cambridge, England. [Park, Joonhong] Yonsei Univ, Sch Civil & Environm Engn, WCU Ctr Green Metagen, Seoul 120749, South Korea. [Morrison, Norman] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. [Rocca-Serra, Philippe; Maguire, Eamonn; Assunta-Sansone, Susanna] Univ Oxford, Oxford e Res Ctr, Oxford, England. [Arumugam, Manimozhiyan; Bork, Peer] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany. [Baumgartner, Laura; Pace, Norman R.] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA. [Birren, Bruce W.; Gevers, Dirk; Kuczynski, Justin; Ward, Doyle V.] MIT, Broad Inst, Cambridge, MA 02139 USA. [Birren, Bruce W.; Gevers, Dirk; Kuczynski, Justin; Ward, Doyle V.] Harvard Univ, Cambridge, MA 02138 USA. [Blaser, Martin J.] NYU, Dept Med, Langone Med Ctr, New York, NY 10016 USA. [Blaser, Martin J.] NYU, Dept Microbiol, Langone Med Ctr, New York, NY 10016 USA. [Bonazzi, Vivien; Proctor, Lita] NHGRI, NIH, Bethesda, MD 20892 USA. [Bushman, Frederic D.; Charlson, Emily; Sinha, Rohini] Univ Penn, Sch Med, Dept Microbiol, Philadelphia, PA 19104 USA. [Chain, Patrick S. G.; Jansson, Janet; Kyrpides, Nikos] DOE Joint Genome Inst, Walnut Creek, CA USA. [Chain, Patrick S. G.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Huot-Creasy, Heather; Ravel, Jacques; Schriml, Lynn; White, Owen; Wortman, Jennifer R.] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Dawyndt, Peter] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium. [DeSantis, Todd] Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA USA. [Fierer, Noah; Guralnick, Robert; Legg, Teresa] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Fuhrman, Jed A.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Gallery, Rachel E.] Natl Ecol Observ Network, Boulder, CO USA. [Gibbs, Richard A.; Highlander, Sarah; Petrosino, Joseph] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Gibbs, Richard A.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Gil, Inigo San] Univ New Mexico, Dept Biol, LTER Network Off, Albuquerque, NM 87131 USA. [Gonzalez, Antonio; Knights, Dan] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Gordon, Jeffrey I.; Kau, Andrew L.; Muegge, Brian; Smith, Michelle I.; Yatsunenko, Tanya] Washington Univ, Sch Med, Ctr Genome Sci & Syst Biol, St Louis, MO USA. [Guralnick, Robert] Univ Colorado, Museum Nat Hist, Boulder, CO 80309 USA. [Highlander, Sarah; Petrosino, Joseph] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, Brisbane, Qld, Australia. [Jansson, Janet] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kelley, Scott T.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Koren, Omry; Ley, Ruth E.; Spor, Ayme] Cornell Univ, Dept Microbiol, Ithaca, NY USA. [Lauber, Christian L.; Lyons, Donna] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Ludwig, Wolfgang] Tech Univ Munich, Lehrstuhl Mikrobiol, D-8050 Freising Weihenstephan, Germany. [Methe, Barbara A.; Nelson, Karen E.] J Craig Venter Inst, Rockville, MD USA. [Nemergut, Diana] Univ Colorado, Dept Environm Sci, Boulder, CO 80309 USA. [Neufeld, Josh D.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada. [Palanisamy, Giriprakash] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Peplies, Joerg] Ribocon GmbH, Bremen, Germany. [Raes, Jeroen] Vrije Univ Brussel VIB, B-1050 Brussels, Belgium. [Ratnasingham, Sujeevan] Univ Guelph, Biodivers Inst Ontario, Canadian Ctr DNA Barcoding, Guelph, ON N1G 2W1, Canada. [Relman, David A.] Stanford Univ, Dept Microbiol, Sch Med, Stanford, CA 94305 USA. [Relman, David A.] Stanford Univ, Dept Immunol, Sch Med, Stanford, CA 94305 USA. [Relman, David A.] Stanford Univ, Dept Med, Sch Med, Stanford, CA 94305 USA. [Relman, David A.] Vet Affairs Palo Alto Hlth Care Syst, Palo Alto, CA USA. [Schloss, Patrick D.] Dept Microbiol & Immunol, Ann Arbor, MI USA. [Sodergren, Erica; Weinstock, George M.] Washington Univ, Sch Med, Dept Genet, Genome Ctr, St Louis, MO 63110 USA. RP Glockner, FO (reprint author), Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Grp, Bremen, Germany. EM fog@mpi-bremen.de RI Hugenholtz, Philip/G-9608-2011; Whiteley, Andrew/A-3395-2012; Spor, Ayme/A-6271-2012; Jansson, Janet/F-9951-2012; Arumugam, Manimozhiyan/E-1211-2011; Park, Joonhong/G-8064-2012; bailey, mark/I-7149-2012; Dawyndt, Peter/A-1566-2013; chain, patrick/B-9777-2013; Weinstock, George/C-6314-2013; Fuhrman, Jed/C-6461-2013; Bork, Peer/F-1813-2013; Ratnasingham, Sujeevan/G-9103-2014; Ley, Ruth/M-8542-2014; Park, Joonhong/A-3520-2016; Knight, Rob/D-1299-2010; Kyrpides, Nikos/A-6305-2014; OI Spor, Ayme/0000-0002-4707-9559; Arumugam, Manimozhiyan/0000-0002-0886-9101; bailey, mark/0000-0002-0147-7316; Weinstock, George/0000-0002-2997-4592; Bork, Peer/0000-0002-2627-833X; Ley, Ruth/0000-0002-9087-1672; Kyrpides, Nikos/0000-0002-6131-0462; Sansone, Susanna-Assunta/0000-0001-5306-5690; Meyer, Folker/0000-0003-1112-2284; Wortman, Jennifer/0000-0002-8713-1227; Ravel, Jacques/0000-0002-0851-2233; Yilmaz, Pelin/0000-0003-4724-323X; Hunter, Christopher/0000-0002-1335-0881; Sterk, Peter/0000-0003-1668-7778; Maguire, Eamonn/0000-0002-7277-7834; Cochrane, Guy/0000-0001-7954-7057; Schriml, Lynn/0000-0001-8910-9851; Chain, Patrick/0000-0003-3949-3634; Bushman, Frederic/0000-0003-4740-4056; Buttigieg, Pier Luigi/0000-0002-4366-3088; Schloss, Patrick/0000-0002-6935-4275; Newbold, Lindsay/0000-0001-8895-1406; Dawyndt, Peter/0000-0002-1623-9070; Koren, Omry/0000-0002-7738-1337 FU Howard Hughes Medical Institute; NHGRI NIH HHS [R01 HG005975, R01 HG005975-02, U54 HG003273]; NHLBI NIH HHS [U01 HL098957]; NIDDK NIH HHS [K01 DK090285, UH2 DK083981] NR 30 TC 174 Z9 177 U1 4 U2 50 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAY PY 2011 VL 29 IS 5 BP 415 EP 420 DI 10.1038/nbt.1823 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 760CX UT WOS:000290301700021 PM 21552244 ER PT J AU Jore, MM Lundgren, M van Duijn, E Bultema, JB Westra, ER Waghmare, SP Wiedenheft, B Pul, U Wurm, R Wagner, R Beijer, MR Barendregt, A Zhou, KH Snijders, APL Dickman, MJ Doudna, JA Boekema, EJ Heck, AJR van der Oost, J Brouns, SJJ AF Jore, Matthijs M. Lundgren, Magnus van Duijn, Esther Bultema, Jelle B. Westra, Edze R. Waghmare, Sakharam P. Wiedenheft, Blake Pul, Uemit Wurm, Reinhild Wagner, Rolf Beijer, Marieke R. Barendregt, Arjan Zhou, Kaihong Snijders, Ambrosius P. L. Dickman, Mark J. Doudna, Jennifer A. Boekema, Egbert J. Heck, Albert J. R. van der Oost, John Brouns, Stan J. J. TI Structural basis for CRISPR RNA-guided DNA recognition by Cascade SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID OF-FLIGHT INSTRUMENT; MASS-SPECTROMETRY; R-LOOPS; STREPTOCOCCUS-THERMOPHILUS; ARCHAEOGLOBUS-FULGIDUS; IMMUNE-SYSTEM; PROTEIN; DEFENSE; PROKARYOTES; BACTERIA AB The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA(1)B(2)C(6)D(1)E(1)) and a 61-nucleotide CRISPR RNA (crRNA) with 5'-hydroxyl and 2', 3'-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA. C1 [Jore, Matthijs M.; Lundgren, Magnus; Westra, Edze R.; Beijer, Marieke R.; van der Oost, John; Brouns, Stan J. J.] Wageningen Univ, Dept Agrotechnol & Food Sci, Microbiol Lab, Wageningen, Netherlands. [van Duijn, Esther; Barendregt, Arjan; Heck, Albert J. R.] Univ Utrecht, Biomol Mass Spectrometry & Prote Grp, Bijvoet Ctr Biomol Res, Utrecht, Netherlands. [van Duijn, Esther; Barendregt, Arjan; Heck, Albert J. R.] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Utrecht, Netherlands. [van Duijn, Esther; Barendregt, Arjan; Heck, Albert J. R.] Netherlands Prote Ctr, Utrecht, Netherlands. [Bultema, Jelle B.; Boekema, Egbert J.] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Dept Biophys Chem, Groningen, Netherlands. [Waghmare, Sakharam P.; Snijders, Ambrosius P. L.; Dickman, Mark J.] Univ Sheffield, Dept Chem & Proc Engn, ChELSI Inst, Sheffield, S Yorkshire, England. [Wiedenheft, Blake; Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wiedenheft, Blake; Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wiedenheft, Blake; Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Pul, Uemit; Wurm, Reinhild; Wagner, Rolf] Univ Dusseldorf, Dusseldorf, Germany. RP van der Oost, J (reprint author), Wageningen Univ, Dept Agrotechnol & Food Sci, Microbiol Lab, Wageningen, Netherlands. EM john.vanderoost@wur.nl RI Heck, Albert/D-7098-2011; OI Heck, Albert/0000-0002-2405-4404; Snijders, Bram/0000-0002-5416-8592 FU The Netherlands Organisation for Scientific Research (NWO) [865.05.001, 863.08.014, 700.58.402]; NWO TOP; UK Engineering and Physical Sciences Research Council and Biotechnology and Biological Sciences Research Council; Wenner-Gren Foundation; Research Councils UK; Life Sciences Research Foundation of HHMI; Deutsche Forschungsgemeinschaft [PU 435/1-1]; The Netherlands Proteomics Center FX We thank M.H. Lai for experimental contributions, and E. Schaible, P. Zwart and M. Bokhove for technical support and for assistance with post processing of SAXS data. This work was financially supported by The Netherlands Organisation for Scientific Research (NWO) Vici grant to J.v.d.O (865.05.001), Veni grants to S.J.J.B. (863.08.014) and E.v.D. (700.58.402), NWO TOP grant to E.J.B., and UK Engineering and Physical Sciences Research Council and Biotechnology and Biological Sciences Research Council grants to M.J.D. M.L. was financially supported by the Wenner-Gren Foundation, E.R.W. by Spinoza resources awarded to W.M. de Vos, A.P.L.S. by the Research Councils UK, B.W. by the Life Sciences Research Foundation of HHMI and U.P. by the Deutsche Forschungsgemeinschaft PU 435/1-1. We thank The Netherlands Proteomics Center for financial support. NR 52 TC 218 Z9 231 U1 12 U2 108 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2011 VL 18 IS 5 BP 529 EP U141 DI 10.1038/nsmb.2019 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 758YS UT WOS:000290205200003 PM 21460843 ER PT J AU Goldhaber, AS Goldhaber, M AF Goldhaber, Alfred Scharff Goldhaber, Maurice TI The neutrino's elusive helicity reversal SO PHYSICS TODAY LA English DT Article C1 [Goldhaber, Alfred Scharff] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Goldhaber, Maurice] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Goldhaber, AS (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. NR 10 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2011 VL 64 IS 5 BP 40 EP 43 PG 4 WC Physics, Multidisciplinary SC Physics GA 760AA UT WOS:000290291800014 ER PT J AU Steinke, L Spreckels, J Flamm, M Celina, M AF Steinke, L. Spreckels, J. Flamm, M. Celina, M. TI Model for heterogeneous aging of rubber products SO PLASTICS RUBBER AND COMPOSITES LA English DT Article DE Elastomer products; Aging; Diffusion limited oxidation; Stress relaxation; Oxygen uptake; Modulus profiling ID OXIDATION PROFILES; DIFFUSION AB Rubbers and elastomers will change their material properties due to environmental influences such as temperature, oxygen, radiation and similar conditions. The reason for this material change is the modification of the polymer network. In the case of sulphur cured natural rubber it can result in hardening of the material and pronounced surface hardening for thick walled products. This is known as the diffusion limited oxidation effect when oxidation is the key environmental influence. This paper describes a model which is designed to calculate the change in network density caused by thermo-oxidative aging and the required measurements for the parameterisation. The model is validated by simulating the intermediate stress relaxation experiments and showed good correlation with the experimental data. C1 [Steinke, L.; Spreckels, J.; Flamm, M.] Tech Univ Hamburg, D-21073 Hamburg, Germany. [Celina, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Steinke, L (reprint author), Tech Univ Hamburg, D-21073 Hamburg, Germany. EM lars_steinke@web.de NR 13 TC 3 Z9 7 U1 1 U2 17 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1465-8011 J9 PLAST RUBBER COMPOS JI Plast. Rubber Compos. PD MAY PY 2011 VL 40 IS 4 BP 175 EP 179 DI 10.1179/1743289810Y.0000000042 PG 5 WC Materials Science, Composites; Polymer Science SC Materials Science; Polymer Science GA 761EF UT WOS:000290377600005 ER PT J AU Reese, MO Gevorgyan, SA Jorgensen, M Bundgaard, E Kurtz, SR Ginley, DS Olson, DC Lloyd, MT Moryillo, P Katz, EA Elschner, A Haillant, O Currier, TR Shrotriya, V Hermenau, M Riede, M Kirov, KR Trimmel, G Rath, T Inganas, O Zhang, FL Andersson, M Tvingstedt, K Lira-Cantu, M Laird, D McGuiness, C Gowrisanker, S Pannone, M Xiao, M Hauch, J Steim, R DeLongchamp, DM Rosch, R Hoppe, H Espinosa, N Urbina, A Yaman-Uzunoglu, G Bonekamp, JB van Breemen, AJJM Girotto, C Voroshazi, E Krebs, FC AF Reese, Matthew O. Gevorgyan, Suren A. Jorgensen, Mikkel Bundgaard, Eva Kurtz, Sarah R. Ginley, David S. Olson, Dana C. Lloyd, Matthew T. Moryillo, Pasquale Katz, Eugene A. Elschner, Andreas Haillant, Olivier Currier, Travis R. Shrotriya, Vishal Hermenau, Martin Riede, Moritz Kirov, Kiril R. Trimmel, Gregor Rath, Thomas Inganas, Olle Zhang, Fengling Andersson, Mattias Tvingstedt, Kristofer Lira-Cantu, Monica Laird, Darin McGuiness, Christine Gowrisanker, Srinivas (Jimmy) Pannone, Michael Xiao, Min Hauch, Jens Steim, Roland DeLongchamp, Dean M. Roesch, Roland Hoppe, Harald Espinosa, Nieves Urbina, Antonio Yaman-Uzunoglu, Gulsah Bonekamp, Joerg-Bernd van Breemen, Albert J. J. M. Girotto, Claudio Voroshazi, Eszter Krebs, Frederik C. TI Consensus stability testing protocols for organic photovoltaic materials and devices SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Stability; Lifetime; Testing; Protocol; Reporting ID ACCELERATED LIFETIME MEASUREMENTS; POLYMER SOLAR-CELLS; AUTOMOTIVE COATINGS; MODULES; DEGRADATION AB Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The procedures include directions for shelf life testing, outdoor testing, laboratory weathering testing and thermal cycling testing, as well as guidelines for reporting data. These procedures are not meant to be qualification tests, but rather generally agreed test conditions and practices to allow ready comparison between laboratories and to help improving the reliability of reported values. Failure mechanisms and detailed degradation mechanisms are not covered in this report. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gevorgyan, Suren A.; Jorgensen, Mikkel; Bundgaard, Eva; Krebs, Frederik C.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Reese, Matthew O.; Kurtz, Sarah R.; Ginley, David S.; Olson, Dana C.; Lloyd, Matthew T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Moryillo, Pasquale] CR Portici, ENEA, I-80055 Portici, Italy. [Katz, Eugene A.] Ben Gurion Univ Negev, Dept Solar Energy & Environm Phys, J Blaustein Inst Desert Res, IL-84105 Beer Sheva, Israel. [Elschner, Andreas] Heraeus Clevios GmbH, D-51368 Leverkusen, Germany. [Haillant, Olivier] Atlas Mat Testing Technol GmbH, D-63589 Linsengericht Altenhassl, Germany. [Currier, Travis R.; Shrotriya, Vishal] Solarmer Energy Inc, El Monte, CA 90660 USA. [Hermenau, Martin; Riede, Moritz] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany. [Kirov, Kiril R.] Eight 19 Ltd, Unit 9A, Cambridge CB4 0FE, England. [Trimmel, Gregor; Rath, Thomas] Graz Univ Technol, Inst Chem & Technol Mat, Christian Doppler Lab Nanocomposite Solar Cells, A-8010 Graz, Austria. [Inganas, Olle; Zhang, Fengling; Andersson, Mattias; Tvingstedt, Kristofer] Linkoping Univ, IFM, Linkoping, Sweden. [Lira-Cantu, Monica] Ctr Invest Nanociencia & Nanotecnol, E-08193 Bellaterra, Barcelona, Spain. [Laird, Darin; McGuiness, Christine; Gowrisanker, Srinivas (Jimmy); Pannone, Michael; Xiao, Min] Plextronics, Pittsburgh, PA 15238 USA. [Hauch, Jens; Steim, Roland] Konarka Technol GmbH, D-90443 Nurnberg, Germany. [DeLongchamp, Dean M.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Roesch, Roland; Hoppe, Harald] Ilmenau Univ Technol, Inst Phys, D-98693 Ilmenau, Germany. [Espinosa, Nieves; Urbina, Antonio] Univ Politecn Cartagena, Dept Elect, Cartagena 30202, Spain. [Yaman-Uzunoglu, Gulsah] Natl Metrol Inst, Sci & Technol Res Council Turkey, TR-41470 Gebze, Kocaeli, Turkey. [Bonekamp, Joerg-Bernd] Soluxx GmbH, D-50939 Cologne, Germany. [van Breemen, Albert J. J. M.] Holst Ctr TNO, NL-5656 AE Eindhoven, Netherlands. [Girotto, Claudio; Voroshazi, Eszter] IMEC Vzw Organ Photovolta, B-3001 Louvain, Belgium. [Girotto, Claudio; Voroshazi, Eszter] Katholieke Univ Leuven, ESAT, B-3001 Louvain, Belgium. RP Krebs, FC (reprint author), Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM frkr@risoe.dtu.dk RI Sanders, Susan/G-1957-2011; Girotto, Claudio/A-2097-2009; Hoppe, Harald/P-5293-2014; Andersson, Lars Mattias/N-9474-2015; Rath, Thomas/J-1885-2015; Urbina, Antonio/G-1690-2016; Zhang, Fengling/H-3900-2014; OI Lira-Cantu, Monica/0000-0002-3393-7436; Andersson, Lars Mattias/0000-0003-4322-7881; Rath, Thomas/0000-0002-4837-7726; Urbina, Antonio/0000-0002-3961-1007; Zhang, Fengling/0000-0002-1717-6307; Gevorgyan, Suren/0000-0001-9906-5485; Inganas, Olle/0000-0002-6243-1450; Trimmel, Gregor/0000-0001-8922-4163; Tvingstedt, Kristofer/0000-0003-0516-9326; Jorgensen, Mikkel/0000-0002-7729-1497; Krebs, Frederik C/0000-0003-1148-4314; Bundgaard, Eva/0000-0003-3244-5779 FU Danish Strategic Research Council [DSF 2104-07-0022]; EUDP [64009-0050]; European Community [FP7/2007-2013, 215150]; German Federal Ministry of Education and Research [BMBF 13N9872]; U.S. Department of Energy [DE-AC366-08GO28308]; National Renewable Energy Laboratory; Hoist Centre; Konarka Technologies, Inc.; Plextronics; Riso DTU; Solarmer Energy, Inc.; ESF (European Science Foundation); NREL (National Renewable Energy Laboratory) FX This work was supported by the Danish Strategic Research Council (DSF 2104-07-0022), EUDP (j. nr. 64009-0050), European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 215150 of the OPERA project partially supported by the German Federal Ministry of Education and Research (BMBF 13N9872) and the U.S. Department of Energy under Contract No. DE-AC366-08GO28308 with the National Renewable Energy Laboratory. The following sponsors are acknowledged: Hoist Centre; Konarka Technologies, Inc.; Plextronics; Riso DTU; Solarmer Energy, Inc.; ESF (European Science Foundation); NREL (National Renewable Energy Laboratory). NR 29 TC 347 Z9 347 U1 18 U2 167 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2011 VL 95 IS 5 SI SI BP 1253 EP 1267 DI 10.1016/j.solmat.2011.01.036 PG 15 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 760XY UT WOS:000290359200003 ER PT J AU Lloyd, MT Peters, CH Garcia, A Kauvar, IV Berry, JJ Reese, MO McGehee, MD Ginley, DS Olson, DC AF Lloyd, Matthew T. Peters, Craig H. Garcia, Andres Kauvar, Isaac V. Berry, Joseph J. Reese, Matthew O. McGehee, Michael D. Ginley, David S. Olson, Dana C. TI Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Organic photovoltaics; Inverted devices; Degradation; PEDOT:PSS; Hole-transport layer ID LIGHT-EMITTING-DIODES; POLYMER SOLAR-CELLS; DEGRADATION; OXIDE; SPECTROSCOPY; PATTERNS; KINETICS; SILVER; OXYGEN AB The inverted organic photovoltaic (OPV) device architecture represents an important advancement due to the relative environmental stability of the electron transport layer (ETL) and hole-collecting contact. We investigated the initial and long-term behavior of inverted devices to identify changes taking place at the Ag hole-collecting contact. We show that efficient hole collection can be obtained after modifying the Ag contact by thermal annealing, long-term exposure to ambient atmosphere, or employing a high work function organic hole-transport layer (HTL). We find that whether or not the device employs an organic HTL, degradation of the photocurrent initially follows a simple exponential decay. After prolonged illumination (> 500 h), devices with an organic HTL fail catastrophically due to a precipitous drop in photocurrent. Based on evidence for pinhole-induced degradation observed in photocurrent maps, we propose a nucleation and island growth mechanism and a model for the photocurrent behavior employing a modified Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Devices that do not contain an HTL appear to degrade by a mechanism other than pinhole ingress resulting in a more uniform degradation of the photocurrent across the active area. Published by Elsevier B.V. C1 [Lloyd, Matthew T.; Garcia, Andres; Kauvar, Isaac V.; Berry, Joseph J.; Reese, Matthew O.; Ginley, David S.; Olson, Dana C.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Peters, Craig H.; Kauvar, Isaac V.; McGehee, Michael D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Lloyd, MT (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM matthew.lloyd@nrel.gov FU US Department of Energy [DOE-AC36-08G028308]; National Renewable Energy Laboratory DOE through the National Center for Photovoltaics FX This work was funded through the US Department of Energy under Contract no. DOE-AC36-08G028308 with the National Renewable Energy Laboratory DOE SETP program through the National Center for Photovoltaics. The authors would like to thank Nikos Kopidakis, Andrew Ferguson, and Sean Shaheen for fruitful discussion and Arrelaine Dameron for suggesting the JMAK equation. NR 25 TC 75 Z9 75 U1 2 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2011 VL 95 IS 5 SI SI BP 1382 EP 1388 DI 10.1016/j.solmat.2010.12.036 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 760XY UT WOS:000290359200019 ER PT J AU Gevorgyan, SA Medford, AJ Bundgaard, E Sapkota, SB Schleiermacher, HF Zimmermann, B Wurfel, U Chafiq, A Lira-Cantu, M Swonke, T Wagner, M Brabec, CJ Haillant, OO Voroshazi, E Aernouts, T Steim, R Hauch, JA Elschner, A Pannone, M Xiao, M Langzettel, A Laird, D Lloyd, MT Rath, T Maier, E Trimmel, G Hermenau, M Menke, T Leo, K Rosch, R Seeland, M Hoppe, H Nagle, TJ Burke, KB Fell, CJ Vak, D Singh, TB Watkins, SE Galagan, Y Manor, A Katz, EA Kim, T Kim, K Sommeling, PM Verhees, WJH Veenstra, SC Riede, M Christoforo, MG Currier, T Shrotriya, V Schwartz, G Krebs, FC AF Gevorgyan, Suren A. Medford, Andrew J. Bundgaard, Eva Sapkota, Subarna B. Schleiermacher, Hans-Frieder Zimmermann, Birger Wuerfel, Uli Chafiq, Amine Lira-Cantu, Monica Swonke, Thomas Wagner, Michael Brabec, Christoph J. Haillant, Olivier O. Voroshazi, Eszter Aernouts, Tom Steim, Roland Hauch, Jens A. Elschner, Andreas Pannone, Michael Xiao, Min Langzettel, Anthony Laird, Darin Lloyd, Matthew T. Rath, Thomas Maier, Eugen Trimmel, Gregor Hermenau, Martin Menke, Torben Leo, Karl Roesch, Roland Seeland, Marco Hoppe, Harald Nagle, Timothy J. Burke, Kerry B. Fell, Christopher J. Vak, Doojin Singh, Th. Birendra Watkins, Scott E. Galagan, Yulia Manor, Assaf Katz, Eugene A. Kim, Taehee Kim, Kyungkon Sommeling, Paul M. Verhees, Wiljan J. H. Veenstra, Sjoerd C. Riede, Moritz Christoforo, M. Greyson Currier, Travis Shrotriya, Vishal Schwartz, Gregor Krebs, Frederik C. TI An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Round robin; Inter-laboratory study; Polymer solar cells; Flexible modules; Outdoor testing; R2R manufactured OPV ID DEGRADATION; CELLS; WATER AB A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Riso DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Riso DTU) and two varieties of ZnO (nanoparticulate, thin film) were employed as electron transport layers. The devices were all tested at Riso DTU and the functional devices were subjected to an inter-laboratory study involving the performance and the stability of modules over time in the dark, under light soaking and outdoor conditions. 24 laboratories from 10 countries and across four different continents were involved in the studies. The reported results allowed for analysis of the variability between different groups in performing lifetime studies as well as performing a comparison of different testing procedures. These studies constitute the first steps toward establishing standard procedures for an OPV lifetime characterization. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gevorgyan, Suren A.; Medford, Andrew J.; Bundgaard, Eva; Krebs, Frederik C.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Sapkota, Subarna B.; Schleiermacher, Hans-Frieder; Zimmermann, Birger; Wuerfel, Uli] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany. [Chafiq, Amine; Lira-Cantu, Monica] CSIC, Ctr Invest Nanociencia & Nanotecnol CIN2, Lab Nanostructured Mat Photovolta Energy, ETSE, E-08193 Bellaterra, Barcelona, Spain. [Swonke, Thomas; Wagner, Michael; Brabec, Christoph J.] Bavarian Ctr Appl Energy Res, D-91058 Erlangen, Germany. [Haillant, Olivier O.] Atlas Mat Testing Technol GmbH, D-63859 Linsengericht Altenhassl, Germany. [Voroshazi, Eszter] IMEC VZW, B-3001 Louvain, Belgium. [Voroshazi, Eszter; Aernouts, Tom] Katholieke Univ Leuven, ESAT, B-3001 Louvain, Belgium. [Steim, Roland; Hauch, Jens A.] Konarka Technol GmbH, D-90443 Nurnberg, Germany. [Elschner, Andreas] HC Starck Clevios GmbH, D-51368 Leverkusen, Germany. [Pannone, Michael; Xiao, Min; Langzettel, Anthony; Laird, Darin] Plextron Inc, Pittsburgh, PA 15238 USA. [Lloyd, Matthew T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rath, Thomas; Trimmel, Gregor] Graz Univ Technol, Christian Doppler Lab Nanocomposite Solar Cells, A-8010 Graz, Austria. [Rath, Thomas; Maier, Eugen; Trimmel, Gregor] Graz Univ Technol, Inst Chem & Technol Mat, A-8010 Graz, Austria. [Maier, Eugen] Polymer Competence Ctr Leoben GmbH, A-8700 Leoben, Austria. [Hermenau, Martin; Menke, Torben; Leo, Karl; Riede, Moritz] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany. [Roesch, Roland; Seeland, Marco; Hoppe, Harald] Ilmenau Univ Technol, Inst Phys, D-98693 Ilmenau, Germany. [Nagle, Timothy J.; Burke, Kerry B.; Fell, Christopher J.] CSIRO Future Mfg Flagship, Mayfield W, NSW 2304, Australia. [Nagle, Timothy J.; Burke, Kerry B.; Fell, Christopher J.] CSIRO Energy Technol, Mayfield W, NSW 2304, Australia. [Vak, Doojin; Singh, Th. Birendra; Watkins, Scott E.] CSIRO Future Mfg Flagship, Clayton, Vic 3168, Australia. [Vak, Doojin; Singh, Th. Birendra; Watkins, Scott E.] CSIRO Mat Sci & Engn, Ian Work Lab, Clayton, Vic 3168, Australia. [Galagan, Yulia] Holst Ctr, NL-5605 KN Eindhoven, Netherlands. [Manor, Assaf; Katz, Eugene A.] Ben Gurion Univ Negev, Dept Solar Energy & Environm Phys, J Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel. [Katz, Eugene A.] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel. [Kim, Taehee; Kim, Kyungkon] Korea Inst Sci & Technol, Solar Cell Ctr, Seoul 136791, South Korea. [Sommeling, Paul M.; Verhees, Wiljan J. H.; Veenstra, Sjoerd C.] Energy Res Ctr Netherlands ECN, NL-1755 ZG Petten, Netherlands. [Riede, Moritz; Christoforo, M. Greyson] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Currier, Travis; Shrotriya, Vishal] Solarmer Energy Inc, El Monte, CA 91731 USA. [Schwartz, Gregor] Heliatek GmbH, D-01139 Dresden, Germany. RP Krebs, FC (reprint author), Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM frkr@risoe.dtu.dk RI Manor, Assaf/L-4058-2016; Fell, Christopher/B-3003-2011; Burke, Kerry/C-9627-2011; Seeland, Marco/H-1028-2011; Watkins, Scott/C-7463-2009; Schwartz, Gregor/I-7531-2012; Vak, Doojin/B-3894-2008; CSIRO, OPV/F-2904-2013; Singh, Birendra/H-1595-2011; Leo, Karl/L-1125-2013; Brabec, Christoph/N-1897-2013; Hoppe, Harald/P-5293-2014; Rath, Thomas/J-1885-2015 OI Gevorgyan, Suren/0000-0001-9906-5485; Wurfel, Uli/0000-0003-4151-8538; Lira-Cantu, Monica/0000-0002-3393-7436; Trimmel, Gregor/0000-0001-8922-4163; Brabec, Christoph J./0000-0002-9440-0253; Krebs, Frederik C/0000-0003-1148-4314; Bundgaard, Eva/0000-0003-3244-5779; Manor, Assaf/0000-0002-9502-2442; Fell, Christopher/0000-0003-2517-3445; Burke, Kerry/0000-0002-4977-1426; Watkins, Scott/0000-0002-6058-9895; Schwartz, Gregor/0000-0003-0061-6959; Vak, Doojin/0000-0001-7704-5563; Rath, Thomas/0000-0002-4837-7726 FU Danish Strategic Research Council [DSF 2104-07-0022]; EUDP [64009-0050]; PV-ERA-NET; Spanish Ministry of Science and Innovation, MICINN [ENE2008-04373]; CSIC [PIE-200860I134]; Federal Ministry of Education and Research Germany [03 x 3518C]; Austrian Research Promotion Agency (FFG); Christian Doppler Research Association (CDG); Austrian Federal Ministry of Economy, Family and Youth (BMWFJ); ISOVOLTAIC GmbH; PCCL [IV-1.02]; BMBF; King Abdullah University of Science and Technology; Department of Energy; KIST [2E21831]; European Commission [7 ICT 2009, 248678]; Dutch ministry of economic affairs of the Netherlands; German Federal Ministry of Education and Research (BMBF) [13N9843]; Victorian Organic Solar Cell Consortium FX This work was supported by: the Danish Strategic Research Council (DSF 2104-07-0022), EUDP (j. nr. 64009-0050), PV-ERA-NET (project acronym POLYSTAR), the Spanish Ministry of Science and Innovation, MICINN for the project ENE2008-04373 and CSIC for the PIE-200860I134. To the Xarxa de Referencia en Materials Avancats per a l'Energia, XaRMAE (Reference Center for Advanced Materials for Energy) of the Catalonia Government. Amanda Florendo, Jaynae Brust, Peter Williamson, John Wonders and David Webb, DSET Laboratories, 45601 N. 47th Avenue, Phoenix, AZ 85087-7042, USA. Tony Hall and Jorge Rivera, South Florida Test Service, 16100 SW 216th Street, Miami, FL 33170, USA. E.V. and T.A. would like to acknowledge Polystar for partial funding. An AE would like to thank Detlef Riesebeck and Kerstin Pollok for technical assistance and the Federal Ministry of Education and Research Germany (Grant no.: 03 x 3518C) for funding. Financial support by the Austrian Research Promotion Agency (FFG), the Christian Doppler Research Association (CDG), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ) and the ISOVOLTAIC GmbH is gratefully acknowledged. Part of this work was supported by the PCCL (Project IV-1.02) within the framework of the COMET-program of the Austrian Government. MH, TM, KL and MR would like to thank the Bundesministerium fuer Bildung und Forschung in the frameworks of the Inn Profile project (03IP602), the OPEG project (13N9720) and the OPA project (13N 9872). HH gratefully acknowledges funding within the frame of BMBF OPV program. This work was partially supported by the King Abdullah University of Science and Technology and the Department of Energy, by KIST internal research fund under the Contract no. of 2E21831; by the European Commission as part of the Framework 7 ICT 2009 collaborative project HIFLEX (Grant Agreement no. 248678) and by the Dutch ministry of economic affairs of the Netherlands. MR and MGC thank Craig Barney and David Chaskelmann from Stanford University Environmental Health & Safety for their support and providing the Stanford weather data. RR, MS & HH acknowledge financial support from German Federal Ministry of Education and Research (BMBF) within "Polymer Photovoltaics Processing" (PPP) project (support code 13N9843). Part of this work was supported by the Victorian Organic Solar Cell Consortium. We would like to thank Annette Einsbor Raebild for technical support. NR 21 TC 92 Z9 93 U1 3 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2011 VL 95 IS 5 SI SI BP 1398 EP 1416 DI 10.1016/j.solmat.2011.01.010 PG 19 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 760XY UT WOS:000290359200021 ER PT J AU Wu, Y Wang, H Wu, HH Zhang, ZY Hui, XD Chen, GL Ma, D Wang, XL Lu, ZP AF Wu, Y. Wang, H. Wu, H. H. Zhang, Z. Y. Hui, X. D. Chen, G. L. Ma, D. Wang, X. L. Lu, Z. P. TI Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties SO ACTA MATERIALIA LA English DT Article DE Bulk amorphous materials; Composites; Metastable phase; Mechanical properties; Martensitic phase transformation ID INDUCED MARTENSITIC-TRANSFORMATION; MATRIX COMPOSITES; COMPRESSIVE DEFORMATION; MECHANICAL-PROPERTIES; AMORPHOUS-ALLOYS; HIGH-STRENGTH; SHEAR-BAND; DUCTILITY; PLASTICITY; BEHAVIOR AB The dependence of microstructure on the alloy composition and cooling rate of a series of (Zr0.5Cu0.5)(100-x)Al-x (x = 1, 2, 3, ..., 10 at.%) alloys was investigated in detail and explained in the framework of time temperature transformation diagrams. The relationship between the microstructures of bulk metallic glass (BMG) composites and their mechanical properties was characterized systematically. It was found that the addition of aluminum can promote the formation of the metastable austenitic CuZr phase, and composite structures with B2-CuZr particles can be formed in alloys containing 3-8% Al. Both the volume fraction and distribution of the reinforced B2 phase could greatly affect the deformation behavior, and the BMG composites with homogeneously distributed single B2-CuZr phase exhibited stable tensile ductility. Analysis indicates that the B2-CuZr austenite transformed into the B19' martensite during deformation (i.e., stress-induced martensitic transformation), which accounts for the observed superior mechanical properties of the current BMG composites. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, Y.; Wang, H.; Wu, H. H.; Zhang, Z. Y.; Hui, X. D.; Chen, G. L.; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ma, D.; Wang, X. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Lu, ZP (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM luzp@ustb.edu.cn RI Ma, Dong/G-5198-2011; Wang, Xun-Li/C-9636-2010; Hui, Xidong/A-1741-2010; Lu, Zhao-Ping/A-2718-2009; Wu, Hong-Hui/M-2215-2013; Wu, Yuan/C-4025-2015 OI Ma, Dong/0000-0003-3154-2454; Wang, Xun-Li/0000-0003-4060-8777; Wu, Hong-Hui/0000-0002-1381-2281; Wu, Yuan/0000-0001-7857-0247 FU National Natural Science Foundation of China [50725104, 51010001]; 973 program [2007CB613903]; NSFC [51001009]; China Postdoctoral Science Foundation [20100470208]; Fundamental Research Funds for the Central Universities FX This research was supported by National Natural Science Foundation of China (Nos. 50725104 and 51010001) and the 973 program (No. 2007CB613903). Y.W. acknowledges support from NSFC (Grant No. 51001009), China Postdoctoral Science Foundation (Grant No. 20100470208) and the Fundamental Research Funds for the Central Universities. NR 46 TC 116 Z9 121 U1 19 U2 121 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 8 BP 2928 EP 2936 DI 10.1016/j.actamat.2011.01.029 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 756ZK UT WOS:000290053100003 ER PT J AU Liu, S Lee, JH Trivedi, R AF Liu, S. Lee, J. H. Trivedi, R. TI Dynamic effects in the lamellar-rod eutectic transition SO ACTA MATERIALIA LA English DT Article DE Eutectic solidification; Interface dynamics; Aluminum alloys; Directional solidification; Lamellar-rod transition ID STABILITY; DIFFUSION; SYSTEMS; GROWTH AB Critical experiments in the Al-Cu system are carried out to establish the conditions for the stability of rod and lamellar eutectics. It is shown that the instability of a lamella initiates locally through the formation of a sinusoidal perturbation, and the fastest growing wavelength of perturbation, which corresponds to the rod spacing, is related to the local lamella spacing. The instabilities in adjacent lamellae are observed to be out of phase to give rise to a hexagonal arrangement of rods at the transition. The specific relationship found between the unstable lamella spacing and the resulting rod spacing at the transition is then taken into account to develop a general model of the rod lamellar transition which also includes the relative undercooling and the presence of a spacing distribution. A microstructure map is presented which defines the regimes of rod, lamellar and mixed structures, which is shown to be in good agreement with the experimental results. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Trivedi, R.] US DOE, Ames Lab, Ames, IA 50011 USA. [Trivedi, R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Liu, S.] GE Co, Greenville, SC 29615 USA. [Lee, J. H.] Changwon Natl Univ, Dept Met & Mat Sci, Kyungnam, South Korea. RP Trivedi, R (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM trivedi@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences. NR 10 TC 21 Z9 21 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 8 BP 3102 EP 3115 DI 10.1016/j.actamat.2011.01.050 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 756ZK UT WOS:000290053100020 ER PT J AU Wang, J Hoagland, RG Liu, XY Misra, A AF Wang, J. Hoagland, R. G. Liu, X. Y. Misra, A. TI The influence of interface shear strength on the glide dislocation-interface interactions SO ACTA MATERIALIA LA English DT Article DE Atomistic modeling; Dislocation; Interfaces; Multilayers ID EMBEDDED-ATOM-METHOD; DEFORMATION MECHANISMS; METALLIC MULTILAYERS; ATOMISTIC SIMULATIONS; LAYERED COMPOSITES; WEAK INTERFACES; THIN-FILMS; NANOSCALE; CU; SURFACES AB Interfaces with relatively low shear strengths can be strong barriers to glide dislocations due to dislocation core spreading within the interface plane. Using atomistic modeling we have studied the influence of interface shear strength on the interaction of lattice glide dislocations with fcc/bcc interfaces. "Tunable" interatomic potentials are employed to vary the interface shear strength for the same interface crystallography. The results show that: (1) the interface shear strength increases as the dilute heat of mixing decreases; (2) the interface shear mechanism involves the nucleation and glide of interfacial dislocations, which is dominated by the atomic structures of interfaces, regardless of the interface shear strength; (3) weak interfaces entrap lattice glide dislocations due to the interface shear and core spreading of dislocations within interfaces. Reverse shear displacement is needed to enable collapse of the spread core for slip transmission. This study provides an insight into the correlation between interface shear strength and glide dislocation trapping at the interface, which is a crucial unit mechanism in understanding the ultra-high strengths observed in nanoscale fcc/bcc multilayers. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Wang, J.; Hoagland, R. G.; Liu, X. Y.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Office of Basic Sciences FX This work was fully supported by the US Department of Energy, Office of Science, Office of Basic Sciences. The authors acknowledge discussions with Prof. J.P. Hirth. NR 58 TC 63 Z9 65 U1 4 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2011 VL 59 IS 8 BP 3164 EP 3173 DI 10.1016/j.actamat.2011.01.056 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 756ZK UT WOS:000290053100026 ER PT J AU Berkowitz, CM Berg, LK Yu, XY Alexander, ML Laskin, A Zaveri, RA Jobson, BT Andrews, E Ogren, JA AF Berkowitz, Carl M. Berg, Larry K. Yu, Xiao-Ying Alexander, M. Lizabeth Laskin, Alexander Zaveri, Rahul A. Jobson, B. Thomas Andrews, Elisabeth Ogren, John A. TI The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerodyne mass spectrometer; Air quality; Atmospheric aerosol; Ammonia; Ammonium; IMPROVE; Dairy farm; Pt. Reyes National Seashore; Sulfate; Scavenging; Thermal trough ID MARINE BOUNDARY-LAYER; MASS-SPECTROMETER; SIZE DISTRIBUTION; UNITED-STATES; ATLANTIC; PARTICLES; AMMONIUM; CHLORIDE; CLOUDS; AIR AB This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. The fractional mass loading derived from hourly measurements of an Aerodyne Mass Spectrometer (AMS) during this period are compared with filter-pack measurements from the Pt. Reyes IMPROVE station with good agreement found between the two if it assumed that chloride is primarily from large sea-salt particles (not measured by the AMS). During the first half of the campaign (July 7-17), conditions at the site were largely maritime while flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist to the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. The AMS measurements are partitioned into clear and foggy conditions which are then used to calculate the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride. Ratios calculated from measurements made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th yield ratios that appear to have excess ammonium. Model calculations of the equilibrium gas-phase mixing ratio of NH3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is evidence for the cloud droplet activation of large particles (D-p > 0.2 mu m) with a corresponding reduction in the single scattering albedo of the non-activated particles, followed by a return in the particle size spectrum to the pre-fog conditions immediately afterwards. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Berkowitz, Carl M.; Berg, Larry K.; Yu, Xiao-Ying; Alexander, M. Lizabeth; Laskin, Alexander; Zaveri, Rahul A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jobson, B. Thomas] Washington State Univ, Pullman, WA 99164 USA. [Andrews, Elisabeth] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Ogren, John A.] Natl Ocean & Atmospher Adm, ESRL, Boulder, CO USA. RP Berkowitz, CM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-30, Richland, WA 99352 USA. EM carl.berkowitz@pnl.gov RI Laskin, Alexander/I-2574-2012; Yu, Xiao-Ying/L-9385-2013; Ogren, John/M-8255-2015; Berg, Larry/A-7468-2016; OI Laskin, Alexander/0000-0002-7836-8417; Yu, Xiao-Ying/0000-0002-9861-3109; Ogren, John/0000-0002-7895-9583; Berg, Larry/0000-0002-3362-9492; Zaveri, Rahul/0000-0001-9874-8807; Jobson, Bertram/0000-0003-1812-9745 FU Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RL0] FX Financial support for this study was provided by the Atmospheric Sciences Program (now the Atmospheric Systems Research Program) of the Department of Energy's Office of Biological and Environmental Research. The authors also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the use of the HYSPLIT transport and dispersion model (http://www.arl.noaa.gov/ready.html) used in this publication, and to the Department of Energy's Atmospheric Radiation Measurements Program for use of the observations collected by the ARM Mobile Facility during the campaign. Acknowledgment is also given to Brannon Ketcham and John DiGregoria of Pt. Reyes National Seashore who provided many useful comments on an early version of this manuscript, and to the anonymous reviewer who provided many constructive suggestions for how to improve the clarity of the manuscript. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RL0. NR 43 TC 10 Z9 10 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2011 VL 45 IS 15 BP 2559 EP 2568 DI 10.1016/j.atmosenv.2011.02.016 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 757FA UT WOS:000290069400012 ER PT J AU Vasdev, N Dorff, PN O'Neil, JP Chin, FT Hanrahan, S VanBrocklin, HF AF Vasdev, Neil Dorff, Peter N. O'Neil, James P. Chin, Frederick T. Hanrahan, Stephen VanBrocklin, Henry F. TI Metabolic stability of 6,7-dialkoxy-4-(2-, 3-and 4-[F-18]fluoroanilino)quinazolines, potential EGFR imaging probes SO BIOORGANIC & MEDICINAL CHEMISTRY LA English DT Article DE PET; Fluorine-18; Fluoroaniline; Metabolism; Quinazoline; EGFR; Hepatocytes ID GROWTH-FACTOR RECEPTOR; TYROSINE KINASE INHIBITORS; FLUORINE SUBSTITUTION; ARYL FLUORIDES; CANCER; PET; TUMORS; DISPLACEMENT; BIOMARKERS AB Epidermal growth factor receptors (EGFR), upregulated in many tumor types, have been a target for therapeutic development and molecular imaging. The objective of this study was to evaluate the distribution and metabolic characteristics of fluorine-18 labeled anilinoquinazolines as potential imaging agents for EGFR tyrosine kinase expression. Fluorine-18 labeled fluoronitrobenzenes were prepared by reaction of potassium cryptand [F-18] fluoride with 1,2- and 1,4-dinitrobenzenes, and 3-nitro-N,N,N-trimethylanilinium triflate in 5 min. Decay-corrected radiochemical yields of [F-18] fluoride incorporation into the nitro-aromatic compounds were 81 +/- 2%, 44 +/- 4% and 77 +/- 5% (n = 3-5) for the 2-, 3- and 4-fluoro isomers, respectively. Sodium borohydride reduction to the corresponding [F-18]fluoroanilines was achieved with greater than 80% conversion in 5 min. Coupling of [F-18]fluoroaniline-hydrochlorides to 6,7-dimethoxy-4- chloro-quinazoline gave the corresponding 6,7-dimethoxy-4-(2-, 3- and 4-[F-18]fluoroanilino) quinazolines in 31 +/- 5%, 17 +/- 2% and 55 +/- 2% radiochemical yield, respectively, while coupling to the 6,7-diethoxy-4-chloro-quinazoline produced 6,7-diethoxy-4-(2-, 3- and 4-[F-18] fluoroanilino) quinazolines in 19 +/- 6%, 9 +/- 3% and 36 +/- 6% radiochemical yield, respectively, in 90 min to end of synthesis from [F-18] fluoride. Biodistribution of 2- and 4-[F-18]fluoroanilinoquinazolines was conducted in tumor-bearing mice (MDA-MB-435 and MDA-MB-468 xenografts). Low tumor uptake (< 1% injected dose per gram (ID/g) of tissue up to 3 h postinjection of the radiotracers) was observed. High bone uptake (5-15% ID/g) was noted with the 4-[F-18] fluoroanilinoquinazolines. The metabolic stabilities of radiolabeled quinazolines were further evaluated by incubation with human female cryopreserved isolated hepatocytes. Rapid degeneration of the 4-fluoro-substituted compounds to baseline polar metabolites was observed by radio-TLC, whereas, the 2- and 3-[F-18] fluoroaniline derivatives were significantly more stable, up to 2 h, corroborating the in vivo biodistribution studies. para-Substituted [F-18] fluoroanilines, a common structural motif in radiopharmaceuticals, are highly susceptible to metabolic degradation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [VanBrocklin, Henry F.] Univ Calif San Francisco, Ctr Mol & Funct Imaging, Dept Radiol & Biomed Imaging, San Francisco, CA 94107 USA. [Vasdev, Neil; Dorff, Peter N.; O'Neil, James P.; Chin, Frederick T.; Hanrahan, Stephen; VanBrocklin, Henry F.] Lawrence Berkeley Natl Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA. RP VanBrocklin, HF (reprint author), Univ Calif San Francisco, Ctr Mol & Funct Imaging, Dept Radiol & Biomed Imaging, 185 Berry St,Suite 350, San Francisco, CA 94107 USA. EM henry.vanbrocklin@ucsf.edu FU Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the U.S. Department of Energy [DE-AC03-76SF00098]; NIH [CA94253, CA79823]; Department of the Army [DAMD17-98-1-8064]; State of California [UCBCRP 4IB-0059]; Natural Sciences and Engineering Research Council of Canada FX We thank Dr. Andrew Gibbs and Dr. Erathodiyil Nandanan for their synthetic expertise and helpful discussions. This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and NIH grant #CA94253 (HFV) and #CA79823 (HFV). This work was also sponsored by the Department of the Army under Grant No. DAMD17-98-1-8064 (HFV) and the State of California under Grant No. UCBCRP 4IB-0059 (HFV). We thank the Natural Sciences and Engineering Research Council of Canada for a Postdoctoral Fellowship (N.V.). We also thank Chris Ramsey for technical expertise and production of [18F] fluoride. NR 42 TC 12 Z9 12 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-0896 J9 BIOORGAN MED CHEM JI Bioorg. Med. Chem. PD MAY 1 PY 2011 VL 19 IS 9 BP 2959 EP 2965 DI 10.1016/j.bmc.2011.03.032 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Chemistry, Organic SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 754EC UT WOS:000289834600019 PM 21478021 ER PT J AU Selig, MJ Tucker, MP Law, C Doeppke, C Himmel, ME Decker, SR AF Selig, Michael J. Tucker, Melvin P. Law, Cody Doeppke, Crissa Himmel, Michael E. Decker, Stephen R. TI High throughput determination of glucan and xylan fractions in lignocelluloses SO BIOTECHNOLOGY LETTERS LA English DT Article DE Biomass recalcitrance; Compositional analysis; Glucan; High throughput; Lignocellulose; Xylan ID COMPOSITIONAL ANALYSIS; RAPID BIOMASS; TOOLS; WOOD AB The analysis of structural glucan and xylan in lignocellulose was scaled down from original two-stage sulfuric acid hydrolysis methods (Moore WE and Johnson DB 1967 Procedures for the chemical analysis of wood and wood products. U.S. Forest Products Laboratory, U.S. Department of Agriculture., Madison, WI) and integrated into a recently-developed, high throughput pretreatment and enzymatic saccharification system. Novel 96 x 1.8 ml-well Hastelloy reactor plates (128 x 86 x 51 mm) based on previously described 96-well pretreatment reactor plates were paired with custom aluminum filler plates (128 x 86 x 18 mm) for use in Symyx Powdernium solids dispensing systems. The incorporation of glucose oxidase and xylose dehydrogenase linked assays to speed post-hydrolysis sugar analysis dramatically reduced the time for analysis of large lignocellulosic sample sets. The current system permits the determination of the glucan and xylan content of 96 replicates (per reactor plate) in under 6 h and parallel plate processing increases the analysis throughput substantially. C1 [Selig, Michael J.; Law, Cody; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Tucker, Melvin P.; Doeppke, Crissa] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Selig, MJ (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM Michael.Selig@nrel.gov FU Office of Biological and Environmental Research in the DOE Office of Science FX The BioEnergy Science Center is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The National Renewable Energy Laboratory is a national laboratory of the U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. NR 15 TC 5 Z9 6 U1 3 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0141-5492 J9 BIOTECHNOL LETT JI Biotechnol. Lett. PD MAY PY 2011 VL 33 IS 5 BP 961 EP 967 DI 10.1007/s10529-011-0526-7 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 754ZT UT WOS:000289897100014 PM 21287235 ER PT J AU Tavagnacco, L Mason, PE Schnupf, U Pitici, F Zhong, LH Himmel, ME Crowley, M Cesaro, A Brady, JW AF Tavagnacco, Letizia Mason, Philip E. Schnupf, Udo Pitici, Felicia Zhong, Linghao Himmel, Michael E. Crowley, Michael Cesaro, Attilio Brady, John W. TI Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei SO CARBOHYDRATE RESEARCH LA English DT Article DE Carbohydrate-binding module; CBM; CBH I; Trichoderma reesei ID CELLOBIOHYDROLASE-I; CELLULOSE SURFACE; DYNAMICS; DOMAINS; SIMULATIONS; PROGRAM; SYSTEM; CHARMM; ENERGY; BETA AB Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of beta-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Mason, Philip E.; Schnupf, Udo; Pitici, Felicia; Brady, John W.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. [Tavagnacco, Letizia; Cesaro, Attilio] Univ Trieste, Dept Life Sci, Trieste, Italy. [Himmel, Michael E.; Crowley, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhong, Linghao] Penn State Univ, Mt Alto, PA 17237 USA. RP Brady, JW (reprint author), Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. EM jwb7@cornell.edu RI crowley, michael/A-4852-2013; Schnupf, Udo/H-4703-2016; OI crowley, michael/0000-0001-5163-9398; Schnupf, Udo/0000-0002-1457-1985; Tavagnacco, Letizia/0000-0002-3492-7766 FU U.S. DOE EERE Office of the Biomass Program FX The authors thank D.B. Wilson for helpful discussions. This work was supported by the U.S. DOE EERE Office of the Biomass Program. NR 30 TC 12 Z9 14 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0008-6215 J9 CARBOHYD RES JI Carbohydr. Res. PD MAY 1 PY 2011 VL 346 IS 6 BP 839 EP 846 DI 10.1016/j.carres.2011.01.019 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 754AB UT WOS:000289821900020 PM 21377658 ER PT J AU Schaff, UY Sommer, GJ AF Schaff, Ulrich Y. Sommer, Greg J. TI Whole Blood Immunoassay Based on Centrifugal Bead Sedimentation SO CLINICAL CHEMISTRY LA English DT Article ID MICROFLUIDIC DEVICE; PLATFORMS; SYSTEM; CARE; LAB AB BACKGROUND: Centrifugal "labon a disk" microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS: Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS: To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-mu L samples with a 15-min sample-to-answer time, < 100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS: This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting. (C) 2011 American Association for Clinical Chemistry C1 [Schaff, Ulrich Y.; Sommer, Greg J.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94550 USA. RP Sommer, GJ (reprint author), POB 969,MS 9291, Livermore, CA 94550 USA. EM gsommer@sandia.gov FU Sandia Laboratory [10-0104]; United States Department of Energy [DE-AC049AL85000] FX Sandia Laboratory Directed Research and Development Award 10-0104. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC049AL85000. NR 27 TC 33 Z9 33 U1 5 U2 43 PU AMER ASSOC CLINICAL CHEMISTRY PI WASHINGTON PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA SN 0009-9147 J9 CLIN CHEM JI Clin. Chem. PD MAY PY 2011 VL 57 IS 5 BP 753 EP 761 DI 10.1373/clinchem.2011.162206 PG 9 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 756AY UT WOS:000289985100016 PM 21415382 ER PT J AU Brady, MP Fayek, M Keiser, JR Meyer, HM More, KL Anovitz, LM Wesolowski, DJ Cole, DR AF Brady, M. P. Fayek, M. Keiser, J. R. Meyer, H. M., III More, K. L. Anovitz, L. M. Wesolowski, D. J. Cole, D. R. TI Wet oxidation of stainless steels: New insights into hydrogen ingress SO CORROSION SCIENCE LA English DT Article DE Stainless steel; SIMS; STEM; XPS; Oxidation; Hydrogen permeation ID HIGH-TEMPERATURE OXIDATION; FE-CR ALLOYS; WATER-VAPOR; FERRITIC STEELS; INTERNAL OXIDATION; STEAM OXIDATION; CHROMIUM; TRANSPORT; BEHAVIOR; MECHANISM AB It is well established that hydrogen derived from water vapor can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina-and chromia-forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D(2)O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapor effects by manipulation of alloy chemistry. (c) 2011 Elsevier Ltd. All rights reserved. C1 [Brady, M. P.; Keiser, J. R.; Meyer, H. M., III; More, K. L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Fayek, M.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada. [Anovitz, L. M.; Wesolowski, D. J.; Cole, D. R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Anovitz, L. M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Brady, MP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; More, Karren/A-8097-2016; Anovitz, Lawrence/P-3144-2016 OI Brady, Michael/0000-0003-1338-4747; More, Karren/0000-0001-5223-9097; Anovitz, Lawrence/0000-0002-2609-8750 FU United States Department of Energy (USDOE); Laboratory Directed Research and Development Program; Natural Sciences and Engineering Research Counsel (NSERC); Canadian Foundation for Innovation (CFI); Canada Research Chair (CRC); ORNL FX The authors thank P.F. Tortorelli, B.A. Pint, K. Unocic, and A. Vande Put for extensive discussions and helpful comments on this manuscript. This work was funded by the United States Department of Energy (USDOE), Laboratory Directed Research and Development Program, and a Natural Sciences and Engineering Research Counsel (NSERC) discovery grant, Canadian Foundation for Innovation (CFI) and the Canada Research Chair (CRC) programs. Additional funding and collaboration with the SHaRE User Facility at ORNL is also acknowledged. NR 40 TC 17 Z9 18 U1 0 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD MAY PY 2011 VL 53 IS 5 BP 1633 EP 1638 DI 10.1016/j.corsci.2011.02.011 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 754OY UT WOS:000289866400002 ER PT J AU Zavras, A Fry, JA Beavers, CM Talbo, GH Richards, AF AF Zavras, Athanasios Fry, Julie A. Beavers, Christine M. Talbo, Gert H. Richards, Anne F. TI 2-Pyridylmethylphosphonic acid: a flexible, multi-dentate ligand for metal phosphonates SO CRYSTENGCOMM LA English DT Article ID RAY CRYSTAL-STRUCTURE; COORDINATION POLYMERS; MAGNETIC-PROPERTIES; SILVER(I) COMPLEXES; LUMINESCENT PROPERTIES; SUPRAMOLECULAR DESIGN; MOLECULAR-STRUCTURE; HYBRID MATERIALS; MODEL COMPOUNDS; IRON(III) AB In a systematic investigation, 2-pyridylmethylphosphonic acid, 2PyCH(2)PO(3)H(2) (Py = pyridine), was reacted with specifically selected metal salts to examine the influence of the preferred metal geometry, role of the anion and coordination preferences of the ligand. From this study a series of metal phosphonates were isolated: [{M(2PyHCH(2)PO(3)H)(H2O)}ClO4](n), M = Mn, 1 and Co, 2; a tetranuclear iron phosphonate cage, [Fe-4(2PyHCH(2)PO(3))(4)(H2O)(12)(Cl)(ClO4)(7)center dot xH(2)O], 3, and two polymeric iron phosphonate chains: 4, [Fe-2(2PyHCH(2)PO(3)H)(2)(ClO4)](n), and 5, [Fe(2PyHCH(2)PO(3)H)(H2O)(ClO4)](n). Meanwhile, the stoichiometric reaction of Pb(NO3)(2) and Ag(SO3CF3) with 2PyCH(2)PO(3)H(2) afforded a bimetallic Ag/Pb network, 6, [AgPb(2PyCH(2)PO(3))(NO3)](n). The individual components of this reaction, Pb(NO3)(2) and Ag(SO3CF3), when reacted with 2PyCH(2)PO(3)H(2) yielded [Pb(2PyHCH(2)PO(3)H)(NO3)(2)](n), 7, and a luminescent silver polymer 8, [Ag-3(2PyHCH(2)PO(3))(SO3CF3)(2)](n), that are used for structural comparison to 6. All products were characterized in the single crystal and bulk form. The electrochemical properties of 1, 2 and 3 were studied, and X-ray photoelectron spectroscopy (XPS) employed to investigate the bimetallic polymer, 6, and the tetrameric iron phosphonate, 3. C1 [Zavras, Athanasios; Talbo, Gert H.; Richards, Anne F.] La Trobe Univ, Dept Chem, La Trobe Inst Mol Sci, Melbourne, Vic 3086, Australia. [Fry, Julie A.] Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Richards, AF (reprint author), La Trobe Univ, Dept Chem, La Trobe Inst Mol Sci, Melbourne, Vic 3086, Australia. RI Zavras, Athanasios/G-6596-2015; Administrator, CMSS/E-3491-2015 OI Zavras, Athanasios/0000-0003-2797-9303; FU Australian Research Council [FT100100003] FX The Australian Research Council is acknowledged for the award of a Future Fellowship, FT100100003 to AFR. Professor Jean-Luc Montchamp (Texas Christian University) is thanked for his input in the ligand synthesis. NR 83 TC 16 Z9 16 U1 1 U2 21 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PD MAY PY 2011 VL 13 IS 10 BP 3551 EP 3561 DI 10.1039/c0ce00969e PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 755BW UT WOS:000289902600044 ER PT J AU Chen, SQ Li, NP Yoshino, H Guan, J Levine, MD AF Chen, Shuqin Li, Nianping Yoshino, Hiroshi Guan, Jun Levine, Mark D. TI Statistical analyses on winter energy consumption characteristics of residential buildings in some cities of China SO ENERGY AND BUILDINGS LA English DT Article; Proceedings Paper CT 6th International Symposium on Heating, Ventilating and Air Conditioning CY NOV 06-09, 2009 CL Nanjing, PEOPLES R CHINA SP SE Univ, Tsinghua Univ, Univ Hong Kong, Jiangsu Assoc Refrigerat DE Statistical analyses; Energy consumption characteristics in winter; Residential buildings in China; Influence factors AB The purposes of this paper are to analyze winter energy use of residential buildings in different cities of China, and to figure out the influence factors of winter residential energy use. The investigated residences were located in seven typical cities of five architectural thermotechnical design zones. Questionnaire surveys revealed building characteristics, household characteristics, the utilization of domestic appliances, and thermal environment in winter. Winter energy consumption in different cities bears obvious regional characteristics. In south China, Hong Kong has the largest mean household energy use amount, and Changsha and Chongqing follow Hong Kong; Kunming in the warm zone has the small energy use. In north cities, if district space heating is excluded from total energy use. Urumqi and Xi'an have the energy use at the smallest level, but space heating use is very huge. The energy use amounts of space heating of Tangshan, Urumqi and Xi'an are several times as large as the amounts of all the end uses in the southern cities. The analysis on influence factors of winter energy use are made for Chongqing and Hong Kong, respectively, by Quantification Theory I, and the results show there exist obvious differences in influence factors between the two cities. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [Chen, Shuqin; Li, Nianping; Guan, Jun] Hunan Univ, Civil Engn Coll, Changsha 410082, Hunan, Peoples R China. [Chen, Shuqin; Levine, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yoshino, Hiroshi] Tohoku Univ, Dept Architecture & Bldg Sci, Sendai, Miyagi 9808579, Japan. RP Li, NP (reprint author), Hunan Univ, Civil Engn Coll, Changsha 410082, Hunan, Peoples R China. EM hn_csq@126.com NR 20 TC 22 Z9 22 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD MAY PY 2011 VL 43 IS 5 SI SI BP 1063 EP 1070 DI 10.1016/j.enbuild.2010.09.022 PG 8 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 756LN UT WOS:000290012800005 ER PT J AU Oh, JH Deutsch, TG Yuan, HC Branz, HM AF Oh, Jihun Deutsch, Todd G. Yuan, Hao-Chih Branz, Howard M. TI Nanoporous black silicon photocathode for H-2 production by photoelectrochemical water splitting SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HYDROGEN-PRODUCTION; SURFACE; CELLS; FILMS AB Nanostructured Si eliminates several critical problems with Si photocathodes and dramatically improves a photoelectrochemical (PEC) reaction important to water-splitting. Our nanostructured black Si photocathodes improve the H-2 production by providing (1) near-ideal anti-reflection that enables the absorption of most incident light and its conversion to photogenerated electrons and (2) extremely high surface area in direct contact with water that reduces the overpotential needed for the PEC hydrogen half-reaction. Application of these advances would significantly improve the solar H-2 conversion efficiency of an ideal tandem PEC system. Finally, the nanostructured Si surface facilitates bubble evolution and therefore reduces the need for surfactants in the electrolyte. C1 [Oh, Jihun; Deutsch, Todd G.; Yuan, Hao-Chih; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Oh, JH (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jihun.oh@nrel.gov RI Oh, Jihun/B-7085-2013; OI Oh, Jihun/0000-0001-6465-6736; Deutsch, Todd/0000-0001-6577-1226 FU U.S. Department of Energy (DOE) [DE-AC36-08-GO28308]; DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences; DOE American Recovery and Reinvestment Act (ARRA) Photovoltaic Supply Chain and Crosscutting Technologies FX We are grateful to Bobby To for SEM characterization and Robert Reedy for secondary ion mass spectrometry profiling of the Au concentrations. We thank Drs Arthur Nozik, John Turner and Fatima Toor of NREL for helpful discussions. This work was supported under U.S. Department of Energy (DOE) Contract No. DE-AC36-08-GO28308. J. Oh, T. G. Deutsch and H. M. Branz were supported by the SISGR program of the DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. H.-C. Yuan was supported by a DOE American Recovery and Reinvestment Act (ARRA) Photovoltaic Supply Chain and Crosscutting Technologies grant. NR 31 TC 97 Z9 99 U1 14 U2 164 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAY PY 2011 VL 4 IS 5 BP 1690 EP 1694 DI 10.1039/c1ee01124c PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 756CR UT WOS:000289989800016 ER PT J AU Meduri, P Clark, E Dayalan, E Sumanasekera, GU Sunkara, MK AF Meduri, Praveen Clark, Ezra Dayalan, Ethirajulu Sumanasekera, Gamini U. Sunkara, Mahendra K. TI Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LITHIUM-ION BATTERIES; IN-SITU AFM; HIGH-CAPACITY; ANODE; COMPOSITE; ELECTRODES; LI AB In this paper, we report that Sn-nanocluster-covered SnO(2) nanowire ("hybrid architectures") electrodes exhibited stage-wise de-lithiation suggesting complete lithium extraction. The lithiation and de-lithiation behavior explains that the high capacity retention of 814 mAh g(-1) and durability over hundred cycles is because of low irreversible capacity loss. Mono-layers of un-agglomerated, sub 60 nm size Sn clusters supported on metallic electrodes also exhibited similar stage-wise de-lithiation while the microscale Sn clusters exhibited single-phase lithium extraction. This can be attributed to shorter lithium ion diffusion lengths and high surface area of the nanomaterials. The cyclic voltammetric studies of Sn nanoclusters (sub 60 nm size) confirm the reaction kinetics limited behavior of lithiation and de-lithiation characteristics. The Sn-nanocluster-covered SnO(2) nanowires showed a capacity retention of 458 mAh g(-1) at 500 mAg(-1) current density indicating an excellent rate capability. C1 [Meduri, Praveen] Pacific NW Natl Lab, Richland, WA 99352 USA. [Clark, Ezra; Sunkara, Mahendra K.] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA. [Dayalan, Ethirajulu] Enser Corp, Pinellas Pk, FL 33781 USA. [Sumanasekera, Gamini U.] Univ Louisville, Dept Phys, Louisville, KY 40292 USA. RP Meduri, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM mahendra@louisville.edu RI Meduri, Praveen/B-5915-2012 FU Kentucky Renewable Energy Consortium [DE-FG36-05GO85013]; US Department of Energy [DE-FG02-07ER46375] FX The authors gratefully acknowledge the financial support from Kentucky Renewable Energy Consortium (DE-FG36-05GO85013) and the US Department of Energy (DE-FG02-07ER46375). NR 21 TC 27 Z9 27 U1 3 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAY PY 2011 VL 4 IS 5 BP 1695 EP 1699 DI 10.1039/c1ee01041g PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 756CR UT WOS:000289989800017 ER PT J AU Pol, VG Thackeray, MM AF Pol, Vilas G. Thackeray, Michael M. TI Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; ONE-STEP SYNTHESIS; LI-ION BATTERIES; HARD CARBON; CATALYTIC DECOMPOSITION; ENERGY-STORAGE; INSERTION; INTERCALATION; GRAPHITE; SPHERES AB Autogenic reactions, based on the decomposition of one or more precursors at elevated temperatures with self generated pressures can be used to prepare a wide range of materials with interesting structural, morphological and technological properties. Recent reports that spherical carbon particles and carbon nanotubes can be prepared by this technique from waste products, such as used plastic bags, have highlighted this environmentally-attractive approach to synthesize new or modified carbon-based materials. In this paper, we report the synthesis of spherical carbon particles and carbon nanotubes and their evaluation as negative electrodes (anodes) in lithium electrochemical cells. A steady reversible capacity of approximately 240 mAh/g for hundreds of cycles was achieved from both types of carbon, when cycled at a 1C rate between 1.5 V and 5 mV. A reversible capacity of 372 mAh/g, i.e., the theoretical value for graphite, was obtained from the carbon nanotube electrodes by raising the upper voltage limit to 3 V. To increase the graphitic order in the carbon spheres, the particles were heated to 2400 degrees C in an inert atmosphere. This treatment reduced the first cycle irreversible capacity loss of Li/C half cells from 60 to 20%, the spherical carbon electrodes yielding a stable 252 mAh/g discharge capacity for numerous cycles. Structural and morphological information about the parent and cycled carbon electrodes, obtained by powder X-ray diffraction, Raman spectroscopy, high-resolution scanning electron microscopy, and electron dispersive analysis of X-rays is provided. C1 [Pol, Vilas G.; Thackeray, Michael M.] Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Pol, VG (reprint author), Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pol@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Argonne Postdoctoral Fellowship; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. VGP was supported by an Argonne Postdoctoral Fellowship. Use of the FESEM and Raman spectroscopy facilities at Argonne's Center for Nanoscale Materials (CNM) is also acknowledged. Jorge Ayala and Francois Henry of Superior Graphite, Chicago, Illinois are thanked for undertaking the heat-treatment of the carbon spheres. Sun-Ho Kang is thanked for useful discussions during the preparation of this manuscript.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 50 TC 68 Z9 68 U1 9 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAY PY 2011 VL 4 IS 5 BP 1904 EP 1912 DI 10.1039/c0ee00256a PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 756CR UT WOS:000289989800044 ER PT J AU Gross, F Cohen, TD Epelbaum, E Machleidt, R AF Gross, Franz Cohen, Thomas D. Epelbaum, Evgeny Machleidt, Ruprecht TI Conference Discussion of the Nuclear Force SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 21st European Conference on Few-Body Problems in Physics CY AUG 30-SEP 03, 2010 CL Salamanca, SPAIN SP Univ Salamanca, Fundamental Phys Dept, Inst Structure Matter Consejo Superior Investigaciones Cientificas (CSIC) ID CHIRAL PERTURBATION-THEORY; TO-LEADING ORDER; FEW-BODY PROBLEM; EQUATIONS; EXPANSION; EXCHANGE; BARYONS; QCD; LAGRANGIANS; SCATTERING AB Discussion of the nuclear force, lead by a round table consisting of T. Cohen, E. Epelbaum, R. Machleidt, and F. Gross (chair). After an invited talk by Machleidt, published elsewhere in these proceedings, brief remarks are made by Epelbaum, Cohen, and Gross, followed by discussion from the floor moderated by the chair. The chair asked the round table and the participants to focus on the following issues: (1) What does each approach (chiral effective field theory, large N (c) , and relativistic phenomenology) contribute to our knowledge of the nuclear force? Do we need them all? Is any one transcendent? (2) How important for applications (few body, nuclear structure, EMC effect, for example) are precise fits to the NN data below 350 MeV? How precise do these fits have to be? (3) Can we learn anything about nonperturbative QCD from these studies of the nuclear force? The discussion presented here is based on a video recording made at the conference and transcribed afterward. C1 [Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Cohen, Thomas D.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Cohen, Thomas D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Epelbaum, Evgeny] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. [Machleidt, Ruprecht] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. RP Gross, F (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM gross@jlab.org; cohen@physics.umd.edu; evgeny.epelbaum@rub.de; machleid@uidaho.edu NR 38 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD MAY PY 2011 VL 50 IS 1-4 BP 31 EP 44 DI 10.1007/s00601-010-0141-5 PG 14 WC Physics, Multidisciplinary SC Physics GA 753TG UT WOS:000289802000006 ER PT J AU Julia-Diaz, B Kamano, H Lee, TSH Matsuyama, A Sato, T Suzuki, N AF Julia-Diaz, B. Kamano, H. Lee, T. -S. H. Matsuyama, A. Sato, T. Suzuki, N. TI Structure and Dynamical Evolution of Low Lying Nucleon Resonances SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 21st European Conference on Few-Body Problems in Physics CY AUG 30-SEP 03, 2010 CL Salamanca, SPAIN SP Univ Salamanca, Fundamental Phys Dept, Inst Structure Matter Consejo Superior Investigaciones Cientificas (CSIC) ID MESON PRODUCTION; AMPLITUDE; REGION; MODEL AB Within a multi-channels multi-resonances reaction model of pion nucleon reactions, we examine the properties of the nucleon resonances with masses less than 2 GeV. The Roper resonance and the second resonance in P (11) are found to evolve dynamically from the same bare state. With the exception of the P (13) and P (31) resonances, our resonance pole positions agree well with the 3 and 4 star resonances listed by the Particle Data Group. C1 [Julia-Diaz, B.] U Barcelona, Dept Estructura & Constituents Mat, Barcelona, Spain. [Kamano, H.; Lee, T. -S. H.] Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Matsuyama, A.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. [Sato, T.; Suzuki, N.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. RP Julia-Diaz, B (reprint author), U Barcelona, Dept Estructura & Constituents Mat, Barcelona, Spain. EM bruno@ecm.ub.es RI Julia-Diaz, Bruno/E-5825-2010 OI Julia-Diaz, Bruno/0000-0002-0145-6734 NR 19 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD MAY PY 2011 VL 50 IS 1-4 BP 187 EP 190 DI 10.1007/s00601-010-0161-1 PG 4 WC Physics, Multidisciplinary SC Physics GA 753TG UT WOS:000289802000025 ER PT J AU Ramalho, G Gross, F Pena, MT AF Ramalho, G. Gross, Franz Pena, M. T. TI Spin Structure Functions in a Covariant Spectator Quark Model SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT 21st European Conference on Few-Body Problems in Physics CY AUG 30-SEP 03, 2010 CL Salamanca, SPAIN SP Univ Salamanca, Fundamental Phys Dept, Inst Structure Matter Consejo Superior Investigaciones Cientificas (CSIC) ID PRECISION-MEASUREMENT; ASYMMETRIES; PROTON AB We apply the covariant spectator quark-diquark model, already probed in the description of the nucleon elastic form factors, to the calculation of the deep inelastic scattering (DIS) spin-independent and spin-dependent structure functions of the nucleon. The nucleon wave function is given by a combination of quark-diquark orbital states, corresponding to S, D and P-waves. A simple form for the quark distribution function associated to the P and D waves is tested. C1 [Ramalho, G.; Pena, M. T.] Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal. [Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pena, M. T.] Inst Super Tecn, Dept Phys, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Inst Super Tecn, CFTP, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal. EM gilberto.ramalho@cftp.ist.utl.pt RI Pena, Teresa/M-4683-2013 OI Pena, Teresa/0000-0002-3529-2408 NR 13 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD MAY PY 2011 VL 50 IS 1-4 BP 215 EP 217 DI 10.1007/s00601-010-0177-6 PG 3 WC Physics, Multidisciplinary SC Physics GA 753TG UT WOS:000289802000032 ER PT J AU Stotler, RL Frape, SK Freifeld, BM Holden, B Onstott, TC Ruskeeniemi, T Chan, E AF Stotler, Randy L. Frape, Shaun K. Freifeld, Barry M. Holden, Brian Onstott, Tullis C. Ruskeeniemi, Timo Chan, Eric TI Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost SO GROUND WATER LA English DT Article ID OXYGEN-ISOTOPE FRACTIONATION; BOREHOLE FLUID SAMPLES; HYDRAULIC-PROPERTIES; CRYSTALLINE ROCKS; PORE-WATER; U-TUBE; GAS; REDUCTION; RUSSIA; CANADA AB Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples < 40% drill fluid. The salinity of the non-drill fluid component was < 20,000 mg/L, had a Ca/Na ratio above 1, with delta 18O values similar to 5 parts per thousand lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. C1 [Stotler, Randy L.; Frape, Shaun K.; Holden, Brian] Univ Waterloo, Dept Earth Sci, Waterloo, ON N2L 3G1, Canada. [Freifeld, Barry M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Onstott, Tullis C.; Chan, Eric] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Ruskeeniemi, Timo] Geol Survey Finland, FI-02151 Espoo, Finland. RP Stotler, RL (reprint author), Univ Waterloo, Dept Earth Sci, Waterloo, ON N2L 3G1, Canada. EM stotler@kgs.ku.edu RI Stotler, Randy/C-9782-2011; Freifeld, Barry/F-3173-2010 OI Stotler, Randy/0000-0001-9893-9259; FU Geological Survey of Finland, POSIVA Oy, Finland; SKB, Sweden; Nuclear Waste Management Organization, Ontario, Canada; NASA Astrobiology Institute [NASA NNA04CC03A] FX Funding for the project was provided by the Geological Survey of Finland, POSIVA Oy, Finland, SKB, Sweden, Nuclear Waste Management Organization, Ontario, Canada, and a grant from the NASA Astrobiology Institute (NASA NNA04CC03A). Wolfden Resources, Inc. and Zinifex Inc. provided site access. Norm Case and Discovery Mining provided logistical support. Ian Neill and Trish Toole provided logistical and managerial support while at the site. Field support was also provided by Bob Ingleton, Adam Johnson, Eric Chan, Dan McGown, and Sarah Difurio. John Tellam and two anonymous reviewers provided constructive and insightful reviews that improved the manuscript. NR 67 TC 8 Z9 8 U1 2 U2 25 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAY-JUN PY 2011 VL 49 IS 3 BP 348 EP 364 DI 10.1111/j.1745-6584.2010.00724.x PG 17 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 755CE UT WOS:000289903400011 PM 20550588 ER PT J AU Harp, DR Vesselinov, VV AF Harp, Dylan R. Vesselinov, Velimir V. TI Identification of Pumping Influences in Long-Term Water Level Fluctuations SO GROUND WATER LA English DT Article ID INVERSE PROBLEM; JACOBS METHOD; AQUIFER; TESTS; PARAMETERS; TIME; FLOW AB Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity. C1 [Harp, Dylan R.; Vesselinov, Velimir V.] Los Alamos Natl Lab, Computat Earth Sci Grp, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Harp, DR (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, Div Earth & Environm Sci, MS T003, Los Alamos, NM 87544 USA. EM dharp@lanl.gov RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; Harp, Dylan/0000-0001-9777-8000 FU Environmental Programs Division at the Los Alamos National Laboratory FX The research was funded through various projects supported by the Environmental Programs Division at the Los Alamos National Laboratory. The authors are thankful for the valuable suggestions and comments provided by Kay Birdsell, Jos von Asmuth, Roger D. Congdon, and two anonymous reviewers on draft versions of this paper. The authors are also grateful for the constructive comments provided by the members of D.R.H.'s Ph.D. advisory committee (Bruce Thomson, Gary Weissmann, and John Stormont). NR 39 TC 9 Z9 9 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAY-JUN PY 2011 VL 49 IS 3 BP 403 EP 414 DI 10.1111/j.1745-6584.2010.00725.x PG 12 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 755CE UT WOS:000289903400015 PM 20550585 ER PT J AU Zhang, YQ Hubbard, S Finsterle, S AF Zhang, Yingqi Hubbard, Susan Finsterle, Stefan TI Factors Governing Sustainable Groundwater Pumping near a River SO GROUND WATER LA English DT Article ID HYDRAULIC CONDUCTIVITY; ARTIFICIAL RECHARGE; WATER TRACERS; STREAM WATER; TEMPERATURE; FILTRATION; SEDIMENT; SYSTEMS; HEAT; FLOW AB The objective of this paper was to provide new insights into processes affecting riverbank filtration (RBF). We consider a system with an inflatable dam installed for enhancing water production from downstream collector wells. Using a numerical model, we investigate the impact of groundwater pumping and dam operation on the hydrodynamics in the aquifer and water production. We focus our study on two processes that potentially limit water production of an RBF system: the development of an unsaturated zone and riverbed clogging. We quantify river clogging by calibrating a time-dependent riverbed permeability function based on knowledge of pumping rate, river stage, and temperature. The dynamics of the estimated riverbed permeability reflects clogging and scouring mechanisms. Our results indicate that (1) riverbed permeability is the dominant factor affecting infiltration needed for sustainable RBF production; (2) dam operation can influence pumping efficiency and prevent the development of an unsaturated zone beneath the riverbed only under conditions of sufficient riverbed permeability; (3) slow river velocity, caused by dam raising during summer months, may lead to sedimentation and deposition of fine-grained material within the riverbed, which may clog the riverbed, limiting recharge to the collector wells and contributing to the development of an unsaturated zone beneath the riverbed; and (4) higher river flow velocities, caused by dam lowering during winter storms, scour the riverbed and thus increase its permeability. These insights can be used as the basis for developing sustainable water management of a RBF system. C1 [Zhang, Yingqi; Hubbard, Susan; Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, YQ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM yqzhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015; Hubbard, Susan/E-9508-2010 OI Finsterle, Stefan/0000-0002-4446-9906; FU Sonoma County Water Agency through the U.S. Dept. of Energy [DE-AC02-05CH11231] FX The authors wish to thank Jay Jasperse, George Lincoln, Marcus Trotta, and Donald Seymour (Sonoma County Water Agency) for their support, data and insights, and Michael Kowalsky (LBNL) for his help in setting up the forward model geometry. We greatly appreciate the very constructive comments by the three anonymous reviewers and the editor. We acknowledge the funding support by Sonoma County Water Agency through the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 9 Z9 10 U1 3 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAY-JUN PY 2011 VL 49 IS 3 BP 432 EP 444 DI 10.1111/j.1745-6584.2010.00743.x PG 13 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 755CE UT WOS:000289903400018 PM 20807247 ER PT J AU Brinkman, G Denholm, P Drury, E Margolis, R Mowers, M AF Brinkman, Greg Denholm, Paul Drury, Easan Margolis, Robert Mowers, Matthew TI Toward a Solar-Powered Grid SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Brinkman, Greg; Denholm, Paul; Drury, Easan; Margolis, Robert; Mowers, Matthew] Natl Renewable Energy Lab, Golden, CO USA. RP Brinkman, G (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 4 TC 16 Z9 17 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2011 VL 9 IS 3 BP 24 EP 32 DI 10.1109/MPE.2011.940574 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 755BB UT WOS:000289900500003 ER PT J AU Mills, A Ahlstrom, M Brower, M Ellis, A George, R Hoff, T Kroposki, B Lenox, C Miller, N Milligan, M Stein, J Wan, YH AF Mills, Andrew Ahlstrom, Mark Brower, Michael Ellis, Abraham George, Ray Hoff, Thomas Kroposki, Benjamin Lenox, Carl Miller, Nicholas Milligan, Michael Stein, Joshua Wan, Yih-Huei TI Dark Shadows SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Mills, Andrew] Lawrence Berkeley Lab, Berkeley, CA USA. [Ellis, Abraham; Stein, Joshua] Sandia Natl Labs, Livermore, CA 94550 USA. [George, Ray; Kroposki, Benjamin; Milligan, Michael; Wan, Yih-Huei] Natl Renewable Energy Lab, Golden, CO USA. RP Mills, A (reprint author), Lawrence Berkeley Lab, Berkeley, CA USA. RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 NR 6 TC 27 Z9 27 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2011 VL 9 IS 3 BP 33 EP 41 DI 10.1109/MPE.2011.940575 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 755BB UT WOS:000289900500004 ER PT J AU Ellis, A Behnke, M Keller, J AF Ellis, Abraham Behnke, Mike Keller, James TI Model Makers SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Ellis, Abraham] Sandia Natl Labs, Livermore, CA 94550 USA. [Keller, James] Natl Renewable Energy Lab, Golden, CO USA. RP Ellis, A (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 3 TC 3 Z9 3 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2011 VL 9 IS 3 BP 55 EP 61 DI 10.1109/MPE.2011.940577 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA 755BB UT WOS:000289900500006 ER PT J AU Barham, M White, D AF Barham, Matthew White, Daniel TI Finite Element Simulation of Permanent Magnetoelastic Thin Films SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC) CY MAY 09-12, 2010 CL Chicago, IL SP IEEE DE Finite element method; magnetoelasticity; permanent magnetic material AB We are interested in the deformation of a thin magnetoelastic film. This has many possible applications, such as in microfluidic actuators and sensors. In previous articles a finite element method has been used for transient simulation of the deformation of a film, for the special case of soft magnetic material only. Here the approach is extended to the case of permanent magnetoelastic materials. The key enhancements required for simulation of magnetoelastic materials are a nonlinear hyperelastic Mooney-Rivlin material model, addition of an implicit system of equations for the scalar magnetic potential, and a more complex asymmetric Maxwell stress tensor. A simple test problem was constructed, and simulations for a soft magnetic film and a permanent magnetic film are compared. C1 [Barham, Matthew] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Barham, Matthew; White, Daniel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Barham, M (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM barham2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 6 TC 1 Z9 1 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD MAY PY 2011 VL 47 IS 5 BP 1402 EP 1405 DI 10.1109/TMAG.2010.2088382 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 755EG UT WOS:000289909100136 ER PT J AU Chen, RH Phuoc, TX Martello, D AF Chen, Ruey-Hung Phuoc, Tran X. Martello, Donald TI Surface tension of evaporating nanofluid droplets SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Nanofluids; Surface tension; Evaporating droplet; Stefan's formula ID THERMAL-CONDUCTIVITY ENHANCEMENT; BOILING HEAT-TRANSFER; NANO-FLUIDS; CONTACT-ANGLE; NANOPARTICLES; TEMPERATURE; WATER; MICROLAYER; PARTICLES; DYNAMICS AB Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe(2)O(3) - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chen, Ruey-Hung] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Phuoc, Tran X.; Martello, Donald] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15261 USA. RP Chen, RH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM chenrh@mail.ucf.edu FU DOE FX One of the authors (RHC) is supported by DOE's Faculty Research Participation Program to conduct work at NETL-Pittsburgh. NR 49 TC 33 Z9 36 U1 2 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAY PY 2011 VL 54 IS 11-12 BP 2459 EP 2466 DI 10.1016/j.ijheatmasstransfer.2011.02.016 PG 8 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 753ZN UT WOS:000289820100025 ER PT J AU Sherman, MH Mortensen, DK Walker, IS AF Sherman, Max H. Mortensen, Dorthe K. Walker, Iain S. TI Derivation of equivalent continuous dilution for cyclic, unsteady driving forces SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Dilution; Concentration; Unsteady ventilation ID INDOOR AIR-QUALITY; VENTILATION AB This article uses an analytical approach to determine the dilution of an unsteadily-generated solute in an unsteady solvent stream, under cyclic temporal boundary conditions. The goal is to find a simplified way of showing equivalence of such a process to a reference case where equivalent dilution is defined as a weighted average concentration. This derivation has direct applications to the ventilation of indoor spaces where indoor air quality and energy consumption cannot in general be simultaneously optimized. By solving the equation we can specify how much air we need to use in one ventilation pattern compared to another to obtain same indoor air quality. Because energy consumption is related to the amount of air exchanged by a ventilation system, the equation can be used as a first step to evaluate different ventilation patterns effect on the energy consumption. The use of the derived equation is demonstrated by representative cases of interest in both residential and non-residential buildings. (c) 2011 Elsevier Ltd. All rights reserved. C1 [Sherman, Max H.; Walker, Iain S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mortensen, Dorthe K.] Tech Univ Denmark, Dept Civil Engn, DK-2800 Lyngby, Denmark. RP Sherman, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mhsherman@lbl.gov; dkm@byg.dtu.dk; ISWalker@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 14 TC 4 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAY PY 2011 VL 54 IS 11-12 BP 2696 EP 2702 DI 10.1016/j.ijheatmasstransfer.2010.12.018 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 753ZN UT WOS:000289820100049 ER PT J AU Gilbert, JA Meyer, F Bailey, MJ AF Gilbert, Jack A. Meyer, Folker Bailey, Mark J. TI The Future of microbial metagenomics (or is ignorance bliss?) SO ISME JOURNAL LA English DT Editorial Material ID CALL C1 [Gilbert, Jack A.; Meyer, Folker] Argonne Natl Lab, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Meyer, Folker] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Bailey, Mark J.] NERC Ctr Ecol & Hydrol, Crowmarsh Gifford, Wallingford Oxf, England. RP Gilbert, JA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gilbertjack@anl.gov RI bailey, mark/I-7149-2012; OI bailey, mark/0000-0002-0147-7316; Meyer, Folker/0000-0003-1112-2284 NR 8 TC 20 Z9 20 U1 0 U2 24 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAY PY 2011 VL 5 IS 5 BP 777 EP 779 DI 10.1038/ismej.2010.178 PG 3 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 756OL UT WOS:000290022500001 PM 21107444 ER PT J AU Sowell, SM Abraham, PE Shah, M Verberkmoes, NC Smith, DP Barofsky, DF Giovannoni, SJ AF Sowell, Sarah M. Abraham, Paul E. Shah, Manesh Verberkmoes, Nathan C. Smith, Daniel P. Barofsky, Douglas F. Giovannoni, Stephen J. TI Environmental proteomics of microbial plankton in a highly productive coastal upwelling system SO ISME JOURNAL LA English DT Article DE metaproteomics; marine plankton; OM43 clade ID OLIGOTROPHIC MARINE GAMMAPROTEOBACTERIA; AEROBIC ANOXYGENIC PHOTOSYNTHESIS; OCEAN SAMPLING EXPEDITION; COMMUNITY PROTEOMICS; ROSEOBACTER CLADE; ATLANTIC-OCEAN; OREGON COAST; GENOME; BACTERIOPLANKTON; SCALE AB Metaproteomics is one of a suite of new approaches providing insights into the activities of microorganisms in natural environments. Proteins, the final products of gene expression, indicate cellular priorities, taking into account both transcriptional and posttranscriptional control mechanisms that control adaptive responses. Here, we report the proteomic composition of the < 1.2 mu m fraction of a microbial community from Oregon coast summer surface waters, detected with two-dimensional liquid chromatography coupled with electrospray tandem mass spectrometry. Spectra corresponding to proteins involved in protein folding and biosynthesis, transport, and viral capsid structure were the most frequently detected. A total of 36% of all the detected proteins were best matches to the SAR11 clade, and other abundant coastal microbial clades were also well represented, including the Roseobacter clade (17%), oligotrophic marine gammaproteobacteria group (6%), OM43 clade (1%). Viral origins were attributed to 2.5% of proteins. In contrast to oligotrophic waters, phosphate transporters were not highly detected in this nutrient-rich system. However, transporters for amino acids, taurine, polyamines and glutamine synthetase were among the most highly detected proteins, supporting predictions that carbon and nitrogen are more limiting than phosphate in this environment. Intriguingly, one of the highly detected proteins was methanol dehydrogenase originating from the OM43 clade, providing further support for recent reports that the metabolism of one-carbon compounds by these streamlined methylotrophs might be an important feature of coastal ocean biogeochemistry. The ISME Journal (2011) 5, 856-865; doi:10.1038/ismej.2010.168; published online 11 November 2010 C1 [Giovannoni, Stephen J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Sowell, Sarah M.; Smith, Daniel P.] Oregon State Univ, Mol & Cellular Biol Program, Corvallis, OR 97331 USA. [Abraham, Paul E.; Shah, Manesh; Verberkmoes, Nathan C.] Oak Ridge Natl Lab, Div Chem, Oak Ridge, TN 37831 USA. [Abraham, Paul E.; Shah, Manesh; Verberkmoes, Nathan C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Abraham, Paul E.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN USA. [Barofsky, Douglas F.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. RP Giovannoni, SJ (reprint author), Oregon State Univ, Dept Microbiol, 220 Nash Hall, Corvallis, OR 97331 USA. EM steve.giovannoni@oregonstate.edu RI Abraham, Paul/K-5599-2015 FU Gordon and Betty Moore Foundation; US Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX We thank the crew of the Elaka and Joshua Kitner for their help in sample collection, and Francis Chan for data and discussions about oceanographic conditions. This work was supported in part by a Marine Microbiology Initiative Investigator Award from the Gordon and Betty Moore Foundation. Additional sponsorship was received from the US Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 52 TC 69 Z9 71 U1 1 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD MAY PY 2011 VL 5 IS 5 BP 856 EP 865 DI 10.1038/ismej.2010.168 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 756OL UT WOS:000290022500009 PM 21068774 ER PT J AU Stein, LY Bringel, F DiSpirito, AA Han, S Jetten, MSM Kalyuzhnaya, MG Kits, KD Klotz, MG den Camp, HJMO Semrau, JD Vuilleumier, S Bruce, DC Cheng, JF Davenport, KW Goodwin, L Han, SS Hauser, L Lajus, A Land, ML Lapidus, A Lucas, S Medigue, C Pitluck, S Woyke, T AF Stein, Lisa Y. Bringel, Francoise DiSpirito, Alan A. Han, Sukkyun Jetten, Mike S. M. Kalyuzhnaya, Marina G. Kits, K. Dimitri Klotz, Martin G. den Camp, Huub J. M. Op Semrau, Jeremy D. Vuilleumier, Stephane Bruce, David C. Cheng, Jan-Fang Davenport, Karen W. Goodwin, Lynne Han, Shunsheng Hauser, Loren Lajus, Aurelie Land, Miriam L. Lapidus, Alla Lucas, Susan Medigue, Claudine Pitluck, Sam Woyke, Tanja TI Genome Sequence of the Methanotrophic Alphaproteobacterium Methylocystis sp Strain Rockwell (ATCC 49242) SO JOURNAL OF BACTERIOLOGY LA English DT Article ID METHANE OXIDATION; BACTERIA; ACETATE; GROWTH; OB3B; SOIL AB Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase but no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales. C1 [Stein, Lisa Y.] Univ Alberta, Dept Biol Sci, Ctr Biol Sci CW405, Edmonton, AB T6G 2E9, Canada. [Bringel, Francoise; Vuilleumier, Stephane] Univ Strasbourg, CNRS, UMR 7156, F-67000 Strasbourg, France. [DiSpirito, Alan A.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Jetten, Mike S. M.; den Camp, Huub J. M. Op] Radboud Univ Nijmegen, Dept Microbiol, IWWR, NL-6525 AJ Nijmegen, Netherlands. [Kalyuzhnaya, Marina G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Klotz, Martin G.] Univ Louisville, Dept Biol, Louisville, KY 40292 USA. [Klotz, Martin G.] Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40292 USA. [Semrau, Jeremy D.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Bruce, David C.; Davenport, Karen W.; Goodwin, Lynne; Han, Shunsheng] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div Genome Sci B6, Los Alamos, NM 87545 USA. [Cheng, Jan-Fang; Lapidus, Alla; Lucas, Susan; Pitluck, Sam; Woyke, Tanja] US DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Hauser, Loren; Land, Miriam L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Lajus, Aurelie; Medigue, Claudine] Genoscope IG CEA, Lab Anal Bioinformat Genom & Metab LABGem, F-91057 Evry, France. RP Stein, LY (reprint author), Univ Alberta, Dept Biol Sci, Ctr Biol Sci CW405, Edmonton, AB T6G 2E9, Canada. EM lisa.stein@ualberta.ca RI Vuilleumier, Stephane/D-2647-2012; Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Stein, Lisa/A-3760-2014; Jetten, Mike/B-8834-2011; Op den Camp, Huub/F-5114-2011; Land, Miriam/A-6200-2011; Klotz, Martin/D-2091-2009; Stein, Lisa/E-6374-2016 OI Vuilleumier, Stephane/0000-0003-2232-7023; Kalyuzhnaya, Marina/0000-0002-9058-7794; Lapidus, Alla/0000-0003-0427-8731; Jetten, Mike/0000-0002-4691-7039; Op den Camp, Huub/0000-0003-1990-9030; Land, Miriam/0000-0001-7102-0031; Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022 FU Natural Sciences and Engineering Research Council; DOE [DE-SC0005154]; University of Louisville EVPR office; GIS; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX Support for Lisa Y. Stein was from the Natural Sciences and Engineering Research Council. Marina G. Kalyuzhnaya was supported by the DOE (DE-SC0005154). Martin G. Klotz was supported by incentive funds from the University of Louisville EVPR office. Work in Stephane Vuilleumier's group on this project was supported by a GIS IbiSA-Genoscope grant. The work conducted by the U.S. DOE Joint Genome Institute was supported by the Office of Science of the U.S. DOE under contract DE-AC02-05CH11231. NR 18 TC 21 Z9 21 U1 5 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2011 VL 193 IS 10 BP 2668 EP 2669 DI 10.1128/JB.00278-11 PG 2 WC Microbiology SC Microbiology GA 756AG UT WOS:000289983100035 PM 21441518 ER PT J AU Pauls, RE AF Pauls, R. E. TI Fast Gas Chromatographic Separation of Biodiesel SO JOURNAL OF CHROMATOGRAPHIC SCIENCE LA English DT Article ID ACID METHYL-ESTERS; RESPONSE FACTORS; SPEED C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Pauls, RE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repauls@sbcglobal.net NR 20 TC 3 Z9 3 U1 1 U2 2 PU PRESTON PUBL INC PI NILES PA 6600 W TOUHY AVE, NILES, IL 60714-4588 USA SN 0021-9665 J9 J CHROMATOGR SCI JI J. Chromatogr. Sci. PD MAY-JUN PY 2011 VL 49 IS 5 BP 370 EP 374 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 755II UT WOS:000289922200005 PM 21549028 ER PT J AU Pauls, RE AF Pauls, R. E. TI A Review of Chromatographic Characterization Techniques for Biodiesel and Biodiesel Blends SO JOURNAL OF CHROMATOGRAPHIC SCIENCE LA English DT Review ID FATTY-ACID METHYL; 2-DIMENSIONAL GAS-CHROMATOGRAPHY; SUPERCRITICAL-FLUID CHROMATOGRAPHY; PERFORMANCE LIQUID-CHROMATOGRAPHY; SIZE-EXCLUSION CHROMATOGRAPHY; TRANSESTERIFIED VEGETABLE-OILS; EVAPORATIVE LIGHT-SCATTERING; IONIZATION MASS-SPECTROMETRY; NEAR-INFRARED SPECTROSCOPY; THIN-LAYER-CHROMATOGRAPHY C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Pauls, RE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repauls@sbcglobal.net NR 170 TC 22 Z9 22 U1 4 U2 23 PU PRESTON PUBL INC PI NILES PA 6600 W TOUHY AVE, NILES, IL 60714-4588 USA SN 0021-9665 J9 J CHROMATOGR SCI JI J. Chromatogr. Sci. PD MAY-JUN PY 2011 VL 49 IS 5 BP 384 EP 396 PG 13 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 755II UT WOS:000289922200008 PM 21549031 ER PT J AU Hesterberg, D Duff, MC Dixon, JB Vepraskas, MJ AF Hesterberg, Dean Duff, Martine C. Dixon, Joe B. Vepraskas, Michael J. TI X-ray Microspectroscopy and Chemical Reactions in Soil Microsites SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID ABSORPTION SPECTROSCOPY; HEXAVALENT CHROMIUM; PHOSPHATE SORPTION; CR(III) OXIDATION; SULFIDE; SPECIATION; REDUCTION; SPECTROMICROSCOPY; OXIDES; WATER AB Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro-(or nano-) reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants. C1 [Hesterberg, Dean; Vepraskas, Michael J.] N Carolina State Univ, Dept Soil Sci, Raleigh, NC 27695 USA. [Duff, Martine C.] Washington Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. [Dixon, Joe B.] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA. RP Hesterberg, D (reprint author), N Carolina State Univ, Dept Soil Sci, Box 7619, Raleigh, NC 27695 USA. EM dean_hesterberg@ncsu.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors are grateful to Ms. Kimberly Hutchison for laboratory analyses, to Dr. Jeff Chou (now at NIEHS) for assistance with bulk XAS analysis, and to Mr. Rob Austin for producing the map and aerial photograph in Fig. 1. We thank Dr. Markus Grafe (CSIRO, Australian Minerals Research Center) for a critical review of a version of the manuscript and for supplying Cu-sulfide standards, Dr. Suzanne Beauchemin (Natural Resources Canada-CANMET) for supplying Zn standards, and Drs. Shelly Kelly (Biosciences Division, Argonne National Laboratory) and Juergen Thieme (NSLS II, Brookhaven National Laboratory) for insightful discussions on molecular coordination and spatial scales. Funding and support for this research came from the U. S. Marine Corps, a Dupont Educational Aid Grant, and the North Carolina Agricultural Experiment Station. Part of this research was conducted at Beamlines X26A and X11A at the National Synchrotron Light Source, Brookhaven National Laboratory. We appreciate assistance of the beamline scientists-Drs. Antonio Lanzirotti (X26A) and Kumi Pandya (X11A). Use of the National Synchrotron Light Source, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 66 TC 16 Z9 17 U1 2 U2 24 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD MAY PY 2011 VL 40 IS 3 BP 667 EP 678 DI 10.2134/jeq2010.0140 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA 754VO UT WOS:000289886000002 PM 21546654 ER PT J AU Grafe, M Landers, M Tappero, R Austin, P Gan, B Grabsch, A Klauber, C AF Graefe, Markus Landers, Matthew Tappero, Ryan Austin, Peter Gan, Bee Grabsch, Alton Klauber, Craig TI Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemical Speciation of Trace Metals SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID GOETHITE ALPHA-FEOOH; SMELTER-CONTAMINATED SOIL; RED MUD; ABSORPTION SPECTROSCOPY; STRUCTURAL VANADIUM; EXAFS SPECTROSCOPY; SANDY SOILS; BAUXITE; RESIDUE; ZINC AB We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e. g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mu XANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mu XANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure. C1 [Graefe, Markus; Landers, Matthew; Austin, Peter; Gan, Bee; Grabsch, Alton; Klauber, Craig] CSIRO Proc Sci & Engn, Australian Minerals Res Ctr, Waterford, WA 6152, Australia. [Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Grafe, M (reprint author), CSIRO Proc Sci & Engn, Australian Minerals Res Ctr, 7 Conlon St, Waterford, WA 6152, Australia. EM markus.grafe@csiro.au RI Klauber, Craig/F-8522-2013; Gan, Bee/B-3818-2009 OI Klauber, Craig/0000-0003-1684-581X; NR 46 TC 7 Z9 7 U1 4 U2 25 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD MAY PY 2011 VL 40 IS 3 BP 767 EP 783 DI 10.2134/jeq2010.0214 PG 17 WC Environmental Sciences SC Environmental Sciences & Ecology GA 754VO UT WOS:000289886000010 PM 21546662 ER PT J AU Chae, KH AF Chae, Kyu-Hyun TI The coevolution of the velocity and mass functions of galaxies and dark haloes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies: evolution; galaxies: formation; galaxies: haloes; galaxies: kinematics and dynamics; galaxies: statistics; galaxies: structure ID LENS ACS SURVEY; HIGH-REDSHIFT GALAXIES; LUMINOUS RED GALAXIES; VLT DEEP SURVEY; SIMILAR-TO 2; STELLAR MASS; MATTER HALOES; DENSITY PROFILE; OCCUPATION DISTRIBUTION; ULTRADEEP SPECTROSCOPY AB We employ a bias-corrected abundance-matching technique to investigate the coevolution of the Lambda cold dark matter (Lambda CDM) dark halo mass function (HMF), the observationally derived velocity dispersion and stellar mass functions (VDF, SMF) of galaxies between z = 1 and 0. We use for the first time the evolution of the VDF constrained through strong lensing statistics by Chae for galaxy-halo abundance-matching studies. As a local benchmark we use a couple of z similar to 0 VDFs [a Monte Carlo realized VDF based on Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) and a directly measured VDF based on SDSS DR6]. We then focus on connecting the VDF evolution to the HMF evolution predicted by N-body simulations and the SMF evolution constrained by galaxy surveys. On the VDF-HMF connection, we find that the local dark halo virial mass-central stellar velocity dispersion (M-vir-Sigma) relation is in good agreement with the individual properties of well-studied low-redshift dark haloes, and the VDF evolution closely parallels the HMF evolution meaning little evolution in the M-vir-Sigma relation. On the VDF-SMF connection, it is also likely that the stellar mass-stellar velocity dispersion (M-star-Sigma) relation evolves little, taking the abundance-matching results together with other independent observational results and hydrodynamic simulation results. Our results support the simple picture that as the halo grows hierarchically, the stellar mass and the central stellar velocity dispersion grow in parallel. We discuss possible implications of this parallel coevolution for galaxy formation and evolution under the Lambda CDM paradigm. C1 [Chae, Kyu-Hyun] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Chae, Kyu-Hyun] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM chae@sejong.ac.kr NR 110 TC 6 Z9 6 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2011 VL 413 IS 2 BP 887 EP 900 DI 10.1111/j.1365-2966.2010.18181.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 755CQ UT WOS:000289904600013 ER PT J AU Hu, TT Pattyn, P Bakker, EG Cao, J Cheng, JF Clark, RM Fahlgren, N Fawcett, JA Grimwood, J Gundlach, H Haberer, G Hollister, JD Ossowski, S Ottilar, RP Salamov, AA Schneeberger, K Spannagl, M Wang, X Yang, L Nasrallah, ME Bergelson, J Carrington, JC Gaut, BS Schmutz, J Mayer, KFX de Peer, YV Grigoriev, IV Nordborg, M Weigel, D Guo, YL AF Hu, Tina T. Pattyn, Pedro Bakker, Erica G. Cao, Jun Cheng, Jan-Fang Clark, Richard M. Fahlgren, Noah Fawcett, Jeffrey A. Grimwood, Jane Gundlach, Heidrun Haberer, Georg Hollister, Jesse D. Ossowski, Stephan Ottilar, Robert P. Salamov, Asaf A. Schneeberger, Korbinian Spannagl, Manuel Wang, Xi Yang, Liang Nasrallah, Mikhail E. Bergelson, Joy Carrington, James C. Gaut, Brandon S. Schmutz, Jeremy Mayer, Klaus F. X. de Peer, Yves Van Grigoriev, Igor V. Nordborg, Magnus Weigel, Detlef Guo, Ya-Long TI The Arabidopsis lyrata genome sequence and the basis of rapid genome size change SO NATURE GENETICS LA English DT Article ID TRANSPOSABLE ELEMENTS; DNA LOSS; ANGIOSPERM GENOMES; EUKARYOTIC GENOME; THALIANA; EVOLUTION; PLANTS; ALIGNMENT; IDENTIFICATION; EXPANSION AB We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3x dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis. C1 [Cao, Jun; Clark, Richard M.; Schneeberger, Korbinian; Weigel, Detlef; Guo, Ya-Long] Max Planck Inst Dev Biol, Dept Mol Biol, Tubingen, Germany. [Hu, Tina T.; Nordborg, Magnus] Univ So Calif, Los Angeles, CA USA. [Pattyn, Pedro; Fawcett, Jeffrey A.; de Peer, Yves Van] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Pattyn, Pedro; Fawcett, Jeffrey A.; de Peer, Yves Van] Univ Ghent, Dept Plant Biotechnol & Genet, B-9000 Ghent, Belgium. [Bakker, Erica G.; Bergelson, Joy] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Bakker, Erica G.; Fahlgren, Noah; Carrington, James C.] Oregon State Univ, Ctr Genome Res & Biocomp, Corvallis, OR 97331 USA. [Bakker, Erica G.] Oregon State Univ, Dept Hort, Corvallis, OR 97331 USA. [Cheng, Jan-Fang; Grimwood, Jane; Ottilar, Robert P.; Salamov, Asaf A.; Schmutz, Jeremy; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Fahlgren, Noah; Carrington, James C.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Grimwood, Jane; Schmutz, Jeremy] Hudson Alpha Inst Biotechnol, Hudson Alpha Genome Sequencing Ctr, Huntsville, AL USA. [Gundlach, Heidrun; Haberer, Georg; Spannagl, Manuel; Wang, Xi; Mayer, Klaus F. X.] Helmholtz Ctr Munich, Munich Informat Ctr Prot Sequences, Inst Bioinformat & Syst Biol, Neuherberg, Germany. [Hollister, Jesse D.; Yang, Liang; Gaut, Brandon S.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92717 USA. [Nasrallah, Mikhail E.] Cornell Univ, Dept Plant Biol, Ithaca, NY USA. [Nordborg, Magnus] Austrian Acad Sci, Gregor Mendel Inst, A-1010 Vienna, Austria. RP Weigel, D (reprint author), Max Planck Inst Dev Biol, Dept Mol Biol, Tubingen, Germany. EM weigel@weigelworld.org; ya-long.guo@hotmail.com RI Ossowski, Stephan/E-2139-2011; Fawcett, Jeffrey/B-4145-2008; Weigel, Detlef/C-1418-2008; Cao, Jun/E-5422-2012; Schmutz, Jeremy/N-3173-2013; Carrington, James/A-4656-2012; Mayer, Klaus/M-7941-2015; Fahlgren, Noah/D-4404-2011; ?, ??/G-4742-2011 OI Ossowski, Stephan/0000-0002-7416-9568; Weigel, Detlef/0000-0002-2114-7963; Schmutz, Jeremy/0000-0001-8062-9172; Carrington, James/0000-0003-3572-129X; Mayer, Klaus/0000-0001-6484-1077; Fahlgren, Noah/0000-0002-5597-4537; ?, ??/0000-0002-4643-4889 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [DEB-0723860, DEB-0723935, MCB-0618433, IOS-0744579]; NIH [GM057994]; German Federal Ministry of Education and Research [GABI-DUPLO 0315055]; Deutsche Forschungsgemeinschaft; Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT); Inter-University Network for Fundamental Research [P6/25]; Austria Academy of Sciences; Max Planck Society; Deutsche Forschungsgemeinschaft (DFG) FX The US Department of Energy Joint Genome Institute (JGI) provided sequencing and analyses under the Community Sequencing Program supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We are particularly grateful to D. Rokhsar and K. Barry for providing leadership for the project at JGI. We thank J. Borevitz, A. Hall, C. Langley, J. Nasrallah, B. Neuffer, O. Savolainen and S. Wright for contributing to the initial sequencing proposal submitted to the Community Sequencing Program at JGI, C. Lanz and K. Lett for technical assistance, and P. Andolfatto and R. Wing for comments on the manuscript. This work was supported by National Science Foundation (NSF) DEB-0723860 (B.S.G.), NSF DEB-0723935 (M.N.), NSF MCB-0618433 (J.C.C.), NSF IOS-0744579 (M.E.N.), NIH GM057994 (J.B.), grant GABI-DUPLO 0315055 of the German Federal Ministry of Education and Research (K.F.X.M.), ERA-NET on Plant Genomics (ERA-PG) grant ARelatives from the Deutsche Forschungsgemeinschaft (D.W.) and Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) and the Inter-University Network for Fundamental Research (P6/25, BioMaGNet) (Y.V.d.P.), a Gottfried Wilhelm Leibniz Award of Deutsche Forschungsgemeinschaft (DFG) (D.W.), the Austria Academy of Sciences (M.N.) and the Max Planck Society (D.W. and Y.-L.G.). NR 65 TC 350 Z9 384 U1 10 U2 117 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD MAY PY 2011 VL 43 IS 5 BP 476 EP + DI 10.1038/ng.807 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA 755XF UT WOS:000289972600020 PM 21478890 ER PT J AU Smith, FA Elliott, SM Lyons, SK AF Smith, Felisa A. Elliott, Scott M. Lyons, S. Kathleen TI Methane and megafauna reply SO NATURE GEOSCIENCE LA English DT Letter ID RATES; EMISSIONS; LAKES; TIME C1 [Smith, Felisa A.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Elliott, Scott M.] Los Alamos Natl Lab, Climate Ocean Sea Ice Modeling Team, Los Alamos, NM 87545 USA. [Lyons, S. Kathleen] Smithsonian Inst, Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20013 USA. RP Smith, FA (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM fasmith@unm.edu NR 12 TC 1 Z9 1 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2011 VL 4 IS 5 BP 272 EP 272 DI 10.1038/ngeo1149 PG 1 WC Geosciences, Multidisciplinary SC Geology GA 756MP UT WOS:000290016000003 ER PT J AU Ellis, B Mayer, MA Shambat, G Sarmiento, T Harris, J Haller, EE Vuckovic, J AF Ellis, Bryan Mayer, Marie A. Shambat, Gary Sarmiento, Tomas Harris, James Haller, Eugene E. Vuckovic, Jelena TI Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser SO NATURE PHOTONICS LA English DT Article AB Efficient, low-threshold and compact semiconductor laser sources are under investigation for many applications in highspeed communications, information processing and optical interconnects. The best edge-emitting and vertical-cavity surface-emitting lasers have thresholds on the order of 100 mu A (refs 1,2), but dissipate too much power to be practical for many applications, particularly optical interconnects(3). Optically pumped photonic-crystal nanocavity lasers represent the state of the art in low-threshold lasers(4,5); however, to be practical, techniques to electrically pump these structures must be developed. Here, we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p-i-n junction formed by ion implantation. Continuous-wave lasing is observed at temperatures up to 150 K. Thresholds of only 181 nA at 50 K and 287 nA at 150 K are observed-the lowest thresholds ever observed in any type of electrically pumped laser. C1 [Ellis, Bryan; Shambat, Gary; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA. RP Ellis, B (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM jela@stanford.edu OI Sarmiento, Tomas/0000-0002-9176-4094 FU Stanford Graduate Fellowship; National Science Foundation; Interconnect Focus Center; Air Force Office of Scientific Research Multidisciplinary Research Initiative for Complex and Robust On-chip Nanophotonics [FA9550-09-1-0704]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231] FX B. E. and G. S. were supported by the Stanford Graduate Fellowship. G. S. is also supported by the National Science Foundation graduate research fellowship program. The authors acknowledge support from the Interconnect Focus Center, the Air Force Office of Scientific Research Multidisciplinary Research Initiative for Complex and Robust On-chip Nanophotonics (G. Pomrenke; grant no. FA9550-09-1-0704), and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors would like to thank I. Fushman for helpful discussions and M. Hilton of Veeco Instruments for advice regarding SCM. Work was performed in part at the Stanford Nanofabrication Facility of National Nanotechnology Infrastructure Network, supported by the National Science Foundation. NR 25 TC 192 Z9 192 U1 14 U2 84 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD MAY PY 2011 VL 5 IS 5 BP 297 EP 300 DI 10.1038/NPHOTON.2011.51 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 756MI UT WOS:000290014900020 ER PT J AU Agostini, M Terry, JL Scarin, P Zweben, SJ AF Agostini, M. Terry, J. L. Scarin, P. Zweben, S. J. TI Edge turbulence in different density regimes in Alcator C-Mod experiment SO NUCLEAR FUSION LA English DT Article ID SCRAPE-OFF-LAYER; PUFF IMAGING EXPERIMENTS; FLUCTUATION STRUCTURES; TOKAMAK PLASMA; INTERMITTENCY; FLOW AB Plasma edge turbulence of Alcator C-Mod tokamak is studied with a fast camera in different density regimes. The statistical properties of the fluctuations, as well as the behaviour of the blobs, are characterized in plasma discharges at different normalized densities, studying the link between the edge turbulence and the Greenwald limit. It is shown that approaching the Greenwald density limit, the edge velocity field measured with the cross-correlation technique changes and the strong fluctuations, which for standard discharges develop mainly outside the separatrix, extend also in the radial region inside the last closed flux surface. At the same time, the blobs cover a larger radial region, suggesting a strong impact of the edge turbulence and transport on the Greenwald limit. C1 [Agostini, M.; Scarin, P.] Assoc EURATOM Enea Fus, Consorzio RFX, I-35127 Padua, Italy. [Terry, J. L.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02138 USA. [Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Agostini, M (reprint author), Assoc EURATOM Enea Fus, Consorzio RFX, Cso Stati Uniti 4, I-35127 Padua, Italy. EM matteo.agostini@igi.cnr.it OI AGOSTINI, MATTEO/0000-0002-3823-1002 FU US Department of Energy [DE-FC02-99ER54512]; European Communities FX This work was supported by the US Department of Energy Cooperative Agreement No. DE-FC02-99ER54512 and by the European Communities under the Contract of Association between EURATOM and ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 35 TC 10 Z9 10 U1 0 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2011 VL 51 IS 5 AR 053020 DI 10.1088/0029-5515/51/5/053020 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 755MU UT WOS:000289937000021 ER PT J AU Park, YS Sabbagh, SA Berkery, JW Bialek, JM Jeon, YM Hahn, SH Eidietis, N Evans, TE Yoon, SW Ahn, JW Kim, J Yang, HL You, KI Bae, YS Chung, J Kwon, M Oh, YK Kim, WC Kim, JY Lee, SG Park, HK Reimerdes, H Leuer, J Walker, M AF Park, Y. S. Sabbagh, S. A. Berkery, J. W. Bialek, J. M. Jeon, Y. M. Hahn, S. H. Eidietis, N. Evans, T. E. Yoon, S. W. Ahn, J. -W. Kim, J. Yang, H. L. You, K. -I. Bae, Y. S. Chung, J. Kwon, M. Oh, Y. K. Kim, W. -C. Kim, J. Y. Lee, S. G. Park, H. K. Reimerdes, H. Leuer, J. Walker, M. TI KSTAR equilibrium operating space and projected stabilization at high normalized beta SO NUCLEAR FUSION LA English DT Article ID TOKAMAK AB Along with an expanded evaluation of the equilibrium operating space of the Korea Superconducting Tokamak Advanced Research, KSTAR, experimental equilibria of the most recent plasma discharges were reconstructed using the EFIT code. In near-circular plasmas created in 2009, equilibria reached a stored energy of 54 kJ with a maximum plasma current of 0.34 MA. Highly shaped plasmas with near double-null configuration in 2010 achieved H-mode with clear edge localized mode (ELM) activity, and transiently reached a stored energy of up to 257 kJ, elongation of 1.96 and normalized beta of 1.3. The plasma current reached 0.7 MA. Projecting active and passive stabilization of global MHD instabilities for operation above the ideal no-wall beta limit using the designed control hardware was also considered. Kinetic modification of the ideal MHD n = 1 stability criterion was computed by the MISK code on KSTAR theoretical equilibria with a plasma current of 2 MA, internal inductance of 0.7 and normalized beta of 4.0 with simple density, temperature and rotation profiles. The steep edge pressure gradient of this equilibrium resulted in the need for significant plasma toroidal rotation to allow thermal particle kinetic resonances to stabilize the resistive wall mode (RWM). The impact of various materials and electrical connections of the passive stabilizing plates on RWM growth rates was analysed, and copper plates reduced the RWM passive growth rate by a factor of 15 compared with stainless steel plates at a normalized beta of 4.4. Computations of active RWM control using the VALEN code showed that the n = 1 mode can be stabilized at normalized beta near the ideal wall limit via control fields produced by the midplane in-vessel control coils (IVCCs) with as low as 0.83kW control power using ideal control system assumptions. The ELM mitigation potential of the IVCC, examined by evaluating the vacuum island overlap created by resonant magnetic perturbations, was analysed using the TRIP3D code. Using a combination of all IVCCs with dominant n = 2 field and upper/lower coils in an even parity configuration, a Chirikov parameter near unity at normalized poloidal flux 0.83, an empirically determined condition for ELM mitigation in DIII-D, was generated in theoretical high-beta equilibria. Chirikov profile optimization was addressed in terms of coil parity and safety factor profile. C1 [Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Reimerdes, H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Jeon, Y. M.; Hahn, S. H.; Yoon, S. W.; Kim, J.; Yang, H. L.; You, K. -I.; Bae, Y. S.; Chung, J.; Kwon, M.; Oh, Y. K.; Kim, W. -C.; Kim, J. Y.; Lee, S. G.] Natl Fus Res Inst, Taejon, South Korea. [Eidietis, N.; Evans, T. E.; Leuer, J.; Walker, M.] Gen Atom Co, San Diego, CA USA. [Ahn, J. -W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Park, H. K.] Pohang Univ Sci & Technol, Pohang, South Korea. [Reimerdes, H.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1007 Lausanne, Switzerland. RP Park, YS (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM ypark@pppl.gov RI Sabbagh, Steven/C-7142-2011; OI Walker, Michael/0000-0002-4341-994X FU US Department of Energy [DE-FG02-99ER54524] FX This research was supported by the US Department of Energy under contract DE-FG02-99ER54524. NR 17 TC 21 Z9 21 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2011 VL 51 IS 5 AR 053001 DI 10.1088/0029-5515/51/5/053001 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 755MU UT WOS:000289937000002 ER PT J AU von Thun, CP Perona, A Johnson, T Reich, M Sharapov, SE Kiptily, VG Cecconello, M Salmi, A Goloborod'ko, VY Pinches, SD Garcia-Munoz, M Darrow, D Brix, M Voitsekhovitch, I AF von Thun, C. Perez Perona, A. Johnson, T. Reich, M. Sharapov, S. E. Kiptily, V. G. Cecconello, M. Salmi, A. Goloborod'ko, V. Ya Pinches, S. D. Garcia-Munoz, M. Darrow, D. Brix, M. Voitsekhovitch, I. CA JET EFDA Contributors TI Numerical simulation of fast ion loss detector measurements for fishbones on JET SO NUCLEAR FUSION LA English DT Article ID TOROIDAL PLASMAS; MAGNETOHYDRODYNAMICS; CONFINEMENT; PRODUCTS; TOKAMAK; MODES AB A synthetic diagnostic model for the simulation of energy and pitch angle resolved measurements of fast ion losses obtained by 2D scintillation-type detectors is presented and subsequently tested on a JET discharge with fishbones (previously documented in Perez von Thun et al 2010 Nucl. Fusion 50 084009). The simulated energy and pitch angle distributions at the detector are found to be in excellent agreement with the measurements. The simulations further suggest that nearly all the fast ion losses take place in the early growth phase of the fishbone cycle, and reach their maximum well ahead of the magnetic perturbation peak. C1 [von Thun, C. Perez; Reich, M.; Garcia-Munoz, M.] EURATOM Assoc IPP, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Perona, A.] Politecn Torino, Burning Plasma Res Grp, I-10129 Turin, Italy. [Johnson, T.] KTH, EES, EURATOM VR Assoc, S-10044 Stockholm, Sweden. [Sharapov, S. E.; Kiptily, V. G.; Pinches, S. D.; Brix, M.; Voitsekhovitch, I.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Cecconello, M.] Uppsala Univ, Dept Phys & Astron, EURATOM VR Assoc, S-75120 Uppsala, Sweden. [Salmi, A.] Helsinki Univ Technol, Assoc EURATOM Tekes, Helsinki, Finland. [Goloborod'ko, V. Ya] Univ Innsbruck, Inst Theoret Phys, Assoc EURATOM OEAW, A-6020 Innsbruck, Austria. [Darrow, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [JET EFDA Contributors] JET EFDA Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP von Thun, CP (reprint author), EURATOM Assoc IPP, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. EM Christian.Perez.Von.Thun@jet.efda.org RI garcia-munoz, manuel/C-6825-2008; Salmi, Antti/I-7413-2013 OI garcia-munoz, manuel/0000-0002-3241-502X; FU European Communities FX This work, supported by the European Communities under the contract of Association between EURATOM and Max-Planck Institut fur Plasmaphysik, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 21 TC 5 Z9 5 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2011 VL 51 IS 5 AR 053003 DI 10.1088/0029-5515/51/5/053003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 755MU UT WOS:000289937000004 ER PT J AU Wagner, JC AF Wagner, John C. TI FOREWORD SPECIAL ISSUE ON THE SCALE NUCLEAR ANALYSIS CODE SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wagner, JC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Wagner, John/K-3644-2015 OI Wagner, John/0000-0003-0257-4502 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 125 EP 125 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200001 ER PT J AU Bowman, SM AF Bowman, S. M. TI SCALE 6: COMPREHENSIVE NUCLEAR SAFETY ANALYSIS CODE SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Article DE reactor physics; sensitivity/uncertainty; criticality safety ID SENSITIVITY AB Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bowman, SM (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM bowmansm@ornl.gov OI Bowman, Stephen/0000-0002-3717-2063 NR 56 TC 45 Z9 46 U1 4 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 126 EP 148 PG 23 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200002 ER PT J AU Williams, ML AF Williams, Mark L. TI RESONANCE SELF-SHIELDING METHODOLOGIES IN SCALE 6 SO NUCLEAR TECHNOLOGY LA English DT Article DE continuous-energy discrete ordinates; self-shielding; SCALE ID NEUTRON; ENDF/B-VII.0 AB SCALE 6 includes several problem-independent multi-group (MG) libraries that were processed from the evaluated nuclear data file ENDF/B using a generic flux spectrum. The library data must be self-shielded and corrected for problem-specific spectral effects for use in MG neutron transport calculations. SCALE 6 computes problem-dependent MG cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic continuous-energy (CE) calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The CE calculation can be performed using an infinite medium approximation, a simplified two-region method for lattices, or a one-dimensional discrete ordinates transport calculation with pointwise (PW) cross-section data. This paper describes the SCALE-resonance self-shielding methodologies, including the deterministic calculation of the CE flux spectra using PW nuclear data and the method for using CE spectra to produce problem-specific MG cross sections for various configurations (including doubly heterogeneous lattices). It also presents results of verification and validation studies. C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Williams, ML (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700,MS 6170, Oak Ridge, TN 37831 USA. EM williamsml@ornl.gov NR 29 TC 16 Z9 16 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 149 EP 168 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200003 ER PT J AU Gauld, IC Radulescu, G Ilas, G Murphy, BD Williams, ML Wiarda, D AF Gauld, Ian C. Radulescu, Georgeta Ilas, Germina Murphy, Brian D. Williams, Mark L. Wiarda, Dorothea TI ISOTOPIC DEPLETION AND DECAY METHODS AND ANALYSIS CAPABILITIES IN SCALE SO NUCLEAR TECHNOLOGY LA English DT Article DE neutron transmutation; isotopic inventory; neutron gamma-ray sources ID THERMAL-NEUTRON FISSION; PRODUCT ENERGY-RELEASE; PU-239; U-235; HEAT AB The calculation of fuel isotopic compositions is essential to support design, safety analysis, and licensing of many components of the nuclear fuel cycle from reactor physics and severe accident analysis to back-end fuel cycle issues, including spent-fuel storage and transportation, reprocessing, and radioactive waste management. Versions of the ORIGEN code, developed by Oak Ridge National Laboratory, have been used worldwide for isotopic depletion and decay analysis for more than three decades. The supported version of ORIGEN, maintained as the depletion analysis module for SCALE 6, performs detailed time-dependent isotopic generation and depletion for 1946 nuclides for reactor fuel and activation analysis. Stand-alone ORIGEN calculations can be performed using cross-section libraries developed for a wide range of reactor types and fuel designs used worldwide, including light water reactors UO(2) and MOX, CANDU, VVER 440 and 1000, RBMK, and graphite reactors. Alternatively, within SCALE 6, ORIGEN can be automatically coupled to two-dimensional discrete ordinates or three-dimensional Monte Carlo transport solvers that provide problem-dependent cross sections for use in the ORIGEN depletion calculation. The hybrid ability to function as either a stand-alone or coupled depletion code provides ORIGEN advanced capabilities to simulate a broad range of applications for various reactor systems. The nuclear data libraries in ORIGEN have been significantly improved recently, using modern ENDF/B nuclear data evaluations. The most recent developments in SCALE 6.1 include the addition of ENDF/B-VII decay data, energy-dependent fission yields, and fine-group ORIGEN neutron cross sections based on the JEFF-3.0/A special purpose activation files. Advanced methods and data for neutron and gamma source energy spectral analysis are also available in the current version of the code. The ORIGEN code and associated nuclear data libraries have been extensively validated against experimental data that include spent nuclear fuel isotopic assay data for actinides and fission products, radiation source spectra, and decay heat measurements. C1 [Gauld, Ian C.; Radulescu, Georgeta; Ilas, Germina; Murphy, Brian D.; Williams, Mark L.; Wiarda, Dorothea] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gauld, IC (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700,MS 6170, Oak Ridge, TN 37831 USA. EM gauldi@ornl.gov OI Radulescu, Georgeta/0000-0001-7664-1718; Gauld, Ian/0000-0002-3893-7515; Ilas, Germina/0000-0003-4222-6393 NR 101 TC 32 Z9 32 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 169 EP 195 PG 27 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200004 ER PT J AU DeHart, MD Bowman, SM AF DeHart, Mark D. Bowman, Stephen M. TI REACTOR PHYSICS METHODS AND ANALYSIS CAPABILITIES IN SCALE SO NUCLEAR TECHNOLOGY LA English DT Article DE lattice physics; reactor analysis; TRITON AB The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs. C1 [DeHart, Mark D.; Bowman, Stephen M.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP DeHart, MD (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM BowmanSM@ornl.gov OI Bowman, Stephen/0000-0002-3717-2063 NR 35 TC 23 Z9 25 U1 2 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 196 EP 213 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200005 ER PT J AU Goluoglu, S Petrie, LM Dunn, ME Hollenbach, DF Rearden, BT AF Goluoglu, Sedat Petrie, Lester M., Jr. Dunn, Michael E. Hollenbach, Daniel F. Rearden, Bradley T. TI MONTE CARLO CRITICALITY METHODS AND ANALYSIS CAPABILITIES IN SCALE SO NUCLEAR TECHNOLOGY LA English DT Article DE Monte Carlo; criticality safety; continuous energy and multigroup AB This paper describes the Monte Carlo codes KENO V.a and KENO-VI in SCALE that are primarily used to calculate multiplication factors and flux distributions of fissile systems. Both codes allow explicit geometric representation of the target systems and are used internationally for safety analyses involving fissile materials. KENO V.a has limiting geometric rules such as no intersections and no rotations. These limitations make KENO V.a execute very efficiently and run very fast. On the other hand, KENO-VI allows very complex geometric modeling. Both KENO codes can utilize either continuous-energy or multigroup cross-section data and have been thoroughly verified and validated with ENDF libraries through ENDF/B-VII.0, which has been first distributed with SCALE 6. Development of the Monte Carlo solution technique and solution methodology as applied in both KENO codes is explained in this paper. Available options and proper application of the options and techniques are also discussed. Finally, performance of the codes is demonstrated using published benchmark problems. C1 [Goluoglu, Sedat; Petrie, Lester M., Jr.; Dunn, Michael E.; Hollenbach, Daniel F.; Rearden, Bradley T.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Goluoglu, S (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700,MS 6170, Oak Ridge, TN 37831 USA. EM goluoglus@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 11 TC 15 Z9 16 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 214 EP 235 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200006 ER PT J AU Rearden, BT Williams, ML Jessee, MA Mueller, DE Wiarda, DA AF Rearden, B. T. Williams, M. L. Jessee, M. A. Mueller, D. E. Wiarda, D. A. TI SENSITIVITY AND UNCERTAINTY ANALYSIS CAPABILITIES AND DATA IN SCALE SO NUCLEAR TECHNOLOGY LA English DT Article DE SCALE; sensitivity and uncertainty analysis; code and data validation ID PERTURBATION-THEORY; COVARIANCES; RATIOS AB In SCALE 6, the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) modules calculate the sensitivity of k(eff) or reactivity differences to the neutron cross-section data on an energy-dependent, nuclide-reaction-specific basis. These sensitivity data are useful for uncertainty quantification, using the comprehensive neutron cross-section-covariance data in SCALE 6. Additional modules in SCALE 6 use the sensitivity and uncertainty data to produce correlation coefficients and other relational parameters that quantify the similarity of benchmark experiments to application systems for code validation purposes. Bias and bias uncertainties are quantified using parametric trending analysis or data adjustment techniques, providing detailed assessments of sources of biases and their uncertainties and quantifying gaps in experimental data available for validation. An example application of these methods is presented for a generic burnup credit cask model. C1 [Rearden, B. T.; Williams, M. L.; Jessee, M. A.; Mueller, D. E.; Wiarda, D. A.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Rearden, BT (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700,MS-6170, Oak Ridge, TN 37831 USA. EM reardenb@ornl.gov OI Jessee, Matthew/0000-0003-2954-4995 NR 40 TC 28 Z9 28 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 236 EP 288 PG 53 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200007 ER PT J AU Peplow, DE AF Peplow, Douglas E. TI MONTE CARLO SHIELDING ANALYSIS CAPABILITIES WITH MAVRIC SO NUCLEAR TECHNOLOGY LA English DT Article DE Monte Carlo; variance reduction; shielding ID CALCULATED NEUTRON TRANSMISSION; AUTOMATED VARIANCE REDUCTION; CF-252 SOURCE AB Monte Carlo shielding analysis capabilities in SCALE 6 are centered on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology. CADIS is used to create an importance map for space/energy weight windows as well as a biased source distribution. New to SCALE 6 are the Monaco functional module, a multi-group fixed-source Monte Carlo transport code, and the Monaco with Automated Variance Reduction using Importance Calculations (MAVRIC) sequence. MAVRIC uses the Denovo code (also new to SCALE 6) to compute coarse-mesh discrete ordinates solutions that are used by CADIS to form an importance map and biased source distribution for the Monaco Monte Carlo code. MAVRIC allows the user to optimize the Monaco calculation for a specific tally using the CADIS method with little extra input compared with a standard Monte Carlo calculation. When computing several tallies at once or a mesh tally over a large volume of space, an extension of the CADIS method called FW-CADIS can be used to help the Monte Carlo simulation spread particles over phase space to obtain more uniform relative uncertainties. C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Peplow, DE (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700, Oak Ridge, TN 37831 USA. EM peplowde@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 24 TC 13 Z9 13 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2011 VL 174 IS 2 SI SI BP 289 EP 313 PG 25 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757BY UT WOS:000290060200008 ER PT J AU Lany, S AF Lany, Stephan TI Predicting polaronic defect states by means of generalized Koopmans density functional calculations SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE defects; density functional theory; hybrid functionals; polarons ID P-TYPE ZNO; DERIVATIVE DISCONTINUITIES; MAGNETIC-RESONANCE; OPTICAL-PROPERTIES; GROUND-STATE; BAND-GAPS; LITHIUM; OXIDE; APPROXIMATIONS; ELECTRONS AB Lattice defects in semiconductors and wide-gap materials which create deep levels in an open-shell electronic configuration can give rise to so-called defect bound small polarons. This type of defects present a challenge for electronic structure methods because the localization of the defect state and the associated energy levels depend sensitively on the ability of the total-energy functional to satisfy the physical condition that the energy E(N) must be a piecewise linear function of the fractional electron number N. For practical applications the requirement of a linear E(N) is re-cast as a generalized Koopmans condition. Since most functionals do not fulfill this condition accurately, we use parameterized perturbations that cancel the non-linearity of E(N) and recover the correct Koopmans behavior. Starting from standard density functionals, we compare two types of parameterized perturbations, i.e., the addition of on-site potentials and the mixing of non-local Fock exchange in hybrid-functionals. Surveying a range of acceptor-type defects in II-VI and III-V semiconductors, we present a classification scheme that describes the relation between hole localization and the lattice relaxation of the polaronic state. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lany, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM stephan.lany@nrel.gov OI Lany, Stephan/0000-0002-8127-8885 FU U.S. Department of Energy [DE-AC36-08GO28308] FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 and used high performance computing resources of the National Energy Research Scientific Computing Center. NR 75 TC 25 Z9 25 U1 2 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2011 VL 248 IS 5 BP 1052 EP 1060 DI 10.1002/pssb.201046274 PG 9 WC Physics, Condensed Matter SC Physics GA 756FS UT WOS:000289997700003 ER PT J AU Yu, PY AF Yu, Peter Y. TI High pressure semiconductor physics: Looking toward the future on the shoulder of the past SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE high pressure; multi-ferroics; phonon dispersion; semiconductors; topological insulators ID CHALCOPYRITE SEMICONDUCTORS; DX-CENTER; DEPENDENCE; GETE; DONOR; GAP; GPA; SUPERCONDUCTIVITY; FERROMAGNETISM; METALLIZATION AB High pressure measurements attracted attention from the Semiconductor Physics community after the discovery of William Paul's Empirical Rule. The technique gained further momentum with the invention of the diamond-anvils high pressure cell. Since diamond is transparent from near IR to near UV many forms of optical spectroscopy (such as photoluminescence, modulation spectroscopy, and Raman scattering) have now been routinely carried out under high pressure. The fact that diamonds are also transparent to X-ray means structural phase transitions induced by pressure can be studied together with optical measurements. Further advances, such as electrical and magnetic measurements under hydrostatic (and sometimes quasi-hydrostatic) high pressure conditions, have established high pressure as a general, powerful, and indispensable technique in studying semiconductors. From a review of these past achievements I will attempt to "predict" how high pressure techniques will impact semiconductor physics in the future. I will draw examples from areas as diverse as new materials for spintronics and renewable energies, topological insulators to possible multi-ferroic semiconductors. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Yu, Peter Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yu, Peter Y.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yu, PY (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pyyu@berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy [DE-AC03-76SF00098] FX It is my pleasure to acknowledge all my former students and collaborators for their contributions to my knowledge of high pressure semiconductor physics. In particular, I am most indebted to Ben Welber and Gerard Martinez for sharing generously with me their extensive knowledge of the construction of high pressure cells. Throughout the years my research in high pressure physics has been supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under Contract No. DE-AC03-76SF00098. NR 53 TC 3 Z9 3 U1 6 U2 31 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2011 VL 248 IS 5 BP 1077 EP 1082 DI 10.1002/pssb.201000708 PG 6 WC Physics, Condensed Matter SC Physics GA 756FS UT WOS:000289997700006 ER PT J AU Christensen, NE Svane, A Cardona, M Chantis, AN Laskowski, R van Schilfgaarde, M Kotani, T AF Christensen, N. E. Svane, A. Cardona, M. Chantis, A. N. Laskowski, R. van Schilfgaarde, M. Kotani, T. TI Calculations of quasi-particle spectra of semiconductors under pressure SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE density-functional theory; GW calculations; quasi-particle states ID DENSITY-FUNCTIONAL THEORY; LEAD CHALCOGENIDES; INSULATORS; GAP; TIN AB Different approximations in calculations of electronic quasi-particle states in semiconductors are compared and evaluated with respect to their validity in predictions of optical properties. The quasi-particle self-consistent GW (QSGW) approach yields values of the band gaps which are close to experiments and represents a significant improvement over "single-shot" GW calculations using local density approximation (LDA) start wavefunctions. The QSGW approximation is compared to LDA bands for a wide-gap material (CuAlO2) and materials with very small gaps, PbX (X = S, Se, and Te). For wide-gap materials QSGW overestimates the gaps by 0.3-0.8 eV, an error which is ascribed to the omission of "vertex corrections." This is confirmed by calculations of excitonic effects, by solving the Bethe-Salpeter equation. The LDA error in predicting the binding energy of the Cu-3d states is examined and the QSGW and LDA + U approximations are compared. For PbX the spin-orbit coupling is included, and it is shown that although LDA gives a reasonable magnitude of the gap at L, only QSGW predicts the correct order of the L-6(+) and L-6(-) states and thus the correct sign (negative) of the gap pressure coefficient. The pressure-induced gap closure leads to linear (Dirac-type) band dispersions around the L point. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Christensen, N. E.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Chantis, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Laskowski, R.] Vienna Univ Technol, Inst Mat Chem, A-1060 Vienna, Austria. [van Schilfgaarde, M.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Kotani, T.] Tottori Univ, Dept Appl Phys & Math, Tottori 6808552, Japan. RP Christensen, NE (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM nec@phys.au.dk RI kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 NR 38 TC 1 Z9 1 U1 2 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2011 VL 248 IS 5 BP 1096 EP 1101 DI 10.1002/pssb.201001202 PG 6 WC Physics, Condensed Matter SC Physics GA 756FS UT WOS:000289997700009 ER PT J AU Wu, N LaGraffe, D Yakovkin, IN Dowben, PA AF Wu, N. LaGraffe, D. Yakovkin, I. N. Dowben, P. A. TI Localization and screening in GdNi alloy films SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE charge screening; GdNi; resonant photoemission; RKKY interaction ID NONMETAL-METAL TRANSITION; ELECTRON EFFECTIVE-MASS; RESONANT PHOTOEMISSION; GDNI1-XCUX COMPOUNDS; THERMAL-EXPANSION; NEUTRON DETECTION; SINGLE-CRYSTAL; THIN-FILMS; OVERLAYERS; STATE AB Gd/Ni compounds with different Gd concentration have been investigated with constant initial state spectroscopy (CIS) of photoemission utilizing the light of synchrotron radiation. The photoemission cross-sections of Gd 5d and 4f states show a strong resonance in CIS spectra at the Gd 5p absorption edge. The screenings of Gd ions by Ni 3d conduction electrons results in a dramatic suppression of the 5p(6)4f(7)5d(1)6s(2) to 5p(5)4f(7)5d(2)6s(2) resonant enhancement of photoemission valence band intensities. This decrease in the super-Coster-Kronig photoemission resonant enhancement of the valence band can be related to the hybridized Gd 5d and Ni 3d bands near the Fermi level, consistent with performed first-principles calculations of local densities of states. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Wu, N.; Dowben, P. A.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Phys & Astron, Lincoln, NE 68588 USA. [LaGraffe, D.] US DOE, Off Proliferat Detect NA 22, Natl Nucl Secur Adm, Washington, DC 20585 USA. [Yakovkin, I. N.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. RP Wu, N (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Phys & Astron, Theodore Jorgenson Hall,855 N 16th St, Lincoln, NE 68588 USA. EM ningwu@unlserve.unl.edu RI Wu, Ning/F-4244-2012 FU Defence Threat Reduction Agency [HDTRA1-07-1-0008]; Nebraska Research Initiative FX This work was supported by the Defence Threat Reduction Agency (grant no. HDTRA1-07-1-0008), and the Nebraska Research Initiative. The authors are particularly grateful to Wlad Borgiel for a number of very helpful discussions. The views expressed in this article are those of the authors and do not reflect the official policy or position of the National Nuclear Security Administration, Department of Defence or the US Government. NR 50 TC 5 Z9 5 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2011 VL 248 IS 5 BP 1253 EP 1257 DI 10.1002/pssb.201046420 PG 5 WC Physics, Condensed Matter SC Physics GA 756FS UT WOS:000289997700042 ER PT J AU Karimabadi, H Roytershteyn, V Mouikis, CG Kistler, LM Daughton, W AF Karimabadi, H. Roytershteyn, V. Mouikis, C. G. Kistler, L. M. Daughton, W. TI Flushing effect in reconnection: Effects of minority species of oxygen ions SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Magnetic reconnection; Magnetotail; Oxygen; Simulation; Onset; Effects of minority species ID THIN CURRENT SHEET; MAGNETIC RECONNECTION; FIELD; MAGNETOTAIL; INSTABILITY; GENERATION; TAIL AB Effects of O+ ions on magnetic reconnection in the magnetotail are examined in a Harris equilibrium using a combination of linear Vlasov theory and large-scale driven and non-driven two-dimensional fully kinetic particle simulations. Linear theory of multiple species plasma indicates that the growth rate is rather insensitive to the composition of the background (lobe) or its temperature but more sensitive to the properties of the current carriers. Thus O+ can affect significant changes to the linear growth rate of tearing mode only as a current carrier. However, it is demonstrated that in the nonlinear stage reconnection can effectively move trace material from the lobes into the current sheet proper. If the supply of lobe markers (like O+) is sufficiently permanent in the lobe, an initially proton-dominated current sheet can be virtually replaced by the marker ions through this "flushing effect". The dominance of marker ions introduces finite Larmor radius signatures with marker gyroradii scales rather than that of the protons. In this way, the presence of heavier marker species in the lobe can lead to (i) reduced efficiency of energy conversion, (ii) reduction in the number and repetition frequency of secondary islands, (iii) broadening of the quadrupole magnetic structure, (iv) slowing down of the coalescence process and (v) modification of the composition of the ion current carriers. Using Cluster observations, we show the evidence for the "flushing effect" in the data. Detailed comparison with observations is planned for future work. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Karimabadi, H.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Karimabadi, H.] SciberQuest Inc, Del Mar, CA 92014 USA. [Roytershteyn, V.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Mouikis, C. G.; Kistler, L. M.] Univ New Hampshire, Durham, NH 03824 USA. RP Karimabadi, H (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM homakar@gmail.com RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA [NNX07AF64G, NNX07AF54G]; NSF [ATM 0802380] FX We gratefully acknowledge NASA Grant NNX07AF64G, NASA Heliophysics Theory Program, NASA Grant NNX07AF54G, and NSF GEM Grant no. ATM 0802380. Simulations were performed using NSF's Kraken supercomputer and NASA's Pleiades, which is provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 23 TC 17 Z9 17 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2011 VL 59 IS 7 SI SI BP 526 EP 536 DI 10.1016/j.pss.2010.07.014 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 757IG UT WOS:000290078100011 ER PT J AU Jensen, JK Kim, H Cocuron, JC Orler, R Ralph, J Wilkerson, CG AF Jensen, Jacob K. Kim, Hoon Cocuron, Jean-Christophe Orler, Robert Ralph, John Wilkerson, Curtis G. TI The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis SO PLANT JOURNAL LA English DT Article DE DUF579; xylan; psyllium; secondary cell wall; irx; degree of polymerization ID SECONDARY CELL-WALL; GLUCURONOXYLAN BIOSYNTHESIS; GOLGI-APPARATUS; MUTANTS REVEALS; GENE; THALIANA; POLYSACCHARIDE; IDENTIFICATION; DEFICIENT; SYNTHASE AB Xylan is the principal hemicellulose in the secondary cell walls of eudicots and in the primary and secondary cell walls of grasses and cereals. The biosynthesis of this important cell wall component has yet to be fully determined although a number of proteins have been shown to be required for xylan synthesis. To discover new genes involved in xylan biosynthesis we explored the psyllium (Plantago ovata Forsk) seed mucilaginous layer through EST profiling. This tissue synthesizes large amounts of a complex heteroxylan over a short period of time. By comparing abundant transcripts in this tissue with abundant transcripts specifically present during secondary cell wall formation in Arabidopsis thaliana, where glucuronoxylan biosynthesis is pronounced, we identified two Arabidopsis genes likely involved in xylan biosynthesis. These genes encode proteins containing a Domain of Unknown Function (DUF) 579 and were designated IRREGULAR XYLEM (IRX) 15 and IRX15-LIKE (IRX15-L). We obtained Arabidopsis T-DNA knockout lines for the two genes and analyzed their lower stems for changes in neutral monosaccharide composition. No changes were observed in each of these mutants, although the irx15 irx15-L double mutant displayed a moderate reduction in stem xylose. Further characterization of the irx15 irx15-L mutant revealed irregular secondary cell wall margins in fiber cells and a lower xylan degree of polymerization. Through these studies we conclude that IRX15 and IRX15-L function in a redundant manner and are involved in xylan biosynthesis. C1 [Jensen, Jacob K.; Cocuron, Jean-Christophe; Orler, Robert; Wilkerson, Curtis G.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Jensen, Jacob K.; Kim, Hoon; Cocuron, Jean-Christophe; Orler, Robert; Ralph, John; Wilkerson, Curtis G.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA. [Wilkerson, Curtis G.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Wilkerson, CG (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM wilker13@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX We thank Christa Pennacchio and Erika Linquist (DOE Joint Genome Institute) for high through put cDNA sequencing; Nick Thrower (Department of Biochemistry and Molecular Biology, Michigan State University, USA) for providing the bioinformatic expertise clustering of the cDNA libraries; and Chris Hawes (School of Life Sciences, Oxford Brookes University, UK) for the kind gift of the Agrobacterium strain harboring the STtmd-CFP construct. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 53 TC 58 Z9 65 U1 1 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD MAY PY 2011 VL 66 IS 3 BP 387 EP 400 DI 10.1111/j.1365-313X.2010.04475.x PG 14 WC Plant Sciences SC Plant Sciences GA 754YK UT WOS:000289893600001 PM 21288268 ER PT J AU Williams, PT AF Williams, Paul T. TI Dose-response relationship between walking and the attenuation of inherited weight SO PREVENTIVE MEDICINE LA English DT Article DE Gene-environment; Physical activity; Prevention; Obesity ID BODY-MASS INDEX; CORONARY-HEART-DISEASE; PHYSICAL-ACTIVITY; VIGOROUS EXERCISE; WAIST CIRCUMFERENCE; FTO GENE; ADIPOSITY; TWINS; ASSOCIATION; PREVENTION AB Objective. Genetic factors account for 40%-70% of the variation in body mass index (BMI). We sought to test whether moderate intensity physical activity affected parent-offspring relationships for body mass index and regional adiposity in 26,587 female and 6428 male walkers surveyed in the United States in 2000. Methods. Survey questionnaires provided self-reported usual walking distance, height, weight, and waist circumference, and mother's and father's adiposity (1 = lean, 2 = normal, 3 = overweight, and 4 = very overweight). Regression analyses were used to test whether the contribution of parental adiposities to the walkers' body mass indexes and waist circumferences diminished with walking. Results. In the most sedentary group (walking < 1.5 km/d), average parental adiposity was a significant determinant of the walkers' body mass indexes and waist circumferences (female: P < 10(-15); male: P < 10(-13)). Greater walking distance significantly diminished the effect of average parents' adiposity on the walkers' body mass indexes (female: P < 10(-10); male P = 0.003) and waist circumferences (female: P < 10(-5); male P = 0.01). Compared to the most sedentary female walkers, the effect of parental adiposity was reduced 36% for body mass indexes and 41% for waist circumferences (corresponding reductions in men were 36% and 46%, respectively). Conclusion. These results suggest that moderate intensity physical activity attenuates inheritance of both total and regional adiposity in a dose-dependent manner. (C) 2011 Published by Elsevier Inc. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Heart, Lung, and Blood Institute [HL094717]; Institute of Aging, Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy) [AG032004, DE-AC03-76SF00098] FX This research was supported by grant HL094717 from the National Heart, Lung, and Blood Institute and AG032004 from the Institute of Aging and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). The author wishes to thank Ms. Kathryn Hoffman for her help in collecting the data and reviewing the manuscript. NR 38 TC 3 Z9 3 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0091-7435 J9 PREV MED JI Prev. Med. PD MAY 1 PY 2011 VL 52 IS 5 BP 293 EP 299 DI 10.1016/j.ypmed.2011.03.008 PG 7 WC Public, Environmental & Occupational Health; Medicine, General & Internal SC Public, Environmental & Occupational Health; General & Internal Medicine GA 757CO UT WOS:000290062000001 PM 21406201 ER PT J AU Allen, K Knight, T Bays, S AF Allen, Kenneth Knight, Travis Bays, Samuel TI Actinide destruction and power peaking analysis in a 1000 MWt advanced burner reactor using moderated heterogeneous target assemblies SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Transmutation; Transuranic; Minor actinide; MCNPX; Fast reactor ID TRANSMUTATION AB The purpose of this research was to determine the effect of moderated heterogeneous subassemblies located in the core of a sodium-cooled fast reactor on minor actinide (MA) destruction rates over the lifecycle of the core. Additionally, particular emphasis was placed on the power peaking of the pins and the assemblies with the moderated targets as compared to standard unmoderated heterogeneous targets and a core without MA targets present. Power peaking analysis was performed on the target assemblies and on the fuel assemblies adjacent to the targets. The moderated subassemblies had a marked improvement in the overall destruction of heavy metals in the targets. The design with acceptable power peaking results had a 12.25% greater destruction of heavy metals than a similar ex-core unmoderated assembly. The increase in minor actinide destruction was most evident with americium where the moderated assemblies reduced the initial amount to less than 3% of the initial loading over a period of five years core residency. In order to take advantage of the high minor actinide destruction and minimize the power peaking effects, a hybrid scenario was devised where the targets resided ex-core in a moderated assembly for the first 506.9 effective full power days (EFPDs) and were moved to an in-core arrangement with the moderated targets removed for the remainder of the lifecycle. The hybrid model had an assembly and pin power peaking of less than 2.0 and a higher heavy metal and minor actinide destruction rate than the standard unmoderated heterogeneous targets either in-core or ex-core. The hybrid model has a 54.5% greater Am reduction over the standard ex-core model. It also had a 27.8% greater production of Cm and a 41.5% greater production of Pu than the standard ex-core model. The radiotoxicity of the targets in the hybrid design was 20% less than the discharged standard ex-core targets. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Allen, Kenneth; Knight, Travis] Univ S Carolina, Dept Mech Engn, Nucl Engn Program, Columbia, SC 29208 USA. [Bays, Samuel] Idaho Natl Lab, Idaho Falls, ID 83403 USA. RP Allen, K (reprint author), Univ S Carolina, Dept Mech Engn, Nucl Engn Program, 300 Main St, Columbia, SC 29208 USA. EM allenks@email.sc.edu; knighttw@engr.sc.edu; Samuel.Bays@inl.gov OI Knight, Travis/0000-0002-8517-7395 FU Idaho National Laboratory FX Funding for this research was provided in part through a subcontract with Idaho National Laboratory. The University of South Carolina uses ERANOS on its high performance computer via a license agreement with Commissariat a l'Energie Atomique in France. NR 17 TC 4 Z9 4 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY PY 2011 VL 53 IS 4 BP 375 EP 394 DI 10.1016/j.pnucene.2011.01.010 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 757IW UT WOS:000290079700010 ER PT J AU Taylor, NL Heazlewood, JL Millar, AH AF Taylor, Nicolas L. Heazlewood, Joshua L. Millar, A. Harvey TI The Arabidopsis thaliana 2-D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications SO PROTEOMICS LA English DT Article DE Arabidopsis; Mass spectra; Mitochondrial proteome; Multidimensional gel experiments; Plant proteomics; Phosphorylation ID PLANT-SPECIFIC SUBUNITS; COMPLEX-I; POLYPEPTIDE COMPOSITION; PHOSPHORYLATION SITES; RESPIRATORY-FUNCTION; OXIDATIVE STRESS; PURIFICATION; METABOLISM; DATABASE; ELECTROPHORESIS AB Mitochondria undertake the process of oxidative phosphorylation yielding ATP for plant cell maintenance and growth. The principles of isolation and fractionation of plant mitochondrial proteins have been improved over decades, and surveys of the mitochondrial proteome in a number of plants species have been performed. Over time, many quantitative analyses of changes in the plant mitochondrial proteome have been performed by 2-D gel analyses revealing the induction, degradation and modification of mitochondrial proteins in responses to mutation, stress and development. Here, we present a saturating MS analysis of 2-D gel separable protein spots from a typical purification of Arabidopsis mitochondria identifying 264 proteins, alongside an LC-MS/MS survey by non-gel methods identifying 220 proteins. This allowed us to characterise the major mitochondrial proteins that are not observed on 2-D gels, the common contaminants and the abundance of the protein machinery of key mitochondrial biochemical pathways, and consider the impact of N-terminal pre-sequence cleavage and phosphorylation as explanations of multiple protein spots and the co-ordinates of proteins on 2-D gels. C1 [Taylor, Nicolas L.; Heazlewood, Joshua L.; Millar, A. Harvey] Univ Western Australia, ARC Ctr Excellence Plant Energy Biol, Crawley, WA 6009, Australia. [Taylor, Nicolas L.; Millar, A. Harvey] Univ Western Australia, Ctr Comparat Anal Biomol Networks, Crawley, WA 6009, Australia. [Heazlewood, Joshua L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. RP Millar, AH (reprint author), Univ Western Australia, ARC Ctr Excellence Plant Energy Biol, 4th Floor MCS Bldg M316,35 Stirling Highway, Crawley, WA 6009, Australia. EM harvey.millar@uwa.edu.au RI Millar, A. Harvey/A-5452-2008; Heazlewood, Joshua/A-2554-2008; Taylor, Nicolas/A-5731-2008 OI Millar, A. Harvey/0000-0001-9679-1473; Heazlewood, Joshua/0000-0002-2080-3826; Taylor, Nicolas/0000-0003-2004-5217 FU Australian Research Council (ARC); ARC Centre of Excellence in Plant Energy Biology; United States Department of Energy, Office of Science, Office of Biological and Environmental Research, through the Joint BioEnergy Institute [DE-AC02-05CH11231] FX This work was supported by the Australian Research Council (ARC) through an Australian Professorial Fellow (AHM) and by the ARC Centre of Excellence in Plant Energy Biology. This work was also supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research, through the Joint BioEnergy Institute (contract DE-AC02-05CH11231) between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 62 TC 40 Z9 42 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD MAY PY 2011 VL 11 IS 9 SI SI BP 1720 EP 1733 DI 10.1002/pmic.201000620 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 756YP UT WOS:000290051000014 PM 21472856 ER PT J AU Herranz, T Santos, B McCarty, KF de la Figuera, J AF Herranz, T. Santos, B. McCarty, K. F. de la Figuera, J. TI Real-space study of the growth of magnesium on ruthenium SO SURFACE SCIENCE LA English DT Article DE LEEM; Metal epitaxy; Magnesium; Ruthenium; Low energy electron microscopy; Scanning tunneling microscopy ID RU(0001) AB The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moire pattern with a 12 angstrom periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 22 A periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface. (C) 2011 Elsevier B.V. All rights reserved. C1 [Herranz, T.; Santos, B.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. [McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Herranz, T (reprint author), CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. EM tirma.herranz@gmail.com RI Herranz, Tirma/A-8656-2008; de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012 OI de la Figuera, Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X FU Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. Department of Energy [DE-AC04-94AL85000]; Spanish Ministry of Science and Innovation [MAT2009-14578-C03-01] FX This research was supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. Department of Energy under Contract no. DE-AC04-94AL85000, and by the Spanish Ministry of Science and Innovation through Project no. MAT2009-14578-C03-01. NR 28 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAY PY 2011 VL 605 IS 9-10 BP 903 EP 911 DI 10.1016/j.susc.2011.02.002 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 756YL UT WOS:000290050600011 ER PT J AU Gschneidner, K AF Gschneidner, Karl TI Rare Talents SO TECHNOLOGY REVIEW LA English DT Editorial Material C1 [Gschneidner, Karl] US DOE, Ames Lab, Washington, DC 20585 USA. [Gschneidner, Karl] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gschneidner, K (reprint author), US DOE, Ames Lab, Washington, DC 20585 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU TECHNOL REV PI CAMBRIDGE PA 1 MAIN ST, 13 FLR, CAMBRIDGE, MA 02142 USA SN 1099-274X J9 TECHNOL REV JI Technol. Rev. PD MAY-JUN PY 2011 VL 114 IS 3 SI SI BP 13 EP 13 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 755SU UT WOS:000289957600013 ER PT J AU Dandoloff, R Jensen, B Saxena, A AF Dandoloff, Rossen Jensen, Bjorn Saxena, Avadh TI Transparent quantum waveguide SO AMERICAN JOURNAL OF PHYSICS LA English DT Article AB We present an alternative approach to the teaching of introductory quantum mechanics by considering the interaction between a particle and a waveguide. We focus on the accumulated phase when the particle travels across a waveguide composed of an arbitrary number of rectangular sections and show that the condition for resonant transmission can be deduced to leading order by simple algebra. (C) 2011 American Association of Physics Teachers. [DOI: 10.1119/1.3553460] C1 [Dandoloff, Rossen] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. [Jensen, Bjorn] Vestfold Univ Coll, Dept Micro & Nanosyst Technol, N-3103 Tonsberg, Norway. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Dandoloff, R (reprint author), Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. EM rossen.dandoloff@u-cergy.fr; bjorn.jensen@hive.no; avadh@lanl.gov FU U.S. Department of Energy; Universite de Cergy-Pontoise FX This work was supported in part by the U.S. Department of Energy (A.S.) and in part by Universite de Cergy-Pontoise (B.J.). NR 9 TC 1 Z9 1 U1 0 U2 2 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD MAY PY 2011 VL 79 IS 5 BP 532 EP 535 DI 10.1119/1.3553460 PG 4 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 750WP UT WOS:000289579100014 ER PT J AU Magana, D Parul, D Dyer, RB Shreve, AP AF Magana, Donny Parul, Dzmitry Dyer, R. Brian Shreve, Andrew P. TI Implementation of Time-Resolved Step-Scan Fourier Transform Infrared (FT-IR) Spectroscopy Using a kHz Repetition Rate Pump Laser SO APPLIED SPECTROSCOPY LA English DT Article DE Spectroscopic instrumentation; Infrared spectroscopy; Time-resolved spectroscopy; Time-resolved step-scan Fourier transform infrared spectroscopy; FT-IR spectroscopy; Nanosecond phenomena ID TRANSITION-METAL-COMPLEXES; EXCITED-STATES; VIBRATIONAL SPECTROSCOPY; CARBONMONOXY-MYOGLOBIN; MIDINFRARED SPECTRUM; DYNAMICS; CO; BACTERIORHODOPSIN; MONOXIDE; BAND AB Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers. C1 [Magana, Donny; Parul, Dzmitry; Dyer, R. Brian] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Shreve, Andrew P.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol MPA CINT, Los Alamos, NM 87545 USA. RP Dyer, RB (reprint author), Emory Univ, Dept Chem, Atlanta, GA 30322 USA. EM briandyer@emory.edu; shreve@lanl.gov FU Department of Energy through the Los Alamos National Laboratory; National Institute of General Medical Science [GM068036]; U.S. Department of Energy [DE-AC52-06NA25396] FX We acknowledge support from the Department of Energy through the Los Alamos National Laboratory LDRD program (D.M., R.B.D.) and the National Institute of General Medical Science, Grant GM068036 (D.P., R.B.D.). This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility (A.P.S.). Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 30 TC 3 Z9 3 U1 2 U2 25 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAY PY 2011 VL 65 IS 5 BP 535 EP 542 DI 10.1366/10-06179 PG 8 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 752OY UT WOS:000289703200012 PM 21513597 ER PT J AU Li, Q Beilicke, M Lee, K Garson, A Guo, Q Martin, J Yin, Y Dowkontt, P De Geronimo, G Jung, I Krawczynski, H AF Li, Qiang Beilicke, M. Lee, Kuen Garson, Alfred, III Guo, Q. Martin, Jerrad Yin, Y. Dowkontt, P. De Geronimo, G. Jung, I. Krawczynski, H. TI Study of thick CZT detectors for X-ray and Gamma-ray astronomy SO ASTROPARTICLE PHYSICS LA English DT Article DE CdZnTe; X-ray and Gamma-ray ID CDZNTE DETECTORS; CMOS; PERFORMANCE; IMAGER AB CdZnTe (CZT) is a wide bandgap II-VI semiconductor developed for the spectroscopic detection of X-rays and gamma-rays at room temperature. The Swift Burst Alert Telescope is using an 5240 cm(2) array of 2 mm thick CZT detectors for the detection of 15-150 key X-rays from Gamma-ray Bursts. We report on the systematic tests of thicker ( >= 0.5 cm) CZT detectors with volumes between 2 cm(3) and 4 cm(3) which are potential detector choices for a number of future X-ray telescopes that operate in the 10 keV to a few MeV energy range. The detectors contacted in our laboratory achieve Full Width Half Maximum energy resolutions of 2.7 key (4.5%) at 59 keV, 3 keV (2.5%) at 122 key and 4 key (0.6%) at 662 keV. The 59 keV and 122 keV energy resolutions are among the world-best results for >= 0.5 cm thick CZT detectors. We use the data set to study trends of how the energy resolution depends on the detector thickness and on the pixel pitch. Unfortunately, we do not find clear trends, indicating that even for the extremely good energy resolutions reported here, the achievable energy resolutions are largely determined by the properties of individual crystals. Somewhat surprisingly, we achieve the reported results without applying a correction of the anode signals for the depth of the interaction. Measuring the interaction depths thus does not seem to be a pre-requisite for achieving sub-1% energy resolutions at 662 keV. (C) 2011 Elsevier B.V. All rights reserved. C1 [Li, Qiang] NW Polytech Univ, State Key Lab Solidificat Proc, Sch Mat Sci & Engn, Xian 710072, Peoples R China. [Li, Qiang; Beilicke, M.; Lee, Kuen; Garson, Alfred, III; Guo, Q.; Martin, Jerrad; Yin, Y.; Dowkontt, P.; Krawczynski, H.] Washington Univ, St Louis, MO 63130 USA. [De Geronimo, G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Jung, I.] Univ Erlangen Nurnberg, Erlangen, Germany. RP Li, Q (reprint author), NW Polytech Univ, State Key Lab Solidificat Proc, Sch Mat Sci & Engn, Xian 710072, Peoples R China. EM qli@physics.wustl.edu FU NASA [NNX07AH37G, NNX10AJ56G]; DHS [2007DN077ER0002] FX This work is supported by NASA under contract NNX07AH37G and NNX10AJ56G, and the DHS under contract 2007DN077ER0002. We thank electrical engineer R. Bose and technicians G. Simburger and D. Braun for their support. NR 29 TC 13 Z9 13 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2011 VL 34 IS 10 BP 769 EP 777 DI 10.1016/j.astropartphys.2011.01.013 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 753HD UT WOS:000289762000003 ER PT J AU Hansey, CN de Leon, N AF Hansey, Candice N. de Leon, Natalia TI Biomass Yield and Cell Wall Composition of Corn with Alternative Morphologies Planted at Variable Densities SO CROP SCIENCE LA English DT Article ID QUANTITATIVE TRAIT LOCI; ZEA-MAYS L.; RECOMBINANT INBRED LINES; BROWN-MIDRIB; CELLULOSIC ETHANOL; GENETIC-ANALYSIS; LIGNIN CONTENT; FORAGE MAIZE; DIGESTIBILITY; SORGHUM AB The demand for biofeedstocks is increasing with the growth of the biofuel industry. Mutations such as grassy tillers1 (gt1), which increase the number of primary lateral branches (tillers) from below ground nodes, as well as Corngrass1 (Cg1), which alters cell wall composition, are hypothesized to increase theoretical ethanol yield on a per hectare basis. To test this, gt1 isogenic hybrids and Cg1 hybrids were evaluated at two densities (20,000 and 70,000 plants ha(-1)). Stover samples were collected at grain physiological maturity and evaluated for cell wall composition. The effect of density treatment was significant for grain, stover, whole plant yield, and acid detergent lignin (ADL) on the whole data set (p = 0.05). Negative correlations were observed between stover yield and cell wall composition traits, while positive correlations were observed among compositional traits. The Cg1 hybrids were the lowest yielding hybrids and had higher ADL than the commercial checks. Tiller number was positively correlated with grain, stover, and whole plant yield at the low density. Homozygous gt1/gt1 hybrids planted at low density were not different than their wild-type counterparts planted at high density for stover yield. The ability of tillering plants to equate biomass production of their wild-type counterparts at nearly four times higher density demonstrates the utility in exploring alternative plant morphologies in an effort to meet the needs of the biofuel industry. C1 [de Leon, Natalia] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP de Leon, N (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM ndeleongatti@wisc.edu FU University of Wisconsin - Madison; USDA National Institute of Food and Agriculture (NIFA) [WIS01335]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX The authors would like to acknowledge Dustin Eilert, Julianne Smith, Bill Kojis, and Bob Vogelzang for technical assistance. We are also grateful for support provided by the D. C. Smith and Gabelman-Shippo Graduate Fellowship programs at the University of Wisconsin - Madison. Funding has been provided for this research and publication from the USDA National Institute of Food and Agriculture (NIFA) project WIS01335. This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 46 TC 5 Z9 5 U1 1 U2 19 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 0011-183X J9 CROP SCI JI Crop Sci. PD MAY PY 2011 VL 51 IS 3 BP 1005 EP 1015 DI 10.2135/cropsci2010.08.0490 PG 11 WC Agronomy SC Agriculture GA 752SJ UT WOS:000289713900010 ER PT J AU Bergano, M Fernandes, F Cupido, L Barbosa, D Fonseca, R Ferreira, I Grossan, B Smoot, G AF Bergano, Miguel Fernandes, Francisco Cupido, Luis Barbosa, Domingos Fonseca, Rui Ferreira, Ivan Grossan, Bruce Smoot, George TI Digital complex correlator for a C-band polarimetry survey SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Instrumentation: polarimeters; Digital correlators; Radio astronomy; Microwave background ID RADIO ASTRONOMY; POLARIZATION; INTERFEROMETER; EMISSION; GHZ AB The international Galactic Emission Mapping project aims to map and characterize the polarization field of the Milky Way. In Portugal it will map the sky polarized emission of the Northern Hemisphere in C-band and provide templates for map calibration and foreground control of microwave space data to be provided by ESA Planck Surveyor mission and later missions. The receiver system is equipped with a novel receiver with a full digital back-end using a low-cost Field Programmable Gate Array without compromising its performance relation. This new digital backend comprises a base-band complex cross-correlator outputting the four Stokes parameters of the incoming polarized radiation. In this document we describe the design and implementation of the complex correlator using the FPGA and the dedicated digitizers at each receiver arm, detailing the method applied at the several algorithm stages. This correlator is suitable for large sky area polarization continuum surveys. C1 [Bergano, Miguel; Barbosa, Domingos; Fonseca, Rui] Inst Telecomunicacoes, Radio Astron Grp, P-3810193 Aveiro, Portugal. [Cupido, Luis] Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. [Fonseca, Rui] Univ Aveiro, P-3810193 Aveiro, Portugal. [Ferreira, Ivan] Univ Brasilia, Inst Fis, Lab Plasmas, BR-70919970 Brasilia, DF, Brazil. [Ferreira, Ivan] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Grossan, Bruce; Smoot, George] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Barbosa, D (reprint author), Inst Telecomunicacoes, Radio Astron Grp, Campus Univ Santiago, P-3810193 Aveiro, Portugal. EM jbergano@av.it.pt; cupido@ua.pt; dbarbosa@av.it.pt; Bruce_Grossan@lbl.gov OI Barbosa, Domingos/0000-0002-5191-7826; Ferreira, Ivan/0000-0003-3646-7756 FU Portuguese Foundation for Science and Technology (FCT) [PTDC/CTE-AST/65925/2006, POCI/CTE-AST/57209/2004]; COMPETE; QREN; PANORAMA project FX The team acknowledges the Portuguese Foundation for Science and Technology (FCT) for the financial support through projects PTDC/CTE-AST/65925/2006, POCI/CTE-AST/57209/2004. RF acknowledges support from FCT through a PhD grant. DB is supported through a Ciencia 2007 grant, funded by COMPETE and QREN programs. MB acknowledges support from PANORAMA project. The team acknowledges the anonymous referee for invaluable comments and corrections to the paper. NR 24 TC 2 Z9 2 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD MAY PY 2011 VL 30 IS 1 BP 23 EP 37 DI 10.1007/s10686-011-9217-6 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 753TC UT WOS:000289801600002 ER PT J AU Horava, P Melby-Thompson, CM AF Horava, Petr Melby-Thompson, Charles M. TI Anisotropic conformal infinity SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE AdS/CFT correspondence; Holography for nonrelativistic field theories; Lifshitz and Schrodinger spacetimes; Conformal infinity of spacetime; Anisotropic scaling AB We generalize Penrose's notion of conformal infinity of spacetime, to situations with anisotropic scaling. This is relevant not only for Lifshitz-type anisotropic gravity models, but also in standard general relativity and string theory, for spacetimes exhibiting a natural asymptotic anisotropy. Examples include the Lifshitz and Schrodinger spaces (proposed as AdS/CFT duals of nonrelativistic field theories), warped AdS (3), and the near-horizon extreme Kerr geometry. The anisotropic conformal boundary appears crucial for resolving puzzles of holographic renormalization in such spacetimes. C1 [Horava, Petr; Melby-Thompson, Charles M.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Horava, Petr; Melby-Thompson, Charles M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM horava@berkeley.edu FU NSF [PHY-0555662, PHY-0855653]; DOE [DE-AC02-05CH11231]; Berkeley Center for Theoretical Physics FX We wish to thank Stephane Detournay for useful discussions. The results presented in this paper were announced by one of us (PH) at Strings 2009 in Rome (June 2009), and at the Quantum Criticality and AdS/CFT Correspondence Miniprogram at KITP, Santa Barbara (July 2009); PH wishes to thank the orgainzers for their hospitality. This work has been supported by NSF Grants PHY-0555662 and PHY-0855653, DOE Grant DE-AC02-05CH11231, and by the Berkeley Center for Theoretical Physics. NR 19 TC 29 Z9 29 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD MAY PY 2011 VL 43 IS 5 BP 1391 EP 1400 DI 10.1007/s10714-010-1117-y PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 752ZL UT WOS:000289733900010 ER PT J AU Foster, I AF Foster, Ian TI Globus Online Accelerating and Democratizing Science through Cloud-Based Services SO IEEE INTERNET COMPUTING LA English DT Article AB Many businesses today save time and money, and increase their agility, by outsourcing mundane IT tasks to cloud providers. The author argues that similar methods can be used to overcome the complexities inherent in increasingly data-intensive, computational, and collaborative scientific research. He describes Globus Online, a system that he and his colleagues are developing to realize this vision. C1 [Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. [Foster, Ian] Univ Chicago, Chicago, IL 60637 USA. RP Foster, I (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM foster@anl.gov FU University of Chicago; US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [OCI-534113] FX Globus Online is the work of many people in the Computation Institute and partner institutions: see www.globusonline.org for details. This work is supported by the University of Chicago; the US Department of Energy, under contract number DE-AC02-06CH11357; and the US National Science Foundation, under contract OCI-534113. NR 8 TC 74 Z9 75 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD MAY-JUN PY 2011 VL 15 IS 3 BP 70 EP 73 PG 4 WC Computer Science, Software Engineering SC Computer Science GA 753PA UT WOS:000289790600012 ER PT J AU Gorton, I Wynne, A Liu, Y Yin, J AF Gorton, Ian Wynne, Adam Liu, Yan Yin, Jian TI Components in the Pipeline SO IEEE SOFTWARE LA English DT Article C1 [Gorton, Ian; Wynne, Adam; Liu, Yan; Yin, Jian] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ian.gorton@pnl.gov; adam.wynne@pnl.gov; yan.liu@pnl.gov; jian.yin@pnl.gov NR 8 TC 8 Z9 8 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 J9 IEEE SOFTWARE JI IEEE Softw. PD MAY-JUN PY 2011 VL 28 IS 3 BP 34 EP 40 DI 10.1109/MS.2011.23 PG 7 WC Computer Science, Software Engineering SC Computer Science GA 754PG UT WOS:000289867500009 ER PT J AU Miller, DA Suen, G Bruce, D Copeland, A Cheng, JF Detter, C Goodwin, LA Han, CS Hauser, LJ Land, ML Lapidus, A Lucas, S Meincke, L Pitluck, S Tapia, R Teshima, H Woyke, T Fox, BG Angert, ER Currie, CR AF Miller, David A. Suen, Garret Bruce, David Copeland, Alex Cheng, Jan-Feng Detter, Chris Goodwin, Lynne A. Han, Cliff S. Hauser, Loren J. Land, Miriam L. Lapidus, Alla Lucas, Susan Meincke, Linda Pitluck, Sam Tapia, Roxanne Teshima, Hazuki Woyke, Tanja Fox, Brian G. Angert, Esther R. Currie, Cameron R. TI Complete Genome Sequence of the Cellulose-Degrading Bacterium Cellulosilyticum lentocellum SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CLOSTRIDIUM-LENTOCELLUM; ACETIC-ACID; RNA GENES; RUMINICOLA; CONVERSION; BIOMASS; RUMEN; NOV AB Cellulosilyticum lentocellum DSM 5427 is an anaerobic, endospore-forming member of the Firmicutes. We describe the complete genome sequence of this cellulose-degrading bacterium, which was originally isolated from estuarine sediment of a river that received both domestic and paper mill waste. Comparative genomics of cellulolytic clostridia will provide insight into factors that influence degradation rates. C1 [Miller, David A.; Angert, Esther R.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. [Suen, Garret; Fox, Brian G.; Currie, Cameron R.] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Suen, Garret; Currie, Cameron R.] Univ Wisconsin Madison, Dept Bacteriol, Madison, WI USA. [Bruce, David; Copeland, Alex; Cheng, Jan-Feng; Detter, Chris; Goodwin, Lynne A.; Han, Cliff S.; Hauser, Loren J.; Land, Miriam L.; Lapidus, Alla; Lucas, Susan; Pitluck, Sam; Tapia, Roxanne; Teshima, Hazuki; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [Bruce, David; Detter, Chris; Goodwin, Lynne A.; Han, Cliff S.; Meincke, Linda; Tapia, Roxanne; Teshima, Hazuki] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Hauser, Loren J.; Land, Miriam L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Fox, Brian G.] Univ Wisconsin Madison, Dept Biochem, Madison, WI USA. RP Angert, ER (reprint author), Cornell Univ, Dept Microbiol, 157B Wing Hall, Ithaca, NY 14853 USA. EM era23@cornell.edu; currie@bact.wisc.edu RI Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Land, Miriam/A-6200-2011; OI Lapidus, Alla/0000-0003-0427-8731; Land, Miriam/0000-0001-7102-0031; Suen, Garret/0000-0002-6170-711X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) supporting G.S., B.G.F., and C.R.C. The work conducted by the U.S. Department of Energy JGI was supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 19 TC 10 Z9 10 U1 4 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2011 VL 193 IS 9 BP 2357 EP 2358 DI 10.1128/JB.00239-11 PG 2 WC Microbiology SC Microbiology GA 752DU UT WOS:000289670000035 PM 21398547 ER PT J AU van Passel, MWJ Kant, R Palva, A Copeland, A Lucas, S Lapidus, A del Rio, TG Pitluck, S Goltsman, E Clum, A Sun, H Schmutz, J Larimer, FW Land, ML Hauser, L Kyrpides, N Mikhailova, N Richardson, PP Janssen, PH de Vos, WM Smidt, H AF van Passel, Mark W. J. Kant, Ravi Palva, Airi Copeland, Alex Lucas, Susan Lapidus, Alla del Rio, Tijana Glavina Pitluck, Sam Goltsman, Eugene Clum, Alicia Sun, Hui Schmutz, Jeremy Larimer, Frank W. Land, Miriam L. Hauser, Loren Kyrpides, Nikolaos Mikhailova, Natalia Richardson, P. Paul Janssen, Peter H. de Vos, Willem M. Smidt, Hauke TI Genome Sequence of the Verrucomicrobium Opitutus terrae PB90-1, an Abundant Inhabitant of Rice Paddy Soil Ecosystems SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIAL DESCENT; RNA GENES; PREDICTION; CULTURE; LINEAGE AB Bacteria of the deeply branching phylum Verrucomicrobia are rarely cultured yet commonly detected in metagenomic libraries from aquatic, terrestrial, and intestinal environments. We have sequenced the genome of Opitutus terrae PB90-1, a fermentative anaerobe within this phylum, isolated from rice paddy soil and capable of propionate production from plant-derived polysaccharides. C1 [van Passel, Mark W. J.; de Vos, Willem M.; Smidt, Hauke] Wageningen Univ, Microbiol Lab, NL-6703 HB Wageningen, Netherlands. [Kant, Ravi; Palva, Airi; de Vos, Willem M.] Univ Helsinki, Fac Vet Med, Dept Vet Biosci, FIN-00014 Helsinki, Finland. [Copeland, Alex; Lucas, Susan; Lapidus, Alla; del Rio, Tijana Glavina; Pitluck, Sam; Goltsman, Eugene; Clum, Alicia; Sun, Hui; Kyrpides, Nikolaos; Mikhailova, Natalia; Richardson, P. Paul] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Copeland, Alex; Lapidus, Alla; del Rio, Tijana Glavina; Pitluck, Sam; Goltsman, Eugene; Clum, Alicia; Sun, Hui; Kyrpides, Nikolaos; Mikhailova, Natalia; Richardson, P. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lucas, Susan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schmutz, Jeremy] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Larimer, Frank W.; Land, Miriam L.; Hauser, Loren] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Janssen, Peter H.] AgResearch Ltd, Grasslands Res Ctr, Palmerston North, New Zealand. RP Smidt, H (reprint author), Wageningen Univ, Microbiol Lab, Dreijenpl 10, NL-6703 HB Wageningen, Netherlands. EM Hauke.Smidt@wur.nl RI Schmutz, Jeremy/N-3173-2013; Land, Miriam/A-6200-2011; Hauser, Loren/H-3881-2012; Kant, Ravi/F-7025-2013; Kyrpides, Nikos/A-6305-2014; Lapidus, Alla/I-4348-2013; OI Schmutz, Jeremy/0000-0001-8062-9172; Land, Miriam/0000-0001-7102-0031; Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731; Smidt, Hauke/0000-0002-6138-5026; Janssen, Peter/0000-0002-1022-3502 FU Netherlands Organization for Scientific Research (NWO); Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland FX M.W.J.V.P. is funded by the Netherlands Organization for Scientific Research (NWO) via a VENI grant. R.K. was supported by Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland. NR 20 TC 6 Z9 141 U1 2 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2011 VL 193 IS 9 BP 2367 EP 2368 DI 10.1128/JB.00228-11 PG 2 WC Microbiology SC Microbiology GA 752DU UT WOS:000289670000040 PM 21398538 ER PT J AU van Passel, MWJ Kant, R Palva, A Lucas, S Copeland, A Lapidus, A del Rio, TG Dalin, E Tice, H Bruce, D Goodwin, L Pitluck, S Davenport, KW Sims, D Brettin, TS Detter, JC Han, SS Larimer, FW Land, ML Hauser, L Kyrpides, N Ovchinnikova, G Richardson, PP de Vos, WM Smidt, H Zoetendal, EG AF van Passel, Mark W. J. Kant, Ravi Palva, Airi Lucas, Susan Copeland, Alex Lapidus, Alla del Rio, Tijana Glavina Dalin, Eileen Tice, Hope Bruce, David Goodwin, Lynne Pitluck, Sam Davenport, Karen Walston Sims, David Brettin, Thomas S. Detter, John C. Han, Shunsheng Larimer, Frank W. Land, Miriam L. Hauser, Loren Kyrpides, Nikolaos Ovchinnikova, Galina Richardson, P. Paul de Vos, Willem M. Smidt, Hauke Zoetendal, Erwin G. TI Genome Sequence of Victivallis vadensis ATCC BAA-548, an Anaerobic Bacterium from the Phylum Lentisphaerae, Isolated from the Human Gastrointestinal Tract SO JOURNAL OF BACTERIOLOGY LA English DT Article ID GEN. NOV.; RNA GENES; PREDICTION AB Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract. C1 [van Passel, Mark W. J.; de Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.] Univ Wageningen, Microbiol Lab, NL-6703 HB Wageningen, Netherlands. [Kant, Ravi; Palva, Airi; de Vos, Willem M.] Univ Helsinki, Fac Vet Med, Dept Vet Biosci, FIN-00014 Helsinki, Finland. [Lucas, Susan; Copeland, Alex; Lapidus, Alla; del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Kyrpides, Nikolaos; Ovchinnikova, Galina; Richardson, P. Paul] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lucas, Susan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Copeland, Alex; Lapidus, Alla; del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Kyrpides, Nikolaos; Ovchinnikova, Galina; Richardson, P. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bruce, David; Goodwin, Lynne; Davenport, Karen Walston; Detter, John C.; Han, Shunsheng] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sims, David] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Brettin, Thomas S.; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Zoetendal, EG (reprint author), Univ Wageningen, Microbiol Lab, Dreijenpl 10, NL-6703 HB Wageningen, Netherlands. EM Erwin.Zoetendal@wur.nl RI Hauser, Loren/H-3881-2012; Kant, Ravi/F-7025-2013; Lapidus, Alla/I-4348-2013; Land, Miriam/A-6200-2011; Kyrpides, Nikos/A-6305-2014; OI Lapidus, Alla/0000-0003-0427-8731; Land, Miriam/0000-0001-7102-0031; Kyrpides, Nikos/0000-0002-6131-0462; Smidt, Hauke/0000-0002-6138-5026 FU Netherlands Organization for Scientific Research (NWO); Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland FX M.W.J.V.P. is funded by the Netherlands Organization for Scientific Research (NWO) via a VENI grant. R.K. was supported by the Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland. NR 13 TC 6 Z9 6 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2011 VL 193 IS 9 BP 2373 EP 2374 DI 10.1128/JB.00271-11 PG 2 WC Microbiology SC Microbiology GA 752DU UT WOS:000289670000043 PM 21398537 ER PT J AU Anderson, BL Ho, JG Cowan, WD Blum-Spahn, O Yi, AY Rowe, DJ Flannery, MR McCray, DL Chen, P Rabb, DJ AF Anderson, Betty Lise Ho, James G. Cowan, William D. Blum-Spahn, Olga Yi, Allen Y. Rowe, Delton J. Flannery, Martin R. McCray, David L. Chen, Peter Rabb, David J. TI Hardware Demonstration of Extremely Compact Optical True Time Delay Device for Wideband Electronically Steered Antennas SO JOURNAL OF LIGHTWAVE TECHNOLOGY LA English DT Article DE Phased arrays; photonic switching systems; optical signal processing; optical delay lines; optical device fabrication ID PHASED-ARRAY ANTENNAS; WHITE CELL; LINE; DESIGN; IMPLEMENTATION; ARCHITECTURE; BEAMFORMER; PATHS AB An optical true time delay device is demonstrated that is capable of supporting 112 antennas with 81 different delays (> 6 bits) in a volume 16 '' x 5 '' x 4 '' including the box with electronics. It uses a free-space design based on the White cell, and alignment is made simple, fast, and robust by the use of slow-tool diamond turning of many optics on a single substrate. Pointing accuracy of the 12 objective mirrors is better than 10 mu rad, and surface roughness is approximate to 45 nm RMS. Delays vary from 0 to 25 ns in 312.5 ps increments. Short delays are implemented using delay rods of high refractive index, and long delays using folded mirror trains. Total insertion loss from fiber to detector was 7.82 dB for the no-delay path, and 10.22 dB for the longest lens train. A three-state tip-style MEMS micromirror array is used to select among the delays, with tilt angles +/- 1.4 degrees plus flat, and switching time < 100 mu s for the entire array. An InP wideband optical combiner photodetector array converts the optical signal to RF with 20 GHz bandwidth. The unit survived temperature cycling 0 to 50 degrees C and random vibration on three axes (9.84 g RMS) with no degradation of signal. C1 [Anderson, Betty Lise] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Ho, James G.; Rowe, Delton J.; Flannery, Martin R.; Chen, Peter] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. [Cowan, William D.; Blum-Spahn, Olga] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Yi, Allen Y.; McCray, David L.] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA. RP Anderson, BL (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. EM An-derson@ec.osu.edu; james.ho@ngc.com; wdcowan@sandia.gov; yi.71@osu.edu; david.rabb@wpafb.af.mil FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received December 22, 2010; revised February 25, 2011; accepted March 01, 2011. Date of publication March 10, 2011; date of current version April 20, 2011. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 34 TC 3 Z9 3 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0733-8724 J9 J LIGHTWAVE TECHNOL JI J. Lightwave Technol. PD MAY 1 PY 2011 VL 29 IS 9 BP 1343 EP 1353 DI 10.1109/JLT.2011.2124444 PG 11 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 753TJ UT WOS:000289802300005 ER PT J AU Jung, IW Park, B Provine, J Howe, RT Solgaard, O AF Jung, Il Woong Park, Bryan Provine, J. Howe, Roger T. Solgaard, Olav TI Highly Sensitive Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Simultaneous Measurement of Refractive Index and Temperature SO JOURNAL OF LIGHTWAVE TECHNOLOGY LA English DT Article DE Fiber Bragg gratings (FBG); fiber sensor; GO-PHER process; long-period fiber grating (LPFG); monolithic silicon; photonic crystal; refractive index sensing; temperature sensing ID OPTICAL-FIBER; GRATING SENSORS; WAVELENGTH; DEPENDENCE; LIQUIDS; MIRROR AB Fiber optic sensors have applications in the measurement of a wide range of physical properties such as temperature, pressure, and refractive index. These sensors are immune to electromagnetic interference, made of high temperature dielectric materials and hence can be deployed in harsh environments where conventional electronics would fail. Photonic crystal (PC) fiber tip sensors are highly sensitive to changes in the refractive index and temperature while remaining compact and robust. In comparison to conventional fiber sensors such as fiber Bragg gratings (FBG) or long period fiber gratings (LPFG), they are attractive in several aspects. PC fiber tip sensors have better sensitivity to refractive index and temperature than FBG sensors and are have much smaller sensing volumes than FBGs and LPFGs. Their small size allows them to combine high sensitivity and structural robustness. The most attractive feature may be that PC fiber tip sensors also return a spectrally rich signal with independently shifting resonances that can be used to extract multiple physical properties of the measurand and distinguish between them. In this paper, we show that the PC fiber tip sensor is highly sensitive to the refractive index and temperature of the environment and that both parameters can be simultaneously determined using multiple wavelengths. C1 [Jung, Il Woong] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Park, Bryan; Solgaard, Olav] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Park, Bryan; Solgaard, Olav] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Provine, J.; Howe, Roger T.] Stanford Univ, Dept Engn, Stanford, CA 94305 USA. [Provine, J.; Howe, Roger T.] Stanford Univ, CIEMS, Stanford, CA 94305 USA. RP Jung, IW (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ijung@anl.gov; insun@stanford.edu; jprovine@stanford.edu; rthowe@stanford.edu; solgaard@stanford.edu FU Defense Advanced Research Projects Agency (DARPA) [HR001-06-1-0049]; Boeing [33130] FX Manuscript received November 04, 2010; revised January 19, 2011; accepted February 24, 2011. Date of publication March 10, 2011; date of current version April 22, 2011. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program under Grant HR001-06-1-0049, and in part by Boeing under Contract 33130. NR 25 TC 21 Z9 21 U1 3 U2 37 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0733-8724 J9 J LIGHTWAVE TECHNOL JI J. Lightwave Technol. PD MAY 1 PY 2011 VL 29 IS 9 BP 1367 EP 1374 DI 10.1109/JLT.2011.2126018 PG 8 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 753TJ UT WOS:000289802300007 ER PT J AU Larson, DM Downing, KH Glaeser, RM AF Larson, David M. Downing, Kenneth H. Glaeser, Robert M. TI The surface of evaporated carbon films is an insulating, high-bandgap material SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Carbon films; Electrical conductivity; Charging; Electron microscopy ID ONE CONDUCTING LAYER; ELECTRON CRYOMICROSCOPY; AMORPHOUS-CARBON; THIN-FILMS AB The electrical conductance and the optical density of evaporated carbon films are measured as a function of the thickness of the films. The resulting data show that up to a thickness of approximately 4 nm, carbon films are optically transparent and electrically insulating. The same data also suggest that this insulating character persists near to the surface when the overall thickness is further increased. Since a support film with poor surface conductivity is undesirable for many applications in electron microscopy, we suggest that the usefulness of evaporated carbon films in electron microscopy might be further improved by doping or by other methods that improve the electrical conductivity near the surface. (C) 2011 Elsevier Inc. All rights reserved. C1 [Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, 363B, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov FU US Department of Energy [DE-ACO2-05CH11231]; NIH [P01 GM51487] FX This work was supported in part by the US Department of Energy under Contract DE-ACO2-05CH11231 and by NIH grant P01 GM51487. NR 14 TC 10 Z9 10 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD MAY PY 2011 VL 174 IS 2 BP 420 EP 423 DI 10.1016/j.jsb.2011.02.005 PG 4 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 754CL UT WOS:000289829600018 PM 21338687 ER PT J AU Curry, ML Crews, K Warke, V Bakker, MG Hong, KL Mays, J Britt, P Li, XF Wang, J AF Curry, Michael L. Crews, Kristy Warke, Vishal Bakker, Martin Gerard Hong, Kunlun Mays, Jimmy Britt, Phillip Li, Xuefa Wang, Jin TI Electrodeposition of cobalt nanowires on H-terminated conductive Si(111) surfaces using coblock polymer templating SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID COPOLYMER THIN-FILMS; NEUTRON-SCATTERING; DIBLOCK COPOLYMERS; BLOCK-COPOLYMERS; X-RAY; MONOLAYER AB The authors have investigated the formation of block copolymer nanocavities on H-terminated conducting Si(111) surfaces as templates for the electrochemical growth of perpendicular metallic nanowire arrays. Poly(styrene)-block-poly(methyl methacrylate) block copolymers (PS-b-PMMA) of appropriate block length and PS to PMMA ratio were used to create a self-assembled array of perpendicular nanocavities in which the PS majority phase is continuous and surrounds cylinders of the minority PMMA phase. Here, we report that H-terminated conducting Si(111) surfaces are also capable of inducing a perpendicular orientation in block copolymers, which-in all likelihood-is a direct result of the H-termination (i.e., removal of the oxide layer). Atomic force microscopy reveals that an acetic acid wash of the annealed block copolymer causes the minority PMMA component to be rearranged, giving rise to cavities that are perpendicular to the conducting Si substrate. Subsequently, scanning electron microscopy reveals that electrodeposition into the nanocavities can be achieved, producing an array of metallic nanopillars, 20 nm in diameter. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3563604] C1 [Curry, Michael L.; Warke, Vishal; Bakker, Martin Gerard] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Curry, Michael L.] Tuskegee Univ, Dept Chem, Tuskegee, AL 36008 USA. [Crews, Kristy] Univ W Alabama, Dept Chem, Livingston, AL 35470 USA. [Warke, Vishal; Bakker, Martin Gerard] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Hong, Kunlun; Mays, Jimmy; Britt, Phillip] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Xuefa; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Curry, ML (reprint author), Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. EM currym@tuskegee.edu RI Hong, Kunlun/E-9787-2015; OI Hong, Kunlun/0000-0002-2852-5111; Curry, Michael/0000-0001-7026-9724 FU Center for Nanophase Materials Science for synthesis of the block copolymers; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; INSIC's Center for Materials for Information Technology at The University of Alabama; MSREC [DMR-0213985] FX The authors would like to acknowledge a grant from the Center for Nanophase Materials Science for synthesis of the block copolymers. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Primary support of this work by INSIC's Center for Materials for Information Technology at The University of Alabama is gratefully acknowledged. Some materials support from the MSREC (NSF Grant No. DMR-0213985) is also acknowledged. NR 22 TC 0 Z9 0 U1 0 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY PY 2011 VL 29 IS 3 AR 031401 DI 10.1116/1.3563604 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 752KB UT WOS:000289689000010 ER PT J AU Look, DC Droubay, TC McCloy, JS Zhu, ZH Chambers, SA AF Look, David C. Droubay, Timothy C. McCloy, John S. Zhu, Zihua Chambers, Scott A. TI Ga-doped ZnO grown by pulsed laser deposition in H-2: The roles of Ga and H SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article AB Highly conductive thin films of ZnO doped with Ga were grown by pulsed laser deposition with 10 mTorr of H-2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O-2 followed by annealing in forming gas (5% H-2 in Ar), the H-2 method requires no postgrowth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm(2)/V s, a concentration of 6.8 x 10(20) cm(-3), and a resistivity of 2.9 x 10(-4) Omega cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 10(20) and 2.1 x 10(20) cm(-3), respectively, as compared to the Ga and H concentrations of 11 x 10(20) and 1 x 10(20) cm(-3). The authors conclude that growth in H-2 produces higher Ga-donor concentrations but that H-donors themselves do not play a significant role. c 2011 American Vacuum Society. [DOI: 10.1116/1.3523296] C1 [Look, David C.] Wright State Univ, Semicond Res Ctr, Dayton, OH 45435 USA. [Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Look, DC (reprint author), Wright State Univ, Semicond Res Ctr, Dayton, OH 45435 USA. EM david.look@wright.edu RI Zhu, Zihua/K-7652-2012; McCloy, John/D-3630-2013; Droubay, Tim/D-5395-2016 OI McCloy, John/0000-0001-7476-7771; Droubay, Tim/0000-0002-8821-0322 FU AFOSR [FA9550-10-1-0079]; NSF [DMR0803276]; U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The work of D. C. L. was partially supported by AFOSR Grant No. FA9550-10-1-0079 (K. Reinhardt) and by NSF Grant No. DMR0803276 (L. Hess). The work of T. C. D., J.S.M., Z.Z., and S. A. C. was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering and was performed in the Environmental Molecular Sciences Laboratory at PNNL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC05-76RL01830. NR 8 TC 5 Z9 5 U1 0 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY PY 2011 VL 29 IS 3 AR 03A102 DI 10.1116/1.3523296 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 752KB UT WOS:000289689000026 ER PT J AU Tobin, JG Yu, SW Chung, BW Waddill, GD Denlinger, JD AF Tobin, J. G. Yu, S. W. Chung, B. W. Waddill, G. D. Denlinger, J. D. TI Direct comparison of the x-ray emission and absorption of cerium oxide SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID CE AB X-ray emission spectroscopy and x-ray absorption spectroscopy have been used to investigate the photon emission and absorption associated with the Ce 3d(5/2) and Ce 3d(3/2) core levels in Ce oxide. A comparison of the two processes and their spectra will be made. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3565490] C1 [Tobin, J. G.; Yu, S. W.; Chung, B. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Waddill, G. D.] Missouri Univ Sci & Technol, Rolla, MO 65401 USA. [Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tobin1@llnl.gov RI Chung, Brandon/G-2929-2012; Tobin, James/O-6953-2015 FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; DOE, Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering; Office of Basic Energy Science in the Department of Energy FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. This work was supported by the DOE, Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering. In the ALS experiments, K. T. Moore prepared the ex situ sample and aided in the data collection. The synchrotron radiation experiments were carried out at Beamline 8 at the Advanced Light Source at Lawrence Berkeley National Laboratory, Berkeley, CA. The ALS was constructed and was operated with support from Office of Basic Energy Science in the Department of Energy. The authors would like to thank the staff of the ALS and LBNL for their support, particularly Simon Morton for his enthusiastic help. NR 12 TC 2 Z9 2 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY PY 2011 VL 29 IS 3 AR 031504 DI 10.1116/1.3565490 PG 3 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 752KB UT WOS:000289689000016 ER PT J AU Wolden, CA Kurtin, J Baxter, JB Repins, I Shaheen, SE Torvik, JT Rockett, AA Fthenakis, VM Aydil, ES AF Wolden, Colin A. Kurtin, Juanita Baxter, Jason B. Repins, Ingrid Shaheen, Sean E. Torvik, John T. Rockett, Angus A. Fthenakis, Vasilis M. Aydil, Eray S. TI Photovoltaic manufacturing: Present status, future prospects, and research needs SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Review ID FILM SOLAR-CELLS; LOW-COST PHOTOVOLTAICS; CU2ZNSNS4 THIN-FILMS; HIGH-EFFICIENCY; MICROCRYSTALLINE SILICON; SURFACE PASSIVATION; MATERIALS AVAILABILITY; CADMIUM TELLURIDE; ENERGY CONVERSION; GRAIN-BOUNDARIES AB In May 2010 the United States National Science Foundation sponsored a two-day workshop to review the state-of-the-art and research challenges in photovoltaic (PV) manufacturing. This article summarizes the major conclusions and outcomes from this workshop, which was focused on identifying the science that needs to be done to help accelerate PV manufacturing. A significant portion of the article focuses on assessing the current status of and future opportunities in the major PV manufacturing technologies. These are solar cells based on crystalline silicon (c-Si), thin films of cadmium telluride (CdTe), thin films of copper indium gallium diselenide, and thin films of hydrogenated amorphous and nanocrystalline silicon. Current trends indicate that the cost per watt of c-Si and CdTe solar cells are being reduced to levels beyond the constraints commonly associated with these technologies. With a focus on TW/yr production capacity, the issue of material availability is discussed along with the emerging technologies of dye-sensitized solar cells and organic photovoltaics that are potentially less constrained by elemental abundance. Lastly, recommendations are made for research investment, with an emphasis on those areas that are expected to have cross-cutting impact. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3569757] C1 [Wolden, Colin A.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Kurtin, Juanita] Spectrawatt, Hillsboro, OR 97124 USA. [Baxter, Jason B.] Drexel Univ, Dept Chem & Biol Engn, Philadelphia, PA 19104 USA. [Repins, Ingrid] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shaheen, Sean E.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Torvik, John T.] Novus Energy Partners, Alexandria, VA 22314 USA. [Rockett, Angus A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Fthenakis, Vasilis M.] Columbia Univ, Upton, NY 11973 USA. [Fthenakis, Vasilis M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Aydil, Eray S.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Wolden, CA (reprint author), Colorado Sch Mines, Dept Chem Engn, 1500 Illinois St, Golden, CO 80401 USA. EM cwolden@mines.edu RI Rockett, Angus/B-5539-2013; Baxter, Jason/E-2292-2013; Shaheen, Sean/M-7893-2013; OI Rockett, Angus/0000-0001-9759-8421; Aydil, Eray/0000-0002-8377-9480; Baxter, Jason/0000-0001-8702-3915 FU National Science Foundation [CBET-1027337, CBET-0931145]; Science Foundation Ireland FX This article is based on the workshop supported by the National Science Foundation through Grant No. CBET-1027337. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank all of the participants for their thoughtful contributions. C. A. W. acknowledges Science Foundation Ireland for support through an E.T.S. Walton Visitor Fellowship during the preparation of this article. S. E. S. would like to thank Russ Gaudiana (Konarka Technologies) and Gang Li (Solarmer Energy) for insightful discussions. E. S. A. acknowledges support by the National Science Foundation through Grant No. CBET-0931145. NR 158 TC 111 Z9 112 U1 16 U2 216 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY PY 2011 VL 29 IS 3 AR 030801 DI 10.1116/1.3569757 PG 16 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 752KB UT WOS:000289689000003 ER PT J AU Cano, Z Bersier, D Guidorzi, C Margutti, R Svensson, KM Kobayashi, S Melandri, A Wiersema, K Pozanenko, A van der Horst, AJ Pooley, GG Fernandez-Soto, A Castro-Tirado, AJ Postigo, AD Im, M Kamble, AP Sahu, D Alonso-Lorite, J Anupama, G Bibby, JL Burgdorf, MJ Clay, N Curran, PA Fatkhullin, TA Fruchter, AS Garnavich, P Gomboc, A Gorosabel, J Graham, JF Gurugubelli, U Haislip, J Huang, K Huxor, A Ibrahimov, M Jeon, Y Jeon, YB Ivarsen, K Kasen, D Klunko, E Kouveliotou, C LaCluyze, A Levan, AJ Loznikov, V Mazzali, PA Moskvitin, AS Mottram, C Mundell, CG Nugent, PE Nysewander, M O'Brien, PT Park, WK Peris, V Pian, E Reichart, D Rhoads, JE Rol, E Rumyantsev, V Scowcroft, V Shakhovskoy, D Small, E Smith, RJ Sokolov, VV Starling, RLC Steele, I Strom, RG Tanvir, NR Tsapras, Y Urata, Y Vaduvescu, O Volnova, A Volvach, A Wijers, RAMJ Woosley, SE Young, DR AF Cano, Z. Bersier, D. Guidorzi, C. Margutti, R. Svensson, K. M. Kobayashi, S. Melandri, A. Wiersema, K. Pozanenko, A. van der Horst, A. J. Pooley, G. G. Fernandez-Soto, A. Castro-Tirado, A. J. Postigo, A. de Ugarte Im, M. Kamble, A. P. Sahu, D. Alonso-Lorite, J. Anupama, G. Bibby, J. L. Burgdorf, M. J. Clay, N. Curran, P. A. Fatkhullin, T. A. Fruchter, A. S. Garnavich, P. Gomboc, A. Gorosabel, J. Graham, J. F. Gurugubelli, U. Haislip, J. Huang, K. Huxor, A. Ibrahimov, M. Jeon, Y. Jeon, Y. -B. Ivarsen, K. Kasen, D. Klunko, E. Kouveliotou, C. LaCluyze, A. Levan, A. J. Loznikov, V. Mazzali, P. A. Moskvitin, A. S. Mottram, C. Mundell, C. G. Nugent, P. E. Nysewander, M. O'Brien, P. T. Park, W. -K. Peris, V. Pian, E. Reichart, D. Rhoads, J. E. Rol, E. Rumyantsev, V. Scowcroft, V. Shakhovskoy, D. Small, E. Smith, R. J. Sokolov, V. V. Starling, R. L. C. Steele, I. Strom, R. G. Tanvir, N. R. Tsapras, Y. Urata, Y. Vaduvescu, O. Volnova, A. Volvach, A. Wijers, R. A. M. J. Woosley, S. E. Young, D. R. TI A tale of two GRB-SNe at a common redshift of z = 0.54 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE gamma-ray burst: individual: GRB 060729; gamma-ray burst: individual: GRB 090618; supernovae: general ID GAMMA-RAY BURST; CORE-COLLAPSE SUPERNOVAE; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; ABSOLUTE-MAGNITUDE DISTRIBUTIONS; AFTERGLOW LIGHT CURVES; LATE-TIME OBSERVATIONS; BLAST WAVE PHYSICS; HOST GALAXIES; OPTICAL AFTERGLOW; IC SUPERNOVAE AB We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z = 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t - t(o) > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. C1 [Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Melandri, A.; Clay, N.; Mottram, C.; Mundell, C. G.; Small, E.; Smith, R. J.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. [Guidorzi, C.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Margutti, R.; Melandri, A.] INAF Osserv Astron Brera, I-23807 Merate, LC, Italy. [Svensson, K. M.; Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Wiersema, K.; O'Brien, P. T.; Starling, R. L. C.; Tanvir, N. R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Pozanenko, A.; Loznikov, V.] RAS, Space Res Inst, Moscow 117901, Russia. [van der Horst, A. J.] NASA Postdoctoral Program Fellow, Washington, DC USA. [Pooley, G. G.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Fernandez-Soto, A.] Inst Fis Cantabria CSIC UC, E-39005 Santander, Spain. [Castro-Tirado, A. J.; Gorosabel, J.] Inst Astrofis Andalucia IAA CSIC, Granada, Spain. [Postigo, A. de Ugarte] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Im, M.; Jeon, Y.; Park, W. -K.] Seoul Natl Univ, Dept Phys & Astron, CEOU, Seoul, South Korea. [Kamble, A. P.; Rol, E.; Strom, R. G.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst, Xh Amsterdam, Netherlands. [Sahu, D.; Anupama, G.; Gurugubelli, U.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Alonso-Lorite, J.; Peris, V.] Univ Valencia, Astron Observ, Valencia, Spain. [Bibby, J. L.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Curran, P. A.] Univ Paris Diderot, AIM, CEA DSM, CNRS,Irfu SAP,Ctr Saclay, Paris, France. [Fatkhullin, T. A.; Moskvitin, A. S.; Sokolov, V. V.] SAO RAS, Nizhnii Arkhyz, Karachai Cherke, Russia. [Fruchter, A. S.; Graham, J. F.; Nysewander, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Garnavich, P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Gomboc, A.] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia. [Gomboc, A.] Ctr Excellence SPACE SI, SI-1000 Ljubljana, Slovenia. [Haislip, J.; Ivarsen, K.; LaCluyze, A.; Reichart, D.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA. [Huang, K.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Huxor, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Ibrahimov, M.] Ulugh Beg Astron Inst, Tashkent, Uzbekistan. [Jeon, Y. -B.] Korea Astron & Space Sci Inst, Taejon, South Korea. [Kasen, D.; Woosley, S. E.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Klunko, E.] Inst Solar Terr Phys, Irkutsk, Russia. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Mazzali, P. A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Mazzali, P. A.; Pian, E.] Scuola Normale Super Pisa, Pisa, Italy. [Mazzali, P. A.] INAF Oss Astron Padova, Padua, Italy. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Pian, E.] Osserv Astron Trieste, I-34131 Trieste, Italy. [Rhoads, J. E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Rumyantsev, V.; Shakhovskoy, D.; Volvach, A.] SRI Crimean Astrophys Observ, Nauchnyi, Crimea, Ukraine. [Scowcroft, V.] Carnegie Observ, Pasadena, CA USA. [Strom, R. G.] ASTRON, Radio Observ, Dwingeloo, Netherlands. [Strom, R. G.] James Cook Univ, Ctr Astron, Townsville, Qld 4811, Australia. [Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA USA. [Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London, England. [Urata, Y.] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Vaduvescu, O.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Canary Islands, Spain. [Vaduvescu, O.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Young, D. R.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. RP Cano, Z (reprint author), Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. EM zec@astro.livjm.ac.uk RI Im, Myungshin/B-3436-2013; Curran, Peter/B-5293-2013; Fernandez-Soto, Alberto/A-2443-2009; OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Im, Myungshin/0000-0002-8537-6714; Curran, Peter/0000-0003-3003-4626; Fernandez-Soto, Alberto/0000-0002-5732-3121; Wijers, Ralph/0000-0002-3101-1808; Castro-Tirado, A. J./0000-0003-2999-3563; Rumyantsev, Vasilij/0000-0003-1894-7019; Pian, Elena/0000-0001-8646-4858 FU Science and Technology Facilities Council (STFC) (UK); Korea government (MEST) [2009-0063616]; Generalitat Valenciana; Spanish Ministerio de Ciencia e Innovacion; Universitat de Valencia; Spanish programmes [ESP2005-07714-C03-03, AYA2007-63677, AYA2008-03467/ESP, AYA2009-14000-C03-01]; Russian Federation [MK-405.2010.2]; Netherlands Organization for Scientific Research (NWO); Slovenian Research Agency; European Union; European Regional Development Fund; Republic of Slovenia, Ministry of Higher Education, Science and Technology; Spanish MICINN [AYA2006-14056]; Consolider-Ingenio [2007-32022]; Generalitat Valenciana [Prometeo 2008/132] FX We are very grateful to Knut Olsen and Abi Saha for their assistance in obtaining images on the CTIO 4-m telescope in 2006 August. We would also like to thank the anonymous referees for their very thorough and constructive comments on the original manuscript. This work was supported partially by a Science and Technology Facilities Council (STFC) (UK) research studentship (ZC). MI, YJ and WKP were supported by the Korea Science and Engineering Foundation (KOSEF) grant No. 2009-0063616, funded by the Korea government (MEST). The T40 telescope at the Observatorio de Aras de los Olmos is funded by the Generalitat Valenciana, the Spanish Ministerio de Ciencia e Innovacion and the Universitat de Valencia. The research of JG and AJCT is supported by the Spanish programmes ESP2005-07714-C03-03, AYA2007-63677, AYA2008-03467/ESP and AYA2009-14000-C03-01. TAF and ASM were supported by the grant of the President of the Russian Federation (MK-405.2010.2). The WSRT is operated by ASTRON with financial support from the Netherlands Organization for Scientific Research (NWO). AG acknowledges funding from the Slovenian Research Agency and from the Centre of Excellence for Space Sciences and Technologies SPACE-SI, an operation partly financed by the European Union, European Regional Development Fund and Republic of Slovenia, Ministry of Higher Education, Science and Technology. AFS acknowledges support from the Spanish MICINN projects AYA2006-14056, Consolider-Ingenio 2007-32022 and the Generalitat Valenciana project Prometeo 2008/132. NR 169 TC 49 Z9 49 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2011 VL 413 IS 1 BP 669 EP 685 DI 10.1111/j.1365-2966.2010.18164.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 750DN UT WOS:000289525000049 ER PT J AU Stair, PC AF Stair, Peter C. TI METAL-OXIDE INTERFACES Where the action is SO NATURE CHEMISTRY LA English DT News Item ID HYDROFORMYLATION C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu NR 4 TC 20 Z9 20 U1 1 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD MAY PY 2011 VL 3 IS 5 BP 345 EP 346 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 752RZ UT WOS:000289712600005 PM 21505490 ER PT J AU Yamada, Y Tsung, CK Huang, W Huo, ZY Habas, SE Soejima, T Aliaga, CE Somorjai, GA Yang, PD AF Yamada, Yusuke Tsung, Chia-Kuang Huang, Wenyu Huo, Ziyang Habas, Susan E. Soejima, Tetsuro Aliaga, Cesar E. Somorjai, Gabor A. Yang, Peidong TI Nanocrystal bilayer for tandem catalysis SO NATURE CHEMISTRY LA English DT Article ID SUPPORTED METAL-CATALYSTS; SUM-FREQUENCY GENERATION; PLATINUM CATALYSTS; CO OXIDATION; NANOPARTICLES; DECOMPOSITION; SUPERLATTICES; FILMS; CERIA AB Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts. C1 [Tsung, Chia-Kuang; Huang, Wenyu; Habas, Susan E.; Aliaga, Cesar E.; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu; Huo, Ziyang; Habas, Susan E.; Soejima, Tetsuro; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Yamada, Y (reprint author), Osaka Univ, Dept Mat & Life Sci, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan. EM p_yang@berkeley.edu RI Yamada, Yusuke/D-3359-2013; Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 192 Z9 193 U1 30 U2 302 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD MAY PY 2011 VL 3 IS 5 BP 372 EP 376 DI 10.1038/NCHEM.1018 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 752RZ UT WOS:000289712600010 PM 21505495 ER PT J AU Luther, JM Jain, PK Ewers, T Alivisatos, AP AF Luther, Joseph M. Jain, Prashant K. Ewers, Trevor Alivisatos, A. Paul TI Localized surface plasmon resonances arising from free carriers in doped quantum dots SO NATURE MATERIALS LA English DT Article ID ELECTRICAL-PROPERTIES; CUPROUS SULFIDES; COPPER SELENIDE; CHALCOCITE CU2S; NANOCRYSTALS; DJURLEITE; NANORODS; TRANSFORMATION; NANOPARTICLES; SPECTROSCOPY AB Localized surface plasmon resonances (LSPRs) typically arise in nanostructures of noble metals(1,2) resulting in enhanced and geometrically tunable absorption and scattering resonances. LSPRs, however, are not limited to nanostructures of metals and can also be achieved in semiconductor nanocrystals with appreciable free carrier concentrations. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots (QDs). Achievement of LSPRs by free carrier doping of a semiconductor nanocrystal would allow active on-chip control of LSPR responses. Plasmonic sensing and manipulation of solid-state processes in single nanocrystals constitutes another interesting possibility. We also demonstrate that doped semiconductor QDs allow realization of LSPRs and quantum-confined excitons within the same nanostructure, opening up the possibility of strong coupling of photonic and electronic modes, with implications for light harvesting, nonlinear optics, and quantum information processing. C1 [Luther, Joseph M.; Jain, Prashant K.; Ewers, Trevor; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Luther, Joseph M.; Jain, Prashant K.; Ewers, Trevor; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA USA. [Jain, Prashant K.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apalivisatos@lbl.gov RI Jain, Prashant/A-4779-2009; Ewers, Trevor/A-2810-2013; Alivisatos , Paul /N-8863-2015 OI Jain, Prashant/0000-0002-7306-3972; Ewers, Trevor/0000-0002-7867-1125; Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [KC3105, DE-AC02-05CH11231]; Miller Fellowship FX Work on copper sulphide nanocrystal synthesis and optical and structural characterization was supported by the Physical Chemistry of Semiconductor Nanocrystals Program, KC3105, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DE-AC02-05CH11231. Work on LSPR response characterization, chemical tuning, and vacancy density profiling was supported by a Miller Fellowship awarded to P.K.J. We thank J. Owen, J. B. Rivest and J. van de Lagemaat for discussions and Lam-Kiu Fong for a CdS nanorod sample. NR 37 TC 511 Z9 513 U1 81 U2 608 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2011 VL 10 IS 5 BP 361 EP 366 DI 10.1038/NMAT3004 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 752UJ UT WOS:000289720000015 PM 21478881 ER PT J AU Ashley, CE Carnes, EC Phillips, GK Padilla, D Durfee, PN Brown, PA Hanna, TN Liu, JW Phillips, B Carter, MB Carroll, NJ Jiang, XM Dunphy, DR Willman, CL Petsev, DN Evans, DG Parikh, AN Chackerian, B Wharton, W Peabody, DS Brinker, CJ AF Ashley, Carlee E. Carnes, Eric C. Phillips, Genevieve K. Padilla, David Durfee, Paul N. Brown, Page A. Hanna, Tracey N. Liu, Juewen Phillips, Brandy Carter, Mark B. Carroll, Nick J. Jiang, Xingmao Dunphy, Darren R. Willman, Cheryl L. Petsev, Dimiter N. Evans, Deborah G. Parikh, Atul N. Chackerian, Bryce Wharton, Walker Peabody, David S. Brinker, C. Jeffrey TI The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers SO NATURE MATERIALS LA English DT Article ID RESPONSIVE CONTROLLED-RELEASE; DRUG-DELIVERY; MACROMOLECULAR THERAPEUTICS; HEPATOCELLULAR-CARCINOMA; MULTIDRUG-RESISTANCE; LIPOSOMES; NANOPARTICLES; MEMBRANES; DOXORUBICIN; TENSION AB Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes. C1 [Ashley, Carlee E.; Padilla, David; Liu, Juewen; Jiang, Xingmao; Dunphy, Darren R.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Carnes, Eric C.; Carroll, Nick J.; Petsev, Dimiter N.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Phillips, Genevieve K.; Phillips, Brandy; Carter, Mark B.; Willman, Cheryl L.; Chackerian, Bryce; Wharton, Walker; Peabody, David S.; Brinker, C. Jeffrey] Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Durfee, Paul N.; Chackerian, Bryce; Peabody, David S.; Brinker, C. Jeffrey] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Brown, Page A.; Evans, Deborah G.] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. [Hanna, Tracey N.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Willman, Cheryl L.; Wharton, Walker] Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA. [Parikh, Atul N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Self Assembled Mat Dept, Albuquerque, NM 87185 USA. RP Ashley, CE (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. EM ceashle@sandia.gov; cjbrink@sandia.gov RI jiang, xingmao /H-3554-2013; Liu, Juewen/A-2701-2014; PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU NIH/Roadmap for Medical Research [PHS 2 PN2 EY016570B]; NCI [1U01CA151792-01]; Air Force Office of Scientific Research [FA 9550-07-1-0054/9550-10-1-0054]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories' Laboratory Directed Research and Development (LDRD); National Security Science and Engineering at Sandia National Laboratories; UCLA Center for Nanobiology and Predictive Toxicology (NIEHS) [1U19ES019528-01]; NSF ERC Center for Environmental Implications of Nanotechnology at UCLA [NSF:EF-0820117]; NSF [DGE-0504276, DGE-0549500, PREM/DMR 0611616]; NSF at the University of New Mexico Center for Micro-Engineered Materials [DMR-0649132]; NCRR; University of New Mexico Health Sciences Center; University of New Mexico Cancer Center; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NIH/Roadmap for Medical Research under grant PHS 2 PN2 EY016570B; NCI Cancer Nanotechnology Platform Partnership grant 1U01CA151792-01; the Air Force Office of Scientific Research grant FA 9550-07-1-0054/9550-10-1-0054; the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; the Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) programme; the President Harry S. Truman Fellowship in National Security Science and Engineering at Sandia National Laboratories (C. E. A.); the UCLA Center for Nanobiology and Predictive Toxicology (NIEHS grant 1U19ES019528-01) and the NSF ERC Center for Environmental Implications of Nanotechnology at UCLA (NSF:EF-0820117). C. E. A. was supported by IGERT Fellowship Grant NSF DGE-0504276, and E. C. C. and N.J.C. were supported by NSF IGERT grant DGE-0549500. T. N. H. was supported by NSF Nanoscience and Microsystems REU program (grant DMR-0649132) at the University of New Mexico Center for Micro-Engineered Materials. N.J.C and D. N. P. were supported by NSF PREM/DMR 0611616. R. Lee provided guidance for imaging protocols and FRAP experiments, M. Aragon created schematic diagrams, R. Sewell carried out nitrogen sorption experiments and Y-B. Jiang carried out TEM imaging. Cryogenic TEM was carried out at Baylor College of Medicine (Houston, TX) by C. Jia-Yin Fu, H. Khant and W. Chiu. Some images in this paper were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility, supported by NCRR, NSF and NCI as detailed at http://hsc.unm.edu/crtc/microscopy/Facility.html. Data were generated in the Flow Cytometry Shared Resource Center supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center. Sandia is a multiprogramme laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 53 TC 435 Z9 446 U1 45 U2 508 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2011 VL 10 IS 5 BP 389 EP 397 DI 10.1038/NMAT2992 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 752UJ UT WOS:000289720000020 PM 21499315 ER PT J AU Fratoni, M Greenspan, E AF Fratoni, Massimiliano Greenspan, Ehud TI Neutronic Feasibility Assessment of Liquid Salt-Cooled Pebble Bed Reactors SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB This study investigates the neutronic characteristics of the Pebble Bed-Advanced High Temperature Reactor (PB-AHTR), which combines TRISO fuel technology and liquid salt [flibe (2LiF-Be2F)] cooling. Compared to equivalent helium-cooled cores, the flibe-cooled cores feature a significantly larger fraction of neutron loss to coolant absorption but also a reduced neutron loss to leakage. The flibe also significantly contributes to neutron slowing-down and allows an increase of the pebbles' heavy metal-to-carbon volume ratio as compared to helium-cooled cores. In order to guarantee all negative reactivity coefficients, and in particidar coolant void and temperature feedbacks, the carbon-to-heavy metal atom ratio must not exceed 300 to 400, depending on the fuel kernel diameter. The maximum burnup attainable from a PB-AHTR that is fueled with 10% enriched uranium and operated in continuous refueling is similar to 130 GWd/t HM; this is comparable to the maximum burnup achieved in other high-temperature reactors, either liquid salt or gas cooled. Compared to helium-cooled pebble bed reactors, the PB-AHTR pebbles can be loaded with 2.5 times more fuel, resulting in a smaller number of pebbles to fabricate and a smaller spent-fuel volume.,to handle per energy generated. Relative to a light water reactor, the PB-AHTR offers improved natural uranium ore utilization and reduced enrichment capacity. C1 [Fratoni, Massimiliano; Greenspan, Ehud] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Fratoni, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM fratoni1@llnl.gov RI Fratoni, Massimiliano/F-9746-2011; Fratoni, Massimiliano/M-8323-2015 OI Fratoni, Massimiliano/0000-0003-0452-0508 FU U.S. Department of Energy Office of Nuclear Energy, Nuclear Energy Research Initiation [DE-FC07-05ID14669] FX This work was supported by the U.S. Department of Energy Office of Nuclear Energy, Nuclear Energy Research Initiation grant DE-FC07-05ID14669. Support provided by P. F. Peterson is highly appreciated. NR 20 TC 4 Z9 4 U1 1 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2011 VL 168 IS 1 BP 1 EP 22 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 753XG UT WOS:000289813100001 ER PT J AU Gill, DF Azmy, YY Warsa, JS Densmore, JD AF Gill, Daniel F. Azmy, Yousry Y. Warsa, James S. Densmore, Jeffery D. TI Newton's Method for the Computation of k-Eigenvalues in S-N Transport Applications SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID FORCING TERMS AB Recently, Jacobian-Free Newton-Krylov (JFNK) methods have been used to solve the k-eigenvalue problem in diffusion and transport theories. We propose an improvement to Newton's method (NM)for solving the k-eigenvalue problem in transport theory that avoids costly within-group iterations or iterations over energy groups. We present a formulation of the k-eigenvalue problem where a nonlinear function, whose roots are solutions of the k-eigenvalue problem, is written in terms of a generic fixed-point iteration (FPI). In this way any FPI that solves the k-eigenvalue problem can be accelerated using the Newton approach, including our improved formulation. Calculations with a one-dimensional multigroup S-N transport implementation in MATLAB provide a proof of principle and show that convergence to the fundamental mode is feasible. Results generated using a three-dimensional Fortran implementation of several formulations of NM for the well-known Takeda and C5G7-MOX benchmark problems confirm the efficiency of NM for realistic k-eigenvalue calculations and highlight numerous advantages over traditional FPI. C1 [Gill, Daniel F.] Penn State Univ, University Pk, PA 16802 USA. [Azmy, Yousry Y.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Warsa, James S.; Densmore, Jeffery D.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA. RP Gill, DF (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM dfgill@psualum.com FU Naval Reactors Division of the U.S. Department of Energy (DOE); DOE [DE-AC52-06NA25396] FX This research was performed under appointment of D. F. Gill to the Rickover Graduate Fellowship Program sponsored by Naval Reactors Division of the U.S. Department of Energy (DOE).; The authors would like to thank J. Dahl and E. Fichtl of Los Alamos National Laboratory (LANL) for some very helpful discussions concerning the eigenvalue problem. This information has been coauthored by an employee or employees of the Los Alamos National Security, LLC, operator of LANL under contract DE-AC52-06NA25396 with DOE. NR 19 TC 7 Z9 7 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2011 VL 168 IS 1 BP 37 EP 58 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 753XG UT WOS:000289813100003 ER PT J AU Batlle, JVI Beaugelin-Seiller, K Beresford, NA Copplestone, D Horyna, J Hosseini, A Johansen, M Kamboj, S Keum, DK Kurosawa, N Newsome, L Olyslaegers, G Vandenhove, H Ryufuku, S Lynch, SV Wood, MD Yu, C AF Vives i Batlle, J. Beaugelin-Seiller, K. Beresford, N. A. Copplestone, D. Horyna, J. Hosseini, A. Johansen, M. Kamboj, S. Keum, D. -K. Kurosawa, N. Newsome, L. Olyslaegers, G. Vandenhove, H. Ryufuku, S. Lynch, S. Vives Wood, M. D. Yu, C. TI The estimation of absorbed dose rates for non-human biota: an extended intercomparison SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID CONVERSION COEFFICIENTS; AQUATIC BIOTA; TERRESTRIAL AB An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of +/- 20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. C1 [Vives i Batlle, J.; Olyslaegers, G.; Vandenhove, H.] Belgian Nucl Res Ctr, B-2400 Mol, Belgium. [Beaugelin-Seiller, K.] Inst Radioprotect & Surete Nucl, St Paul Les Durance, France. [Beresford, N. A.] Ctr Ecol & Hydrol, Lancaster, England. [Hosseini, A.] Norwegian Radiat Protect Author, Tromso, Norway. [Kamboj, S.; Yu, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Copplestone, D.] Univ Stirling, Sch Biol & Environm Sci, Stirling FK9 4LA, Scotland. [Newsome, L.] England & Wales Environm Agcy, Bristol, Avon, England. [Horyna, J.] SUJB, State Off Nucl Safety, Prague, Czech Republic. [Johansen, M.] Australian Nucl Sci & Technol Org, Lucas Heights, Australia. [Keum, D. -K.] Korea Atom Energy Res Inst, Taejon, South Korea. [Kurosawa, N.; Ryufuku, S.] Visible Information Ctr Inc, Tokai, Ibaraki, Japan. [Wood, M. D.] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England. RP Batlle, JVI (reprint author), Belgian Nucl Res Ctr, Boeretang 200, B-2400 Mol, Belgium. EM jordi.vives.i.batlle@sckcen.be RI Johansen, Mathew/D-7049-2012; Wood, Michael/D-7813-2010; Beresford, Nicholas/I-6188-2012; Newsome, Laura/A-2326-2017; OI Newsome, Laura/0000-0002-0283-3001; Copplestone, David/0000-0002-1468-9545 NR 22 TC 25 Z9 26 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD MAY PY 2011 VL 50 IS 2 BP 231 EP 251 DI 10.1007/s00411-010-0346-5 PG 21 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 753BP UT WOS:000289739500001 PM 21113609 ER PT J AU Wiley, HS AF Wiley, H. Steven TI If Bacteria Can Do It ... SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD MAY PY 2011 VL 25 IS 5 BP 28 EP 28 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 753CO UT WOS:000289742600007 ER PT J AU Modis, T AF Modis, Theodore TI US Nobel laureates: Logistic growth versus Volterra-Lotka SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Logistic growth; S-curve; Volterra-Lotka; US Nobels; Cumulative; Win-win ID TECHNOLOGIES; FORECASTS; MODEL AB The logistic-growth equation is a special case of the Volterra-Lotka equations. The former describes competition only between members of the same species whereas the latter describes competition also with other species. In the study of US Nobel laureates considering laureates per population improves the quality of the logistic fit but the Volterra-Lotka approach suggests that a logistic description would be a good approximation for data per unit of time rather than cumulative data. Fitting logistic S-curves on cumulative data - although proven successful in many business and other applications - constitutes treacherous terrain for inexperienced S-curve enthusiasts. The Volterra-Lotka analysis of Nobel laureates reveals other insights such as that Americans and other nationalities are locked in a win-win struggle with Americans drawing more of a benefit, and also that American Nobel laureates "incubate" new Nobel laureates to a lesser extent than other nationalities. (C) 2010 Elsevier Inc. All rights reserved. C1 [Modis, Theodore] Digital Equipment Corp, Maynard, MA 01754 USA. [Modis, Theodore] Brookhaven Natl Lab, Upton, NY 11973 USA. [Modis, Theodore] Columbia Univ, Monterrey, Mexico. [Modis, Theodore] Univ Geneva, Monterrey, Mexico. [Modis, Theodore] Leadership Sch DUXX, Monterrey, Mexico. EM tmodis@yahoo.com NR 12 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAY PY 2011 VL 78 IS 4 BP 559 EP 564 DI 10.1016/j.techfore.2010.10.002 PG 6 WC Business; Planning & Development SC Business & Economics; Public Administration GA 751FP UT WOS:000289603200002 ER PT J AU Potter, GL Bader, DDC Riches, M Bamzai, A Joseph, R AF Potter, Gerald L. Bader, Davi D. C. Riches, Michael Bamzai, Anjuli Joseph, Renu TI CELEBRATING TWO DECADES OF THE PROGRAM FOR CLIMATE MODEL DIAGNOSIS AND INTERCOMPARISON SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Potter, Gerald L.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Bader, Davi D. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Riches, Michael; Joseph, Renu] US DOE, Off Biol & Environm Res, Washington, DC USA. [Bamzai, Anjuli] Natl Sci Fdn, Climate & Large Scale Dynam Program, Arlington, VA 22230 USA. RP Potter, GL (reprint author), Univ Calif Davis, Dept Geol, 1 Shields Ave, Davis, CA 95616 USA. EM jpotter@ucdavis.edu NR 1 TC 1 Z9 1 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAY PY 2011 VL 92 IS 5 BP 629 EP 631 DI 10.1175/2011BAMS3018.1 PG 3 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 781YA UT WOS:000291972700006 ER PT J AU Helton, AM Poole, GC Meyer, JL Wollheim, WM Peterson, BJ Mulholland, PJ Bernhardt, ES Stanford, JA Arango, C Ashkenas, LR Cooper, LW Dodds, WK Gregory, SV Hall, RO Hamilton, SK Johnson, SL McDowell, WH Potter, JD Tank, JL Thomas, SM Valett, HM Webster, JR Zeglin, L AF Helton, Ashley M. Poole, Geoffrey C. Meyer, Judy L. Wollheim, Wilfred M. Peterson, Bruce J. Mulholland, Patrick J. Bernhardt, Emily S. Stanford, Jack A. Arango, Clay Ashkenas, Linda R. Cooper, Lee W. Dodds, Walter K. Gregory, Stanley V. Hall, Robert O., Jr. Hamilton, Stephen K. Johnson, Sherri L. McDowell, William H. Potter, Jody D. Tank, Jennifer L. Thomas, Suzanne M. Valett, H. Maurice Webster, Jackson R. Zeglin, Lydia TI Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Review ID AQUATIC ECOSYSTEMS; BIOGEOCHEMICAL PROCESSES; FLOW PATHS; STREAM; DENITRIFICATION; DYNAMICS; REMOVAL; NITRATE; INTERFACE; TRANSPORT AB Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles. C1 [Helton, Ashley M.; Poole, Geoffrey C.; Meyer, Judy L.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Poole, Geoffrey C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Wollheim, Wilfred M.] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA. [Peterson, Bruce J.; Thomas, Suzanne M.] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bernhardt, Emily S.] Duke Univ, Dept Biol, Durham, NC USA. [Stanford, Jack A.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Arango, Clay; Tank, Jennifer L.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Ashkenas, Linda R.; Gregory, Stanley V.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. [Cooper, Lee W.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. [Dodds, Walter K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Hall, Robert O., Jr.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. [Hamilton, Stephen K.] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Johnson, Sherri L.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA. [McDowell, William H.; Potter, Jody D.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Valett, H. Maurice; Webster, Jackson R.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. [Zeglin, Lydia] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Helton, AM (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. EM amhelton@uga.edu RI Mulholland, Patrick/C-3142-2012; Cooper, Lee/E-5251-2012; McDowell, William/E-9767-2010; Hamilton, Stephen/N-2979-2014; Bernhardt, Emily/D-9940-2011; OI Cooper, Lee/0000-0001-7734-8388; McDowell, William/0000-0002-8739-9047; Hamilton, Stephen/0000-0002-4702-9017; Bernhardt, Emily/0000-0003-3031-621X; Poole, Geoffrey/0000-0002-8458-0203 FU NSF [DEB-0111410, DEB-0614301, OCE-9726921, DEB-0614282, DEB-0620919, DEB-0423627]; Gordon and Betty Moore Foundation; EPA FX This research was supported by NSF (DEB-0111410). Additional support was provided by NSF for BJP and SMT (DEB-0614301), for WMW (OCE-9726921 and DEB-0614282), for WHM and JDP (DEB-0620919), for SKH (DEB-0423627), and by the Gordon and Betty Moore Foundation for AMH, GCP, ESB, and JAS, and by an EPA Star Fellowship for AMH. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of the EPA. We thank C Bennett for programming assistance and the Rosemond Lab Group at the University of Georgia for helpful comments on earlier versions of this manuscript. NR 54 TC 30 Z9 30 U1 4 U2 111 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD MAY PY 2011 VL 9 IS 4 BP 229 EP 238 DI 10.1890/080211 PG 10 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 781JQ UT WOS:000291927800018 ER PT J AU Engle, NL AF Engle, Nathan L. TI Adaptive capacity and its assessment SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Vulnerability; Resilience; Adaptation; Sustainability science; Measurement; Characterization; Governance and institutions ID SOCIAL-ECOLOGICAL SYSTEMS; GLOBAL ENVIRONMENTAL-CHANGE; CLIMATE-CHANGE POLICY; HUMAN DIMENSIONS; ADAPTATION; VULNERABILITY; RESILIENCE; GLOBALIZATION; VARIABILITY; PERSPECTIVE AB This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Engle, Nathan L.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Engle, Nathan L.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. RP Engle, NL (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM nengle@umich.edu NR 96 TC 184 Z9 193 U1 13 U2 136 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD MAY PY 2011 VL 21 IS 2 SI SI BP 647 EP 656 DI 10.1016/j.gloenvcha.2011.01.019 PG 10 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA 784SC UT WOS:000292177500034 ER PT J AU Charbonneau, N Vokkarane, VM Guok, C Monga, I AF Charbonneau, Neal Vokkarane, Vinod M. Guok, Chin Monga, Inder TI Advance Reservation Frameworks in Hybrid IP-WDM Networks SO IEEE COMMUNICATIONS MAGAZINE LA English DT Article ID GMPLS AB New e-Science and grid applications require the coordination of geographically distributed scientific instruments along with data and computing resources. Due to the quality of service requirements of these applications, these distributed resources can be connected by a wavelength-routed optical network, allowing each application to get dedicated bandwidth. These networks are referred to as LambdaGrids. One important service provided in these networks is advance reservation. Applications need to coordinate the use of both grid resources and the network. Advance reservation allows these applications to reserve bandwidth in advance to guarantee availability. In this article, we discuss different networks and frameworks that support advance reservation of bandwidth. We discuss the general architecture of each network and the type of advance reservation services supported. C1 [Charbonneau, Neal; Vokkarane, Vinod M.] Univ Massachusetts, Dartmouth, NS, Canada. [Guok, Chin; Monga, Inder] Lawrence Berkeley Natl Lab ESnet, Berkeley, CA USA. RP Charbonneau, N (reprint author), Univ Massachusetts, Dartmouth, NS, Canada. EM ncharbonneau@ieee.org; vvokkarane@ieee.org; chin@es.net; imonga@ES.NET NR 14 TC 12 Z9 13 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD MAY PY 2011 VL 49 IS 5 BP 132 EP 139 DI 10.1109/MCOM.2011.5762809 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 762BJ UT WOS:000290447000014 ER PT J AU Huber, P Kopp, J AF Huber, Patrick Kopp, Joachim TI two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments (vol 013, JHEP03, 2011) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Correction C1 [Huber, Patrick] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Kopp, Joachim] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Huber, P (reprint author), Virginia Tech, Dept Phys, Robeson Hall, Blacksburg, VA 24061 USA. EM pahuber@vt.edu; jkopp@fnal.gov RI Kopp, Joachim/B-5866-2013 NR 1 TC 7 Z9 7 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1126-6708 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2011 IS 5 AR 024 DI 10.1007/JHEP05(2011)024 PG 1 WC Physics, Particles & Fields SC Physics GA 774EM UT WOS:000291364300024 ER PT J AU Ishikawa, T Aoki, Y Flynn, JM Izubuchi, T Loktik, O AF Ishikawa, Tomomi Aoki, Yasumichi Flynn, Jonathan M. Izubuchi, Taku Loktik, Oleg TI One-loop operator matching in the static heavy and domain-wall light quark system with O(a) improvement SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lattice QCD; Heavy Quark Physics; B-Physics ID IMPROVED LATTICE ACTION; YANG-MILLS THEORY; CHIRAL FERMIONS; 4-FERMION OPERATORS; ANOMALOUS DIMENSION; PERTURBATION-THEORY; STRING TENSION; GAUGE ACTIONS; FORM-FACTORS; WEAK DECAYS AB We discuss perturbative O(g(2)a) matching with static heavy quarks and domain-wall light quarks for lattice operators relevant to B-meson decays and B-0-(B) over bar (0) mixing. The chiral symmetry of the light domain-wall quarks does not prohibit operator mixing at O(a) for these operators. The O(a) corrections to physical quantities are non-negligible and must be included to obtain high-precision simulation results for CKM physics. We provide results using plaquette, Symanzik, Iwasaki and DBW2 gluon actions and applying APE, HYP1 and HYP2 link-smearing for the static quark action. C1 [Ishikawa, Tomomi] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Ishikawa, Tomomi; Aoki, Yasumichi; Izubuchi, Taku] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Flynn, Jonathan M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Izubuchi, Taku] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Loktik, Oleg] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Ishikawa, T (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM tomomi@phys.uconn.edu; yaoki@quark.phy.bnl.gov; j.m.flynn@soton.ac.uk; izubuchi@quark.phy.bnl.gov; oleg.loktik@gmail.com OI Flynn, Jonathan/0000-0002-6280-1677 FU JSPS Kakenhi [22540301, 21540289, 20105002, 20025010]; STFC [ST/G000557/1]; US DOE [DE-AC02-98CH10886] FX The authors would like to thank Sinya Aoki, Peter A. Boyle, Thomas T. Dumitrescu, Norman H. Christ, Christopher T. Sachrajda, Amarjit Soni, Ruth Van de Water, Jan Wennekers and Oliver Witzel for fruitful discussion. We also thank Ruth Van de Water for carefully reading the manuscript. Y.A. and T. Izubuchi are partially supported by JSPS Kakenhi grant Nos. 22540301, 21540289, 20105002, 20025010. JMF acknowledges support from STFC Grant ST/G000557/1. T. Izubuchi is partially supported by the US DOE under contract No. DE-AC02-98CH10886. NR 64 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2011 IS 5 AR 040 DI 10.1007/JHEP05(2011)040 PG 79 WC Physics, Particles & Fields SC Physics GA 774EM UT WOS:000291364300040 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hartl, C Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Cerny, K De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Xu, M Yang, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhang, L Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Assran, Y Mahmoud, MA Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Rurua, L Lomidze, D Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Masetti, G Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Glushkov, I Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Raval, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Walsh, R Wissing, C Autermann, C Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Barth, C Bauer, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heindl, SM Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Ghezzi, A Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Merola, M Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Conti, E De Mattia, M Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Taroni, S Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Martins, P Musella, P Nayak, A Ribeiro, PQ Seixas, J Silva, P Varela, J Wohri, HK Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Colino, N De La Cruz, B Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Llatas, MC Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Ramos, FD Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Harvey, J Hegeman, J Hegner, B Henderson, C Hesketh, G Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Tsyganov, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bortignon, P Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Regenfus, C Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Chen, WT Dutta, S Go, A Kuo, CM Li, SW Lin, W Liu, MH Liu, ZK Lu, YJ Mekterovic, D Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, M Hartley, D Heath, GP Heath, HF Huckvale, B Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Clough, A Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Bornheim, A Bunn, J Chen, Y Gataullin, M Kcira, D Litvine, V Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Kim, B Klimenko, S Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bandurin, D Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Noonan, D Radicci, V Sanders, S Wood, JS Zhukova, V Bolton, T Chakaberia, I Ivanov, A Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Hu, Z Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Osipenkov, I Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hartl, C. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Cerny, K. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Vander Velde, C. Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Damiao, D. De Jesus Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Dias, F. A. Dias, M. A. F. Perez Tomei, T. R. Fernandez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Xu, M. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhang, L. Zhu, B. Zou, W. Cabrera, A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Assran, Y. Mahmoud, M. A. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Rurua, L. Lomidze, D. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Masetti, G. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Glushkov, I. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Raval, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Walsh, R. Wissing, C. Autermann, C. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Barth, C. Bauer, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heindl, S. M. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Ghezzi, A. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Conti, E. De Mattia, M. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Taroni, S. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De La Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Martins, P. Musella, P. Nayak, A. Ribeiro, P. Q. Seixas, J. Silva, P. Varela, J. Woehri, H. K. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Colino, N. De La Cruz, B. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chamizo Llatas, M. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Ramos, F. Duarte Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Harvey, J. Hegeman, J. Hegner, B. Henderson, C. Hesketh, G. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Tsyganov, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bortignon, P. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Chen, W. T. Dutta, S. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Liu, Z. K. Lu, Y. J. Mekterovic, D. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, M. Hartley, D. Heath, G. P. Heath, H. F. Huckvale, B. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Clough, A. Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De La Barca Cebra, D. Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bandurin, D. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bolton, T. Chakaberia, I. Ivanov, A. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Osipenkov, I. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Measurement of Bose-Einstein correlations in pp collisions at root s=0.9 and 7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID PION INTERFEROMETRY; ANNIHILATION; SPACE AB Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied. Anticorrelations between same-sign charged particles are observed in the region of relative momenta higher than those in the signal region. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Cerny, K.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Damiao, D. De Jesus; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Perez Tomei, T. R. Fernandez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Xu, M.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Assran, Y.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Rurua, L.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heindl, S. M.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.; Pasztor, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. Univ Bari, Bari, Italy. Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Merola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Taroni, S.; Valdata, M.; Volpe, R.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colafranceschi, S.; Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chamizo Llatas, M.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Hajdu, C.; Sharma, A.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Ghezzi, A.; Perrozzi, L.; Volpe, R.; Boccali, T.; Tonelli, G.; Venturi, A.; Pandolfi, F.; Botta, C.; Graziano, A.; Pelliccioni, M.; Pereira, A. Vilela; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Ramos, F. Duarte; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hesketh, G.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Tsyganov, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Sharma, V.; Hall-Wilton, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Ctr Nat Sci, UA-310108 Kharkov, Ukraine. [Hansen, M.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Clough, A.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Avetisyan, A.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De La Barca; Cebra, D.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Penzo, A.; Andreev, V.; Felcini, M.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Spiropulu, M.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Yang, M.; Li, W.; Wyslouch, B.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Osipenkov, I.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Penzo, A.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Popescu, S.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Bucharest, Romania. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Sznajder, Andre/L-1621-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Snigirev, Alexander/D-8912-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Ganjour, Serguei/D-8853-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012 OI Sznajder, Andre/0000-0001-6998-1108; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Heath, Helen/0000-0001-6576-9740; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Amapane, Nicola/0000-0001-9449-2509; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). NR 28 TC 9 Z9 9 U1 1 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2011 IS 5 AR 029 DI 10.1007/JHEP05(2011)029 PG 29 WC Physics, Particles & Fields SC Physics GA 774EM UT WOS:000291364300029 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hartl, C Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Wal-Tenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Cerny, K De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Beauceron, S Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Velde, CV Vanlaer, P Wickens, J Adler, V Costantini, S Grunewald, M Klein, B Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SM Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Xu, M Yang, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhang, L Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Assran, Y Mahmoud, MA Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Megrelidze, L Roinishvili, V Lomidze, D Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Masetti, G Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Glushkov, I Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Raval, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Walsh, R Wissing, C Autermann, C Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Barth, C Bauer, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heindl, SM Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Ghezzi, A Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Merola, M Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Biasotto, M Bisello, D Branca, A Carlin, R Checchia, P Conti, E De Mattia, M Dorigo, T Dosselli, U Fanzago, F Gasparini, F Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Berzano, U Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Taroni, S Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Nourbakhsh, S Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Castilla-Valdez, H De la Cruz-Burelo, E Lopez-Fernandez, R Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Martins, P Musella, P Nayak, A Ribeiro, PQ Seixas, J Silva, P Varela, J Wohri, HK Belotelov, I Bunin, P Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Colino, N De La Cruz, B Pardos, CD Vazquez, DD Bedoya, CFN Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, I Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Llatas, MC Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Ramos, FD Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Harvey, J Hegeman, J Hegner, B Henderson, C Hesketh, G Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Tsyganov, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bortignon, P Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Regenfus, C Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Chen, WT Dutta, S Go, A Kuo, CM Li, SW Lin, W Liu, MH Liu, ZK Lu, YJ Mekterovic, D Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, M Hartley, D Heath, GP Heath, HF Huckvale, B Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Fantasia, C Heister, A John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Bornheim, A Bunn, J Chen, Y Gataullin, M Kcira, D Litvine, V Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Kim, B Klimenko, S Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bandurin, D Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Noonan, D Radicci, V Sanders, S Wood, JS Zhukova, V Bolton, T Chakaberia, I Ivanov, A Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Geese, Z Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Osipenkov, I Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Damgov, J Jeong, C Kovitanggoon, K Lee, SW Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hartl, C. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Wal-Tenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Cerny, K. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Beauceron, S. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Velde, C. Vander Vanlaer, P. Wickens, J. Adler, V. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Torres Da Silva De Araujo, F. Dias, F. A. Dias, M. A. F. Perez Tomei, T. R. Fernandez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Xu, M. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhang, L. Zhu, B. Zou, W. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Assran, Y. Mahmoud, M. A. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J.-L. Andrea, J. Besson, A. Bloch, D. Bodin, D. Brom, J.-M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J.-C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A.-C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Megrelidze, L. Roinishvili, V. Lomidze, D. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Masetti, G. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Glushkov, I. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I.-A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Raval, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Walsh, R. Wissing, C. Autermann, C. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Barth, C. Bauer, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heindl, S. M. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F.-P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Ghezzi, A. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Biasotto, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Conti, E. De Mattia, M. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Taroni, S. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Nourbakhsh, S. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla-Valdez, H. De la Cruz-Burelo, E. Lopez-Fernandez, R. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Martins, P. Musella, P. Nayak, A. Ribeiro, P. Q. Seixas, J. Silva, P. Varela, J. Woehri, H. K. Belotelov, I. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Colino, N. De La Cruz, B. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chamizo Llatas, M. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Ramos, F. Duarte Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Harvey, J. Hegeman, J. Hegner, B. Henderson, C. Hesketh, G. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Tsyganov, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bortignon, P. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M.-C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Chen, W. T. Dutta, S. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Liu, Z. K. Lu, Y. J. Mekterovic, D. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W.-S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R.-S. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, M. Hartley, D. Heath, G. P. Heath, H. F. Huckvale, B. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A.-M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St. John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De la Barca Cebra, D. Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bandurin, D. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gauthier, L. Gerber, C. E. 1760 Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bolton, T. Chakaberia, I. Ivanov, A. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. 1944 Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Geese, Z. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Osipenkov, I. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Lamichhane, P. Mattson, M. 2143 Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Strange particle production in pp collisions at root s=0.9 and 7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID PBARP INTERACTIONS; HYPERON PRODUCTION; KAON PRODUCTION; CM ENERGIES; DIFFRACTION AB The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7TeV. The K-S(0), A, and Xi(-) particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum, p(T). The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The p(T) distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Wal-Tenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Cerny, K.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Brussels, Brussels, Belgium. [Adler, V.; Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres Da Silva De Araujo, F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Perez Tomei, T. R. Fernandez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xu, M.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Agram, J.-L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, CNRS IN2P3, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Megrelidze, L.; Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informat, Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Phys Inst 1, D-5100 Aachen, Germany. [Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heindl, S. M.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Merola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Taroni, S.; Valdata, M.; Volpe, R.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chamizo Llatas, M.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Ramos, F. Duarte; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hesketh, G.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Tsyganov, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M.-C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Phys & Technol Inst, Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De la Barca; Cebra, D.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92103 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gauthier, L.; Gerber, C. E. 1760; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A. 1944; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Geese, Z.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Osipenkov, I.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Mattson, M. 2143; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Hajdu, C.; Mohanty, A. K.; Lusito, L.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Ghezzi, A.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Volpe, R.; Boccali, T.; Tonelli, G.; Venturi, A.; Pandolfi, F.; Botta, C.; Graziano, A.; Pelliccioni, M.; Pereira, A. Vilela; Kossov, M.; Nesvold, E.; Sharma, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Univ Fed ABC, Santo Andre, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, Palaiseau, France. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Bluj, M.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. MIT, Cambridge, MA 02139 USA. [Agram, J.-L.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Zhukov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Guchait, M.] Tata Inst Fundamental Res HECR, Mumbai 400005, Maharashtra, India. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Biasotto, M.; Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Spiropulu, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.; Krpic, D.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Felcini, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Piedra Gomez, J.] Univ Florida, Gainesville, FL USA. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Rovelli, C.] Univ Roma La Sapienza, INFN, Sez Roma, Rome, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Popescu, S.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Bucharest, Romania. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Janssen, Xavier/E-1915-2013; Oguri, Vitor/B-5403-2013; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Wimpenny, Stephen/K-8848-2013; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; Ganjour, Serguei/D-8853-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Yang, Fan/B-2755-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Katkov, Igor/E-2627-2012; Snigirev, Alexander/D-8912-2012; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; OI Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Heath, Helen/0000-0001-6576-9740 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME; HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE (Russia); MSTD (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); and the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium). NR 33 TC 40 Z9 40 U1 1 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1126-6708 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2011 IS 5 AR 064 DI 10.1007/JHEP05(2011)064 PG 40 WC Physics, Particles & Fields SC Physics GA 774EM UT WOS:000291364300064 ER PT J AU Park, H Qi, JB Xu, Y Lupke, G Tolk, N AF Park, Heungman Qi, Jingbo Xu, Ying Luepke, Gunter Tolk, Norman TI Polarization-dependent temporal behaviour of second harmonic generation in Si/SiO2 systems SO JOURNAL OF OPTICS LA English DT Article DE silicon; oxide; second harmonic generation; polarization dependent SHG; Si; SiO2 ID DC-ELECTRIC-FIELD; SECOND-HARMONIC GENERATION; CHARGE-TRANSFER; INVERSION SYMMETRY; SI-SIO2 INTERFACE; SILICON; REFLECTION; SPECTROSCOPY; SURFACES; MEDIA AB We report incident laser beam polarization-dependent second harmonic generation (SHG) measurements in thin oxide Si(100)/SiO2 systems. For P-in and S-in incident fundamental beams, typically strong temporal variations are observed in P-out SHG signals in these systems. We observed a critical incident polarization angle between P-in and S-in in which no temporal variation exists in the P-out SHG signal. We also observed that the critical angle is independent of dopant type, concentration, oxide thickness, oxide type and internal photoemission induced interface electric field. We characterize these experimental results using the dipole radiation approximation. C1 [Park, Heungman; Qi, Jingbo; Xu, Ying; Tolk, Norman] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Qi, Jingbo] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Xu, Ying] Zomega Terahertz Corp, Troy, NY 12180 USA. [Luepke, Gunter] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RP Park, H (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM heungman.park@vanderbilt.edu FU DOE, Basic Energy Sciences at Vanderbilt University [DE-FGO2-99ER45781] FX This work was supported at Vanderbilt University by DOE, Basic Energy Sciences, through grant DE-FGO2-99ER45781. NR 32 TC 3 Z9 3 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 J9 J OPTICS-UK JI J. Opt. PD MAY PY 2011 VL 13 IS 5 AR 055202 DI 10.1088/2040-8978/13/5/055202 PG 7 WC Optics SC Optics GA 784VA UT WOS:000292185100010 ER PT J AU Sarjoughian, HS Nutaro, JJ Joshi, G AF Sarjoughian, H. S. Nutaro, J. J. Joshi, G. TI Towards collaborative component-based modelling SO JOURNAL OF SIMULATION LA English DT Article DE collaborative modelling; computer supported collaborative work; discrete event system specification AB Collaborative modelling enables dispersed users to develop component-based system models in group settings. A realization of such an approach requires coordinating and maintaining the causality of the users' activities. We propose the Collaborative DEVS Modelling (CDM) approach and its realization based on the Computer Supported Collaborative Work (CSCW) and the Discrete Event System Specification (DEVS) concepts and technologies. The CSCW concepts are introduced into the DEVS modelling framework in order to support model development in virtual team settings. A set of modelling rules and tasks enabling collaborative, visual, and persistent model construction and synthesis is developed. To support separate groups of modellers to independently develop models, the realization of CDM supports independent modelling sessions. An illustrative example is developed to demonstrate collaborative and incremental model development. The design of the CDM realization and future research are briefly described. C1 [Sarjoughian, H. S.; Joshi, G.] Arizona State Univ, Tempe, AZ 85258 USA. [Nutaro, J. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Sarjoughian, HS (reprint author), Arizona State Univ, Arizona Ctr Integrat M&S, Tempe, AZ 85258 USA. OI Nutaro, James/0000-0001-7360-2836 NR 35 TC 0 Z9 0 U1 0 U2 3 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1747-7778 EI 1747-7786 J9 J SIMUL JI J. Simul. PD MAY PY 2011 VL 5 IS 2 BP 77 EP 88 DI 10.1057/jos.2010.5 PG 12 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA V29GF UT WOS:000208736200002 ER PT J AU Ren, J Chernyak, VY Sinitsyn, NA AF Ren, Jie Chernyak, V. Y. Sinitsyn, N. A. TI Duality and fluctuation relations for statistics of currents on cyclic graphs SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE molecular motors (theory); current fluctuations; large deviations in non-equilibrium systems; Brownian motion ID NONEQUILIBRIUM THERMODYNAMICS; BROWNIAN MOTORS; NETWORK THEORY; TRANSPORT; SYSTEMS; NANOSCALE; THEOREM AB We consider stochastic motion of a particle on a cyclic graph with arbitrarily periodic time-dependent kinetic rates. We demonstrate duality relations for statistics of currents in this model and in its continuous version of a diffusion in one dimension. Our duality relations are valid beyond detailed balance constraints and lead to exact expressions that relate statistics of currents induced by dual driving protocols. We also show that previously known no-pumping theorems and some of the fluctuation relations, when they are applied to cyclic graphs or to one-dimensional diffusion, are special consequences of our duality. C1 [Ren, Jie] NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore. [Ren, Jie] Natl Univ Singapore, Dept Phys, Singapore 117546, Singapore. [Ren, Jie] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117546, Singapore. [Chernyak, V. Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chernyak, V. Y.; Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sinitsyn, N. A.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Ren, J (reprint author), NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore. EM renjie@nus.edu.sg; chernyak@chem.wayne.edu; sinitsyn@lanl.gov RI Ren, Jie/G-5314-2010; Chernyak, Vladimir/F-5842-2016 OI Ren, Jie/0000-0003-2806-7226; Chernyak, Vladimir/0000-0003-4389-4238 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; National Science Foundation [CHE-0808910, ECCS-0925618] FX JR is grateful for the support of Baowen Li and the hospitality of Jian-Xin Zhu during his visit to LANL. NAS thanks Jordan Horowitz for useful discussion during early stages of this research. The work at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy under contract no. DE-AC52-06NA25396. It is also based upon work supported in part by the National Science Foundation under CHE-0808910 at Wayne State University, and under ECCS-0925618 at the New Mexico Consortium. NR 32 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD MAY PY 2011 AR P05011 DI 10.1088/1742-5468/2011/05/P05011 PG 13 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 784WW UT WOS:000292190200012 ER PT J AU Ireson, RG Ondov, JM Zielinska, B Weaver, CS Easter, MD Lawson, DR Hesterberg, TW Davey, ME Liu, LJS AF Ireson, Robert G. Ondov, John M. Zielinska, Barbara Weaver, Christopher S. Easter, Michael D. Lawson, Douglas R. Hesterberg, Thomas W. Davey, Mark E. Liu, L. -J. Sally TI Measuring In-Cabin School Bus Tailpipe and Crankcase PM2.5: A New Dual Tracer Method SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID MEASURING SELF-POLLUTION; GAS TECHNIQUE; DIESEL; AEROSOL; EMISSIONS; ISOTOPES AB Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 mu g/m(3) were higher than DPMtp (0.91 mu g/m(3) average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 mu g/m(3), respectively) as compared with open (0.44 and 1.3 mu g/m(3), respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 mu g/m(3), respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 mu g/m(3) for DPMtp and 0.05 mu g/m(3) for PMck. C1 [Ireson, Robert G.] Air Qual Management Consulting, Greenbrae, CA 94904 USA. [Ondov, John M.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Zielinska, Barbara] Univ Nevada, Desert Res Inst, Div Atmospher Sci, Reno, NV 89506 USA. [Weaver, Christopher S.] Engine Fuel & Emiss Engn Inc, Rancho Cordova, CA USA. [Easter, Michael D.] Calif Ensight Inc, Walnut Creek, CA USA. [Lawson, Douglas R.] Natl Renewable Energy Lab, Golden, CO USA. [Hesterberg, Thomas W.] Navistar Inc, Warrenville, IL USA. [Davey, Mark E.; Liu, L. -J. Sally] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA. RP Ireson, RG (reprint author), Air Qual Management Consulting, 161 Vista Grande, Greenbrae, CA 94904 USA. EM rob@AQMconsulting.com FU National Institute of Environmental Health Sciences [1R01ES12657-01A1]; Navistar, Inc.; U.S. Department of Energy Office of Vehicle Technologies through the National Renewable Energy Laboratory FX This study was partially sponsored by the National Institute of Environmental Health Sciences (1R01ES12657-01A1). Inclusion of the dual tracer experiments was made possible by funding provided by Navistar, Inc., and the U.S. Department of Energy Office of Vehicle Technologies through the National Renewable Energy Laboratory. The assistance of David Anderson of the Seattle School District Transportation Department, First Student, Inc., and the Puget Sound Clean Air Agency is gratefully acknowledged. NR 28 TC 4 Z9 4 U1 1 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1096-2247 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD MAY PY 2011 VL 61 IS 5 BP 494 EP 503 DI 10.3155/1047-3289.61.5.494 PG 10 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 787EJ UT WOS:000292359100004 PM 21608489 ER PT J AU Grosse, AM Maerz, JC Hepinstall-Cymerman, J Dorcas, ME AF Grosse, Andrew M. Maerz, John C. Hepinstall-Cymerman, Jeffrey Dorcas, Michael E. TI Effects of Roads and Crabbing Pressures on Diamondback Terrapin Populations in Coastal Georgia SO JOURNAL OF WILDLIFE MANAGEMENT LA English DT Article DE crab trap; diamondback terrapin; Malaclemys terrapin; mortality; roads; turtle ID MALACLEMYS-TERRAPIN; TURTLE POPULATIONS; UNITED-STATES; MORTALITY; CONSERVATION; ABUNDANCE; POTS; MANAGEMENT; SURVIVAL; CAPTURE AB Human activities, including the harvesting of natural resources and land development, place substantial pressure on wildlife. The diamondback terrapin (Malaclemys terrapin) is a small, estuarine species of emydid turtle in decline and at risk due to a suite of human activities. Vehicle-induced mortality from increasing coastal traffic and bycatch mortality in crab pots have been recognized as 2 of the primary conservation concerns for terrapins. We used mark-recapture estimates of terrapin density and sex ratio from repeated seining samples of 29 randomly stratified selected tidal creeks to evaluate the current relationships between road and crabbing pressures and the abundance, sex ratio, and size distribution of terrapin populations along the Georgia coast. We obtained 2005 captures of 1,547 individual terrapins among 29 tidal creeks sampled. Population density estimates ranged from 0 to 1,040 terrapins/km among tidal creeks with a median density of 65 terrapins/km. Among all sites, terrapin density declined with increasing crabbing activity within the creek, but was not related to proximity to roads. Sex ratios did not vary significantly with crabbing activity or proximity to roads; however, we found a significantly larger proportion of smaller-sized terrapins in creeks with no crabbing activity. Although roads may have significant localized effects on terrapin populations, we found no measurable association between proximity to roads and current variation in terrapin density along the Georgia coast. However, we did find that terrapin density and the proportion of smaller sized individuals within the population were negatively associated with crabbing activities. Bycatch from commercial and recreational activities threaten many species. We add to a growing body of research showing crabbing activities are affecting diamondback terrapin populations across much of the species' range. States committed to the conservation of terrapins and coastal species should focus on reducing bycatch risk; for example by regulating soak times and locations, requiring the use of bycatch reduction devices, and removing abandoned or lost crab pots from coastal habitats. (C) 2011 The Wildlife Society. C1 [Grosse, Andrew M.; Maerz, John C.; Hepinstall-Cymerman, Jeffrey] Univ Georgia, Daniel B Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Dorcas, Michael E.] Davidson Coll, Davidson, NC 28035 USA. RP Grosse, AM (reprint author), Savannah River Ecol Lab, Savannah River Site,Bldg 737-A,Drawer E, Aiken, SC 29802 USA. EM andrew.grosse14@gmail.com FU Department of Energy [DE-FC09-07SR22506] FX We are indebted to remarkable work of the "terrapin crew": K. Holcomb, D. v. Dijk, J. Nowakowski, A. Ferreira, A. Durso, M. McKinney, and M. Erickson. In addition, we are grateful for an army of volunteers that assisted with field work, including N. Hyslop, J. Maerz, R. Maerz, M. Dodd, M. Harris, E. Kemler, T. Norton, S. Teal-Simpson, J. Gray, A. Grosse, R. Grosse, P. Grosse, R. Horan, G. Pirie, K. Felton, D. Osborne, T. Sauls, J. Milanovich, J. Devore, V. Kinney, S. Sterrett, K. Cecala, A. Davis, J. Denney, A. McKee, V. Long, L. Harden, M. Heidenreich, J. Moore, C. Stoudenmire, K. Deane, S. Newman, and S. Cox. This document was improved by comments from A. Davis, K. Barrett, K. Cecala, J. Milanovich and C. McCormick. Funding for this project was provided by a State Wildlife Grant to JCM from the Georgia Department of Natural Resources, Coastal Resources Division. Manuscript preparation was partially supported by the Department of Energy under Cooperative Agreement Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 46 TC 16 Z9 17 U1 2 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-541X EI 1937-2817 J9 J WILDLIFE MANAGE JI J. Wildl. Manage. PD MAY PY 2011 VL 75 IS 4 BP 762 EP 770 DI 10.1002/jwmg.104 PG 9 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 779YM UT WOS:000291818100002 ER PT J AU del Valle, ZC Corcella, G Fleuret, F Ferreiro, EG Kartvelishvili, V Kopeliovich, B Lansberg, JP Lourenco, C Martinez, G Papadimitriou, V Satz, H Scomparin, E Ullrich, T Teryaev, O Vogt, R Wang, JX AF del Valle, Z. Conesa Corcella, G. Fleuret, F. Ferreiro, E. G. Kartvelishvili, V. Kopeliovich, B. Lansberg, J. P. Lourenco, C. Martinez, G. Papadimitriou, V. Satz, H. Scomparin, E. Ullrich, T. Teryaev, O. Vogt, R. Wang, J. X. TI Quarkonium production in high energy proton-proton and proton-nucleus collisions SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE Quarkonium; production; proton; nucleus ID TRANSVERSE-MOMENTUM DEPENDENCE; HEAVY-ION COLLISIONS; ANOMALOUS J/PSI SUPPRESSION; ORDER QCD CORRECTIONS; P-A COLLISIONS; ROOT S=1.8 TEV; P(P)OVER-BAR COLLISIONS; J-PSI; CROSS-SECTION; GLUON PLASMA AB We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics. C1 [del Valle, Z. Conesa; Lourenco, C.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Corcella, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fleuret, F.] Ecole Polytech, CNRS, IN2P3, LLR, F-91128 Palaiseau, France. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Kartvelishvili, V.] Univ Lancaster, Lancaster LA1 4YB, England. [Kopeliovich, B.] Univ Tecn Federico Santa Maria, Dept Fis, Inst Estudios Avanzados Ciencias & Ingn, Valparaiso, Chile. [Kopeliovich, B.] Ctr Cient Tecnol Valparaiso, Valparaiso, Chile. [Lansberg, J. P.] Univ Paris 11, IPNO, CNRS, IN2P3, F-91406 Orsay, France. [Martinez, G.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS,IN2P3, Nantes, France. [Papadimitriou, V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Satz, H.] Univ Bielefeld, Fak Phys, D-4800 Bielefeld, Germany. [Scomparin, E.] INFN Torino, I-10125 Turin, Italy. [Ullrich, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Teryaev, O.] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia. [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wang, J. X.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [del Valle, Z. Conesa] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. RP del Valle, ZC (reprint author), Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. RI Kartvelishvili, Vakhtang/K-2312-2013; Ferreiro, Elena/C-3797-2017; OI Ferreiro, Elena/0000-0002-4449-2356; Lansberg, Jean-Philippe/0000-0003-2746-5986 NR 200 TC 24 Z9 24 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 3 EP 36 DI 10.1016/j.nuclphysbps.2011.03.053 PG 34 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700002 ER PT J AU Kang, ZB Qiu, JW Sterman, G AF Kang, Zhong-Bo Qiu, Jian-Wei Sterman, George TI Factorization and Quarkonium Production SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE heavy quarkonium; factorization; nonrelativistic QCD; color singlet model ID TRANSVERSE SPIN ASYMMETRIES; HEAVY QUARKONIUM; FRAGMENTATION; SCATTERING AB It is possible to extend the formalism for high-p(T) heavy quarkonium factorization beyond leading power. This extension may be helpful in interpreting the relative roles of octet and singlet channels in the formalism of nonrelativistic QCD (NRQCD). It may enable us to understand the origin of the surprisingly large results for cross sections calculated in the color singlet sector of NRQCD. C1 [Kang, Zhong-Bo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Qiu, Jian-Wei; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Kang, ZB (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM zkang@bnl.gov; jqiu@bnl.gov; george.sterman@stonybrook.edu RI Kang, Zhongbo/P-3645-2014 NR 14 TC 20 Z9 20 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 39 EP 43 DI 10.1016/j.nuclphysbps.2011.03.054 PG 5 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700003 ER PT J AU Levy, LAL AF Levy, L. A. Linden TI Quarkonia production in p plus A collisions SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE proceedings; QUARKONIUM2010 ID J/PSI-PRODUCTION AB We present recent data on the production and suppression of quarkonia in proton-nucleus at root s(NN)=200 GeV collisions at RHIC. In particular the latest J/psi suppression in d+Au collisions at root s(NN)=200 GeV is shown from PHENIX and gamma data from both PHENIX and STAR is presented. These data are confronted with two standard calculations from the literature. The first assumes a factorization of the initial partonic hard scattering from the interaction of the quarkonia pre-cursor with the nucleons while traversing the target. The second calculation leverages a coherence argument to calculate very forward quarkonia production. Finally, we discuss the recent attempt by the PHENIX collaboration to test the geometric dependence on the integrated longitudinal density using this data. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Levy, LAL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lindenle@llnl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 69 EP 72 DI 10.1016/j.nuclphysbps.2011.03.060 PG 4 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700009 ER PT J AU Wohri, HK Faccioli, P Lourenco, C Vogt, R AF Woehri, H. K. Faccioli, P. Lourenco, C. Vogt, R. TI Initial-state quark energy loss from Drell-Yan production in proton-proton and proton-nucleus collisions SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE Quark energy loss; Drell-Yan; nuclear effects in quarkonium production ID DIMUON PRODUCTION; SEA AB Drell-Yan production cross sections were measured by the NA3 and E866 experiments, in p-Pt and pp collisions, as a function of the dimuon mass and x(F). We compare these measurements to next-to-leading order Drell-Yan calculations, made with the CTEQ6M parton densities modified (or not) by nuclear effects, using the EPS09 parameterization. The analysis of the data allows us to evaluate the initial-state quark energy loss. Drell-Yan measurements are ideally suited to isolate the initial-state parton energy loss, given the absence of final-state effects on the produced dimuon. Our study shows that these data indicate negligible quark energy loss and allow us to derive rather strict upper limits. For completeness, our study has been repeated using the less accurate measurements of Drell-Yan cross section ratios between heavy and light nuclear targets, provided by the E772 and E866 experiments. Our results provide an additional constraint on the models trying to explain quarkonium production in proton-nucleus collisions, as a function of quarkonium rapidity and collision energy, where initial- and final-state energy loss has frequently been assumed to play an important role, convoluted with several other complex mechanisms, including final-state quarkonium break-up, formation time effects, etc. C1 [Woehri, H. K.; Faccioli, P.] LIP, P-1000149 Lisbon, Portugal. [Woehri, H. K.; Lourenco, C.] CERN, CH-1211 Geneva 23, Switzerland. [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogt, R.] Univ Calif Davis, Davis, CA 95616 USA. RP Wohri, HK (reprint author), LIP, Av Elias Garcia 14-1, P-1000149 Lisbon, Portugal. EM hermine.woehri@cern.ch OI Faccioli, Pietro/0000-0003-1849-6692 NR 11 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 88 EP 93 DI 10.1016/j.nuclphysbps.2011.03.064 PG 6 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700013 ER PT J AU Vogt, R AF Vogt, R. TI The status of open heavy flavor production at RHIC SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE heavy flavor; production ID ION COLLISIONS; BOTTOM PRODUCTION; CROSS-SECTION; ENERGY-LOSS; CHARM; TEV AB We discuss the calculation of open heavy flavor cross sections at RHIC and describe how the semileptonic decays of charm and bottom quarks can be separated. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. EM vogt@physics.ucdavis.edu NR 36 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 129 EP 133 DI 10.1016/j.nuclphysbps.2011.03.072 PG 5 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700021 ER PT J AU Vogt, R AF Vogt, R. TI Quarkonia as a multi-purpose tool SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Workshop on Three Days of Quarkonium Production in Proton-Proton and Proton-Nucleus Collisions CY JUL 29-31, 2010 CL Sch Polytechnique, Palaiseau, FRANCE SP Univ Santiago Compostela, Dept Particle Phys, Lab Leprince Ringuet HO Sch Polytechnique DE heavy flavor; production ID PROTON-NUCLEUS COLLISIONS; P-A COLLISIONS; J/PSI PRODUCTION; ABSORPTION AB Quarkonia can be a very useful tool for understanding the medium in which they are produced and pass through. However, their usefulness as a tool depends on how well certain aspects of their behavior in cold matter are understood. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. EM vogt@physics.ucdavis.edu NR 18 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2011 VL 214 BP 147 EP 149 DI 10.1016/j.nuclphysbps.2011.03.075 PG 3 WC Physics, Particles & Fields SC Physics GA 783ZZ UT WOS:000292124700024 ER PT J AU Ahn, JW Maingi, R Canik, JM McLean, AG Lore, JD Park, JK Soukhanovskii, VA Gray, TK Roquemore, AL AF Ahn, J-W. Maingi, R. Canik, J. M. McLean, A. G. Lore, J. D. Park, J. -K. Soukhanovskii, V. A. Gray, T. K. Roquemore, A. L. TI Effect of nonaxisymmetric magnetic perturbations on divertor heat and particle flux profiles in National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL AB Small, nonaxisymmetric magnetic perturbations generated by external coils have been found to break the axisymmetry of heat and particle flux deposition pattern in the divertor area in the National Spherical Torus Experiment (NSTX). This breaking by the applied 3-D field causes strike point splitting that is represented as local peaks and valleys in the divertor profiles. In case of n = 3 fields application, the broken toroidal symmetry of the divertor profile shows 120 degrees of spatial periodicity while data for n = 1 fields provide a fully nonaxisymmetric heat and particle deposition. Field line tracing showed good agreement with the measured heat and particle flux profiles. Higher toroidal mode number (n = 3) of the applied perturbation produced more and finer striations in the divertor profiles than in the lower mode number (n = 1) case. Following the previous result of the intrinsic strike point splitting by the n = 3 error fields [Nucl. Fusion 50, 045010 (2010); J. Nucl. Mater. (2011), doi: 10.1016/j.jnucmat.2011.01.115], result of the connection length profile from field line tracing identifies intrinsic error field as a possible source of the intrinsic splitting. In determining the strike point splitting pattern, q(95) is found to play an important role; higher q(95) produces finer striations and induces higher fraction of heat flux to flow through the split strike point channels. Higher pedestal electron collisionality also made the striations in the D(alpha) profile more pronounced in the given range of collisionality variation. The radial location of local peaks in the profiles during the triggered edge localized modes (ELMs) by the applied n = 3 fields stays similar before and after the application. This shows that the heat flux from the triggered ELMs follows the mode number of the applied perturbation. The external magnetic perturbation can reattach detached divertor plasma, but this can be overcome by detaching the plasma with additional divertor gas puffing. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574522] C1 [Ahn, J-W.; Maingi, R.; Canik, J. M.; McLean, A. G.; Lore, J. D.; Gray, T. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Park, J. -K.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ahn, JW (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Canik, John/0000-0001-6934-6681; Lore, Jeremy/0000-0002-9192-465X NR 25 TC 12 Z9 12 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056108 DI 10.1063/1.3574522 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500096 ER PT J AU Allen, SL Davidson, RC AF Allen, Steve L. Davidson, Ronald C. TI Foreword to Special Issue: Papers from the 52nd Annual Meeting of the APS Division of Plasma Physics, Chicago, Illinois, USA, 2010 SO PHYSICS OF PLASMAS LA English DT Editorial Material AB We present in this Special Issue of Physics of Plasmas the review, tutorial, and invited papers of the 2010 Annual Meeting of the American Physical Society's (APS) Division of Plasma Physics. This was the 52nd year of this meeting, and it was held in Chicago, Illinois on 8-12 November 2010. The meeting program was made up of over 100 review, tutorial, and invited oral presentations, and a significant fraction of these speakers prepared manuscripts which were peer-reviewed and are contained in this Special Issue. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592261] C1 [Allen, Steve L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Allen, SL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 055301 DI 10.1063/1.3592261 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500074 ER PT J AU Amendt, P Wilks, SC Bellei, C Li, CK Petrasso, RD AF Amendt, Peter Wilks, S. C. Bellei, C. Li, C. K. Petrasso, R. D. TI The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID NATIONAL IGNITION FACILITY; SHOCK-WAVE; IMPLOSIONS; SIMULATION; TARGETS AB The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed approximate to 2x greater-than-expected deficit of neutrons in an equimolar D(3)He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D(3)He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data. (C) 2011 American Institute of Physics. [doi:10.1063/1.3577577] C1 [Amendt, Peter; Wilks, S. C.; Bellei, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 15 TC 28 Z9 28 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056308 DI 10.1063/1.3577577 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500118 ER PT J AU Awe, TJ Bauer, BS Fuelling, S Siemon, RE AF Awe, T. J. Bauer, B. S. Fuelling, S. Siemon, R. E. TI Mitigation of nonthermal plasma production to measure the pulsed magnetic field threshold for the thermal formation of plasma from thick aluminum surfaces SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID POWER AB Untangling the roles of different plasma formation mechanisms in high-current electrical discharges requires controlling each mechanism and isolating its effects. Recent experiments use this method to find that thermal formation of plasma occurs from 6061-alloy Al conductors by ohmic heating when the surface field reaches a magnetic field threshold of 2.2 MG (independently of partial derivative B/partial derivative t ranging from 30 to 80 MG/mu s) [T. J. Awe et al., Phys. Rev. Lett. 104, 035001 (2010)]. The experiments pulse 1.0 MA peak current on the surface of thick (similar to 1.0 mm diameter) aluminum rods in 100 ns. Strong electric fields are necessarily introduced, and precursor plasma may form (e. g., from arcing electrical contacts). To ensure plasma formation is predominantly thermal, a systematic study of multiple combinations of high-current electrodes and central-rod profiles was completed. Data from multiple diagnostics show that the time and location of plasma formation strongly correlate with the hardware combination used. An extensive dataset (greater than 100 shots) enabled numerous hypotheses to be tested regarding plasma formation mechanisms. For hardware with compressed, large-diameter current joints, plasma formation is a predominantly thermal process driven by ohmic heating. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567485] C1 [Awe, T. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bauer, B. S.; Fuelling, S.; Siemon, R. E.] Univ Nevada, Reno, NV 89557 USA. RP Awe, TJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 14 TC 1 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056304 DI 10.1063/1.3567485 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500114 ER PT J AU Banks, JW Berger, RL Brunner, S Cohen, BI Hittinger, JAF AF Banks, J. W. Berger, R. L. Brunner, S. Cohen, B. I. Hittinger, J. A. F. TI Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss SO PHYSICS OF PLASMAS LA English DT Article ID NONLINEAR FREQUENCY-SHIFT; FINITE-VOLUME METHODS; STIMULATED RAMAN; DECAY INSTABILITY; LANGMUIR DECAY; LONG-TIME; OSCILLATIONS; SCATTERING; EQUATION; BEHAVIOR AB Two-dimensional Vlasov simulations of nonlinear electron plasma waves are presented, in which the interplay of linear and nonlinear kinetic effects is evident. The plasma wave is created with an external traveling wave potential with a transverse envelope of width Delta y such that thermal electrons transit the wave in a "sideloss" time, t(sl) similar to Delta(y)/v(e). Here, v(e) is the electron thermal velocity. The quasisteady distribution of trapped electrons and its self-consistent plasma wave are studied after the external field is turned off. In cases of particular interest, the bounce frequency, omega(be) = k root e phi/m(e), satisfies the trapping condition omega(be)t(sl) > 2 pi such that the wave frequency is nonlinearly downshifted by an amount proportional to the number of trapped electrons. Here, k is the wavenumber of the plasma wave and phi is its electric potential. For sufficiently short times, the magnitude of the negative frequency shift is a local function of phi. Because the trapping frequency shift is negative, the phase of the wave on axis lags the off-axis phase if the trapping nonlinearity dominates linear wave diffraction. In this case, the phasefronts are curved in a focusing sense. In the opposite limit, the phasefronts are curved in a defocusing sense. Analysis and simulations in which the wave amplitude and transverse width are varied establish criteria for the development of each type of wavefront. The damping and trapped-electron-induced focusing of the finite-amplitude electron plasma wave are also simulated. The damping rate of the field energy of the wave is found to be about the sideloss rate, v(e) similar to t(sl)(-1). For large wave amplitudes or widths Delta y, a trapping-induced self-focusing of the wave is demonstrated. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577784] C1 [Banks, J. W.; Berger, R. L.; Cohen, B. I.; Hittinger, J. A. F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brunner, S.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Lausanne, Switzerland. RP Banks, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM banks20@llnl.gov; berger5@llnl.gov; stephan.brunner@epfl.ch; cohen1@llnl.gov; hittinger1@llnl.gov RI Banks, Jeffrey/A-9718-2012; Brunner, Stephan/B-6200-2009 OI Brunner, Stephan/0000-0001-7588-7476 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [08-ERD-031] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 08-ERD-031. NR 64 TC 22 Z9 22 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 052102 DI 10.1063/1.3577784 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500009 ER PT J AU Boozer, AH Ku, LP AF Boozer, Allen H. Ku, L. P. TI Control of stellarator properties illustrated by a Wendelstein7-X equilibrium SO PHYSICS OF PLASMAS LA English DT Article ID BOOTSTRAP CURRENT; TRANSPORT; CURRENTS; W7-X AB Plasma properties in stellarators can be controlled by changing the externally produced magnetic field normal to the unperturbed-plasma surface. However, a change in the amplitude of only a few spatial distributions of the externally produced normal field has a linear effect on the plasma properties. The number and the form of the external field distributions to which the plasma has a linear sensitivity is important for determining (a) the flexibility that can be obtained in given device, (b) the required features of coils, so simpler coils sets can be designed, and (c) the degree to which plasma properties can be individually optimized. Features of the linear response are illustrated using the bootstrap current and the effective ripple in the magnetic field strength for a particular equilibrium of the Wendelstein7-X stellarator. For the effective ripple, the available control is determined by just a few distributions of the external magnetic field even though the ripple is a function of position. For the total bootstrap current, the available control is given by a single distribution of the external magnetic field. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579479] C1 [Boozer, Allen H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Ku, L. P.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boozer, AH (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM ahb17@columbia.edu FU U.S. Department of Energy [ER54333, DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy through the Grant No. ER54333 to Columbia University and the Contract No. DE-AC02-09CH11466 to the Princeton Plasma Physics Laboratory. NR 17 TC 4 Z9 4 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 052501 DI 10.1063/1.3579479 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500032 ER PT J AU Canik, JM Maingi, R Kubota, S Ren, Y Bell, RE Callen, JD Guttenfelder, W Kugel, HW LeBlanc, BP Osborne, TH Soukhanovskii, VA AF Canik, J. M. Maingi, R. Kubota, S. Ren, Y. Bell, R. E. Callen, J. D. Guttenfelder, W. Kugel, H. W. LeBlanc, B. P. Osborne, T. H. Soukhanovskii, V. A. TI Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID FUSION TEST REACTOR; DIII-D; TOKAMAK; CONFINEMENT; PERFORMANCE; PHYSICS; ASDEX; B2-EIRENE; PEDESTAL; DEVICES AB The coating of plasma facing components (PFCs) with lithium improves energy confinement and eliminates ELMs in the National Spherical Torus Experiment, the latter due to a relaxation of the density and pressure profiles that reduces the drive for peeling-ballooning modes. 2-D interpretive transport modeling of discharges without and with lithium shows that a reduction in the PFC recycling coefficient from R similar to 0.98 to R similar to 0.90 is required to match the drop in D-alpha emission with lithium coatings. A broadening of the edge barrier region showing reduced transport coefficients is observed, with a similar to 75% drop of the D and chi(e) from 0.8 < psi(N) < 0.93 needed to match the profile relaxation with lithium coatings. Turbulence measurements using an edge reflectometry system as well as high-k microwave scattering show a decrease in density fluctuations with lithium coatings. These transport changes allow the realization of very wide pedestals, with a similar to 100% width increase relative to the reference discharges. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592519] C1 [Canik, J. M.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ren, Y.; Bell, R. E.; Guttenfelder, W.; Kugel, H. W.; LeBlanc, B. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Callen, J. D.] Univ Wisconsin, Madison, WI 53706 USA. [Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Canik, JM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Canik, John/0000-0001-6934-6681 NR 41 TC 36 Z9 36 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056118 DI 10.1063/1.3592519 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500106 ER PT J AU Cole, AJ Callen, JD Solomon, WM Garofalo, AM Hegna, CC Lanctot, MJ Reimerdes, H AF Cole, A. J. Callen, J. D. Solomon, W. M. Garofalo, A. M. Hegna, C. C. Lanctot, M. J. Reimerdes, H. CA DIII-D Team TI Peak neoclassical toroidal viscosity at low toroidal rotation in the DIII-D tokamak SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID MOMENTUM DISSIPATION; TRANSPORT; MODES; PLASMAS AB Observation of a theoretically predicted peak in the neoclassical toroidal viscous (NTV) force as a function of toroidal plasma rotation rate Omega is reported. The NTV was generated by applying n = 3 magnetic fields from internal (I-)coils to low Omega-plasmas produced with nearly balanced neutral beam injection. Locally, the peak corresponds to a toroidal rotation rate Omega(0) where the radial electric field E(r) is near zero as determined by radial ion force balance. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3590933] C1 [Cole, A. J.; Callen, J. D.; Hegna, C. C.] Univ Wisconsin, Madison, WI 53706 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Garofalo, A. M.] Gen Atom Co, San Diego, CA 92138 USA. [Lanctot, M. J.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Cole, AJ (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM acole@cae.wisc.edu RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 26 TC 11 Z9 11 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 055711 DI 10.1063/1.3590933 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500086 ER PT J AU Edwards, MJ Lindl, JD Spears, BK Weber, SV Atherton, LJ Bleuel, DL Bradley, DK Callahan, DA Cerjan, CJ Clark, D Collins, GW Fair, JE Fortner, RJ Glenzer, SH Haan, SW Hammel, BA Hamza, AV Hatchett, SP Izumi, N Jacoby, B Jones, OS Koch, JA Kozioziemski, BJ Landen, OL Lerche, R MacGowan, BJ MacKinnon, AJ Mapoles, ER Marinak, MM Moran, M Moses, EI Munro, DH Schneider, DH Sepke, SM Shaughnessy, DA Springer, PT Tommasini, R Bernstein, L Stoeffl, W Betti, R Boehly, TR Sangster, TC Glebov, VY McKenty, PW Regan, SP Edgell, DH Knauer, JP Stoeckl, C Harding, DR Batha, S Grim, G Herrmann, HW Kyrala, G Wilke, M Wilson, DC Frenje, J Petrasso, R Moreno, K Huang, H Chen, KC Giraldez, E Kilkenny, JD Mauldin, M Hein, N Hoppe, M Nikroo, A Leeper, RJ AF Edwards, M. J. Lindl, J. D. Spears, B. K. Weber, S. V. Atherton, L. J. Bleuel, D. L. Bradley, D. K. Callahan, D. A. Cerjan, C. J. Clark, D. Collins, G. W. Fair, J. E. Fortner, R. J. Glenzer, S. H. Haan, S. W. Hammel, B. A. Hamza, A. V. Hatchett, S. P. Izumi, N. Jacoby, B. Jones, O. S. Koch, J. A. Kozioziemski, B. J. Landen, O. L. Lerche, R. MacGowan, B. J. MacKinnon, A. J. Mapoles, E. R. Marinak, M. M. Moran, M. Moses, E. I. Munro, D. H. Schneider, D. H. Sepke, S. M. Shaughnessy, D. A. Springer, P. T. Tommasini, R. Bernstein, L. Stoeffl, W. Betti, R. Boehly, T. R. Sangster, T. C. Glebov, V. Yu. McKenty, P. W. Regan, S. P. Edgell, D. H. Knauer, J. P. Stoeckl, C. Harding, D. R. Batha, S. Grim, G. Herrmann, H. W. Kyrala, G. Wilke, M. Wilson, D. C. Frenje, J. Petrasso, R. Moreno, K. Huang, H. Chen, K. C. Giraldez, E. Kilkenny, J. D. Mauldin, M. Hein, N. Hoppe, M. Nikroo, A. Leeper, R. J. TI The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion SO PHYSICS OF PLASMAS LA English DT Article ID PHYSICS BASIS; SYMMETRY; OMEGA; DETECTOR; DENSITY; MATTER; GAIN AB Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with rho R>similar to 1 g/cm(2) surrounding a 10 keV hot spot with rho R similar to 0.3 g/cm(2). A working definition of ignition has been a yield of similar to 1 MJ. At this yield the a-particle energy deposited in the fuel would have been similar to 200 kJ, which is already similar to 10 x more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of similar to 10(14-15) 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX similar to Y x dsf(2.3), where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3592173] C1 [Edwards, M. J.; Lindl, J. D.; Spears, B. K.; Weber, S. V.; Atherton, L. J.; Bleuel, D. L.; Bradley, D. K.; Callahan, D. A.; Cerjan, C. J.; Clark, D.; Collins, G. W.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatchett, S. P.; Izumi, N.; Jacoby, B.; Jones, O. S.; Koch, J. A.; Kozioziemski, B. J.; Landen, O. L.; Lerche, R.; MacGowan, B. J.; MacKinnon, A. J.; Mapoles, E. R.; Marinak, M. M.; Moran, M.; Moses, E. I.; Munro, D. H.; Schneider, D. H.; Sepke, S. M.; Shaughnessy, D. A.; Springer, P. T.; Tommasini, R.; Bernstein, L.; Stoeffl, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Boehly, T. R.; Sangster, T. C.; Glebov, V. Yu.; McKenty, P. W.; Regan, S. P.; Edgell, D. H.; Knauer, J. P.; Stoeckl, C.; Harding, D. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Batha, S.; Grim, G.; Herrmann, H. W.; Kyrala, G.; Wilke, M.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Frenje, J.; Petrasso, R.; Moreno, K.; Huang, H.] MIT, Plasma Fus & Sci Ctr, Cambridge, MA 02139 USA. [Chen, K. C.; Giraldez, E.; Kilkenny, J. D.; Mauldin, M.; Hein, N.; Hoppe, M.; Nikroo, A.] Gen Atom Co, San Diego, CA 92121 USA. [Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Edwards, MJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Collins, Gilbert/G-1009-2011; MacKinnon, Andrew/P-7239-2014; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 56 TC 91 Z9 93 U1 3 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 051003 DI 10.1063/1.3592173 PG 23 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500007 ER PT J AU Gaillard, SA Kluge, T Flippo, KA Bussmann, M Gall, B Lockard, T Geissel, M Offermann, DT Schollmeier, M Sentoku, Y Cowan, TE AF Gaillard, S. A. Kluge, T. Flippo, K. A. Bussmann, M. Gall, B. Lockard, T. Geissel, M. Offermann, D. T. Schollmeier, M. Sentoku, Y. Cowan, T. E. TI Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID ION-ACCELERATION; INTENSITY LASER; CANCER-THERAPY; DRIVEN; PLASMA; BEAMS; TEMPERATURES; DENSITIES; SOLIDS; PULSES AB We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 x 10(6) protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of similar to 80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3575624] C1 [Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E.] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Flippo, K. A.; Offermann, D. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gall, B.] Univ Missouri, Elect & Comp Engn Dept, Columbia, MO 65211 USA. [Lockard, T.; Sentoku, Y.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Geissel, M.; Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gaillard, SA (reprint author), Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, PF 51 01 19, D-01314 Dresden, Germany. RI Schollmeier, Marius/H-1056-2012; Bussmann, Michael/A-3422-2009; Flippo, Kirk/C-6872-2009; Cowan, Thomas/A-8713-2011; Sentoku, Yasuhiko/P-5419-2014; OI Schollmeier, Marius/0000-0002-0683-022X; Bussmann, Michael/0000-0002-8258-3881; Flippo, Kirk/0000-0002-4752-5141; Cowan, Thomas/0000-0002-5845-000X; Offermann, Dustin/0000-0002-6033-4905 NR 65 TC 84 Z9 85 U1 5 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056710 DI 10.1063/1.3575624 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500133 ER PT J AU Haan, SW Lindl, JD Callahan, DA Clark, DS Salmonson, JD Hammel, BA Atherton, LJ Cook, RC Edwards, MJ Glenzer, S Hamza, AV Hatchett, SP Herrmann, MC Hinkel, DE Ho, DD Huang, H Jones, OS Kline, J Kyrala, G Landen, OL MacGowan, BJ Marinak, MM Meyerhofer, DD Milovich, JL Moreno, KA Moses, EI Munro, DH Nikroo, A Olson, RE Peterson, K Pollaine, SM Ralph, JE Robey, HF Spears, BK Springer, PT Suter, LJ Thomas, CA Town, RP Vesey, R Weber, SV Wilkens, HL Wilson, DC AF Haan, S. W. Lindl, J. D. Callahan, D. A. Clark, D. S. Salmonson, J. D. Hammel, B. A. Atherton, L. J. Cook, R. C. Edwards, M. J. Glenzer, S. Hamza, A. V. Hatchett, S. P. Herrmann, M. C. Hinkel, D. E. Ho, D. D. Huang, H. Jones, O. S. Kline, J. Kyrala, G. Landen, O. L. MacGowan, B. J. Marinak, M. M. Meyerhofer, D. D. Milovich, J. L. Moreno, K. A. Moses, E. I. Munro, D. H. Nikroo, A. Olson, R. E. Peterson, K. Pollaine, S. M. Ralph, J. E. Robey, H. F. Spears, B. K. Springer, P. T. Suter, L. J. Thomas, C. A. Town, R. P. Vesey, R. Weber, S. V. Wilkens, H. L. Wilson, D. C. TI Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; BERYLLIUM CAPSULES; NIF TARGETS; OMEGA-LASER; DENSE-PLASMAS; NOVA LASER; ENERGY; PERFORMANCE; FABRICATION; IMPLOSIONS AB Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and sensitivity of the margin to characteristics of the experiment. The formalism is used to estimate probability of ignition. The ignition experiment will be preceded with an experimental campaign that determines features of the design that cannot be defined with simulations alone. The requirements for this campaign are summarized. Requirements are summarized for the laser and target fabrication. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3592169] C1 [Haan, S. W.; Lindl, J. D.; Callahan, D. A.; Clark, D. S.; Salmonson, J. D.; Hammel, B. A.; Atherton, L. J.; Cook, R. C.; Edwards, M. J.; Glenzer, S.; Hamza, A. V.; Hatchett, S. P.; Hinkel, D. E.; Ho, D. D.; Jones, O. S.; Landen, O. L.; MacGowan, B. J.; Marinak, M. M.; Milovich, J. L.; Moses, E. I.; Munro, D. H.; Pollaine, S. M.; Ralph, J. E.; Robey, H. F.; Spears, B. K.; Springer, P. T.; Suter, L. J.; Thomas, C. A.; Town, R. P.; Weber, S. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Herrmann, M. C.; Olson, R. E.; Peterson, K.; Vesey, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Huang, H.; Moreno, K. A.; Nikroo, A.; Wilkens, H. L.] Gen Atom Co, San Diego, CA 92121 USA. [Kline, J.; Kyrala, G.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Haan, SW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 120 TC 265 Z9 280 U1 12 U2 64 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 051001 DI 10.1063/1.3592169 PG 47 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500005 ER PT J AU Hammel, BA Scott, HA Regan, SP Cerjan, C Clark, DS Edwards, MJ Epstein, R Glenzer, SH Haan, SW Izumi, N Koch, JA Kyrala, GA Landen, OL Langer, SH Peterson, K Smalyuk, VA Suter, LJ Wilson, DC AF Hammel, B. A. Scott, H. A. Regan, S. P. Cerjan, C. Clark, D. S. Edwards, M. J. Epstein, R. Glenzer, S. H. Haan, S. W. Izumi, N. Koch, J. A. Kyrala, G. A. Landen, O. L. Langer, S. H. Peterson, K. Smalyuk, V. A. Suter, L. J. Wilson, D. C. TI Diagnosing and controlling mix in National Ignition Facility implosion experiments SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID TARGETS AB High mode number instability growth of "isolated defects" on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce "isolated defects." An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567520] C1 [Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Regan, S. P.; Epstein, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Kyrala, G. A.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Peterson, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hammel, BA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016 OI IZUMI, Nobuhiko/0000-0003-1114-597X NR 23 TC 52 Z9 53 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056310 DI 10.1063/1.3567520 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500120 ER PT J AU Hatch, DR Terry, PW Jenko, F Merz, F Pueschel, MJ Nevins, WM Wang, E AF Hatch, D. R. Terry, P. W. Jenko, F. Merz, F. Pueschel, M. J. Nevins, W. M. Wang, E. TI Role of subdominant stable modes in plasma microturbulence SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID ELECTROMAGNETIC GYROKINETIC SIMULATIONS; TEMPERATURE-GRADIENT TURBULENCE; DRIFT-WAVE TURBULENCE; TRANSPORT; TOKAMAK; INSTABILITY; PHYSICS; FLOWS; FIELD AB In gyrokinetic simulations, thousands of degrees of freedom are available to contribute to the fluctuation spectrum. For wavevectors with a single linear instability, the unstable eigenmode accounts for only one of these degrees of freedom. Little has been known about the role of the remaining fluctuations in the turbulent dynamics. In this paper, these fluctuations are characterized as modes in mode decompositions of gyrokinetic distribution functions from nonlinear simulations. This analysis reveals the excitation of a hierarchy of damped modes at the same perpendicular scales as the driving instabilities. Two effects of these subdominant modes are described: First, these damped modes define a potent energy sink, creating a situation where energy drive and energy dissipation peak at the same perpendicular scales. Second, damped modes with tearing parity (even parity about the outboard midplane for A(parallel to) fluctuations) are driven to significant amplitudes and facilitate the development of magnetic stochasticity in electromagnetic gyrokinetic simulations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563536] C1 [Hatch, D. R.; Terry, P. W.] Univ Wisconsin, Madison, WI 53706 USA. [Jenko, F.; Merz, F.; Pueschel, M. J.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Nevins, W. M.; Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hatch, DR (reprint author), Univ Wisconsin, Madison, WI 53706 USA. NR 43 TC 28 Z9 28 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 055706 DI 10.1063/1.3563536 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500081 ER PT J AU Hinkel, DE Rosen, MD Williams, EA Langdon, AB Still, CH Callahan, DA Moody, JD Michel, PA Town, RPJ London, RA Langer, SH AF Hinkel, D. E. Rosen, M. D. Williams, E. A. Langdon, A. B. Still, C. H. Callahan, D. A. Moody, J. D. Michel, P. A. Town, R. P. J. London, R. A. Langer, S. H. TI Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID INERTIAL CONFINEMENT FUSION; LASER-PRODUCED PLASMA; LARGE-SCALE PLASMA; ELECTROMAGNETIC-WAVES; BRILLOUIN-SCATTERING; ENERGY-TRANSFER; BEAM; FILAMENTATION; REDUCTION; DRIVEN AB Recent experiments conducted at the National Ignition Facility achieved two main goals: providing radiation drive and symmetry suitable for subsequent ignition experiments. Of the many diagnostics fielded, one provided a time-resolved wavelength spectrum of light reflected from the target by stimulated Raman scatter (SRS). SRS occurs when incident light reflects off self-generated electron plasma waves. Analyses indicate that synthetic SRS spectra better match those of experiments when an atomic physics model with greater emissivity is utilized in target modeling, along with less inhibited electron transport (higher flux, with, ideally, nonlocal electron transport). With these models, SRS occurs in a target region where nearest-neighbor quads of laser beams significantly overlap the diagnosed quad. This increases SRS gain at lower density (lower wavelength), a feature consistent with experimental results. Inclusion of this effect of multiple quads sharing a reflected SRS light wave has resulted in improved capabilities used to successfully predict (preshot) the SRS spectrum from the first target driven with 1.25 MJ of laser energy. Additional resonant amplification of SRS light in the overlap intensity region is demonstrated in beam propagation simulations. Such effects will be reduced in a target optimized for these less dense and cooler plasma conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3577836] C1 [Hinkel, D. E.; Rosen, M. D.; Williams, E. A.; Langdon, A. B.; Still, C. H.; Callahan, D. A.; Moody, J. D.; Michel, P. A.; Town, R. P. J.; London, R. A.; Langer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hinkel, DE (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI Michel, Pierre/J-9947-2012 NR 40 TC 42 Z9 44 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056312 DI 10.1063/1.3577836 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500122 ER PT J AU Huang, CK Albright, BJ Yin, L Wu, HC Bowers, KJ Hegelich, BM Fernandez, JC AF Huang, C. -K. Albright, B. J. Yin, L. Wu, H. -C. Bowers, K. J. Hegelich, B. M. Fernandez, J. C. TI A double-foil target for improving beam quality in laser ion acceleration with thin foils SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID PROTON-BEAMS; FAST IGNITION; PLASMA; ELECTRON; PULSES AB A double-foil target is proposed for laser ion acceleration with thin targets to take advantage of high efficiency of such targets while avoiding beam degradation in late stage of acceleration. Laser heating of electrons co-moving with the ion beam is stopped by the second foil. It is found that the second foil can also modify and substantially improve the spectral and spatial properties of the ion beam and reduce the temperature of the co-moving electrons, leading to better preservation of the beam quality. Details of the dynamics are studied with particle-in-cell simulations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574388] C1 [Huang, C. -K.; Albright, B. J.; Yin, L.; Wu, H. -C.; Bowers, K. J.; Hegelich, B. M.; Fernandez, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Huang, CK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM huangck@lanl.gov RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Huang, Chengkun/0000-0002-3176-8042; Yin, Lin/0000-0002-8978-5320 NR 42 TC 12 Z9 12 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056707 DI 10.1063/1.3574388 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500130 ER PT J AU Kirkwood, RK Michel, P London, R Moody, JD Dewald, E Yin, L Kline, J Hinkel, D Callahan, D Meezan, N Williams, E Divol, L Albright, BL Bowers, KJ Bond, E Rose, H Ping, Y Wang, TL Joshi, C Seka, W Fisch, NJ Turnbull, D Suckewer, S Wurtele, JS Glenzer, S Suter, L Haynam, C Landen, O Macgowan, BJ AF Kirkwood, R. K. Michel, P. London, R. Moody, J. D. Dewald, E. Yin, L. Kline, J. Hinkel, D. Callahan, D. Meezan, N. Williams, E. Divol, L. Albright, B. L. Bowers, K. J. Bond, E. Rose, H. Ping, Y. Wang, T. L. Joshi, C. Seka, W. Fisch, N. J. Turnbull, D. Suckewer, S. Wurtele, J. S. Glenzer, S. Suter, L. Haynam, C. Landen, O. Macgowan, B. J. TI Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID STIMULATED RAMAN-SCATTERING; DRIVEN PARAMETRIC-INSTABILITIES; LARGE-SCALE PLASMA; LANGMUIR-WAVES; HOHLRAUM PLASMAS; ENERGY-TRANSFER; LASER-PLASMA; X-RAY; FACILITY; PARTICLE AB To optimize the coupling to indirect drive targets in the National Ignition Campaign (NIC) at the National Ignition Facility [E. Moses et al., Phys. Plasmas 16, 041006 (2009)], a model of stimulated scattering produced by multiple laser beams is used. The model has shown that scatter of the 351 nm beams can be significantly enhanced over single beam predictions in ignition relevant targets by the interaction of the multiple crossing beams with a millimeter scale length, 2.5 keV, 0.02-0.05 x critical density, plasma. The model uses a suite of simulation capabilities and its key aspects are benchmarked with experiments at smaller laser facilities. The model has also influenced the design of the initial targets used for NIC by showing that both the stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) can be reduced by the reduction of the plasma density in the beam intersection volume that is caused by an increase in the diameter of the laser entrance hole (LEH). In this model, a linear wave response leads to a small gain exponent produced by each crossing quad of beams (200 x over noise). The narrow energy spread and low levels of impurity makes this method an interesting route for high-repetition rate high quality proton beam production. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3562926] C1 [Najmudin, Z.; Palmer, C. A. J.; Dover, N. P.; Dangor, A. E.; Schreiber, J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Pogorelsky, I.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. [Dudnikova, G. I.] Univ Maryland, College Pk, MD 20742 USA. [Foster, P. S.; Green, J. S.; Neely, D.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Ispiriyan, M.; Shkolnikov, P.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Najmudin, Z (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. RI Polyanskiy, Mikhail/E-8406-2010 NR 35 TC 9 Z9 9 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056705 DI 10.1063/1.3562926 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500128 ER PT J AU Nilson, PM Solodov, AA Myatt, JF Theobald, W Jaanimagi, PA Gao, L Stoeckl, C Craxton, RS Delettrez, JA Yaakobi, B Zuegel, JD Kruschwitz, BE Dorrer, C Kelly, JH Akli, KU Patel, PK Mackinnon, AJ Betti, R Sangster, TC Meyerhofer, DD AF Nilson, P. M. Solodov, A. A. Myatt, J. F. Theobald, W. Jaanimagi, P. A. Gao, L. Stoeckl, C. Craxton, R. S. Delettrez, J. A. Yaakobi, B. Zuegel, J. D. Kruschwitz, B. E. Dorrer, C. Kelly, J. H. Akli, K. U. Patel, P. K. Mackinnon, A. J. Betti, R. Sangster, T. C. Meyerhofer, D. D. TI Scaling hot-electron generation to long-pulse, high-intensity laser-solid interactions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID PLASMA INTERACTIONS; TARGET INTERACTION; PROTON-BEAMS; TRANSPORT; RADIOGRAPHY; ABSORPTION; IGNITION; DRIVEN; PHOTON; GAIN AB Experiments have been performed to determine the effect of laser-pulse duration and energy on hot-electron-generation efficiency at high intensity. Thin copper foil targets were irradiated with 1 to 2100 J, 1 to 10 ps pulses focused to intensities > 10(18) W/cm(2). The target volume was varied from 75 x 75 x 3 mu m(3) to 600 x 600 x 50 mu m(3) to access a range of bulk thermal-electron temperatures up to several hundred electron volts. Comparison of K-photon spectroscopy measurements from these targets with electron transport and radiation-generation calculations indicates that the energy conversion efficiency into hot electrons is 20 +/- 10%, independent of laser-pulse duration and energy. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560569] C1 [Nilson, P. M.; Solodov, A. A.; Betti, R.; Meyerhofer, D. D.] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit Ph, Rochester, NY 14623 USA. [Nilson, P. M.; Solodov, A. A.; Myatt, J. F.; Theobald, W.; Jaanimagi, P. A.; Gao, L.; Stoeckl, C.; Craxton, R. S.; Delettrez, J. A.; Yaakobi, B.; Zuegel, J. D.; Kruschwitz, B. E.; Dorrer, C.; Kelly, J. H.; Betti, R.; Sangster, T. C.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Akli, K. U.] Gen Atom Co, San Diego, CA 92186 USA. [Patel, P. K.; Mackinnon, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14623 USA. RP Nilson, PM (reprint author), Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit Ph, Rochester, NY 14623 USA. RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; Gao, Lan/K-7187-2016 OI MacKinnon, Andrew/0000-0002-4380-2906; Gao, Lan/0000-0002-4119-2825 NR 40 TC 11 Z9 11 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056703 DI 10.1063/1.3560569 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500126 ER PT J AU Offermann, DT Flippo, KA Cobble, J Schmitt, MJ Gaillard, SA Bartal, T Rose, DV Welch, DR Geissel, M Schollmeier, M AF Offermann, D. T. Flippo, K. A. Cobble, J. Schmitt, M. J. Gaillard, S. A. Bartal, T. Rose, D. V. Welch, D. R. Geissel, M. Schollmeier, M. TI Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID PROTON-BEAMS; LASER-PULSES; ACCELERATION; TARGETS AB We present the first observations of focused multi-MeV carbon ion beams generated using ultra-intense shortpulse laser interactions with thin hemispherical (400 mu m radius) targets. The experiments were performed at the Trident laser facility (80 J, 0.6 ps, 2 x 10(20) W/cm(2)) at Los Alamos National Laboratory and at the Omega EP (extended performance) facility (1 kJ, 10 ps, 5 x 10(18) W/cm(2)) at the Laboratory for Laser Energetics. The targets were chemical vapor deposition diamond, hemi-shells and were heated to remove contaminants. The ion beam focusing was characterized by tracing the projection of a witness mesh in the ion beam on a lithium fluoride nuclear activation detector. From the data, we infer that the divergence of the beam changes as a function of time. We present a 2-D isothermal model to explain the dynamics. We also present discrepancies in the peak proton and carbon ion energies from the two facilities. The implication of which is a fundamental difference in the temporal evolution of the beams from the two facilities. Simulations using the hybrid particle in cell code, LSP were performed and compared with the experiments. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3589476] C1 [Offermann, D. T.; Flippo, K. A.; Cobble, J.; Schmitt, M. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, S. A.] Helmoholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany. [Bartal, T.] Univ Calif San Diego, Mech & Aerosp Engn Dept, La Jolla, CA 92093 USA. [Rose, D. V.; Welch, D. R.] Voss Sci, Albuquerque, NM 87108 USA. [Geissel, M.; Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Offermann, DT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM offerman@lanl.gov RI Schollmeier, Marius/H-1056-2012; Flippo, Kirk/C-6872-2009; OI Schollmeier, Marius/0000-0002-0683-022X; Flippo, Kirk/0000-0002-4752-5141; Offermann, Dustin/0000-0002-6033-4905; Schmitt, Mark/0000-0002-0197-9180 NR 26 TC 22 Z9 22 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056713 DI 10.1063/1.3589476 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500136 ER PT J AU Okabayashi, M Matsunaga, G deGrassie, JS Heidbrink, WW In, Y Liu, YQ Reimerdes, H Solomon, WM Strait, EJ Takechi, M Asakura, N Budny, RV Jackson, GL Hanson, JM La Haye, RJ Lanctot, MJ Manickam, J Shinohara, K Zhu, YB AF Okabayashi, M. Matsunaga, G. deGrassie, J. S. Heidbrink, W. W. In, Y. Liu, Y. Q. Reimerdes, H. Solomon, W. M. Strait, E. J. Takechi, M. Asakura, N. Budny, R. V. Jackson, G. L. Hanson, J. M. La Haye, R. J. Lanctot, M. J. Manickam, J. Shinohara, K. Zhu, Y. B. TI Off-axis fishbone-like instability and excitation of resistive wall modes in JT-60U and DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID HIGH-BETA; MAGNETOHYDRODYNAMIC MODES; TOKAMAKS; STABILIZATION; PLASMAS AB An energetic-particle (EP)-driven "off-axis-fishbone-like mode (OFM)" often triggers a resistive wall mode (RWM) in JT-60U and DIII-D devices, preventing long-duration high-beta(N) discharges. In these experiments, the EPs are energetic ions (70-85 keV) injected by neutral beams to produce high-pressure plasmas. EP-driven bursting events reduce the EP density and the plasma rotation simultaneously. These changes are significant in high-beta(N) low-rotation plasmas, where the RWM stability is predicted to be strongly influenced by the EP precession drift resonance and by the plasma rotation near the q = 2 surface (kinetic effects). Analysis of these effects on stability with a self-consistent perturbation to the mode structure using the MARS-K code showed that the impact of EP losses and rotation drop is sufficient to destabilize the RWM in low-rotation plasmas, when the plasma rotation normalized by Alfven frequency is only a few tenths of a percent near the q = 2 surface. The OFM characteristics are very similar in JT-60U and DIII-D, including nonlinear mode evolution. The modes grow initially like a classical fishbone, and then the mode structure becomes strongly distorted. The dynamic response of the OFM to an applied n = 1 external field indicates that the mode retains its external kink character. These comparative studies suggest that an energetic particle-driven " off-axis-fishbone-like mode" is a new EP-driven branch of the external kink mode in wall-stabilized plasmas, analogous to the relationship of the classical fishbone branch to the internal kink mode. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3575159] C1 [Okabayashi, M.; Solomon, W. M.; Budny, R. V.; Manickam, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Matsunaga, G.; Takechi, M.; Asakura, N.; Shinohara, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [deGrassie, J. S.; Strait, E. J.; Jackson, G. L.; La Haye, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.; Zhu, Y. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Liu, Y. Q.] Culham Sci Ctr, Euratom CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Reimerdes, H.; Hanson, J. M.; Lanctot, M. J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Okabayashi, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 40 TC 23 Z9 23 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056112 DI 10.1063/1.3575159 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500100 ER PT J AU Qin, H Davidson, RC AF Qin, Hong Davidson, Ronald C. TI Generalized Courant-Snyder theory and Kapchinskij-Vladimirskij distribution for high-intensity beams in a coupled transverse focusing lattice SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL AB The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574919] C1 [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong; Davidson, Ronald C.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 32 TC 9 Z9 9 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056708 DI 10.1063/1.3574919 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500131 ER PT J AU Schmidt, A Bonoli, PT Meneghini, O Parker, RR Porkolab, M Shiraiwa, S Wallace, G Wright, JC Harvey, RW Wilson, JR AF Schmidt, A. Bonoli, P. T. Meneghini, O. Parker, R. R. Porkolab, M. Shiraiwa, S. Wallace, G. Wright, J. C. Harvey, R. W. Wilson, J. R. TI Investigation of lower hybrid physics through power modulation experiments on Alcator C-Mod SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID CURRENT DRIVE; TORE-SUPRA; TRANSPORT; ELECTRONS; TOKAMAK; PLASMAS AB Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with similar to 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n(parallel to)) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n(parallel to) spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n(parallel to). Boxcar binning of hard x-rays during LH power modulation allows for similar to 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing=Fokker-Planck modeling in combination with a synthetic hard x-ray diagnostic shows quantitative agreement with the x-ray data for high n(parallel to) cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale. (C) 2011 American Institute of Physics. [doi:10.1063/1.3593112] C1 [Schmidt, A.; Bonoli, P. T.; Meneghini, O.; Parker, R. R.; Porkolab, M.; Shiraiwa, S.; Wallace, G.; Wright, J. C.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Schmidt, A (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 26 TC 16 Z9 16 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056122 DI 10.1063/1.3593112 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500110 ER PT J AU Sinars, DB Slutz, SA Herrmann, MC McBride, RD Cuneo, ME Jennings, CA Chittenden, JP Velikovich, AL Peterson, KJ Vesey, RA Nakhleh, C Waisman, EM Blue, BE Killebrew, K Schroen, D Tomlinson, K Edens, AD Lopez, MR Smith, IC Shores, J Bigman, V Bennett, GR Atherton, BW Savage, M Stygar, WA Leifeste, GT Porter, JL AF Sinars, D. B. Slutz, S. A. Herrmann, M. C. McBride, R. D. Cuneo, M. E. Jennings, C. A. Chittenden, J. P. Velikovich, A. L. Peterson, K. J. Vesey, R. A. Nakhleh, C. Waisman, E. M. Blue, B. E. Killebrew, K. Schroen, D. Tomlinson, K. Edens, A. D. Lopez, M. R. Smith, I. C. Shores, J. Bigman, V. Bennett, G. R. Atherton, B. W. Savage, M. Stygar, W. A. Leifeste, G. T. Porter, J. L. TI Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID ARRAY Z-PINCHES; CONDUCTIVITY; SIMULATIONS AB A recent publication [D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)] describes the first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (similar to 100 ns) Z-pinch plasmas formed from initially solid aluminum tubes (liners). Sinusoidal perturbations on the surface of these liners with wavelengths of 25-400 mu m were used to seed single-mode instabilities. The evolution of the outer liner surface was captured using multiframe 6.151 keV radiography. The initial paper shows that there is good agreement between the data and 2-D radiation magneto-hydrodynamic simulations down to 50 mu m wavelengths. This paper extends the previous one by providing more detailed radiography images, detailed target characterization data, a more accurate comparison to analytic models for the amplitude growth, the first data from a beryllium liner, and comparisons between the data and 3D simulations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3560911] C1 [Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.; McBride, R. D.; Cuneo, M. E.; Jennings, C. A.; Peterson, K. J.; Vesey, R. A.; Nakhleh, C.; Waisman, E. M.; Edens, A. D.; Lopez, M. R.; Smith, I. C.; Shores, J.; Bigman, V.; Bennett, G. R.; Atherton, B. W.; Savage, M.; Stygar, W. A.; Leifeste, G. T.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Chittenden, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Velikovich, A. L.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Blue, B. E.; Killebrew, K.; Schroen, D.; Tomlinson, K.] Gen Atom Co, San Diego, CA 92121 USA. RP Sinars, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 23 TC 45 Z9 47 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056301 DI 10.1063/1.3560911 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500111 ER PT J AU Spong, DA AF Spong, D. A. TI Three-dimensional effects on energetic particle confinement and stability SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID ALFVEN EIGENMODES; FIELD RIPPLE; MONTE-CARLO; STELLARATORS; EQUILIBRIA; TRANSPORT; PLASMAS AB Energetic particle populations in magnetic confinement systems are sensitive to symmetry-breaking effects due to their low collisionality and long confined path lengths. Broken symmetry is present to some extent in all toroidal devices. As such effects preclude the existence of an ignorable coordinate, a fully three-dimensional analysis is necessary, beginning with the lowest order (equilibrium) magnetic fields. Three-dimensional techniques that have been extensively developed for stellarator configurations are readily adapted to other devices such as rippled tokamaks and helical states in reversed field pinches. This paper will describe the methods and present an overview of recent examples that use these techniques for the modeling of energetic particle confinement, Alfven mode structure and fast ion instabilities. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3575626] C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Spong, DA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,Bldg 5700,POB 2008,MS-6169, Oak Ridge, TN 37831 USA. RI Spong, Donald/C-6887-2012 OI Spong, Donald/0000-0003-2370-1873 NR 27 TC 16 Z9 16 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056109 DI 10.1063/1.3575626 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500097 ER PT J AU Startsev, EA Davidson, RC AF Startsev, Edward A. Davidson, Ronald C. TI Novel Hamiltonian method for collective dynamics analysis of an intense charged particle beam propagating through a periodic focusing quadrupole lattice SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID LARGE TEMPERATURE ANISOTROPY; VLASOV-POISSON EQUATIONS; DELTA-F SIMULATION; INSTABILITY AB Identifying regimes for quiescent propagation of intense beams over long distances has been a major challenge in accelerator research. In particular, the development of systematic theoretical approaches that are able to treat self-consistently the applied oscillating force and the nonlinear self-field force of the beam particles simultaneously has been a major challenge of modern beam physics. In this paper, the recently developed Hamiltonian averaging technique [E. A. Startsev, R. C. Davidson, and M. Dorf, Phys. Rev. ST Accel. Beams 13, 064402 (2010)] which incorporates both the applied periodic focusing force and the self-field force of the beam particles, is generalized to the case of time-dependent beam distributions. The new formulation allows not only a determination of quasi-equilibrium solutions of the non-linear Vlasov-Poison system of equations but also a detailed study of their stability properties. The corrections to the well-known "smooth-focusing" approximation are derived, and the results are applied to a matched beam with thermal equilibrium distribution function. It is shown that the corrections remain small even for moderate values of the vacuum phase advance sigma(nu). Nonetheless, because the corrections to the average self-field potential are non-axisymmetric, the stability properties of the different beam quasi-equilibria can change significantly. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3589441] C1 [Startsev, Edward A.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 32 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056712 DI 10.1063/1.3589441 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500135 ER PT J AU Theobald, W Solodov, AA Stoeckl, C Anderson, KS Betti, R Boehly, TR Craxton, RS Delettrez, JA Dorrer, C Frenje, JA Glebov, VY Habara, H Tanaka, KA Knauer, JP Lauck, R Marshall, FJ Marshall, KL Meyerhofer, DD Nilson, PM Patel, PK Chen, H Sangster, TC Seka, W Sinenian, N Ma, T Beg, FN Giraldez, E Stephens, RB AF Theobald, W. Solodov, A. A. Stoeckl, C. Anderson, K. S. Betti, R. Boehly, T. R. Craxton, R. S. Delettrez, J. A. Dorrer, C. Frenje, J. A. Glebov, V. Yu. Habara, H. Tanaka, K. A. Knauer, J. P. Lauck, R. Marshall, F. J. Marshall, K. L. Meyerhofer, D. D. Nilson, P. M. Patel, P. K. Chen, H. Sangster, T. C. Seka, W. Sinenian, N. Ma, T. Beg, F. N. Giraldez, E. Stephens, R. B. TI Initial cone-in-shell fast-ignition experiments on OMEGA SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID LASER-SOLID INTERACTIONS; FUSION IGNITION; DIRECT-DRIVE; TRANSPORT; DENSITY; PLASMAS; TARGETS; SIMULATION; ELECTRONS; IMPLOSION AB Fast ignition is a two-step inertial confinement fusion concept where megaelectron volt electrons ignite the compressed core of an imploded fuel capsule driven by a relatively low-implosion velocity. Initial surrogate cone-in-shell, fast-ignitor experiments using a highly shaped driver pulse to assemble a dense core in front of the cone tip were performed on the OMEGA/OMEGA EP Laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. With optimal timing, the OMEGA EP pulse produced up to similar to 1.4 x 10(7) additional neutrons which is a factor of similar to 4 more neutrons than without short-pulse heating. Shock-breakout measurements performed with the same targets and drive conditions demonstrate an intact cone tip at the time when the additional neutrons are produced. Velocity interferometer system for any reflector measurements show that x-rays from the shell's coronal plasma preheat the inner cone wall of thin-walled Au cones, while the thick-walled cones that are used in the integrated experiments are not affected by preheat. (C) 2011 American Institute of Physics. [doi:10.1063/1.3566082] C1 [Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Delettrez, J. A.; Dorrer, C.; Glebov, V. Yu.; Knauer, J. P.; Marshall, F. J.; Marshall, K. L.; Meyerhofer, D. D.; Nilson, P. M.; Sangster, T. C.; Seka, W.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Theobald, W.; Solodov, A. A.; Stoeckl, C.; Anderson, K. S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Delettrez, J. A.; Dorrer, C.; Glebov, V. Yu.; Knauer, J. P.; Marshall, F. J.; Marshall, K. L.; Meyerhofer, D. D.; Nilson, P. M.; Sangster, T. C.; Seka, W.] Fus Sci Ctr, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14623 USA. [Frenje, J. A.; Sinenian, N.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Habara, H.; Tanaka, K. A.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Lauck, R.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Patel, P. K.; Chen, H.; Ma, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ma, T.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Giraldez, E.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; OI Ma, Tammy/0000-0002-6657-9604; Stephens, Richard/0000-0002-7034-6141 NR 60 TC 40 Z9 45 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056305 DI 10.1063/1.3566082 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500115 ER PT J AU Tobias, BJ Boivin, RL Boom, JE Classen, IGJ Domier, CW Donne, AJH Heidbrink, WW Luhmann, NC Munsat, T Muscatello, CM Nazikian, R Park, HK Spong, DA Turnbull, AD Van Zeeland, MA Yun, GS AF Tobias, B. J. Boivin, R. L. Boom, J. E. Classen, I. G. J. Domier, C. W. Donne, A. J. H. Heidbrink, W. W. Luhmann, N. C., Jr. Munsat, T. Muscatello, C. M. Nazikian, R. Park, H. K. Spong, D. A. Turnbull, A. D. Van Zeeland, M. A. Yun, G. S. CA DIII-D Team TI On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activity SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID AXISYMMETRICAL TOROIDAL PLASMAS; GYROFLUID MODEL; TOKAMAK PLASMAS AB Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfven wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfven eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563572] C1 [Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Boivin, R. L.; Turnbull, A. D.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Boom, J. E.; Classen, I. G. J.; Donne, A. J. H.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-340 BE Nieuwegein, Netherlands. [Donne, A. J. H.] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Heidbrink, W. W.; Muscatello, C. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Munsat, T.] Univ Colorado, Boulder, CO 80302 USA. [Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Park, H. K.; Yun, G. S.] Pohang Univ Sci & Technol, Pohang, Gyungbuk, South Korea. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tobias, BJ (reprint author), Univ Calif Davis, 347 Mem Un, Davis, CA 95616 USA. RI Spong, Donald/C-6887-2012 OI Spong, Donald/0000-0003-2370-1873 NR 24 TC 9 Z9 9 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056107 DI 10.1063/1.3563572 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500095 ER PT J AU Tommasini, R Hatchett, SP Hey, DS Iglesias, C Izumi, N Koch, JA Landen, OL MacKinnon, AJ Sorce, C Delettrez, JA Glebov, VY Sangster, TC Stoeckl, C AF Tommasini, R. Hatchett, S. P. Hey, D. S. Iglesias, C. Izumi, N. Koch, J. A. Landen, O. L. MacKinnon, A. J. Sorce, C. Delettrez, J. A. Glebov, V. Yu. Sangster, T. C. Stoeckl, C. TI Development of Compton radiography of inertial confinement fusion implosions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID IGNITION; LASERS AB An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60 to 200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The radiographs have a spatial and temporal resolution of similar to 10 mu m and similar to 10 ps, respectively. A statistical accuracy of similar to 0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D nonuniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567499] C1 [Tommasini, R.; Hatchett, S. P.; Hey, D. S.; Iglesias, C.; Izumi, N.; Koch, J. A.; Landen, O. L.; MacKinnon, A. J.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Delettrez, J. A.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Tommasini, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI MacKinnon, Andrew/P-7239-2014; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 NR 14 TC 32 Z9 35 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056309 DI 10.1063/1.3567499 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500119 ER PT J AU Town, RPJ Rosen, MD Michel, PA Divol, L Moody, JD Kyrala, GA Schneider, MB Kline, JL Thomas, CA Milovich, JL Callahan, DA Meezan, NB Hinkel, DE Williams, EA Berger, RL Edwards, MJ Suter, LJ Haan, SW Lindl, JD Dewald, EL Dixit, S Glenzer, SH Landen, OL Moses, EI Scott, HA Harte, JA Zimmerman, GB AF Town, R. P. J. Rosen, M. D. Michel, P. A. Divol, L. Moody, J. D. Kyrala, G. A. Schneider, M. B. Kline, J. L. Thomas, C. A. Milovich, J. L. Callahan, D. A. Meezan, N. B. Hinkel, D. E. Williams, E. A. Berger, R. L. Edwards, M. J. Suter, L. J. Haan, S. W. Lindl, J. D. Dewald, E. L. Dixit, S. Glenzer, S. H. Landen, O. L. Moses, E. I. Scott, H. A. Harte, J. A. Zimmerman, G. B. TI Analysis of the National Ignition Facility ignition hohlraum energetics experiments SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID INERTIAL CONFINEMENT FUSION; X-RAY; ENERGY-TRANSFER; PHYSICS BASIS; LASER-BEAMS AB A series of 40 experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced-and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel et al., Phys. Plasmas 17, 056305 (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562552] C1 [Town, R. P. J.; Rosen, M. D.; Michel, P. A.; Divol, L.; Moody, J. D.; Schneider, M. B.; Thomas, C. A.; Milovich, J. L.; Callahan, D. A.; Meezan, N. B.; Hinkel, D. E.; Williams, E. A.; Berger, R. L.; Edwards, M. J.; Suter, L. J.; Haan, S. W.; Lindl, J. D.; Dewald, E. L.; Dixit, S.; Glenzer, S. H.; Landen, O. L.; Moses, E. I.; Scott, H. A.; Harte, J. A.; Zimmerman, G. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kyrala, G. A.; Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Town, RPJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI Michel, Pierre/J-9947-2012; OI Kline, John/0000-0002-2271-9919 NR 29 TC 61 Z9 63 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056302 DI 10.1063/1.3562552 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500112 ER PT J AU Umansky, MV Popovich, P Carter, TA Friedman, B Nevins, WM AF Umansky, M. V. Popovich, P. Carter, T. A. Friedman, B. Nevins, W. M. TI Numerical simulation and analysis of plasma turbulence the Large Plasma Device SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID DRIFT-WAVE TURBULENCE; INTERMITTENT TURBULENCE; BISPECTRAL ANALYSIS; MAGNETIZED PLASMA; EDGE; TRANSPORT; FLOWS AB Turbulence calculations with a 3D collisional fluid plasma model demonstrate qualitative and semi-quantitative similarity to experimental data in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)], in particular for the temporal spectra, fluctuations amplitude, spatial correlation length, and radial particle flux. Several experimentally observed features of plasma turbulence are qualitatively reproduced, and quantitative agreement is achieved at the order-of-magnitude level. The calculated turbulence fluctuations have non-Gaussian characteristics, however the radial flux of plasma density is consistent with Bohm diffusion. Electric polarization of density blobs does not appear to play a significant role in the studied case. Turbulence spectra exhibit direct and inverse cascades in both azimuthal and axial wavenumbers and indicate coupling between the drift instability and Kelvin-Helmholtz mode. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3567033] C1 [Umansky, M. V.; Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Popovich, P.; Carter, T. A.; Friedman, B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Popovich, P.; Carter, T. A.; Friedman, B.] Univ Calif Los Angeles, Ctr Multiscale Plasma Dynam, Los Angeles, CA 90095 USA. RP Umansky, MV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM umansky1@llnl.gov RI Carter, Troy/E-7090-2010 OI Carter, Troy/0000-0002-5741-0495 NR 28 TC 13 Z9 13 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 055709 DI 10.1063/1.3567033 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500084 ER PT J AU Van Zeeland, MA Heidbrink, WW Fisher, RK Munoz, MG Kramer, GJ Pace, DC White, RB Aekaeslompolo, S Austin, ME Boom, JE Classen, IGJ da Graca, S Geiger, B Gorelenkova, M Gorelenkov, NN Hyatt, AW Luhmann, N Maraschek, M McKee, GR Moyer, RA Muscatello, CM Nazikian, R Park, H Sharapov, S Suttrop, W Tardini, G Tobias, BJ Zhu, YB AF Van Zeeland, M. A. Heidbrink, W. W. Fisher, R. K. Munoz, M. Garcia Kramer, G. J. Pace, D. C. White, R. B. Aekaeslompolo, S. Austin, M. E. Boom, J. E. Classen, I. G. J. da Graca, S. Geiger, B. Gorelenkova, M. Gorelenkov, N. N. Hyatt, A. W. Luhmann, N. Maraschek, M. McKee, G. R. Moyer, R. A. Muscatello, C. M. Nazikian, R. Park, H. Sharapov, S. Suttrop, W. Tardini, G. Tobias, B. J. Zhu, Y. B. CA DIII-D Upgrade Team ASDEX Upgrade Team TI Measurements and modeling of Alfven eigenmode induced fast ion transport and loss in DIII-D and ASDEX Upgrade SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID AXISYMMETRICAL TOROIDAL PLASMAS; ALPHA-PARTICLE LOSSES; FUSION TEST REACTOR; D TOKAMAK; SIMULATIONS; DRIVEN AB Neutral beam injection into reversed magnetic shear DIII-D and ASDEX Upgrade plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes and reversed shear Alfven eigenmodes (RSAEs). These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and increased drive due to multiple higher order resonances. Scans of injected 80 keV neutral beam power on DIII-D showed a transition from classical to AE dominated fast ion transport and, as previously found, discharges with strong AE activity exhibit a deficit in neutron emission relative to classical predictions. By keeping beam power constant and delaying injection during the current ramp, AE activity was reduced or eliminated and a significant improvement in fast ion confinement observed. Similarly, experiments in ASDEX Upgrade using early 60 keV neutral beam injection drove multiple unstable RSAEs. Periods of strong RSAE activity are accompanied by a large (peak delta S-n/S-n approximate to 60%) neutron deficit. Losses of beam ions modulated at AE frequencies were observed using large bandwidth energy and pitch resolving fast ion loss scintillator detectors and clearly identify their role in the process. Modeling of DIII-D loss measurements using guiding center following codes to track particles in the presence of ideal magnetohydrodynamic (MHD) calculated AE structures (validated by comparison to experiment) is able to reproduce the dominant energy, pitch, and temporal evolution of these losses. While loss of both co and counter current fast ions occurs, simulations show that the dominant loss mechanism observed is the mode induced transition of counter-passing fast ions to lost trapped orbits. Modeling also reproduces a coherent signature of AE induced losses and it was found that these coherent losses scale proportionally with the amplitude; an additional incoherent contribution scales quadratically with the mode amplitude. (C) 2011 American Institute of Physics. [doi:10.1063/1.3574663] C1 [Van Zeeland, M. A.; Fisher, R. K.; Hyatt, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.; Pace, D. C.; Muscatello, C. M.; Zhu, Y. B.] Univ Calif Irvine, Irvine, CA 92697 USA. [Munoz, M. Garcia; Geiger, B.; Maraschek, M.; Suttrop, W.; Tardini, G.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Kramer, G. J.; White, R. B.; Gorelenkova, M.; Gorelenkov, N. N.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Aekaeslompolo, S.] Aalto Univ, FI-02015 Helsinki, Finland. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Boom, J. E.; Classen, I. G. J.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Nieuwegein, Netherlands. [da Graca, S.] Inst Super Tecn, Lab Assoc, Inst Plasmas & Fusao Nucl, Assoc EURATOM IST, Lisbon, Portugal. [Luhmann, N.; Tobias, B. J.] Univ Calif Davis, Davis, CA 95616 USA. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Park, H.] POSTECH, Pohang 790784, Gyeungbuk, South Korea. [Sharapov, S.] Culham Ctr Fus Energy, Euratom CCFE, Abingdon, Oxon, England. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com RI Akaslompolo, Simppa/E-7298-2012; White, Roscoe/D-1773-2013 OI Akaslompolo, Simppa/0000-0002-9554-5147; White, Roscoe/0000-0002-4239-2685 NR 49 TC 46 Z9 46 U1 3 U2 34 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056114 DI 10.1063/1.3574663 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500102 ER PT J AU Wan, WG Parker, SE Chen, Y Park, GY Chang, CS Stotler, D AF Wan, Weigang Parker, Scott E. Chen, Yang Park, Gun-Young Chang, Choong-Seock Stotler, Daren TI The pinch of cold ions from recycling in the tokamak edge pedestal SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID TURBULENCE SIMULATIONS; PARTICLE-TRANSPORT; EQUILIBRIUM; GEOMETRY; MODELS; PHYSICS; PLASMA AB We apply the "natural fueling mechanism" [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well. (C) 2011 American Institute of Physics. [doi:10.1063/1.3589467] C1 [Wan, Weigang; Parker, Scott E.; Chen, Yang] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Park, Gun-Young] Natl Fus Res Inst, Taejon 305333, South Korea. [Chang, Choong-Seock] NYU, Courant Inst Math Sci, New York, NY 10003 USA. [Stotler, Daren] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wan, WG (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM Weigang.Wan@colorado.edu RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 NR 26 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056116 DI 10.1063/1.3589467 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500104 ER PT J AU Wang, E Nevins, WM Candy, J Hatch, D Terry, P Guttenfelder, W AF Wang, E. Nevins, W. M. Candy, J. Hatch, D. Terry, P. Guttenfelder, W. TI Electron heat transport from stochastic fields in gyrokinetic simulations SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID TOKAMAK; TURBULENCE AB GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as beta(e) is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of beta(e). Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, d(m) [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574660] C1 [Wang, E.; Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Hatch, D.; Terry, P.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Guttenfelder, W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, E (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-637, Livermore, CA 94550 USA. NR 23 TC 13 Z9 13 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056111 DI 10.1063/1.3574660 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500099 ER PT J AU Welch, DR Rose, DV Thoma, C Clark, RE Mostrom, CB Stygar, WA Leeper, RJ AF Welch, D. R. Rose, D. V. Thoma, C. Clark, R. E. Mostrom, C. B. Stygar, W. A. Leeper, R. J. TI Kinetic simulations of a deuterium-tritium Z pinch with > 10(16) neutron yield SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL AB Fully kinetic, collisional, and electromagnetic simulations of the time evolution of an imploding and burning Z pinch plasma have been performed. Using the implicit particle-in-cell (PIC) code, multidimensional (1D and 3D) simulations of deuterium and deuterium-tritium Z pinches provide insight into the mechanisms of neutron production. The PIC code allows non-Maxwellian particle distributions, simulates finite mean-free-path effects, performs self-consistent calculations of anomalous resistivity, and permits charge separation. At low pinch current, neutron production is dominated by high energy ions driven by instabilities. The instabilities produce a power-law ion-energy distribution function in the distribution tail. At higher currents with deuterium-tritium fuel, the vast majority of the neutrons is thermonuclear in origin and neutron yield follows an I 4 neutron yield scaling with current. High-current, multidimension simulations (up to 40 MA with > 10(16) neutron yield) suggest that the fraction of thermonuclear neutrons increases with current and the strong dependence of neutron yield with current will continue at still higher currents. Scenarios for fusion breakeven and possible ignition in the 40-80 MA regime are discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562536] C1 [Welch, D. R.; Rose, D. V.; Thoma, C.; Clark, R. E.; Mostrom, C. B.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.; Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. NR 15 TC 12 Z9 12 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056303 DI 10.1063/1.3562536 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500113 ER PT J AU Yampolsky, NA Fisch, NJ AF Yampolsky, Nikolai A. Fisch, Nathaniel J. TI Limiting effects on laser compression by resonant backward Raman scattering in modern experiments SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 52nd Annual Meeting of the APS Division of Plasma Physics CY 2010 CL Chicago, IL ID PULSE AMPLIFICATION; PLASMA OSCILLATIONS; IONIZING PLASMAS; SIMULATIONS; AMPLIFIERS; BACKSCATTERING; ULTRAINTENSE; FOCUSABILITY; SATURATION; GENERATION AB Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3587120] C1 [Yampolsky, Nikolai A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Yampolsky, NA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Yampolsky, Nikolai/A-7521-2011 NR 68 TC 32 Z9 33 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 056711 DI 10.1063/1.3587120 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500134 ER PT J AU Yin, L Albright, BJ Jung, D Bowers, KJ Shah, RC Palaniyappan, S Fernandez, JC Hegelich, BM AF Yin, L. Albright, B. J. Jung, D. Bowers, K. J. Shah, R. C. Palaniyappan, S. Fernandez, J. C. Hegelich, B. M. TI Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets SO PHYSICS OF PLASMAS LA English DT Article ID OPTICAL-PARAMETRIC-AMPLIFICATION; FAST IGNITION; PROTON-BEAMS; PLASMA AB In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3587110] C1 [Yin, L.; Albright, B. J.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jung, D.; Hegelich, B. M.] Univ Munich, Dept Phys, D-8046 Garching, Germany. RP Yin, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lyin@lanl.gov RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; palaniyappan, sasikumar/A-7791-2015; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Palaniyappan, sasi/0000-0001-6377-1206 FU U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory (LANL); LANL Laboratory Directed Research and Development (LDRD); DOE Office of Fusion Energy Sciences FX This work was performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) and was supported by the LANL Laboratory Directed Research and Development (LDRD) program and the DOE Office of Fusion Energy Sciences. The authors acknowledge stimulating discussions with the Trident short-pulse team. The VPIC simulations were run on the ASC Roadrunner supercomputer at LANL. NR 29 TC 14 Z9 14 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2011 VL 18 IS 5 AR 053103 DI 10.1063/1.3587110 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 785EF UT WOS:000292209500047 ER PT J AU Merkli, M Berman, GP Borgonovi, F Gebresellasie, K AF Merkli, M. Berman, G. P. Borgonovi, F. Gebresellasie, K. TI EVOLUTION OF ENTANGLEMENT OF TWO QUBITS INTERACTING THROUGH LOCAL AND COLLECTIVE ENVIRONMENTS SO QUANTUM INFORMATION & COMPUTATION LA English DT Article DE Entanglement; Decoherence; Thermalization ID SUDDEN-DEATH; DECOHERENCE; DYNAMICS; STATES; THERMALIZATION; SEPARABILITY; RELAXATION; SYSTEMS; NOISE; TIME AB We analyze the dynamics of entanglement between two qubits which interact through collective and local environments. Our approach is based on a resonance theory which assumes a small interaction between qubits and environments and which gives rigorous perturbation theory results, valid for all times. We obtain expressions for (i) characteristic time-scales for decoherence, relaxation, disentanglement, and for (ii) the evolution of observables; valid uniformly in time t >= 0. We introduce a classification of decoherence times based on clustering of the reduced density matrix elements, persisting on all time-scales. We examine characteristic dynamical properties such as creation, death and revival of entanglement. We discuss possible applications of our results for superconducting quantum computation and quantum measurement technologies. C1 [Merkli, M.; Gebresellasie, K.] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. [Berman, G. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Borgonovi, F.] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy. [Borgonovi, F.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. RP Merkli, M (reprint author), Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. EM merkli@mun.ca; gpb@lanl.gov; fausto.borgonovi@unicatt.it; kassu@mun.ca OI borgonovi, fausto/0000-0002-9730-1189 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Laboratory [DE-AC52- 07NA27344]; Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA); NSERC [205247] FX G.P. Berman's work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344, and was funded by the Office of the Director of National Intelligence (ODNI), and Intelligence Advanced Research Projects Activity (IARPA). All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government.; M. Merkli and K. Gebresellasie acknowledge support from NSERC under Discovery Grant 205247. NR 41 TC 3 Z9 3 U1 0 U2 3 PU RINTON PRESS, INC PI PARAMUS PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA SN 1533-7146 J9 QUANTUM INF COMPUT JI Quantum Inform. Comput. PD MAY PY 2011 VL 11 IS 5-6 BP 390 EP 419 PG 30 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 784QE UT WOS:000292172500003 ER PT J AU Malone, EL Engle, NL AF Malone, Elizabeth L. Engle, Nathan L. TI Evaluating regional vulnerability to climate change: purposes and methods SO WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE LA English DT Article ID ADAPTIVE CAPACITY; INDIAN STATES; GLOBAL CHANGE; RESILIENCE; ADAPTATION; UNCERTAINTY; FRAMEWORK; SYSTEMS; FUTURE AB As the emphasis in climate change research, international negotiations, and developing-country activities has shifted from mitigation to adaptation, vulnerability has emerged as a bridge between impacts on one side and the need for adaptive changes on the other. Still, the term vulnerability remains, its meaning changing with the scale, focus, and purpose of each assessment. Understanding regional vulnerability has advanced over the past several decades, with studies using a combination of indicators, case studies and analogs, stakeholder-driven processes, and scenario-building methodologies. As regions become increasingly relevant scales of inquiry for bridging the aggregate and local, for every analysis, it is perhaps most appropriate to ask three 'what' questions: 'What/who is vulnerable?', 'What is vulnerability?', and 'Vulnerable to what?' The answers to these questions will yield different definitions of vulnerability as well as different methods for assessing it. Vulnerability research that is primarily quantitative has been dominated by the use of indicators. Regional vulnerability research can also focus on or include stakeholder involvement processes, especially helpful in generating agreement on issues and understanding context-specific aspects of vulnerability and prospective adaptations. Creating scenarios is another increasingly useful method that helps researchers, policymakers, and other stakeholders think about the future and plan options for alternative futures. Current research efforts are emphasizing stakeholder involvement, with a dual focus on vulnerability assessment and social learning in the process; and scenario analyses, which may be expert-defined or stakeholder-driven. Both tend to span impacts, vulnerability, and adaptation decision making for a particular place and conditions. (C) 2011 John Wiley & Sons, Ltd. WIREs Clim Change 2011 2 462-474 DOI:10.1002/wcc.116 C1 [Malone, Elizabeth L.; Engle, Nathan L.] Univ Res Court, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD USA. RP Malone, EL (reprint author), Univ Res Court, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD USA. EM e.malone@pnl.gov RI Brooks, Katya/J-4975-2014 NR 76 TC 30 Z9 30 U1 1 U2 34 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1757-7780 J9 WIRES CLIM CHANGE JI Wiley Interdiscip. Rev.-Clim. Chang. PD MAY-JUN PY 2011 VL 2 IS 3 BP 462 EP 474 DI 10.1002/wcc.116 PG 13 WC Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 778WJ UT WOS:000291739800010 ER PT J AU Grosse-Kunstleve, RW Wong, B Mustyakimov, M Adams, PD AF Grosse-Kunstleve, Ralf W. Wong, Buddy Mustyakimov, Marat Adams, Paul D. TI Exact direct-space asymmetric units for the 230 crystallographic space groups SO ACTA CRYSTALLOGRAPHICA SECTION A LA English DT Article DE asymmetric unit; direct space; space groups AB It is well known that the direct-space asymmetric unit definitions found in the International Tables for Crystallography, Volume A, are inexact at the borders. Face- and edge-specific sub-conditions have to be added to remove parts redundant under symmetry. This paper introduces a concise geometric notation for asymmetric unit conditions. The notation is the foundation for a reference table of exact direct-space asymmetric unit definitions for the 230 crystallographic space-group types. The change-of-basis transformation law for the conditions is derived, which allows the information from the reference table to be used for any space-group setting. We also show how the vertices of an asymmetric unit can easily be computed from the information in the reference table. C1 [Grosse-Kunstleve, Ralf W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wong, Buddy] Univ Calif Berkeley, UC Leads Summer Res Program, Berkeley, CA 94720 USA. [Mustyakimov, Marat] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Grosse-Kunstleve, RW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,BLDG 64R0121, Berkeley, CA 94720 USA. EM rwgrosse-kunstleve@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIH/NIGMS [5P01GM063210, 1R01GM071939, P01GM063210]; US Department of Energy [DE-AC03-76SF00098, DE-AC02-05CH11231.7237] FX We thank Michael M. J. Treacy for sending us an electronic file with a table of the DAU shape conditions of ITA. We thank the anonymous referees for corrections and suggestions that have led us to an improved presentation. We gratefully acknowledge the financial support of NIH/NIGMS through grant Nos. 5P01GM063210 and 1R01GM071939. Our work was supported in part by supplemental funding from the American Recovery and Reinvestment Act (ARRA) to NIH/NIGMS grant No. P01GM063210 and by the US Department of Energy under contract Nos. DE-AC03-76SF00098 and DE-AC02-05CH11231.7237. NR 10 TC 4 Z9 4 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-7673 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD MAY PY 2011 VL 67 BP 269 EP 275 DI 10.1107/S0108767311007008 PN 3 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 750CE UT WOS:000289521100009 PM 21487185 ER PT J AU Tan, ZK Patel, V Likharev, KK Su, D Zhu, YM AF Tan, Zhongkui Patel, Vijay Likharev, Konstantin K. Su, Dong Zhu, Yimei TI Experimental study of resistive bistability in metal oxide junctions SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID MEMORY; OPPORTUNITIES; RESISTANCE; MECHANISM; CIRCUITS; FILMS AB We have studied resistive bistability (memory) effects in junctions based on metal oxides, with a focus on sample-to-sample reproducibility, which is necessary for the use of such junctions as crosspoint devices of hybrid CMOS/nanoelectronic circuits. Few-nm-thick layers of NbO (x) , CuO (x) and TiO (x) have been formed by thermal and plasma oxidation, at various deposition and oxidation conditions, both with and without rapid thermal post-annealing. The resistive bistability effect has been observed for all these materials, with particularly high endurance (over 10(3) switching cycles) obtained for single-layer TiO2 junctions, and the best reproducibility reached for multi-layer junctions of the same material. Fabrication optimization has allowed us to improve the OFF/ON resistance ratio to about 10(3), but the sample-to-sample reproducibility is so far lower than that required for large-scale integration. C1 [Tan, Zhongkui; Patel, Vijay; Likharev, Konstantin K.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Su, Dong; Zhu, Yimei] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Tan, ZK (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM ztan@lbl.gov RI Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU AFOSR FX This work was supported by AFOSR. Fruitful discussions with W. Lu, J.E. Lukens, and F. Miao, and technical assistance by S.-S. Chang and E. Monge, are gratefully acknowledged. NR 30 TC 0 Z9 0 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAY PY 2011 VL 103 IS 2 BP 293 EP 300 DI 10.1007/s00339-010-6079-0 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 750OX UT WOS:000289558900007 ER PT J AU Batista, V Gould, A Dieters, S Dong, S Bond, I Beaulieu, JP Maoz, D Monard, B Christie, GW McCormick, J Albrow, MD Horne, K Tsapras, Y Burgdorf, MJ Novati, SC Skottfelt, J Caldwell, J Kozlowski, S Kubas, D Gaudi, BS Han, C Bennett, DP An, J Abe, F Botzler, CS Douchin, D Freeman, M Fukui, A Furusawa, K Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Perrott, YC Rattenbury, N Saito, T Sullivan, DJ Sumi, T Sweatman, WL Tristram, PJ Von Seggern, E Yock, PCM Brillant, S Calitz, JJ Cassan, A Cole, A Cook, K Coutures, C Prester, DD Donatowicz, J Greenhill, J Hoffman, M Jablonski, F Kane, SR Kains, N Marquette, JB Martin, R Martioli, E Meintjes, P Menzies, J Pedretti, E Pollard, K Sahu, KC Vinter, C Wambsganss, J Watson, R Williams, A Zub, M Allen, W Bolt, G Bos, M Depoy, DL Drummond, J Eastman, JD Gal-Yam, A Gorbikov, E Higgins, D Janczak, J Kaspi, S Lee, CU Mallia, F Maury, A Monard, LAG Moorhouse, D Morgan, N Natusch, T Ofek, EO Park, BG Pogge, RW Polishook, D Santallo, R Shporer, A Spector, O Thornley, G Yee, JC Bozza, V Browne, P Dominik, M Dreizler, S Finet, F Glitrup, M Grundahl, F Harpsoe, K Hessman, FV Hinse, TC Hundertmark, M Jorgensen, UG Liebig, C Maier, G Mancini, L Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Zimmer, F Allan, A Bramich, DM Snodgrass, C Steele, IA Street, RA AF Batista, V. Gould, A. Dieters, S. Dong, S. Bond, I. Beaulieu, J. P. Maoz, D. Monard, B. Christie, G. W. McCormick, J. Albrow, M. D. Horne, K. Tsapras, Y. Burgdorf, M. J. Novati, S. Calchi Skottfelt, J. Caldwell, J. Kozlowski, S. Kubas, D. Gaudi, B. S. Han, C. Bennett, D. P. An, J. Abe, F. Botzler, C. S. Douchin, D. Freeman, M. Fukui, A. Furusawa, K. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Perrott, Y. C. Rattenbury, N. Saito, To. Sullivan, D. J. Sumi, T. Sweatman, W. L. Tristram, P. J. Von Seggern, E. Yock, P. C. M. Brillant, S. Calitz, J. J. Cassan, A. Cole, A. Cook, K. Coutures, C. Prester, D. Dominis Donatowicz, J. Greenhill, J. Hoffman, M. Jablonski, F. Kane, S. R. Kains, N. Marquette, J. -B. Martin, R. Martioli, E. Meintjes, P. Menzies, J. Pedretti, E. Pollard, K. Sahu, K. C. Vinter, C. Wambsganss, J. Watson, R. Williams, A. Zub, M. Allen, W. Bolt, G. Bos, M. Depoy, D. L. Drummond, J. Eastman, J. D. Gal-Yam, A. Gorbikov, E. Higgins, D. Janczak, J. Kaspi, S. Lee, C. -U. Mallia, F. Maury, A. Monard, L. A. G. Moorhouse, D. Morgan, N. Natusch, T. Ofek, E. O. Park, B. -G. Pogge, R. W. Polishook, D. Santallo, R. Shporer, A. Spector, O. Thornley, G. Yee, J. C. Bozza, V. Browne, P. Dominik, M. Dreizler, S. Finet, F. Glitrup, M. Grundahl, F. Harpsoe, K. Hessman, F. V. Hinse, T. C. Hundertmark, M. Jorgensen, U. G. Liebig, C. Maier, G. Mancini, L. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Zimmer, F. Allan, A. Bramich, D. M. Snodgrass, C. Steele, I. A. Street, R. A. CA MOA Collaboration PLANET Collaboration FUN Collaboration MiNDSTEp Consortium RoboNet Collaboration TI MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: micro; methods: data analysis; planets and satellites: detection; methods: numerical; instrumentation: adaptive optics; instrumentation: photometers ID GALACTIC BULGE; MICROLENSING EVENT; JUPITER/SATURN ANALOG; GIANT PLANETS; SNOW LINE; STARS; MASSES; PHOTOMETRY; COOL; LUMINOSITY AB Aims. We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M-circle dot < M-host < 0.49 M-circle dot at 90% confidence. The planet-star mass ratio q = 0.0132 +/- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m(p) = 2.6 Jupiter masses for the median host mass, M = 0.19 M-circle dot. Methods. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius theta(E) = 0.31 +/- 0.03 mas has been accurately measured, but the other (the microlens parallax pi(E), which is due to the Earth's orbital motion) is highly degenerate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. Results. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D-L < 7.9 kpc, 1.1 AU < a < 2.7 AU, and 3.8 yr < P < 7.6 yr, respectively. C1 [Batista, V.; Dieters, S.; Beaulieu, J. P.; Albrow, M. D.; Horne, K.; Tsapras, Y.; Caldwell, J.; Kubas, D.; Bennett, D. P.; Bramich, D. M.] Probing Lensing Anomalies NETwork PLANET, Chicago, IL USA. [Dieters, S.; Beaulieu, J. P.; Kubas, D.; Cassan, A.; Marquette, J. -B.] Univ Paris 06, Inst Astrophys Paris, CNRS UMR7095, F-75014 Paris, France. [Gould, A.; Dong, S.; Maoz, D.; Monard, B.; Christie, G. W.; McCormick, J.; Gaudi, B. S.; Han, C.] Microlensing Follow Network FUN, New York, NY USA. [Gould, A.; Kozlowski, S.; Gaudi, B. S.; Eastman, J. D.; Janczak, J.; Morgan, N.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Bond, I.; Bennett, D. P.] MOA, Notre Dame, IN USA. [Bond, I.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Maoz, D.; Gorbikov, E.; Kaspi, S.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Maoz, D.; Gorbikov, E.; Kaspi, S.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Monard, B.; Monard, L. A. G.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Albrow, M. D.; Hearnshaw, J. B.; Pollard, K.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Horne, K.; Tsapras, Y.; Rattenbury, N.; Kains, N.] RoboNet Collaborat, Chicago, IL USA. [Horne, K.; Kains, N.; Pedretti, E.; Browne, P.; Dominik, M.; Liebig, C.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Burgdorf, M. J.; Novati, S. Calchi; Skottfelt, J.; Wambsganss, J.; Snodgrass, C.] Microlensing Network Detect Small Terr Exoplanets, Les Ulis, France. [Skottfelt, J.; Vinter, C.; Harpsoe, K.; Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Zimmer, F.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen O, Denmark. [Caldwell, J.] McDonald Observ, Ft Davis, TX 79734 USA. [Kubas, D.; Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Han, C.] Chungbuk Natl Univ, Dept Phys, Inst Basic Sci Res, Chonju 361763, South Korea. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Abe, F.; Fukui, A.; Furusawa, K.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Sumi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Rattenbury, N.; Von Seggern, E.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8780, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Calitz, J. J.; Hoffman, M.; Meintjes, P.] Univ Free State, Fac Nat & Agr Sci, Dept Phys, ZA-9300 Bloemfontein, South Africa. [Cole, A.; Greenhill, J.; Watson, R.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Cook, K.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Coutures, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria. Univ Toulouse, CNRS, LATT, Toulouse, France. [Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wambsganss, J.; Zub, M.; Liebig, C.; Maier, G.; Zimmer, F.] Heidelberg Univ, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Zub, M.] Univ Zielona Gora, Inst Astron, PL-65265 Zielona Gora, Poland. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Bos, M.] Molehill Astron Observ, Auckland, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Higgins, D.] Hunters Hill Observ, Canberra, ACT, Australia. [Gorbikov, E.; Kaspi, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro De Atacama, Chile. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Ofek, E. O.] Palomar Observ, San Diego, CA USA. [Santallo, R.] So Stars Observ, Faaa, Tahiti, Fr Polynesia. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Kains, N.; Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Tsapras, Y.] Univ London, Astron Unit, Sch Math Sci, London E1 4NS, England. [Tsapras, Y.; Street, R. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84085 Fisciano, SA, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Novati, S. Calchi; Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sez Napoli, Catania, Italy. [Dominik, M.] Royal Soc Univ, London, England. [Dreizler, S.; Hessman, F. V.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Glitrup, M.; Grundahl, F.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Rahvar, S.] IPM Inst Studies Theoret Phys & Math, Sch Astron, Tehran, Iran. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [An, J.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Williams, A.] Univ Western Australia, Sch Phys, Perth, WA 6009, Australia. RP Batista, V (reprint author), Probing Lensing Anomalies NETwork PLANET, Chicago, IL USA. EM batista@iap.fr; gould@astronomy.ohio-state.edu; dong@ias.edu; i.a.bond@massey.ac.nz; beaulieu@iap.fr; lagmonar@nmisa.org; gwchristie@christie.org.nz; farmcoveobs@xtra.co.nz; Michael.Albrow@canterbury.ac.nz; caldwell@astro.as.utexas.edu; simkoz@astronomy.ohio-state.edu; dkubas@eso.org; gaudi@astronomy.ohio-state.edu; cheongho@astroph.chungbuk.ac.kr; bennett@nd.edu; jinan@nao.cas.cn; abe@stelab.nagoya-u.ac.jp; c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp; okumurat@stelab.nagoya-u.ac.jp; yper006@auckland.ac.nz; denis.sullivan@vuw.ac.nz; sumi@stelab.nagoya-u.ac.jp; w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; sbrillan@eso.org; cassan@iap.fr; Andrew.Cole@utas.edu.au; kcook@llnl.gov; coutures@iap.fr; donatowicz@tuwien.ac.at; John.Greenhill@utas.edu.au; HoffmaMJ.SCI@mail.uovs.ac.za; skane@ipac.caltech.edu; nk87@st-andrews.ac.uk; marquett@iap.fr; Ralph.Martin@dec.wa.gov.au; ep41@st-andrews.ac.uk; Andrew.Williams@dec.wa.gov.au; whallen@xtra.co.nz; gbolt@iinet.net.au; molehill@ihug.co.nz; depoy@physics.tamu.edu; john_drummond@xtra.co.nz; jdeast@astronomy.ohio-state.edu; avishay.gal-yam@weizmann.ac.il; dhi67540@bigpond.net.au; leecu@kasi.re.kr; francomallia@campocatinobservatory.org; alain@spaceobs.com; lagmonar@nmisa.org; acrux@orcon.net.nz; nick.morgan@alum.mit.edu; tim.natusch@aut.ac.nz; eran@astro.caltech.edu; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu; obs930@southernstars-observatory.org; shporer@wise.tau; odedspec@wise.tau; guy.thornley@gmail.com; jyee@astronomy.ohio-state.edu RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Williams, Andrew/K-2931-2013; Zimmer, Fabian/M-4765-2014 OI Cole, Andrew/0000-0003-0303-3855; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Eastman, Jason/0000-0003-3773-5142; Dominik, Martin/0000-0002-3202-0343; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; FU HOLMES [ANR-06-BLAN-0416]; NSF [AST-0757888, AST-0206189, AST-0708890]; NASA [NNG04GL51G, NAF5-13042, NNX07AL71G]; Polish MNiSW [N20303032/4275, HST-GO-11311]; Korea Science and Engineering Foundation [2009-008561]; Korea Research Foundation [2006-311-C00072]; Korea Astronomy and Space Science Institute (KASI); Deutsche Forschungsgemeinschaft; PPARC/STFC; EU; Dill Faulkes Educational Trust (Faulkes Telescope North); Marsden Fund of NZ; Foundation for Research Science and Technology of NZ; Creative Research Initiative program [2009-008561]; Chinese Academy of Sciences (CAS) [2009Y2AJ7]; [JSPS18253002]; [JSPS20340052]; [JSPS19340058]; [MEXT19015005]; [JSPS18749004] FX V.B. thanks Ohio State University for its hospitality during a six week visit, during which this study was initiated. We acknowledge the following support: Grants HOLMES ANR-06-BLAN-0416 Dave Warren for the Mt Canopus Observatory; NSF AST-0757888 (AG, SD); NASA NNG04GL51G (DD, AG, RP); Polish MNiSW N20303032/4275 (AU); HST-GO-11311 (KS); NSF AST-0206189 and AST-0708890, NASA NAF5-13042 and NNX07AL71G (DPB); Korea Science and Engineering Foundation grant 2009-008561 (CH); Korea Research Foundation grant 2006-311-C00072 (B-GP); Korea Astronomy and Space Science Institute (KASI); Deutsche Forschungsgemeinschaft (CSB); PPARC/STFC, EU FP6 programme "ANGLES" (LW, NJR); PPARC/STFC (RoboNet); Dill Faulkes Educational Trust (Faulkes Telescope North); Grants JSPS18253002, JSPS20340052 and JSPS19340058 (MOA); Marsden Fund of NZ(IAB, PCMY); Foundation for Research Science and Technology of NZ; Creative Research Initiative program (2009-008561) (CH); Grants MEXT19015005 and JSPS18749004 (TS). Work by S. D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. J.C.Y. is supported by an NSF Graduate Research Fellowship. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. J.A. is supported by the Chinese Academy of Sciences (CAS) Fellowships for Young International Scientist, Grant No.: 2009Y2AJ7. NR 48 TC 41 Z9 41 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2011 VL 529 AR A102 DI 10.1051/0004-6361/201016111 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 750OG UT WOS:000289557200110 ER PT J AU Chotard, N Gangler, E Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Bongard, S Buton, C Canto, A Childress, M Copin, Y Fakhouri, HK Hsiao, EY Kerschhaggl, M Kowalski, M Loken, S Nugent, P Paech, K Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Runge, K Scalzo, R Smadja, G Tao, C Thomas, RC Weaver, BA Wu, C AF Chotard, N. Gangler, E. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Bongard, S. Buton, C. Canto, A. Childress, M. Copin, Y. Fakhouri, H. K. Hsiao, E. Y. Kerschhaggl, M. Kowalski, M. Loken, S. Nugent, P. Paech, K. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Runge, K. Scalzo, R. Smadja, G. Tao, C. Thomas, R. C. Weaver, B. A. Wu, C. TI The reddening law of type Ia supernovae: separating intrinsic variability from dust using equivalent widths SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: general; dust, extinction; cosmology: observations ID ULTRAVIOLET EXTINCTION; IMPROVED DISTANCES; HUBBLE DIAGRAM; DISPERSION; SAMPLE AB We employ 76 type Ia supernovae (SNe Ia) with optical spectrophotometry within 2.5 days of B-band maximum light obtained by the Nearby Supernova Factory to derive the impact of Si and Ca features on the supernovae intrinsic luminosity and determine a dust reddening law. We use the equivalent width of Si lambda 4131 in place of the light curve stretch to account for first-order intrinsic luminosity variability. The resulting empirical spectral reddening law exhibits strong features that are associated with Ca II and Si II lambda 6355. After applying a correction based on the Ca II H&K equivalent width we find a reddening law consistent with a Cardelli extinction law. Using the same input data, we compare this result to synthetic rest-frame UBVRI-like photometry to mimic literature observations. After corrections for signatures correlated with Si II lambda 4131 and Ca II H&K equivalent widths and introducing an empirical correlation between colors, we determine the dust component in each band. We find a value of the total-to-selective extinction ratio, R-V = 2.8 +/- 0.3. This agrees with the Milky Way value, in contrast to the low R-V values found in most previous analyses. This result suggests that the long-standing controversy in interpreting SN Ia colors and their compatibility with a classical extinction law, which is critical to their use as cosmological probes, can be explained by the treatment of the dispersion in colors, and by the variability of features apparent in SN Ia spectra. C1 [Chotard, N.; Gangler, E.; Copin, Y.; Pereira, R.; Smadja, G.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Perlmutter, S.; Runge, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bongard, S.; Canto, A.; Pain, R.; Wu, C.] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.; Scalzo, R.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Childress, M.; Fakhouri, H. K.; Perlmutter, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nugent, P.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Nugent, P.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Pecontal, E.] Univ Lyon 1, F-69003 Lyon, France. [Pecontal, E.] Observ Lyon, F-69230 St Genis Laval, France. [Scalzo, R.] Australian Natl Univ, RSAA, Mt Stromlo Observ, Weston, ACT 2611, Australia. [Tao, C.] Ctr Phys Particules Marseille, F-13288 Marseille 09, France. [Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Wu, C.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. RP Chotard, N (reprint author), Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. EM nchotard@ipnl.in2p3.fr RI Kowalski, Marek/G-5546-2012; Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015; OI Copin, Yannick/0000-0002-5317-7518; Perlmutter, Saul/0000-0002-4436-4661; Scalzo, Richard/0000-0003-3740-1214 FU CNRS/IN2P3; CNRS/INSU; CNRS/PNC; DFG [TRR33]; National Natural Science Foundation of China [10903010]; Office of Science, Office of High Energy and Nuclear Physics and the Office of Advanced Scientific Computing Research, of the US Department of Energy (DOE) [DE-FG02-92ER40704, DE-AC02-05CH11231, DE-FG02-06ER06-04]; Gordon & Betty Moore Foundation; National Science Foundation [AST-0407297, 0087344, 0426879]; Henri Chretien International Research Grant; France-Berkeley Fund; Region Rhone Alpes; Aspen Center for Physics FX We are grateful to the technical and scientific staff of the University of Hawaii 2.2-m telescope, Palomar Observatories, and the High Performance Research and Education Network (HPWREN) for their assistance in obtaining these data. We also thank the people of Hawaii for access to Mauna Kea. This work was based in part on observations with UCO facilities (Keck and Lick 3 m) and NOAO facilities (Gemini-S (program GS-2008B-Q-26), SOAR, and CTIO 4 m). We thank UCO and NOAO for their generous allocations of telescope time. We thank Julien Guy for fruitful discussions on color law derivation as well as the anonymous referee and Alex Kim for constructive comments on the text. This work was supported in France by CNRS/IN2P3, CNRS/INSU, CNRS/PNC, and used the resources of the IN2P3 computer center. This work was supported by the DFG through TRR33 "The Dark Universe", and by National Natural Science Foundation of China (grant 10903010). This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics and the Office of Advanced Scientific Computing Research, of the US Department of Energy (DOE) under Contract Nos. DE-FG02-92ER40704, DE-AC02-05CH11231, DE-FG02-06ER06-04, and DE-AC02-05CH11231; by a grant from the Gordon & Betty Moore Foundation; by National Science Foundation Grant Nos. AST-0407297 (QUEST), and 0087344 & 0426879 (HPWREN); by a Henri Chretien International Research Grant administrated by the American Astronomical Society; the France-Berkeley Fund; by an Explora Doc Grant by the Region Rhone Alpes; and the Aspen Center for Physics. NR 20 TC 62 Z9 63 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2011 VL 529 AR L4 DI 10.1051/0004-6361/201116723 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 750OG UT WOS:000289557200005 ER PT J AU Faure, C Anguita, T Alloin, D Bundy, K Finoguenov, A Leauthaud, A Knobel, C Kneib, JP Jullo, E Ilbert, O Koekemoer, AM Capak, P Scoville, N Tasca, LAM AF Faure, C. Anguita, T. Alloin, D. Bundy, K. Finoguenov, A. Leauthaud, A. Knobel, C. Kneib, J-P Jullo, E. Ilbert, O. Koekemoer, A. M. Capak, P. Scoville, N. Tasca, L. A. M. TI On the evolution of environmental and mass properties of strong lens galaxies in COSMOS SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: strong ID DARK-MATTER HALOS; HIGH-DENSITY ENVIRONMENTS; WIDE-FIELD SURVEY; ACS SURVEY; GRAVITATIONAL LENSES; STELLAR MASS; QUANTITATIVE MORPHOLOGY; PHOTOMETRIC REDSHIFTS; INTERNAL STRUCTURE; OPTICAL DEPTHS AB Context. Nearly 100 new strong-lens candidates have been discovered in the COSMOS field. Among these, 20 lens candidates with 0.34 less than or similar to z(lens) <= 1.13 feature multiple images of background sources. Aims. Using the multi-wavelength coverage of the field and its spectroscopic follow-up, we characterize the evolution with redshift of the environment and of the dark-matter (DM) fraction of the lens galaxies. Methods. We present spectroscopic and new photometric redshifts of the strong-lens candidates. The lens environment is characterized in the following way: we account for the projected 10 closest galaxies around each lens and for galaxies with a projected distance less than 1 Mpc at the lens galaxy redshift. In both cases, we perform similar measurements on a control sample of "twin" non-lens early-type galaxies (ETGs). In addition, we identify group members and field galaxies in the X-ray and optical catalogs of galaxy groups and clusters. From those catalogs, we measure the external shear contribution of the groups/clusters surrounding the lens galaxies. The systems are then modeled using a singular isothermal ellipsoid for the lens galaxies plus the external shear produced by the groups/clusters. Results. We observe that the average stellar mass of lens galaxies increases with redshift. In addition, we measure that the environment of lens galaxies is compatible with that of the twins over the whole redshift range tested here. During the lens modeling, we notice that when let free, the external shear points in a direction which is the mean direction of the external shear produced by the groups/clusters and of the closest galaxy to the lens. We also notice that the DM fraction of the lens galaxies measured within the Einstein radius significantly decreases as the redshift increases. Conclusions. Given these observations, we conclude that while the environment of lens galaxies is compatible with that of non-lens ETGS over a wide range of redshifts, their mass properties evolves significantly with redshift: it is still not clear whether this advocates in favor of a stronger lensing bias toward massive objects at high redshift or if it is simply representative of the high proportion of massive and high stellar density galaxies at high redshift. C1 [Faure, C.] Observ Sauverny, Ecole Polytech Fed Lausanne, Astrophys Lab, CH-1290 Versoix, Switzerland. [Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Ctr Astroingn, Santiago, Chile. [Anguita, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Alloin, D.] Univ Paris Diderot, CNRS, Lab AIM, CEA,DSM,IRFU,SEDI,SAP,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Bundy, K.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Finoguenov, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Leauthaud, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leauthaud, A.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Knobel, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Kneib, J-P; Ilbert, O.; Tasca, L. A. M.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Jullo, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Capak, P.; Scoville, N.] CALTECH, Pasadena, CA 91125 USA. RP Faure, C (reprint author), Observ Sauverny, Ecole Polytech Fed Lausanne, Astrophys Lab, CH-1290 Versoix, Switzerland. RI Kneib, Jean-Paul/A-7919-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Koekemoer, Anton/0000-0002-6610-2048 FU CNRS; CEA; SL2S [ANR-06-BLAN-0067]; DESIR [ANR-07-BLAN-0228]; NPP; NASA FX We acknowledge the anonymous referee for providing a detailed and very useful report. We are gratefully indebted to M. Limousin and R. Gavazzi for enlightening discussions. D.A. thanks CNRS and CEA for support and visits to the Geneva observatory, where this work was finalized. J.P.K. thanks for support from CNRS and SL2S ANR-06-BLAN-0067 and DESIR ANR-07-BLAN-0228. E.J. acknowledges the support of the NPP, administered by Oak Ridge Associated Universities through a contract with NASA. NR 68 TC 17 Z9 17 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2011 VL 529 AR A72 DI 10.1051/0004-6361/200913498 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 750OG UT WOS:000289557200080 ER PT J AU Guilbert-Lepoutre, A Lasue, J Federico, C Coradini, A Orosei, R Rosenberg, ED AF Guilbert-Lepoutre, A. Lasue, J. Federico, C. Coradini, A. Orosei, R. Rosenberg, E. D. TI New 3D thermal evolution model for icy bodies application to trans-Neptunian objects SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Kuiper belt: general; diffusion; methods: numerical ID KUIPER-BELT OBJECTS; COMET NUCLEI; SOLAR-SYSTEM; PHASE-TRANSITION; WATER-ICE; CENTAURS; SURFACE; ORIGIN; HEAT; IRRADIATION AB Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline water ice or volatiles, remain puzzling. Aims. In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions. Methods. In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some constraints on the presence of crystalline water ice at the surface of TNOs. Results. The results obtained with this new model are in excellent agreement with results obtained by different groups with various models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of larger bodies. We find that, for large objects with a thermal evolution dominated by the decay of long-lived isotopes (objects with a formation period greater than 2 to 3 Myr), the presence of crystalline water ice would require both a large radius (>300 km) and high density (>1500 kg m(-3)). In particular, objects with intermediate radii and densities would be an interesting transitory population deserving a detailed study of individual fates. C1 [Guilbert-Lepoutre, A.] Observ Paris, Sect Meudon, LESIA, F-92195 Meudon, France. [Guilbert-Lepoutre, A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Lasue, J.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. [Lasue, J.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Federico, C.] Univ Perugia, Dipartimento Sci Terra, I-06123 Perugia, Italy. [Coradini, A.] INAF IFSI, I-00133 Rome, Italy. [Orosei, R.] INAF IASF, I-00133 Rome, Italy. [Rosenberg, E. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Guilbert-Lepoutre, A (reprint author), Observ Paris, Sect Meudon, LESIA, 2 Pl J Janssen, F-92195 Meudon, France. EM aguilbert@ucla.edu FU NASA FX A.G.L. thanks G. Magni, M. T. Capria, M. C. De Sanctis and D. Turini for useful discussions on the model, and D. Jewitt for useful comments on the manuscript. J.L. thanks the LPI contribution 1549. A.G.L. was supported in part by a NASA Herschel grant to David Jewitt. The authors want to thank the anonymous referee for their useful comments that contributed to a major improvement of the manuscript. NR 64 TC 11 Z9 11 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2011 VL 529 AR A71 DI 10.1051/0004-6361/201014194 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 750OG UT WOS:000289557200079 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Brown, AM Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lehmann, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Singh, K Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K-H Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Brown, A. M. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J-P Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K-H Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J-H Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lehmann, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H-G Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Singh, K. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays; neutrinos ID HIGH-ENERGY NEUTRINOS; GAMMA-RAY EMISSION; COSMIC-RAYS; GALAXIES; CLUSTERS; TELESCOPES; ASTRONOMY; ASTROPHYSICS; SELECTION; MILAGRO AB We present the results of time-integrated searches for astrophysical neutrino sources in both the northern and southern skies. Data were collected using the partially completed IceCube detector in the 40-string configuration recorded between 2008 April 5 and 2009 May 20, totaling 375.5 days livetime. An unbinned maximum likelihood ratio method is used to search for astrophysical signals. The data sample contains 36,900 events: 14,121 from the northern sky, mostly muons induced by atmospheric neutrinos, and 22,779 from the southern sky, mostly high-energy atmospheric muons. The analysis includes searches for individual point sources and stacked searches for sources in a common class, sometimes including a spatial extent. While this analysis is sensitive to TeV-PeV energy neutrinos in the northern sky, it is primarily sensitive to neutrinos with energy greater than about 1 PeV in the southern sky. No evidence for a signal is found in any of the searches. Limits are set for neutrino fluxes from astrophysical sources over the entire sky and compared to predictions. The sensitivity is at least a factor of two better than previous searches (depending on declination), with 90% confidence level muon neutrino flux upper limits being between E(2)d Phi/dE similar to 2-200 x 10(-12) TeV cm(-2) s(-1) in the northern sky and between 3-700 x 10(-12) TeV cm(-2) s(-1) in the southern sky. The stacked source searches provide the best limits to specific source classes. The full IceCube detector is expected to improve the sensitivity to d Phi/dE proportional to E-2 sources by another factor of two in the first year of operation. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Brown, A. M.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K-H; Gurtner, M.; Helbing, K.; Kampert, K-H; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J-P; Krings, T.; Laihem, K.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Deptartment Phys, SE-10691 Stockholm, Sweden. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Singh, K.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Clevermann, F.; Koehne, J-H; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H-G; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kappes, A.; Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Beatty, James/D-9310-2011; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Beatty, James/0000-0003-0481-4952; Actis, Oxana/0000-0001-8851-3983; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU U.S. National Science Foundation; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus Programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, UK; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus Programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, UK; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 76 TC 93 Z9 93 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 18 DI 10.1088/0004-637X/732/1/18 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500018 ER PT J AU Brodwin, M Stern, D Vikhlinin, A Stanford, SA Gonzalez, AH Eisenhardt, PR Ashby, MLN Bautz, M Dey, A Forman, WR Gettings, D Hickox, RC Jannuzi, BT Jones, C Mancone, C Miller, ED Moustakas, LA Ruel, J Snyder, G Zeimann, G AF Brodwin, M. Stern, D. Vikhlinin, A. Stanford, S. A. Gonzalez, A. H. Eisenhardt, P. R. Ashby, M. L. N. Bautz, M. Dey, A. Forman, W. R. Gettings, D. Hickox, R. C. Jannuzi, B. T. Jones, C. Mancone, C. Miller, E. D. Moustakas, L. A. Ruel, J. Snyder, G. Zeimann, G. TI X-RAY EMISSION FROM TWO INFRARED-SELECTED GALAXY CLUSTERS AT z > 1.4 IN THE IRAC SHALLOW CLUSTER SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (ISCS J1432.4+3250, ISCS J1438.1+3414); galaxies: distances and redshifts; galaxies: evolution ID DIGITAL SKY SURVEY; WIDE-FIELD SURVEY; VELOCITY DISPERSION; COMA CLUSTER; MASS; TEMPERATURE; LUMINOSITY; TELESCOPE; COSMOLOGY; ROBUST AB We report the X-ray detection of two z > 1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J1432.4+3250 at z = 1.49, the most distant of 18 confirmed z > 1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36 ks and 143 ks Chandra exposures at significances of 5.2 sigma and 9.7 sigma, from which we measure total masses of log (M-200,M-LX/M-circle dot) = 14.4 +/- 0.2 and 14.35(-0.11)(+0.14), respectively. The consistency of the X-ray and dynamical properties of these high-redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5. C1 [Brodwin, M.; Vikhlinin, A.; Ashby, M. L. N.; Forman, W. R.; Jones, C.; Snyder, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, D.; Eisenhardt, P. R.; Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stanford, S. A.; Zeimann, G.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Gonzalez, A. H.; Gettings, D.; Mancone, C.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Bautz, M.; Miller, E. D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Dey, A.; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Hickox, R. C.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Ruel, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. RP Brodwin, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. OI Moustakas, Leonidas/0000-0003-3030-2360 FU Chandra X-Ray Observatory [SV4-74018, A31]; Smithsonian Astrophysical Observatory; NASA [G09-0150A, NAS 5-26555]; JPL/Caltech; NASA through Space Telescope Science Institute [11597, 11663]; W. M. Keck Foundation; U.S. Department of Energy [W-7405-ENG-48] FX This work is based, in part, on observations obtained with the Chandra X-Ray Observatory under contract SV4-74018, A31 with the Smithsonian Astrophysical Observatory which operates Chandra for NASA. Support for this research was provided by NASA grant G09-0150A. This work is also based, in part, on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11597 and 11663. Support for programs 11597 and 11663 were provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This work makes use of image data from the NOAO Deep Wide-Field Survey (NDWFS) and the Deep Lens Survey (DLS) as distributed by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation.; This paper would not have been possible without the efforts of the Spitzer, Chandra, HST, and Keck support staff. We thank C. Fedeli for helpful discussions on the evolution of the mass function. Support for M. B. was provided by the W. M. Keck Foundation. The work by S. A. S. at LLNL was performed under the auspices of the U.S. Department of Energy under contract No. W-7405-ENG-48. NR 60 TC 45 Z9 45 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 33 DI 10.1088/0004-637X/732/1/33 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500033 ER PT J AU Parrent, JT Thomas, RC Fesen, RA Marion, GH Challis, P Garnavich, PM Milisavljevic, D Vinko, J Wheeler, JC AF Parrent, Jerod T. Thomas, R. C. Fesen, Robert A. Marion, G. H. Challis, Peter Garnavich, Peter M. Milisavljevic, Dan Vinko, Jozsef Wheeler, J. Craig TI A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SN 2010Y, 2010ai, PTF10icb) ID DELAYED DETONATION MODELS; HOBBY-EBERLY TELESCOPE; HIGH-VELOCITY EJECTA; MASS WHITE-DWARF; LOW-LUMINOSITY; SN 1999BY; SPECTROSCOPIC OBSERVATIONS; CIRCUMSTELLAR INTERACTION; ABUNDANCE STRATIFICATION; FACTORY OBSERVATIONS AB One of the major differences between various explosion scenarios of Type Ia supernovae (SNe Ia) is the remaining amount of unburned (C+O) material and its velocity distribution within the expanding ejecta. While oxygen absorption features are not uncommon in the spectra of SNe Ia before maximum light, the presence of strong carbon absorption has been reported only in a minority of objects, typically during the pre-maximum phase. The reported low frequency of carbon detections may be due to low signal-to-noise data, low abundance of unburned material, line blending between C II lambda 6580 and Si II lambda 6355, ejecta temperature differences, asymmetrical distribution effects, or a combination of these. However, a survey of published pre-maximum spectra reveals that more SNe Ia than previously thought may exhibit C II lambda 6580 absorption features and relics of line blending near similar to 6300 angstrom. Here we present new SN Ia observations where spectroscopic signatures of C II lambda 6580 are detected and investigate the presence of C II lambda 6580 in the optical spectra of 19 SNe Ia using the parameterized spectrum synthesis code, SYNOW. Most of the objects in our sample that exhibit C II lambda 6580 absorption features are of the low-velocity gradient subtype. Our study indicates that the morphology of carbon-rich regions is consistent with either a spherical distribution or a hemispheric asymmetry, supporting the recent idea that SN Ia diversity may be a result of off-center ignition coupled with observer line-of-sight effects. C1 [Parrent, Jerod T.; Fesen, Robert A.; Milisavljevic, Dan] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Marion, G. H.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Marion, G. H.; Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Garnavich, Peter M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Vinko, Jozsef] Univ Szeged, Dept Opt & Quantum Elect, H-6720 Szeged, Hungary. RP Parrent, JT (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. FU NSF [AST-0707669]; Texas Advanced Research Program [ASTRO-ARP-0094]; Hungarian OTKA [K76816] FX We are grateful to Laura Kay for obtaining some of the spectra of SN 2010Y and thank Eddie Baron, David Branch, and Andy Howell for helpful comments on an earlier draft of this paper. J.V. has received support from NSF Grant AST-0707669, Texas Advanced Research Program grant ASTRO-ARP-0094, and Hungarian OTKA Grant K76816. NR 127 TC 60 Z9 60 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 30 DI 10.1088/0004-637X/732/1/30 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500030 ER PT J AU Raichoor, A Mei, S Nakata, F Stanford, SA Holden, BP Rettura, A Huertas-Company, M Postman, M Rosati, P Blakeslee, JP Demarco, R Eisenhardt, P Illingworth, G Jee, MJ Kodama, T Tanaka, M White, RL AF Raichoor, A. Mei, S. Nakata, F. Stanford, S. A. Holden, B. P. Rettura, A. Huertas-Company, M. Postman, M. Rosati, P. Blakeslee, J. P. Demarco, R. Eisenhardt, P. Illingworth, G. Jee, M. J. Kodama, T. Tanaka, M. White, R. L. TI EARLY-TYPE GALAXIES AT z similar to 1.3. II. MASSES AND AGES OF EARLY-TYPE GALAXIES IN DIFFERENT ENVIRONMENTS AND THEIR DEPENDENCE ON STELLAR POPULATION MODEL ASSUMPTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (RX J0849+4452, RX J0848+4453); galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: photometry ID HIGH-REDSHIFT GALAXIES; COLOR-MAGNITUDE RELATION; GIANT BRANCH STARS; DIGITAL SKY SURVEY; GOODS-SOUTH FIELD; VLT DEEP SURVEY; TP-AGB STARS; LUMINOSITY FUNCTION; LYNX SUPERCLUSTER; PASSIVE GALAXIES AB We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z similar to 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 mu m; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M greater than or similar to 10(11) M-circle dot) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses. C1 [Raichoor, A.; Mei, S.; Huertas-Company, M.] Observ Paris, Sect Meudon, GEPI, F-92190 Meudon, France. [Mei, S.; Huertas-Company, M.] Univ Paris Denis Diderot, F-75205 Paris 13, France. [Mei, S.] CALTECH, Pasadena, CA 91125 USA. [Nakata, F.; Kodama, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Stanford, S. A.; Rettura, A.; Jee, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Holden, B. P.; Illingworth, G.] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95065 USA. [Rettura, A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Postman, M.; White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rosati, P.] European S Observ, D-85748 Garching, Germany. [Blakeslee, J. P.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Demarco, R.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kodama, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Tanaka, M.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. RP Raichoor, A (reprint author), Osserv Astron Brera, Via Brera 28, I-20121 Milan, Italy. EM anand.raichoor@brera.inaf.it OI Blakeslee, John/0000-0002-5213-3548 FU NASA [NAS 5-32865, NAS5-26555]; NASA HST [GO-10574.01-A]; Spitzer [20694]; W. M. Keck Foundation FX ACS was developed under NASA contract NAS 5-32865. This research has been supported by the NASA HST grant GO-10574.01-A, and Spitzer grant for program 20694. The Space Telescope Science Institute is operated by AURA Inc., under NASA contract NAS5-26555. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Some data were based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONlCYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina), Gemini Science Program ID: GN-2006A-Q-78. We thank the anonymous referee for constructive comments. We thank Raphael Gobat and Veronica Strazzullo for useful discussions. NR 85 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 12 DI 10.1088/0004-637X/732/1/12 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500012 ER PT J AU Rantsiou, E Burrows, A Nordhaus, J Almgren, A AF Rantsiou, Emmanouela Burrows, Adam Nordhaus, Jason Almgren, Ann TI INDUCED ROTATION IN THREE-DIMENSIONAL SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE: IMPLICATIONS FOR PULSAR SPINS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; pulsars: general; supernovae: general ID EQUATION-OF-STATE; NEUTRINO MECHANISM; STELLAR EVOLUTION; MAGNETIC-FIELDS; ACCRETION SHOCK; NUCLEAR-MATTER; MASSIVE STARS; HYDRODYNAMICS; INSTABILITY; EXPLOSIONS AB It has been suggested that the observed rotation periods of radio pulsars might be induced by a non-axisymmetric spiral-mode instability in the turbulent region behind the stalled supernova bounce shock, even if the progenitor core was not initially rotating. In this paper, using the three-dimensional Adaptive Mesh Refinement code CASTRO with a realistic progenitor and equation of state and a simple neutrino heating and cooling scheme, we present a numerical study of the evolution in three dimensions of the rotational profile of a supernova core from collapse, through bounce and shock stagnation, to delayed explosion. By the end of our simulation (similar to 420 ms after core bounce), we do not witness significant spin-up of the proto-neutron star core left behind. However, we do see the development before the explosion of strong differential rotation in the turbulent gain region between the core and stalled shock. Shells in this region acquire high spin rates that reach similar to 150 Hz, but this region contains too little mass and angular momentum to translate, even if left behind, into rapid rotation for the full neutron star. We also find that much of the induced angular momentum is likely to be ejected in the explosion, and moreover that even if the optimal amount of induced angular momentum is retained in the core, the resulting spin period is likely to be quite modest. Nevertheless, induced periods of seconds are possible. C1 [Rantsiou, Emmanouela; Burrows, Adam; Nordhaus, Jason] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Almgren, Ann] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Rantsiou, E (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM emmarant@astro.princeton.edu; burrows@astro.princeton.edu; nordhaus@astro.princeton.edu; asalmgren@lbl.gov FU DOE [DE-FG02-08ER41544]; NSF via Louisiana State University [ND201387, OCI-0905046, 44592]; SciDAC [DE-AC02-05CH11231]; Princeton Institute for Computational Science and Engineering (PICSciE); Princeton University Office of Information Technology; Office of Science of the US Department of Energy [DE-AC03-76SF00098]; National Science Foundation [TGAST100001] FX The authors acknowledge Rodrigo Fernandez, Timothy Brandt, John Bell, and Brian Metzger for fruitful discussions and input. A.B. and J.N. are supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the DOE, under grant number DE-FG02-08ER41544. E.R. is supported by the NSF under the subaward no. ND201387 to the Joint Institute for Nuclear Astrophysics (JINA, NSF PHY-0822648), and A.B. receives support from the NSF PetaApps program, under award OCI-0905046 via a subaward no. 44592 from Louisiana State University to Princeton University. Work at LBNL was supported in part by the SciDAC Program under contract DE-AC02-05CH11231. The authors thank the members of the Center for Computational Sciences and Engineering (CCSE) at LBNL for their invaluable support for CASTRO. The authors employed computational resources provided by the TIGRESS high performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology; by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098 and on the Kraken and Ranger supercomputers, hosted at NICS and TACC and provided by the National Science Foundation through the TeraGrid Advanced Support Program under grant number TGAST100001. NR 24 TC 28 Z9 28 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 57 DI 10.1088/0004-637X/732/1/57 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500057 ER PT J AU Sehgal, N Trac, H Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Holtz, D Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jones, A Juin, JB Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Reid, B Sherwin, BD Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Tucker, C Warne, R Wollack, E Zhao, Y AF Sehgal, Neelima Trac, Hy Acquaviva, Viviana Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John W. Felipe Barrientos, L. Battistelli, Elia S. Bond, J. Richard Brown, Ben Burger, Bryce Chervenak, Jay Das, Sudeep Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fisher, Ryan P. Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Holtz, David Huffenberger, Kevin M. Hughes, David H. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Jones, Andrew Baptiste Juin, Jean Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lin, Yen-Ting Lupton, Robert H. Marriage, Tobias A. Marsden, Danica Martocci, Krista Mauskopf, Phil Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Reid, Beth Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Tucker, Carole Warne, Ryan Wollack, Ed Zhao, Yue TI THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general ID SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; BACKGROUND POWER SPECTRUM; TREE PARTICLE-MESH; X-RAY; RADIO-SOURCES; HYDRODYNAMICAL SIMULATIONS; PECULIAR VELOCITIES; SCALING RELATIONS; CATALOG AB We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected (SZ-selected) galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of nine optically confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 deg(2) of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a four-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma(8) = 0.851 +/- 0.115 and omega = -1.14 +/- 0.35 for a spatially flat wCDM cosmological model with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP seven-year constraints alone. Fixing the scaling relation between the cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find sigma(8) = 0.821 +/- 0.044 and omega = -1.05 +/- 0.20. These results are consistent with constraints from WMAP7 plus baryon acoustic oscillations plus Type Ia supernova which give sigma(8) = 0.802 +/- 0.038 and omega = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models. C1 [Sehgal, Neelima; Lau, Judy M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, Viviana; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo; Baptiste Juin, Jean; Lin, Yen-Ting] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Appel, John W.; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Holtz, David; Jones, Andrew; Lau, Judy M.; Limon, Michele; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Reid, Beth; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, Ben; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed; Zhao, Yue] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Limon, Michele; Marriage, Tobias A.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. Bertrand; Fowler, Joseph W.; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, Matt; Moodley, Kavilan] Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Lau, Judy M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, Michele] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Martocci, Krista; Switzer, Eric R.] Kavli Inst Cosmol Phys, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Reid, Beth] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. RP Sehgal, N (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Sievers, Jonathan/0000-0001-6903-5074; /0000-0002-0896-8628; Limon, Michele/0000-0002-5900-2698; Tucker, Carole/0000-0002-1851-3918; Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Huffenberger, Kevin/0000-0001-7109-0099 FU US National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation; Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; U.S. Department of Energy [DE-AC3-76SF00515]; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF Physics Frontier Center [PHY-0114422]; FONDAP Centro de Astrofisica; RCUK; South African National Research Foundation (NRF); Meraka Institute; South African Square Kilometer Array (SKA) Project; CONICYT; MECESUP; Fundacion Andes; Rhodes Trust; Berkeley Center for Cosmological Physics; World Premier International Research Center Initiative, MEXT, Japan; NASA Office of Space Science; [NSFAST-0546035]; [AST-0606975] FX This work was supported by the US National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto.; N.S. is supported by the U.S. Department of Energy contract to SLAC No. DE-AC3-76SF00515. A. H., T. M., S. D., and V. A. were supported through NASA grant NNX08AH30G. A. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSFAST-0546035 and AST-0606975, respectively, for work on ACT. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. H. Q. and L. I. acknowledge partial support from FONDAP Centro de Astrofisica. J.D. received support from an RCUK Fellowship. K. M., M. H., and R. W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. RH acknowledges funding from the Rhodes Trust. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. Some of the results in this paper have been derived using the HEALPix package (Gorski et al. 2005). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. The data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACT Web site (http://www.physics.princeton.edu/act/). NR 87 TC 100 Z9 100 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2011 VL 732 IS 1 AR 44 DI 10.1088/0004-637X/732/1/44 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 751OD UT WOS:000289626500044 ER PT J AU Ueno, S Ohji, T Lin, HT AF Ueno, Shunkichi Ohji, Tatsuki Lin, Hua-Tay TI Recession behavior of Lu2SiO5 under a high speed steam jet at high temperatures SO CERAMICS INTERNATIONAL LA English DT Article DE Atmospheric corrosion; Ceramics; SEM ID SILICON-NITRIDE; WATER-VAPOR; ENVIRONMENT; OXIDATION; CERAMICS AB Study of recession behavior of Lu2SiO5 bulk was performed in high speed steam jet with a velocity of similar to 50 m/s temperature range between 1300 and 1500 degrees C for 100 h. X-ray results showed that no phase change was observed for all samples after steam exposure. Detailed scanning electron microscopy examinations showed some cracks formation was observed on the bulk surface for the samples of 1400 and 1500 degrees C. Also, porous structure was formed on the bulk surface for the samples of 1300 and 1400 degrees C. As for 1500 degrees C sample, the porous structure disappeared after exposure test. The high magnification images of 1300 degrees C sample showed the depletion of grain boundary glassy phase. However, for 1400 degrees C sample, boundary phase was formed again, and the grain growth can be identified for the sample of 1500 degrees C. The recession mechanism can be explained by a mass transfer of evaporated species from the bulk surface and the weight loss rate measured can be expressed by Arrhenius plot. (C) 2011 Elsevier Ltd and Techna Group Sri. All rights reserved. C1 [Ueno, Shunkichi] Nihon Univ, Coll Engn, Fukushima 9638806, Japan. [Ohji, Tatsuki] Natl Inst Adv Ind Sci & Technol, Adv Mfg Res Inst, Moriyama Ku, Nagoya, Aichi 4638687, Japan. [Lin, Hua-Tay] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ueno, S (reprint author), Nihon Univ, Coll Engn, Tokusada Nakagawahara 1, Fukushima 9638806, Japan. EM ueno@chem.ce.nihon-u.ac.jp NR 12 TC 3 Z9 3 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD MAY PY 2011 VL 37 IS 4 BP 1185 EP 1189 DI 10.1016/j.ceramint.2010.11.029 PG 5 WC Materials Science, Ceramics SC Materials Science GA 748IH UT WOS:000289383800007 ER PT J AU Murthi, A Bowman, KP Leung, LR AF Murthi, Aditya Bowman, Kenneth P. Leung, L. Ruby TI Simulations of precipitation using NRCM and comparisons with satellite observations and CAM: annual cycle SO CLIMATE DYNAMICS LA English DT Article DE Precipitation; Annual cycle; NRCM; CAM ID MEASURING MISSION TRMM; RAIN-GAUGE DATA; NORTH-AMERICAN MONSOON; ASIAN SUMMER MONSOON; SAMPLING ERROR; TROPICAL PRECIPITATION; STOCHASTIC-MODEL; UNITED-STATES; CLIMATE; PARAMETERIZATION AB The accurate representation of rainfall in models of global climate has been a challenging task for climate modelers owing to its small space and time scales. Quantifying this variability is important for comparing simulations of atmospheric behavior with real time observations. In this regard, this paper compares both the statistical and dynamically forced aspects of precipitation variability simulated by the high-resolution (36 km) Nested Regional Climate Model (NRCM), with satellite observations from the Tropical Rainfall Measuring Mission (TRMM) 3B42 dataset and simulations from the Community Atmosphere Model (CAM) at T85 spatial resolution. Six years of rainfall rate data (2000-2005) from within the Tropics (30A degrees S-30A degrees N) have been used in the analysis and results are presented in terms of long-term mean rain rates, amplitude and phase of the annual cycle and seasonal mean maps of precipitation. Our primary focus is on characterizing the annual cycle of rainfall over four land regions of the Tropics namely, the Indian Monsoon, the Amazon, Tropical Africa and the North American monsoon. The lower tropospheric circulation patterns are analyzed in both the observations and the models to identify possible causes for biases in the simulated precipitation. The 6-year mean precipitation simulated by both models show substantial biases throughout the global Tropics with NRCM/CAM systematically underestimating/overestimating rainfall almost everywhere. The seasonal march of rainfall across the equator, following the motion of the sun, is clearly seen in the harmonic vector maps. The timing of peak rainfall (phase) produced by NRCM is in closer agreement with the observations compared to CAM. However like the long-time mean, the magnitude of seasonal mean rainfall is greatly underestimated by NRCM throughout the Tropical land mass. Some of these regional biases can be attributed to erroneous circulation and moisture surpluses/deficits in the lower troposphere in both models. Overall, the results seem to indicate that employing a higher spatial resolution (36 km) does not significantly improve simulation of precipitation. We speculate that a combination of several physics parameterizations and lack of model tuning gives rise to the observed differences between NRCM and the observations. C1 [Murthi, Aditya; Bowman, Kenneth P.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Murthi, A (reprint author), Texas A&M Univ, Dept Atmospher Sci, 3150 TAMU, College Stn, TX 77843 USA. EM adityamurthi@neo.tamu.edu; k-bowman@tamu.edu; Ruby.Leung@pnl.gov RI Bowman, Kenneth/A-1345-2012 OI Bowman, Kenneth/0000-0002-2667-8632 FU NOAA; US Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO1830]; NASA [NNX07AD67G] FX Funding for this research is partially provided by the NOAA Climate Prediction Program for the Americas (CPPA) to Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO1830. Additional funding was provided by NASA grant NNX07AD67G to Texas A& M University. We acknowledge NASA for use of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). TMPA (3B42) data were obtained from the Goddard Earth Sciences Data and Information Services Center (http://disc.gsfc.nasa.gov/). The NCAR CAM simulations were carried out at the Texas A&M Supercomputing Center. NR 50 TC 5 Z9 6 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2011 VL 36 IS 9-10 BP 1659 EP 1679 DI 10.1007/s00382-010-0878-z PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 750PL UT WOS:000289560400003 ER PT J AU Schwartz, SE AF Schwartz, Stephen E. TI Feedback and sensitivity in an electrical circuit: an analog for climate models SO CLIMATIC CHANGE LA English DT Article ID GENERAL-CIRCULATION MODELS; CLOUD FEEDBACK; TEMPERATURE; WELL AB Earth's climate sensitivity is often interpreted in terms of feedbacks that can alter the sensitivity from that of a no-feedback Stefan-Boltzmann radiator, with the feedback concept and algebra introduced by analogy to the use of this concept in the electronics literature. This analogy is quite valuable in interpreting the sensitivity of the climate system, but usage of this algebra and terminology in the climate literature is often inconsistent, with resultant potential for confusion and loss of physical insight. Here a simple and readily understood electrical resistance circuit is examined in terms of feedback theory to introduce and define the terminology that is used to quantify feedbacks. This formalism is applied to the feedbacks in an energy-balance model of Earth's climate and used to interpret the magnitude of feedback in the climate system that corresponds to present estimates of Earth's climate sensitivity. C1 Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Schwartz, SE (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 815E,75 Rutherford Dr,POB 5000, Upton, NY 11973 USA. EM ses@bnl.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X FU U.S. Department of Energy (Office of Science, OBER) [DE-AC02-98CH10886] FX Supported by the U.S. Department of Energy's Atmospheric Science Program (Office of Science, OBER) under Contract No. DE-AC02-98CH10886. I thank David Rutledge (Department of Electrical Engineering, California Institute of Technology) and Ernie Lewis (BNL) for valuable discussion and two anonymous reviewers for insightful comments. NR 24 TC 8 Z9 8 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2011 VL 106 IS 2 BP 315 EP 326 DI 10.1007/s10584-010-9903-9 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 750PT UT WOS:000289561200010 ER PT J AU Ahmed, M Sultan, M Wahr, J Yan, E Milewski, A Sauck, W Becker, R Welton, B AF Ahmed, Mohamed Sultan, Mohamed Wahr, John Yan, Eugene Milewski, Adam Sauck, William Becker, Richard Welton, Benjamin TI Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds SO GEOLOGY LA English DT Article ID VARIABILITY AB Monthly (71 months) Gravity Recovery and Climate Experiment (GRACE) gravity field solutions acquired over North and Central Africa (August 2002-July 2008) were destriped, smoothed (250 km; Gaussian), and converted to equivalent water thickness. These data were analyzed in a geographic information system environment together with relevant data sets (e. g., topography, geology, remote sensing) to assess the utility of GRACE for monitoring elements of hydrologic systems on local scales. The following were observed over the Niger, Congo, and Nile Basins: (1) large persistent anomalies (standard deviation, SD > 10 cm) on SD images over periods of 2-7 yr; (2) anomalous areas originate at mountainous source areas that receive high precipitation, extend downslope toward mountain foothills, and often continue along main channels, wetlands, or lakes that drain these areas; (3) time-series analyses over anomalous areas showed that seasonal mass variation lags behind seasonal precipitation; and (4) seasonal mass variations showed progressive shift in phase and decrease in amplitude with distance from the mountainous source areas. Results indicate that (1) the observed temporal mass variations are largely controlled by elements of the hydrologic cycle (e. g., runoff, infiltration, groundwater flow) and have not been obscured by noise, as previously thought; and (2) it is possible to use GRACE to investigate the temporal local responses of a much larger suite of hydrologic systems (watersheds, lakes, rivers, and marshes) and domains (source areas and lowlands) within watersheds and subbasins worldwide. C1 [Ahmed, Mohamed; Sultan, Mohamed; Milewski, Adam; Sauck, William] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Wahr, John] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Yan, Eugene] Argonne Natl Lab, Argonne, IL 60439 USA. [Becker, Richard] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. [Welton, Benjamin] Western Michigan Univ, Dept Comp Sci, Kalamazoo, MI 49008 USA. RP Ahmed, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. RI Becker, Richard/A-9120-2010; Milewski, Adam/C-7824-2011; OI Becker, Richard/0000-0003-2514-2040; Sauck, William/0000-0003-2911-3044 FU National Aeronautics and Space Administration [NNX08AJ85G] FX We thank the editor and the reviewers of Geology for their constructive comments. Funding was provided by National Aeronautics and Space Administration grant NNX08AJ85G to Western Michigan University. NR 10 TC 11 Z9 11 U1 0 U2 14 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD MAY PY 2011 VL 39 IS 5 BP 479 EP 482 DI 10.1130/G31812.1 PG 4 WC Geology SC Geology GA 748TX UT WOS:000289416500022 ER PT J AU Okomo-Adhiambo, M Sleeman, K Ballenger, K Nguyen, HT Mishin, VP Sheu, TG Smagala, J Klimov, AI Gubareva, LV AF Okomo-Adhiambo, Margaret Sleeman, Katrina Ballenger, Kristina Nguyen, Ha T. Mishin, Vasiliy P. Sheu, Tiffany G. Smagala, James Klimov, Alexander I. Gubareva, Larisa V. TI Susceptibility of human influenza viruses to neuraminidase inhibitors (season 2008-2009) SO INFLUENZA AND OTHER RESPIRATORY VIRUSES LA English DT Article; Proceedings Paper CT Conference on Options for the Control of Influenza VII CY SEP 03-07, 2010 CL Hong Kong, PEOPLES R CHINA DE Oseltamivir; pandemic H1N1; peramivir; seasonal influenza A and B; zanamivir ID ISOLATED WORLDWIDE; A(H1N1) VIRUSES; UNITED-STATES; A VIRUSES; RESISTANCE; SURVEILLANCE; H1N1; VARIANTS; A(H3N2) AB Antiviral drugs play an essential role in managing infections caused by seasonal and pandemic influenza viruses. Due to the high prevalence of damantine resistance among seasonal influenza A viruses circulating in certain geographic regions, neuraminidase inhibitors (NAIs) are presently the only effective antiviral drugs for treatment and chemoprophylaxis of both seasonal and pandemic influenza infections. NAI susceptibilities of virus isolates collected during the 2008-2009 influenza season were assessed in the chemiluminescent neuraminidase inhibition (NI) assay. Among seasonal influenza A (H1N1) viruses tested, similar to 90% were outliers for oseltamivir and harbored the oseltamivir-resistance conferring H275Y mutation in the neuraminidase (NA), while only similar to 1% of pandemic 2009 influenza A (H1N1) viruses (H1N1pdm) were resistant to oseltamivir. All influenza A (H3N2) and B viruses were sensitive to oseltamivir, except for one A (H3N2) virus with D151V mutation, and an influenza B virus with D197E (D198E in N2 numbering) mutation in the NA. All viruses were sensitive to zanamivir, except for some seasonal influenza A (H1N1) and A (H3N2) outliers, which had no apparent changes in the NA besides the cell culture induced mutations at residue D151. All viruses tested for peramivir were sensitive to the drug, with the exception H275Y variants among seasonal A (H1N1) and H1N1pdm isolates, which exhibited reduced susceptibility. This study summarizes baseline NAI susceptibility profiles of seasonal and pandemic influenza viruses and contributes further criteria for defining resistance to NAIs. C1 [Okomo-Adhiambo, Margaret; Sleeman, Katrina; Ballenger, Kristina; Nguyen, Ha T.; Mishin, Vasiliy P.; Sheu, Tiffany G.; Smagala, James; Klimov, Alexander I.; Gubareva, Larisa V.] Ctr Dis Control & Prevent, Virus Surveillance & Diag Branch, Influenza Div, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA. [Nguyen, Ha T.] Atlanta Res & Educ Fdn, Decatur, GA USA. [Sheu, Tiffany G.] Battelle Mem Inst, Atlanta, GA USA. [Smagala, James] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Okomo-Adhiambo, M (reprint author), Ctr Dis Control & Prevent, Virus Surveillance & Diag Branch, Influenza Div, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA. NR 21 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1750-2640 J9 INFLUENZA OTHER RESP JI Influenza Other Respir. Viruses PD MAY PY 2011 VL 5 SU 1 BP 100 EP 103 PG 4 WC Infectious Diseases; Virology SC Infectious Diseases; Virology GA 747BV UT WOS:000289296200033 ER PT J AU Harris, JF Erkkila, T Blackhart, C Randow, M Gleasner, C Green, L Cash, L Schmidt, JG McMahon, B Yeghiazarian, L Marrone, B Cui, H Roth, A Borenstein, L Godwin, H Beugelsdijk, T Layne, S Detter, JC AF Harris, Jennifer Foster Erkkila, Tracy Blackhart, Craig Randow, Mike Gleasner, Cheryl Green, Lance Cash, Leigh Schmidt, Juergen G. McMahon, Benjamin Yeghiazarian, Lilit Marrone, Babetta Cui, Helen Roth, Alexander Borenstein, Lee Godwin, Hilary Beugelsdijk, Tony Layne, Scott Detter, John C. TI Design of an automated laboratory for high-throughput influenza surveillance SO INFLUENZA AND OTHER RESPIRATORY VIRUSES LA English DT Article; Proceedings Paper CT Conference on Options for the Control of Influenza VII CY SEP 03-07, 2010 CL Hong Kong, PEOPLES R CHINA DE Automated system; detection; robotics; sequencing; surveillance C1 [Harris, Jennifer Foster; Erkkila, Tracy; Blackhart, Craig; Randow, Mike; Gleasner, Cheryl; Green, Lance; Cash, Leigh; Schmidt, Juergen G.; McMahon, Benjamin; Yeghiazarian, Lilit; Marrone, Babetta; Cui, Helen; Beugelsdijk, Tony; Detter, John C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cash, Leigh] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Yeghiazarian, Lilit] Univ Cincinnati, Cincinnati, OH USA. [Roth, Alexander; Borenstein, Lee; Godwin, Hilary; Layne, Scott] Univ Calif Los Angeles, Los Angeles, CA USA. RP Harris, JF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 2 TC 0 Z9 0 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1750-2640 J9 INFLUENZA OTHER RESP JI Influenza Other Respir. Viruses PD MAY PY 2011 VL 5 SU 1 BP 423 EP 424 PG 2 WC Infectious Diseases; Virology SC Infectious Diseases; Virology GA 747BV UT WOS:000289296200139 ER PT J AU Meyer, AJ Almendrala, DK Go, MM Krauss, SW AF Meyer, Adam J. Almendrala, Donna K. Go, Minjoung M. Krauss, Sharon Wald TI Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling SO JOURNAL OF CELL SCIENCE LA English DT Article DE 4.1R; Nuclear envelope; Actin; Emerin; Lamin A/C; Centrosome; RNA interference; beta-Catenin ID DREIFUSS MUSCULAR-DYSTROPHY; SPECTRIN-ACTIN-BINDING; A-TYPE LAMINS; MEMBRANE SKELETAL PROTEIN-4.1; DISTINCT FUNCTIONAL DOMAINS; RNA SPLICING FACTORS; IN-VITRO; PORE COMPLEX; NONERYTHROID ISOFORM; CONSTITUTIVE REGION AB The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2 alpha also have aberrant distributions, but lamin B and LAP2 beta have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R- deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased beta-catenin signaling, and relocalization of beta-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of beta-catenin transcriptional co-activator activity that is dependent on beta-catenin nuclear export. C1 [Meyer, Adam J.; Almendrala, Donna K.; Go, Minjoung M.; Krauss, Sharon Wald] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. RP Krauss, SW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. EM Sharon.A.Krauss@gmail.com FU National Institutes of Health [DK059079] FX We would like to thank A. I. Barth, J. G. Conboy, W. J. Holaska, J. Lammerding, W. J. Nelson, K. Roux, C. Shanahan, V. Cordes, K. Wilson and Q. Zhang for valuable discussions. We are particularly grateful to J. Salisbury, R. Foisner, K. Roux, B. Burke, J. Lammerding, T. Sullivan, V. Cordes, K. Luo and A. I. Barth for sharing valuable reagents, methods, and cells. We thank M. Parra and S. Gee for technical advice. This work was supported by National Institutes of Health (grant number DK059079 to S. W. K.). The authors declare no conflicts of interest. Deposited in PMC for release after 12 months. NR 112 TC 12 Z9 13 U1 1 U2 5 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0021-9533 J9 J CELL SCI JI J. Cell Sci. PD MAY 1 PY 2011 VL 124 IS 9 BP 1433 EP 1444 DI 10.1242/jcs.077883 PG 12 WC Cell Biology SC Cell Biology GA 751MD UT WOS:000289621300009 PM 21486941 ER PT J AU Gyrya, V Lipnikov, K Aranson, IS Berlyand, L AF Gyrya, V. Lipnikov, K. Aranson, I. S. Berlyand, L. TI Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations SO JOURNAL OF MATHEMATICAL BIOLOGY LA English DT Article ID SWIMMING MODEL MICROORGANISMS; SEMIDILUTE SUSPENSION; SPHERICAL-PARTICLES; BLOW-UP; DIFFUSION; TRANSPORT; MESHES; MOTION; FLUID AB Recently, there has been a number of experimental studies convincingly demonstrating that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime (in the absence of rotational diffusion) the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled microswimmers can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We also performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme. C1 [Gyrya, V.; Berlyand, L.] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Lipnikov, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gyrya, V (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA. EM gyrya@math.psu.edu RI Aranson, Igor/I-4060-2013; OI Gyrya, Vitaliy/0000-0002-5083-8878 FU DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research; DOE [DE-FG02-08ER25862]; NSF [DMS-0708324]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX The work of V. Gyrya and K. Lipnikov was supported in part by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. The work of V. Gyrya and L. Berlyand was supported in part by DOE grant DE-FG02-08ER25862 and NSF grant DMS-0708324. The work of I. Aranson was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract number DE AC02-06CH11357. NR 41 TC 12 Z9 12 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0303-6812 J9 J MATH BIOL JI J. Math. Biol. PD MAY PY 2011 VL 62 IS 5 BP 707 EP 740 DI 10.1007/s00285-010-0351-y PG 34 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 747DZ UT WOS:000289301800004 PM 20563812 ER PT J AU Sandorfi, AM Hoblit, S Kamano, H Lee, TSH AF Sandorfi, A. M. Hoblit, S. Kamano, H. Lee, T-S H. TI Determining pseudoscalar meson photoproduction amplitudes from complete experiments SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID PARTIAL-WAVE ANALYSIS; BARYON RESONANCES; SPIN OBSERVABLES; GENERAL-THEORY; COLLISIONS; PARTICLES; THRESHOLD; HYPERON; PION AB A new generation of complete experiments is focused on a high precision extraction of pseudoscalar meson photoproduction amplitudes. Here, we review the development of the most general analytic form of the cross section, dependent upon the three polarization vectors of the beam, target and recoil baryon, including all single-, double- and triple-polarization terms involving 16 spin-dependent observables. We examine the different conventions that have been used by different authors, and we present expressions that allow the direct numerical calculation of any pseudoscalar meson photoproduction observables with arbitrary spin projections from the Chew-Goldberger-Low-Nambu amplitudes. We use this numerical tool to clarify apparent sign differences that exist in the literature, in particular with the definitions of six double- polarization observables. We also present analytic expressions that determine the recoil baryon polarization, together with examples of their potential use with quasi-4 pi detectors to deduce observables. As an illustration of the use of the consistent machinery presented in this review, we carry out a multipole analysis of the gamma p -> K+Lambda reaction and examine the impact of recently published polarization measurements. When combining data from different experiments, we utilize the Fierz identities to fit a consistent set of scales. In fitting multipoles, we use a combined Monte Carlo sampling of the amplitude space, with gradient minimization, and find a shallow chi(2) valley pitted with a very large number of local minima. This results in broad bands of multipole solutions that are experimentally indistinguishable. While these bands have been noticeably narrowed by the inclusion of new polarization measurements, many of the multipoles remain very poorly determined, even in sign, despite the inclusion of data on eight different observables. We have compared multipoles from recent PWA codes with our model-independent solution bands and found that such comparisons provide useful consistency tests which clarify model interpretations. The potential accuracy of amplitudes that could be extracted from measurements of all 16 polarization observables has been studied with mock data using the statistical variations that are expected from ongoing experiments. We conclude that, while a mathematical solution to the problem of determining an amplitude free of ambiguities may require eight observables, as has been pointed out in the literature, experiments with realistically achievable uncertainties will require a significantly larger number. C1 [Sandorfi, A. M.; Kamano, H.; Lee, T-S H.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Hoblit, S.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Hoblit, S.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Lee, T-S H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Sandorfi, AM (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM sandorfi@jlab.org; hoblit@bnl.gov; hkamano@jlab.org; lee@phy.anl.gov FU US Department of Energy, Office of Nuclear Physics Division [DE-AC05-06OR23177, DE-AC02-06CH11357, DE-FG02-97ER41025] FX This work was supported by the US Department of Energy, Office of Nuclear Physics Division, under contract no DE-AC05-06OR23177 under which Jefferson Science Associates operate Jefferson Laboratory, and also by the US Department of Energy, Office of Nuclear Physics Division, under contract nos DE-AC02-06CH11357 and DE-FG02-97ER41025. NR 40 TC 46 Z9 47 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAY PY 2011 VL 38 IS 5 AR 053001 DI 10.1088/0954-3899/38/5/053001 PG 53 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 749JZ UT WOS:000289463300001 ER PT J AU Benson, S Borland, M Douglas, DR Dowell, D Hernandez-Garcia, C Kayran, D Krafft, GA Legg, R Moog, E Obina, T Rimmer, R Yakimenko, V AF Benson, S. Borland, M. Douglas, D. R. Dowell, D. Hernandez-Garcia, C. Kayran, D. Krafft, G. A. Legg, R. Moog, E. Obina, T. Rimmer, R. Yakimenko, V. TI X-ray sources by energy recovered linacs and their needed R&D SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Energy recovered linac; ERL; Advanced X-ray source; ERL X-ray source; ERL development; Recirculated linac X-ray source ID ELECTRON BUNCHES; 1ST OPERATION; ACCELERATOR; SIMULATION; FACILITY; CEBAF; LASER; GUN AB In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15-17, 2009. A first iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of five to ten years. (C) 2011 Published by Elsevier B.V. C1 [Benson, S.; Douglas, D. R.; Hernandez-Garcia, C.; Krafft, G. A.; Rimmer, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Borland, M.; Moog, E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dowell, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kayran, D.; Yakimenko, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Krafft, G. A.] Old Dominion Univ, Ctr Accelerator Sci, Norfolk, VA 23529 USA. [Legg, R.] Univ Wisconsin Madison, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Obina, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. RP Krafft, GA (reprint author), Thomas Jefferson Natl Accelerator Facil, 12050 Jefferson Ave, Newport News, VA 23606 USA. EM krafft@jlab.org RI Kayran, Dmitry/E-1876-2013 OI Kayran, Dmitry/0000-0002-1156-4384 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC03-76SF00515]; Office of High Energy and Nuclear Physics, under U. S. DOE [DE-AC05-06OR23177, DE AC02-98CH1-886]; Commonwealth of Virginia FX I. Bazarov, G. Hoffstaetter, and M. Tigner of Cornell University shared text, references, and Fig. 1. Their contributions improved this presentation and are gratefully acknowledged. This work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract nos. DE-AC02-06CH11357 and DE-AC03-76SF00515, and Office of High Energy and Nuclear Physics, under U. S. DOE Contract nos. DE-AC05-06OR23177 and DE AC02-98CH1-886, and the Commonwealth of Virginia. The U. S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U. S. Government purposes. NR 146 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2011 VL 637 IS 1 BP 1 EP 11 DI 10.1016/j.nima.2010.07.090 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 751HL UT WOS:000289608000001 ER PT J AU Goett, J Napolitano, J Yeh, MF Hahn, R Cumming, JB Hans, S Rosero, R Diwan, M Sexton, K AF Goett, Johnny Napolitano, James Yeh, Minfang Hahn, Richard Cumming, J. B. Hans, Sunej Rosero, Richard Diwan, Milind Sexton, Ken TI Optical attenuation measurements in metal-loaded liquid scintillators with a long-pathlength photometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Organic scintillator; Optical attenuation; Neutrino detection; Linear alkyl benzene AB We describe precise optical attenuation measurements of LAB based liquid scintillators using a custom-built photometer with variable pathlengths up to 2 m. Results are presented for linear alkyl benzene (LAB) and LAB based liquid scintillators at wave lengths of 405, 430, 450, and 470 nm. For these measurements much care was exercised to control the purity of the liquids and additives, as well as the materials of the photometer to control contaminations. These data should be valuable for design of large detectors, such as underground neutrino detectors, using these materials as the media. (C) 2011 Elsevier B.V. All rights reserved. C1 [Diwan, Milind; Sexton, Ken] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Goett, Johnny; Napolitano, James] Rensselaer Polytech Inst, Dept Phys, Troy, NY 11973 USA. [Yeh, Minfang; Hahn, Richard; Cumming, J. B.; Hans, Sunej; Rosero, Richard] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Diwan, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM diwan@bnl.gov RI Goett, Johnny/D-1277-2012; Cumming, James/I-3358-2013; OI Cumming, James/0000-0001-6930-0958; Goett, Johnny/0000-0002-3685-2227 FU U.S. Department of Energy's Offices of Nuclear Physics and High Energy Physics [DE-AC02-98CH10886] FX This work, conducted at Brookhaven National Laboratory, was supported by the U.S. Department of Energy's Offices of Nuclear Physics and High Energy Physics, under contract DE-AC02-98CH10886. NR 6 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2011 VL 637 IS 1 BP 47 EP 52 DI 10.1016/j.nima.2011.02.051 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 751HL UT WOS:000289608000005 ER PT J AU Rios, R Tatar, E Bacon, JD Bowles, TJ Hill, R Green, JA Hogan, GE Ito, TM Makela, M Morris, CL Mortenson, R Pasukanics, FE Ramsey, J Saunders, A Seestrom, SJ Sondheim, WE Teasdale, W Saltus, M Back, HO Cottrell, CR Holley, AT Pattie, RW Young, AR Broussard, LJ Filippone, BW Hickerson, KP Liu, J Mendenhall, MP Plaster, B Mammei, RR Pitt, ML Vogelaar, RB Martin, JW AF Rios, R. Tatar, E. Bacon, J. D. Bowles, T. J. Hill, R. Green, J. A. Hogan, G. E. Ito, T. M. Makela, M. Morris, C. L. Mortenson, R. Pasukanics, F. E. Ramsey, J. Saunders, A. Seestrom, S. J. Sondheim, W. E. Teasdale, W. Saltus, M. Back, H. O. Cottrell, C. R. Holley, A. T. Pattie, R. W., Jr. Young, A. R. Broussard, L. J. Filippone, B. W. Hickerson, K. P. Liu, J. Mendenhall, M. P. Plaster, B. Mammei, R. R. Pitt, M. L. Vogelaar, R. B. Martin, J. W. TI Sealed drift tube cosmic ray veto counters SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Muon detector; Anticoincidence detector; Veto detector; cosmic rays; Drift tube; Ultra-cold neutrons ID MULTIWIRE PROPORTIONAL CHAMBER; PRECISION-MEASUREMENT; BETA-ASYMMETRY; NEUTRONS; DETECTOR; READOUT AB We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors. (C) 2011 Published by Elsevier B.V. C1 [Rios, R.; Tatar, E.] Idaho State Univ, Pocatello, ID 83209 USA. [Bacon, J. D.; Bowles, T. J.; Hill, R.; Green, J. A.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L.; Mortenson, R.; Pasukanics, F. E.; Ramsey, J.; Saunders, A.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Back, H. O.; Cottrell, C. R.; Holley, A. T.; Pattie, R. W., Jr.; Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Broussard, L. J.] Duke Univ, Durham, NC 27708 USA. [Filippone, B. W.; Hickerson, K. P.; Liu, J.; Mendenhall, M. P.] CALTECH, Pasadena, CA 91125 USA. [Plaster, B.] Univ Kentucky, Lexington, KY 40506 USA. [Mammei, R. R.; Pitt, M. L.; Vogelaar, R. B.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Martin, J. W.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. RP Rios, R (reprint author), Idaho State Univ, Pocatello, ID 83209 USA. EM rrios@lanl.gov OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255; Ito, Takeyasu/0000-0003-3494-6796 NR 11 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2011 VL 637 IS 1 BP 105 EP 108 DI 10.1016/j.nima.2010.12.098 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 751HL UT WOS:000289608000012 ER PT J AU Gu, X Okamura, M Pikin, A Fischer, W Luo, Y AF Gu, X. Okamura, M. Pikin, A. Fischer, W. Luo, Y. TI The effects of realistic pancake solenoids on particle transport SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Realistic solenoids; Multipole magnetic fields; Particle transport ID MAGNETIC-FIELD; BEAMS; COIL AB Solenoids are widely used to transport or focus particle beams. Usually, they are assumed as being ideal solenoids with a high axial-symmetry magnetic field. Using the Vector Fields Opera program, we modeled asymmetrical solenoids with realistic geometry defects, caused by finite conductor and current jumpers. Their multipole magnetic components were analyzed with the Fourier fit method; we present some possible optimized methods for them. We also discuss the effects of "realistic" solenoids on low energy particle transport. The findings in this paper may be applicable to the lower energy particle transport system design. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gu, X.; Okamura, M.; Pikin, A.; Fischer, W.; Luo, Y.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gu, X (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM xgu@bnl.gov NR 39 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2011 VL 637 IS 1 BP 190 EP 199 DI 10.1016/j.nima.2011.01.123 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 751HL UT WOS:000289608000025 ER PT J AU Catto, PJ Kagan, G Landreman, M Pusztai, I AF Catto, Peter J. Kagan, Grigory Landreman, Matt Pusztai, Istvan TI A unified treatment of kinetic effects in a tokamak pedestal SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Joint Varenna-Lausanne Workshop on the Theory of Fusion Plasmas CY AUG 30-SEP 03, 2010 CL Varenna, ITALY ID TOROIDAL CONFINEMENT SYSTEMS; ION-TRANSPORT; NEOCLASSICAL TRANSPORT; PLASMA TRANSPORT; ROTATION; FLOW AB We consider the effects of a finite pedestal radial electric field on ion orbits using a unified approach. We then employ these modified orbit results to retain finite E x B drift departures from flux surfaces in an improved drift-kinetic equation. The procedure allows us to make a clear distinction between transit averages and flux surface averages when solving this kinetic equation. The technique outlined here is intended to clarify and unify recent evaluations of the banana regime decrease and plateau regime alterations in the ion heat diffusivity; the reduction and possible reversal of the poloidal flow in the banana regime, and its augmentation in the plateau regime; the increase in the bootstrap current; and the enhancement of the residual zonal flow regulation of turbulence. C1 [Catto, Peter J.; Landreman, Matt] MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02139 USA. [Kagan, Grigory] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pusztai, Istvan] Chalmers, SE-41296 Gothenburg, Sweden. [Pusztai, Istvan] Euratom VR Assoc, SE-41296 Gothenburg, Sweden. RP Catto, PJ (reprint author), MIT, Plasma Sci & Fusion Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM catto@psfc.mit.edu RI Landreman, Matt/C-7684-2017 OI Landreman, Matt/0000-0002-7233-577X NR 33 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2011 VL 53 IS 5 AR 054004 DI 10.1088/0741-3335/53/5/054004 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 749ZV UT WOS:000289513500005 ER PT J AU Dudson, BD Xu, XQ Umansky, MV Wilson, HR Snyder, PB AF Dudson, B. D. Xu, X. Q. Umansky, M. V. Wilson, H. R. Snyder, P. B. TI Simulation of edge localized modes using BOUT plus SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Joint Varenna-Lausanne Workshop on the Theory of Fusion Plasmas CY AUG 30-SEP 03, 2010 CL Varenna, ITALY ID MHD STABILITY; TOKAMAKS; PLASMAS; INSTABILITIES; TURBULENCE; ROTATION; MAST; ELMS AB The BOUT++ code is used to simulate edge localized modes (ELMs) in a shifted circle equilibrium. Reduced ideal MHD simulations are first benchmarked against the linear ideal MHD code ELITE, showing good agreement. Diamagnetic drift effects are included finding the expected suppression of high toroidal mode-number modes. Nonlinear simulations are performed, making the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron thermal diffusivity. This allows simulations with realistically high Lundquist numbers (S = 10(8)), finding ELM sizes of 5-10% of the pedestal stored thermal energy. Scans show a strong dependence of the ELM size on resistivity at low Lundquist numbers, with higher resistivity leading to more violent eruptions. At high Lundquist numbers relevant to high-performance discharges, ELM size is independent of resistivity as hyper-resistivity becomes the dominant dissipative effect. C1 [Dudson, B. D.; Wilson, H. R.] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England. [Xu, X. Q.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Dudson, BD (reprint author), Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England. EM benjamin.dudson@york.ac.uk OI Dudson, Benjamin/0000-0002-0094-4867 NR 42 TC 25 Z9 25 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2011 VL 53 IS 5 AR 054005 DI 10.1088/0741-3335/53/5/054005 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 749ZV UT WOS:000289513500006 ER PT J AU Satake, S Sugama, H Kanno, R Park, JK AF Satake, Shinsuke Sugama, Hideo Kanno, Ryutaro Park, Jong-Kyu TI Calculation of neoclassical toroidal viscosity in tokamaks with broken toroidal symmetry SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT Joint Varenna-Lausanne Workshop on the Theory of Fusion Plasmas CY AUG 30-SEP 03, 2010 CL Varenna, ITALY ID DELTA-F METHOD; MOMENTUM DISSIPATION; MAGNETIC-SURFACES; PLASMA TRANSPORT; SIMULATION; MODES AB A new numerical simulation to evaluate neoclassical toroidal viscosity (NTV) in tokamak configurations with a small perturbation field is developed using the delta f Monte Carlo method. The numerical scheme solves the guiding-centre distribution function in non-axisymmetric plasmas according to the drift-kinetic equation, and evaluates the NTV directly from the pressure anisotropy by utilizing the Fourier spectrum expression of the magnetic field in Boozer coordinates. As a first benchmark, the accuracy of the viscosity calculation is demonstrated in a helical configuration of LHD. The convergence of the calculation and dependence of the viscosity on perturbation field amplitude are also tested in a simple tokamak configuration with model perturbation field, which proves the reliability of the simulation. Next, the basic properties of NTV as dependence of the viscosity on collision frequency and magnetic shear are investigated in a multi-helicity perturbation model field and compared with a bounce-averaged analytic formula. It is found that the clear 1/v and superbanana-plateau dependences cannot be seen in the FORTEC-3D simulation, and the toroidicity of the magnetic field makes a toroidal coupling effect, which enhances NTV if the perturbation has (m, n) and (m +/- 1, n) Fourier components simultaneously, where m and n are the poloidal and toroidal numbers of the perturbation field. Local magnetic shear is also found to affect the amplitude of the viscosity. C1 [Satake, Shinsuke; Sugama, Hideo; Kanno, Ryutaro] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Satake, Shinsuke; Sugama, Hideo; Kanno, Ryutaro] Grad Univ Adv Studies Sokendai, Toki, Gifu 5095292, Japan. [Park, Jong-Kyu] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Satake, S (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, Oroshi 322-6, Toki, Gifu 5095292, Japan. EM satake@nifs.ac.jp OI Hideo, Sugama/0000-0001-5444-1758 NR 38 TC 13 Z9 13 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2011 VL 53 IS 5 AR 054018 DI 10.1088/0741-3335/53/5/054018 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 749ZV UT WOS:000289513500019 ER PT J AU Mihailovic, D Saponjic, Z Radoicic, M Molina, R Radetic, T Jovancic, P Nedeljkovic, J Radetic, M AF Mihailovic, Darka Saponjic, Zoran Radoicic, Marija Molina, Ricardo Radetic, Tamara Jovancic, Petar Nedeljkovic, Jovan Radetic, Maja TI Novel properties of PES fabrics modified by corona discharge and colloidal TiO2 nanoparticles SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE PES fabric; TiO2 nanoparticles; corona discharge; UV protection; self-cleaning; photodegradation activity ID TITANIUM-DIOXIDE NANOPARTICLES; MODIFIED COTTON TEXTILES; SELF-CLEANING COTTON; DAYLIGHT IRRADIATION; SURFACE MODIFICATION; CELLULOSE FIBERS; LOW-TEMPERATURES; MEDIUM PRESSURE; PLASMA; POLYESTER AB The objective of this study was to highlight the potential application of the corona discharge at atmospheric pressure for the surface activation of polyester (PES) fabrics in order to improve the binding efficiency of colloidal TiO2 nanoparticles. The obtained nanocomposite textile materials provide desirable level of UV protection, self-cleaning properties, and photodegradation activity. The measured UV protection factor (UPF) of fabrics corresponds to UPF rating of 50+, designating the maximum UV protection. Additionally, the total photodegradation of methylene blue in aqueous solution was achieved after 24 hr of UV illumination and this capability was preserved and even improved after four repeated cycles. The results showed that the corona treated PES fabrics loaded with TiO2 nanoparticles had considerably enhanced the overall efficiency compared to PES fabrics loaded only with TiO2 nanoparticles. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Mihailovic, Darka; Jovancic, Petar; Radetic, Maja] Univ Belgrade, Fac Technol & Met, Text Engn Dept, Belgrade 11120, Serbia. [Saponjic, Zoran; Radoicic, Marija; Nedeljkovic, Jovan] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Molina, Ricardo] CSIC, IIQAB, Dept Nanotecnol Quim & Biomol, ES-08034 Barcelona, Spain. [Radetic, Tamara] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Radetic, M (reprint author), Univ Belgrade, Fac Technol & Met, Text Engn Dept, Karnegijeva 4, Belgrade 11120, Serbia. EM maja@tmf.bg.ac.rs RI Molina, Ricardo/F-8597-2016; OI Molina, Ricardo/0000-0001-6324-4983; Jovancic, Petar/0000-0002-9905-6260 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Science of Republic of Serbia [TR 19007, 142066] FX This work was performed in part at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; Contract/grant sponsor: Ministry of Science of Republic of Serbia; contract/grant numbers: TR 19007; 142066. NR 30 TC 8 Z9 8 U1 0 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1042-7147 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD MAY PY 2011 VL 22 IS 5 BP 703 EP 709 DI 10.1002/pat.1568 PG 7 WC Polymer Science SC Polymer Science GA 750FM UT WOS:000289531000030 ER PT J AU McCambridge, JD Steiner, MA Unger, BL Emery, KA Christensen, EL Wanlass, MW Gray, AL Takacs, L Buelow, R McCollum, TA Ashmead, JW Schmidt, GR Haas, AW Wilcox, JR Van Meter, J Gray, JL Moore, DT Barnett, AM Schwartz, RJ AF McCambridge, James D. Steiner, Myles A. Unger, Blair L. Emery, Keith A. Christensen, Eric L. Wanlass, Mark W. Gray, Allen L. Takacs, Laszlo Buelow, Roger McCollum, Timothy A. Ashmead, James W. Schmidt, Greg R. Haas, Alex W. Wilcox, John R. Van Meter, James Gray, Jeffery L. Moore, Duncan T. Barnett, Allen M. Schwartz, Richard J. TI Compact spectrum splitting photovoltaic module with high efficiency SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE spectrum splitting; high efficiency; multijunction; moderate concentration; photovoltaic ID SOLAR-CELL EFFICIENCY; SYSTEM AB We have designed, fabricated, and tested a small, integrated photovoltaic module comprised of two separately-contacted, high efficiency, multijunction solar cells and non-imaging optics that both concentrate and spectrally split the incoming light. This hybrid design allows us to individually optimize the tandem cells and optical elements. The system has a measured module efficiency, including optical and packaging losses but not power combination losses, of 38.5 +/- 1.9% under the AM1.5 direct terrestrial spectrum. The internal optics concentrate the light by a factor of approximately 20. We find excellent agreement between the modeled and measured performance. This is the highest confirmed conversion efficiency demonstrated for a photovoltaic module. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [McCambridge, James D.; Ashmead, James W.] DuPont Co Inc, Wilmington, DE 19880 USA. [Steiner, Myles A.; Emery, Keith A.; Wanlass, Mark W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Unger, Blair L.; Christensen, Eric L.; Schmidt, Greg R.; Moore, Duncan T.] Univ Rochester, Rochester, NY 14627 USA. [Gray, Allen L.] Emcore Corp, Albuquerque, NM 87123 USA. [Takacs, Laszlo; Buelow, Roger; McCollum, Timothy A.; Van Meter, James] Energy Focus Inc, Solon, OH 44139 USA. [Haas, Alex W.; Wilcox, John R.; Gray, Jeffery L.; Schwartz, Richard J.] Purdue Univ, W Lafayette, IN 47907 USA. [Barnett, Allen M.] Univ Delaware, Newark, DE 19716 USA. RP McCambridge, JD (reprint author), DuPont Co Inc, Wilmington, DE 19880 USA. EM james.mccambridge@usa.dupont.com RI Wilcox, John/I-2563-2012 FU Defense Advanced Research Project [HR0011-07-9-0005]; U.S. Department of Energy [DE-AC36-08GO28308] FX The authors thank Keith Goossen of the University of Delaware, Christiana Honsberg of Arizona State University, Dan Laubacher of DuPont, and Stephan Clark, Scott Lerner, and J. P. Whitlock of Hewlett Packard for many useful discussions and suggestions; Thomas Brukilacchio and Margaret Johnson of Innovations in Optics for work on construction of some of the modules; Jeff Carapella, Anna Duda, and Scott Ward of NREL for their work on the low-E cells; Aaron Korostyshevsky of Emcore for testing some of the solar cells; and Tom Davenport, Anurag Gupta, Steve Mulder, and Kevin Thompson of Optical Research Associates for help in developing the system model. This research was funded in part by the Defense Advanced Research Projects Agency under Agreement No. HR0011-07-9-0005. Work at the National Renewable Energy Laboratory was also sponsored by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 24 TC 64 Z9 65 U1 2 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAY PY 2011 VL 19 IS 3 BP 352 EP 360 DI 10.1002/pip.1030 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 750BG UT WOS:000289518200015 ER PT J AU Bellesia, G Jewett, AI Shea, JE AF Bellesia, Giovanni Jewett, Andrew I. Shea, Joan-Emma TI Relative stability of de novo four-helix bundle proteins: Insights from coarse grained molecular simulations SO PROTEIN SCIENCE LA English DT Article DE four-helix bundle; coarse-grained model; sequence length; folding properties; sequence optimization ID NONPOLAR AMINO-ACIDS; DESIGNED COMBINATORIAL LIBRARY; NATIVE-LIKE PROPERTIES; SECONDARY STRUCTURE; GLOBULAR-PROTEINS; HELICAL PROTEIN; FOLDED STATES; POLAR; SEQUENCES; DYNAMICS AB We use a recently developed coarse-grained computational model to investigate the relative stability of two different sets of de novo designed four-helix bundle proteins. Our simulations suggest a possible explanation for the experimentally observed increase in stability of the four-helix bundles with increasing sequence length. In details, we show that both short subsequences composed only by polar residues and additional nonpolar residues inserted, via different point mutations in ad hoc positions, seem to play a significant role in stabilizing the four-helix bundle conformation in the longer sequences. Finally, we propose an additional mutation that rescues a short amino acid sequence that would otherwise adopt a compact misfolded state. Our work suggests that simple computational models can be used as a complementary tool in the design process of de novo proteins. C1 Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Bellesia, G (reprint author), Los Alamos Natl Lab, T6 & CNLS, POB 1663, Los Alamos, NM 87545 USA. EM gbellesia@lanl.gov FU NSF [0642086]; David and Lucile Packard Foundation FX Grant sponsor: NSF; Grant number: #0642086; Grant sponsor: David and Lucile Packard Foundation. NR 34 TC 5 Z9 5 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2011 VL 20 IS 5 BP 818 EP 826 DI 10.1002/pro.605 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 749DO UT WOS:000289442500006 PM 21344535 ER PT J AU Sampathkumar, P Gheyi, T Miller, SA Bain, KT Dickey, M Bonanno, JB Kim, SJ Phillips, J Pieper, U Fernandez-Martinez, J Franke, JD Martel, A Tsuruta, H Atwell, S Thompson, DA Emtage, JS Wasserman, SR Rout, MP Sali, A Sauder, JM Burley, SK AF Sampathkumar, Parthasarathy Gheyi, Tarun Miller, Stacy A. Bain, Kevin T. Dickey, Mark Bonanno, Jeffrey B. Kim, Seung Joong Phillips, Jeremy Pieper, Ursula Fernandez-Martinez, Javier Franke, Josef D. Martel, Anne Tsuruta, Hiro Atwell, Shane Thompson, Devon A. Emtage, J. Spencer Wasserman, Stephen R. Rout, Michael P. Sali, Andrej Sauder, J. Michael Burley, Stephen K. TI Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE nuclear pore complex; Nup133; structural genomics ID RAY SOLUTION SCATTERING; SMALL-ANGLE SCATTERING; ARCHITECTURE; PROTEINS; ASSEMBLIES; REFINEMENT; ALIGNMENT; DYNAMICS C1 [Sampathkumar, Parthasarathy; Gheyi, Tarun; Miller, Stacy A.; Bain, Kevin T.; Dickey, Mark; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Sauder, J. Michael; Burley, Stephen K.] Eli Lilly & Co, Lilly Biotechnol Ctr, New York SGX Res Ctr Struct Genom, NYSGXRC, San Diego, CA 92121 USA. [Bonanno, Jeffrey B.] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. [Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Sali, Andrej] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA. [Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Sali, Andrej] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA. [Phillips, Jeremy] Univ Calif San Francisco, Grad Grp Biol & Med Informat, San Francisco, CA 94158 USA. [Fernandez-Martinez, Javier; Franke, Josef D.; Rout, Michael P.] Rockefeller Univ, Lab Cellular & Struct Biol, New York, NY 10065 USA. [Martel, Anne; Tsuruta, Hiro] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Wasserman, Stephen R.] Eli Lilly & Co, LRL CAT, Adv Photon Source, Argonne, IL 60439 USA. RP Sampathkumar, P (reprint author), Eli Lilly & Co, Lilly Biotechnol Ctr, New York SGX Res Ctr Struct Genom, NYSGXRC, 10300 Campus Point Dr,Suite 200, San Diego, CA 92121 USA. EM spartha2@gmail.com OI Pieper, Ursula/0000-0002-3168-8122; Fernandez-Martinez, Javier/0000-0003-0567-498X FU NIH [U54 GM074945, R01 GM062427, NIH R01 GM083960, NIH U54 RR022220]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX Grant sponsor: NIH; Grant number: U54 GM074945, R01 GM062427, NIH R01 GM083960, and NIH U54 RR022220; Grant sponsor: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Grant number: DE-AC02-06CH11357; Grant sponsor: Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy; Grant number: DE-AC02-05CH11231 NR 35 TC 6 Z9 6 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAY PY 2011 VL 79 IS 5 BP 1672 EP 1677 DI 10.1002/prot.22973 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 750EU UT WOS:000289528700024 PM 21365675 ER PT J AU David, SA DebRoy, T Bhadeshia, HKDH AF David, S. A. DebRoy, T. Bhadeshia, H. K. D. H. TI 1000 gems: celebration of STWJ SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Editorial Material ID CHALLENGES; DESIGN; TECHNOLOGIES; STEELS; WELDS C1 [Bhadeshia, H. K. D. H.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [David, S. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [DebRoy, T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Bhadeshia, HKDH (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM hkdb@hermes.cam.ac.uk RI DebRoy, Tarasankar/A-2106-2010 NR 25 TC 0 Z9 0 U1 1 U2 8 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAY PY 2011 VL 16 IS 4 BP 285 EP 287 DI 10.1179/136217111X13026027995995 PG 3 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 751MQ UT WOS:000289622600001 ER PT J AU Li, N Mara, NA Wang, YQ Nastasi, M Misra, A AF Li, N. Mara, N. A. Wang, Y. Q. Nastasi, M. Misra, A. TI Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles SO SCRIPTA MATERIALIA LA English DT Article DE Pillar compression; Radiation-induced strengthening; Helium bubbles; Interface ID ION-IRRADIATION; MICROMETER-SCALE; DISLOCATION; PLASTICITY; METALS; COMPOSITES; MECHANISMS; TOLERANCE; EVOLUTION; STRENGTH AB Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Li, N.; Mara, N. A.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Struct & Property Relat Grp, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Li, Nan /0000-0002-8248-9027; Mara, Nathan/0000-0002-9135-4693 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (EFRC) [2008LANL1026]; DOE-BES FX This work is sponsored by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center (EFRC) under Award No. 2008LANL1026. The helium ion implantation, work is supported, in part, by LANL-LDRD. Nanoindentation was performed, through an approved user project, at the Center for Integrated Nanotechnologies (CINT), a DOE-BES sponsored national user facility. The authors thank J.P. Hirth, W.D. Nix, R.G. Hoagland, G.R. Odette and M.J. Demkowicz for valuable discussions, and J.K. Baldwin for sputter deposition. NR 40 TC 31 Z9 32 U1 2 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 10 BP 974 EP 977 DI 10.1016/j.scriptamat.2011.02.001 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 747PA UT WOS:000289330700013 ER PT J AU Muzy, A Jammalamadaka, R Zeigler, BP Nutaro, JJ AF Muzy, Alexandre Jammalamadaka, Rajanikanth Zeigler, Bernard P. Nutaro, James J. TI The Activity-tracking paradigm in discrete-event modeling and simulation: The case of spatially continuous distributed systems SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE activity-tracking paradigm; discrete-event modeling and simulation; diffusion process; quantization ID DOMAIN AB From a modeling and simulation perspective, studying dynamic systems consists of focusing on changes in states. According to the precision of state changes, generic algorithms can be developed to track the activity of sub-systems. This paper aims at describing and applying this more natural and intuitive way to describe and implement dynamic systems. Activity is defined mathematically. A generic application case of diffusion is experimented with to compare the efficiency of quantized state methods using this new approach with traditional methods which do not focus computations on active areas. Our goal is to demonstrate that the concept of activity can estimate the computational effort required by a quantized state method. Specifically, when properly designed, a discrete-event simulator for such a method achieves a reduction in the number of state transitions that more than compensates for the overhead it imposes. C1 [Muzy, Alexandre] Univ Corsica Pasquale Paoli, LISA CNRS, F-20250 Corte, France. [Jammalamadaka, Rajanikanth; Zeigler, Bernard P.] Univ Arizona, Arizona Ctr Integrat Modeling & Simulat, Tucson, AZ USA. [Nutaro, James J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Muzy, A (reprint author), Univ Corsica Pasquale Paoli, LISA CNRS, Campus Grossetti, F-20250 Corte, France. EM lisandru.muzy@gmail.com OI Nutaro, James/0000-0001-7360-2836 NR 35 TC 6 Z9 6 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD MAY PY 2011 VL 87 IS 5 BP 449 EP 464 DI 10.1177/0037549710365155 PG 16 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 746WN UT WOS:000289279100006 ER PT J AU Maiorov, B Katase, T Baily, SA Hiramatsu, H Holesinger, TG Hosono, H Civale, L AF Maiorov, B. Katase, T. Baily, S. A. Hiramatsu, H. Holesinger, T. G. Hosono, H. Civale, L. TI Liquid vortex phase and strong c-axis pinning in low anisotropy BaCoxFe2-xAs2 pnictide films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COLUMNAR DEFECTS; GLASS PHASE; YBA2CU3O7-DELTA; SUPERCONDUCTIVITY; CRYSTALS; FIELDS AB We present linear and nonlinear electronic transport measurements as a function of magnetic field strength and orientation at different temperatures for BaCoxFe2-xAs2 biaxially oriented films grown on (La, Sr)(Al, Ta)O-3 single crystals and determine the critical current density, melting line and upper critical field (J(c), H-m and H-c2). Unlike observations on single crystals of the same composition with similar Tc similar to 20 K and anisotropy gamma similar to 2, we observe here a vortex liquid phase as a broadening of the resistive transition with increasing H. We find evidence of a high density of correlated defects that generate a very large Jc peak as a function of field orientation centered near the c-axis orientation with Jc > 1 MA cm(-2) at 4 K and 1 T and reduce the dissipation in the vortex liquid state along the defect direction. These studies indicate that these correlated defects could be more effective than the correlated defects found in more anisotropic cuprate superconductors. C1 [Maiorov, B.; Baily, S. A.; Holesinger, T. G.; Civale, L.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. [Katase, T.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Baily, S. A.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Hiramatsu, H.; Hosono, H.] Tokyo Inst Technol, Frontier Res Ctr, Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Maiorov, B (reprint author), Los Alamos Natl Lab, MPA STC, POB 1663, Los Alamos, NM 87545 USA. EM maiorov@lanl.gov RI Katase, Takayoshi/H-5956-2012; Hiramatsu, Hidenori/E-8882-2014; Hosono, Hideo/J-3489-2013; OI Katase, Takayoshi/0000-0002-2593-7487; Hiramatsu, Hidenori/0000-0002-5664-5831; Hosono, Hideo/0000-0001-9260-6728; Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 FU US Department of Energy, Office of Basic Energy Sciences (Division of Materials Sciences and Engineering); US National Science Foundation; State of Florida; Japan Society for the Promotion of Science (JSPS), Japan FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences (Division of Materials Sciences and Engineering), (BM, TGH, LC) the US National Science Foundation, and the State of Florida (SAB). The works at the Frontier Research Center were supported by the Japan Society for the Promotion of Science (JSPS), Japan, through 'Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) Program' (TK, HH, HH). NR 37 TC 32 Z9 32 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2011 VL 24 IS 5 AR 055007 DI 10.1088/0953-2048/24/5/055007 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 748RZ UT WOS:000289410100007 ER PT J AU Zhong, ZP Gohar, Y Talamo, A AF Zhong, Zhaopeng Gohar, Yousry Talamo, Alberto TI Analysis of fuel management in the KIPT neutron source facility SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Neutron source facility; Electron beam; Burnup AB Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is similar to 360 kW including the fission power of similar to 260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation. Published by Elsevier Ltd. C1 [Zhong, Zhaopeng; Gohar, Yousry; Talamo, Alberto] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Zhong, ZP (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhong@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU U.S. Department of Energy, Office of Global Nuclear Material Threat Reduction [NA213]; National Nuclear Security Administration of US Department of Energy FX This project is supported by the U.S. Department of Energy, Office of Global Nuclear Material Threat Reduction (NA213), National Nuclear Security Administration of US Department of Energy. NR 9 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAY PY 2011 VL 38 IS 5 BP 1014 EP 1022 DI 10.1016/j.anucene.2011.01.016 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 743SZ UT WOS:000289040300012 ER PT J AU Zhang, Z Rahnema, F Zhang, DK Pounders, JM Ougouag, AM AF Zhang, Zhan Rahnema, Farzad Zhang, Dingkang Pounders, Justin M. Ougouag, Abderrafi M. TI Simplified two and three dimensional HTTR benchmark problems SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE VHTR; HTTR; Heterogeneous benchmark; Hexagonal geometry; Whole-core 2D and 3D benchmark problem AB To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Zhan; Rahnema, Farzad; Zhang, Dingkang; Pounders, Justin M.] Georgia Inst Technol, George W Woodruff Sch, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. [Zhang, Zhan; Rahnema, Farzad; Zhang, Dingkang; Pounders, Justin M.] Georgia Inst Technol, George W Woodruff Sch, Med Phys Program, Atlanta, GA 30332 USA. [Ougouag, Abderrafi M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rahnema, F (reprint author), Georgia Inst Technol, George W Woodruff Sch, Nucl & Radiol Engn Program, 770 State St, Atlanta, GA 30332 USA. EM Farzad@gatech.edu OI Pounders, Justin/0000-0002-2099-5039; Ougouag, Abderrafi/0000-0003-4436-380X FU Nuclear Energy Research Initiative [FC07-07ID14821]; Nuclear Energy University [DE-AC07-O5ID14517] FX The authors would like to thank Dr. T.A. Taiwo and Dr. T.K. Kim for providing a copy of (Nojiri et al., 1998) and Dr. A. Baxter for providing operating condition material temperatures for typical High Temperature Gas Cooled Reactors. This work was partially supported by Department of Energy through two grants: Nuclear Energy Research Initiative Grant # DE-FC07-07ID14821 and Nuclear Energy University Program Grant # DE-AC07-O5ID14517. NR 9 TC 14 Z9 14 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAY PY 2011 VL 38 IS 5 BP 1172 EP 1185 DI 10.1016/j.anucene.2010.11.020 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 743SZ UT WOS:000289040300032 ER PT J AU Wegner, LH Stefano, G Shabala, L Rossi, M Mancuso, S Shabala, S AF Wegner, Lars H. Stefano, Giovanni Shabala, Lana Rossi, Marika Mancuso, Stefano Shabala, Sergey TI Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na+ and K+ transport into xylem vessels SO PLANT CELL AND ENVIRONMENT LA English DT Article DE barley; maize; membrane potential; trans-root potential; xylem loading; xylem pressure ID PLASMA-MEMBRANE; PRESSURE PROBE; MAIZE ROOTS; REFLECTION COEFFICIENTS; POTASSIUM-TRANSPORT; K+/NA+ HOMEOSTASIS; BARLEY SEEDLINGS; STRESSED BARLEY; DRAINAGE WATER; CORN ROOTS AB Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K+ activity (A(K+)) within similar to 1 min after stress onset. At this time, no detectable amounts of Na+ were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na+ to isolated stele has caused rapid plasma membrane depolarization and a subsequent K+ efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K+ to the environment, this is associated with some K+ shift from the stelar symplast to the cortex, resulting in K+ being transiently removed from the xylem. Once Na+ is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs. C1 [Shabala, Lana] Univ Tasmania, Menzies Res Inst, Hobart, Tas 7001, Australia. [Shabala, Sergey] Univ Tasmania, Tasmanian Inst Agr Res, Hobart, Tas 7001, Australia. [Shabala, Sergey] Univ Tasmania, Sch Agr Sci, Hobart, Tas 7001, Australia. [Rossi, Marika; Mancuso, Stefano] Univ Florence, Dept Plant Soil & Environm Sci, LINV, I-50019 Sesto Fiorentino, Italy. [Stefano, Giovanni] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Wegner, Lars H.] Karlsruhe Inst Technol KIT, Inst Bot 1, D-76344 Eggenstein Leopoldshafen, Germany. [Wegner, Lars H.] Karlsruhe Inst Technol KIT, Inst Pulsed Power & Microwave Technol, Plant Bioelect Grp, D-76344 Eggenstein Leopoldshafen, Germany. RP Shabala, L (reprint author), Univ Tasmania, Menzies Res Inst, Hobart, Tas 7001, Australia. EM sergey.shabala@utas.edu.au RI Mancuso, Stefano/G-6515-2012; Shabala, Sergey/C-6794-2013; STEFANO, GIOVANNI/A-8264-2011; OI Mancuso, Stefano/0000-0003-1752-3986; STEFANO, GIOVANNI/0000-0002-2744-0052; Wegner, Lars/0000-0003-4375-7508 FU 'KIT Concept for the Future'; Australian Research Council, Grain Research and Development Corp; Australian Academy of Science FX L. H. Wegner received financial support via the 'KIT Concept for the Future' within the framework of the German Excellence Initiative. S. Shabala acknowledges financial support from the Australian Research Council, Grain Research and Development Corp. and the Australian Academy of Science. We would like to thank Prof. Ulrich Zimmermann, Wurzburg, Germany, for providing laboratory facilities. NR 48 TC 18 Z9 18 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD MAY PY 2011 VL 34 IS 5 BP 859 EP 869 DI 10.1111/j.1365-3040.2011.02291.x PG 11 WC Plant Sciences SC Plant Sciences GA 745MD UT WOS:000289168600014 PM 21332511 ER PT J AU Sweeney, MS Hochgreb, S Barlow, RS AF Sweeney, M. S. Hochgreb, S. Barlow, R. S. TI The structure of premixed and stratified low turbulence flames SO COMBUSTION AND FLAME LA English DT Article DE Combustion; Lean stratified combustion; Laser diagnostics; V-flame; Cross-planar OH-PLIF ID NONPREMIXED FLAMES; NUMERICAL-SIMULATION; SCALAR DISSIPATION; METHANE/AIR FLAMES; EQUIVALENCE RATIO; IMAGING-SYSTEM; AIR COMBUSTION; FLOW; GRADIENTS; PROPAGATION AB Practical combustion systems typically operate in stratified regimes to leverage the advantages of a spatially varying mixture fraction field. Although these benefits are well known in industry, the fundamental physics underpinning these effects are currently an area of active research. In this paper simultaneous Rayleigh-Raman-LIF measurements of temperature and major species concentrations along a line are used to investigate the structure of a weakly turbulent stratified flame. Concurrent cross-planar OH-PLIF enables the extraction of flame orientation relative to the measurement line, as well as flame front curvature. The behavior of major species concentrations with respect to temperature is found to agree well with laminar flames at the local mixture fraction, even in stratified flows. However, measurements of the surface density function, |del c|, and scalar dissipation, chi(c), suggest that both premixed and stratified flames are spatially thicker at the microscale than corresponding laminar flames. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sweeney, M. S.; Hochgreb, S.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Barlow, R. S.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sweeney, MS (reprint author), Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England. EM marksweeney@cantab.net RI Barlow, Robert/C-2364-2013 FU EPSRC; Leverhulme Trust; Rolls Royce; United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX The authors would like to thank the EPSRC, the Leverhulme Trust, and Rolls Royce for their financial contributions to this work. Work at Sandia was supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. The authors also thank Guanghua Wang, Pedro Anselmo-Filho, and Bob Harmon for their contributions to the experiments, and Matthew Dunn for his comments and feedback. NR 56 TC 33 Z9 33 U1 1 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2011 VL 158 IS 5 BP 935 EP 948 DI 10.1016/j.combustflame.2011.02.007 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 743UA UT WOS:000289043000012 ER PT J AU Lignell, DO Chen, JH Schmutz, HA AF Lignell, David O. Chen, Jacqueline H. Schmutz, Hans A. TI Effects of Damkohler number on flame extinction and reignition in turbulent non-premixed flames using DNS SO COMBUSTION AND FLAME LA English DT Article DE DNS; Non-premixed; Extinction; Reignition; Progress variable ID DIRECT NUMERICAL-SIMULATION; NONPREMIXED FLAMES; SOOT FORMATION; SHEAR-LAYER; JET FLAME; COMBUSTION; TRANSPORT; CHEMISTRY; MODELS; SCALAR AB Results from a parametric study of flame extinction and reignition with varying Damkohler number using direct numerical simulation are presented. Three planar, non-premixed ethylene jet flames were simulated at a constant Reynolds number of 5120. The fuel and oxidizer stream compositions were varied to adjust the steady laminar extinction scalar dissipation rate, while maintaining constant flow and geometric conditions. Peak flame extinction varies from approximately 40% to nearly global blowout as the Damkohler number decreases. The degree of extinction significantly affects the development of the jets and the degree of mixing of fuel, oxidizer, and combustion products prior to reignition. The global characteristics of the flames are presented along with an analysis of the modes of reignition. It is found that the initially non-premixed flame undergoing nearly global extinction reignites through premixed flame propagation in a highly stratified mixture. A progress variable is defined and a budget of key terms in its transport equation is presented. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Lignell, David O.; Schmutz, Hans A.] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. [Chen, Jacqueline H.] Sandia Natl Labs, Reacting Flow Res Dept, Combust Res Facil, Livermore, CA 94551 USA. RP Lignell, DO (reprint author), 350 Clyde Bldg, Provo, UT 84602 USA. EM davidlignell@byu.edu FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX Simulations presented in this work were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Simulations were performed on the Cray XT4 Jaguar supercomputer at Oak Ridge National Laboratories. NR 29 TC 20 Z9 20 U1 1 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2011 VL 158 IS 5 BP 949 EP 963 DI 10.1016/j.combustflame.2010.10.027 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 743UA UT WOS:000289043000013 ER PT J AU Musolino, SV Coulter, DT Tedla, H AF Musolino, Stephen V. Coulter, D. Thomas Tedla, Hailu TI CESIUM CHLORIDE: DISPERSIBILITY OR SECURITY? SO HEALTH PHYSICS LA English DT Editorial Material C1 [Musolino, Stephen V.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. [Coulter, D. Thomas] PHROBUS Inc, Portsmouth, VA 23703 USA. [Tedla, Hailu] New York City Dept Hlth & Mental Hyg, New York, NY 10007 USA. RP Musolino, SV (reprint author), Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, POB 5000, Upton, NY 11973 USA. NR 4 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2011 VL 100 IS 5 BP 459 EP 461 DI 10.1097/HP.0b013e31820c6657 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 742TW UT WOS:000288968600001 PM 21451314 ER PT J AU Toohey, RE Bertelli, L Sugarman, SL Wiley, AL Christensen, DM AF Toohey, R. E. Bertelli, L. Sugarman, S. L. Wiley, A. L. Christensen, D. M. TI DOSE COEFFICIENTS FOR INTAKES OF RADIONUCLIDES VIA CONTAMINATED WOUNDS SO HEALTH PHYSICS LA English DT Article DE accidents; handling; contamination; dose; internal; dosimetry; internal AB The NCRP Wound Model, which describes the retention of selected radionuclides at the site of a contaminated wound and their uptake into the transfer compartment, has been combined with the ICRP element-specific systemic models for those radionuclides to derive dose coefficients for intakes via contaminated wounds. These coefficients can be used to generate derived regulatory guidance (i.e., the activity in a wound that would result in an effective dose of 20 or 50 mSv, or in some cases, a organ-equivalent dose of 500 mSv) and clinical decision guidance (i.e., activity levels that would indicate the need for consideration of medical intervention to remove activity from the wound site, administration of decorporation therapy or both). Data are provided for 38 radionuclides commonly encountered in various activities such as nuclear weapons, fuel fabrication or recycling, waste disposal, medicine, research, and nuclear power. These include H-3, C-14, P-32, S-35, Fe-59, Co-57,Co-58,Co-60, Sr-85,Sr-89,Sr-90, (99)mTc, Ru-106, I-125,I-129,I-131, Cs-134,Cs-137, Ir-192, Tl-201, Po-210, Ra-226,Ra-228, Th-228,Th-230,Th-232, U-234,U-235,U-238, Np-237, Pu-238,Pu-239,Pu-240,Pu-241, Am-241, Cm-242,Cm-244, and Cf-252. Health Phys. 100(5): 508-514; 2011 C1 [Toohey, R. E.; Sugarman, S. L.; Wiley, A. L.; Christensen, D. M.] Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr Training Site, Oak Ridge, TN 37031 USA. [Bertelli, L.] Los Alamos Natl Lab, Radiat Protect Div, Los Alamos, NM 87545 USA. RP Toohey, RE (reprint author), ORAU, POB 117,MS 19, Oak Ridge, TN 37830 USA. EM dick.toohey@orau.org FU U.S. Department of Energy [DE-AC05-06OR23100] FX This work was supported by the U.S. Department of Energy under contract number DE-AC05-06OR23100. We are pleased to acknowledge the support of Michael Ardaiz, Chief Medical Officer of the Office of Health, Safety and Security of the U.S. Department of Energy for this work. The assistance of LaTosha Barton in preparing the tables is also greatly appreciated. NR 12 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2011 VL 100 IS 5 BP 508 EP 514 DI 10.1097/HP.0b013e3181fb2e01 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 742TW UT WOS:000288968600008 PM 21451321 ER PT J AU Zhao, LZ Su, WS Lu, WC Wang, CZ Ho, KM AF Zhao, Li-Zhen Su, Wan-Sheng Lu, Wen-Cai Wang, C. Z. Ho, K. M. TI Competitive Diamond-Like and Endohedral Fullerene Structures of Si-70 SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE Si-70; diamond-like; endohedral fullerene; mobility ID ION MOBILITY MEASUREMENTS; SIZED SILICON CLUSTERS; TIGHT-BINDING; SI-N; POLYATOMIC-MOLECULES; CAGE; STABILITY; SI-60; C-70; RELAXATION AB We performed first-principles calculations to study the structure and stability of Si-70 cluster. The results from the density functional theory calculation with the Becke-Lee-Yang-Parr and B3LYP exchange-correlation functionals suggest that a diamond-like Si-70 isomer is the most stable structure, in contrast to endohedral fullerenes of Si-70. On the other hand, an endohedral fullerene of Si-16@Si-54 was found to be slightly lower in energy than the diamond-like Si-70 if the Predew-Burke-Ernzerhof functional is used. Our calculation results suggest that around n = 70, the endohedral fullerene and diamond-like isomer are expected to be competitive. The calculated IR vibration spectra, ionization potential, and inverse mobilities were also calculated and discussed. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 1271-1278, 2011 C1 [Zhao, Li-Zhen; Lu, Wen-Cai] Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Shandong, Peoples R China. [Zhao, Li-Zhen; Lu, Wen-Cai] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. [Su, Wan-Sheng] Natl Chung Cheng Univ, Dept Phys, Chiayi 621, Taiwan. [Su, Wan-Sheng; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Su, Wan-Sheng; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lu, WC (reprint author), Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Shandong, Peoples R China. EM wencailu@jlu.edu.cn FU National Natural Science Foundation of China [20773047, 21043001]; National Science Council (NSC) of Taiwan [NSC-95-2917-I-194-010]; U.S. Department of Energy [DE-AC02-07CH11358]; National Energy Research Supercomputing Center (NERSC) in Berkeley FX Contract/grant sponsor: National Natural Science Foundation of China; contract/grant numbers: 20773047 and 21043001; Contract/grant sponsor: National Science Council (NSC) of Taiwan; contract/grant number: NSC-95-2917-I-194-010; Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-AC02-07CH11358; The authors would like to thank the group of Professor Martin F. Jarrold for providing the MOBCAL program to calculate cluster mobilities. This work was also supported by a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 41 TC 4 Z9 4 U1 1 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD MAY PY 2011 VL 32 IS 7 BP 1271 EP 1278 DI 10.1002/jcc.21708 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 741NT UT WOS:000288871100007 PM 21425284 ER PT J AU Unni, S Huang, Y Hanson, RM Tobias, M Krishnan, S Li, WW Nielsen, JE Baker, NA AF Unni, Samir Huang, Yong Hanson, Robert M. Tobias, Malcolm Krishnan, Sriram Li, Wilfred W. Nielsen, Jens E. Baker, Nathan A. TI Web Servers and Services for Electrostatics Calculations with APBS and PDB2PQR SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE electrostatics; salvation; web server; web services AB APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a Web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization of electrostatic potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/. (C) 2011 Wiley Periodicals, Inc. J Comput Chem 32: 1488-1491, 2011 C1 [Baker, Nathan A.] Pacific NW Natl Lab, Div Computat & Stat Analyt, Richland, WA 99352 USA. [Unni, Samir; Huang, Yong; Tobias, Malcolm] Washington Univ, Ctr Computat Biol, St Louis, MO USA. [Hanson, Robert M.] St Olaf Coll, Dept Chem, Northfield, MN 55057 USA. [Krishnan, Sriram; Li, Wilfred W.] Univ Calif San Diego, Natl Biomed Computat Resource, San Diego, CA 92103 USA. [Nielsen, Jens E.] Univ Coll Dublin, Sch Biomol & Biomed Sci, Dublin 2, Ireland. RP Baker, NA (reprint author), Pacific NW Natl Lab, Div Computat & Stat Analyt, Richland, WA 99352 USA. EM nathan.baker@pnl.gov RI Baker, Nathan/A-8605-2010 OI Baker, Nathan/0000-0002-5892-6506 FU NIH [P41 RR00860516, R01 GM069702, 3R01 GM069702-06S1]; Students and Teachers as Researchers Program; HHMI SURF Fellowship FX Contract/grant sponsor: NIH; contract/grant numbers: P41 RR00860516, R01 GM069702, 3R01 GM069702-06S1; Contract/grant sponsors: Students and Teachers as Researchers Program; HHMI SURF Fellowship NR 12 TC 59 Z9 59 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD MAY PY 2011 VL 32 IS 7 BP 1488 EP 1491 DI 10.1002/jcc.21720 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 741NT UT WOS:000288871100029 PM 21425296 ER PT J AU Tang, CN Nulwala, HB Damodaran, K Kaur, P Luebke, DR AF Tang, Chau N. Nulwala, Hunaid B. Damodaran, Krishnan Kaur, Palwinder Luebke, David R. TI Tunable Poly(hydroxyl urethane) from CO2-Based Intermediates Using Thiol-Ene Chemistry SO JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY LA English DT Article DE amine; carbonate; crosslinked polyurethanes; poly-(hydroxyl urethane)s; thiol-ene chemistry ID CLICK CHEMISTRY; CARBON-DIOXIDE; CYCLIC CARBONATES; HIGHLY EFFICIENT; FUNCTIONAL POLYMERS; ORGANIC CARBONATES; CATALYST SYSTEM; MONOMER FAMILY; CO2; EPOXIDES AB CO2-based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol-ene and amines-cyclic carbonates. This strategy to utilize 5-membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol-ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4-vinyl-1,3-dioxolan-2-one and thiols. Multi-functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6-diaminohexane to generate crosslinked PHUs from 25 to 80 degrees C. These materials are easy to scale-up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between -1 and 16 degrees C and thermal decomposition temperatures from 190 to 230 degrees C. (C) 2011 Wiley Periodicals, Inc.(dagger) J Polym Sci Part A: Polym Chem 49: 2024-2032, 2011 C1 [Tang, Chau N.; Nulwala, Hunaid B.; Luebke, David R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Damodaran, Krishnan] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Kaur, Palwinder] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA. RP Luebke, DR (reprint author), Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM hunaid.nulwala@or.netl.doe.gov; david.luebke@netl.doe.gov RI Nulwala, Hunaid/G-8126-2012 OI Nulwala, Hunaid/0000-0001-7481-3723 FU U.S. Department of Energy's Office of Fossil Energy FX This work was funded and supported by U.S. Department of Energy's Office of Fossil Energy. The authors thank Dr. Sheila Hedges and Dr. Jeffrey Culp for the training and use of differential scanning calorimeter and thermogravimetric analyzers. NR 69 TC 18 Z9 18 U1 3 U2 25 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-624X EI 1099-0518 J9 J POLYM SCI POL CHEM JI J. Polym. Sci. Pol. Chem. PD MAY 1 PY 2011 VL 49 IS 9 BP 2024 EP 2032 DI 10.1002/pola.24631 PG 9 WC Polymer Science SC Polymer Science GA 742TE UT WOS:000288966600011 ER PT J AU Kalay, I Kramer, MJ Napolitano, RE AF Kalay, I. Kramer, M. J. Napolitano, R. E. TI High-Accuracy X-Ray Diffraction Analysis of Phase Evolution Sequence During Devitrification of Cu50Zr50 Metallic Glass SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CU-ZR SYSTEM; COPPER-ZIRCONIUM; INTERMEDIATE PHASES; MECHANICAL-PROPERTIES; SUPERCOOLED LIQUID; CRYSTAL-STRUCTURE; HIGH-STRENGTH; ALLOYS; CRYSTALLIZATION; STABILITY AB Real-time high-energy X-ray diffraction (HEXRD) was used to investigate the crystallization kinetics and phase selection sequence for constant-heating-rate devitrification of fully amorphous Cu50Zr50, using heating rates from 10 K/min to 60 K/min (10 A degrees C/min to 60 A degrees C/min). In situ HEXRD patterns were obtained by the constant-rate heating of melt-spun ribbons under synchrotron radiation. High-accuracy phase identification and quantitative assessment of phase fraction evolution though the duration of the observed transformations were performed using a Rietveld refinement method. Results for 10 K/min (10 A degrees C/min) heating show the apparent simultaneous formation of three phases, orthorhombic Cu10Zr7, tetragonal CuZr2 (C11(b)), and cubic CuZr (B2), at 706 K (433 A degrees C), followed immediately by the dissolution of the CuZr (B2) phase upon continued heating to 789 K (516 A degrees C). Continued heating results in reprecipitation of the CuZr (B2) phase at 1002 K (729 A degrees C), with the material transforming completely to CuZr (B2) by 1045 K (772 A degrees C). The Cu5Zr8 phase, previously reported to be a devitrification product in C50Zr50, was not observed in the present study. C1 [Kalay, I.; Napolitano, R. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kramer, M. J.; Napolitano, R. E.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Kalay, I (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM ralphn@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358]; Advanced Photon Source, Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Synchrotron experiments were performed at the Advanced Photon Source, Argonne National Laboratory, under Grant No. DE-AC02-06CH11357. The authors also would like to thank Dr. Y. Eren Kalay, from Ames Laboratory, for assistance with TEM imaging. NR 57 TC 11 Z9 11 U1 3 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2011 VL 42A IS 5 BP 1144 EP 1153 DI 10.1007/s11661-010-0531-9 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 740SM UT WOS:000288814700002 ER PT J AU Liu, WN Sun, X Stephens, E Khaleel, M AF Liu, Wenning Sun, Xin Stephens, Elizabeth Khaleel, Moe TI Interfacial Shear Strength of Oxide Scale and SS 441 Substrate SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SOFC INTERCONNECT APPLICATIONS; FERRITIC STAINLESS-STEELS; METALLIC INTERCONNECTS; OXIDATION BEHAVIOR; FUEL-CELLS; FE-CR; STRESS; ALLOY; GROWTH; ADDITIONS AB Recent developments on decreasing the operating temperature for solid oxide fuel cells (SOFCs) have enabled the use of high-temperature ferritic alloys as interconnect materials. Oxide scale will inevitably grow on the ferritic interconnects in a high-temperature oxidation environment of SOFCs. The growth of the oxide scale induces growth stresses in the scale layer and on the scale/substrate interface. These growth stresses combined with the thermal stresses induced after stacking cooling by the thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation, which may lead to serious cell performance degradation. Hence, the interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this article, we applied an integrated experimental/modeling methodology to quantify the interfacial adhesion strength between the oxide scale and the SS 441 metallic interconnect. The predicted interfacial strength is discussed in detail. C1 [Liu, Wenning; Sun, Xin; Khaleel, Moe] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Stephens, Elizabeth] Pacific NW Natl Lab, Energy & Efficiency Div, Richland, WA 99352 USA. RP Liu, WN (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. EM wenning.liu@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy [DE-AC06-76RL01830]; U.S. Department of Energy's National Energy Technology Laboratory (NETL) FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RL01830. This work was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory (NETL). NR 34 TC 5 Z9 5 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2011 VL 42A IS 5 BP 1222 EP 1228 DI 10.1007/s11661-010-0537-3 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 740SM UT WOS:000288814700010 ER PT J AU Gerdemann, SJ Jablonski, PD AF Gerdemann, Stephen J. Jablonski, Paul D. TI Compaction of Titanium Powders SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID METAL POWDERS; PARTICLE DEFORMATION; DENSITY; EQUATIONS AB Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines < 150 mu m, < 75 mu m, and < 45 mu m; two different sizes of a hydride-dehydride [HDH] < 75 mu m and < 45 mu m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise. C1 [Gerdemann, Stephen J.; Jablonski, Paul D.] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Gerdemann, SJ (reprint author), Natl Energy Technol Lab, Albany, OR 97321 USA. EM Stephen.gerdemann@netl.doe.gov NR 29 TC 4 Z9 4 U1 3 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2011 VL 42A IS 5 BP 1325 EP 1333 DI 10.1007/s11661-010-0520-z PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 740SM UT WOS:000288814700017 ER PT J AU Whelchel, RL Kelekanjeri, VSKG Gerhardt, RA Ilavsky, J AF Whelchel, Ricky L. Kelekanjeri, V. Siva Kumar G. Gerhardt, Rosario A. Ilavsky, Jan TI Effect of Aging Treatment on the Microstructure and Resistivity of a Nickel-Base Superalloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID X-RAY-SCATTERING; NI-AL ALLOYS; WASPALOY MICROSTRUCTURES; SANS; GAMMA'; PRECIPITATION; TEMPERATURE; KINETICS; PE16 AB The gamma' precipitation behavior of age-hardened WASPALOY, aged at 998 K, 1073 K, and 1148 K (725 A degrees C, 800 A degrees C, and 875 A degrees C) for times ranging from 0.5 to 263.5 hours, were evaluated via analysis of ultra small angle X-ray scattering (USAXS) curves and scanning electron microscopy (SEM) micrographs. The USAXS spectra revealed a single precipitate size distribution at the earliest aging times, which evolves into a bimodal precipitate size distribution at later aging times. The primary precipitate radius displayed t (1/3) coarsening dependence for aging at 1073 K and 1148 K (800 A degrees C and 875 A degrees C); however, the primary radius increased with t (0.4) dependence at 998 K (725 A degrees C), most likely due to mixed growth and coarsening. A figure of merit, eta', consisting of two terms, one associated with precipitate size and volume fraction and the other with compositional fluctuations, was proposed. eta' shows direct empirical correlations with changes in the measured electrical resistivity. C1 [Whelchel, Ricky L.; Kelekanjeri, V. Siva Kumar G.; Gerhardt, Rosario A.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Ilavsky, Jan] Argonne Natl Lab, Xray Operat Div, Argonne, IL 60439 USA. RP Whelchel, RL (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM rosario.gerhardt@mse.gatech.edu RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013; Gerhardt, Rosario/D-6573-2012 OI Ilavsky, Jan/0000-0003-1982-8900; Gerhardt, Rosario/0000-0001-8774-0842 FU United States Department of Energy [DE-FG 02-03-ER 46035]; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge the funding for this work provided by the United States Department of Energy under Grant No. DE-FG 02-03-ER 46035. Use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 27 TC 6 Z9 7 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2011 VL 42A IS 5 BP 1362 EP 1372 DI 10.1007/s11661-010-0483-0 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 740SM UT WOS:000288814700020 ER PT J AU Chen, Z Huang, J Decker, RF Lebeau, SE Walker, LR Cavin, OB Watkins, TR Boehlert, CJ AF Chen, Z. Huang, J. Decker, R. F. Lebeau, S. E. Walker, L. R. Cavin, O. B. Watkins, T. R. Boehlert, C. J. TI The Effect of Thermomechanical Processing on the Tensile, Fatigue, and Creep Behavior of Magnesium Alloy AM60 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID MICROSTRUCTURE; DEFORMATION; AM50; PRESSURE; STRENGTH AB Tensile, fatigue, fracture toughness, and creep experiments were performed on a commercially available magnesium-aluminum alloy (AM60) after three processing treatments: (1) as-THIXOMOLDED (as-molded), (2) THIXOMOLDED then thermomechanically processed (TTMP), and (3) THIXOMOLDED then TTMP then annealed (annealed). The TTMP procedure resulted in a significantly reduced grain size and a tensile yield strength greater than twice that of the as-molded material without a debit in elongation to failure (epsilon (f) ). The as-molded material exhibited the lowest strength, while the annealed material exhibited an intermediate strength but the highest epsilon (f) (> 1 pct). The TTMP and annealed materials exhibited fracture toughness values almost twice that of the as-molded material. The as-molded material exhibited the lowest fatigue threshold values and the lowest fatigue resistance. The annealed material exhibited the greatest fatigue resistance, and this was suggested to be related to its balance of tensile strength and ductility. The fatigue lives of each material were similar at both room temperature (RT) and 423 K (150 A degrees C). The tensile-creep behavior was evaluated for applied stresses ranging between 20 and 75 MPa and temperatures between 373 and 473 K (100 and 200 A degrees C). During both the fatigue and creep experiments, cracking preferentially occurred at grain boundaries. Overall, the results indicate that thermomechanical processing of AM60 dramatically improves the tensile, fracture toughness, and fatigue behavior, making this alloy attractive for structural applications. The reduced creep resistance after thermomechanical processing offers an opportunity for further research and development. C1 [Chen, Z.; Boehlert, C. J.] Michigan State Univ, E Lansing, MI 48824 USA. [Huang, J.; Decker, R. F.; Lebeau, S. E.] Thixomat Inc, Ann Arbor, MI 48108 USA. [Cavin, O. B.; Watkins, T. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Cavin, O. B.] Univ Tennessee, Dept Mat Sci Engn, Ctr Mat Proc, Knoxville, TN 37996 USA. [Walker, L. R.] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Chen, Z (reprint author), Michigan State Univ, E Lansing, MI 48824 USA. EM boehlert@egr.msu.edu RI Watkins, Thomas/D-8750-2016 OI Watkins, Thomas/0000-0002-2646-1329 FU United States Department of Energy, Office of Energy Efficiency, and Renewable Energy; Vehicle Technologies Program; Oak Ridge National Laboratory's SHaRE User Facility; Division of Scientific User Facilities, Office of Basic Energy Sciences, United States Department of Energy; Department of Energy Office of Science; National Science Foundation; UT-Battelle, LLC [DEAC05-00OR22725]; U.S. Department of Energy FX This research was conducted, in part, through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the United States Department of Energy, Office of Energy Efficiency, and Renewable Energy, Vehicle Technologies Program, and through the Oak Ridge National Laboratory's SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, United States Department of Energy. A portion of this work was supported by the Faculty and Student Teams (FAST) Program, which is a cooperative program between the Department of Energy Office of Science and the National Science Foundation. The authors are grateful to Dr. Camden Hubbard, Oak Ridge National Laboratory, for assisting with the XRD characterization. The authors are also grateful to Messrs. Bryan Kuhr and Alex Ritter, Michigan State University, for their technical assistance with the SEM, XRD, and in-situ deformation characterization. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DEAC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 31 TC 6 Z9 6 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2011 VL 42A IS 5 BP 1386 EP 1399 DI 10.1007/s11661-010-0478-x PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 740SM UT WOS:000288814700022 ER PT J AU Shivamoggi, BK AF Shivamoggi, B. K. TI Compressible turbulence: Multi-fractal scaling in the transition to the dissipative regime SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE Compressible turbulence ID STATISTICAL-MECHANICS; ISOTROPIC TURBULENCE; SIMULATIONS; SPECTRUM; RANGE; FLOWS; LAWS AB Multi-fractal scaling in the transition to the dissipative "regime for fully-developed compressible turbulence is considered. The multi-fractal power law scaling behavior breaks down for very small length scales thanks to viscous effects. However, the effect of compressibility is found to extend the single-scaling multi-fractal regime further into the dissipative range. In the ultimate compressibility limit, thanks to the shock waves which are the appropriate dissipative structures, the single-scaling regime is found to extend indeed all the way into the full viscous regime. This result appears to be consistent with the physical fact that vortices become more resilient and stretch stronger in a compressible fluid hence postponing viscous intervention. The consequent generation of enhanced velocity gradients in a compressible fluid appears to provide an underlying physical basis for the previous results indicating that fully-developed compressible turbulence is effectively more dissipative than its incompressible counterpart. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shivamoggi, B. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shivamoggi, BK (reprint author), Univ Cent Florida, Orlando, FL 32816 USA. EM bhimsens@mail.ucf.edu NR 25 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD MAY 1 PY 2011 VL 390 IS 9 BP 1534 EP 1538 DI 10.1016/j.physa.2010.12.039 PG 5 WC Physics, Multidisciplinary SC Physics GA 743NU UT WOS:000289025900004 ER PT J AU Cao, GH Russell, AM Gschneidner, KA AF Cao, G. H. Russell, A. M. Gschneidner, K. A., Jr. TI Transmission electron microscopy study of the microstructure of a YCu ductile intermetallic compound, the influence of the start metal purity SO SCRIPTA MATERIALIA LA English DT Article DE Intermetallics; Microstructure; Transmission electron microscopy (TEM); YCu ID YNI2B2C THIN-FILM; YAG AB A YCu intermetallic compound made with commercial-purity yttrium metal by arc melting was investigated by transmission electron microscopy (TEM). TEM analyses showed the presence of second phases within the YCu. One phase was identified as a cubic Y(2)O(3) with lattice pixameter a = 1.06 nm and the other was an orthorhombic YCu(2) with lattice parameters a = 0.43 nm, b = 0.68 nm and c = 0.73 nm. (1 0 1) twins were observed in the YCu(2) phase. The mechanisms of phase formation are discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cao, G. H.] Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. [Russell, A. M.; Gschneidner, K. A., Jr.] US DOE, Ames Lab, Ames, IA 50011 USA. [Russell, A. M.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Cao, GH (reprint author), Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. EM ghcao@shu.edu.cn OI Russell, Alan/0000-0001-5264-0104 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation [0413616]; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; National Natural Science Foundation of China (NSFC) [50771061]; Shanghai Committee of Science and Technology [09520703300, 08PJ1405200, 10JC1405100] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The financial support of the National Science Foundation under Grant No. 0413616 is also gratefully acknowledged (A.M.R.). The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.H.C. is grateful to the National Natural Science Foundation of China (NSFC) under Grant No. 50771061 and the Shanghai Committee of Science and Technology under Grant Nos. 09520703300, 08PJ1405200 and 10JC1405100 for supporting this work. Many thanks are due to N. Porter, who prepared the YCu samples. NR 13 TC 2 Z9 2 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 9 BP 821 EP 823 DI 10.1016/j.scriptamat.2011.01.007 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 739SN UT WOS:000288738400006 ER PT J AU Wang, N Trivedi, R AF Wang, N. Trivedi, R. TI Limit of steady-state lamellar eutectic growth SO SCRIPTA MATERIALIA LA English DT Article DE Rapid solidification; Eutectic phase transformation; Undercooling; Metallic glasses; Pattern formation ID RAPID SOLIDIFICATION CONDITIONS; ALLOYS AB Under rapid solidification conditions, a eutectic microstructure becomes unstable beyond a certain velocity that places a limit on the finest spacing and the largest interface undercooling that can be achieved for such a microstructure. Expressions are developed to characterize the physics that lead to the limit of eutectic growth. Activation energy for diffusion and eutectic temperature are shown to play key roles at the limit of eutectic growth, and this limit modifies the high-velocity branch of the coupled growth regime. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, N.] NW Polytech Univ, Dept Appl Phys, Xian 710072, Peoples R China. [Wang, N.; Trivedi, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, N.; Trivedi, R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Trivedi, R (reprint author), NW Polytech Univ, Dept Appl Phys, Xian 710072, Peoples R China. EM trivedi@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundations of China [50871090, 50971104]; NPU Foundation for Fundamental Research [NFFR-W018108] FX This work was supported in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. It was also supported in part by the National Natural Science Foundations of China (Grant Nos. 50871090 and 50971104) and NPU Foundation for Fundamental Research (NFFR-W018108). NR 13 TC 3 Z9 3 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 9 BP 848 EP 851 DI 10.1016/j.scriptamat.2011.01.010 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 739SN UT WOS:000288738400013 ER PT J AU Liu, ZY Guo, S Liu, XJ Ye, JC Yang, Y Wang, XL Yang, L An, K Liu, CT AF Liu, Zhiyuan Guo, Sheng Liu, Xiongjun Ye, Jianchao Yang, Yong Wang, Xun-Li Yang, Ling An, Ke Liu, C. T. TI Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy SO SCRIPTA MATERIALIA LA English DT Article DE High-entropy alloy; Solidification microstructure; Neutron diffraction; Compression test ID SCALE SINGLE-CRYSTALS; MECHANICAL-PROPERTIES; MULTIPRINCIPAL ELEMENTS; PRINCIPAL ELEMENTS; STRAIN GRADIENTS; MICRON-SCALE; MICROSTRUCTURE; CO; DIFFRACTOMETER; COMPRESSION AB The microstructural features and micromechanical behavior of individual phases in a cast Al0.8CoCrCuFeNi high-entropy alloy (HEA) were characterized by high-resolution scanning electron microscopy and micro-compression tests. Use of neutron diffraction enabled the detection of a new phase which was otherwise unobservable by conventional X-ray diffraction. The identified phase constitution agreed well with the compositional analysis and the micro-compression results. The delicate microscale characterization of individual phase provides new insights for the design of novel HEAs with desirable mechanical properties. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, Zhiyuan; Guo, Sheng; Liu, Xiongjun; Ye, Jianchao; Yang, Yong; Liu, C. T.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China. [Wang, Xun-Li; Yang, Ling; An, Ke] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Liu, CT (reprint author), Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China. EM mmct8tc@inet.polyu.edu.hk RI Liu, Xiong-Jun/C-7119-2009; ye, jianchao/A-6388-2011; SNS, VULCAN/C-2061-2012; Wang, Xun-Li/C-9636-2010; Guo, Sheng/C-7746-2009; An, Ke/G-5226-2011; Yang, Yong/G-9148-2011 OI Wang, Xun-Li/0000-0003-4060-8777; Guo, Sheng/0000-0001-8349-3135; An, Ke/0000-0002-6093-429X; Yang, Yong/0000-0002-0491-8295 FU HKPU; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This research was supported by the internal funding from HKPU. The Spallation Neutron Source is operated with support from the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 30 TC 29 Z9 29 U1 13 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 9 BP 868 EP 871 DI 10.1016/j.scriptamat.2011.01.020 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 739SN UT WOS:000288738400018 ER PT J AU Barabash, RI Bei, H Gao, YF Ice, GE AF Barabash, R. I. Bei, H. Gao, Y. F. Ice, G. E. TI Interface strength in NiAl-Mo composites from 3-D X-ray microdiffraction SO SCRIPTA MATERIALIA LA English DT Article DE Composites; Micromechanics; X-ray synchrotron radiation; Strain gradient; Interface strength ID DISLOCATION DENSITIES; DEFORMATION; GRADIENTS; BEHAVIOR; MODEL AB The depth-dependent strain gradients near buried interfaces in a model system of NiAl-Mo composite were nondestructively probed with 3-D X-ray microdiffraction. Coupled with micromechanical analysis, our study shows that the relaxation of the residual thermal strains in the NiAl-Mo composites results in the formation of a near-surface "slip zone" with large strain gradients in both the reinforcing Mo fibers and NiAl matrix. Based on these results an approach to calculate the fiber matrix interface strength for composite materials is suggested. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Barabash, R. I.; Bei, H.; Ice, G. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barabash, R. I.; Gao, Y. F.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Gao, Yanfei/F-9034-2010; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy, Office of Basic Energy Sciences FX This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The use of the APS was supported by US Department of Energy, Office of Basic Energy Sciences, and the Scientific Users Facilities Division. NR 21 TC 11 Z9 11 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 9 BP 900 EP 903 DI 10.1016/j.scriptamat.2011.01.028 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 739SN UT WOS:000288738400026 ER PT J AU Tschopp, MA Horstemeyer, MF Gao, F Sun, X Khaleel, M AF Tschopp, M. A. Horstemeyer, M. F. Gao, F. Sun, X. Khaleel, M. TI Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies SO SCRIPTA MATERIALIA LA English DT Article DE Vacancy; Interstitial; Grain boundary; Radiation damage; Molecular dynamics ID MOLECULAR-DYNAMICS; INTERATOMIC POTENTIALS; HE INTERSTITIALS; RADIATION-DAMAGE; ALPHA-FE; COPPER; IRON; METALS; DIFFUSION; ENERGIES AB Molecular dynamics simulations of 50 Fe grain boundaries were used to understand their interaction with vacancies and self-interstitial atoms, which is important for designing radiation-resistant polycrystalline materials. Site-to-site variation of formation energies within the boundary is substantial, with the majority of sites having lower formation energies than in the bulk. Comparing the vacancy and self-interstitial atom binding energies for each site shows that there is an energetic driving force for interstitials to preferentially bind to grain boundary sites over vacancies. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tschopp, M. A.; Horstemeyer, M. F.] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA. [Gao, F.; Sun, X.; Khaleel, M.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Tschopp, MA (reprint author), Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS 39759 USA. EM mtschopp@cavs.msstate.edu RI Gao, Fei/H-3045-2012; Tschopp, Mark/B-1594-2008; OI Tschopp, Mark/0000-0001-8471-5035; khaleel, mohammad/0000-0001-7048-0749; Horstemeyer, Mark/0000-0003-4230-0063 FU US Department of Energy [DE-AC05-76RL01830] FX This work was funded by the US Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program at Pacific Northwest National Laboratory. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 21 TC 27 Z9 27 U1 2 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2011 VL 64 IS 9 BP 908 EP 911 DI 10.1016/j.scriptamat.2011.01.031 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 739SN UT WOS:000288738400028 ER PT J AU Butcher, TA Hammonds, JS Horne, E Kamath, B Carpenter, J Woods, DR AF Butcher, T. A. Hammonds, J. S. Horne, E. Kamath, B. Carpenter, J. Woods, D. R. TI Heat transfer and thermophotovoltaic power generation in oil-fired heating systems SO APPLIED ENERGY LA English DT Article DE Self-powered heating; TPV; Thermophotovoltaic; Oil-fired boiler; Combined heat and power ID EMITTERS AB The focus of this study is the production of electric power in an oil-fired, residential heating system using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100W - the power requirement for a boiler that uses low-power auxiliary components. The important heat transfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hammonds, J. S.; Woods, D. R.] Howard Univ, Washington, DC 20059 USA. [Butcher, T. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Horne, E.] Edtek Inc, Kent, WA USA. [Kamath, B.] Heat Wise Inc, Medford, NY USA. [Carpenter, J.] Alfred Univ, Alfred, NY 14802 USA. RP Hammonds, JS (reprint author), Howard Univ, Washington, DC 20059 USA. EM j_hammonds@howard.edu NR 21 TC 13 Z9 14 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD MAY PY 2011 VL 88 IS 5 BP 1543 EP 1548 DI 10.1016/j.apenergy.2010.10.033 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 734TF UT WOS:000288360500009 ER PT J AU Sen, AK Litak, G Edwards, KD Finney, CEA Daw, CS Wagner, RM AF Sen, A. K. Litak, G. Edwards, K. D. Finney, C. E. A. Daw, C. S. Wagner, R. M. TI Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine SO APPLIED ENERGY LA English DT Article DE Internal combustion engine; Spark ignition; Homogeneous charge compression ignition ID WAVELET ANALYSIS; SIGNALS; INTERMITTENCY; COMBUSTION; RECORDS AB We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI-HCCI combustion regime shifts. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sen, A. K.] Indiana Univ, Dept Math Sci, Indianapolis, IN 46202 USA. [Litak, G.] Tech Univ Lublin, Dept Appl Mech, PL-20618 Lublin, Poland. [Edwards, K. D.; Finney, C. E. A.; Daw, C. S.; Wagner, R. M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Knoxville, TN 37932 USA. RP Sen, AK (reprint author), Indiana Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA. EM asen@iupui.edu RI Litak, Grzegorz/F-2081-2010; Mechaniczna, Biblioteka/A-4394-2013 OI Litak, Grzegorz/0000-0002-9647-8345; FU US Department of Energy, Office of Energy Efficiency and Renewable Energy FX We would like to thank the two anonymous reviewers whose constructive comments helped significantly improve the manuscript. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy. G. Litak would like to thank Prof. A.K. Sen and Prof. C.S. Daw for their hospitality during his visits to Indiana and Oak Ridge. NR 30 TC 16 Z9 17 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD MAY PY 2011 VL 88 IS 5 BP 1649 EP 1655 DI 10.1016/j.apenergy.2010.11.040 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 734TF UT WOS:000288360500021 ER PT J AU Moon, JC Aksoy, F Ju, H Liu, Z Mun, BS AF Moon, Joon Chul Aksoy, Funda Ju, Honglyoul Liu, Zhi Mun, Bongjin Simon TI Effect of water treatment on transparent semiconductor InZnSnO thin films SO CURRENT APPLIED PHYSICS LA English DT Article DE Thin-film transistors; Oxide thin films; XPS; Magnetron sputtering ID CONDUCTING OXIDES; HIGH-MOBILITY; SOLAR-CELL; TRANSISTORS AB The effects of water exposure on InZnSnO transparent thin films are reported. After the immersion of InZnSnO films under de-ionized water, an enrichment of In (and Sn) and a reduction of Zn are found on the surface, probed with X-ray photoelectron spectroscopy (XPS). In addition, O 1s core-level XPS spectra show a presence of hydroxyl after the water immersion process, supporting that the adsorption of H(2)O to InZnSnO surface may induces partial negative charge to surface with either molecular to hydroxyl forms. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mun, Bongjin Simon] Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyunggi Do, South Korea. [Moon, Joon Chul; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Aksoy, Funda; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Aksoy, Funda] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. RP Mun, BS (reprint author), Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyunggi Do, South Korea. EM bsmun@hanyang.ac.kr RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Hanyang University [HY-20090546-N] FX This work was supported by the research fund of Hanyang University (HY-20090546-N) NR 21 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAY PY 2011 VL 11 IS 3 BP 513 EP 516 DI 10.1016/j.cap.2010.09.004 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 732KI UT WOS:000288183300045 ER PT J AU Joo, S Lee, J Kim, T Rhie, K Hong, J Shin, KH Kim, KH AF Joo, Sungjung Lee, Jinseo Kim, Taeyueb Rhie, Kungwon Hong, Jinki Shin, Kyung-Ho Kim, Ki Hyun TI Tunable polarization of spin polarized current by magnetic field SO CURRENT APPLIED PHYSICS LA English DT Article DE Spin polarization; Spin-flip; g-factor; Zeeman; HgCdTe ID HGTE QUANTUM-WELLS; RESONANT SCATTERING; MAGNETORESISTANCE; GERMANIUM AB The spin polarization of a high g-factor bulk semiconductor is theoretically investigated in the presence of a magnetic field parallel to a driving electric field. Calculations have been carried out using the energydependent relaxation time approximation in association with spin-flip scattering. As the magnitude of the magnetic field increases, the spin-polarized current alternates between the spin-up and spin-down states for the low spin-scattering system. This implies that the current polarization can be tuned by controlling the magnetic field strength, suggesting possible applications to spintronic devices. An experimental method for investigating alternative current polarization is also considered. @ 2010 Elsevier B.V. All rights reserved. C1 [Joo, Sungjung; Lee, Jinseo; Kim, Taeyueb; Rhie, Kungwon; Hong, Jinki] Korea Univ, Dept Phys, Yunki Kun 339700, Chochiwon, South Korea. [Shin, Kyung-Ho] KIST, Ctr Spintron Res, Seoul 130650, South Korea. [Kim, Ki Hyun] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hong, J (reprint author), Korea Univ, Dept Phys, 208 Seochang Dong, Yunki Kun 339700, Chochiwon, South Korea. EM jkhongjkhong@korea.ac.kr FU MEST [2010-0000506] FX This work was supported by KIST vision 21 program and Mid-career Researcher Program through NRF grant funded by the MEST (No.2010-0000506). NR 24 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAY PY 2011 VL 11 IS 3 BP 568 EP 572 DI 10.1016/j.cap.2010.09.018 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 732KI UT WOS:000288183300057 ER PT J AU Ferguson, CE Duff, MC Clark, EA Chapman, GK Leggitt, JL Monson, KL AF Ferguson, Caitlin E. Duff, Martine C. Clark, Elliot A. Chapman, Glenn K. Leggitt, Jeffrey L. Monson, Keith L. TI Effects of radiation on established forensic evidence containment methods SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Evidence; Containment; Polymer; Forensic; Irradiation AB The Federal Bureau of Investigation (FBI) Laboratory is currently exploring needs and protocols for the storage of evidentiary items contaminated with radioactive material. While a large body of knowledge on the behavior of storage polymers in radiation fields exists, this knowledge has not been applied to the field of forensics and maintaining evidentiary integrity. The focus of this research was to evaluate the behavior of several traditional evidentiary containment polymers when exposed to significant alpha, beta, gamma, neutron and mixed radiation sources. Doses were designed to simulate exposures possible during storage of materials. Several products were found to be poorly suited for use in this specific application based on standardized mechanical testing results. Remaining products were determined to warrant further investigation for the storage of radiologically-contaminated evidence. C1 [Leggitt, Jeffrey L.; Monson, Keith L.] Fed Bur Invest, Lab Div, Quantico, VA 22135 USA. [Ferguson, Caitlin E.; Duff, Martine C.; Clark, Elliot A.; Chapman, Glenn K.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Monson, KL (reprint author), Fed Bur Invest, Lab Div, Quantico, VA 22135 USA. EM Keith.Monson@ic.fbi.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; Work For Others [WFO-A61606709]; Federal Bureau of Investigation FX This manuscript has been co-authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. Specifically, the research was supported by a Work For Others (WFO-A61606709) with the Federal Bureau of Investigation. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 10 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2011 VL 288 IS 2 BP 455 EP 465 DI 10.1007/s10967-010-0952-3 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 732WB UT WOS:000288219300022 ER PT J AU Shehabi, A Masanet, E Price, H Horvath, A Nazaroff, WW AF Shehabi, Arman Masanet, Eric Price, Hillary Horvath, Arpad Nazaroff, William W. TI Data center design and location: Consequences for electricity use and greenhouse-gas emissions SO BUILDING AND ENVIRONMENT LA English DT Article DE Economizers; IT; HVAC design; Indoor environmental quality; Energy efficiency; Climate-change mitigation ID LIFE-CYCLE; POWER AB The rapidly increasing electricity demand for data center operation has motivated efforts to better understand current data center energy use and to identify strategies that reduce the environmental impact of these buildings. This paper builds on previous data center energy modeling efforts by characterizing local climate and mechanical equipment differences among data centers and then evaluating their consequences for building energy use. Cities in the United States with significant data center activity are identified. Representative climate conditions for these cities are applied to data center energy models for several different prototypical space types. Results indicate that widespread, effective economizer use in data centers could reduce energy demand for data centers by about 20-25%, equivalent to an energy efficiency resource in the US of similar to 13-17 billion kWh per year. Almost half of the potential savings would result from better airflow management and proper control sequences. The total energy savings potential of economizers, although substantial, is constrained by their limited potential for use in server closets and server rooms, which together are estimated to account for about 30% of all data center energy demand. Incorporating economizer use into the mechanical systems of larger data centers would increase the variation in energy efficiency among geographic regions, indicating that as data center buildings become more energy efficient, their locations will have an increasing effect on overall energy demand. Differences among regions become even more important when accounting for greenhouse-gas emissions. Future data center development could consider site location, along with efficiency measures, to limit the environmental impact attributable to this increasingly prominent economic sector. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Shehabi, Arman; Horvath, Arpad; Nazaroff, William W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Shehabi, Arman; Masanet, Eric; Nazaroff, William W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Price, Hillary] Ramsey Engineers, Oakland, CA 94607 USA. RP Nazaroff, WW (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM nazaroff@ce.berkeley.edu RI Nazaroff, William/C-4106-2008; Masanet, Eric /I-5649-2012 OI Nazaroff, William/0000-0001-5645-3357; FU LBNL under the US Department of Energy [DE-AC02-05CH11231] FX We thank Kim Traber for his help and insight in developing the data center case studies and John Bruschi for his assistance with the energy modeling. This work was partially performed at LBNL under the US Department of Energy Contract No. DE-AC02-05CH11231. NR 29 TC 16 Z9 17 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD MAY PY 2011 VL 46 IS 5 BP 990 EP 998 DI 10.1016/j.buildenv.2010.10.023 PG 9 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 717TB UT WOS:000287069200002 ER PT J AU Cheng, MD Pfiffner, SM Miller, WA Berdahl, P AF Cheng, Meng-Dawn Pfiffner, Susan M. Miller, William A. Berdahl, Paul TI Chemical and microbial effects of atmospheric particles on the performance of steep-slope roofing materials SO BUILDING AND ENVIRONMENT LA English DT Article DE Aerosol; Carbon; Composition; Deposition; Emittance; Lipids ID COMMUNITY STRUCTURE; CONTAMINATED SITE; BIOMASS; IDENTIFICATION; SOILS AB The reflectivity of a roof is a critical component in design of strategy to reduce overall building energy usage. Airborne particulate matter that settles on a roof can either reflect or absorb incoming solar radiation. The light scattering and absorption processes occur within a few microns of the surface that affects the solar reflectance of the roof. The long-term loss of roof reflectivity appears driven by the ability of the atmospheric particulate matter to cling onto the roof and resist being washed off by wind and or rain. Contaminants collected from samples of roof products exposed at seven California sites for about one and a half years were analysed for major and trace elements and carbons to assist characterization of the chemical profile of the atmospheric particles that soil each roof sample. The chemical composition of the accumulated particles was very similar across the state of California; there was no clear distinction from one region to another. Elemental carbon did not contribute significantly to the loss of solar reflectance as initially expected. Dust particles and organic carbon compensated for the loss of solar reflectance due to elemental carbon possibly because some crystalline forms of these elements were light reflecting and contributed to the solar reflectance. Differences in microbial communities and biomass were seen between the various materials. Abundance of microbial biomass on roof tiles appears to be related to the composition/surface structure of the tile. Cyanobacteria or fungi represent the dominant player. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cheng, Meng-Dawn; Pfiffner, Susan M.; Miller, William A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pfiffner, Susan M.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Berdahl, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM chengmd@ornl.gov RI Cheng, Meng-Dawn/C-1098-2012; OI Cheng, Meng-Dawn/0000-0003-1407-9576 FU U.S. Department of Energy [DE-AC03-76SF00098, DE-AC05-00OR22725] FX Funding for this project was provided by the California Energy Commission's Public Interest Energy Research program through the U.S. Department of Energy under contract DE-AC03-76SF00098. The elemental composition of particles was analysed by the analytical chemistry services at the DOE Y12 complex using ICP-AES instrument. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. NR 29 TC 8 Z9 8 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD MAY PY 2011 VL 46 IS 5 BP 999 EP 1010 DI 10.1016/j.buildenv.2010.10.025 PG 12 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 717TB UT WOS:000287069200003 ER PT J AU Yecko, P Lee, WK Trubatch, AD Vieira, M AF Yecko, Philip Lee, Wah-Keat Trubatch, A. David Vieira, Matthew TI Drag enhancement due to macro-chains in uniformly magnetized ferrofluids SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article; Proceedings Paper CT 12th International Conference on Magnetic Fluids (ICMF12) CY AUG 01-05, 2010 CL Sendai, JAPAN SP Magnetic Fluid Assoc DE Magnetic particle chain; Magnetoviscosity; X-ray imagery ID SMALL-ANGLE NEUTRON; FLUIDS; SUSPENSIONS; PARTICLES; LIQUIDS; BUBBLES; FLOWS; FIELD AB We report on experiments and simulations performed on small non-magnetic glass balls and nearly spherical gas bubbles moving through a uniformly magnetized ferrofluid. Use of the Advanced Photon Source X-ray beamline at Argonne National Laboratory permitted sufficient spatial and temporal resolution to accurately track the dynamics of these 500 mu m diameter spheres simultaneously with an array of magnetic particle macro-chains-agglomerations each of several mm long and 4-20 mu m thick. The enhanced drag induced by the macro-chains is substantial: we infer viscosity coefficients up to four times larger than for unmagnetized fluid. We provide direct visualization of a possible mechanism by which macro-chains mechanically impede the transverse motion of spheres, enhancing the drag and effecting an anisotropic viscosity. Direct numerical simulations of spheres falling through magnetic fluid can reproduce the observed dynamics by means of a phenomenological magnetization-dependent viscosity model with one free parameter. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yecko, Philip; Trubatch, A. David; Vieira, Matthew] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA. [Lee, Wah-Keat] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Yecko, P (reprint author), Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA. EM philip.yecko@montclair.edu RI Yecko, Philip/B-6621-2008 OI Yecko, Philip/0000-0002-8075-1271 NR 31 TC 3 Z9 3 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY PY 2011 VL 323 IS 10 BP 1288 EP 1292 DI 10.1016/j.jmmm.2010.11.032 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 726PM UT WOS:000287738100021 ER PT J AU Liang, SA Broitman, E Wang, YN Cao, AM Veser, G AF Liang, Shuang Broitman, Esteban Wang, Yanan Cao, Anmin Veser, Goetz TI Highly stable, mesoporous mixed lanthanum-cerium oxides with tailored structure and reducibility SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SOLID-SOLUTIONS; CATALYTIC-ACTIVITY; PARTIAL OXIDATION; STORAGE CAPACITY; SURFACE-AREA; REDUCTION; METHANE; NANOPARTICLES; CEO2; LA AB Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity. C1 [Liang, Shuang; Wang, Yanan; Cao, Anmin; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Liang, Shuang; Wang, Yanan; Cao, Anmin; Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Broitman, Esteban] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013; Broitman, Esteban/L-6950-2015 OI Broitman, Esteban/0000-0003-3277-1945 FU National Energy Technology Laboratory's under the RDS [DE-AC26-04NT41817]; Department of Energy [DE-FG02-05ER46233]; National Science Foundation [CTS-0553365]; University of Pittsburgh's Swanson School of Engineering; DOE-NETL FX This work was supported by the National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817; by the Department of Energy-Basic Energy Science through Grant DE-FG02-05ER46233; and by the National Science Foundation through Grant CTS-0553365. G.V. gratefully acknowledges a CNG faculty fellowship of the University of Pittsburgh's Swanson School of Engineering, and a faculty fellowship from DOE-NETL. NR 51 TC 11 Z9 11 U1 1 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2011 VL 46 IS 9 BP 2928 EP 2937 DI 10.1007/s10853-010-5168-y PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 723SQ UT WOS:000287527600013 ER PT J AU Kulkarni, M Abanov, AG AF Kulkarni, Manas Abanov, Alexander G. TI Cold Fermi gas with inverse square interaction in a harmonic trap SO NUCLEAR PHYSICS B LA English DT Article DE Calogero-Sutherland model; Collective field theory; Hydrodynamics; Nonlinear dynamics; Cold atoms ID COLLECTIVE FIELD-THEORY; MODEL; LIMIT AB We study equilibrium density and spin density profiles for a model of cold one-dimensional spin 1/2 fermions interacting via inverse square interaction and exchange in an external harmonic trap. This model is the well-known spin-Calogero model (sCM) and its fully nonlinear collective field theory description is known. We extend the field theory description to the presence of an external harmonic trap and obtain analytic results for statics and dynamics of the system. For instance, we find how the equilibrium density profile changes upon tuning the interaction strength. The results we obtain for equilibrium configurations are very similar to the ones obtained recently by Ma and Yang (2010) [1] for a model of fermions with short ranged interactions. Our main approximation is the neglect of the terms of higher order in spatial derivatives in equations of motion - gradientless approximation (Kulkarni et al., 2009) [2]. Within this approximation the hydrodynamic equations of motion can be written as a set of decoupled forced Riemann-Hopf equations for the dressed Fermi momenta of the model. This enables us to write analytical solutions for the dynamics of spin and charge. We describe the time evolution of the charge density when an initial non-equilibrium profile is created by cooling the gas with an additional potential in place and then suddenly removing the potential. We present our results as a simple "single-particle" evolution in the phase space reminiscing a similar description of the dynamics of noninteracting one-dimensional fermions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kulkarni, Manas; Abanov, Alexander G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kulkarni, Manas] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Kulkarni, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM kulkarni@grad.physics.sunysb.edu FU NSF [DMR-0906866] FX We would like to thank C.N. Yang and Zhong-Qi Ma for discussing with us the results they obtained for the model of fermions with contact interaction in a harmonic trap prior to publication. We would also like to thank John Thomas, James Joseph and Dominik Schneble for several insights into experimental aspects of cold fermions in harmonic traps. The background for this work is based on our previous work with Fabio Franchini and we are very grateful to him for several discussions. A.G.A. was supported by the NSF under the grant DMR-0906866. NR 34 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD MAY 1 PY 2011 VL 846 IS 1 BP 122 EP 136 DI 10.1016/j.nuclphysb.2010.12.015 PG 15 WC Physics, Particles & Fields SC Physics GA 724YG UT WOS:000287611700005 ER PT J AU Mitri, FG AF Mitri, F. G. TI Second-harmonic pressure generation of a non-diffracting acoustical high-order Bessel vortex beam of fractional type alpha SO ULTRASONICS LA English DT Article DE Second-order nonlinearity; Weakly nonlinear wave; Non-diffracting Bessel vortex beam; Lighthill's formalism ID HIGH HARMONIC-GENERATION; RADIATION FORCE; NONLINEAR PROPAGATION; LIGHT-BEAM; 3RD-HARMONIC GENERATION; ELASTIC SPHERE; RIGID SPHERE; SCATTERING; SOUND; SPECTROSCOPY AB Background and motivation: Generalized Bessel vortex beams are regaining interest from the standpoint of acoustic scattering and radiation force theories for applications in particle rotation, mixing and manipulation. Other possible applications may include medical and nondestructive imaging. To manipulate heavy particles in a host medium, a minimum threshold of the incident sound field intensity is required at relatively high wave amplitudes such that nonlinear wave propagation occurs and the generation of harmonics may be detected. Thus, predictions of the harmonics generation become crucial from the standpoint of experimental design, and the present analysis should assist in the development of more complete models related to the (nonlinear) scattering and radiation forces under such circumstances. The purpose of this research is to construct a theoretical model for the second-harmonic pressure generation associated with a category of non-diffracting Bessel vortex beams known as high-order Bessel vortex beams of fractional type alpha (HOBVBs-F alpha). Method: The weakly nonlinear wave propagation of a HOBVB-F alpha is investigated based on Lighthill's formalism. Analytical solutions up to the second-order level of approximation are derived and discussed. Closed-form solutions are obtained, which are expressed as a function of first-order quantities available from the classical linear theory. Lateral profiles of the HOBVB-F alpha are computed and compared. Results and conclusion: The results show that the beam's width reduces and becomes narrower, the side-lobes decrease in magnitude, and the hollow region diameter (or null in magnitude) increases as the order of nonlinearity increases. Furthermore, the nonlinearity of the medium preserves the non-diffracting feature of the beam's second-harmonic generation within the pre-shock range. (C) 2010 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory [LDRD-X9N9] FX The author acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9) from Los Alamos National Laboratory. Disclosure: this unclassified publication, with the following reference no. LA-UR 10-08155, has been approved for unlimited public release under DUSA ENSCI. NR 84 TC 1 Z9 1 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD MAY PY 2011 VL 51 IS 4 BP 496 EP 502 DI 10.1016/j.ultras.2010.12.002 PG 7 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 709PS UT WOS:000286453500013 PM 21211809 ER PT J AU Johnstone, C Berz, M Makino, K Koscielniak, S Snopok, P AF Johnstone, C. Berz, M. Makino, K. Koscielniak, S. Snopok, P. TI ADVANCES IN NONLINEAR NON-SCALING FFAGs SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL ID ACCELERATORS AB Accelerators are playing increasingly important roles in basic science, technology, and medicine. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider) but remain particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient or FFAG, is an attractive alternative to the other approaches to a high-power beam source. Its strong focusing optics can mitigate space charge effects and achieve higher bunch charges than are possible in a cyclotron, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron but beyond their energy reach, well into the relativistic regime. This new concept has been advanced in non-scaling nonlinear FFAGs using powerful new methodologies developed for FFAG accelerator design and simulation. The machine described here has the high average current advantage and duty cycle of the cyclotron (without using broad-band RF frequencies) in combination with the strong focusing, smaller losses, and energy variability that are more typical of the synchrotron. The current industrial and medical standard is a cyclotron, but a competing CW FFAG could promote a shift in this baseline. This paper reports on these new advances in FFAG accelerator technology and presents advanced modeling tools for fixed-field accelerators unique to the code COSY INFINITY.(1) C1 [Johnstone, C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Berz, M.; Makino, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Koscielniak, S.] TRIUMF, Vancouver, BC 60439, Canada. [Snopok, P.] IIT, Chicago, IL 60616 USA. RP Johnstone, C (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM cjj@fnal.gov NR 34 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1690 EP 1712 DI 10.1142/S0217751X11053110 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300004 ER PT J AU Bertozzi, W Franklin, W Korbly, S Ledoux, RJ Niyazov, R Swenson, DR Klimenko, A AF Bertozzi, William Franklin, Wilbur Korbly, Steve Ledoux, Robert J. Niyazov, Rustam Swenson, David R. Klimenko, Alexei TI ACCELERATORS FOR HOMELAND SECURITY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL C1 [Bertozzi, William; Franklin, Wilbur; Korbly, Steve; Ledoux, Robert J.; Niyazov, Rustam; Swenson, David R.] Passport Syst Inc, N Billerica, MA 01862 USA. [Klimenko, Alexei] Los Alamos Natl Lab, Los Alamos, NM USA. RP Bertozzi, W (reprint author), Passport Syst Inc, 70 Treble Cove Rd, N Billerica, MA 01862 USA. OI Klimenko, Alexei/0000-0003-4255-9374 NR 9 TC 1 Z9 1 U1 1 U2 5 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1713 EP 1735 DI 10.1142/S0217751X11053122 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300005 ER PT J AU Bastaninejad, M Elmustafa, AA Ankenbrandt, CM Moretti, A Popovic, M Yonehara, K Kaplan, DM Alsharo'a, M Hanlet, PM Johnson, RP Kuchnir, M Newsham, D Rose, DV Thoma, C Welch, DR AF Bastaninejad, M. Elmustafa, A. A. Ankenbrandt, C. M. Moretti, A. Popovic, M. Yonehara, K. Kaplan, D. M. Alsharo'a, M. Hanlet, P. M. Johnson, R. P. Kuchnir, M. Newsham, D. Rose, D. V. Thoma, C. Welch, D. R. TI STUDIES OF BREAKDOWN IN A PRESSURIZED RF CAVITY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL AB Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments(1) have been used to investigate the mechanism of RF breakdown.(2) The images show evidence for melting and boiling in small regions of similar to 10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The local surface density of spark remnants, proportional to the probability of breakdown, shows a strong exponential dependence on the maximum gradient, which is reminiscent of Fowler-Nordheim behavior of electron emission from a cold cathode. New simulation results have shown good agreement with the breakdown behavior of the hydrogen gas in the Paschen region and have suggested improved behavior with the addition of trace dopants such as SF(6).(3) Present efforts are to extend the computer model to include electrode breakdown phenomena and to use scanning tunneling microscopy to search for work function differences between the conditioned and unconditioned parts of the electrodes. C1 [Bastaninejad, M.; Elmustafa, A. A.] ODU, Norfolk, VA USA. [Ankenbrandt, C. M.; Moretti, A.; Popovic, M.; Yonehara, K.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Kaplan, D. M.] IIT, Chicago, IL 60616 USA. [Alsharo'a, M.; Hanlet, P. M.; Johnson, R. P.; Kuchnir, M.; Newsham, D.] Muons Inc, Batavia, IL USA. [Rose, D. V.; Thoma, C.; Welch, D. R.] Voss Sci LLC, Albuquerque, NM USA. RP Bastaninejad, M (reprint author), ODU, Norfolk, VA USA. NR 5 TC 0 Z9 0 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1753 EP 1760 DI 10.1142/S0217751X11053158 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300008 ER PT J AU Erdelyi, B AF Erdelyi, Bela TI ON SOME ERRORS AND BIAS IN PROTON COMPUTED TOMOGRAPHY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL DE Proton computed tomography; electron density resolution; most likely path ID RADIOLOGICAL APPLICATIONS; PATH FORMALISM; LINE INTEGRALS; LIKELY PATH; RECONSTRUCTION; REPRESENTATION; THERAPY; SYSTEM AB Novel accelerator technology, including Fixed Field Alternating Gradient Accelerators (FFAG) coupled with medical imaging devices, hold significant promise for enhanced proton therapy. The accuracy and efficiency of proton therapy treatments will see improvements with the implementation of proton computed tomography (pCT), currently under development. Here, we analyze the robustness of the image reconstruction method in pCT with respect to three different error sources and conclude that pCT is inherently resilient with respect to errors in mean ionization potential, discrete sampling of proton trajectories and bias in the limit of large radiation doses. C1 [Erdelyi, Bela] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Erdelyi, Bela] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Erdelyi, B (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM berdelyi@niu.edu NR 17 TC 1 Z9 1 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1761 EP 1774 DI 10.1142/S0217751X1105316X PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300009 ER PT J AU Kelliher, D Machida, S Aslaninejad, M Pasternak, J Berg, JS Witte, H AF Kelliher, David Machida, Shinji Aslaninejad, M. Pasternak, J. Berg, J. Scott Witte, H. TI INJECTION AND EXTRACTION SYSTEMS FOR THE MUON FFAG RING IN THE NEUTRINO FACTORY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL DE FFAG; muon; kicker AB Non-scaling FFAG (NS-FFAG) rings have been proposed as a solution for muon acceleration in the Neutrino Factory In order to achieve small orbit excursion and small time of flight variation, lattices with a very compact cell structure and consequent short straight sections are required. The resulting geometry, combined with the large transverse emittance of the muon bunch, places very challenging constraints on the injection/extraction systems. The injection/extraction system requires a set of distributed kickers, a superconducting septum and increased aperture in some of the main ring magnets. A. scheme for both injection and extraction for a FFAG with triplet geometry is presented. I. addition, a solution for the required kicker magnets is proposed. C1 [Kelliher, David; Machida, Shinji] STFC Rutherford Appleton Lab, ASTeC, Didcot OX11 0QX, Oxon, England. [Aslaninejad, M.; Pasternak, J.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Berg, J. Scott] BNL, Long Isl City, NY USA. [Witte, H.] Univ Oxford, John Adams Inst Accelerator Sci, Oxford OX1 3RH, England. RP Kelliher, D (reprint author), STFC Rutherford Appleton Lab, ASTeC, Didcot OX11 0QX, Oxon, England. EM David.Kelliher@stfc.ac.uk RI Berg, Joseph/E-8371-2014; OI Berg, Joseph/0000-0002-5955-6973; Kelliher, David/0000-0001-9583-7804 NR 8 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1775 EP 1784 DI 10.1142/S0217751X11053171 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300010 ER PT J AU Makino, K Berz, M Johnstone, C AF Makino, K. Berz, M. Johnstone, C. TI HIGH-ORDER OUT-OF-PLANE EXPANSION FOR 3D FIELDS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL ID EQUATIONS; DYNAMICS AB The precise determination of the dynamics in accelerators with complicated field arrangements such as Fixed Field Alternating Gradient accelerators (FLAG) depends critically on the ability to describe the appearing magnetic fields in full 3D. However, frequently measurements or models of FFAG fields postulate their behavior in the midplane only, and rely on the fact that this midplane field and its derivatives determine the field in all of space. The detailed knowledge of the resulting out-of-plane fields is critical for a careful assessment of the vertical dynamics. We describe a method based on the differential algebraic (DA) approach obtain the resulting out expansions to any order in an order-independent, straightforward fashion. In particular, the resulting fields satisfy Maxwell's equations to the order of the expansion up to machine precision errors, and without any inaccuracies that can arise from conventional divided difference or finite element schemes for the computation of out-of-plane fields. The method relies on re-writing the underlying PDE as a fixed point problem involving DA operations, and in particular the differential algebraic integration operator. We illustrate the performance of the method for a variety of practical examples, and obtain estimates for the orders necessary to describe the fields to a prescribed accuracy. C1 [Makino, K.; Berz, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Johnstone, C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Makino, K (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM makino@msu.edu NR 20 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1807 EP 1821 DI 10.1142/S0217751X11053201 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300013 ER PT J AU Ohmori, C Berg, JS AF Ohmori, Chihiro Berg, J. Scott TI UPGRADING EMMA TO USE LOW-FREQUENCY RF CAVITIES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL DE Magnetic alloy RF cavity; fixed field alternating gradient accelerator ID PROTON DRIVER; GRADIENT; FFAG AB ENEMA is an experiment to study beam dynamics in fixed field alternating gradient accelerators (FFAGs). It accelerates the beam in about 10 turns using 1.3 GHz cavities in a mode like that used for muon accelerators. Many applications of FFAGs prefer to have slower acceleration, typically thousands of turns. To do so in ENEMA would require the RF system to be replaced with a low-frequency, high-gradient system. This paper describes the motivation for studying slow acceleration in EM MA and the required parameters for an RF system to do that. It then describes the technology needed for the RF system. C1 [Ohmori, Chihiro] KEK, Tsukuba, Ibaraki 3050801, Japan. [Berg, J. Scott] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ohmori, C (reprint author), KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. RI Berg, Joseph/E-8371-2014 OI Berg, Joseph/0000-0002-5955-6973 NR 39 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1822 EP 1832 DI 10.1142/S0217751X11053213 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300014 ER PT J AU Trbojevic, D Blaskiewicz, M Forest, E AF Trbojevic, D. Blaskiewicz, M. Forest, E. TI CROSSING RESONANCES IN A NON-SCALING FFAG SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Conference on Fixed Field Alternating Gradient Accelerators (FFAG 09) CY SEP 21-25, 2009 CL Batavia, IL ID ACCELERATORS AB There are many possible applications for the non-scaling Fixed Field Alternating Gradient (NS-FFAG): accelerating non-relativistic ions, ion cancer therapy, proton drivers, accelerator driven subcritical reactors, heavy radioactive ions, recirculating linacs, and etc. They are confronted with two significant challenges: first is crossing integer resonances as the tunes vary with energy, and that the required fast acceleration has not yet been achieved in practice. An example of a small 30-250 MeV NS-FFAG proton accelerator is used to study both problems. After an introduction, the second chapter shows theoretical predictions for the emittance blow up from crossing the integer resonances. In the third part, the lattice of the ring is briefly described. The fourth chapter describes the "phase jump" a method for fast proton acceleration, while in the chapter five a six dimensional simulations of acceleration is described, ending with conclusions. C1 [Trbojevic, D.; Blaskiewicz, M.; Forest, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Trbojevic, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dejan@bnl.gov NR 16 TC 1 Z9 1 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2011 VL 26 IS 10-11 BP 1852 EP 1864 DI 10.1142/S0217751X11053249 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 759GI UT WOS:000290228300017 ER PT J AU Song, KC Baek, JY Bae, JA Yim, JH Ko, YS Kim, DH Park, YK Jeon, JK AF Song, Ki-Chang Baek, Ji Yeon Bae, Jung A. Yim, Jin-Heong Ko, Young Soo Kim, Do Heui Park, Young-Kwon Jeon, Jong-Ki TI Octene hydroformylation by using rhodium complexes tethered onto selectively functionalized mesoporous silica and in situ high pressure IR study SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 1st Joint International Conference of the 8th Tokyo Conference on Advanced Catalytic Science and Technology/5th Asia Pacific Congress on Catalysis CY JUL 18-23, 2010 CL Sapporo, JAPAN DE Heterogeneous rhodium catalyst; SBA-15; Octene hydroformylation; FT-IR ID 1-HEXENE HYDROFORMYLATION; HETEROGENEOUS CATALYSTS; OLEFINS; SBA-15; HRH(CO)(PPH3)(3); SURFACE AB SBA-15-based heterogeneous catalysts were applied to 1-octene hydroformylation. The turn over frequency over SBA-15/gamma-aminopropylmethyldimethoxysilane (AEAPMDMS)/Rh catalyst with triphenylphosphine (TPP) ligand prepared by conventional post grafting method was higher than that of the homogeneous catalyst, (Rh(CH3COO)(2))(2) with TPP. The SBA-15/AEAPMDMS/Rh catalyst can be easily recycled without rhodium loss. The molar ratio of linear to branched nonyl aldehydes was remarkably enhanced over the heterogeneous catalysts. The selectively functionalized rhodium catalyst (SBA-15/Ph2Si(OEt)(2)/AEAPMDMS/Rh), in which rhodium was selectively tethered intra-pore of SBA-15, was beneficial for improving the selectivity to linear aldehyde. In situ high pressure FT-IR analysis suggested HRh(CO)(2)(PPh3)(2) and HRh(CO)(PPh3)(3) to be active species over the SBA-15/AEAPMDMS/Rh catalyst with TPP. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bae, Jung A.; Yim, Jin-Heong] Kongju Natl Univ, Div Adv Mat Engn, Cheonan 330717, South Korea. [Song, Ki-Chang; Baek, Ji Yeon; Ko, Young Soo; Jeon, Jong-Ki] Kongju Natl Univ, Dept Chem Engn, Cheonan 330717, South Korea. [Kim, Do Heui] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Park, Young-Kwon] Univ Seoul, Grad Sch Energy & Environm Syst Engn, Sch Environm Engn, Seoul 130743, South Korea. RP Yim, JH (reprint author), Kongju Natl Univ, Div Adv Mat Engn, 275 Budae Dong, Cheonan 330717, South Korea. EM jhyim@kongju.ac.kr; jkjeon@kongju.ac.kr RI Kim, Do Heui/I-3727-2015 NR 22 TC 6 Z9 6 U1 0 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD APR 30 PY 2011 VL 164 IS 1 BP 561 EP 565 DI 10.1016/j.cattod.2010.10.065 PG 5 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 752TE UT WOS:000289716300101 ER PT J AU Auricchio, F Scovazzi, G AF Auricchio, F. Scovazzi, G. TI Numerical methods for multi-material fluids and structures (MULTIMAT-2009) SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Editorial Material C1 [Scovazzi, G.] Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, Albuquerque, NM 87185 USA. [Auricchio, F.] Univ Pavia, Dipartimento Meccan Strutturale, I-27100 Pavia, Italy. RP Scovazzi, G (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, POB 5800,MS 1319, Albuquerque, NM 87185 USA. EM gscovaz@sandia.gov RI Auricchio, Ferdinando/B-9405-2009; OI Auricchio, Ferdinando/0000-0002-3735-2400 NR 13 TC 0 Z9 0 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1279 EP 1280 DI 10.1002/fld.2546 PG 2 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900001 ER PT J AU Dobrev, VA Ellis, TE Kolev, TV Rieben, RN AF Dobrev, V. A. Ellis, T. E. Kolev, Tz V. Rieben, R. N. TI Curvilinear finite elements for Lagrangian hydrodynamics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT Conference on Numerical Methods for Multi-material Fluids and Structures CY SEP 21-25, 2009 CL Univ Pavia, Pavia, ITALY HO Univ Pavia DE hydrodynamics; compressible flow; hyperbolic partial differential equations; Lagrangian methods; finite element methods; variational methods; high-order methods; curvilinear meshes AB We have developed a novel high-order, energy conserving approach for solving the Euler equations in a moving Lagrangian frame, which is derived from a general finite element framework. Traditionally, such equations have been solved by using continuous linear representations for kinematic variables and discontinuous constant fields for thermodynamic variables; this is the so-called staggered grid hydro (SGH) method. From our general finite element framework, we can derive several specific high-order discretization methods and in this paper we introduce a curvilinear finite element method which uses continuous bi-quadratic polynomial bases (the Q(2) isoparametric elements) to represent the kinematic variables combined with discontinuous (mapped) bi-linear bases to represent the thermodynamic variables. We consider this a natural generalization of the SGH approach and show that under simplifying low-order assumptions, we exactly recover the classical SGH method. We review the key parts of the discretization framework and demonstrate several practical advantages to using curvilinear finite elements for Lagrangian shock hydrodynamics, including: the ability to more accurately capture geometrical features of a flow region, significant improvements in symmetry preservation for radial flows, sharper resolution of a shock front for a given mesh resolution including the ability to represent a shock within a single zone and a substantial reduction in mesh imprinting for shock waves that are not aligned with the computational mesh. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Dobrev, V. A.; Kolev, Tz V.; Rieben, R. N.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Ellis, T. E.] Calif Polytech State Univ San Luis Obispo, Dept Aerosp Engn, San Luis Obispo, CA USA. RP Rieben, RN (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, 7000 East Ave,L-095, Livermore, CA 94550 USA. EM rieben1@llnl.gov NR 10 TC 25 Z9 25 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1295 EP 1310 DI 10.1002/fld.2366 PG 16 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900003 ER PT J AU Kamm, JR Shashkov, MJ Fung, J Harrison, AK Canfield, TR AF Kamm, J. R. Shashkov, M. J. Fung, J. Harrison, A. K. Canfield, T. R. TI A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT Conference on Numerical Methods for Multi-material Fluids and Structures CY SEP 21-25, 2009 CL Univ Pavia, Pavia, ITALY HO Univ Pavia DE Lagrangian hydrodynamics; compressible flow; multi-material flow; pressure relaxation ID GODUNOV METHOD; ALGORITHMS; GASES; FLOWS AB Lagrangian hydrodynamics of strength-free materials continues to present open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider three models that take different approaches to breaking the assumption of instantaneous pressure equilibration in the mixed-material cell. The first of these is the well-known method of Tipton, in which a viscosity-like pressure relaxation term is coupled with an otherwise isentropic pressure update to obtain closed-form expressions for the materials' volume fractions and corresponding sub-cell pressures. The second is the physics-inspired, geometry-based pressure relaxation model of Kamm and Shashkov, which is based on an optimization procedure that uses a local, exact Riemann problem. The third model is the unique aspect of this paper, inspired by the work of Delov and Sadchikov and Goncharov and Yanilkin. This sub-scale dynamics approach is motivated by the linearized Riemann problem to initialize volume fraction changes, which are then modified, via the materials' SIEs, to drive the mixed cell toward pressure equilibrium. Each of these approaches is packaged in the framework of a two-step time integration scheme. We compare these multi-material pressure relaxation models, together with corresponding pure-material calculations, on idealized, two-material problems with either ideal-gas or stiffened-gas equations of state. Published in 2010 by John Wiley & Sons, Ltd. C1 [Kamm, J. R.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. [Shashkov, M. J.; Fung, J.; Harrison, A. K.; Canfield, T. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kamm, JR (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, MS 0378, Albuquerque, NM 87185 USA. EM jrkamm@sandia.gov NR 17 TC 5 Z9 5 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1311 EP 1324 DI 10.1002/fld.2354 PG 14 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900004 ER PT J AU Rider, WJ Love, E Wong, MK Strack, OE Petney, SV Labreche, DA AF Rider, W. J. Love, E. Wong, M. K. Strack, O. E. Petney, S. V. Labreche, D. A. TI Adaptive methods for multi-material ALE hydrodynamics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT Conference on Numerical Methods for Multi-material Fluids and Structures CY SEP 21-25, 2009 CL Univ Pavia, Pavia, ITALY HO Univ Pavia DE arbitrary Lagrangian-Eulerian; remap; multi-material; stability; dissipation ID HYPERBOLIC CONSERVATION-LAWS; HIGH-RESOLUTION SCHEMES; PHYSICS AB Arbitrary Lagrangian-Eulerian (ALE) methods are commonly used for challenging problems in hydrodynamics. Among the most challenging matters are the approximations in the presence of multiple materials. The ALE code ALEGRA has used a constant volume method for computing the impact of multiple materials on both the Lagrangian step and the remap step of the method. Here, we describe modifications to these methods that provide greater modeling fidelity and better numerical and computational performance. In the Lagrangian step, the effects of differences in material response were not included in the constant volume method, but have been included in the new method. The new methodology can produce unstable results unless the changes in the variable states are carefully controlled. Both the stability analysis and the control of the instability are described. In the standard (Van Leer) method for the remap, the numerical approximation did not account for the presence of a material interface directly. The new methodology uses different, more stable and more dissipative numerical approximations in and near material interfaces. In addition, the standard numerical method, which is second-order accurate, has been replaced by a more accurate method, which is third-order accurate in one dimension. Published in 2010 by John Wiley & Sons, Ltd. C1 [Rider, W. J.; Love, E.; Wong, M. K.; Strack, O. E.; Petney, S. V.; Labreche, D. A.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. RP Rider, WJ (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, MS-0378,POB 5800, Albuquerque, NM 87185 USA. EM wjrider@sandia.gov NR 26 TC 4 Z9 4 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1325 EP 1337 DI 10.1002/fld.2365 PG 13 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900005 ER PT J AU Garimella, RV Lipnikov, K AF Garimella, R. V. Lipnikov, K. TI Solution of the diffusion equation in multi-material domains by sub-division of elements along reconstructed interfaces SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT Conference on Numerical Methods for Multi-material Fluids and Structures CY SEP 21-25, 2009 CL Univ Pavia, Pavia, ITALY HO Univ Pavia DE diffusion; multi-material domains; interface reconstruction; unstructured meshes; averaging of material properties ID POLYHEDRAL MESHES; TRACKING AB This paper describes the accurate solution of the diffusion equation in three-dimensional multi-material domains where some mesh elements contain more than one material. Given the volume fractions of each material in mesh elements, the method first recreates the material interfaces in the elements using interface reconstruction methods. Then the mesh is subdivided along the interfaces making sure that the final polyhedral mesh is conforming. Finally, the diffusion equation is solved on the sub-divided mesh containing all single material elements. It is shown that the method produces second-order accurate solutions with a lower error than methods that average the material properties in the multi-material elements. Published in 2010 by John Wiley & Sons, Ltd. C1 [Garimella, R. V.; Lipnikov, K.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Garimella, RV (reprint author), Los Alamos Natl Lab, MS B284,POB 1663, Los Alamos, NM 87544 USA. EM rao@lanl.gov OI Garimella, Rao/0000-0002-3812-2105 NR 20 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1423 EP 1437 DI 10.1002/fld.2350 PG 15 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900012 ER PT J AU Robinson, AC Niederhaus, JHJ Weirs, VG Love, E AF Robinson, A. C. Niederhaus, J. H. J. Weirs, V. G. Love, E. TI Arbitrary Lagrangian-Eulerian 3D ideal MHD algorithms SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article; Proceedings Paper CT Conference on Numerical Methods for Multi-material Fluids and Structures CY SEP 21-25, 2009 CL Univ Pavia, Pavia, ITALY HO Univ Pavia DE arbitrary Lagrangian-Eulerian; magnetohydrodynamics; MHD; constrained transport; verification; remap ID CONSTRAINED TRANSPORT; UNSTRUCTURED GRIDS; STRONG SHOCKS; MAGNETOHYDRODYNAMICS; DISCRETIZATION; SIMULATIONS; FLOW AB We discuss algorithmic approaches and verification results associated with the Lagrangian-Eulerian algorithms for ideal magnetohydrodynamics as implemented in the ALEGRA arbitrary Lagrangian-Eulerian code. We discuss the form of the Lagrangian step discretization including the forces and the time step control. We also discuss our constrained transport approach for remap of the magnetic flux density and a deBar-type approach for total energy conservation which permits the capturing of shocks. We demonstrate the benefit of a predictor-corrector methodology for time discretization. Directions for further research are indicated. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Robinson, A. C.; Niederhaus, J. H. J.; Weirs, V. G.; Love, E.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. RP Robinson, AC (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, MS-0378,POB 5800, Albuquerque, NM 87185 USA. EM acrobin@sandia.gov NR 26 TC 4 Z9 4 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD APR 30 PY 2011 VL 65 IS 11-12 SI SI BP 1438 EP 1450 DI 10.1002/fld.2395 PG 13 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 738AE UT WOS:000288610900013 ER PT J AU Collignon, B Schulz, R Smith, JC Baudry, J AF Collignon, Barbara Schulz, Roland Smith, Jeremy C. Baudry, Jerome TI Task-Parallel Message Passing Interface Implementation of Autodock4 for Docking of Very Large Databases of Compounds Using High-Performance Super-Computers SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE automated molecular docking; virtual high-throughput screening; MPI parallelization; super-computer; drug design ID MOLECULAR DOCKING; LIGAND INTERACTIONS; AUTOMATED DOCKING; SCORING FUNCTIONS; INHIBITORS; DISCOVERY; PROGRAMS AB A message passing interface (MPI)-based implementation (Autodock4.lga.MPI) of the grid-based docking program Autodock4 has been developed to allow simultaneous and independent docking of multiple compounds on up to thousands of central processing units (CPUs) using the Lamarkian genetic algorithm. The MPI version reads a single binary file containing precalculated grids that represent the protein-ligand interactions, i.e., van der Waals, electrostatic, and desolvation potentials, and needs only two input parameter files for the entire docking run. In comparison, the serial version of Autodock4 reads ASCII grid files and requires one parameter file per compound. The modifications performed result in significantly reduced input/output activity compared with the serial version. Autodock4.lga.MPI scales up to 8192 CPUs with a maximal overhead of 16.3%, of which two thirds is due to input/output operations and one third originates from MPI operations. The optimal docking strategy, which minimizes docking CPU time without lowering the quality of the database enrichments, comprises the docking of ligands preordered from the most to the least flexible and the assignment of the number of energy evaluations as a function of the number of rotatable bounds. In 24 h, on 8192 high-performance computing CPUs, the present MPI version would allow docking to a rigid protein of about 300K small flexible compounds or 11 million rigid compounds. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 1202-1209, 2011 C1 [Collignon, Barbara; Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Collignon, Barbara; Schulz, Roland; Smith, Jeremy C.; Baudry, Jerome] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. RP Baudry, J (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM jbaudry@utk.edu RI Schulz, Roland/A-1868-2010; smith, jeremy/B-7287-2012 OI Schulz, Roland/0000-0003-1603-2413; smith, jeremy/0000-0002-2978-3227 FU University of Tennessee; Department of Energy; UT/ORNL Genome Sciences and Technology; Department of Energy Laboratory Directed Research and Development Award; National Energy Research Scientific Computing Center [m906]; NCSA (Abe) [TG-MCA08X032]; NICS (Kraken) [TG-MCA08X032] FX This work was supported by the University of Tennessee, the Department of Energy and the UT/ORNL Genome Sciences and Technology graduate program. JCS was supported by a Department of Energy Laboratory Directed Research and Development Award in Systems Biology to ORNL. Computing time was supported by a National Energy Research Scientific Computing Center award under grant number m906 and for initial developmental work by the National Science Foundation through Tera-Grid resources provided by NCSA (Abe) and NICS (Kraken) under grant number TG-MCA08X032. NR 33 TC 22 Z9 23 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD APR 30 PY 2011 VL 32 IS 6 BP 1202 EP 1209 DI 10.1002/jcc.21696 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 735GI UT WOS:000288401000020 PM 21387347 ER PT J AU Dupont, JC Haeffelin, M Morille, Y Comstock, JM Flynn, C Long, CN Sivaraman, C Newson, RK AF Dupont, Jean-Charles Haeffelin, Martial Morille, Yohann Comstock, Jennifer M. Flynn, Connor Long, Charles N. Sivaraman, Chitra Newson, Rob K. TI Cloud properties derived from two lidars over the ARM SGP site SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADIATION MEASUREMENT PROGRAM; OPERATIONAL RAMAN LIDAR; WATER-VAPOR; CIRRUS CLOUDS; RETRIEVALS; AEROSOLS AB [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale. Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a cloud optical thickness larger than 3. The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site and (2) to estimate the discrepancies between the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPL, which are the primary ARM lidars, have a distinctly limited range within which all of these cloud properties are detectable, especially cloud top and cloud thickness, but this can include cloud base particularly during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPL-derived annual cycle of cirrus cloud base (top) altitude is biased low, especially for daylight periods, compared with those derived from the RL data, which detects cloud base ranging from 7.5 km in winter to 9.5 km in summer (and tops ranging from 8.6 to 10.5 km). The optically thickest cirrus clouds (COT > 0.3) reach 50% of the total population for the Raman lidar and only 20% for the Micropulse lidar due to the difference of pulse energy and the effect of solar irradiance contamination. A complementary study using the cloud fraction derived from the Micropulse lidar for clouds below 5 km and from the Raman lidar for cloud above 5 km allows for better estimation of the total cloud fraction between the ground and the top of the atmosphere. This study presents the diurnal cycle of cloud fraction for each season in comparisons with Long et al.'s (2006) cloud fraction calculation derived from radiative flux analysis. Citation: Dupont, J.-C., M. Haeffelin, Y. Morille, J. M. Comstock, C. Flynn, C. N. Long, C. Sivaraman, and R. K. Newson (2011), Cloud properties derived from two lidars over the ARM SGP site, Geophys. Res. Lett., 38, L08814, doi:10.1029/2010GL046274. C1 [Dupont, Jean-Charles; Morille, Yohann] Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France. [Comstock, Jennifer M.; Flynn, Connor; Long, Charles N.; Sivaraman, Chitra; Newson, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dupont, JC (reprint author), Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France. EM jean-charles.dupont@ipsl.polytechnique.fr FU Centre National de la Recherche Scientifique (CNRS); Pacific Northwest National Laboratory (PNNL); Climate Change Research Division of the U.S. Department of Energy FX The authors would like to thank the Centre National de la Recherche Scientifique (CNRS) and the Pacific Northwest National Laboratory (PNNL) for their support in this study. The authors from PNNL acknowledge the support of the Climate Change Research Division of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR) Programs. We extend our acknowledgments to the technical and computer staff of each observatory for taking the observations and making the data set easily accessible. The authors are grateful to the anonymous reviewers for their useful comments. NR 15 TC 11 Z9 11 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 29 PY 2011 VL 38 AR L08814 DI 10.1029/2010GL046274 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 757SS UT WOS:000290108600001 ER PT J AU Liu, L Wang, J Gong, SK Mao, SX AF Liu, L. Wang, J. Gong, S. K. Mao, S. X. TI High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROWTH TWINS; CUBIC METALS; NUCLEATION; CRYSTALS; COPPER; BOUNDARIES; SLIP; AL AB We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Sigma 3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Sigma 3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior. C1 [Liu, L.; Gong, S. K.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Wang, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mao, S. X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Liu, L (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. EM wangj6@lanl.gov; gongsk@buaa.edu.cn; smao@engr.pitt.edu RI Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU NSFC [50731001]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Los Alamos National Laboratory Directed Research and Development (LDRD); NSF through University of Pittsburgh [08 010934] FX S. G. acknowledges the support from NSFC No. 50731001. J. W. acknowledges the support provided by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under No. 2008LANL1026, and also acknowledge support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD). S. M. would like to acknowledge NSF CMMI 08 010934 through the University of Pittsburgh. NR 30 TC 55 Z9 55 U1 10 U2 76 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2011 VL 106 IS 17 AR 175504 DI 10.1103/PhysRevLett.106.175504 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PN UT WOS:000290100300011 PM 21635047 ER PT J AU Poulin, D Qarry, A Somma, R Verstraete, F AF Poulin, David Qarry, Angie Somma, Rolando Verstraete, Frank TI Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYSTEMS AB We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a well-known counting argument. This also demonstrates that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model. C1 [Poulin, David] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Qarry, Angie; Verstraete, Frank] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Qarry, Angie] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. [Somma, Rolando] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Poulin, D (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. RI Poulin, David/A-1481-2010; Verstraete, Frank/F-1306-2014 OI Verstraete, Frank/0000-0003-0270-5592 FU ERC; European grant Quevadis; FWF SFB; NSERC; FQRNT; NSF through CCF; LANL FX We thank I. Cirac, G. Vidal, and A. Winter for discussions. We acknowledge funding of the ERC grant Querg, the European grant Quevadis, and the FWF SFB grants Foqus and Vicom. D. P. is partially funded by NSERC and FQRNT. R. S. is partially funded by NSF through the CCF program and the Laboratory Directed Research and Development program at LANL. NR 23 TC 41 Z9 41 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2011 VL 106 IS 17 AR 170501 DI 10.1103/PhysRevLett.106.170501 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PN UT WOS:000290100300004 PM 21635023 ER PT J AU Budiman, AS Li, N Wei, Q Baldwin, JK Xiong, J Luo, H Trugman, D Jia, QX Tamura, N Kunz, M Chen, K Misra, A AF Budiman, A. S. Li, N. Wei, Q. Baldwin, J. K. Xiong, J. Luo, H. Trugman, D. Jia, Q. X. Tamura, N. Kunz, M. Chen, K. Misra, A. TI Growth and structural characterization of epitaxial Cu/Nb multilayers SO THIN SOLID FILMS LA English DT Article DE Cu/Nb; Epitaxy; Evaporation; Quasi-single crystal; Multilayers; Plasticity; Synchrotron-based Laue microdiffraction; X-ray diffraction; Transmission electron microscopy ID X-RAY MICRODIFFRACTION; BASAL-PLANE SAPPHIRE; NANOLAYERED COMPOSITES; MECHANICAL-PROPERTIES; THIN-FILMS; SUPERLATTICES; DEFORMATION; DIFFRACTION; PLASTICITY; INTERFACES AB Electron beam evaporation with optimized deposition parameters has been used to grow good quality epitaxial Cu/Nb nanoscale multilayered films on sapphire substrates. The quality of the epitaxial films, as measured by the intensities and widths of the X-ray diffraction peaks, increases with increasing deposition temperature. However, high deposition temperatures also enhance the tendency for layer pinch-off which eventually leads to spheroidization and growth of multilayer films with polycrystalline islands. Deposition temperatures and rates were optimized to produce the highest quality epitaxial films with continuous nanolayers, suitable for in situ deformation experiments in a synchrotron-based Laue micro-diffraction set up. Published by Elsevier B.V. C1 [Budiman, A. S.; Li, N.; Wei, Q.; Baldwin, J. K.; Xiong, J.; Luo, H.; Trugman, D.; Jia, Q. X.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [Tamura, N.; Kunz, M.; Chen, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. [Xiong, J.] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. RP Budiman, AS (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, POB 1663, Los Alamos, NM 87545 USA. EM suriadi@stanfordalumni.org RI Wei, Qiangmin/D-3931-2011; Jia, Q. X./C-5194-2008; Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Li, Nan /0000-0002-8248-9027; Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; University of California, Berkeley, California; NSF [0416243]; Los Alamos National Laboratory (LANL) [LDRD/X93V] FX The authors gratefully acknowledge the critical support and infrastructure provided for this work by the Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. We thank R. G. Hoagland and J. P. Hirth for insightful discussions. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the micro-diffraction program from ALS beamline 7.3.3 onto to the ALS superbend source 12.3.2 was enabled through the NSF grant #0416243. One of the authors (ASB) is supported by the Director, Los Alamos National Laboratory (LANL), under the Director's Postdoctoral Fellowship program (LDRD/X93V). NR 35 TC 26 Z9 27 U1 0 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 29 PY 2011 VL 519 IS 13 BP 4137 EP 4143 DI 10.1016/j.tsf.2010.12.077 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 758SP UT WOS:000290187100001 ER PT J AU Bilitchenko, L Liu, A Cheung, S Weeding, E Xia, B Leguia, M Anderson, JC Densmore, D AF Bilitchenko, Lesia Liu, Adam Cheung, Sherine Weeding, Emma Xia, Bing Leguia, Mariana Anderson, J. Christopher Densmore, Douglas TI Eugene - A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems SO PLOS ONE LA English DT Article ID LEVEL DESIGN; NETWORK; STANDARD AB Background: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. Results: We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Conclusions: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly. C1 [Bilitchenko, Lesia] Calif State Polytech Univ Pomona, Dept Comp Sci, Pomona, CA 91768 USA. [Liu, Adam; Xia, Bing] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Cheung, Sherine] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. [Weeding, Emma] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Leguia, Mariana; Anderson, J. Christopher] Univ Calif Berkeley, Calif Inst Quantitat Biol Res QB3, Dept Bioengn, Berkeley, CA 94720 USA. [Anderson, J. Christopher] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Densmore, Douglas] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. RP Bilitchenko, L (reprint author), Calif State Polytech Univ Pomona, Dept Comp Sci, Pomona, CA 91768 USA. EM dougd@bu.edu FU Synthetic Biology Engineering Research Center; Joint BioEnergy Institute; Coalition to Diversify Computing; Center for Hybrid Embedded Software Systems; California Institute for Quantitative Biosciences FX Synthetic Biology Engineering Research Center (www.synberc.org), the Joint BioEnergy Institute (www.jbei.org), the Coalition to Diversify Computing (http://www.cdc-computing.org), the Center for Hybrid Embedded Software Systems (CHESS) (http://chess.eecs.berkeley.edu), and the California Institute for Quantitative Biosciences (http://qb3.org). The funders' broad goals are reflected in the study design and the types of data collected and analyzed. They did not have any role in the decision to publish, or in preparation of the manuscript. NR 34 TC 49 Z9 49 U1 0 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 29 PY 2011 VL 6 IS 4 AR e18882 DI 10.1371/journal.pone.0018882 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756OZ UT WOS:000290024700030 PM 21559524 ER PT J AU DeAngelis, KM Allgaier, M Chavarria, Y Fortney, JL Hugenholtz, P Simmons, B Sublette, K Silver, WL Hazen, TC AF DeAngelis, Kristen M. Allgaier, Martin Chavarria, Yaucin Fortney, Julian L. Hugenholtz, Phillip Simmons, Blake Sublette, Kerry Silver, Whendee L. Hazen, Terry C. TI Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil SO PLOS ONE LA English DT Article ID 16S RIBOSOMAL-RNA; POLYMERASE-CHAIN-REACTION; PHOSPHORUS AVAILABILITY; LITTER DECOMPOSITION; IRON REDUCTION; DIVERSITY; BACTERIA; PRETREATMENT; DEGRADATION; POPULATIONS AB Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition. C1 [DeAngelis, Kristen M.; Chavarria, Yaucin; Fortney, Julian L.; Silver, Whendee L.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [DeAngelis, Kristen M.; Allgaier, Martin; Hugenholtz, Phillip; Simmons, Blake; Hazen, Terry C.] Joint BioEnergy Inst, Microbial Communities Grp, Deconstruct Div, Emeryville, CA USA. [Allgaier, Martin; Hugenholtz, Phillip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. [Simmons, Blake] Sandia Natl Labs, Livermore, CA USA. [Sublette, Kerry] Univ Tulsa, Ctr Appl Biogeosci, Tulsa, OK 74104 USA. [Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP DeAngelis, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. EM Kristen@post.harvard.edu RI Hugenholtz, Philip/G-9608-2011; Silver, Whendee/H-1118-2012; Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; DeAngelis, Kristen/0000-0002-5585-4551 FU United States Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Science Foundation [DEB 0543558]; Seaborg Fellowship; U.S. Department of Agriculture Forest Service International Institute of Tropical Forestry; [DEB-008538]; [DEB-0218039] FX This work was conducted as part of the Joint BioEnergy Institute (http://www.jbei.org) supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. DOE. Additional funding was provided in part by National Science Foundation grant DEB 0543558 to WS, by a Seaborg Fellowship to KMD, by DEB-008538 and DEB-0218039 to Institute for Tropical Ecosystem Studies at the University of Puerto Rico, and by U.S. Department of Agriculture Forest Service International Institute of Tropical Forestry as part of the NSF Long Term Ecological Research (LTER) program in the Luquillo Experimental Forest. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 54 TC 45 Z9 46 U1 7 U2 81 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 29 PY 2011 VL 6 IS 4 AR e19306 DI 10.1371/journal.pone.0019306 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756OZ UT WOS:000290024700130 PM 21559391 ER PT J AU Xu, SY Xia, Y Wray, LA Jia, S Meier, F Dil, JH Osterwalder, J Slomski, B Bansil, A Lin, H Cava, RJ Hasan, MZ AF Xu, Su-Yang Xia, Y. Wray, L. A. Jia, S. Meier, F. Dil, J. H. Osterwalder, J. Slomski, B. Bansil, A. Lin, H. Cava, R. J. Hasan, M. Z. TI Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator SO SCIENCE LA English DT Article ID SURFACE-STATES AB The recently discovered three-dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice, driving the system through a topological quantum phase transition. By directly measuring the topological quantum numbers and invariants, we report the observation of a phase transition in a tunable spin-orbit system, BiTl(S1-delta Se delta)(2), in which the topological state formation is visualized. In the topological state, vortex-like polarization states are observed to exhibit three-dimensional vectorial textures, which collectively feature a chirality transition as the spin momentum-locked electrons on the surface go through the zero carrier density point. Such phase transition and texture inversion can be the physical basis for observing fractional charge (+/- e/2) and other fractional topological phenomena. C1 [Xu, Su-Yang; Xia, Y.; Wray, L. A.; Hasan, M. Z.] Princeton Univ, Dept Phys, Joseph Henry Lab Phys, Princeton, NJ 08544 USA. [Wray, L. A.; Hasan, M. Z.] Lawrence Berkeley Lab, Adv Light Source, Stanford, CA 94305 USA. [Jia, S.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Meier, F.; Dil, J. H.; Slomski, B.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.] Univ Zurich Irchel, Inst Phys, CH-8057 Zurich, Switzerland. [Bansil, A.; Lin, H.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Hasan, M. Z.] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Sch Engn & Appl Sci, Princeton, NJ 08544 USA. [Hasan, M. Z.] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Joseph Henry Lab Phys, Princeton, NJ 08544 USA. EM mzhasan@princeton.edu RI HASAN, M. Zahid/D-8237-2012; Dil, Hugo/F-6995-2012; Lin, Hsin/F-9568-2012 OI Dil, Hugo/0000-0002-6016-6120; Lin, Hsin/0000-0002-4688-2315 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG-02-05ER46200, AC03-76SF00098, DE-FG02-07ER46352]; NSF [DMR-1006492] FX We acknowledge discussions with M. Neupane, D. Huse, and D. Haldane. Synchrotron x-ray-based measurements are supported by the Office of Basic Energy Sciences, U.S. Department of Energy (grants DE-FG-02-05ER46200, AC03-76SF00098, and DE-FG02-07ER46352). M.Z.H. acknowledges visiting-scientist support from Lawrence Berkeley National Laboratory and additional support from the A. P. Sloan Foundation. Materials growth and characterization are supported by NSF grant DMR-1006492. NR 28 TC 214 Z9 215 U1 12 U2 114 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 29 PY 2011 VL 332 IS 6029 BP 560 EP 564 DI 10.1126/science.1201607 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756DE UT WOS:000289991100040 PM 21454752 ER PT J AU McCarthy, MA Liu, B Donoghue, EP Kravchenko, I Kim, DY So, F Rinzler, AG AF McCarthy, M. A. Liu, B. Donoghue, E. P. Kravchenko, I. Kim, D. Y. So, F. Rinzler, A. G. TI Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays SO SCIENCE LA English DT Article ID THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; DEPENDENCE; DEVICE; SI AB Intrinsic nonuniformity in the polycrystalline-silicon backplane transistors of active matrix organic light-emitting diode displays severely limits display size. Organic semiconductors might provide an alternative, but their mobility remains too low to be useful in the conventional thin-film transistor design. Here we demonstrate an organic channel light-emitting transistor operating at low voltage, with low power dissipation, and high aperture ratio, in the three primary colors. The high level of performance is enabled by a single-wall carbon nanotube network source electrode that permits integration of the drive transistor and the light emitter into an efficient single stacked device. The performance demonstrated is comparable to that of polycrystalline-silicon backplane transistor-driven display pixels. C1 [McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Rinzler, A. G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [McCarthy, M. A.; Kim, D. Y.; So, F.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravchenko, I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Rinzler, AG (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM rinzler@phys.ufl.edu RI KIM, DO YOUNG/B-9147-2012; Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy; NSF [ECCS-0824157]; Nanoholdings LLC FX We thank J. R. Reynolds (University of Florida) for useful discussions. We thank K. Takimiya (Hiroshima University) and E. Kanoh (Nippon Kayaku Co., Ltd.) for supplying the DNTT, and the University of Florida Nanoscale Research Facility for use of equipment and technical support. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. We acknowledge support from the NSF (ECCS-0824157) and Nanoholdings LLC. The University of Florida has filed patent applications for the CN-VOLET architecture and for its use in AMOLED displays. NR 26 TC 183 Z9 186 U1 21 U2 203 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 29 PY 2011 VL 332 IS 6029 BP 570 EP 573 DI 10.1126/science.1203052 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756DE UT WOS:000289991100043 PM 21527708 ER PT J AU Curry, JJ Estupinan, EG Henins, A Lapatovich, WP Shastri, SD AF Curry, J. J. Estupinan, E. G. Henins, A. Lapatovich, W. P. Shastri, S. D. TI Measurement of vapor pressures using X-ray induced fluorescence SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TRIIODIDE; VAPORIZATION; TRICHLORIDE; SUBLIMATION; TRIBROMIDE AB X-ray induced fluorescence is demonstrated as a novel and fast method for measuring vapor pressures at high temperatures and high pressures. As such, it is an excellent complement to the effusion method, which is limited to lower pressures. High-energy synchrotron radiation was used to measure the total densities of Dy in the equilibrium vapor over condensed DyI(3) and Tm in the equilibrium vapor over condensed TmI(3). Corresponding vapor pressures were determined with measured vapor cell temperatures across a range of vapor pressures of nearly three orders of magnitude, from less than 10(2) Pa to more than 104 Pa. Individual data points were obtained in time periods ranging from 10 to 30 s each. Published by Elsevier B.V. C1 [Curry, J. J.; Henins, A.] NIST, Gaithersburg, MD 20899 USA. [Estupinan, E. G.; Lapatovich, W. P.] OSRAM SYLVANIA Inc, Beverly, MA USA. [Shastri, S. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Curry, JJ (reprint author), NIST, Gaithersburg, MD 20899 USA. EM jjcurry@nist.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the management of OSRAM SYLVANIA for supporting this project and we thank Joanne Brown, Victor Perez, Jeff Neil, Michael Quilici, and John Kelso, all of OSRAM SYLVANIA, for their expert technical assistance. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 16 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 29 PY 2011 VL 507 IS 1-3 BP 52 EP 56 DI 10.1016/j.cplett.2011.03.061 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 753KP UT WOS:000289772600010 ER PT J AU Chen, J Salamon, MB Akutagawa, S Akimitsu, J Singleton, J Zhang, JL Jiao, L Yuan, HQ AF Chen, J. Salamon, M. B. Akutagawa, S. Akimitsu, J. Singleton, J. Zhang, J. L. Jiao, L. Yuan, H. Q. TI Evidence of nodal gap structure in the noncentrosymmetric superconductor Y2C3 SO PHYSICAL REVIEW B LA English DT Article ID YTTRIUM SESQUICARBIDE; SPIN AB The magnetic penetration depth lambda(T) and the upper critical field mu H-0(c2)(T-c) of the non-centrosymmetric superconductor Y2C3 have been measured using a tunnel-diode-based resonant oscillation technique. We found that the penetration depth lambda(T) and its corresponding superfluid density rho(s)(T) show linear temperature dependence at very low temperatures (T << Tc), indicating the existence of line nodes in the superconducting energy gap. Moreover, the upper critical field mu H-0(c2)(T-c) presents a weak upturn at low temperatures with a rather high value of mu H-0(c2)(0) similar or equal to 29 T, which slightly exceeds the weak-coupling Pauli limit. We discuss the possible origins for these nontrivial superconducting properties, and argue that the nodal gap structure in Y2C3 is likely attributed to the absence of inversion symmetry, which allows the admixture of spin-singlet and spin-triplet pairing states. C1 [Chen, J.; Zhang, J. L.; Jiao, L.; Yuan, H. Q.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Salamon, M. B.] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Akutagawa, S.; Akimitsu, J.] Aoyama Gakuin Univ, Dept Phys & Math, Kanagawa 2298558, Japan. [Akimitsu, J.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. RP Chen, J (reprint author), Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. EM hqyuan@zju.edu.cn FU Natural Science Foundation of China; National Basic Research Program of China (973 program); Ministry of Education of China; Zhejiang Provincial Natural Science Foundation of China; Fundamental Research Funds for the Central Universities; National Science Foundation; Department of Energy; State of Florida; Ministry of Education, Culture, Sports, Science and Technology, Japan FX We acknowledge helpful discussion with D. F. Agterburg, S. K. Yip, and M. Sigrist. This work was supported by the Natural Science Foundation of China, the National Basic Research Program of China (973 program), the PCSIRT of the Ministry of Education of China, Zhejiang Provincial Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities. Work at NHMFL-LANL is performed under the auspices of the National Science Foundation, Department of Energy, and State of Florida. J. A. was partially supported by "High-Tech Research Center Project" for Private Universities and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. NR 35 TC 22 Z9 22 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 29 PY 2011 VL 83 IS 14 AR 144529 DI 10.1103/PhysRevB.83.144529 PG 5 WC Physics, Condensed Matter SC Physics GA 781YQ UT WOS:000291974400009 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gonidec, A. Gonzalez, S. de la Hoz, S. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of Dijet Azimuthal Decorrelations in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS AB Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full data set ( integral Ldt = 36 pb(-1)) acquired by the ATLAS detector during the 2010 root s = 7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high-energy regime. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Codina, E. Perez; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; Zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Arik, E.; Beddall, A.] Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Alexa, C.; Caramarcu, C.; Pantea, D.] W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Protopopescu, S.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Khakzad, M.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] IN2P3, CNRS, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Coll Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Ciba, K.; Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; O'Brien, B. J.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genva, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] IN2P3, CNRS, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Bordoni, S.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] IN2P3, CNRS, Paris, France. [Akesson, T. P. A.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Hughes-Jones, R. E.; Knoops, E. B. F. G.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Hughes-Jones, R. E.; Knoops, E. B. F. G.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] IN2P3, CNRS, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] IN2P3, CNRS, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Portugal. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Chafaq, A.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Hoummada, A.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.] CEA Saclay, Inst Rech Lois Fondamentales Univers, DSM IRFU, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Leney, K. J. C.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] Univ Valencia, IMB CNM, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Bansal, V.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Freiburg, Germany. RI la rotonda, laura/B-4028-2016; St.Denis, Richard/C-8997-2012; Gorelov, Igor/J-9010-2015; Alexa, Calin/F-6345-2010; collins-tooth, christopher/A-9201-2012; Doyle, Anthony/C-5889-2009; Prokoshin, Fedor/E-2795-2012; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Takai, Helio/C-3301-2012; Booth, Christopher/B-5263-2016; Hansen, John/B-9058-2015; Bosman, Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Jones, Roger/H-5578-2011; O'Shea, Val/G-1279-2010; Smirnova, Oxana/A-4401-2013; Anjos, Nuno/I-3918-2013; Chudoba, Jiri/G-7737-2014; Ferrer, Antonio/H-2942-2015; Olshevskiy, Alexander/I-1580-2016; de Groot, Nicolo/A-2675-2009; De, Kaushik/N-1953-2013; Livan, Michele/D-7531-2012; Wolter, Marcin/A-7412-2012; Andreazza, Attilio/E-5642-2011; Kuleshov, Sergey/D-9940-2013; Brooks, William/C-8636-2013; Ferrando, James/A-9192-2012; Fazio, Salvatore /G-5156-2010; Gladilin, Leonid/B-5226-2011; Chekulaev, Sergey/O-1145-2015; Gutierrez, Phillip/C-1161-2011; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Vranjes Milosavljevic, Marija/F-9847-2016; Nemecek, Stanislav/G-5931-2014; SULIN, VLADIMIR/N-2793-2015; Leyton, Michael/G-2214-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Martins, Paulo/M-1844-2014; Villaplana Perez, Miguel/B-2717-2015; Riu, Imma/L-7385-2014; Shmeleva, Alevtina/M-6199-2015; Lee, Jason/B-9701-2014; Sukharev, Andrey/A-6470-2014; De Cecco, Sandro/B-1016-2012; Snesarev, Andrey/H-5090-2013; Lei, Xiaowen/O-4348-2014; Peleganchuk, Sergey/J-6722-2014; Joergensen, Morten/E-6847-2015; KHODINOV, ALEKSANDR/D-6269-2015; Cascella, Michele/B-6156-2013; Stoicea, Gabriel/B-6717-2011; Orlov, Ilya/E-6611-2012; Petrucci, Fabrizio/G-8348-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Della Pietra, Massimo/J-5008-2012; Casadei, Diego/I-1785-2013; Moraes, Arthur/F-6478-2010; Solfaroli Camillocci, Elena/J-1596-2012; Moorhead, Gareth/B-6634-2009; Morozov, Sergey/C-1396-2014; Akimov, Andrey/N-1769-2015; branchini, paolo/A-4857-2011; Dawson, Ian/K-6090-2013; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/C-3487-2012; Losada, Marta/B-2261-2010; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Pina, Joao /C-4391-2012; Li, Xuefei/C-3861-2012; Kramarenko, Victor/E-1781-2012; Smirnova, Lidia/D-8089-2012; Delmastro, Marco/I-5599-2012; Di Nardo, Roberto/J-4993-2012; Marcisovsky, Michal/H-1533-2014; Kurashige, Hisaya/H-4916-2012; Camarri, Paolo/M-7979-2015; Mitsou, Vasiliki/D-1967-2009; Robson, Aidan/G-1087-2011; Grinstein, Sebastian/N-3988-2014; Annovi, Alberto/G-6028-2012; Ventura, Andrea/A-9544-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Conde Muino, Patricia/F-7696-2011; Jakubek, Jan/E-6530-2011; Britton, David/F-2602-2010; Gavrilenko, Igor/M-8260-2015; Fabbri, Laura/H-3442-2012; spagnolo, stefania/A-6359-2012; Kartvelishvili, Vakhtang/K-2312-2013; Boyko, Igor/J-3659-2013; Warburton, Andreas/N-8028-2013; Vanyashin, Aleksandr/H-7796-2013; Grancagnolo, Sergio/J-3957-2015; Mir, Lluisa-Maria/G-7212-2015; valente, paolo/A-6640-2010; CARPENTIERI, CARMELA/E-2137-2015; Di Micco, Biagio/J-1755-2012; Demirkoz, Bilge/C-8179-2014; Samset, Bjorn H./B-9248-2012; Weigell, Philipp/I-9356-2012; Mikestikova, Marcela/H-1996-2014; Buttar, Craig/D-3706-2011; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Veneziano, Stefano/J-1610-2012; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Perrino, Roberto/B-4633-2010; Guo, Jun/O-5202-2015; Morone, Maria Cristina/P-4407-2016; Smirnov, Sergei/F-1014-2011; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Maneira, Jose/D-8486-2011; Santamarina Rios, Cibran/K-4686-2014; Kupco, Alexander/G-9713-2014; Lokajicek, Milos/G-7800-2014; Cavalli-Sforza, Matteo/H-7102-2015; Kuzhir, Polina/H-8653-2012; Canelli, Florencia/O-9693-2016 OI Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Gorelov, Igor/0000-0001-5570-0133; Doyle, Anthony/0000-0001-6322-6195; Prokoshin, Fedor/0000-0001-6389-5399; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Takai, Helio/0000-0001-9253-8307; Booth, Christopher/0000-0002-6051-2847; Hansen, John/0000-0002-8422-5543; Bosman, Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Jones, Roger/0000-0002-6427-3513; O'Shea, Val/0000-0001-7183-1205; Smirnova, Oxana/0000-0003-2517-531X; Ferrer, Antonio/0000-0003-0532-711X; Olshevskiy, Alexander/0000-0002-8902-1793; De, Kaushik/0000-0002-5647-4489; Livan, Michele/0000-0002-5877-0062; Andreazza, Attilio/0000-0001-5161-5759; Kuleshov, Sergey/0000-0002-3065-326X; Brooks, William/0000-0001-6161-3570; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Leyton, Michael/0000-0002-0727-8107; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Martins, Paulo/0000-0003-3753-3751; Villaplana Perez, Miguel/0000-0002-0048-4602; Riu, Imma/0000-0002-3742-4582; Lee, Jason/0000-0002-2153-1519; Lei, Xiaowen/0000-0002-2564-8351; Peleganchuk, Sergey/0000-0003-0907-7592; Joergensen, Morten/0000-0002-6790-9361; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Cascella, Michele/0000-0003-2091-2501; Stoicea, Gabriel/0000-0002-7511-4614; Orlov, Ilya/0000-0003-4073-0326; Petrucci, Fabrizio/0000-0002-5278-2206; Della Pietra, Massimo/0000-0003-4446-3368; Moraes, Arthur/0000-0002-5157-5686; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Moorhead, Gareth/0000-0002-9299-9549; Morozov, Sergey/0000-0002-6748-7277; Wemans, Andre/0000-0002-9669-9500; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Pina, Joao /0000-0001-8959-5044; Delmastro, Marco/0000-0003-2992-3805; Camarri, Paolo/0000-0002-5732-5645; Mitsou, Vasiliki/0000-0002-1533-8886; Grinstein, Sebastian/0000-0002-6460-8694; Annovi, Alberto/0000-0002-4649-4398; Ventura, Andrea/0000-0002-3368-3413; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Conde Muino, Patricia/0000-0002-9187-7478; Britton, David/0000-0001-9998-4342; Fabbri, Laura/0000-0002-4002-8353; spagnolo, stefania/0000-0001-7482-6348; Boyko, Igor/0000-0002-3355-4662; Warburton, Andreas/0000-0002-2298-7315; Vanyashin, Aleksandr/0000-0002-0367-5666; Grancagnolo, Sergio/0000-0001-8490-8304; Mir, Lluisa-Maria/0000-0002-4276-715X; valente, paolo/0000-0002-5413-0068; CARPENTIERI, CARMELA/0000-0002-2994-0317; Samset, Bjorn H./0000-0001-8013-1833; Mikestikova, Marcela/0000-0003-1277-2596; Wolters, Helmut/0000-0002-9588-1773; Veneziano, Stefano/0000-0002-2598-2659; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Perrino, Roberto/0000-0002-5764-7337; Guo, Jun/0000-0001-8125-9433; Morone, Maria Cristina/0000-0002-0200-0632; Smirnov, Sergei/0000-0002-6778-073X; Goncalo, Ricardo/0000-0002-3826-3442; Maneira, Jose/0000-0002-3222-2738; Santamarina Rios, Cibran/0000-0002-9810-1816; Kuzhir, Polina/0000-0003-3689-0837; Canelli, Florencia/0000-0001-6361-2117 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, U.S; NSF, U.S FX We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is gratefully acknowledged, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U. S.), and in the Tier-2 facilities worldwide. NR 30 TC 37 Z9 37 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2011 VL 106 IS 17 AR 172002 DI 10.1103/PhysRevLett.106.172002 PG 17 WC Physics, Multidisciplinary SC Physics GA 757PN UT WOS:000290100300007 PM 21635030 ER PT J AU Swenson, DWH Levy, T Cohen, G Rabani, E Miller, WH AF Swenson, David W. H. Levy, Tal Cohen, Guy Rabani, Eran Miller, William H. TI Application of a semiclassical model for the second-quantized many-electron Hamiltonian to nonequilibrium quantum transport: The resonant level model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIAL-VALUE REPRESENTATION; THERMAL RATE CONSTANTS; COMPLEX MOLECULAR-SYSTEMS; CONDENSED-PHASE SYSTEMS; CLASSICAL-MODELS; INFLUENCE FUNCTIONALS; COULOMB-BLOCKADE; DYNAMICS; FREEDOM; CONDUCTANCE AB A semiclassical approach is developed for nonequilibrium quantum transport in molecular junctions. Following the early work of Miller and White [J. Chem. Phys. 84, 5059 (1986)], the many-electron Hamiltonian in second quantization is mapped onto a classical model that preserves the fermionic character of electrons. The resulting classical electronic Hamiltonian allows for real-time molecular dynamics simulations of the many-body problem from an uncorrelated initial state to the steady state. Comparisons with exact results generated for the resonant level model reveal that a semiclassical treatment of transport provides a quantitative description of the dynamics at all relevant timescales for a wide range of bias and gate potentials, and for different temperatures. The approach opens a door to treating nontrivial quantum transport problems that remain far from the reach of fully quantum methodologies. (C) 2011 American Institute of Physics. [doi:10.1063/1.3583366] C1 [Swenson, David W. H.; Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Swenson, David W. H.; Miller, William H.] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Swenson, David W. H.; Miller, William H.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Levy, Tal; Cohen, Guy; Rabani, Eran] Tel Aviv Univ, Sch Chem, Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. RP Swenson, DWH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rabani@tau.ac.il; millerwh@berkeley.edu RI Cohen, Guy/C-8331-2011; Swenson, David/B-7543-2012; Levy, Tal J./E-2105-2012; Rabani, Eran/M-1263-2013 OI Cohen, Guy/0000-0001-7404-4055; Levy, Tal J./0000-0001-6820-3849; Rabani, Eran/0000-0003-2031-3525 FU US-Israel Binational Science Foundation; FP7 Marie Curie IOF project HJSC; National Science Foundation [CHE-0809073]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; The Center for Nanoscience and Nanotechnology at Tel Aviv University; Azrieli Foundation; Miller Institute for Basic Research in Science at UC Berkeley FX This work was supported by the US-Israel Binational Science Foundation, by the FP7 Marie Curie IOF project HJSC, by the National Science Foundation Grant No. CHE-0809073 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge a generous allocation of supercomputing time from the National Energy Research Scientific Computing Center (NERSC) and the use of the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory. T.L. is grateful to the The Center for Nanoscience and Nanotechnology at Tel Aviv University of a doctoral fellowship. G.C. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. E.R. thanks the Miller Institute for Basic Research in Science at UC Berkeley for partial financial support via a Visiting Miller Professorship. NR 52 TC 14 Z9 14 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2011 VL 134 IS 16 AR 164103 DI 10.1063/1.3583366 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 756XH UT WOS:000290047600004 PM 21528946 ER PT J AU Raut, R Crowell, AS Fallin, B Howell, CR Huibregtse, C Kelley, JH Kawano, T Kwan, E Rusev, G Tonchev, AP Tornow, W Vieira, DJ Wilhelmy, JB AF Raut, R. Crowell, A. S. Fallin, B. Howell, C. R. Huibregtse, C. Kelley, J. H. Kawano, T. Kwan, E. Rusev, G. Tonchev, A. P. Tornow, W. Vieira, D. J. Wilhelmy, J. B. TI Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV SO PHYSICAL REVIEW C LA English DT Article ID EXCITATION-FUNCTIONS; ENERGY-RANGE; ISOTOPES; NUCLEI; GERMANIUM; GALLIUM; FORMULA; AS-75; N,P AB Cross-section measurements for neutron-induced reactions on GaAs have been carried out at twelve different neutron energies from 7.5 to 15 MeV using the activation technique. The monoenergetic neutron beams were produced via the 2H(d, n)(3)He reaction. GaAs samples were activated along with Au and Al monitor foils to determine the incident neutron flux. The activities induced by the reaction products were measured using high-resolution gamma-ray spectroscopy. Cross sections for five reaction channels, viz., (69)Ga(n, 2n)(68)Ga, (69)Ga(n, p) (69)Zn(m), (71)Ga(n, p)(71)Zn(m), (75)As(n, 2n)(74)As, and (75)As(n, p)(75)Ge, are reported. The results are compared with the previous measurements and available data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS and the COH3 codes and are compared with the experimental results. C1 [Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Raut, R.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Huibregtse, C.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tonchev, A. P.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Kelley, J. H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kawano, T.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Raut, R (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. FU National Nuclear Security Administration under the Stewardship Science Academic Alliance through the US Department of Energy [DE-PS52-08NA28920, DE-FG52-06NA26155]; Los Alamos National Laboratory [W-7405-ENG-36] FX The authors are grateful to Dr. C. Kalbach Walker and Dr. A. J. Koning for helpful discussions on statistical-model calculations and the TALYS code. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliance Program through the US Department of Energy Grants No. DE-PS52-08NA28920 and No. DE-FG52-06NA26155 and by Los Alamos National Laboratory Grant No. W-7405-ENG-36. NR 27 TC 11 Z9 11 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 28 PY 2011 VL 83 IS 4 AR 044621 DI 10.1103/PhysRevC.83.044621 PG 11 WC Physics, Nuclear SC Physics GA 758KJ UT WOS:000290163300004 ER PT J AU Tarrio, D Tassan-Got, L Audouin, L Berthier, B Duran, I Ferrant, L Isaev, S Le Naour, C Paradela, C Stephan, C Trubert, D Abbondanno, U Aerts, G Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Dolfini, R Domingo-Pardo, C Dridi, W Eleftheriadis, C Embid-Segura, M Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Fujii, K Furman, W Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kadi, Y Kappeler, F Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lampoudis, C Leeb, H Lederer, C Lindote, A Lopes, I Losito, R Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Martinez, T Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Oshima, M Pancin, J Papachristodoulou, C Papadopoulos, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Sarmento, R Savvidis, I Tagliente, G Tain, JL Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Tarrio, D. Tassan-Got, L. Audouin, L. Berthier, B. Duran, I. Ferrant, L. Isaev, S. Le Naour, C. Paradela, C. Stephan, C. Trubert, D. Abbondanno, U. Aerts, G. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Carrillo de Albornoz, A. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Dolfini, R. Domingo-Pardo, C. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Fujii, K. Furman, W. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lampoudis, C. Leeb, H. Lederer, C. Lindote, A. Lopes, I. Losito, R. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Oshima, M. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Sarmento, R. Savvidis, I. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. CA N TOF Collaboration TI Neutron-induced fission cross section of Pb-nat and Bi-209 from threshold to 1 GeV: An improved parametrization SO PHYSICAL REVIEW C LA English DT Article ID IONIZATION-CHAMBER; SYSTEMATICS; U-238 AB Neutron-induced fission cross sections for Pb-nat and Bi-209 were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to U-235 and U-238 in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range. C1 [Tarrio, D.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; David, S.] IPN, IN2P3, CNRS, Orsay, France. [Abbondanno, U.; Belloni, F.; Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Carrapico, C.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Mendoza, E.; Villamarin, D.] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Osterreich Univ, Atominst, A-1060 Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] IReS, IN2P3, CNRS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Guerrero, C.; Herrera-Martinez, A.; Kadi, Y.; Losito, R.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, Geneva, Switzerland. [Capote, R.; Frais-Koelbl, H.; Griesmayer, E.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Capote, R.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapico, C.; Carrillo de Albornoz, A.; Marques, L.; Salgado, J.; Santos, C.; Sarmento, R.; Tavora, L.; Vaz, P.] ITN, Lisbon, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] LIP Coimbra, Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Kernforschungszentrum Karlsruhe GmbH, Inst Kernphys, KIT, D-7500 Karlsruhe, Germany. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Eleftheriadis, C.; Konovalov, V.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Furman, W.; Ketlerov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Goverdovski, A.] Inst Phys & Power Engn, Obninsk, Kaluga Region, Russia. [Haas, B.] CENBG, IN2P3, CNRS, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heil, M.] GSI Darmstadt, D-6100 Darmstadt, Germany. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, Athens, Greece. [Lederer, C.] Univ Vienna, Fac Phys, Vienna, Austria. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Isotopenforsch & Kernphys, Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy. RP Tarrio, D (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain. EM diego.tarrio@usc.es RI Ventura, Alberto/B-9584-2011; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Becvar, Frantisek/D-3824-2012; Jericha, Erwin/A-4094-2011; Chepel, Vitaly/H-4538-2012; Rauscher, Thomas/D-2086-2009; Lindote, Alexandre/H-4437-2013; Lederer, Claudia/H-4677-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Quesada Molina, Jose Manuel/K-5267-2014; Mendoza Cembranos, Emilio/K-5789-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; OI Ventura, Alberto/0000-0001-6748-7931; Cano Ott, Daniel/0000-0002-9568-7508; Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Massimi, Cristian/0000-0003-2499-5586; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Tarrio, Diego/0000-0002-9858-3341 FU EC [FIKW-CT-2000-00107]; Spanish Ministerio de Educacion [FPU-AP2007-04542] FX This work was partially supported by the EC under Contract No. FIKW-CT-2000-00107 and by the Spanish Ministerio de Educacion under Grant No. FPU-AP2007-04542. NR 34 TC 25 Z9 25 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD APR 28 PY 2011 VL 83 IS 4 AR 044620 DI 10.1103/PhysRevC.83.044620 PG 9 WC Physics, Nuclear SC Physics GA 758KJ UT WOS:000290163300003 ER PT J AU Berryman, JG AF Berryman, James G. TI Bounds and self-consistent estimates for elastic constants of polycrystals composed of orthorhombics or crystals with higher symmetries SO PHYSICAL REVIEW E LA English DT Article ID HASHIN-SHTRIKMAN BOUNDS; TETRAGONAL SYMMETRIES; MODULI AB Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Berryman, JG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R1116, Berkeley, CA 94720 USA. EM JGBerryman@LBL.GOV FU US Department of Energy, at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The author thanks Jonathan Ajo-Franklin and Michael Kowalsky for useful comments on the work. Work performed under the auspices of the US Department of Energy, at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. This material is based upon work supported as part of the Subsurface Science Scientific Focus Area funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under award number DE-AC02-05CH11231. Some additional support was provided by the Geosciences Research Program of the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. All support for the project is gratefully acknowledged. NR 27 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR 28 PY 2011 VL 83 IS 4 AR 046130 DI 10.1103/PhysRevE.83.046130 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 758HN UT WOS:000290154800005 PM 21599263 ER PT J AU Armstrong, R Ajo-Franklin, J AF Armstrong, Ryan Ajo-Franklin, Jonathan TI Investigating biomineralization using synchrotron based X-ray computed microtomography SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PRECIPITATION AB This work presents the results of a study where synchrotron based x-ray computed microtomography (CMT) was used to investigate changes in pore morphology during calcium carbonate biomineralization. We simultaneously examine changes in pore microstructure and bulk permeability within glass bead columns during biogenic CaCO3 precipitation induced by Sporosarcina pasteurii. We observe a three order of magnitude reduction in permeability over relatively short time-scales (similar to 60 hrs) during the carbonate precipitation process. The resulting precipitates were a microporous composite of spherical and cubic CaCO3 precipitates. CMT images taken during precipitation were analyzed for effective pore radii, effective throat radii, and other pore-scale characteristics using 3DMA-ROCK. The Kozeny-Carman relation provided a poor fit to the raw permeability data, however, once this function was augmented with geometric information extracted from CMT imagery a better fit was provided suggesting that pore geometry should be considered temporally variable when modeling permeability change during biomineralization. Citation: Armstrong, R., and J. Ajo-Franklin (2011), Investigating biomineralization using synchrotron based X-ray computed microtomography, Geophys. Res. Lett., 38, L08406, doi:10.1029/2011GL046916. C1 [Armstrong, Ryan] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Armstrong, Ryan; Ajo-Franklin, Jonathan] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Armstrong, R (reprint author), Oregon State Univ, Sch Chem Biol & Environm Engn, 103 Gleeson Hall, Corvallis, OR 97331 USA. EM armstror@onid.orst.edu RI Ajo-Franklin, Jonathan/G-7169-2015; OI Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU U.S. DOE through the LBNL Sustainable Systems Scientific Focus Area [DE-AC02-05CH11231]; U.S. DOE, Office of Basic Energy Sciences [DE-AC020-5CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX Primary support was provided by the U.S. DOE Biological and Environmental Research Program (contract DE-AC02-05CH11231) through the LBNL Sustainable Systems Scientific Focus Area. Secondary support for J.A-F, provided by the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center, funded by U.S. DOE, Office of Basic Energy Sciences (contract DE-AC020-5CH11231). We also thank Jamie Nasiatka (ALS, BL8.3.2) for flowcell design, Masa Prodanovic (UT Austin) for providing 3DMA, Qianoa Hu for SEM imaging assistance, and Dorthe Wildenschild (OSU) for computing support. CMT work was performed with the assistance of Alastair MacDowell at the Advanced Light Source, Beamline 8.3.2, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE (contract DE-AC02-05CH11231). Microbiological work was performed with the assistance of Caroline Ajo-Franklin as a User project at the Biological Nanostructure Facility within the Molecular Foundry (LBNL) which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE (contract DE-AC02-05CH11231). NR 9 TC 17 Z9 17 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2011 VL 38 AR L08406 DI 10.1029/2011GL046916 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 757SR UT WOS:000290108500003 ER PT J AU Bollinger, AT Dubuis, G Yoon, J Pavuna, D Misewich, J Bozovic, I AF Bollinger, A. T. Dubuis, G. Yoon, J. Pavuna, D. Misewich, J. Bozovic, I. TI Superconductor-insulator transition in La2-xSrxCuO4 at the pair quantum resistance SO NATURE LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; INTERFACE SUPERCONDUCTIVITY; 2-DIMENSIONAL LIMIT; SUPERFLUID DENSITY; GROUND-STATE; LIQUID; FILMS AB High-temperature superconductivity in copper oxides arises when a parent insulator compound is doped beyond some critical concentration; what exactly happens at this superconductor-insulator transition is a key open question(1). The cleanest approach is to tune the carrier density using the electric field effect(2-7); for example, it was learned in this way(5) that weak electron localization transforms superconducting SrTiO3 into a Fermi-glass insulator. But in the copper oxides this has been a long-standing technical challenge(3), because perfect ultrathin films and huge local fields (>10(9) V m(-1)) are needed. Recently, such fields have been obtained using electrolytes or ionic liquids in the electric double-layer transistor configuration(8-10). Here we report synthesis of epitaxial films of La2 - xSrxCuO4 that are one unit cell thick, and fabrication of double-layer transistors. Very large fields and induced changes in surface carrier density enable shifts in the critical temperature by up to 30 K. Hundreds of resistance versus temperature and carrier density curves were recorded and shown to collapse onto a single function, as predicted for a two-dimensional superconductor-insulator transition(11-14). The observed critical resistance is precisely the quantum resistance for pairs, R-Q = h/(2e)(2) = 6.45 k Omega, suggestive of a phase transition driven by quantum phase fluctuations, and Cooper pair (de) localization. C1 [Bollinger, A. T.; Dubuis, G.; Yoon, J.; Misewich, J.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dubuis, G.; Pavuna, D.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Bozovic, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bozovic@bnl.gov RI Dubuis, Guy/A-6849-2012 OI Dubuis, Guy/0000-0002-8199-4953 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; US DOE, Energy Frontier Research Center; Laboratory for Physics of Complex Matter (EPFL); Swiss National Science Foundation FX The work at BNL was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A. T. B. was supported by the US DOE, Energy Frontier Research Center. D. P. and G. D. were supported by the Laboratory for Physics of Complex Matter (EPFL) and the Swiss National Science Foundation. We are grateful to A. Tsvelik, J. C. Davis, A. Balatsky, P. N. Armitage, A. Goldman, V. Gantmakher, I. Herbut, Z. Tesanovic, A. Chubukov, J. Mannhart, J.-M. Triscone, N. Markovic, N. Mason and M. Norman for comments and suggestions and to R. Adzic, G. Logvenov, J. Pereiro, J. Sadovsky and R. Sundling for technical help. NR 30 TC 198 Z9 199 U1 22 U2 199 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 28 PY 2011 VL 472 IS 7344 BP 458 EP 460 DI 10.1038/nature09998 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 755QC UT WOS:000289949600031 PM 21525929 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clarke, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Rescigno, M Rimondi, F Ristori, L Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clarke, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Rescigno, M. Rimondi, F. Ristori, L. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Invariant Mass Distribution of Jet Pairs Produced in Association with a W Boson in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb(-1). The observed distribution has an excess in the 120-160 GeV/c(2) mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this Letter, we report studies of the properties of this excess. C1 [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Carrillo, S.; Chen, Y. C.; Garfinkel, A. F.; Hou, S.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Mitra, A.; Mondragon, M. N.; Potamianos, K.; Ranjan, N.; Sedov, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Ristori, L.; Roser, R.; Rubbo, F.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Catastini, P.; Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bussey, P.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Budd, S.; Carls, B.; Cavaliere, V.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Barria, P.; Bucciantonio, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Latino, G.; Leo, S.; Punzi, G.; Ruffini, F.; Scribano, A.; Sforza, F.; Trovato, M.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Bellettini, G.] Univ Siena, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Ristori, L.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. [Brau, B.] Univ Massachusetts, Amherst, MA 01003 USA. [Manca, G.] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Cagliari, Italy. [Deng, J.; Whiteson, D.] Univ Calif Irvine, Irvine, CA 92697 USA. [Krutelyov, V.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Nielsen, J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Cerri, A.; Palencia, E.] CERN, CH-1211 Geneva, Switzerland. [Hopkins, W.; Thom, J.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Ptohos, F.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [McNulty, R.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Yoshida, T.; Zucchelli, S.] Univ Fukui, Fukui, Fukui 9100017, Japan. [Carrillo, S.; Mondragon, M. N.; Vazquez, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Krumnack, N.] Iowa State Univ, Ames, IA 50011 USA. [Nachtman, J.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Kato, Y.] Kinki Univ, Higashiosaka, Osaka 5778502, Japan. [Ivanov, A.] Kansas State Univ, Manhattan, KS 66506 USA. [Yang, U. K.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cerrito, L.] Univ London, London E1 4NS, England. [Limosani, A.] Univ Melbourne, Melbourne, Vic 3010, Australia. Muons Inc, Batavia, IL 60510 USA. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [d'Ascenzo, N.; Saveliev, V.] Natl Res Nucl Univ, Moscow, Russia. [Lannon, K.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alvarez Gonzalez, B.; Cuevas, J.] Univ Oviedo, E-33007 Oviedo, Spain. [Lee, S. W.] Texas Tech Univ, Lubbock, TX 79609 USA. [Prokoshin, F.] Univ Tecn Federico Santa Maria, Valparaiso 110, Chile. [Ershaidat, N.] Yarmouk Univ, Irbid 21163, Jordan. [Bizjak, I.; Pauletta, G.; Santi, L.] Jozef Stefan Inst, Ljubljana, Slovenia. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013 OI Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab theory group for helpful suggestions, particularly J. M. Campbell, E. J. Eichten, R. K. Ellis, C. T. Hill, and A. O. Martin. We are grateful to K. D. Lane and M. L. Mangano. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 21 TC 106 Z9 106 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 171801 DI 10.1103/PhysRevLett.106.171801 PG 8 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800003 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Camacho-Perez, E Carrasco-Lizarraga, MA Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Novaes, SF Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, M Strom, D Stutte, L Suter, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J-F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Novaes, S. F. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, M. Strom, D. Stutte, L. Suter, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for the Standard Model Higgs Boson in the H -> WW -> lvq '(q)over-bar Decay Channel SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a search for the standard model Higgs boson (H) in p (p) over bar collisions at root s = 1.96 TeV in events containing a charged lepton (l), missing transverse energy, and at least two jets, using 5.4 fb(-1) of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. This analysis is sensitive primarily to Higgs bosons produced through the fusion of two gluons or two electroweak bosons, with subsequent decay H -> WW -> lvq'(q) over bar, where l is an electron or muon. The search is also sensitive to contributions from other production channels, such as WH -> lvb (b) over bar. In the absence of a signal, we set limits at the 95% C.L. on the cross section for H production sigma(p (p) over bar -> H + X) in these final states. For a mass of M-H = 160 GeV, the limit is a factor of 3.9 larger than the cross section in the standard model and consistent with an a priori expected sensitivity of 5.0. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Barreto, J.; Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Geng, W.; Grivaz, J-F.; Jaffre, M.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst 3 A, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.; Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Heredia-De La Cruz, I.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Heredia-De La Cruz, I.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Head, T.; Owen, M.; Peters, K.; Peters, Y.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Univ Illinois, De Kalb, IL 60115 USA. [Kirby, M. H.; Schellman, H.; Welty-Rieger, L.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Carrasco-Lizarraga, M. A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Zivkovic, L.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Santos, Angelo/K-5552-2012; Mercadante, Pedro/K-1918-2012; Alves, Gilvan/C-4007-2013; lebert, thomas/H-4032-2011; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Rosatom FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 52 TC 6 Z9 6 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 171802 DI 10.1103/PhysRevLett.106.171802 PG 7 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800004 PM 21635028 ER PT J AU Alcorta, M Rehm, KE Back, BB Bedoor, S Bertone, PF Deibel, CM DiGiovine, B Esbensen, H Greene, JP Hoffmann, CR Jiang, CL Lighthall, JC Marley, ST Pardo, RC Paul, M Rogers, AM Ugalde, C Wuosmaa, AH AF Alcorta, M. Rehm, K. E. Back, B. B. Bedoor, S. Bertone, P. F. Deibel, C. M. DiGiovine, B. Esbensen, H. Greene, J. P. Hoffmann, C. R. Jiang, C. L. Lighthall, J. C. Marley, S. T. Pardo, R. C. Paul, M. Rogers, A. M. Ugalde, C. Wuosmaa, A. H. TI Fusion Reactions with the One-Neutron Halo Nucleus C-15 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERACTION CROSS-SECTIONS; RADIOACTIVE ION-BEAMS; SUBBARRIER FUSION; COULOMB BARRIER; FISSION; ENERGIES; ENHANCEMENT; PROBABILITY; BREAKUP; REGION AB The structure of C-15, with an s(1/2) neutron weakly bound to a closed-neutron shell nucleus C-14, makes it a prime candidate for a one-neutron halo nucleus. We have for the first time studied the cross section for the fusion-fission reaction C-15 + Th-232 at energies in the vicinity of the Coulomb barrier and compared it to the yield of the neighboring C-14 + Th-232 system measured in the same experiment. At sub-barrier energies, an enhancement of the fusion yield by factors of 2-5 was observed for C-15, while the cross sections for C-14 match the trends measured for (12),C-13. C1 [Alcorta, M.; Rehm, K. E.; Back, B. B.; Bertone, P. F.; Deibel, C. M.; DiGiovine, B.; Esbensen, H.; Greene, J. P.; Hoffmann, C. R.; Jiang, C. L.; Lighthall, J. C.; Marley, S. T.; Pardo, R. C.; Rogers, A. M.; Ugalde, C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bedoor, S.; Lighthall, J. C.; Marley, S. T.; Wuosmaa, A. H.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Paul, M.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Ugalde, C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Ugalde, C.] Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. RP Alcorta, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Alcorta, Martin/G-7107-2011 OI Alcorta, Martin/0000-0002-6217-5004 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-04ER41320]; NSF [PHY0822648] FX We would like to thank D. Hinde (ANU) for providing the 12C + 232Th data in tabulated form, and K. L. Jensen (Aarhus University, Denmark) for valuable discussions. We also want to thank the ATLAS operations staff for producing the carbon beams. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL) and No. DE-FG02-04ER41320 (WMU) and by the NSF JINA Grant No. PHY0822648. NR 36 TC 20 Z9 20 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 172701 DI 10.1103/PhysRevLett.106.172701 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800006 PM 21635032 ER PT J AU Aluie, H AF Aluie, Hussein TI Compressible Turbulence: The Cascade and its Locality SO PHYSICAL REVIEW LETTERS LA English DT Article ID ISOTHERMAL TURBULENCE; POWER SPECTRUM; STATISTICS AB We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a conservative fashion despite not being an invariant. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Aluie, H (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, MS B258, Los Alamos, NM 87545 USA. RI Aluie, Hussein/D-6321-2011 FU U.S. DOE at LANL; LANL/LDRD; Office of Science FX I thank R. E. Ecke, G. L. Eyink, S. S. Girimaji, S. Kurien, H. Li, S. Li, and D. Livescu. This research was performed under the auspices of the U.S. DOE at LANL and supported by the LANL/LDRD program and the Office of Science ASCR program. NR 21 TC 30 Z9 30 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 174502 DI 10.1103/PhysRevLett.106.174502 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800009 PM 21635038 ER PT J AU Colgate, SA Beckley, H Si, J Martinic, J Westpfahl, D Slutz, J Westrom, C Klein, B Schendel, P Scharle, C McKinney, T Ginanni, R Bentley, I Mickey, T Ferrel, R Li, H Pariev, V Finn, J AF Colgate, Stirling A. Beckley, Howard Si, Jiahe Martinic, Joe Westpfahl, David Slutz, James Westrom, Cebastian Klein, Brianna Schendel, Paul Scharle, Cletus McKinney, Travis Ginanni, Rocky Bentley, Ian Mickey, Timothy Ferrel, Regnar Li, Hui Pariev, Vladimir Finn, John TI High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an alpha-Omega Dynamo SO PHYSICAL REVIEW LETTERS LA English DT Article ID AGN DISKS; FIELD AB The Omega phase of the liquid sodium alpha-Omega dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B(phi) that is similar or equal to 8 X B(r), where B(r) is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm similar or equal to 120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (delta v/v)(2) similar to 10(-3). C1 [Colgate, Stirling A.; Li, Hui; Pariev, Vladimir; Finn, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. RP Colgate, SA (reprint author), Los Alamos Natl Lab, T-2,MS B-227, Los Alamos, NM 87545 USA. EM colgate@lanl.gov RI Bentley, Ian/C-4347-2016 OI Bentley, Ian/0000-0002-4442-2761 FU NSF; University of California; NMIMT; LANL FX A large Omega gain in low turbulent shear flow in a conducting fluid is demonstrated. This is likely to be the mechanism of the Omega gain of a coherent alpha - Omega astrophysical dynamo. This experiment has been funded by NSF, University of California, NMIMT, and LANL. NR 28 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 175003 DI 10.1103/PhysRevLett.106.175003 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800010 PM 21635041 ER PT J AU Qin, SX Chang, L Chen, H Liu, YX Roberts, CD AF Qin, Si-xue Chang, Lei Chen, Huan Liu, Yu-xin Roberts, Craig D. TI Phase Diagram and Critical End Point for Strongly Interacting Quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYSON-SCHWINGER EQUATIONS; HADRON PHYSICS; QCD; TRANSITION; DENSITY; MODEL AB We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (mu(E), T(E)) similar to (1.0, 0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at mu = 0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows. C1 [Qin, Si-xue; Chang, Lei; Liu, Yu-xin; Roberts, Craig D.] Peking Univ, Dept Phys, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Qin, Si-xue; Chang, Lei; Liu, Yu-xin; Roberts, Craig D.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Chen, Huan] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Liu, Yu-xin] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Qin, SX (reprint author), Peking Univ, Dept Phys, Ctr High Energy Phys, Beijing 100871, Peoples R China. RI Qin, Sixue/A-6249-2015; Qin, Si-xue/N-5285-2015; OI Qin, Si-xue/0000-0002-6754-6046; Roberts, Craig/0000-0002-2937-1361 FU National Natural Science Foundation of China [10425521, 10705002, 10935001]; Major State Basic Research Development Program [G2007CB815000]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by National Natural Science Foundation of China, under Contracts No. 10425521, No. 10705002, and No. 10935001; Major State Basic Research Development Program Contract No. G2007CB815000; and U.S. Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 38 TC 65 Z9 65 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2011 VL 106 IS 17 AR 172301 DI 10.1103/PhysRevLett.106.172301 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PI UT WOS:000290099800005 PM 21635031 ER PT J AU Smith, AW Smoligovets, AA Groves, JT AF Smith, Adam W. Smoligovets, Alexander A. Groves, Jay T. TI Patterned Two-Photon Photoactivation Illuminates Spatial Reorganization in Live Cells SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID IN-VIVO; IMMUNOLOGICAL SYNAPSE; FLUORESCENT PROTEINS; ACTIN CYTOSKELETON; DIFFERENCE SPECTRA; FUSION PROTEIN; PA-GFP; ACTIVATION; MICROSCOPY; CYTOKINESIS AB Photoactivatable fluorescent proteins offer the possibility to optically tag and track the location of molecules in their bright state with high spatial and temporal resolution. Several reports of patterned photoactivation have emerged since the development of a photoactivatable variant of the green fluorescent protein (PaGFP) and the demonstration of two-photon activation of PaGFP. To date, however, there have been few methods developed to quantify the spatial reorganization of the photoactivated population. Here we report on the use of singular value de composition (SVD) to track the time-dependent distribution of fluorophores after photoactivation. The method was used to describe live-cell actin cytoskeleton behavior in primary murine T-cells, in which a dynamic cytoskeleton is responsible for the reorganization of membrane proteins in response to antigen peptide recognition. The method was also used to observe immortalized simian kidney (Cos-7) cells, in which the cytoskeleton is more stable. Both cell types were transfected with PaGFP fused to the F-actin binding domain of utrophin (UtrCH). Photoactivation patterns were written in the samples with a pair of galvanometric scanning mirrors in circular patterns that were analyzed by transforming the images into a time series of radial distribution profiles. The time-evolution of the profiles was well-described by the first two SVD component states. For T-cells, we find that actin filaments are highly mobile. Inward transport from the photoactivation region was observed and occurred on a 1-2 s time scale, which is consistent with retrograde cycling. For Cos-7 cells, we find that the actin is relatively stationary and does not undergo significant centripetal flow as expected for a resting fibroblast. The combination of patterned photoactivation and SVD analysis offers a unique way to measure spatial redistribution dynamics within live cells. C1 [Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smoligovets, Alexander A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Smith, Adam/F-4102-2010; Smith, Adam/B-7156-2016 OI Smith, Adam/0000-0001-5216-9017; Smith, Adam/0000-0001-5216-9017 FU Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Howard Hughes Medical Institute and the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 9 Z9 9 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 28 PY 2011 VL 115 IS 16 BP 3867 EP 3875 DI 10.1021/jp108295s PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 752NB UT WOS:000289697500024 PM 21391691 ER PT J AU Cho, S Mara, MW Wang, XH Lockard, JV Rachford, AA Castellano, FN Chen, LX AF Cho, Sung Mara, Michael W. Wang, Xianghuai Lockard, Jenny V. Rachford, Aaron A. Castellano, Felix N. Chen, Lin X. TI Coherence in Metal-Metal-to-Ligand-Charge-Transfer Excited States of a Dimetallic Complex Investigated by Ultrafast Transient Absorption Anisotropy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RESOLVED X-RAY; QUANTUM COHERENCE; ENERGY-TRANSFER; SPECTROSCOPY; DYNAMICS; DENSITY; DIMERS AB Coherence in the metal metal-to-ligand-charge transfer (MMLCT) excited state of diplatinum molecule [Pt(ppy)(mu-(t)Bu(2)pz)](2) has been investigated through the observed oscillatory features and their corresponding frequencies as well as polarization dependence in the single-wavelength transient absorption (TA) anisotropy signals. Anticorrelated parallel and perpendicular TA signals with respect to the excitation polarization direction were captured, while minimal oscillatory features were observed in the magic angle TA signal. The combined analysis of the experimental results coupled with those previous calculated in the literature maps out a plausible excited state trajectory on the potential energy surface, suggesting that (1) the two energetically close MMLCT excited states due to the symmetry of the molecule may be electronically and coherently coupled with the charge density shifting back and forth between the two phenylpyridine (ppy) ligands, (2) the electronic coupling strength in the (1)MMLCT and (3)MMLCT states may be extracted from the oscillation frequencies of the TA signals to be 160 and 55 cm(-1), respectively, (3) a stepwise intersystem crossing cascades follows (1)MMLCT -> (3)MMLCT (T(1b)) -> (3)MMLCT (T(1a)), and (4) a possible electronic coherence can be modulated via the Pt-Pt sigma-interactions over a picosecond and survive the first step of intersystem crossing. Future experiments are in progress to further investigate the origin of the oscillatory features. These experimental observations may have general implications in design of multimetal center complexes for photoactivated reactions where coherence in the excited states may facilitate directional charge or energy transfer along a certain direction between different parts of a molecule. C1 [Wang, Xianghuai; Rachford, Aaron A.; Castellano, Felix N.] Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA. [Wang, Xianghuai; Rachford, Aaron A.; Castellano, Felix N.] Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA. [Cho, Sung; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Cho, Sung; Mara, Michael W.; Lockard, Jenny V.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Castellano, FN (reprint author), Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA. EM castell@bgsu.edu; lchen@anl.gov RI Wang, Xianghuai/A-2070-2010; OI Castellano, Felix/0000-0001-7546-8618 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11367]; National Science Foundation [CHE-0719050]; Air Force Office of Scientific Research [FA9550-05-1-0276] FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11367. The BGSU portion of the work including the synthesis and DFT calculations were supported by the National Science Foundation (CHE-0719050) and the Air Force Office of Scientific Research (FA9550-05-1-0276). NR 36 TC 28 Z9 28 U1 3 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 28 PY 2011 VL 115 IS 16 BP 3990 EP 3996 DI 10.1021/jp109174f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 752NB UT WOS:000289697500036 PM 21361265 ER PT J AU Halpern-Manners, NW Paulsen, JL Bajaj, VS Pines, A AF Halpern-Manners, Nicholas W. Paulsen, Jeffrey L. Bajaj, Vikram S. Pines, Alexander TI Remotely Detected MRI Velocimetry in Microporous Bead Packs SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TO-VOLUME RATIO; POROUS-MEDIA; MAGNETIC-RESONANCE; DETECTION NMR; TRANSVERSE RELAXATION; GAS-FLOW; DIFFUSION; SUSCEPTIBILITY; FIELD; GRADIENTS AB Many NAIR and MRI methods probe fluid dynamics within macro- and mesoporous materials, but with few exceptions, they report on its macroscopically averaged properties. MRI methods are generally unable to localize microscopic features of flow within macroscopic samples because the fraction of the enclosing detector volume occupied by these features is so small. We have recently overcome this problem using remotely detected MRI velocimetry, a technique in which spatial, chemical, and velocity information about elements of the flow is encoded with a conventional NMR coil and detected sensitively at the sample outflow by a volume-matched microdetector. Here, we apply this method to microporous model systems, recording MRI images that correlate local velocity, spin relaxation, and time-of-flight in microscopic resolution and three spatial dimensions. Our results illustrate that remotely detected MRI is an effective approach to elucidate flow dynamics in porous materials including bead pack microreactors and chromatography columns. C1 [Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bajaj, VS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM vikbajaj@gmail.com OI Paulsen, Jeffrey/0000-0003-1031-4858 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Dr. Pabitra Sen for helpful discussions and acknowledge Schlumberger-Doll Research, the Agilent Foundation, and Chevron for their generous and unrestricted support of our research. NR 52 TC 3 Z9 3 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 28 PY 2011 VL 115 IS 16 BP 4023 EP 4030 DI 10.1021/jp109728j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 752NB UT WOS:000289697500039 PM 21401028 ER PT J AU Dukes, AD Samson, PC Keene, JD Davis, LM Wikswo, JP Rosenthal, SJ AF Dukes, Albert D., III Samson, Philip C. Keene, Joseph D. Davis, Lloyd M. Wikswo, John P. Rosenthal, Sandra J. TI Single-Nanocrystal Spectroscopy of White-Light-Emitting CdSe Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CADMIUM SELENIDE NANOCRYSTALS; SEMICONDUCTOR QUANTUM DOTS; FLUORESCENCE INTERMITTENCY; EMISSION; GROWTH AB We report the observation of broad-spectrum fluorescence from single CdSe nanocrystals. Individual semiconductor nanocrystals typically have a narrower emission spectrum than that of an ensemble. However, our experiments show that the ensemble white-light emission observed in ultrasmall CdSe nanocrystals is the result of many single CdSe nanocrystals, each emitting over the entire visible spectrum. These results indicate that each white-light-emitting CdSe nanocrystal contains all the trap states that give rise to the observed white-light emission. C1 [Dukes, Albert D., III; Keene, Joseph D.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Samson, Philip C.; Davis, Lloyd M.; Wikswo, John P.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA. [Keene, Joseph D.] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA. [Samson, Philip C.; Wikswo, John P.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Wikswo, John P.] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA. [Wikswo, John P.] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA. [Wikswo, John P.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Joint Fac Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, VU Stn B,Box 351822, Nashville, TN 37235 USA. EM sandra.j.rosenthal@vanderbilt.edu RI Keene, Joseph/F-8874-2010; Davis, Lloyd/D-7648-2013 OI Davis, Lloyd/0000-0002-3169-3044 FU National Science Foundation [DMR-0619789, EPS-1004083]; Vanderbilt Institute for Integrative Biosystems Research and Education FX This work was supported in part through instrumentation funded by the National Science Foundation through Grants DMR-0619789 and EPS-1004083, the Vanderbilt Institute for Integrative Biosystems Research and Education. We thank Lumberline Laser, Inc. for donating the 543 nm Gre-Ne laser used during alignment. We also thank the de Jonge lab at Vanderbilt University for the use of their plasma cleaner. NR 20 TC 21 Z9 21 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 28 PY 2011 VL 115 IS 16 BP 4076 EP 4081 DI 10.1021/jp1109509 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 752NB UT WOS:000289697500044 PM 21338163 ER PT J AU Aliaga, C Tsung, CK Alayoglu, S Komvopoulos, K Yang, PD Somorjai, GA AF Aliaga, Cesar Tsung, Chia-Kuang Alayoglu, Selim Komvopoulos, Kyriakos Yang, Peidong Somorjai, Gabor A. TI Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-CRYSTAL SURFACES; PYRROLE HYDROGENATION; MESOPOROUS SILICA; WORK FUNCTION; ADSORPTION; FURAN; PT(111); PT(100); SYSTEM; ORIENTATION AB Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanopartides of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 degrees C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MT and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. C1 [Aliaga, Cesar; Tsung, Chia-Kuang; Alayoglu, Selim; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Komvopoulos, Kyriakos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Aliaga, Cesar; Tsung, Chia-Kuang; Alayoglu, Selim; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; UC Berkeley-KAUST Academic Excellence Alliance (AEA) Program FX This work was supported by the Director, U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231. One of the authors (K.K.) also acknowledges funding for this work provided by the UC Berkeley-KAUST Academic Excellence Alliance (AEA) Program. NR 27 TC 16 Z9 16 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 28 PY 2011 VL 115 IS 16 BP 8104 EP 8109 DI 10.1021/jp111343j PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 752NA UT WOS:000289697400033 ER PT J AU Babarao, R Dai, S Jiang, DE AF Babarao, Ravichandar Dai, Sheng Jiang, De-en TI Effect of Pore Topology and Accessibility on Gas Adsorption Capacity in Zeolitic-Imidazolate Frameworks: Bringing Molecular Simulation Close to Experiment SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CANONICAL MONTE-CARLO; CARBON-DIOXIDE CAPTURE; FORCE-FIELD; DYNAMICS SIMULATIONS; ATOMIC CHARGES; SEPARATION; CO2; HYDROGEN; POTENTIALS AB When all cages are assumed to be accessible, popular force fields such as universal force field (UFF) and DREIDING dramatically overpredicted gas adsorption capacity in two widely studied zeolitic imidazolate frameworks (ZIFs), ZIF-68 and -69. Instead of adjusting the force-field parameters to match the experiments, herein we show that when the pore topology and accessibility are correctly taken into account, simulations with the standard force fields agree very well with the experiments. Careful inspection shows that ZIF-68 and -69 have two one-dimensional channels, which are not interaccessible to gases. The small channel consists of alternating small (HPR) and medium (GME) cages, while the large channel comprises the large (KNO) cages. Our analysis indicates that the small channel is not accessible to gases such as CO2. So when the cages in the small channel are intentionally blocked in our simulation, the predicted adsorption capacities of CO2, CH4 and N-2 at room temperature from standard force-field parameters for the framework show excellent agreement with the experimental results. In the case of H-2, all cages are accessible, so simulation results without cage-blocking show excellent agreement with experiment. Due to the promising potential of ZIFs in gas storage and separation, our work here shows that pore topology and accessibility should be carefully examined to understand how gases adsorb in ZIFs. C1 [Babarao, Ravichandar; Dai, Sheng; Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; yarasi, soujanya/F-5531-2011; Babarao, Ravichandar/F-5491-2012; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. We would like to thank Dr. Rahul Banerjee for his helpful suggestions. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 31 Z9 31 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 28 PY 2011 VL 115 IS 16 BP 8126 EP 8135 DI 10.1021/jp1117294 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 752NA UT WOS:000289697400036 ER PT J AU Mei, DH Karim, AM Wang, Y AF Mei, Donghai Karim, Ayman M. Wang, Yong TI Density Functional Theory Study of Acetaldehyde Hydrodeoxygenation on MoO3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SELECTIVE OXIDATION; CATALYTIC CONVERSION; HYDROGEN SPILLOVER; BASIS-SET; SURFACE; BIOMASS; AMMOXIDATION; MODEL AB Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated alpha-MoO3-(010) surface is reduced to generate an oxygen defect site in the presence of H-2. H-2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (O-t) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo band or the O-Mo and the C-O double bonds. The possible reaction pathways of the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal O-t. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase and regenerates the O-t atom on the Mo site. As a result, the reduced MoO3(010) surface is reoiddized to the perfect MoO3(010) surface after CH3CHO deoxygenation. C1 [Mei, Donghai] Pacific NW Natl Lab, Fundamental & Computat Directorate, Richland, WA 99352 USA. [Karim, Ayman M.; Wang, Yong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn, Pullman, WA 99164 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Fundamental & Computat Directorate, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Mei, Donghai/D-3251-2011; Wang, Yong/C-2344-2013; Mei, Donghai/A-2115-2012; Karim, Ayman/G-6176-2012 OI Mei, Donghai/0000-0002-0286-4182; Karim, Ayman/0000-0001-7449-542X FU National Advanced Biofuels Consortium (NABC); DOE's Office of Biological and Environmental Research FX This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE's Office of Biological and Environmental Research. NR 41 TC 26 Z9 26 U1 6 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 28 PY 2011 VL 115 IS 16 BP 8155 EP 8164 DI 10.1021/jp200011j PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 752NA UT WOS:000289697400040 ER PT J AU Sumida, K Her, JH Dinca, M Murray, LJ Schloss, JM Pierce, CJ Thompson, BA FitzGerald, SA Brown, CM Long, JR AF Sumida, Kenji Her, Jae-Hyuk Dinca, Mircea Murray, Leslie J. Schloss, Jennifer M. Pierce, Christopher J. Thompson, Benjamin A. FitzGerald, Stephen A. Brown, Craig M. Long, Jeffrey R. TI Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr-3(BTC)(2)-A Metal-Organic Framework with Exposed Cr2+ Sites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SELECTIVE GAS-ADSORPTION; COORDINATION POLYMER; CARBON-DIOXIDE; SORPTION PROPERTIES; SINGLE-CRYSTAL; H-2 ADSORPTION; HIGH-CAPACITY; STORAGE; TEMPERATURE; METHANE AB Microporous metal-organic frameworks possessing exposed metal cation sites on the pore surface are of particular interest for high-density H-2 storage at ambient temperatures, owing to the potential for H-2 binding at the appropriate isosteric heat of adsorption for reversible storage at room temperature (ca. -20 kJ/mol). The structure of Cr-3(BTC)(2) (BTC3- = 1,3,5-benzenetricarboxylate) consists of dinuclear paddlewheel secondary building units connected by triangular BTC3- bridging ligands to form a three-dimensional, cubic framework. The fully desolvated form of the compound exhibits BET and Langmuir surface areas of 1810 and 2040 m(2)/g respectively, with open axial Cr2+ coordination sites on the paddlewheel units. Its relatively high surface area facilitates H-2 uptakes (1 bar) of 1.9 wt % at 77 K and 1.3 wt % at 87 K, and a virial-type fitting to the data yields a zero-coverage isosteric heat of adsorption of -7.4(1) kJ/mol. The detailed hydrogen loading characteristics of Cr-3(BTC)(2) have been probed using both neutron powder diffraction and inelastic neutron scattering experiments, revealing that the Cr2+ site is only partially populated until a marked elongation of the Cr-Cr internuclear distance occurs at a loading of greater than 1.0 D-2 per Cr2+ site. Below this loading, the D-2 is adsorbed primarily at the apertures of the octahedral cages. The H-H stretching frequency corresponding to H-2 molecules bound to the primary site is observed in the form of an ortho-para pair at 4110 and 4116 cm(-1), respectively, which is significantly shifted compared to the frequencies for free H-2 of 4155 and 4161 cm(-1). The infrared data have been used to compute a site-specific binding enthalpy for H-2 of -6.7(5) kJ/mol, which is in agreement with the zero-coverage isosteric heat of adsorption derived from gas sorption isotherm data. C1 [Sumida, Kenji; Dinca, Mircea; Murray, Leslie J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sumida, Kenji; Dinca, Mircea; Murray, Leslie J.; Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Her, Jae-Hyuk] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Her, Jae-Hyuk; Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Schloss, Jennifer M.; Pierce, Christopher J.; Thompson, Benjamin A.; FitzGerald, Stephen A.] Oberlin Coll, Dept Phys, Oberlin, OH 44074 USA. RP Sumida, K (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Sumida, Kenji/E-7542-2011; Dinca, Mircea/C-1345-2008; Brown, Craig/B-5430-2009; OI Brown, Craig/0000-0002-9637-9355; Dinca, Mircea/0000-0002-1262-1264; Murray, Leslie/0000-0002-1568-958X; Sumida, Kenji/0000-0003-0215-5922 FU Department of Energy, Berkeley [DE-AC02-05CH11231]; Fulbright New Zealand; U.S. Department of Energy within the EERE Hydrogen Sorption Center of Excellence; American Chemical Society FX The research in Berkeley was funded by the Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Fulbright New Zealand for partial support of K.S. The work at NIST was partially funded by the U.S. Department of Energy within the EERE Hydrogen Sorption Center of Excellence, and the work at Oberlin College was partially funded by the American Chemical Society Petroleum Research Fund. We thank Dr. Y. Liu for technical assistance during the neutron measurements. NR 63 TC 24 Z9 24 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 28 PY 2011 VL 115 IS 16 BP 8414 EP 8421 DI 10.1021/jp200638n PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 752NA UT WOS:000289697400073 ER PT J AU Kim, MG Fernandes, RM Kreyssig, A Kim, JW Thaler, A Bud'ko, SL Canfield, PC McQueeney, RJ Schmalian, J Goldman, AI AF Kim, M. G. Fernandes, R. M. Kreyssig, A. Kim, J. W. Thaler, A. Bud'ko, S. L. Canfield, P. C. McQueeney, R. J. Schmalian, J. Goldman, A. I. TI Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB We present a combined high-resolution x-ray diffraction and x-ray resonant magnetic scattering study of as-grown BaFe2As2. The structural and magnetic transitions must be described as a two-step process. At T-S = 134.5 K we observe the onset of a second-order structural transition from the high-temperature paramagnetic tetragonal structure to a paramagnetic orthorhombic phase, followed by a discontinuous step in the structural order parameter that is coincident with a first-order antiferromagnetic (AFM) transition at T-N = 133.75 K. These data, together with detailed high-resolution x-ray studies of the structural transition in lightly doped Ba(Fe1-xCox)(2)As-2 and Ba(Fe1-xRhx)(2)As-2 compounds, show that the structural and AFM transitions do, in fact, occur at slightly different temperatures in the parent BaFe2As2 compound, and evolve toward split second-order transitions as the doping concentration is increased. We estimate the composition for the tricritical point for Co doping and employ a mean-field approach to show that our measurements can be explained by the inclusion of an anharmonic term in the elastic free energy and magnetoelastic coupling in the form of an emergent Ising-nematic degree of freedom. C1 [Kim, M. G.; Fernandes, R. M.; Kreyssig, A.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.; Schmalian, J.; Goldman, A. I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Kim, M. G.; Fernandes, R. M.; Kreyssig, A.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; McQueeney, R. J.; Schmalian, J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, MG (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Schmalian, Joerg/H-2313-2011; Kim, Min Gyu/B-8637-2012; Fernandes, Rafael/E-9273-2010; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014; McQueeney, Robert/A-2864-2016 OI Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904; McQueeney, Robert/0000-0003-0718-5602 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy [DE-AC02-07CH11358]; US DOE [DE-AC02-06CH11357] FX We acknowledge valuable discussions with J. Lang. This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 43 TC 88 Z9 88 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 28 PY 2011 VL 83 IS 13 AR 134522 DI 10.1103/PhysRevB.83.134522 PG 10 WC Physics, Condensed Matter SC Physics GA 784GW UT WOS:000292145800003 ER PT J AU Galanakis, D Khatami, E Mikelsons, K Macridin, A Moreno, J Browne, DA Jarrell, M AF Galanakis, D. Khatami, E. Mikelsons, K. Macridin, A. Moreno, J. Browne, D. A. Jarrell, M. TI Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE quantum criticality; dynamical cluster approximation; cluster methods ID T-C SUPERCONDUCTOR; MONTE-CARLO; INFINITE DIMENSIONS; ELECTRON-SYSTEMS; FERMION SYSTEMS; COUPLING THEORY; TRANSITION; DYNAMICS; LATTICE; SURFACE AB Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t', we find a classical critical point at temperature T(c). This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature T(c) extrapolates to zero as t' vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition. C1 [Galanakis, D.; Moreno, J.; Browne, D. A.; Jarrell, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Khatami, E.; Mikelsons, K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [Macridin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Galanakis, D (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM dimitris.galanakis@gmail.com RI Moreno, Juana/D-5882-2012; Khatami, Ehsan/G-9565-2012; Mikelsons, Karlis/C-9147-2015 OI Mikelsons, Karlis/0000-0003-2540-0687 FU NSF [DMR-0706379]; DOE CMSN [DE-FG02-08ER46540]; DOE SciDAC [DE-FC02-06ER25792]; Office of Science of the US Department of Energy [DE-AC05-00OR22725] FX We would like to thank R. Gass, S. Kivelson, D.J. Scalapino, A.M. Tremblay, C. Varma, M. Vojt, S.R. White and J. Zaanen for useful discussions that helped during the development of the presented work. This research was supported by NSF DMR-0706379, DOE CMSN DE-FG02-08ER46540 and by the DOE SciDAC grant DE-FC02-06ER25792. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract no. DE-AC05-00OR22725. NR 43 TC 4 Z9 4 U1 4 U2 8 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 28 PY 2011 VL 369 IS 1941 BP 1670 EP 1686 DI 10.1098/rsta.2010.0228 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 741GL UT WOS:000288852100006 PM 21422020 ER PT J AU Sebastian, SE Harrison, N Lonzarich, GG AF Sebastian, Suchitra E. Harrison, Neil Lonzarich, Gilbert G. TI Quantum oscillations in the high-T-c cuprates SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Review DE quantum oscillations; high-T-c superconductivity; copper oxide superconductors; quantum critical point; Fermi surface; Fermi liquid ID HIGH-TEMPERATURE SUPERCONDUCTORS; FERMI-SURFACE; CRITICAL-POINT; VORTEX STATE; ORGANIC SUPERCONDUCTORS; SYMMETRY-BREAKING; PSEUDOGAP STATE; PHASE-DIAGRAM; BI2SR2CACU2O8+DELTA; INSULATOR AB We review recent progress in the study of quantum oscillations as a tool for uniquely probing low-energy electronic excitations in high-T-c cuprate superconductors. Quantum oscillations in the underdoped cuprates reveal that a close correspondence with Landau Fermi-liquid behaviour persists in the accessed regions of the phase diagram, where small pockets are observed. Quantum oscillation results are viewed in the context of momentum-resolved probes such as photoemission, and evidence examined from complementary experiments for potential explanations for the transformation from a large Fermi surface into small sections. Indications from quantum oscillation measurements of a low-energy Fermi surface instability at low dopings under the superconducting dome at the metal-insulator transition are reviewed, and potential implications for enhanced superconducting temperatures are discussed. C1 [Sebastian, Suchitra E.; Lonzarich, Gilbert G.] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Harrison, Neil] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM ses59@cam.ac.uk OI Harrison, Neil/0000-0001-5456-7756 FU Royal Society; Trinity College (University of Cambridge); BES FX S.E.S. acknowledges support from the Royal Society and Trinity College (University of Cambridge). N.H. acknowledges support from the BES project 'Science at 100 tesla'. The authors thank O.K. Andersen, D.A. Bonn, S. Chakravarthy, P. Coleman, P.A. Goddard, W.N. Hardy, S.A. Kivelson, P.A. Lee, R. Liang, P.B. Littlewood, A.J. Millis, M.R. Norman, P. Phillips, B.J. Ramshaw, S.C. Riggs, T. Senthil and C.M. Varma among others for discussions; the staff of the high-magnetic-field laboratories at Los Alamos and Tallahassee, including M.M. Altarawneh, G.S. Boebinger, E.S. Choi, M. Gordon, R.D. McDonald, C.H. Mielke, T.P. Murphy, E. Palm, A. Parish, J.-H. Park, D. Rickel, D. Roybal and J. Singleton for assistance; and C. Proust and L. Taillefer for permission to reproduce figures. NR 119 TC 14 Z9 14 U1 3 U2 27 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 28 PY 2011 VL 369 IS 1941 BP 1687 EP 1711 DI 10.1098/rsta.2010.0243 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 741GL UT WOS:000288852100007 PM 21422021 ER PT J AU Holinga, GJ York, RL Onorato, RM Thompson, CM Webb, NE Yoon, AP Somorjai, GA AF Holinga, George J. York, Roger L. Onorato, Robert M. Thompson, Christopher M. Webb, Nic E. Yoon, Alfred P. Somorjai, Gabor A. TI An SFG Study of Interfacial Amino Acids at the Hydrophilic SiO2 and Hydrophobic Deuterated Polystyrene Surfaces SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUM-FREQUENCY-GENERATION; QUARTZ-CRYSTAL MICROBALANCE; SELF-ASSEMBLED MONOLAYERS; NONLINEAR VIBRATIONAL SPECTROSCOPY; SCANNING FORCE MICROSCOPY; BOVINE SERUM-ALBUMIN; AIR-WATER-INTERFACE; IN-SITU; PROTEIN ADSORPTION; BIOLOGICAL MOLECULES AB Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational 63 spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO2 model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being L-alanine. In the SFG spectra obtained at the hydrophilic SiO2 surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO2 interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO2/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid liquid interface and under physiological conditions. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somotjai@berkeley.edu RI York, Roger/C-6547-2008 OI York, Roger/0000-0002-5105-6800 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Prof. Phillip L. Geissler for helpful conversations and insights. NR 98 TC 25 Z9 25 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 27 PY 2011 VL 133 IS 16 BP 6243 EP 6253 DI 10.1021/ja1101954 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 792BM UT WOS:000292715500027 PM 21452815 ER PT J AU Yang, H Jin, HX Zhen, HY Wang, ZM Liu, ZY Beavers, CM Mercado, BQ Olmstead, MM Balch, AL AF Yang, Hua Jin, Hongxiao Zhen, Hongyu Wang, Zhimin Liu, Ziyang Beavers, Christine M. Mercado, Brandon Q. Olmstead, Marilyn M. Balch, Alan L. TI Isolation and Crystallographic Identification of Four Isomers of Sm@C-90 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SM-CONTAINING METALLOFULLERENES; STRUCTURAL-CHARACTERIZATION; ENDOHEDRAL METALLOFULLERENES; STRUCTURE ELUCIDATION; SOLID C-60; FULLERENES; CAGE; CARBON; 74-LESS-THAN-OR-EQUAL-TO-2N-LESS-THAN-OR-EQUAL-TO-84; SPECTROSCOPY AB Four isomers with the composition SmC90 were obtained from carbon soot produced by electric arc vaporization of carbon rods doped with Sm2O3. These were labeled Sm@C-90(I), Sm@C-90(II), Sm@C-90(III), and Sm@C-90(IV) in order of their elution times during chromatography on a Buckyprep column with toluene as the eluent. Analysis of the structures by single-crystal X-ray diffraction on cocrystals formed with Ni(octaethylporphyrin) reveals the identities of the individual isomers as follows: I, Sm@C-2(40)-C-90; II, Sm@C-2(42)-C-90; III, Sm@C-2v(46)-C-90 and IV, Sm@C-2(45)-C-90. This is the most extensive series of isomers of any endohedral fullerene to have their individual structures determined by single-crystal X-ray diffraction. The cage structures of these four isomers can be related pairwise to one another in a formal sense through sequential Stone-Wales transformations. C1 [Yang, Hua; Jin, Hongxiao; Liu, Ziyang] China Jiliang Univ, Coll Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China. [Yang, Hua; Zhen, Hongyu; Wang, Zhimin; Liu, Ziyang] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China. [Yang, Hua; Zhen, Hongyu; Wang, Zhimin; Liu, Ziyang] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mercado, Brandon Q.; Olmstead, Marilyn M.; Balch, Alan L.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Liu, ZY (reprint author), China Jiliang Univ, Coll Mat Sci & Engn, Hangzhou 310018, Zhejiang, Peoples R China. EM zyliu@cjlu.edu.cn; mmolmstead@ucdavis.edu; albalch@ucdavis.edu RI Zhejiang University, Dep. Optical Eng./G-9022-2011 FU U.S. National Science Foundation [CHE-1011760, CHE-0716843]; U.S. Department of Education; National Natural Science Foundation of China [20971108]; Natural Science Foundation of Zhejiang Province of China [Y4090430]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the U.S. National Science Foundation [Grant CHE-1011760 and CHE-0716843 to A.L.B. and M.M.O.], the U.S. Department of Education for a GAANN fellowship to B.Q.M., the National Natural Science Foundation of China [20971108 to Z.Y.L.], and Natural Science Foundation of Zhejiang Province of China [Y4090430 to Z.M.W.] for support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 33 Z9 33 U1 5 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 27 PY 2011 VL 133 IS 16 BP 6299 EP 6306 DI 10.1021/ja111465n PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 792BM UT WOS:000292715500033 PM 21452811 ER PT J AU Doring, S Schonbohm, F Berges, U Schreiber, R Burgler, DE Schneider, CM Gorgoi, M Schafers, F Papp, C Balke, B Fadley, CS Westphal, C AF Doering, Sven Schoenbohm, Frank Berges, Ulf Schreiber, Reinert Buergler, Daniel E. Schneider, Claus M. Gorgoi, Mihaela Schaefers, Franz Papp, Christian Balke, Benjamin Fadley, Charles S. Westphal, Carsten TI Hard x-ray photoemission using standing-wave excitation applied to the MgO/Fe interface SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; TUNNELING MAGNETORESISTANCE; SPECTROSCOPY; SPINTRONICS; JUNCTIONS AB Many applications in electronics and spintronics rely on interfaces, which are buried a few nanometers deep and thus are hardly accessible in real devices except for invasive techniques. Here, we report on hard x-ray photoemission spectroscopy combined with the x-ray standing-wave technique as a noninvasive method to access buried interfaces with a depth resolution of a few A and enhanced interface sensitivity. Within these experiments, the film thicknesses and also the thicknesses of the intermixing layers are determined. We extend the data analysis scheme previously developed for soft x-rays to the hard x-ray regime and apply the method to buried epitaxial Fe/MgO interfaces, which play a crucial role in magnetic tunnel junctions and their applications. It was found that there was no detectable intermixing or reaction of the Fe and MgO layers at the interface. C1 [Doering, Sven; Schoenbohm, Frank; Berges, Ulf; Westphal, Carsten] Tech Univ Dortmund, DELTA, D-44221 Dortmund, Germany. [Schreiber, Reinert; Buergler, Daniel E.] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany. [Gorgoi, Mihaela; Schaefers, Franz] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Papp, Christian; Balke, Benjamin; Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95016 USA. RP Doring, S (reprint author), Tech Univ Dortmund, DELTA, Otto Hahn Str 4, D-44221 Dortmund, Germany. EM sven.doering@tu-dortmund.de RI Balke, Benjamin/A-5958-2009; MSD, Nanomag/F-6438-2012; Buergler, Daniel/I-7408-2012; Papp, Christian /N-7738-2013; Schneider, Claus/H-7453-2012 OI Balke, Benjamin/0000-0003-3275-0634; Buergler, Daniel/0000-0002-5579-4886; Papp, Christian /0000-0002-1733-4387; Schneider, Claus/0000-0002-3920-6255 FU Land Nordrhein-Westfalen; NRW Research School of Synchrotron Radiation; BMBF [FK 05 ES3XBA/5]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Humboldt Foundation; Helmholtz Association FX The work was funded by the Land Nordrhein-Westfalen, the NRW Research School of Synchrotron Radiation. The beam time at BESSY was funded by the BMBF (FK 05 ES3XBA/5). We thank the BESSY staff for their support. This work has also been supported by the director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231, the Humboldt Foundation, and the Helmholtz Association. NR 28 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 16 AR 165444 DI 10.1103/PhysRevB.83.165444 PG 9 WC Physics, Condensed Matter SC Physics GA 757VJ UT WOS:000290115600009 ER PT J AU Parikh, A Wimmer, K Faestermann, T Hertenberger, R Jose, J Longland, R Wirth, HF Bildstein, V Bishop, S Chen, AA Clark, JA Deibel, CM Herlitzius, C Krucken, R Seiler, D Straub, K Wrede, C AF Parikh, A. Wimmer, K. Faestermann, T. Hertenberger, R. Jose, J. Longland, R. Wirth, H. -F. Bildstein, V. Bishop, S. Chen, A. A. Clark, J. A. Deibel, C. M. Herlitzius, C. Kruecken, R. Seiler, D. Straub, K. Wrede, C. TI Improving the P-30(p,gamma)S-31 rate in oxygen-neon novae: Constraints on J(pi) values for proton-threshold states in S-31 SO PHYSICAL REVIEW C LA English DT Article ID THERMONUCLEAR REACTION-RATES; SHELL-MODEL CALCULATIONS; X-RAY-BURSTS; HYDRODYNAMIC MODELS; CLASSICAL NOVAE; NUCLEOSYNTHESIS; NUCLEI AB Calculation of the thermonuclear P-30(p,gamma)S-31 rate in oxygen-neon nova explosions depends critically upon nuclear structure information for states within similar to 600 keV of the P-30 + p threshold in S-31. We have studied the P-31(He-3, t)S-31 reaction at 25 MeV using a high-resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Tritons corresponding to the states E-x(S-31) similar to 6.1-7.1 MeV were observed at ten angles between theta(lab) = 10 degrees and 55 degrees. States that were only tentatively identified in past studies have been observed unambiguously. For the first time, we have measured and analyzed angular distributions of the P-31(He-3, t)S-31 reaction. We present, also for the first time, a consistent set of experimental spin constraints for all except one of the critical proton-threshold states in S-31. Hydrodynamic nova simulations have been calculated in order to assess the impact on nova nucleosynthesis of remaining uncertainties in J(pi) values of S-31 states and the unknown relevant proton spectroscopic factors. We find that these uncertainties may lead to a factor of up to 20 variation in the P-30(p,gamma)S-31 rate over typical nova peak temperatures, which may then lead to a factor of up to 4 variation in the nova yields of Si-Ar isotopes. C1 [Parikh, A.; Jose, J.; Longland, R.] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08036 Barcelona, Spain. [Parikh, A.; Jose, J.] Inst Estudis Espacials Catalunya, E-08034 Barcelona, Spain. [Parikh, A.; Wimmer, K.; Faestermann, T.; Bildstein, V.; Bishop, S.; Herlitzius, C.; Kruecken, R.; Seiler, D.; Straub, K.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Parikh, A.; Wimmer, K.; Faestermann, T.; Hertenberger, R.; Wirth, H. -F.; Bildstein, V.; Bishop, S.; Herlitzius, C.; Kruecken, R.; Seiler, D.; Straub, K.] Munchner Univ MLL, Maier Leibnitz Lab, D-85748 Garching, Germany. [Wimmer, K.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Hertenberger, R.; Wirth, H. -F.] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Chen, A. A.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Clark, J. A.; Deibel, C. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Wrede, C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Parikh, A (reprint author), Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08036 Barcelona, Spain. EM anuj.r.parikh@upc.edu RI Kruecken, Reiner/A-1640-2013 OI Kruecken, Reiner/0000-0002-2755-8042 FU DFG; Spanish MICINN [AYA2010-15685, EUI2009-04167]; E.U. FEDER; ESF; NSERC Canada; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; JINA [PHY0822648]; US Department of Energy [DE-FG02-97ER41020] FX It is a pleasure to thank the crew of the MLL tandem accelerator. We also thank T. Rauscher for noting the error in Fig. 9 of Ref. [16]. This work was supported by the DFG cluster of excellence "Origin and Structure of the Universe" (www.universe-cluster.de). A. P., J.J., and R. L. were partially supported by the Spanish MICINN Grants No. AYA2010-15685 and No. EUI2009-04167, by the E.U. FEDER funds, and by the ESF EUROCORES Program EuroGENESIS. A. A. C. was supported, in part, by a Grant from NSERC Canada. J.A.C. and C. M. D. acknowledge support from the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. C. M. D. was also partially supported by JINA Grant No. PHY0822648. C. W. acknowledges support from the US Department of Energy under Contract No. DE-FG02-97ER41020. NR 35 TC 22 Z9 22 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 27 PY 2011 VL 83 IS 4 AR 045806 DI 10.1103/PhysRevC.83.045806 PG 8 WC Physics, Nuclear SC Physics GA 758KG UT WOS:000290162900007 ER PT J AU Kodra, E Steinhaeuser, K Ganguly, AR AF Kodra, Evan Steinhaeuser, Karsten Ganguly, Auroop R. TI Persisting cold extremes under 21st-century warming scenarios SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WESTERN UNITED-STATES; CLIMATE-CHANGE; PRECIPITATION EXTREMES; HEAT WAVES; TEMPERATURE EXTREMES; FROST DAYS; VARIABILITY; TRENDS; 20TH-CENTURY; SIMULATIONS AB Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091-2100 versus 1991-2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091-2100 exceeds the decadal average of the corresponding index in 1991-2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century. Citation: Kodra, E., K. Steinhaeuser, and A. R. Ganguly (2011), Persisting cold extremes under 21st-century warming scenarios, Geophys. Res. Lett., 38, L08705, doi:10.1029/2011GL047103. C1 [Kodra, Evan; Steinhaeuser, Karsten; Ganguly, Auroop R.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Kodra, Evan] Univ Tennessee, Dept Stat Operat & Management Sci, Knoxville, TN USA. [Steinhaeuser, Karsten] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA. [Ganguly, Auroop R.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. RP Kodra, E (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM gangulyar@ornl.gov FU Oak Ridge National Laboratory; U.S. Department of Energy [DE- AC05-00OR22725] FX This research was funded by the initiative called "Understanding Climate Change Impact: Energy, Carbon, and Water Initiative", within the LDRD Program of the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE- AC05-00OR22725. The Editor thanks the two anonymous reviewers for their assistance in evaluating this paper. NR 29 TC 72 Z9 73 U1 6 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 27 PY 2011 VL 38 AR L08705 DI 10.1029/2011GL047103 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 757SP UT WOS:000290108300005 ER PT J AU Garzon, M Gray, LJ Sethian, JA AF Garzon, M. Gray, L. J. Sethian, J. A. TI Simulation of the droplet-to-bubble transition in a two-fluid system SO PHYSICAL REVIEW E LA English DT Article AB Recent experiments by Burton and Taborek have demonstrated a droplet-to-bubble transition in the pinchoff behavior of one inviscid fluid inside another. With D the relative densities rho epsilon/rho I, they find transition from (D = 0) droplet-to-bubble behavior at D approximate to 4. Numerical simulations of this two-fluid system, up to and beyond the initial breakup of the inner fluid, have been carried out utilizing level set and boundary integral methods. A droplet-to-bubble transition is predicted: For D sufficiently large, the volume of the satellite droplet shrinks to zero and there is no overturning of the fluid at separation. The calculated self-similar scaling exponents and the pinchoff region shapes match the known behavior at the droplet and bubble extremes (D = 0, D = 100). For intermediate D values, the simulations presented here indicate that the transition range between droplet and bubble behavior depends upon initial drop geometry. When the neck separates two nonequal inner fluid masses the transition is mild and occurs in the range 4 < D < 10, whereas in the case of equal masses an abrupt transition occurs at D approximate to 4 in perfect agreement with the above mentioned experiments. C1 [Garzon, M.] Univ Oviedo, Dept Appl Math, Asturias, Spain. [Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. [Sethian, J. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. RP Garzon, M (reprint author), Univ Oviedo, Dept Appl Math, Asturias, Spain. EM maria@orion.ciencias.uniovi.es FU US Department of Energy, Applied Mathematical Sciences; Division of Mathematical Sciences; National Science Foundation; Spanish Ministry of Science and Innovation [MTM2010-18427] FX This work was supported by US Department of Energy, Applied Mathematical Sciences, the Division of Mathematical Sciences, National Science Foundation, and the Spanish Ministry of Science and Innovation (Project No. MTM2010-18427). The authors would like to thank J. Burton and M. A. Fontelos for their helpful discussions. The 3D renderings were done by F. M. Villalon with Blender. NR 17 TC 3 Z9 3 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR 27 PY 2011 VL 83 IS 4 AR 046318 DI 10.1103/PhysRevE.83.046318 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 758HH UT WOS:000290154200005 PM 21599306 ER PT J AU Rollin, B Andrews, MJ AF Rollin, Bertrand Andrews, Malcolm J. TI Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids SO PHYSICAL REVIEW E LA English DT Article ID ATWOOD NUMBERS; FIELD AB We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002) for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay. C1 [Rollin, Bertrand; Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rollin, B (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Rollin, Bertrand/B-3199-2011 FU Los Alamos National Laboratory [LDRD-20090058DR] FX This publication was made possible by funding from the Laboratory Directed Research and Development Program at Los Alamos National Laboratory through directed research project number LDRD-20090058DR. NR 31 TC 4 Z9 4 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD APR 27 PY 2011 VL 83 IS 4 AR 046317 DI 10.1103/PhysRevE.83.046317 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 758HH UT WOS:000290154200004 PM 21599305 ER PT J AU Hu, XH Chan, CT Ho, KM Zi, J AF Hu, Xinhua Chan, C. T. Ho, Kai-Ming Zi, Jian TI Negative Effective Gravity in Water Waves by Periodic Resonator Arrays SO PHYSICAL REVIEW LETTERS LA English DT Article AB Based on analytic derivations and numerical simulations, we show that near a low resonant frequency water waves cannot propagate through a periodic array of resonators (bottom-mounted split tubes) as if water has a negative effective gravitational acceleration g(e) and positive effective depth h(e). This gives rise to a low-frequency resonant band gap in which water waves can be strongly reflected by the resonator array. For a damping resonator array, the resonant gap can also dramatically modify the absorption efficiency of water waves. The results provide a mechanism to block water waves and should find applications in ocean wave energy extraction. C1 [Hu, Xinhua] Fudan Univ, Dept Mat Sci, Adv Mat Lab, Shanghai 200433, Peoples R China. [Hu, Xinhua] Fudan Univ, Minist Educ, Key Lab Micro & Nano Photon Struct, Shanghai 200433, Peoples R China. [Chan, C. T.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zi, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Zi, Jian] Fudan Univ, Key Lab Surface Phys, Shanghai 200433, Peoples R China. RP Hu, XH (reprint author), Fudan Univ, Dept Mat Sci, Adv Mat Lab, Shanghai 200433, Peoples R China. EM huxh@fudan.edu.cn RI Hu, Xinhua/A-5930-2010; Zi, Jian/B-5102-2009 OI Hu, Xinhua/0000-0003-3153-7612; FU NSFC [11004034]; Shanghai Science and Technology Committee [09PJ1402000, 08dj1400302]; 973 Program [2007CB613200, 2006CB921700]; HK RGC [600209]; U.S. Department of Energy FX This work was supported by NSFC (Grant No. 11004034), the Shanghai Science and Technology Committee (Grants No. 09PJ1402000 and No. 08dj1400302), the 973 Program (Grants No. 2007CB613200 and No. 2006CB921700), HK RGC (Grant No. 600209), and the U.S. Department of Energy. The authors thank Jiong Yang, Tianrong Zhan, Hongqiang Li, Huanyang Chen, J. T. Shen, Zhifang Lin, Zhen Ye, and C. C. Mei for interesting discussions. NR 1 TC 16 Z9 16 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2011 VL 106 IS 17 AR 174501 DI 10.1103/PhysRevLett.106.174501 PG 4 WC Physics, Multidisciplinary SC Physics GA 757PF UT WOS:000290099500001 PM 21635037 ER PT J AU Bulaevskii, LN Graf, MJ Batista, CD Kogan, VG AF Bulaevskii, L. N. Graf, M. J. Batista, C. D. Kogan, V. G. TI Vortex-induced dissipation in narrow current-biased thin-film superconducting strips SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-PHOTON DETECTORS; VORTICES; TRANSITION; BRIDGES AB A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length. and of width w much narrower than the Pearl length Lambda >> w >> xi. At high bias currents I * < I < I-c the heat released by the crossing of a single vortex suffices to create a belt-like normal-state region across the strip, resulting in a detectable voltage pulse. Here Ic is the critical current at which the energy barrier vanishes for a single vortex crossing. The belt forms along the vortex path and causes a transition of the entire strip into the normal state. We estimate I* to be roughly I-c/3. Furthermore, we argue that such "hot" vortex crossings are the origin of dark counts in photon detectors, which operate in the regime of metastable superconductivity at currents between I* and I-c. We estimate the rate of vortex crossings and compare it with recent experimental data for dark counts. For currents below I*, that is, in the stable superconducting but resistive regime, we estimate the amplitude and duration of voltage pulses induced by a single vortex crossing. C1 [Bulaevskii, L. N.; Graf, M. J.; Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kogan, V. G.] Ames Lab DOE, Ames, IA 50011 USA. RP Bulaevskii, LN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 FU US DOE [DE-AC52-06NA25396]; DOE-Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX We are grateful to I. Martin, M. Rabin, D. Rosenberg, and J. Clem for many useful discussions. Work at the Los Alamos National Laboratory was performed under the auspices of the US DOE Contract No. DE-AC52-06NA25396 through the LDRD program. Work at the Ames Lab (V.K.) was supported by the DOE-Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. NR 32 TC 63 Z9 64 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 14 AR 144526 DI 10.1103/PhysRevB.83.144526 PG 9 WC Physics, Condensed Matter SC Physics GA 784HT UT WOS:000292148400003 ER PT J AU Hawreliak, JA El-Dasher, B Lorenzana, H Kimminau, G Higginbotham, A Nagler, B Vinko, SM Murphy, WJ Whitcher, T Wark, JS Rothman, S Park, N AF Hawreliak, James A. El-Dasher, Bassem Lorenzana, Hector Kimminau, Giles Higginbotham, Andrew Nagler, Bob Vinko, Sam M. Murphy, William J. Whitcher, Thomas Wark, Justin S. Rothman, Steve Park, Nigel TI In situ x-ray diffraction measurements of the c/a ratio in the high-pressure epsilon phase of shock-compressed polycrystalline iron SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION AB The structure of laser-shock-compressed polycrystalline iron was probed using in situ x-ray diffraction over a pressure range spanning the alpha-epsilon phase transition. Measurements were also made of the c/a ratio in the epsilon phase, which, in contrast with previous in situ x-ray diffraction experiments performed on single crystals and large-scale molecular dynamics (MD) simulations are close to those found in high-pressure diamond anvil cell experiments. This is consistent with the observation that significant plastic flow occurs within the nanosecond time scale of the experiment. Furthermore, within the sensitivity of the measurement technique, the fcc phase that had been predicted by MD simulations was not observed. C1 [Hawreliak, James A.; El-Dasher, Bassem; Lorenzana, Hector] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kimminau, Giles; Higginbotham, Andrew; Nagler, Bob; Vinko, Sam M.; Murphy, William J.; Whitcher, Thomas; Wark, Justin S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Rothman, Steve; Park, Nigel] AWE Aldermaston, Reading, Berks, England. RP Hawreliak, JA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hawreliak1@llnl.gov RI Higginbotham, Andrew/F-7910-2011; Vinko, Sam/I-4845-2013 OI Vinko, Sam/0000-0003-1016-0975 FU US Department of Energy by the Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; LLNL [06-SI-004]; UK EPSRC [GR/R25699/01] FX The authors thank the staff at the Vulcan Laser Facility at the Rutherford Appleton Laboratory and are grateful for fruitful discussions with R. Smith, J. Eggert, and G. Collins. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 supported by the LDRD program Project No. 06-SI-004 at LLNL. Additional support was provided by the UK EPSRC under Grant No. GR/R25699/01. NR 25 TC 32 Z9 34 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 14 AR 144114 DI 10.1103/PhysRevB.83.144114 PG 6 WC Physics, Condensed Matter SC Physics GA 784HT UT WOS:000292148400001 ER PT J AU Khan, M Paudyal, D Mudryk, Y Gschneidner, KA Pecharsky, VK AF Khan, Mahmud Paudyal, D. Mudryk, Ya. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Use of Stevens coefficients for the prediction of magnetic transitions in pseudobinary R1xR(x)(2) alloys: Application to Tm1-xTbxAl(2) SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH-METALS; ELECTRONIC-STRUCTURE; CRYSTAL; SYSTEMS; FIELD AB Recent heat-capacity and low-field magnetic susceptibility measurements revealed unusual magnetic phenomena occurring in Er1-xRxAl2 systems (where R = Dy,Tb) in the vicinity of a "magic" concentration of x = 0.25. Empirically, such behavior was attributed to different shapes of the 4f charge densities of the R3+ ions, which are represented by the opposite signs of the second-order Stevens factors. Here we show that by using both the signs and magnitudes of the second-order Stevens factors, magnetic transitions can be predicted in a broader range of pseudobinary R1-xRx'Al-2 alloys, where R and R' are rare-earth metals that have opposite signs of second-order Stevens factors. The predictions have been verified using the Tm1-xTbxAl2 system as a model using x-ray diffraction, magnetic susceptibility, and heat-capacity measurements. First-principles calculations have also been performed to explore the behavior of the density of states near the Fermi level. C1 [Khan, Mahmud; Paudyal, D.; Mudryk, Ya.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Khan, M (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. FU U. S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U. S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 29 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 13 AR 134437 DI 10.1103/PhysRevB.83.134437 PG 10 WC Physics, Condensed Matter SC Physics GA 784GO UT WOS:000292145000003 ER PT J AU Tan, TL Johnson, DD AF Tan, Teck L. Johnson, D. D. TI Topologically correct phase boundaries and transition temperatures for Ising Hamiltonians via self-consistent coarse-grained cluster-lattice models SO PHYSICAL REVIEW B LA English DT Article ID DISORDERED BINARY ALLOYS; FCC LATTICE; STATISTICS; ORDER; 1ST-PRINCIPLES; DIAGRAMS AB We derive a cluster mean-field theory for an Ising Hamiltonian using a cluster-lattice Fourier transform with a cluster of size N-c and a coarse-grained (CG) lattice into cells of size N-cell. We explore forms with N-cell >= N-c, including a non-CG (NCG) version with N-cell -> infinity. For N-c = N-cell, the set of static, self-consistent equations relating cluster and CG lattice correlations is analogous to that in dynamical cluster approximation and cellular dynamical mean-field theory used in correlated electron physics. A variational N-c-site cluster grand potential based on N-c = N-cell CG lattice maintains thermodynamic consistency and improves predictions, recovering Monte Carlo and series expansion results upon finite-size scaling; notably, the N-c = 1 CG results already predict well the first-and second-order phase boundary topology and transition temperatures for frustrated lattices. The NCG version is significantly faster computationally than the CG case and more accurate at fixed Nc for ferromagnetism, which is potentially useful for cluster expansion and quantum cluster applications. C1 [Tan, Teck L.; Johnson, D. D.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Johnson, D. D.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Tan, TL (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM tantl@ihpc.a-star.edu.sg; ddj@ameslab.gov OI Johnson, Duane/0000-0003-0794-7283 FU National Science Foundation through the Materials Computation Center at Illinois [DMR-0705089, DMR-03-25939]; CSE; Ames Laboratory via the Department of Energy through Iowa State University [DE-AC02-07CH11358] FX We thank V. I. Tokar for helpful exchanges. This work was funded by the National Science Foundation via Grants No. DMR-0705089 and No. DMR-03-25939 through the Materials Computation Center at Illinois. T. L. T. acknowledges a CSE Program Fellowship. D.D.J. received partial support from Ames Laboratory via the Department of Energy (Grant No. DE-AC02-07CH11358) through Iowa State University. NR 50 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 14 AR 144427 DI 10.1103/PhysRevB.83.144427 PG 12 WC Physics, Condensed Matter SC Physics GA 784HT UT WOS:000292148400002 ER PT J AU Zhang, RF Lin, ZJ Veprek, S AF Zhang, R. F. Lin, Z. J. Veprek, S. TI Anisotropic ideal strengths of superhard monoclinic and tetragonal carbon and their electronic origin SO PHYSICAL REVIEW B LA English DT Article ID DIAMOND; PRESSURES; GRAPHITE; DESIGN; STATE; NANO AB The mechanical and electronic properties, and the atomic deformation mechanism of recently reported monoclinic (C2/m) and body-centered-tetragonal (I4/mmm) carbon polymorphs are studied by first-principles methods. The calculated elastic moduli and ideal strengths suggest that both polymorphs have low compressibility and are superhard, but their relatively lower ideal strength as compared with diamond indicates that they are intrinsically weaker because of differences in bond lengths and concomitant fluctuation of valence charge density. Analyses of electronic structure and atomic deformation mechanism demonstrate that the polarity of the bonds, which results from the fluctuations, is responsible for the lower strength. C1 [Zhang, R. F.; Veprek, S.] Tech Univ Munich, Dept Chem, D-85747 Munich, Germany. [Zhang, R. F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lin, Z. J.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. RP Zhang, RF (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Munich, Germany. EM Ruifeng.zhang@lrz.tum.de; zjlin6@gmail.com; stan.veprek@lrz.tum.de RI Veprek, Stan/C-1248-2008; Lin, Zhijun/A-5543-2010 OI Veprek, Stan/0000-0002-6016-3093; FU German Science Foundation (DFG); Los Alamos Director's Postdoctoral Fellowship FX This work was supported by German Science Foundation (DFG). We would like to thank G. Kresse for valuable advice in the application of VASP, A. R. Oganov for valuable suggestion to construct the structure of M carbon, and Maritza Veprek-Heijman for critical reading of the manuscript. R.F.Z. acknowledges the Los Alamos Director's Postdoctoral Fellowship. We thanks also to the Leibniz computer centre (LRZ). NR 36 TC 17 Z9 17 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2011 VL 83 IS 15 AR 155452 DI 10.1103/PhysRevB.83.155452 PG 5 WC Physics, Condensed Matter SC Physics GA 784IP UT WOS:000292150800009 ER PT J AU Gardner, JS Ehlers, G Fouquet, P Farago, B Stewart, JR AF Gardner, J. S. Ehlers, G. Fouquet, P. Farago, B. Stewart, J. R. TI Slow and static spin correlations in Dy2+xTi2-xO7-delta SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MAGNETIC MONOPOLES; ICE HO2TI2O7; DYNAMICS; Y2MO2O7; PHASE AB The static and dynamic spin correlations in the spin ices Dy2.3Ti1.7O6.85 and Dy2Ti2O7 have been studied in polarized neutron diffraction and neutron spin echo experiments. The measurements reveal that, below 100 mK, the magnetic scattering broadens and shifts to higher vertical bar Q vertical bar upon stuffing the pyrochlore lattice with additional Dy3+ ions. These observations can be related, by means of reverse Monte Carlo simulation, to the modified distribution of near-neighbour distances and an overall more antiferromagnetic character of the near-neighbour couplings. The dynamic measurements show that the spin correlations are slower in the stuffed system. These results will be discussed and compared to the holmium analogues. C1 [Gardner, J. S.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Gardner, J. S.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Ehlers, G.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Fouquet, P.; Farago, B.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Stewart, J. R.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. RP Gardner, JS (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. EM jsg@nist.gov; ehlersg@ornl.gov RI Stewart, Ross/C-4194-2008; Fouquet, Peter/B-5212-2008; Farago, Bela/H-4544-2012; Gardner, Jason/A-1532-2013; Ehlers, Georg/B-5412-2008 OI Stewart, Ross/0000-0003-0053-0178; Fouquet, Peter/0000-0002-5542-0059; Ehlers, Georg/0000-0003-3513-508X FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; National Science Foundation [DMR-0944772] FX We acknowledge the great support of P P Deen and T Fennell while collecting the data on D7. This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work also utilized facilities supported in part by the National Science Foundation under Agreement no. DMR-0944772. The authors are grateful for the local support staff at the NCNR and at the ILL. NR 43 TC 9 Z9 9 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 27 PY 2011 VL 23 IS 16 SI SI AR 164220 DI 10.1088/0953-8984/23/16/164220 PG 4 WC Physics, Condensed Matter SC Physics GA 745VM UT WOS:000289198200021 PM 21471620 ER PT J AU Greedan, JE Derakhshan, S Ramezanipour, F Siewenie, J Proffen, T AF Greedan, J. E. Derakhshan, Shahab Ramezanipour, F. Siewenie, J. Proffen, Th TI A search for disorder in the spin glass double perovskites Sr2CaReO6 and Sr2MgReO6 using neutron diffraction and neutron pair distribution function analysis SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MODEL KAGOME ANTIFERROMAGNETS; RARE-EARTH ELEMENTS; MAGNETIC-PROPERTIES; FREEZING TRANSITION; SCATTERING; JAROSITES; TB2MO2O7; BEHAVIOR; Y2MO2O7; SYSTEM AB The geometrically frustrated, B-site ordered, S = 1/2, double perovskites Sr2CaReO6 and Sr2MgReO6, which show spin frozen magnetic ground states, have been investigated using neutron powder diffraction (ND) and neutron pair distribution function (NPDF) analysis in a search for evidence for atomic positional disorder. For both materials, data were taken above and below the spin freezing temperatures of similar to 14 K and similar to 45 K for the CaRe and MgRe phases, respectively. In both cases the fully B-site ordered model was in excellent agreement with the data, both ND and NPDF, at all temperatures studied. Thus, the structure of these materials, from the average and the local perspectives, is very well described by the fully B-site ordered model, which raises questions concerning the origin of the spin glass ground state. These results are compared with those for the spin glass pyrochlore Y2Mo2O7 and other B-site ordered double perovskites. C1 [Greedan, J. E.; Derakhshan, Shahab; Ramezanipour, F.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Greedan, J. E.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Siewenie, J.; Proffen, Th] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Greedan, JE (reprint author), McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU Natural Sciences and Engineering Research Council of Canada; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; NSF [DMR 00-76488] FX JEG thanks the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The upgrade of NPDF has been funded by NSF through grant DMR 00-76488. NR 46 TC 12 Z9 12 U1 0 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 27 PY 2011 VL 23 IS 16 SI SI AR 164213 DI 10.1088/0953-8984/23/16/164213 PG 8 WC Physics, Condensed Matter SC Physics GA 745VM UT WOS:000289198200014 PM 21471633 ER PT J AU Jiang, Y Huq, A Booth, CH Ehlers, G Greedan, JE Gardner, JS AF Jiang, Yu Huq, Ashfia Booth, Corwin H. Ehlers, Georg Greedan, John E. Gardner, Jason S. TI Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb2Mo2O7 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-ABSORPTION; ANTI-FERROMAGNET; FINE-STRUCTURE; Y2MO2O7; OXIDES AB To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb2Mo2O7 is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction, and local structure information was obtained from the extended x-ray absorption fine structure technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y2Mo2O7. Although the freezing temperature in Tb2Mo2O7, 25 K, is slightly higher than in Y2Mo2O7, 22 K, the degree of local pair distance disorder is actually less in Tb2Mo2O7. This apparent contradiction is considered in light of the interactions involved in the freezing process. C1 [Jiang, Yu; Booth, Corwin H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Huq, Ashfia; Ehlers, Georg] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Greedan, John E.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Greedan, John E.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gardner, Jason S.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Gardner, Jason S.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Jiang, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM chbooth@lbl.gov RI Gardner, Jason/A-1532-2013; Booth, Corwin/A-7877-2008; Huq, Ashfia/J-8772-2013; Ehlers, Georg/B-5412-2008 OI Huq, Ashfia/0000-0002-8445-9649; Ehlers, Georg/0000-0003-3513-508X FU US Department of Energy (DOE) [DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE; National Science Foundation [DMR-0944772] FX AH acknowledges the assistance of the POWGEN team: Jason Hodges, Olivier Gourdon and Luke Heroux. Research at Lawrence Berkeley National Laboratory was supported by the US Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. The NIST Center for Neutron Research is in part funded by the National Science Foundation under Agreement No. DMR-0944772. X-ray absorption data were collected at Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. NR 30 TC 3 Z9 3 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 27 PY 2011 VL 23 IS 16 SI SI AR 164214 DI 10.1088/0953-8984/23/16/164214 PG 8 WC Physics, Condensed Matter SC Physics GA 745VM UT WOS:000289198200015 PM 21471616 ER PT J AU Kim, MS Aronson, MC AF Kim, M. S. Aronson, M. C. TI Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID QUANTUM CRITICAL-POINT; SPIN SYSTEM SRCU2(BO3)(2); DIMER GROUND-STATE; MAGNETIC-PROPERTIES; PHASE-TRANSITIONS; METALS; SUPERCONDUCTIVITY; T=NI; CE; PD AB We present measurements of the basic properties of Ce2Ge2Mg, Yb2Pt2Pb and Ce2Pt2Pb, which are members of a new class of geometrically frustrated magnets R2T2X (R = rare earth, T = transition metal, X = main group). Here, the moment-bearing R atoms are confined to layers where they are arranged in the Shastry-Sutherland lattice. Magnetic susceptibility and specific heat measurements indicate that Ce2Ge2Mg orders antiferromagnetically at 9.4 K and Yb2Pt2Pb at 2.07 K. No long ranged order is observed in Ce2Pt2Pb above 0.05 K. Analysis of Schottky peaks in the specific heat indicates that all three compounds have doublet ground states that are well separated in energy from the excited states of the crystal-field-split manifold. Electrical resistivity measurements show that Ce2Ge2Mg and Yb2Pt2Pb are excellent metals with small residual resistivities. However, the measured resistivity of Ce2Pt2Pb is large and almost temperature-independent, suggesting that strong disorder or perhaps strong quantum critical fluctuations saturate the quasiparticle scattering in this compound. The magnetic entropy develops very slowly above the onset of antiferromagnetic order and we discuss the possibility that a nonordered fluid of dimerized moments exists above T-N in Ce2Ge2Mg and Yb2Pt2Pb, and for a wide range of temperatures in Ce2Pt2Pb, which appears to be close to a frustration-driven quantum critical point. C1 [Kim, M. S.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Kim, MS (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM maronson@bnl.gov FU National Science Foundation [NSF-DMR-0405961] FX We acknowledge A Tsvelik, P Coleman, and especially J Sereni, for illuminating discussions. This research was supported by the National Science Foundation under grant NSF-DMR-0405961. NR 74 TC 13 Z9 13 U1 2 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 27 PY 2011 VL 23 IS 16 SI SI AR 164204 DI 10.1088/0953-8984/23/16/164204 PG 9 WC Physics, Condensed Matter SC Physics GA 745VM UT WOS:000289198200005 PM 21471619 ER PT J AU Zhang, Y Wang, LW AF Zhang, Yong Wang, Lin-Wang TI Global electronic structure of semiconductor alloys through direct large-scale computations for III-V alloys GaxIn1-xP SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM DOTS; GAINP2; ENERGY; STATES AB We critically examine two nominally equivalent approaches for treating a random alloy: (1) by using one very large supercell as a direct simulation of the alloy and (2) by performing configuration averaging overmany smaller supercells; and the common practice using a virtual crystal as the reference for analyzing the alloy band structure and discussing the electronic transport in the alloy. Specifically, (1) we show that, in practice, the size of the "very large" supercell depends on the particular property of interest, and the ideal of configuration averaging is only useful for certain properties. (2) We also examine the assumed equivalency by comparing the results of the two approaches in band-gap energy, energy fluctuation, and intervalley and intravalley scattering, and conclude that the two approaches often lead to nonequivalent physics. (3) We use a generalized moment method that is capable of computing the global electronic structure of a sufficiently large supercell (e. g., similar to 260 000 atoms) to obtain the intrinsic broadening of a Gamma-like electron state caused by the "inelastic" intravalley scattering in a direct-band-gap semiconductor alloy. (4) We demonstrate an efficient way to construct the effective dispersion curves of the alloy with high accuracy for calculating effective masses and examining anisotropy and nonparabolicity of the dispersion curve. (5) Finally, we discuss the limitation of using the virtual-crystal approximation as the reference for evaluating alloy scattering and studying transport properties. C1 [Zhang, Yong] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. [Zhang, Yong] Univ N Carolina, Ctr Optoelect, Charlotte, NC 28223 USA. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. RI Zhang, Yong/D-3412-2013 FU Charlotte Research Institute at UNC-Charlotte FX The work of Y. Zhang is supported partially by Charlotte Research Institute at UNC-Charlotte, and the work of L. W. Wang at LBNL is supported by the Director, Office of Science, Office of Basic Energy Science, Materials Science and Engineering Division, of the U. S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The work used the computational resources of NERSC at LBNL. NR 26 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 16 AR 165208 DI 10.1103/PhysRevB.83.165208 PG 11 WC Physics, Condensed Matter SC Physics GA 757VH UT WOS:000290115400001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Aramaki, Y Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Bok, JS Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Christiansen, P Chujo, T Chung, P Churyn, A Chvala, O Cianciolo, V Citron, Z Cole, BA Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Danchev, I Das, K Datta, A David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durham, JM Durum, A Dutta, D Dzhordzhadze, V Edwards, S Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Hanks, J Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ide, J Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Karatsu, K Kawall, D Kawashima, M Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, EJ Kim, E Kim, SH Kim, YJ Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, J Lee, KB Lee, K Lee, KS Lee, T Leitch, MJ Leite, MAL Leitner, E Lenzi, B Liebing, P Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Luechtenborg, R Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mignerey, AC Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, IH Park, J Park, SK Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Rosati, M Rosen, CA Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sano, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Sparks, NA Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sun, J Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Wei, F Wei, R Wessels, J White, SN Winter, D Wood, JP Woody, CL Wright, RM Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I You, Z Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Aramaki, Y. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Bok, J. S. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Churyn, A. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Danchev, I. Das, K. Datta, A. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durham, J. M. Durum, A. Dutta, D. Dzhordzhadze, V. Edwards, S. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Henni, A. Hadj Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Hanks, J. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ide, J. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Karatsu, K. Kawall, D. Kawashima, M. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. J. Kim, E. Kim, S. H. Kim, Y. J. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, J. Lee, K. B. Lee, K. Lee, K. S. Lee, T. Leitch, M. J. Leite, M. A. L. Leitner, E. Lenzi, B. Liebing, P. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Luechtenborg, R. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mignerey, A. C. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosen, C. A. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sano, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Sparks, N. A. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sun, J. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Wood, J. P. Woody, C. L. Wright, R. M. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. You, Z. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p plus p and Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID QCD MATTER; FRAGMENTATION; RADIATION; MESONS AB Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled p+p collisions. These measurements indicate that charm and bottom quarks interact with the hot dense matter produced in heavy-ion collisions much more than expected. Here we extend these studies to two-particle correlations where one particle is an electron from the decay of a heavy-flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interactions between heavy quarks and the matter, such as whether the modification of the away-side-jet shape seen in hadron-hadron correlations is present when the trigger particle is from heavy-meson decay and whether the overall level of away-side-jet suppression is consistent. We statistically subtract correlations of electrons arising from background sources from the inclusive electron-hadron correlations and obtain two-particle azimuthal correlations at root s(NN) = 200 GeV between electrons from heavy-flavor decay with charged hadrons in p+p and also first results in Au+Au collisions. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to p+p collisions. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Levy, L. A. Linden; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing, Peoples R China. [Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sano, S.; Yamaguchi, Y. L.] Univ Tokyo, Ctr Nucl Study, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Basye, A. T.; Isenhower, D.; Jumper, D. S.; Sparks, N. A.; Towell, R. S.; Wood, J. P.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Edwards, S.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Horaguchi, T.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, IHEP Protvino, State Res Ctr Russian Federat, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Kim, Y. J.; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Nagamiya, S.; Nakamura, T.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Karatsu, K.; Saito, N.; Shoji, K.; Tanida, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Blaise Pascal, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Luechtenborg, R.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Ide, J.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Kotchetkov, D.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Ishihara, M.; Kametani, S.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kawashima, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, K.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Jia, J.; Lacey, R.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Proissl, M.; Sun, J.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, Ecole Mines Nantes, CNRS, IN2P3,SUBATECH, F-44307 Nantes, France. [Garishvili, I.; Hamblen, J.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Danchev, I.; Greene, S. V.; Huang, S.; Issah, M.; Leitner, E.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Sano, S.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Bok, J. S.; Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Mignerey, Alice/D-6623-2011; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Semenov, Vitaliy/E-9584-2017 OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Hayano, Ryugo/0000-0002-1214-7806; FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologie; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation; Ministry Education Science and Technology (Korea); Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); VR; Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China) and the Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologie, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea); Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); VR and the Wallenberg Foundation (Sweden); the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 46 TC 6 Z9 6 U1 6 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 26 PY 2011 VL 83 IS 4 AR 044912 DI 10.1103/PhysRevC.83.044912 PG 16 WC Physics, Nuclear SC Physics GA 758JV UT WOS:000290161700003 ER PT J AU Hill, TM Spero, HJ Guilderson, T LaVigne, M Clague, D Macalello, S Jang, N AF Hill, T. M. Spero, H. J. Guilderson, T. LaVigne, M. Clague, D. Macalello, S. Jang, N. TI Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the "lines method" SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE coral; isotope; paleotemperature; fractionation; radiocarbon ID DEEP-SEA CORALS; NEW-ZEALAND; GROWTH-RATES; RADIOCARBON VARIABILITY; REEF CORAL; AGES; OCTOCORALLIA; ATLANTIC; PRIMNOA; WATERS AB Deep-sea bamboo corals hold promise as long-term climatic archives, yet little information exists linking bamboo coral geochemistry to measured environmental parameters. This study focuses on a suite of 10 bamboo corals collected from the Pacific and Atlantic basins (250-2136 m water depth) to investigate coral longevity, growth rates, and isotopic signatures. Calcite samples for stable isotopes and radiocarbon were collected from the base the corals, where the entire history of growth is recorded. In three of the coral specimens, samples were also taken from an upper branch for comparison. Radiocarbon and growth band width analyses indicate that the skeletal calcite precipitates from ambient dissolved inorganic carbon and that the corals live for 150-300 years, with extension rates of 9-128 mu m/yr. A linear relationship between coral calcite delta O-18 and delta C-13 indicates that the isotopic composition is influenced by vital effects (delta O-18:delta C-13 slope of 0.17-0.47). As with scleractinian deep-sea corals, the intercept from a linear regression of delta O-18 versus delta C-13 is a function of temperature, such that a reliable paleotemperature proxy can be obtained, using the "lines method." Although the coral calcite delta O-18:delta C-13 slope is maintained throughout the coral base ontogeny, the branches and central cores of the bases exhibit delta O-18:delta C-13 values that are shifted far from equilibrium. We find that a reliable intercept value can be derived from the delta O-18:delta C-13 regression of multiple samples distributed throughout one specimen or from multiple samples within individual growth bands. C1 [Hill, T. M.; Spero, H. J.; LaVigne, M.; Macalello, S.; Jang, N.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Hill, T. M.; LaVigne, M.] Univ Calif Davis, Bodega Marine Lab, Bodega Bay, CA 94923 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, T.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Clague, D.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. RP Hill, TM (reprint author), Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. EM tmhill@ucdavis.edu FU NOAA [NA030AR4300104, NA05OAR4310017, NA05OAR4310021]; NSF [OCE 0647872]; NOAA Office of Ocean Exploration [NA16RP2637]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; LLNL IGPP; David and Lucille Packard Foundation FX We thank the crew and scientific parties of the R/V Western Flyer and R/V Atlantis for coral and water sample acquisition. We thank A. C. Neumann, C. Ross, and R. Williams for providing Bowditch Seamount and Florida Straits samples. California seamount sampling and geochemical analyses were supported by NOAA West Coast Polar Regions Research Program (NA030AR4300104 to TMH and HJS) and NSF (OCE 0647872 to TMH). Collection of the Warwick Seamount sample was funded by the NOAA Office of Ocean Exploration (NA16RP2637 to TPG), with additional funding by NOAA awards NA05OAR4310017 and NA05OAR4310021. Radio-carbon analyses were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (contract W-7405-Eng-48) including LLNL IGPP funding (HJS and TPG). We appreciate the technical support of D. Winter, L. Jacobs, and staff of LLNL CAMS. DAC and collection of T661 to T669 samples using the ROV Tiburon were supported by a grant to MBARI from the David and Lucille Packard Foundation. We thank M. Graziose for the coral photography and B. Gaylord for statistical assistance. We thank R. Thresher and two anonymous reviewers for helpful comments on this paper. This publication is a contribution of Bodega Marine Laboratory, University of California, Davis. NR 29 TC 13 Z9 13 U1 0 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR 26 PY 2011 VL 12 AR Q04008 DI 10.1029/2010GC003443 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 757RJ UT WOS:000290105100003 ER PT J AU Spanu, L Donadio, D Hohl, D Schwegler, E Galli, G AF Spanu, Leonardo Donadio, Davide Hohl, Detlef Schwegler, Eric Galli, Giulia TI Stability of hydrocarbons at deep Earth pressures and temperatures SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE carbon cycle; Earth interior; numerical simulation ID METHANE DECOMPOSITION; DIAMOND FORMATION; CARBON; DYNAMICS; HYDROGEN; MANTLE; DISSOCIATION; SIMULATIONS; ORIGIN AB Determining the thermochemical properties of hydrocarbons (HCs) at high pressure and temperature is a key step toward understanding carbon reservoirs and fluxes in the deep Earth. The stability of carbon-hydrogen systems at depths greater than a few thousand meters is poorly understood and the extent of abiogenic HCs in the Earth mantle remains controversial. We report ab initio molecular dynamics simulations and free energy calculations aimed at investigating the formation of higher HCs from dissociation of pure methane, and in the presence of carbon surfaces and transition metals, for pressures of 2 to 30 GPa and temperatures of 800 to 4,000 K. We show that for T >= 2,000 K and P >= 4 GPa HCs higher than methane are energetically favored. Our results indicate that higher HCs become more stable between 1,000 and 2,000 K and P >= 4 GPa. The interaction of methane with a transition metal facilitates the formation of these HCs in a range of temperature where otherwise pure methane would be metastable. Our results provide a unified interpretation of several recent experiments and a detailed microscopic model of methane dissociation and polymerization at high pressure and temperature. C1 [Spanu, Leonardo; Donadio, Davide; Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Donadio, Davide] Max Planck Inst Polymer Res, D-55128 Mainz, Germany. [Hohl, Detlef] Shell Global Solut, Houston, TX 77025 USA. [Schwegler, Eric] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Galli, Giulia] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Spanu, L (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM lspanu@ucdavis.edu RI Donadio, Davide/C-6971-2008; MPIP, Theory/I-9884-2014; Schwegler, Eric/A-2436-2016 OI Donadio, Davide/0000-0002-2150-4182; Schwegler, Eric/0000-0003-3635-7418 FU Stichting Shell Research FX We thank V.G. Kutcherov (Royal Institute of Technology), A.F. Goncharov (Geophysical Laboratory, Carnegie Institution of Washington), H. Kuipers (Shell Global Solutions), and D. Foustoukos (Geophysical Laboratory, Carnegie Institution of Washington) for a critical reading of the manuscript and for useful discussions. We also acknowledge useful discussions with F. Gygi (University of California, Davis) and P. Giaquinta (University of Messina). Calculations were performed at the Lawrence Livermore National Laboratory and at the University of California Shared Computer Center on the Mako cluster. This work was supported by a grant from Stichting Shell Research. NR 25 TC 22 Z9 23 U1 4 U2 25 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 26 PY 2011 VL 108 IS 17 BP 6843 EP 6846 DI 10.1073/pnas.1014804108 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 754WM UT WOS:000289888500033 ER PT J AU Bauer, ED Yang, YF Capan, C Urbano, RR Miclea, CF Sakai, H Ronning, F Graf, MJ Balatsky, AV Movshovich, R Bianchi, AD Reyes, AP Kuhns, PL Thompson, JD Fisk, Z AF Bauer, E. D. Yang, Yi-feng Capan, C. Urbano, R. R. Miclea, C. F. Sakai, H. Ronning, F. Graf, M. J. Balatsky, A. V. Movshovich, R. Bianchi, A. D. Reyes, A. P. Kuhns, P. L. Thompson, J. D. Fisk, Z. TI Electronic inhomogeneity in a Kondo lattice SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Kondo effect; heavy fermion ID UNCONVENTIONAL SUPERCONDUCTIVITY; HEAT; SUBSTITUTION; URU2SI2; SYSTEMS; CECOIN5; STATES; UPT3; HOLE AB Inhomogeneous electronic states resulting from entangled spin, charge, and lattice degrees of freedom are hallmarks of strongly correlated electron materials; such behavior has been observed in many classes of d-electron materials, including the high-T(c) copper-oxide superconductors, manganites, and most recently the iron-pnictide superconductors. The complexity generated by competing phases in these materials constitutes a considerable theoretical challenge-one that still defies a complete description. Here, we report a manifestation of electronic inhomogeneity in a strongly correlated f-electron system, using CeCoIn(5) as an example. A thermodynamic analysis of its superconductivity, combined with nuclear quadrupole resonance measurements, shows that nonmagnetic impurities (Y, La, Yb, Th, Hg, and Sn) locally suppress unconventional superconductivity, generating an inhomogeneous electronic "Swiss cheese" due to disrupted periodicity of the Kondo lattice. Our analysis may be generalized to include related systems, suggesting that electronic inhomogeneity should be considered broadly in Kondo lattice materials. C1 [Bauer, E. D.; Yang, Yi-feng; Miclea, C. F.; Ronning, F.; Graf, M. J.; Balatsky, A. V.; Movshovich, R.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yang, Yi-feng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Capan, C.; Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Urbano, R. R.; Reyes, A. P.; Kuhns, P. L.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Bianchi, A. D.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM edbauer@lanl.gov; yifeng@iphy.ac.cn; zfisk@uci.edu RI Bauer, Eric/D-7212-2011; Urbano, Ricardo/F-5017-2012; Bianchi, Andrea/E-9779-2010; OI Bianchi, Andrea/0000-0001-9340-6971; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU National Science Foundation (NSF) [NSF-DMR-0801253] FX Z.F. thanks Ilya Vekhter, Piers Coleman, and Lev Gor'kov for useful discussions and the hospitality of the Aspen Center for Physics. E.D.B. and J.D.T. thank H. Yasuoka for helpful discussions. This work was performed at Los Alamos National Laboratory under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Work at University of California, Irvine was performed under the National Science Foundation (NSF) Grant NSF-DMR-0801253. Work at the National High Magnetic Field Laboratory was performed under the auspices of the NSF (DMR-0654118) and the State of Florida. NR 32 TC 27 Z9 27 U1 1 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 26 PY 2011 VL 108 IS 17 BP 6857 EP 6861 DI 10.1073/pnas.1103965108 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 754WM UT WOS:000289888500036 ER PT J AU Yi, M Lu, DH Chu, JH Analytis, JG Sorini, AP Kemper, AF Moritz, B Mo, SK Moore, RG Hashimoto, M Lee, WS Hussain, Z Devereaux, TP Fisher, IR Shen, ZX AF Yi, Ming Lu, Donghui Chu, Jiun-Haw Analytis, James G. Sorini, Adam P. Kemper, Alexander F. Moritz, Brian Mo, Sung-Kwan Moore, Rob G. Hashimoto, Makoto Lee, Wei-Sheng Hussain, Zahid Devereaux, Thomas P. Fisher, Ian R. Shen, Zhi-Xun TI Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)(2)As-2 above the spin density wave transition SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID SUPERCONDUCTOR; STATE AB Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high-temperature superconductors. Similarly, the new iron-based high-temperature superconductors exhibit a tetragonal-to-orthorhombic structural transition (i.e., a broken C-4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here, we present an angle-resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe1-xCox)(2)As-2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d(xz) and d(yz) character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T-S) precedes the magnetic transition (T-SDW), an anisotropic splitting is observed to develop above T-SDW, indicating that it is specifically associated with T-S. For unstressed crystals, the band splitting is observed close to T-S, whereas for stressed crystals, the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure. C1 [Yi, Ming; Chu, Jiun-Haw; Analytis, James G.; Hashimoto, Makoto; Devereaux, Thomas P.; Fisher, Ian R.; Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Dept Phys & Appl Phys, Stanford, CA 94305 USA. [Yi, Ming; Chu, Jiun-Haw; Analytis, James G.; Sorini, Adam P.; Kemper, Alexander F.; Moritz, Brian; Moore, Rob G.; Hashimoto, Makoto; Lee, Wei-Sheng; Devereaux, Thomas P.; Fisher, Ian R.; Shen, Zhi-Xun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Lu, Donghui] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Mo, Sung-Kwan; Hashimoto, Makoto; Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Shen, ZX (reprint author), Stanford Univ, Geballe Lab Adv Mat, Dept Phys & Appl Phys, McCullough Bldg 342,476 Lomita Mall, Stanford, CA 94305 USA. EM zxshen@stanford.edu RI Yi, Ming/E-3145-2010; Mo, Sung-Kwan/F-3489-2013; Moritz, Brian/D-7505-2015; Kemper, Alexander/F-8243-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; Moritz, Brian/0000-0002-3747-8484; Kemper, Alexander/0000-0002-5426-5181 FU DOE Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; National Science Foundation FX The authors are grateful for helpful discussions with C.-C. Chen, R.-H. He, I. I. Mazin, Y. Ran, D. J. Singh, F. Wang, D.-H. Lee, J. P. Hu, and Z. Y. Lu. ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource and the Advanced Light Source, which are both operated by the Office of Basic Energy Science, US Department of Energy (DOE). The Stanford work is supported by DOE Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract DE-AC02-76SF00515. M.Y. thanks the National Science Foundation Graduate Research Fellowship Program for financial support. NR 42 TC 270 Z9 270 U1 4 U2 71 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 26 PY 2011 VL 108 IS 17 BP 6878 EP 6883 DI 10.1073/pnas.1015572108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 754WM UT WOS:000289888500040 ER PT J AU Watkins, EB Miller, CE Majewski, J Kuhl, TL AF Watkins, E. B. Miller, C. E. Majewski, J. Kuhl, T. L. TI Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE X-ray scattering; liquid crystal; supported membrane; ganglioside; glycolipid ID CHOLERA-TOXIN; MODEL MEMBRANES; X-RAY; CRYSTAL-STRUCTURE; PLASMA-MEMBRANES; RAFTS; MONOLAYERS; DIFFRACTION; ENDOCYTOSIS; PRINCIPLES AB Biological membranes are complex, self-organized structures that define boundaries and compartmentalize space in living matter. Composed of a wide variety of lipid and protein molecules, these responsive surfaces mediate transmembrane signaling and material transport within the cell and with its environment. It is well known that lipid membrane properties change as a function of composition and phase state, and that protein-lipid interactions can induce changes in the membrane's properties and biochemical response. Here, molecular level changes in lipid organization induced by multivalent toxin binding were investigated using grazing incidence X-ray diffraction. Structural changes to lipid monolayers at the air-water interface and bilayers at the solid-water interface were studied before and after specific binding of cholera toxin to membrane embedded receptors. At biologically relevant surface pressures, protein binding perturbed lipid packing within monolayers and bilayers resulting in topological defects and the emergence of a new orientationally textured lipid phase. In bilayers this altered lipid order was transmitted from the receptor laden exterior membrane leaflet to the inner leaflet, representing a potential mechanism for lipid mediated outside-in signaling by multivalent protein binding. It is further hypothesized that cell-surface micro-domains exhibiting this type of lipid order may serve as nucleation sites for vesicle formation in clathrin independent endocytosis of cholera toxin. C1 [Watkins, E. B.; Miller, C. E.; Majewski, J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Watkins, E. B.; Kuhl, T. L.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Miller, C. E.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Majewski, J (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM jarek@lanl.gov; tlkuhl@ucdavis.edu RI Lujan Center, LANL/G-4896-2012 FU National Science Foundation Chemistry Division [0957868]; Department of Energy (DOE) Office of Basic Energy Sciences [DE-FG02-OGER46340]; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396]; Jeff and Diane Child/Steve Whitaker fund FX We thank Dr. Kristian Kjaer for help with the monolayer measurements and Dr. Doug Robinson for assistance with the bilayer measurements. This work was supported by the National Science Foundation Chemistry Division under award 0957868, the Department of Energy (DOE) Office of Basic Energy Sciences supported travel to Argonne under award DE-FG02-OGER46340 and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. T.L.K. thanks the Jeff and Diane Child/Steve Whitaker fund for Distinguished Teaching and Scholarship for financial support. NR 32 TC 37 Z9 38 U1 2 U2 44 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 26 PY 2011 VL 108 IS 17 BP 6975 EP 6980 DI 10.1073/pnas.1014579108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 754WM UT WOS:000289888500057 PM 21474780 ER PT J AU Moss, WC King, MJ Blackman, EG AF Moss, William C. King, Michael J. Blackman, Eric G. TI Distinguishing realistic military blasts from firecrackers in mitigation studies of blast-induced traumatic brain injury SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Blackman, Eric G.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Moss, William C.] Lawrence Livermore Natl Lab, B Div, Livermore, CA 94551 USA. [King, Michael J.] Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94551 USA. RP Blackman, EG (reprint author), Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA. EM blackman@pas.rochester.edu NR 5 TC 2 Z9 2 U1 6 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 26 PY 2011 VL 108 IS 17 BP E82 EP E82 DI 10.1073/pnas.1101671108 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 754WM UT WOS:000289888500001 PM 21502539 ER PT J AU Scheffe, JR Allendorf, MD Coker, EN Jacobs, BW McDaniel, AH Weimer, AW AF Scheffe, Jonathan R. Allendorf, Mark D. Coker, Eric N. Jacobs, Benjamin W. McDaniel, Anthony H. Weimer, Alan W. TI Hydrogen Production via Chemical Looping Redox Cycles Using Atomic Layer Deposition-Synthesized Iron Oxide and Cobalt Ferrites SO CHEMISTRY OF MATERIALS LA English DT Article DE water splitting; hydrogen; ferrite; atomic layer deposition; film; thermochemical cycle ID FLUIDIZED-BED REACTOR; SOLAR THERMOCHEMICAL CYCLES; THIN-FILMS; METAL-OXIDE; ZIRCONIA NANOPARTICLES; STABILIZED ZIRCONIA; EPITAXIAL-GROWTH; KINETIC-ANALYSIS; PURE HYDROGEN; COFE2O4 FILM AB Iron oxide (gamma-Fe(2)O(3)) and cobalt ferrite (Co(x)Fe(3-x)O(4)) thin films were synthesized via atomic layer deposition (ALD) on high surface-area (50 m(2) g(-1)) m-ZrO(2) supports. The oxide films were grown by sequentially depositing iron oxide and cobalt oxide, adjusting the number of iron oxide to cobalt oxide cycles to achieve a desired stoichiometry. High resolution transmission electron microscopy and X-ray diffraction indicate that the films are crystalline and have a thickness of similar to 2.5 nm. Raman spectroscopy was used to confirm the predominance of the spinel phase in the case of cobalt ferrite. Films were chemically reduced at 600 degrees C using mixtures of H(2), CO, and CO(2). The evolution of oxide phases as a function of time during this reduction was observed using in situ X-ray diffraction, showing that gamma-Fe(2)O(3) are reduced only to FeO, while Co(x)Fe(3-x)O(4) are reduced all the way to a Co/Fe alloy. Subsequent water splitting measurements in a stagnation flow reactor yielded peak H(2) rates exceeding virtually all of those reported in the literature. Co(0.85)Fe(2.15)O(4) films were successfully cycled without deactivation and produced four times more H(2) than gamma-Fe(2)O(3) films principally because of the deeper chemical reduction possible. Together, these results suggest a path to robust materials for chemical looping cycles and thermal gas splitting. They also indicate that ALD films can serve as an effective platform for probing the surface chemistry of these processes, since they maintain their reactivity at: these temperatures, in contrast with oxide powders that are deactivated by sintering and grain growth. C1 [Allendorf, Mark D.; Jacobs, Benjamin W.; McDaniel, Anthony H.] Sandia Natl Labs, Livermore, CA 94551 USA. [Scheffe, Jonathan R.; Weimer, Alan W.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Coker, Eric N.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP McDaniel, AH (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM a.mcdani@sandia.gov; alan.weimer@colora-do.edu RI Dom, Rekha/B-7113-2012 FU Sandia National Laboratories; U.S. Department of Energy via Solar Thermochemical Hydrogen (STCH) directive; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development Sunshine to Petrol program at Sandia National Laboratories and the U.S. Department of Energy Fuel Cell Technologies Program via the Solar Thermochemical Hydrogen (STCH) directive. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 52 TC 49 Z9 50 U1 7 U2 113 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2030 EP 2038 DI 10.1021/cm103622e PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000009 ER PT J AU Bareno, J Balasubramanian, M Kang, SH Wen, JG Lei, CH Pol, SV Petrov, I Abraham, DP AF Bareno, J. Balasubramanian, M. Kang, S. H. Wen, J. G. Lei, C. H. Pol, S. V. Petrov, I. Abraham, D. P. TI Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 SO CHEMISTRY OF MATERIALS LA English DT Article DE lithium-ion batteries; XRD; XAS; TEM ID X-RAY-ABSORPTION; LITHIUM-ION BATTERIES; CATHODE MATERIAL; FINE-STRUCTURE; ELECTRON-DIFFRACTION; SOLID-SOLUTIONS; LICOO2; MN; SPECTROSCOPY; LI2MNO3 AB The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide's rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (similar to 1 mu m) and local structure (<= 1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for transportation applications. We find that Li1.2Co0.4Mn0.4O2 contains mostly Mn4+ in Li2MnO3-like atomic environments and Co3+ in LiCoO2-like atomic environments, which are intimately mixed over length scales of >= 2-3 nm, resulting in a Li1.2Co0.4Mn0.4O2 crystallite composition that appears homogeneous over the long-range. In addition, we observed a quasi-random distribution of locally monoclinic structures, topotaxially integrated within a rhombohedral-NaFeO2 framework. Based on these observations, we propose a dendritic microstructure model for Li1.2Co0.4Mn0.4O2 consisting of well integrated LiCoO2- and Li2MnO3-like structures. C1 [Balasubramanian, M.; Pol, S. V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bareno, J.; Kang, S. H.; Abraham, D. P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wen, J. G.; Lei, C. H.; Petrov, I.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Balasubramanian, M (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mali@aps.anl.gov; abraham@anl.gov RI Pol, Swati/B-5868-2012; Petrov, Ivan/D-4910-2011; OI Petrov, Ivan/0000-0002-2955-4897; Bareno, Javier/0000-0003-1230-9278 FU U.S. Department of Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; NSERC; University of Washington; Simon Fraser University; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471] FX Support from the U.S. Department of Energy's Vehicle Technologies Program, and specifically from Dave Howell, is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy Basic Energy Sciences, a Major Resources Support grant from NSERC, University of Washington, Simon Fraser University, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We acknowledge use of the Center for Microanalysis of Materials (CMM) at the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign (Illinois), which is partially supported by the U.S. Department of Energy (under Grant Nos. DE-FG02-07ER46453 and DE-FG02-07ER46471). NR 47 TC 91 Z9 94 U1 4 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2039 EP 2050 DI 10.1021/cm200250a PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000010 ER PT J AU Dunphy, DR Garcia, FL Kaehr, B Khripin, CY Collord, AD Baca, HK Tate, MP Hillhouse, HW Strzalka, JW Jiang, Z Wang, J Brinker, CJ AF Dunphy, Darren R. Garcia, Fred L. Kaehr, Bryan Khripin, Constantine Y. Collord, Andrew D. Baca, Helen K. Tate, Michael P. Hillhouse, Hugh W. Strzalka, Joseph W. Jiang, Zhang Wang, Jin Brinker, C. Jeffrey TI Tricontinuous Cubic Nanostructure and Pore Size Patterning in Mesostructured Silica Films Templated with Glycerol Monooleate SO CHEMISTRY OF MATERIALS LA English DT Article DE evaporation-induced self-assembly; porous films; tricontinuous phases; gyroid; glycerol monooleate; grazing-incidence small-angle X-ray scattering; film patterning ID THIN-FILMS; SURFACTANT; PHASE; MESOPHASES; SYSTEM; CELL AB The fabrication of nanostructured silica films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing. incidence small-angle X-ray scattering data. Removal of GMO by UV/O(3) treatment or acid extraction induces a phase change to a nanoporous body-centered structure, which we tentatively identify as based on the IW-P surface. To improve film quality, we add a cosurfactant to the GMO in a mass ratio of 1:10; when this cosurfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O(3) treated films yield pores of only about 4 nm. Using this pore size dependence on the film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially defined size-selective molecular adsorption. C1 [Dunphy, Darren R.; Garcia, Fred L.; Kaehr, Bryan; Baca, Helen K.; Brinker, C. Jeffrey] Univ New Mexico, NSF Ctr Microengineered Mat, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Kaehr, Bryan; Collord, Andrew D.; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Hillhouse, Hugh W.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Strzalka, Joseph W.; Jiang, Zhang; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Brinker, CJ (reprint author), Univ New Mexico, NSF Ctr Microengineered Mat, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM cjbrink@sandia.gov RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU Department of Energy [DE-AC02-06CH11357]; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; TMA through DOE BES; Air Force Office of Scientific Research [FA 9550-07-1-0054]; National Institutes of Health [PHS 2 PN2 EY016570B] FX We thank Danisco for the donation of GMO (RYLO MG19 PHARMA). Use of the APS is supported by the Department of Energy under Contract DE-AC02-06CH11357. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Partial support of this work (TMA) was through the DOE BES funding to Sandia, Sandia's Laboratory Directed Research and Development (LDRD) Programs, as well as through the Air Force Office of Scientific Research Grant FA 9550-07-1-0054 and the National Institutes of Health through the HIH Roadmap for Medical Research Award PHS 2 PN2 EY016570B. NR 29 TC 1 Z9 1 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2107 EP 2112 DI 10.1021/cm1033723 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000018 PM 21572556 ER PT J AU Libera, JA Hryn, JN Elam, JW AF Libera, Joseph A. Hryn, John N. Elam, Jeffrey W. TI Indium Oxide Atomic Layer Deposition Facilitated by the Synergy between Oxygen and Water SO CHEMISTRY OF MATERIALS LA English DT Article DE atomic layer deposition; indium oxide; resistivity; in situ measurements ID IN2O3 THIN-FILMS; TRANSPARENT CONDUCTING OXIDES; QUARTZ-CRYSTAL MICROBALANCE; TIN-OXIDE; MASS-SPECTROMETRY; GROWTH; EPITAXY; TRIMETHYLALUMINUM; ROUTE AB This paper explores the atomic layer deposition (ALD) of indium oxide (In(2)O(3)) films using cyclopentadienyl indium (InCp) and combinations of both molecular oxygen and water as the co-reactants. When either O(2) or H(2)O were used individually as the oxygen source the In(2)O(3) growth was negligible over the temperature range 100-250 degrees C. However, when oxygen and water were used in combination either as a simultaneous exposure or supplied sequentially, In(2)O(3) films were deposited at growth rates of 1.0-1.6 angstrom/cycle over the full range of deposition temperatures. In situ quadrupole mass spectrometry and quartz crystal microbalance measurements revealed that water serves the function of releasing ligands from the surface while oxygen performs the role of oxidizing the indium. Since both processes are necessary for sustained growth, both O(2) and H(2)O are required for the In(2)O(3) ALD. The electrical resistivity, mobility, and carrier concentration of the In(2)O(3) films varied dramatically with both the deposition temperature and co-reactant sequence and correlated to a crystallization occurring at similar to 140 degrees C observed by X-ray diffraction and scanning electron microscopy. Using this new process we successfully deposited ALD In(2)O(3) films over large area substrates (12 in. x 18 in.) with very high uniformity in thickness and resistivity. C1 [Libera, Joseph A.; Hryn, John N.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov FU U.S. Department of Energy [FWP-4911A]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059, DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, EERE-Solar Energy Technologies Program under FWP-4911A. The in situ analysis was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059. Electron microscopy was performed at the Electron Microscopy Center for Materials Research (EMCMR) at Argonne National Laboratory. Use of the EMCMR was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 operated by UChicago Argonne, LLC. NR 27 TC 42 Z9 42 U1 1 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2150 EP 2158 DI 10.1021/cm103637t PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000023 ER PT J AU Irwin, MD Servaites, JD Buchholz, DB Leever, BJ Liu, J Emery, JD Zhang, M Song, JH Durstock, MF Freeman, AJ Bedzyk, MJ Hersam, MC Chang, RPH Ratner, MA Marks, TJ AF Irwin, Michael D. Servaites, Jonathan D. Buchholz, D. Bruce Leever, Benjamin J. Liu, Jun Emery, Jonathan D. Zhang, Ming Song, Jung-Hwan Durstock, Michael F. Freeman, Arthur J. Bedzyk, Michael J. Hersam, Mark C. Chang, Robert P. H. Ratner, Mark A. Marks, Tobin J. TI Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells SO CHEMISTRY OF MATERIALS LA English DT Article DE organic solar cells; nickel oxide; interfacial layer; organic photovoltaics; NiO; hole transport layer; electron blocking layer ID INDIUM TIN OXIDE; POLYMER PHOTOVOLTAIC CELLS; HOLE-TRANSPORT LAYERS; LIGHT-EMITTING-DIODES; PLANE-WAVE METHOD; NICKEL-OXIDE; THIN-FILMS; CHARGE-TRANSPORT; CONVERSION EFFICIENCY; ELECTRONIC-STRUCTURE AB The functionality of NiO interfacial layers in enhancing bulk heterojunction (BHJ) organic photovoltaic (OPV) cell performance is investigated by integrated characterization of the electrical properties, microstructure, electronic structure, and optical properties of thin NiO films grown on glass/ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p-type character, crystallinity, smooth surfaces, and optical transparency. The NiO overlayers are fabricated via pulsed-laser deposition and;Found to have a work function of similar to 5.3 eV. They are investigated by both topographic and conductive atomic force microscopy and shown to passivate interfacial charge traps. The films also have an average optical transparency of >80% in the visible range, crucial for efficient OPV function, and have a near-stoichiometric NiO surface composition. By grazing-incidence X-ray diffraction, the NiO thin films are shown to grow preferentially in the (111) direction and to have the fcc NaCl crystal structure. Diodes of p-n structure and first-principles electronic structure calculations indicate that the NiO interlayer is preferentially conductive to holes, with a lower hole charge carrier effective mass versus that of electrons. Finally, the implications of these attributes in advancing efficiencies for state-of-the-art OPV systems-in particular, improving the open circuit voltage (V-OC)-are discussed. C1 [Leever, Benjamin J.; Durstock, Michael F.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Irwin, Michael D.; Liu, Jun; Hersam, Mark C.; Ratner, Mark A.; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Servaites, Jonathan D.; Buchholz, D. Bruce; Leever, Benjamin J.; Emery, Jonathan D.; Zhang, Ming; Bedzyk, Michael J.; Hersam, Mark C.; Chang, Robert P. H.; Marks, Tobin J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Servaites, Jonathan D.; Buchholz, D. Bruce; Leever, Benjamin J.; Emery, Jonathan D.; Zhang, Ming; Bedzyk, Michael J.; Hersam, Mark C.; Chang, Robert P. H.; Marks, Tobin J.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Song, Jung-Hwan; Freeman, Arthur J.; Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Irwin, Michael D.; Servaites, Jonathan D.; Buchholz, D. Bruce; Leever, Benjamin J.; Liu, Jun; Zhang, Ming; Song, Jung-Hwan; Freeman, Arthur J.; Hersam, Mark C.; Chang, Robert P. H.; Ratner, Mark A.; Marks, Tobin J.] Argonne NW Solar Energy Res Inst, Evanston, IL 60208 USA. RP Durstock, MF (reprint author), USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. EM Michael.Durstock@wpafb.af.mil; ajf328@northwestern.edu; bedzyk@northwestern.edu; m-hersam@northwestern.edu; r-chang@northwestern.edu; ratner@northwestern.edu; t-marks@northwestern.edu RI Hersam, Mark/B-6739-2009; Chang, R.P.H/B-7505-2009; Bedzyk, Michael/B-7503-2009; Irwin, Michael/C-2613-2011; Bedzyk, Michael/K-6903-2013 FU Department of Energy [DE-FG02-06ER46320, W911NF-05-1-0177, ECS-0609064, DE-SC0001059] FX We thank BP Solar, the AFRL Materials & Manufacturing Directorate, the DOE (DE-FG02-06ER46320), the Army Research Office (W911NF-05-1-0177), the NSF (ECS-0609064), and the ANSER Energy Frontier Research Center (funded by the Department of Energy, DE-SC0001059) for support of this research. We thank the NSF-MRSEC program through the Northwestern Materials Research Center (DMR-0520513) for support of characterization facilities. NR 113 TC 75 Z9 75 U1 5 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2218 EP 2226 DI 10.1021/cm200229e PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000030 ER PT J AU Leventis, N Sotiriou-Leventis, C Mohite, DP Larimore, ZJ Mang, JT Churu, G Lu, HB AF Leventis, Nicholas Sotiriou-Leventis, Chariklia Mohite, Dhairyashil P. Larimore, Zachary J. Mang, Joseph T. Churu, Gitogo Lu, Hongbing TI Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP) SO CHEMISTRY OF MATERIALS LA English DT Article DE ROMP; norbornene; end-capped; polyimides; aerogels ID SMALL-ANGLE SCATTERING; STRUCTURE-PROPERTY RELATIONSHIPS; MEASURING THERMAL DIFFUSIVITY; DYNAMIC COMPRESSIVE RESPONSE; MECHANICALLY STRONG AEROGELS; COHERENT EXPANDED AEROGELS; CORE-SHELL SUPERSTRUCTURES; MODIFIED SILICA AEROGELS; INSULATION MATERIAL; COMPOSITE AEROGELS AB Polyimide aerogel monoliths are prepared by ring-opening metathesis polymerization (ROMP) of a norbornene end-capped diimide, bis-NAD, obtained as the condensation product of radic anhydride with 4,4'-methylenedianiline. The density of the material was varied in the range of 0.13-0.66 g cm(-3) by varying the concentration of bis-NAD in the sol. Wet gels experience significant shrinkage, relative to their molds (28%-39% in linear dimensions), but the final aerogels retain high porosities (50%-90% v/v), high surface areas (210-632 m(2) g(-1), of which up to 25% is traced to micropores), and pore size distributions in the mesoporous range (20-33 nm). The skeletal framework consists of primary particles 16-17 nm in diameter, assembling to form secondary aggregates (by SANS and SEM) 60-85 nm in diameter. At lower densities (e.g., 0.26 g cm(-3)), secondary particles are mass fractals (D(m) = 2.34 +/- 0.03) turning to closed-packed surface fractal objects (D(S) = 3.0) as the bulk density increases (>= 0.34 g cm(-3)), suggesting a change in the network-forming mechanism from diffusion-limited aggregation of primary particles to a space-filling bond percolation model. The new materials combine facile one-step synthesis with heat resistance up to 200 C, high mechanical compressive strength and specific energy absorption (168 MPa and 50J g(-1), respectively, at 0,39 g cm(-3) and 88% ultimate strain), low speed of sound (351 m s(-1) at 0.39 g cm(-3)) and styrofoam-like thermal conductivity (0.031 W m(-1) K(-1) at 0.34 g cm(-3) and 25 degrees C); hence, they are reasonable multifunctional candidate materials for further exploration as thermal/acoustic insulation at elevated temperatures. C1 [Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Mohite, Dhairyashil P.] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Larimore, Zachary J.] Missouri Univ Sci & Technol, Dept Mech Engn, Rolla, MO 65409 USA. [Mang, Joseph T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Churu, Gitogo; Lu, Hongbing] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA. RP Leventis, N (reprint author), Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. EM leventis@mst.edu; cslevent@mst.edu; jtmang@lanl.gov; hongbing.lu@utdallas.edu RI Lu, Hongbing/A-1312-2011 FU Army Research Office [W911NF-10-1-0476]; National Science Foundation [CHE-0809562, DMR-0907291, CMMI-0653970, CMMI-0653919, DMR-0454672]; DOE Office of Basic Energy Sciences FX We thank the following for their financial support: the Army Research Office, under Award No. W911NF-10-1-0476 (N.L., C. S.-L.); and the National Science Foundation, under Agreement Nos. CHE-0809562 C.S.-L.), DMR-0907291 (N.L., H.L.), CMMI-0653970 C.S.-L.), and CMMI-0653919 (H.L.). We also acknowledge the Materials Research Center of Missouri S&T for its support in sample characterization (SEM, XRD). Solids NMR work was conducted at the University of Missouri Columbia by Dr. Wei Wycoff. This work also benefited from the use of the SANS instrument, LQD at the Manuel Lujan, Jr. Neutron Scattering Center of the Los Alamos National Laboratory, supported by the DOE Office of Basic Energy Sciences; this work also utilized facilities supported in part by the National Science Foundation, under Agreement No. DMR-0454672. NR 76 TC 45 Z9 48 U1 19 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 26 PY 2011 VL 23 IS 8 BP 2250 EP 2261 DI 10.1021/cm200323e PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 751AF UT WOS:000289589000033 ER PT J AU Luo, L Wilhelm, C Young, CN Grey, CP Halada, GP Xiao, K Ivanov, IN Howe, JY Geohegan, DB Goroff, NS AF Luo, Liang Wilhelm, Christopher Young, Christopher N. Grey, Clare P. Halada, Gary P. Xiao, Kai Ivanov, Ilia N. Howe, Jane Y. Geohegan, David B. Goroff, Nancy S. TI Characterization and Carbonization of Highly Oriented Poly(diiododiacetylene) Nanofibers SO MACROMOLECULES LA English DT Article ID CONJUGATED POLYMER; CARBON NANOFIBERS; GRAPHITE NANOFIBERS; WANNIER EXCITONS; NANOTUBES; FILMS; POLY(DIACETYLENE); CRYSTALS; HYDROGEN; SENSORS AB Poly(diiododiacetylene) (PIDA), formed by the topochemical polymerization of diiodobutadiyne within host-guest cocrystals, is a conjugated polymer containing an all-carbon backbone and only iodine atom substituents. Extensive rinsing and sonication of the PIDA cocrystals in organic solvents such as methanol, THF, and chloroform yield fibrous materials with diameters as low as 10-50 nm. Raman spectroscopy and C-13 MAS NMR confirm that these fibers contain PIDA but that the host has been removed. Polarized Raman scattering measurements indicate that the PIDA filaments are uniaxially oriented. The PIDA nanofibers are stable at room temperature when undisturbed but become explosive under external energy such as shock or pressure. They transform to sp(2)-hybridized carbon irreversibly at room temperature when irradiated with a 532 nm Raman laser beam. Under thermal conditions, the PIDA fibers start releasing iodine at 120 degrees C and undergo complete carbonization in 1 h by pyrolysis at 900 degrees C. C1 [Luo, Liang; Wilhelm, Christopher; Grey, Clare P.; Goroff, Nancy S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Young, Christopher N.; Halada, Gary P.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Xiao, Kai; Ivanov, Ilia N.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Howe, Jane Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Goroff, NS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM nancy.goroff@stonybrook.edu RI Luo, Liang/B-5284-2011; Howe, Jane/G-2890-2011; Xiao, Kai/A-7133-2012; ivanov, ilia/D-3402-2015; Geohegan, David/D-3599-2013 OI Xiao, Kai/0000-0002-0402-8276; ivanov, ilia/0000-0002-6726-2502; Geohegan, David/0000-0003-0273-3139 FU National Science Foundation [CHE-9984937, CHE-0446749, CHE-0453334, DMR-0804737]; Division of Scientific User Facilities, U.S. Department of Energy [CNMS2009-017] FX We thank the National Science Foundation (CHE-9984937, CHE-0446749, CHE-0453334, and DMR-0804737) for support of this research. A portion of this research was conducted at the Center for Nanophase Materials Sciences and the SHaRE User Facility, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy (CNMS2009-017). We also thank Allison L. Stelling and Prof. Peter J. Tonge of Stony Brook University for help with Raman of the suspension, as well as Heng Zhang, Dr. Feng Zuo, and Prof. Lorraine F. Francis of University of Minnesota for help with TGA and DSC experiments. NR 32 TC 18 Z9 18 U1 6 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 26 PY 2011 VL 44 IS 8 BP 2626 EP 2631 DI 10.1021/ma102324r PG 6 WC Polymer Science SC Polymer Science GA 751BT UT WOS:000289593200030 ER PT J AU Nedoma, AJ Lai, P Jackson, A Robertson, ML Wanakule, NS Balsara, NP AF Nedoma, Alisyn J. Lai, Peggy Jackson, Andrew Robertson, Megan L. Wanakule, Nisita S. Balsara, Nitash P. TI Phase Diagrams of Blends of Polyisobutylene and Deuterated Polybutadiene as a Function of Chain Length SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; SATURATED-HYDROCARBON POLYMERS; HUGGINS INTERACTION PARAMETER; MOLECULAR-WEIGHT DEPENDENCE; THERMODYNAMIC INTERACTIONS; CRITICAL FLUCTUATIONS; POLYOLEFIN BLENDS; LIQUID STRUCTURE; BINARY BLENDS; BEHAVIOR AB Phase diagrams of four binary blends of polyisobutylene (component 1) and deuterated polybutadiene (component 2) were determined using small-angle neutron scattering (SANS). Our study covers N(1)/N(2) values ranging from 0.23 to 0.92 and N(i) ranging from about 800 to 3600 (N(i) is the number of monomers per chain of component i based on a reference volume = 0.1 nm(3)). The experimentally determined binodal curves were in good agreement with the predictions based on the Flory-Huggins theory using a previously determined composition- and chain-length-dependent Flory-Huggins interaction parameter presented in Nedoma et al. et al. Macromolecules 2008, 41, 5773-5779. The experimentally determined spinodal curves, which were surprisingly close to the experimental binodal curves, deviated significantly from predictions, an observation for which we offer no quantitative explanation. C1 [Nedoma, Alisyn J.; Lai, Peggy; Robertson, Megan L.; Wanakule, Nisita S.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Sanders, Susan/G-1957-2011; Jackson, Andrew/B-9793-2008; OI Jackson, Andrew/0000-0002-6296-0336; Nedoma, Alisyn/0000-0002-3537-2846 FU Dow Chemical Company; Tyco Fellowship; National Science Foundation [DMR-0454672] FX We acknowledge The Dow Chemical Company for providing the primary support for this work and Dr. T. H. Kalantar for guidance and helpful discussions. A.J.N. was also supported by the Tyco Fellowship. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. NR 36 TC 1 Z9 1 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 26 PY 2011 VL 44 IS 8 BP 3077 EP 3084 DI 10.1021/ma200258w PG 8 WC Polymer Science SC Polymer Science GA 751BT UT WOS:000289593200082 ER PT J AU Aidhy, DS Wolverton, C AF Aidhy, Dilpuneet S. Wolverton, C. TI First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides SO PHYSICAL REVIEW B LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; AUGMENTED-WAVE METHOD; DECOMPOSITION REACTIONS; LIBH4; NABD4; NABH4 AB We use a combination of first-principles density functional theory (DFT) calculations and the recently developed prototype electrostatic ground state (PEGS) method to predict low-energy crystal structures and study phase stability of Li-Zn and Na-Zn mixed-metal borohydride compounds [i.e., NaZn(BH4)(3), NaZn2(BH4)(5), LiZn(BH4)(3), and LiZn2(BH4)(5)]. We find the following: (i) DFT + PEGS successfully predicts low-energy structures in these mixed-metal borohydride systems. (ii) DFT calculations show negative mixing energies in both the Li-Zn and Na-Zn borohydride systems, consistent with the observation of mixed-metal ordering in these systems. (iii) Our DFT calculations of the recently reported experimental crystal structures of NaZn2(BH4)(5) and NaZn(BH4)(3) show that the former has a negative mixing energy, while the latter has a positive mixing energy. (iv) Using the PEGS approach, we predict a new crystal structure of NaZn(BH4)(3) with negative mixing energy and find that the experimental structure of NaZn2(BH4)(5) and the PEGS obtained structure of NaZn(BH4)(3) lie on the ground state convex hull. (v) In the Li-Zn borohydride system, we have used the PEGS + DFT approach to predict a stable crystal structure of new, previously unobserved stoichiometry, LiZn(BH4)(3). As a consequence of this predicted low-energy compound, DFT calculations of the experimentally reported structure of LiZn2(BH4)(5) show that it is unstable with respect to decomposition into LiZn(BH4)(3) + Zn(BH4)(2). (vi) In addition, we also elucidate the ground state crystal structure of NaBH4, and confirm that reorientation of (BH4) units is the driving force behind the order-disorder phase transition in NaBH4. (vii) Finally, we predict a new low-energy crystal structure of Zn(BH4)(2), and illustrate its similarities with the crystal structure of Mg(BH4)(2). C1 [Aidhy, Dilpuneet S.; Wolverton, C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Aidhy, DS (reprint author), Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. EM daidhy@anl.gov RI Wolverton, Christopher/B-7542-2009 FU US Department of Energy [DE-FC36-08GO18136]; Ford Motor Co. FX The authors gratefully acknowledge financial support from the US Department of Energy under Grant No. DE-FC36-08GO18136 and funding from Ford Motor Co. under the University Research Program. The authors also thank E. Majzoub and V. Ozolins for making available the PEGS code. NR 40 TC 12 Z9 12 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 14 AR 144111 DI 10.1103/PhysRevB.83.144111 PG 8 WC Physics, Condensed Matter SC Physics GA 784HS UT WOS:000292148300003 ER PT J AU Cruz-Silva, E Barnett, ZM Sumpter, BG Meunier, V AF Cruz-Silva, E. Barnett, Z. M. Sumpter, B. G. Meunier, V. TI Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles SO PHYSICAL REVIEW B LA English DT Article ID CARBON NANOTUBES; ELECTRONIC-STRUCTURE AB We present a study of the electronic properties of narrow zigzag and armchair nanoribbons substitutionally doped with a single boron, nitrogen, or phosphorus atom. Using density-functional calculations, we analyze the formation energy, electronic band structure, magnetic, and quantum conductance properties of these nanoribbons with doping sites ranging from the edge to the center of the ribbon. Substitutional doping is found to be most favorable at the ribbon edge in all the cases except for the boron-doped armchair ribbon, which has the lowest formation energy in the three-coordinated site next to the edge. Boron-doped zigzag nanoribbons exhibit spin-dependent donorlike states when the dopant is on the ribbon edge, and acceptor states as the dopant is moved toward the ribbon center. Nitrogen-doped zigzag nanoribbons show the opposite effect, while phosphorus-doped nanoribbons exhibit both donorlike and acceptorlike states. The band structure and local density of states indicate that dips in conductance occur from either the presence of a localized state or the opening of mini band gaps around a particular energy value. The variations in conductance arising from different doping profiles could be useful for tailoring the properties of graphene-based nanoelectronic devices. C1 [Cruz-Silva, E.; Sumpter, B. G.; Meunier, V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Barnett, Z. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Meunier, V.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Cruz-Silva, E (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RI Cruz-Silva, Eduardo/B-7003-2009; Sumpter, Bobby/C-9459-2013; Meunier, Vincent/F-9391-2010 OI Cruz-Silva, Eduardo/0000-0003-2877-1598; Sumpter, Bobby/0000-0001-6341-0355; Meunier, Vincent/0000-0002-7013-179X FU ORNL; US Department of Energy [DEAC05-00OR22725]; UT-Battelle, LLC at ORNL; Division of Scientific User Facilities, US Department of Energy; Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy FX The authors acknowledge support from the Laboratory Directed Research and Development Program of ORNL and from US Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC at ORNL. Part of this work was supported by the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, US Department of Energy and by the Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy. Calculations were done using the resources of ORNL Institutional Clusters (OIC) and the National Center for Computational Sciences (NCCS). NR 32 TC 78 Z9 80 U1 3 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 15 AR 155445 DI 10.1103/PhysRevB.83.155445 PG 9 WC Physics, Condensed Matter SC Physics GA 784IK UT WOS:000292150200009 ER PT J AU Jeffries, JR Butch, NP Cynn, H Saha, SR Kirshenbaum, K Weir, ST Vohra, YK Paglione, J AF Jeffries, J. R. Butch, N. P. Cynn, H. Saha, S. R. Kirshenbaum, K. Weir, S. T. Vohra, Y. K. Paglione, J. TI Interplay between magnetism, structure, and strong electron-phonon coupling in binary FeAs under pressure SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; RESISTIVITY AB Unlike the ferropnictide superconductors, which crystallize in a tetragonal crystal structure, binary FeAs forms in an orthorhombic crystal structure, where the local atomic environment resembles a highly distorted variant of the FeAs4 tetrahdedral building block of the ferropnictide superconductors. However, like the parent compounds of the ferropnictide superconductors, FeAs undergoes magnetic ordering at low temperatures, with no evidence favoring a superconducting ground state at ambient pressure. We employ pressure-dependent electrical transport and x-ray diffraction measurements using diamond anvil cells to characterize the magnetic state and the structure as a function of pressure. While the MnP-type structure of FeAs persists up to 25 GPa, compressing continuously with no evidence of structural transformations under pressure, features in the magnetotransport measurements associated with magnetism are not observed for pressures in excess of 11 GPa. Where observable, the features associated with magnetic order at ambient pressure show remarkably little pressure dependence, and transport measurements suggest that a dynamical structural instability coupled to the Fermi surface via a strong electron-phonon interaction may play an important role in enabling magnetism in FeAs. C1 [Jeffries, J. R.; Cynn, H.; Weir, S. T.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Butch, N. P.; Saha, S. R.; Kirshenbaum, K.; Paglione, J.] Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA. [Vohra, Y. K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Jeffries, JR (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RI Weir, Samuel/H-5046-2012 FU Science Campaign at Lawrence Livermore National Laboratory; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; DOE-NNSA [DE-FG52-10NA29660]; DOE-BES; NSF; US DOE [DE-AC02-06CH11357]; AFOSR-MURI [FA9550-09-1-0603] FX We are grateful to Z. Jenei and K. Visbeck for assistance with cell preparations and S. McCall for useful discussions. We also thank C. Kenny-Benson for beamline support. J. R. J., H. C., and S. T. W. are supported by the Science Campaign at Lawrence Livermore National Laboratory. Portions of this work were performed under LDRD. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Beam time was provided through the Carnegie-DOE Alliance Center (CDAC). This work was partially supported by AFOSR-MURI Grant No. FA9550-09-1-0603. Y. K. V. acknowledges support from DOE-NNSA Grant No. DE-FG52-10NA29660. NR 32 TC 6 Z9 6 U1 3 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 13 AR 134520 DI 10.1103/PhysRevB.83.134520 PG 7 WC Physics, Condensed Matter SC Physics GA 784GK UT WOS:000292144400009 ER PT J AU Jiang, W McCloy, JS Lea, AS Sundararajan, JA Yao, Q Qiang, Y AF Jiang, W. McCloy, J. S. Lea, A. S. Sundararajan, J. A. Yao, Q. Qiang, Y. TI Magnetization and susceptibility of ion-irradiated granular magnetite films SO PHYSICAL REVIEW B LA English DT Article ID VERWEY TRANSITION; FREQUENCY-DEPENDENCE; CO/PT MULTILAYERS; SPIN-GLASSES; TEMPERATURE; DYNAMICS; FE3O4; PARTICLES AB Porous granular films of magnetite (Fe3O4) with grains of similar to 3 nm in size were prepared using a state-of-the-art nanocluster deposition system. The films are initially superparamagnetic but become magnetized following Si2+ ion irradiation. A significant increase in the grain size and a dramatic change in the microstructure are observed. There are dipolar interactions between the nanoparticles in both the unirradiated and irradiated films. The in-phase alternating current magnetic susceptibility of the unirradiated film shows a blocking temperature of similar to 150 K, depending on frequency. A broadened Verwey transition for the irradiated film occurs at similar to 75 K, above which the susceptibility exhibits unusual behavior: a nearly linear decrease with decreasing temperature. There are irreversible domain rotations in the irradiated film during zero-field cooling and warming cycles between 10 and 300 K. The observed behavior of the irradiated granular films is quite distinct from that of metallic nanostructures after irradiation, and is due to the dramatic change in microstructures. C1 [Jiang, W.; McCloy, J. S.; Lea, A. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sundararajan, J. A.; Yao, Q.; Qiang, Y.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. RP Jiang, W (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM weilin.jiang@pnl.gov RI McCloy, John/D-3630-2013; OI McCloy, John/0000-0001-7476-7771; Lea, Alan/0000-0002-4232-1553; Jiang, Weilin/0000-0001-8302-8313 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-AC05-76RL01830]; Defense Threat Research Agency, US Department of Defense [IACRO 10-4951I]; DOE [DE-FG02-07ER46386, DE-FG02-04ER46142]; DOE's Office of Biological and Environmental Research and located at PNNL FX This study was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (DOE) under Contract No. DE-AC05-76RL01830 (irradiation and structural characterizations) and by the Defense Threat Research Agency, US Department of Defense, IACRO 10-4951I (magnetic property measurements). The samples were prepared at the University of Idaho, supported by DOE under Contract No. DE-FG02-07ER46386 and No. DE-FG02-04ER46142. HIM experiments were performed with assistance from Chuong Huynh at Carl Zeiss SMT. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 42 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 13 AR 134435 DI 10.1103/PhysRevB.83.134435 PG 8 WC Physics, Condensed Matter SC Physics GA 784GK UT WOS:000292144400007 ER PT J AU King, G Ricciardo, RA Soliz, JR Woodward, PM Llobet, A AF King, Graham Ricciardo, Rebecca A. Soliz, Jennifer R. Woodward, Patrick M. Llobet, Anna TI Linking local structure and properties in perovskites containing equal concentrations of manganese and ruthenium SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; LASRMNRUO6; SR AB The local structures of six perovskite compounds containing equal amounts of manganese and ruthenium on the B-site have been investigated by neutron and x-ray pair distribution function analysis. The compounds SrMn0.5Ru0.5O3, Sr0.5Ca0.5Mn0.5Ru0.5O3, and CaMn0.5Ru0.5O3 were studied to investigate the effects of pure chemical pressure on the local structure and valency ratio between Mn3+/Ru5+ and Mn4+/Ru4+. Reverse Monte Carlo simulations confirm that there is a shift in the B-site cation charge distribution from nearly equal amounts of Mn3+, Ru5+, Mn4+, and Ru4+ for SrMn0.5Ru0.5O3 to primarily Mn4+ and Ru4+ for CaMn0.5Ru0.5O3. The compounds Ba0.5La0.5Mn0.5Ru0.5O3, Ca0.5La0.5Mn0.5Ru0.5O3, and Sr0.5Ca0.25La0.25Mn0.5Ru0.5O3 were also investigated to study the effects of changing the charge of the A-site cation. Although substitution of La3+ for a divalent alkaline earth ion increases the Mn3+ content, this series of compounds also shows a relative increase in the concentration of Mn4+ as the average size of the A-site cation is decreased. In all compounds the octahedra containing Mn3+ are found to be Jahn-Teller distorted regardless of whether or not long-range orbital ordering is observed, while the Ru-centered octahedra are symmetric. No evidence for short-range cation ordering at either the A-or B-sites was found for any of the compositions. This study also reports that locally the A-site cations lie closer to the Mn ions than to the Ru ions and this asymmetry appears to be correlated to the degree of octahedral tilting. C1 [King, Graham; Llobet, Anna] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Ricciardo, Rebecca A.; Soliz, Jennifer R.; Woodward, Patrick M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP King, G (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, MS H805, Los Alamos, NM 87545 USA. RI King, Graham/E-3632-2010; Llobet, Anna/B-1672-2010 OI King, Graham/0000-0003-1886-7254; FU DOE Office of Basic Energy Sciences; DOE [DE-AC52 06NA25396]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Center for Emergent Materials at the Ohio State University, an NSF MRSEC [DMR-0820414] FX This work has benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52 06NA25396. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Patrick Woodward, Rebecca Ricciardo, and Jennifer Soliz acknowledge the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Grant No. DMR-0820414), for providing funding for this research. We would also like to thank Daniel Shoemaker for assistance with the RMC simulations. NR 32 TC 3 Z9 3 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 26 PY 2011 VL 83 IS 13 AR 134123 DI 10.1103/PhysRevB.83.134123 PG 9 WC Physics, Condensed Matter SC Physics GA 784GK UT WOS:000292144400004 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, R Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, R Bartoldus, R Barton, AE Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, E Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, E Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocci, A Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, E Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, E Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, E Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, E Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, E Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Cruz-Burelo, E De la Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, R De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedes, G Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Del'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Dennis, C Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, R Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancanolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, R Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Cris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, R Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Johnson, A Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, R Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kadiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, R Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, R Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, R Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, R Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JR Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, R Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenber, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savva, R Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, R Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, R Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, R Starovoitov, P Staude, A Stavina, R Stavropoulos, G Steele, G Steinbach, R Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tonga, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, M Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MI Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, R. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, R. Bartoldus, R. Barton, A. E. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, E. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, E. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, E. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, E. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, E. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, E. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, E. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Cruz-Burelo, E. De la Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, R. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedes, G. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Del'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Dennis, C. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, R. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancanolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, R. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Cris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, R. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Johnson, A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, R. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kadiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, R. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, R. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, R. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, R. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -R Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, R. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Francisco, O. Norniella Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Oliveira Damazio, D. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Morales, M. I. Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Rodriguez Garcia, Y. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenber, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savva, R. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, R. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, R. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, R. Starovoitov, P. Staude, A. Stavina, R. Stavropoulos, G. Steele, G. Steinbach, R. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tonga, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. I. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the production cross section for W-bosons in association with jets in pp collisions at root s=7 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article DE W-boson; Jets; ATLAS; LHC; Proton-proton; 7 TeV ID PARTON DISTRIBUTIONS AB This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n - 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Buckley, A. G.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Trigger, M.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, IN2P3, CNRS, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Johnson, A.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, R.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Francisco, O. Norniella; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, ES-08193 Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Butler, J. M.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Rodriguez Garcia, Y.; Schulz, H.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bansil, H. S.; Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; McMahon, T. J.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Oliveira Damazio, D.; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, R.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, E.; Bianchi, R. M.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Gildemeister, O.; Godlewski, J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grafstroem, P.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, R.; Jimenez Belenguer, M.; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, R.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, CH-1211 Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, E.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tonga, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Cris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, CNRS, Phys Corpusculaire Lab,IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schwierz, R.; Seifert, F.; Steinbach, R.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, E.; Clark, A.; Dao, V.; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Sundermann, J. E.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, R.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, R.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] CNRS, LPSC, IN2P3, FR-38026 Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, R.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat, D-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Saeki Ku, Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, R.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenber, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyo Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Natl Univ La Plata, FCE, Dept Fis, IFLP,CONICET, RA-1900 La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancanolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN, Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Gwilliam, C. B.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; Butler, B.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Hayward, H. S.; Houlden, M. A.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; McMahon, T. R.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Baker, S.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, Univ Paris 06, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Benchouk, C.; Bernardet, K.; Bousson, N.; Cerna, C.; Clemens, J. C.; Coadou, Y.; Correard, S.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. I.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De la Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Banfi, D.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Del'Asta, L.; Fanti, M.; Favareto, A.; Koletsou, I.; Lazzaro, A.; Lombardo, V. P.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Banfi, D.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Costa, G.; Del'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, NC PHEP BSU, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPHI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, E.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN, Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Napoli, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Ru Novosibirsk 630090, Russia. [Budick, B.; Buis, E. J.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, R.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, R.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, R.; Nakahama, Y.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Ctr Univ Paris Sud, LAL, IN2P3, CNRS, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Bugge, L.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, R.; Mitra, A.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN, Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, R.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN, Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, R.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Muino, P. Conde; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, R.; Staroba, R.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Rybar, M.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Buttar, C. M.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN, Sez Roma, IT-00185 Rome, Italy. [Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] INFN, Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, E.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] INFN, Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, E.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, RUPHE, Fac Sci Ain Chock, Casablanca, Morocco. CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, E.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J. -R; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Virchaux, M.] CEA, DSM IRFU, Ctr Etud Saclay, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Taylor, G.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Cogan, J. G.; Gao, Y. S.; Grenier, R.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, R.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kadiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Tw Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Il Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Il Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Joo, K. K.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN, Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, IMB, CNM, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, E.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kalinin, S.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Mellado Garcia, B. R.; Pan, Y. B.; Pataraia, S.; Pedraza Morales, M. I.; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Julius Maximilians Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, R.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Bergische Univ, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, E.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Guler, H.] Univ Montreal, Montreal, PQ, Canada. [Huseynov, N.] Baku Inst Phys, Baku, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, ASGC, Taipei 115, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Yuan, L.] LPNHE, Paris, France. [Zhong, J.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Nemecek, Stanislav/C-3487-2012; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; valente, paolo/A-6640-2010; Conde Muino, Patricia/F-7696-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; Buttar, Craig/D-3706-2011; de Groot, Nicolo/A-2675-2009; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Jakubek, Jan/E-6530-2011; Marti-Garcia, Salvador/F-3085-2011; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Andreazza, Attilio/E-5642-2011; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Mehdiyev, Rashid/H-6299-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Pacheco Pages, Andres/C-5353-2011; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; OI Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; valente, paolo/0000-0002-5413-0068; Conde Muino, Patricia/0000-0002-9187-7478; Stoicea, Gabriel/0000-0002-7511-4614; Doyle, Anthony/0000-0001-6322-6195; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Andreazza, Attilio/0000-0001-5161-5759; Della Pietra, Massimo/0000-0003-4446-3368; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Pacheco Pages, Andres/0000-0001-8210-1734; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 35 TC 41 Z9 41 U1 3 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 25 PY 2011 VL 698 IS 5 BP 325 EP 345 DI 10.1016/j.physletb.2011.03.012 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 758SB UT WOS:000290185500001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, R Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Armstrong, SR Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, R Banerjee, S Banfi, D Bangert, A Bansal, V Bansi, HS Barak, L Baranov, SP Barashkou, A Gaitieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, R Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocci, A Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Boonekamp, M Boorman, G Booth, CN Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Brambilla, E Branchini, R Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, R Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, R Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, R Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'razio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedes, G Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, JJ Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, R Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Dennis, C Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, R Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Foehlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froesch, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Chez, R Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, R Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, TJ Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, R Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, R Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, R Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, R Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzoa, V Jackson, B Jackson, JN Jackson, R Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, R Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebe, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limosani, A Limper, M Lin, SC Linde, E Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, R Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamozic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, R Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, R Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, R Persembe, S Perus, A Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, R Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, R Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, TJ Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, R Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, R Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, R Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, R Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, R Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, R Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tonga, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, R Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, R Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, R. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, R. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansi, H. S. Barak, L. Baranov, S. P. Barashkou, A. Gaitieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, R. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Brambilla, E. Branchini, R. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, R. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, R. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, R. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'razio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedes, G. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, R. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Dennis, C. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, R. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froesch, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Chez, R. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, R. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, T. J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Gomez Fajardo, L. S. Goncalo, R. Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, R. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, R. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, R. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, R. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzoa, V. Jackson, B. Jackson, J. N. Jackson, R. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Jimenez Belenguer, M. Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, R. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebe, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linde, E. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, R. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamozic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Mellado Garcia, B. R. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Verge, L. Miralles Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, R. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, R. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, R. Persembe, S. Perus, A. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, Rn. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, R. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H-C Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, T. J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, R. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, R. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, R. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, R. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, R. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, R. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tonga, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, R. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, R. Vannucci, F. Varela Rodriguez, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC SO PHYSICS LETTERS B LA English DT Article DE High-energy collider experiment; Long-lived particle; Highly ionising; New physics ID PARTON DISTRIBUTIONS; LIQUID ARGON; MAGNETIC MONOPOLES; Q-BALLS; SCINTILLATION; IONIZATION; COLLIDER; IONS; COLLISIONS; PROTON AB A search is made for massive highly ionising particles with lifetimes in excess of 100 ns, with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb(-1) of pp collision data taken at root s = 7 TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges 6e <= vertical bar q vertical bar <= 17e and masses 200 GeV <= m <= 1000 GeV are set in the range 1-12 pb for different hypotheses on the production mechanism. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Portell Bueso, X.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Chez, R.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Massol, N.; Perrodo, R.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, R.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Verge, L. Miralles; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vaque, F. Vives; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mamozic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Gaitieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, T. J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Arguin, J. -F.; Bach, A. M.; Gaitieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, T. J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bansi, H. S.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; McMahon, T. J.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, R.; Massa, I.; Mengarelli, A.; Monzani, S.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, R.; Massa, I.; Mengarelli, A.; Monzani, S.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J-W; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Nattermann, T.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. West Univ, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Dewhurst, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, R.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froesch, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, T. J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, R.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jimenez Belenguer, M.; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Pajchel, K.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Varela Rodriguez, F.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tonga, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Shijing Shan Dist 100049, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS,IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Perez Reale, V.; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, R.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Bechtle, R.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Gomez Fajardo, L. S.; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Perez Cavalcanti, T.; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, R.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, R.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.] INFN, Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Garcia Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Vest, A.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN, Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, R.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,INPG, Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, R.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, D-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Saeki Ku, Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyo Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP,CONICET, RA-1900 La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, Rn.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN, Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, R.; Bona, M.; Carter, A. A.; Cerrito, L.; Cindro, V.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, R.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Baker, S.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, R.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris Diderot, UPMC, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J. J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, R.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; Vachon, B.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Colon, G.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, NC PHEP BSU, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, R.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebe, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mehdiyev, R.; Romaniouk, A.; Smirnov, S. Yu.] MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzoa, V.; Jackson, B.; LeGeyt, B. C.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN, Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Napoli, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; Conta, C.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, E.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, E.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, R.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Perus, A.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Cooper-Sarkar, A. M.; Holmes, A.; Larner, A.; Lavorato, A.; Mitra, A.; Pinder, A.; Vickey, T.; Weidberg, A. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN, Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Muino, P. Conde; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, R.; Schovancova, J.; Sicho, P.; Staroba, R.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'razio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, R.; Vari, R.; Veneziano, S.; Zanello, L.] INFN, Sez Roma, IT-00185 Rome, Italy. [Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'razio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] INFN, Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, R.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] INFN, Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, RUPHE, Casablanca, Morocco. CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.] CEA, DSM IRFU, Ctr Etud Saclay, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Taylor, G.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, R.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, R.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, R.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, R.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Canepa, A.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.; Ikegami, Y.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At & Mol Nucl, Dept Ing Elect, Bellaterra 08193, Spain. [Amoros, G.; Urban, S. Cabrera; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, CNM, IMB, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Mellado Garcia, B. R.; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Julius Maximilians Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, R.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, R.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Gesamthsch Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, R.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. [Aguilar-Saavedra, J. A.; Castro, N. F.] LIP, Oporto, Portugal. [Amorim, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Morais, A.; Palma, A.; Pinto, B.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Fernandes, B.; Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.] Univ Lisbon, P-1699 Lisbon, Portugal. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Guler, H.] Univ Montreal, Montreal, PQ, Canada. [Huseynov, N.] Baku Inst Phys, Baku, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, ASGC, Taipei 115, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Yuan, L.] LPNHE, Paris, France. [Zhong, J.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI la rotonda, laura/B-4028-2016; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fullana Torregrosa, Esteban/A-7305-2016; Grancagnolo, Francesco/K-2857-2015; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Akimov, Andrey/N-1769-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Pina, Joao /C-4391-2012; Mehdiyev, Rashid/H-6299-2013; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Castro, Nuno/D-5260-2011; Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Andreazza, Attilio/E-5642-2011; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Fazio, Salvatore /G-5156-2010; Marti-Garcia, Salvador/F-3085-2011; Conde Muino, Patricia/F-7696-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; Buttar, Craig/D-3706-2011; de Groot, Nicolo/A-2675-2009; Doyle, Anthony/C-5889-2009; Jakubek, Jan/E-6530-2011; collins-tooth, christopher/A-9201-2012; Ferrando, James/A-9192-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Nemecek, Stanislav/C-3487-2012; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; OI Cristinziani, Markus/0000-0003-3893-9171; Haas, Andrew/0000-0002-4832-0455; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Pomarede, Daniel/0000-0003-2038-0488; Vos, Marcel/0000-0001-8474-5357; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Cataldi, Gabriella/0000-0001-8066-7718; CACCIA, MASSIMO/0000-0002-9499-678X; Evans, Harold/0000-0003-2183-3127; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Nielsen, Jason/0000-0002-9175-4419; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Chromek-Burckhart, Doris/0000-0003-4243-3288; Sawyer, Lee/0000-0001-8295-0605; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Chen, Hucheng/0000-0002-9936-0115; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; spagnolo, stefania/0000-0001-7482-6348; Andreazza, Attilio/0000-0001-5161-5759; Della Pietra, Massimo/0000-0003-4446-3368; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Conde Muino, Patricia/0000-0002-9187-7478; Stoicea, Gabriel/0000-0002-7511-4614; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Paoloni, Alessandro/0000-0002-4141-7799; Belanger-Champagne, Camille/0000-0003-2368-2617; abi, babak/0000-0001-7036-9645; Adye, Tim/0000-0003-0627-5059; Di Micco, Biagio/0000-0002-4067-1592; Weber, Michele/0000-0002-2770-9031 NR 35 TC 27 Z9 27 U1 5 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 25 PY 2011 VL 698 IS 5 BP 353 EP 370 DI 10.1016/j.physletb.2011.03.033 PG 18 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 758SB UT WOS:000290185500003 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovis, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Amanao, AB Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillor, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, R Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Girominis, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, HK Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, R Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, RM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plageri, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveiev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, E Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovis, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Amanao, A. BuzatuAl. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillor, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, R. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Girominis, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, H. K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, R. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Movilla Fernandez, R. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plageri, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveiev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, E. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the top quark mass in the lepton plus jets channel using the lepton transverse momentum SO PHYSICS LETTERS B LA English DT Article DE Top quark mass; Lepton momentum spectrum ID COLLIDER DETECTOR; CDF; CALORIMETER; FERMILAB; QCD AB This Letter reports a measurement of the top quark mass, M(top), in data from p (p) over bar collisions at root s = 1.96 TeV corresponding to 2.7 fb(-1) of integrated luminosity at the Fermilab Tevatron using the CDF II detector. Events with the lepton + jets topology are selected. An unbinned likelihood is constructed based on the dependence of the lepton transverse momentum, P(T), on M(top). A maximum likelihood fit to the data yields a measured mass M(top) = 176.9 +/- 8.0(stat) 2.7(syst) GeV/c(2). In this measurement, the contribution by the jet energy scale uncertainty to the systematic error is negligible. The result provides an important consistency test for other M(top) measurements where explicit use of the jet energy is made for deriving the top quark mass. Published by Elsevier B.V. C1 [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plageri, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, R.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Movilla Fernandez, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovis, A.; Cordelli, M.; Girominis, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, R.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Amanao, A. BuzatuAl.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amanao, A. BuzatuAl.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Amanao, A. BuzatuAl.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amanao, A. BuzatuAl.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, H. K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Dorigo, T.; Gresele, A.; Lazzizzera, I.] Ist Nazl Fis Nucl, Sez Padova Trento, Padua, Italy. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveiev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Di Ruzza, B.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Piacentino, G.; Sartori, L.; Scuri, E.] Ist Nazl Fis Nucl, Pisa, Italy. [Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Sartori, L.; Scuri, E.; Sforza, F.; Volpi, G.] Univ Pisa, I-56100 Pisa, Italy. [Barria, P.; Bedeschi, F.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Di Ruzza, B.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Piacentino, G.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, E.] Univ Siena, I-53100 Siena, Italy. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Di Ruzza, B.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Piacentino, G.; Sartori, L.; Scuri, E.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Ristori, L.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Vellidis, C (reprint author), Univ Athens, GR-15771 Athens, Greece. EM vellidis@fnal.gov RI manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Chiarelli, Giorgio/E-8953-2012; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Garcia, Jose /H-6339-2015; Cavalli-Sforza, Matteo/H-7102-2015; ciocci, maria agnese /I-2153-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; OI Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Brucken, Jens Erik/0000-0001-6066-8756; Punzi, Giovanni/0000-0002-8346-9052; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Chiarelli, Giorgio/0000-0001-9851-4816; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Cranmer, Kyle/0000-0002-5769-7094; Hays, Chris/0000-0003-2371-9723 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 29 TC 9 Z9 9 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 25 PY 2011 VL 698 IS 5 BP 371 EP 379 DI 10.1016/j.physletb.2011.03.041 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 758SB UT WOS:000290185500004 ER PT J AU Hellwig, O Gunther, CM Radu, F Menzel, A Schlotter, WF Luning, J Eisebitt, S AF Hellwig, O. Guenther, C. M. Radu, F. Menzel, A. Schlotter, W. F. Luening, J. Eisebitt, S. TI Ferrimagnetic stripe domain formation in antiferromagnetically-coupled Co/Pt-Co/Ni-Co/Pt multilayers studied via soft x-ray techniques SO APPLIED PHYSICS LETTERS LA English DT Article ID FILMS; SUPERLATTICES; ANISOTROPY AB We investigate the macroscopic and microscopic magnetic reversal in perpendicular anisotropy antiferromagnetically (AF) coupled [Co/Pt](N-1)/Co-Ru-[Co/Ni](M-1)/Co-Ru-[Co/Pt](N-1)/Co multilayers (ML) using soft x-ray spectroholography and local, as well as area-integrated, soft x-ray hysteresis loop techniques. For N = 25 >> M = 3 we find ferrimagnetic stripe domains in remanence due to the combination of strong dipolar fields from the thick Co/Pt MLs with a strong AF-interlayer exchange coupling of the thin Co/Ni ML in the center, which reverses its polarity three times during a magnetic field reversal. Furthermore, local hysteresis loops reveal distinct random spin-flip avalanches, thus indicating the existence of local magnetic pinning sites due to the insertion of the center Co/Ni stack. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3583454] C1 [Hellwig, O.; Guenther, C. M.; Radu, F.; Menzel, A.; Eisebitt, S.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany. [Hellwig, O.] Hitachi GST, San Jose Res Ctr, San Jose, CA 95135 USA. [Schlotter, W. F.; Luening, J.] SSRL, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Schlotter, W. F.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Hellwig, O (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Albert Einstein Str 15, D-12489 Berlin, Germany. EM Olav.Hellwig@hitachigst.com RI Radu, Florin/B-6725-2011; Gastelois, Pedro/F-3891-2012; Menzel, Andreas/C-4388-2012; OI Radu, Florin/0000-0003-0284-7937; Menzel, Andreas/0000-0002-0489-609X; Gunther, Christian Michael/0000-0002-3750-7556 FU BMBF [05KS7PC]; DOE at SSRL FX Sample preparation and magnetometry measurements were carried out at the HGST San Jose Research Center. Gold mask deposition and focused-ion-beam milling were performed at SSRL and Stanford University. All x-ray measurements were conducted at beamlines UE52-SGM and UE56-1-SGM at the BESSY-II synchrotron. We would like to thank Professor Dr. Zabel for making the ALICE scattering chamber (BMBF Contract No. 05KS7PC) available and the DOE for support at SSRL. NR 20 TC 4 Z9 4 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 25 PY 2011 VL 98 IS 17 AR 172503 DI 10.1063/1.3583454 PG 3 WC Physics, Applied SC Physics GA 756WS UT WOS:000290046100036 ER PT J AU Ma, J Wei, SH Neale, NR Nozik, AJ AF Ma, Jie Wei, Su-Huai Neale, Nathan R. Nozik, Arthur J. TI Effect of surface passivation on dopant distribution in Si quantum dots: The case of B and P doping SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; SILICON NANOCRYSTALS; PHOTOLUMINESCENCE; PHOSPHORUS; ARRAYS AB Despite many efforts, the doping behavior in Si quantum dots (QDs) is still not well understood. Theoretical work shows that boron as an acceptor prefers to stay near the surface and phosphorous as a donor may stay close to the center in a perfectly hydrogen passivated QD. However, experiment studies seem suggesting an opposite trend. Using first-principle methods, we show that the discrepancy could be explained by the imperfectness of surface passivation of the QD. We find that, in QDs with hydrogen deficient or oxygen rich surfaces, phosphorous prefers the surface sites and boron may stay inside, consistent with experiment observations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3583663] C1 [Ma, Jie; Wei, Su-Huai; Neale, Nathan R.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ma, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM swei@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 FU U.S. DOE/BES SISGR [DE-AC36-08GO28308]; NERSC [DE-AC02-05CH11231] FX This work was funded by the U.S. DOE/BES SISGR program under the Contract No. DE-AC36-08GO28308 to NREL. We appreciate the use of the supercomputer resources at NREL and at the NERSC under Contract No. DE-AC02-05CH11231. NR 19 TC 19 Z9 19 U1 1 U2 33 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 25 PY 2011 VL 98 IS 17 AR 173103 DI 10.1063/1.3583663 PG 3 WC Physics, Applied SC Physics GA 756WS UT WOS:000290046100049 ER PT J AU Nelson, GJ Harris, WM Izzo, JR Grew, KN Chiu, WKS Chu, YS Yi, J Andrews, JC Liu, YJ Pianetta, P AF Nelson, George J. Harris, William M. Izzo, John R., Jr. Grew, Kyle N. Chiu, Wilson K. S. Chu, Yong S. Yi, Jaemock Andrews, Joy C. Liu, Yijin Pianetta, Piero TI Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography SO APPLIED PHYSICS LETTERS LA English DT Article ID FUEL-CELL ANODES; OXIDE; SPECTROSCOPY; SPECIATION AB The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography. (C) 2011 American Institute of Physics. [doi:10.1063/1.3574774] C1 [Nelson, George J.; Harris, William M.; Izzo, John R., Jr.; Grew, Kyle N.; Chiu, Wilson K. S.] Univ Connecticut, HeteroFoaM Ctr, DOE Energy Frontier Res Ctr, Dept Mech Engn, Storrs, CT 06269 USA. [Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Yi, Jaemock] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Andrews, Joy C.; Liu, Yijin; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Nelson, GJ (reprint author), Univ Connecticut, HeteroFoaM Ctr, DOE Energy Frontier Res Ctr, Dept Mech Engn, 191 Auditorium Rd, Storrs, CT 06269 USA. EM wchiu@engr.uconn.edu RI Grew, Kyle/K-3982-2013; Liu, Yijin/O-2640-2013 OI Grew, Kyle/0000-0002-1645-3835; Liu, Yijin/0000-0002-8417-2488 FU Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001061, DE-AC02-06CH11357, DE-AC02-98CH10886]; National Science Foundation [CBET-0828612]; ASEE FX Financial support from an Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award No. DE-SC0001061), the National Science Foundation (Award No. CBET-0828612), and the ASEE National Defense Science and Engineering Graduate Fellowship program are gratefully acknowledged. Portions of this research were carried out at the Advanced Photon Source supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences, and by the Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886. NR 23 TC 37 Z9 37 U1 3 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 25 PY 2011 VL 98 IS 17 AR 173109 DI 10.1063/1.3574774 PG 3 WC Physics, Applied SC Physics GA 756WS UT WOS:000290046100055 ER PT J AU Liew, SF Forster, J Noh, H Schreck, CF Saranathan, V Lu, X Yang, L Prum, RO O'Hern, CS Dufresne, ER Cao, H AF Liew, S. F. Forster, J. Noh, H. Schreck, C. F. Saranathan, V. Lu, X. Yang, L. Prum, Richard O. O'Hern, C. S. Dufresne, E. R. Cao, H. TI Short-range order and near-field effects on optical scattering and structural coloration SO OPTICS EXPRESS LA English DT Article ID RANDOM CLOSE-PACKING; LIGHT-SCATTERING; PHOTONIC STRUCTURES; SPHERES; BACKSCATTERING; NANOSTRUCTURES; SUSPENSIONS; PARTICLES; CRYSTALS; HARD AB We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation. (C) 2011 Optical Society of America C1 [Liew, S. F.; Noh, H.; Cao, H.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. [Forster, J.; O'Hern, C. S.; Dufresne, E. R.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. [Schreck, C. F.; O'Hern, C. S.; Dufresne, E. R.; Cao, H.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Saranathan, V.; Prum, Richard O.] Yale Univ, Dept Ecol & Evolutionary Biol, Peabody Museum Nat Hist, New Haven, CT 06511 USA. [Lu, X.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Yang, L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Dufresne, E. R.] Yale Univ, Dept Chem Engn, New Haven, CT 06511 USA. [Dufresne, E. R.] Yale Univ, Dept Cell Biol, New Haven, CT 06511 USA. RP Liew, SF (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. EM sengfatt.liew@yale.edu RI Forster, Jason/D-7527-2011; Dufresne, Eric/A-7760-2009; Cao, Hui/F-4815-2012; Yang, Lin/D-5872-2013; O'Hern, Corey/I-3459-2014; OI Yang, Lin/0000-0003-1057-9194; O'Hern, Corey/0000-0002-8272-5640; Saranathan, Vinodkumar/0000-0003-4058-5093 FU Yale NSFMRSEC [DMR-0520495]; NSF [PHY-0957680, CBET-0547294, DMS-0835742]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357] FX We thank Professor Simon Mochrie for stimulating discussions. This work is supported with seed funding from the Yale NSFMRSEC (DMR-0520495) and NSF grants to HC (PHY-0957680), ERD (CAREER CBET-0547294) and CSOH (DMS-0835742). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. SAXS data were collected with the help of Drs. Alec Sandy and Suresh Narayanan at beamline 8-ID-I of the Advanced Photon Source, Argonne National Labs, and supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 34 TC 22 Z9 22 U1 1 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 25 PY 2011 VL 19 IS 9 BP 8208 EP 8217 DI 10.1364/OE.19.008208 PG 10 WC Optics SC Optics GA 762NJ UT WOS:000290485900030 PM 21643071 ER EF